Powered by Deep Web Technologies
Note: This page contains sample records for the topic "area activity start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Department of Energy Announces Start of Western Area Power Administration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Start of Western Area Power Start of Western Area Power Administration Recovery Act Project Department of Energy Announces Start of Western Area Power Administration Recovery Act Project September 16, 2009 - 12:00am Addthis WASHINGTON, DC - With the goal of bringing new jobs and green power to the West, Energy Secretary Steven Chu announced today a large-scale transmission project to be financed using funding from the American Recovery and Reinvestment Act. The Western Area Power Administration will use borrowing authority under the Recovery Act to help build the $213 million Montana-Alberta Tie Limited (MATL) transmission project between Great Falls, Montana, and Lethbridge, Alberta. Almost two-thirds of the 214-mile transmission line will be located on U.S. soil, creating American

2

DART's (Dallas Area Rapid Transit) LNG Bus Fleet Start-Up Experience (Alternative Fuel Transit Buses Brochure)  

SciTech Connect

This report, based on interviews and site visits conducted in October 1999, describes the start-up activities of the DART liquefied natural gas program, identifying problem areas, highlighting successes, and capturing the lessons learned in DART's ongoing efforts to remain at the forefront of the transit industry.

Battelle

2000-06-30T23:59:59.000Z

3

Overview Of Electromagnetic Methods Applied In Active Volcanic Areas Of  

Open Energy Info (EERE)

Of Electromagnetic Methods Applied In Active Volcanic Areas Of Of Electromagnetic Methods Applied In Active Volcanic Areas Of Western United States Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Overview Of Electromagnetic Methods Applied In Active Volcanic Areas Of Western United States Details Activities (7) Areas (2) Regions (0) Abstract: A better understanding of active volcanic areas in the United States through electromagnetic geophysical studies received foundation from the many surveys done for geothermal exploration in the 1970's. Investigations by governmental, industrial, and academic agencies include (but are not limited to) mapping of the Cascades. Long Valley/Mono area, the Jemez volcanic field, Yellowstone Park, and an area in Colorado. For one example - Mt. Konocti in the Mayacamas Mountains, California - gravity,

4

EA-1934: Expansion of Active Borrow Areas, Hanford Site, Richland,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1934: Expansion of Active Borrow Areas, Hanford Site, Richland, EA-1934: Expansion of Active Borrow Areas, Hanford Site, Richland, Washington EA-1934: Expansion of Active Borrow Areas, Hanford Site, Richland, Washington SUMMARY This EA evaluates the potential environmental impacts of expansion or continued use of existing sand and gravel pits located on the Hanford Site (Pits F, H, N, 6, 9, 18, 21, 23, 24, 30, and 34) and establishing one new borrow area source in the 100 Area for ongoing construction activities and fill material following remediation activities. The scope of this EA does not include borrow sources for silt-loam material. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 15, 2013 EA-1934: Mitigation Action Plan Expansion of Active Borrow Areas, Hanford Site, Richland, Washington

5

EA-1934: Expansion of Active Borrow Areas, Hanford Site, Richland,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: Expansion of Active Borrow Areas, Hanford Site, Richland, 4: Expansion of Active Borrow Areas, Hanford Site, Richland, Washington EA-1934: Expansion of Active Borrow Areas, Hanford Site, Richland, Washington SUMMARY This EA evaluates the potential environmental impacts of expansion or continued use of existing sand and gravel pits located on the Hanford Site (Pits F, H, N, 6, 9, 18, 21, 23, 24, 30, and 34) and establishing one new borrow area source in the 100 Area for ongoing construction activities and fill material following remediation activities. The scope of this EA does not include borrow sources for silt-loam material. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 15, 2013 EA-1934: Mitigation Action Plan Expansion of Active Borrow Areas, Hanford Site, Richland, Washington

6

Guide to good practices for control area activities  

SciTech Connect

This Guide to Good Practices is written to enhance understanding of, and provide direction for, Control Area Activities, Chapter III of Department of Energy (DOE) Order 5480.19, Conduct of Operations Requirements.'' The practices in this guide should be considered for controlling the activities in control areas. Contractors are advised to adopt methods that meet the intent of DOE Order 5480.19. Control Area Activities'' is an element of an effective Conduct of Operations program. The complexity and array of activities performed in DOE facilities dictate the necessity for maintaining a formal environment in operational control areas to promote safe and efficient operations.

Not Available

1993-06-01T23:59:59.000Z

7

Guide to good practices for control area activities  

SciTech Connect

This Guide to Good Practices is written to enhance understanding of, and provide direction for, Control Area Activities, Chapter III of Department of Energy (DOE) Order 5480.19, ``Conduct of Operations Requirements.`` The practices in this guide should be considered for controlling the activities in control areas. Contractors are advised to adopt methods that meet the intent of DOE Order 5480.19. ``Control Area Activities`` is an element of an effective Conduct of Operations program. The complexity and array of activities performed in DOE facilities dictate the necessity for maintaining a formal environment in operational control areas to promote safe and efficient operations.

Not Available

1993-06-01T23:59:59.000Z

8

Guide to good practices for control area activities  

SciTech Connect

This Guide to Good Practices is written to enhance understanding of, and provide direction for, Control Area Activities, Chapter III of Department of Energy (DOE) Order 5480.19, Conduct of Operations Requirements for DOE Facilities. The practices in this guide should be considered for controlling the activities in control areas. Contractors are advised to adopt procedures that meet the intent of DOE Order 5480.19. Control Area Activities is an element of an effective Conduct of Operations program. The complexity and array of activities performed in DOE facilities dictate the necessity for maintaining a formal environment in operational control areas to promote safe and efficient operations.

NONE

1998-12-01T23:59:59.000Z

9

Getting started  

NLE Websites -- All DOE Office Websites (Extended Search)

Getting started Getting started Getting started First Steps You can log in to Genepool using SSH (Secure Shell) with the following command from any UNIX, Linux, FreeBSD, etc. command shell or terminal: ssh -l username genepool.nersc.gov There are several SSH-capable clients available for Windows, Mac, and UNIX/Linux machines. NERSC does not support or recommend any particular client. By ssh'ing to genepool.nersc.gov, you will access one of the seven genepool login nodes. These login nodes are situated behind a load balancer, so you may reach a different login node on different days. If you make use of a tool like "screen" or "tmux", make sure to take note of which login node you started it on. In addition to the genepool login nodes, the "gpint" systems are available

10

Surveillance Guide - OPS 9.3 Control Area Activities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CONTROL AREA ACTIVITIES CONTROL AREA ACTIVITIES 1.0 Objective The objective of this surveillance is to verify that standards for the professional conduct of operations personnel are established and followed so that operator performance meets the expectations of DOE and facility management. This surveillance provides a basis for evaluating watchstanding practices of operations personnel in the control area. 2.0 References 2.1 DOE 5480.19, Conduct of Operations Requirements for DOE Facilities 2.2 DOE-STD-1042-93, Guide to Good Practices for Control Area Activities 3.0 Requirements Implemented This surveillance is conducted to implement requirements of the Functions, Responsibilities and Authorities Manual, Section 20, Operations, FRAM #s 4253, 4258, and 4261. These requirements are

11

Hybrid: Starting  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

button highlighted Cruising Button Passing Button Braking Button Stopped Button subbanner graphic: gray bar button highlighted Cruising Button Passing Button Braking Button Stopped Button subbanner graphic: gray bar STARTING When the vehicle is started, the gasoline engine "warms up." If necessary, the electric motor acts as a generator, converting energy from the engine into electricity and storing it in the battery. stage graphic: vertical blue rule Main stage: See through car with battery, engine, and electric motor visible. The car is moving. There are arrows flowing from the gasoline engine to the electric motor to the battery. Main stage: See through car with battery, engine, and electric motor visible. The car is moving. There are arrows flowing from the gasoline engine to the electric motor to the battery. Battery: The battery stores energy generated from the gasoline engine or, during regenerative braking, from the electric motor. Since the battery helps power the vehicle, it is larger and holds much more energy than batteries used to start conventional vehicles. Main stage: See through car with battery, engine, and electric motor visible. The car is moving. There are arrows flowing from the gasoline engine to the electric motor to the battery.

12

Start End  

NLE Websites -- All DOE Office Websites (Extended Search)

Start Start End Δt Title Presenter 8:30 8:35 0:05 Welcome Earl Marmar 8:35 9:20 0:45 Discussion of 1st Launcher Design and Performance Ron Parker 9:20 9:50 0:30 Technical Objectives Randy Wilson 9:50 10:20 0:30 4-Way Splitter Design and Testing Peter Koert 10:20 10:35 0:15 Break 10:35 11:20 0:45 Mechanical Design Rui Vieira 11:20 12:05 0:45 Coupler Design and Simulation -- Plasma Effects Ron Parker Thermal Effects in Splitter Orso Meneghini 12:05 12:35 0:30 Summary and Schedule Jim Irby 12:35 13:35 1:00 Lunch 13:35 15:05 1:30 Executive Session 15:05 Debrief 1 st Launcher Design and Performance Ron Parker LH Launcher Design Review 9 September 2008 Lower Hybrid waves are injected into Alcator C-Mod plasmas at 4.6 GHz via an 88-waveguide grill Probes Stainless steel grill used to inject LH waves into Alcator C-Mod plasmas during 2006 -2008 campaigns. Maximum

13

Political activities at gun shows represent views that start at the conservative and move to the right from there. As with the  

E-Print Network (OSTI)

6 Politics Political activities at gun shows represent views that start at the conservative that could usefully be explored by others. Candidates for public office see gun shows as a way to connect with a motivated constituency. As one observer described it, "There are people who vote guns and only guns

Leistikow, Bruce N.

14

Software Engineering Model Schedule -(Starting with CS 1121) example only; actual schedule may vary; see your academic dept. Includes 3 units of co-curricular activities.  

E-Print Network (OSTI)

Software Engineering Model Schedule - (Starting with CS 1121) example only; actual schedule may Year 2nd Year FALL SPRING FALL SPRING CS 1000 1 CS 1122 3 CS 1141 2 CS 2311 3 CS 1121 3 MA 2160 4 CS Cocurricular Activity (1) Total 15 Total 15 Total 14-15 Total 16-17 3rd Year 4th Year FALL SPRING FALL SPRING

15

Investigation of Neotectonic Activity within the Shallow, Unconsolidated Stratigraphy of the Pearl River Delta Area, Louisiana.  

E-Print Network (OSTI)

??During the last half century researchers have suggested that active deformation driven by neotectonic activity has locally influenced areas of southeastern Louisiana in the form… (more)

Fischer, Dane

2010-01-01T23:59:59.000Z

16

Alaska START | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Resources » START Program » Alaska START Resources » START Program » Alaska START Alaska START Led by the DOE Office of Indian Energy, in partnership with the Denali Commission, the DOE Office of Energy Efficiency and Renewable Energy, and the National Renewable Energy Laboratory (NREL), the Strategic Technical Assistance Response Team (START) Initiative for Rural Alaska Native Community Energy Planning and Projects will support activities of Alaska Native communities and entities that are focused on community-based energy planning, energy awareness and training programs, and identification and implementation of renewable energy and energy efficiency opportunities. Through the START, each Alaska Native community will receive technical assistance focused on community-based energy planning, energy awareness and

17

SCIENCE AND TECHNOLOGY ACTIVITIES FOR CHROMIUM IN THE 100 AREAS  

SciTech Connect

{sm_bullet} Primary Objective: Protect the Columbia River - Focus is control and treatment of contamination at or near the shoreline, which is influenced by bank storage {sm_bullet} Secondary Objective: Reduce hexavalent chromium to <48 parts per billion (ppb) in aquifer (drinking water standard) - Large plumes with isolated areas of high chromium concentrations (> 40,000 ppb), - Unknown source location(s); probably originating in reactor operation areas

PETERSEN SW

2009-07-02T23:59:59.000Z

18

Species composition, distribution, and abundance of macrobenthic organisms in the intake and discharge area of a steam-electric generating station before and during initial start-up  

E-Print Network (OSTI)

was used at 17 stations with soft substrates. A frame sampler was used at five stations with hard substrates, Each gear was used every 4 weeks, but alternately; with a 2-week-time interval between use of the dredge and frame. Data yielded by dif- ferent.... Mid-Bay was the second most produc- tive, followed by Tabb's Bay and Cedar Bayou which both yielded low numbers of species and individuals. Factors thought to cause these differences were: 1. the degree of pollution in each area, 2. the type...

Williams, Grady Edward

2012-06-07T23:59:59.000Z

19

Guidelines for ACUC Oversight of Satellite Facilities, Study Areas, Laboratories and other Animal Activity Areas  

E-Print Network (OSTI)

Guidelines for ACUC Oversight of Satellite Facilities, Study Areas, Laboratories and other Animal? · Are pharmaceuticals in-date? Are chemical-grade materials in use for compounds for which pharmaceutical preparations familiar with procedures for receipt and disposition of animals and transport containers? If applicable

Bandettini, Peter A.

20

Clean Cities: Starting a Clean Cities Coalition  

NLE Websites -- All DOE Office Websites (Extended Search)

Coalitions Coalitions Printable Version Share this resource Send a link to Clean Cities: Starting a Clean Cities Coalition to someone by E-mail Share Clean Cities: Starting a Clean Cities Coalition on Facebook Tweet about Clean Cities: Starting a Clean Cities Coalition on Twitter Bookmark Clean Cities: Starting a Clean Cities Coalition on Google Bookmark Clean Cities: Starting a Clean Cities Coalition on Delicious Rank Clean Cities: Starting a Clean Cities Coalition on Digg Find More places to share Clean Cities: Starting a Clean Cities Coalition on AddThis.com... Locations Starting Coalitions Contacts Starting a Clean Cities Coalition Starting a Clean Cities coalition can be a great first step toward reducing petroleum use in your area. The U.S. Department of Energy (DOE) grants official Clean Cities designation to coalitions that exhibit

Note: This page contains sample records for the topic "area activity start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Alaska START Application  

Energy.gov (U.S. Department of Energy (DOE))

Download the application for the START Program for Community Energy Planning and Projects–Round Three.

22

Impact of active material surface area on thermal stability of LiCoO2 cathode  

Science Journals Connector (OSTI)

Abstract Thermal stability of charged LiCoO2 cathodes with various surface areas of active material is investigated in order to quantify the effect of LiCoO2 surface area on thermal stability of cathode. Thermogravimetric analyses and calorimetry have been conducted on charged cathodes with different active material surface areas. Besides reduced thermal stability, high surface area also changes the active material decomposition reaction and induces side reactions with additives. Thermal analyses of LiCoO2 delithiated chemically without any additives or with a single additive have been conducted to elaborate the effect of particle size on side reactions. Stability of cathode–electrolyte system has been investigated by accelerating rate calorimetry (ARC). Arrhenius activation energy of cathode decomposition has been calculated as function of conversion at different surface area of active material.

Jan Geder; Harry E. Hoster; Andreas Jossen; Jürgen Garche; Denis Y.W. Yu

2014-01-01T23:59:59.000Z

23

START Program Project Sites  

Energy.gov (U.S. Department of Energy (DOE))

The Strategic Technical Assistance Response Team (START) Program is part of the DOE Office of Indian Energy effort to assist in the development of tribal renewable energy projects. Through START,...

24

START Program: Alaska  

Energy.gov (U.S. Department of Energy (DOE))

Overview fact sheet on the selected DOE Office of Indian Energy Strategic Technical Assistance Response Team (START) projects in Alaska.

25

AREA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AREA AREA FAQ # Question Response 316 vs DCAA FAQ 1 An inquiry from CH about an SBIR recipient asking if a DCAA audit is sufficient to comply with the regulation or if they need to add this to their audit they have performed yearly by a public accounting firm. 316 audits are essentially A-133 audits for for-profit entities. They DO NOT replace DCAA or other audits requested by DOE to look at indirect rates or incurred costs or closeouts. DCAA would never agree to perform A-133 or our 316 audits. They don't do A-133 audits for DOD awardees. The purpose of the audits are different, look at different things and in the few instances of overlap, from different perspectives. 316

26

START and Online Education Program Update Webinar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

START and Online Education Program Update Webinar START and Online Education Program Update Webinar START and Online Education Program Update Webinar January 30, 2013 11:00AM MST Webinar The U.S. Department of Energy (DOE) Office of Indian Energy Policy and Programs, Office of Energy Efficiency and Renewable Energy Tribal Energy Program, and Western Area Power Administration are pleased to continue their sponsorship of the Tribal Renewable Energy Webinar Series. Attend this webinar to get an overview of the START program, activities, and accomplishments, and learn about DOE's new renewable energy education curriculum for Tribes, delivered through a new online training platform. The webinar will be held from 11 a.m. to 12:30 p.m. Mountain time. Why You Should Attend Find ways to promote tribal energy sufficiency and foster economic

27

Title: Training Effects on Emergency Management Activation Response Subject Area: Social  

E-Print Network (OSTI)

Title: Training Effects on Emergency Management Activation Response Subject Area: Social Keyword considered whether local and long-term emergency management training could produce different behavioral training on emergency management behavioral response. Individuals with higher levels of training engaged

Collett Jr., Jeffrey L.

28

Stop/Start: Overview  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Stop/Start button highlighted banner graphic: blue bar Stop/Start button highlighted banner graphic: blue bar subbanner graphic: gray bar Overview button highlighted Driving button Braking button subbanner graphic: gray bar OVERVIEW Stop/Start hybrids are not true hybrids since electricity from the battery is not used to propel the vehicle. However, the Stop/Start feature is an important, energy-saving building block used in hybrid vehicles. Stop/Start technology conserves energy by shutting off the gasoline engine when the vehicle is at rest, such as at a traffic light, and automatically re-starting it when the driver pushes the gas pedal to go forward. stage graphic: vertical blue rule Main stage: See through car with battery, engine, and electric starter/generator visible. Car is stopped at an intersection.

29

Blank Starting Slide  

NLE Websites -- All DOE Office Websites (Extended Search)

Rewind Generator Rewind Denison Powerhouse Denison Rewind Rewind Contract - Awarded to Alstom May 2004 - 4.56 million - 526 calendar days Denison Rewind Original Schedule - Start...

30

Stop/Start: Driving  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

when the vehicle is at rest. When pulling out, the electric startergenerator uses electricity from the battery to instantly start the gasoline engine---the sole source of...

31

Affective Analgesia Following Muscarinic Activation of the Ventral Tegmental Area in Rats  

E-Print Network (OSTI)

Affective Analgesia Following Muscarinic Activation of the Ventral Tegmental Area in Rats Robert G stimulation. Vocalization afterdischarges (VADs) are a validated model of the affective response of rats: Cholinergic activation of the brain reward circuit produced a preferential suppression of rats' affective

Borszcz, George S.

32

Getting Started | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Run a Program Getting Started Getting Started Developing a successful, self-sustaining energy efficiency upgrade program in your community starts with careful planning....

33

Alaska START Round 3  

Energy.gov (U.S. Department of Energy (DOE))

The DOE Office of Indian Energy is accepting applications for the third round of the Alaska Strategic Technical Assistance Response Team (START) Program to assist Alaska Native corporations and federally recognized Alaska Native governments with accelerating clean energy projects.

34

Active Area Shape Influence on the Dark Current of CMOS Imagers.  

E-Print Network (OSTI)

the illumination energy within it and turns that energy into charge carriers. The second part is the control-in potential energy to the other side of the junction, and become the minority carrier di, quantum efficiency, pixel active area, and conversion gain. Due to past several years intensive work [1- 5

35

Graphene Transistors Fabricated via Transfer-Printing In Device Active-Areas  

E-Print Network (OSTI)

Graphene Transistors Fabricated via Transfer-Printing In Device Active-Areas on Large Wafer Xiaogan graphene islands from a graphite and then uses transfer printing to place the islands from the stamp from the printed graphene. The transistors show a hole and electron mobility of 3735 and 795 cm2/V

36

Getting Started on Euclid  

NLE Websites -- All DOE Office Websites (Extended Search)

Getting started Getting started Getting started Logging In Users can log into Euclid using the Secure Shell (SSH) protocol 2 with the following command: % ssh -l username euclid.nersc.gov When you successfully log in you will land in your $HOME directory. Euclid is a one node system. All jobs that run on Euclid, e.g. compiles, edits, user jobs, etc,. run on the same node. Sample Program Code: Parallel Hello World Although Euclid was not intended for production runs of MPI codes, it is possible to run small MPI codes on it. Open a new file called helloWorld.f90 with a text editor such as emacs or vi. Paste the contents of the below code into the file. program helloWorld implicit none include "mpif.h" integer :: myPE, numProcs, ierr call MPI_INIT(ierr) call MPI_COMM_RANK(MPI_COMM_WORLD, myPE, ierr)

37

US tokamak starts up  

Science Journals Connector (OSTI)

... 's Plasma Physics Laboratory have successfully started up the first of a new generation of tokamak fusion devices. The $314 million ... fusion devices. The $314 million Tokamak Fusion Test Reactor (TFTR) is expected to attain scientific break-even - the point ...

Stephen Budiansky

1983-01-13T23:59:59.000Z

38

PHP: Getting Started Introduction  

E-Print Network (OSTI)

PHP: Getting Started Introduction This document describes the basic syntax for PHP code, how to execute PHP scripts, methods for sending output to the browser, how to comment your code, and the handling of whitespace. Basic PHP syntax PHP code typically resides in a plaintext file with a .php extension. The code

Vander Zanden, Brad

39

Full Hybrid: Starting  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

highlighted Low Speed button Cruising button Passing button Braking button Stopped button highlighted Low Speed button Cruising button Passing button Braking button Stopped button STARTING When a full hybrid vehicle is initially started, the battery typically powers all accessories. The gasoline engine only starts if the battery needs to be charged or the accessories require more power than available from the battery. stage graphic: vertical blue rule Main stage: See through car with battery, engine, generator, power split device, and electric motor visible. the car is stopped at an intersection. Main stage: See through car with battery, engine, generator, power split device, and electric motor visible. the car is stopped at an intersection. Battery (highlighted): The battery stores energy generated from the gasoline engine or, during regenerative braking, from the electric motor. Since the battery powers the vehicle at low speeds, it is larger and holds much more energy than batteries used to start conventional vehicles. Main stage: See through car with battery, engine, generator, power split device, and electric motor visible. the car is stopped at an intersection. Main stage: See through car with battery, engine, generator, power split device, and electric motor visible. the car is stopped at an intersection.

40

Getting Started | Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

Getting Started Getting Started Client example: open_in_t in_struct; open_out_t out_struct; /* Initialize the interface */ [...] NA_Addr_lookup(network_class, server_name, &server_addr); /* Register RPC call */ rpc_id = HG_REGISTER("open", open_in_t, open_out_t); /* Fill input parameters */ [...] in_struct.in_param0 = in_param0; /* Send RPC request */ HG_Forward(server_addr, rpc_id, &in_struct, &out_struct, &rpc_request); /* Wait for completion */ HG_Wait(rpc_request, HG_MAX_IDLE_TIME, HG_STATUS_IGNORE); /* Get output parameters */ [...] out_param0 = out_struct.out_param0; int main(int argc, void *argv[]) { /* Initialize the interface */ [...] /* Register RPC call */ HG_HANDLER_REGISTER("open", open_rpc, open_in_t, open_out_t); /* Process RPC calls */

Note: This page contains sample records for the topic "area activity start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

DOE-STD-1042-93 CN-1; Guide to Good Practices for Control Area Activities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2-93 2-93 June 1993 CHANGE NOTICE NO. 1 December 1998 DOE STANDARD GUIDE TO GOOD PRACTICES FOR CONTROL AREA ACTIVITIES U.S. Department of Energy AREA MISC Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. Change Notice No.1 DOE-STD-1042-93 December 1998 Guide to Good Practices for Operations Turnover Page/Section Change Concluding Material Preparing Activity was changed from

42

Start | Grid View | Browse by Day OR Group/Topical | Author Index | Keyword Index | Personal Scheduler Active Constraint Regions for Economically Optimal Operation of Distillation  

E-Print Network (OSTI)

Scheduler Active Constraint Regions for Economically Optimal Operation of Distillation Columns Tuesday and operation of distillation columns has been widely studied, as illustrated by for example Skogestad (1993 operation of distillation columns has been studied relatively little. The issue of active constraints

Skogestad, Sigurd

43

START Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

START Program START Program START Program The Strategic Technical Assistance Response Team (START) Program is part of the DOE Office of Indian Energy effort to assist in the development of tribal renewable energy projects. Through START, Tribes in the 48 contiguous states and Alaska can apply for and are selected to receive technical assistance from DOE and national laboratory experts to move projects closer to implementation. Learn more about: START 2013 Renewable Energy Project Development Assistance Projects START 2013 Alaska Native Community Energy Planning and Projects START Resources View a map of START Projects Download the START fact sheet Read our new brochure on the START Program and Capacity Building 2012-2013 Success Highlights Download brochures on the five-step tribal project development and

44

Ex situ testing method to characterize cathode catalyst degradation during start-up/shut-down -  

E-Print Network (OSTI)

Ex situ testing method to characterize cathode catalyst degradation during start in electrochemically active surface area. Furthermore, contributions from different processes leading to catalyst. Submitted: 15.12.2011 * Pres. address: SINTEF Materials and Chemistry, New Energy Solutions, Sem Sælandsvei

Pfeifer, Holger

45

A framework for activity detection in wide-area motion imagery  

SciTech Connect

Wide-area persistent imaging systems are becoming increasingly cost effective and now large areas of the earth can be imaged at relatively high frame rates (1-2 fps). The efficient exploitation of the large geo-spatial-temporal datasets produced by these systems poses significant technical challenges for image and video analysis and data mining. In recent years there has been significant progress made on stabilization, moving object detection and tracking and automated systems now generate hundreds to thousands of vehicle tracks from raw data, with little human intervention. However, the tracking performance at this scale, is unreliable and average track length is much smaller than the average vehicle route. This is a limiting factor for applications which depend heavily on track identity, i.e. tracking vehicles from their points of origin to their final destination. In this paper we propose and investigate a framework for wide-area motion imagery (W AMI) exploitation that minimizes the dependence on track identity. In its current form this framework takes noisy, incomplete moving object detection tracks as input, and produces a small set of activities (e.g. multi-vehicle meetings) as output. The framework can be used to focus and direct human users and additional computation, and suggests a path towards high-level content extraction by learning from the human-in-the-loop.

Porter, Reid B [Los Alamos National Laboratory; Ruggiero, Christy E [Los Alamos National Laboratory; Morrison, Jack D [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

46

START Signed | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Our History NNSA Timeline START Signed START Signed July 31, 1991 START Signed Russia Moscow, USSR President Bush signs the Strategic Arms Reduction Treaty (START), which...

47

Campus Recreation & Unions Leisure Pass Guidelines (Activities & Recreation Center, Games Area at the Memorial Union, Hickey & Rec Pool)  

E-Print Network (OSTI)

Campus Recreation & Unions Leisure Pass Guidelines (Activities & Recreation Center, Games Area are for informal use only. Groups may not utilize recreation space for camp/conference specific programming is going on inside the bathroom. When at the Activities and Recreation Center (ARC) minors are not allowed

Yoo, S. J. Ben

48

START Program: 48 Contiguous States  

Energy.gov (U.S. Department of Energy (DOE))

Overview fact sheet on the selected DOE Office of Indian Energy Strategic Technical Assistance Response Team (START) projects in the 48 contiguous states.

49

Alaska START | Department of Energy  

Office of Environmental Management (EM)

awareness and training programs, and identification and implementation of renewable energy and energy efficiency opportunities. Through the START, each Alaska Native community...

50

START Projects | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Projects Projects START Projects The Strategic Technical Assistance Response Team (START) Program is part of the DOE Office of Indian Energy effort to assist in the development of tribal renewable energy projects. Through START, Tribes in the 48 contiguous states and Alaska apply for and are selected to receive technical assistance from DOE and national laboratory experts to move projects closer to implementation. The Strategic Technical Assistance Response Team (START) Program is part of the DOE Office of Indian Energy effort to assist in the development of tribal renewable energy projects. Through START, Tribes in the 48 contiguous states and Alaska apply for and are selected to receive technical assistance from DOE and national laboratory experts to move projects closer to implementation

51

Property:StartYear | Open Energy Information  

Open Energy Info (EERE)

StartYear StartYear Jump to: navigation, search This is a property of type Date. The allowed values for this property are: 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991 1990 1989 1988 1987 1986 1985 1984 1983 1982 1981 Subproperties This property has the following 1 subproperty: M Morocco-NREL Energy Activities Pages using the property "StartYear" Showing 25 pages using this property. (previous 25) (next 25) A ASEAN-GIZ Regional Environmentally Sustainable Cities Programme - RESCP + 2007 + Afghanistan-NREL Mission + 2009 + Africa - CCS capacity building + 2010 + Algeria-DLR Resource Assessments + 2007 + Asia Pacific Partnership on Clean Development and Climate + 2006 + B Bangladesh-DLR Resource Assessments + 2001 + Bangladesh-GTZ Renewable Energy and Energy Efficiency Programme + 2007 +

52

Berkeley Lab Technology Spawns Successful Start-up Companies | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Berkeley Lab Technology Spawns Successful Start-up Companies Berkeley Lab Technology Spawns Successful Start-up Companies Berkeley Lab Technology Spawns Successful Start-up Companies October 25, 2010 - 10:58am Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs What are the key facts? Three start-up companies using Berkeley-developed technology have either had highly successful launches or closed major deals in the last several months. Ed. Note cross posted from Berkeley Lab News Center, written by Julie Chao. What do a smart window company, a microbial analysis start-up and waste-heat recovery start-up have in common? They're all located in the San Francisco Bay Area and they're all based on technology developed at Lawrence Berkeley National Laboratory. What's more, these three start-up companies have either had highly

53

Hydrazine engine start system air start performance and controls sizing  

SciTech Connect

Hydrazine has been used as an energy source in many applications to fuel in-flight main engine starting. In a current application, an existing hydrazine engine start system (ESS) design was adapted to meet new fuel control requirements. This paper presents a brief system description, historical context, and the motivating factors for the hydrazine controls changes and three case studies of controls design and analysis from the ESS program. 4 refs.

Johnson, A.T.

1992-01-01T23:59:59.000Z

54

Organic and TRU screening for 200 West Area SST interim stabilization activities  

SciTech Connect

This SD documents the preliminary work performed during the effort to better understand the magnitude and nature of transuranic (TRU) and/or complexed wastes contained in the 200 West Area single shell tank (SSTs). This preliminary work identified which of the SST interstitial liquids in question had adequate characterizations and performed a limited compatibility assessment based upon those characterizations. This allowed a determination of the TRU activity in the liquid and the waste type which describes the liquid. The waste type, complexed or non-complexed, was determined by a calculated total organic carbon (TOC) concentration when the waste containing the measured TOC value is evaporated to the composition of double-shell slurry feed (DSSF). DSSF was defined as the concentration at which aluminum bearing solids begin to precipitate (the sodium aluminate boundary), or when the OH concentration reached 8.0 as determined by the PREDICT evaporator simulation program. Two sets of results are presented. The first set identified only those tanks with adequate characterization data, and listed the remaining tanks as unknowns. These results have the higher level of confidence. The second result set used engineering judgement to estimate applicable characterization data where none existed. This allowed a tentative classification to be made for all but one of the tanks considered unknowns from the first result set. These results may have utility if decisions must be made in the absence additional, improved waste characterizations. This information was used in developing the follow-on laboratory testing to more precisely defined the magnitude and specifics of the compatibility problems.

Estey, S.D.

1996-01-01T23:59:59.000Z

55

Getting Started Videoconference | Argonne Leadership Computing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Getting Started Videoconference Start Date: Dec 9 2014 - 8:30am Event Website: https:www.alcf.anl.govworkshopsgetting-started-videoconference-winte... Miscellaneous...

56

START Application - Final | Department of Energy  

Office of Environmental Management (EM)

START ApplicationFINAL0.pdf More Documents & Publications START-Alaska Application Alaska START Application Fact Sheet: Collaboration of Oak Ridge, Argonne, and Livermore (CORAL)...

57

Abstract--Efficient methods for detecting electricity fraud has been an active research area in recent years. This paper presents  

E-Print Network (OSTI)

1 Abstract--Efficient methods for detecting electricity fraud has been an active research area for electric utilities using Genetic Algorithm (GA) and Support Vector Machine (SVM). The main motivation, genetic algorithm, electricity theft, non-technical loss, load profile. I. INTRODUCTION LECTRIC utilities

Ducatelle, Frederick

58

The non-aqueous chemistry of uranium has been an active area of exploration in recent decades1,2  

E-Print Network (OSTI)

-purity depleted uranium produced as a by-product of nuclear isotope enrichment programmes. The early actinideThe non-aqueous chemistry of uranium has been an active area of exploration in recent decades1 for uranium will be created in part by the quest of researchers to understand the properties and potential

Cai, Long

59

E-Print Network 3.0 - active erosion areas Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Sheet Rangeland Soil Quality--Water Erosion Summary: into the soil. Deposition of the sediment removed by erosion is likely in any area where the velocity of running... Soil...

60

Western Area Power Administration Starting Forecast Month: Sierra Nevada Region  

NLE Websites -- All DOE Office Websites (Extended Search)

Jul-2013 Jul-2013 1,480.0 700.0 180.0 110.0 27.9 15.2 182.0 0.0 0.0 0.0 0.0 1,090.1 574.8 70.9 Aug-2013 1,430.0 550.0 195.0 120.0 26.6 14.8 182.0 0.0 0.0 0.0 0.0 1,026.4 415.2 54.4 Sep-2013 1,270.0 320.0 165.0 110.0 23.2 13.2 182.0 0.0 0.0 0.0 0.0 899.8 196.8 30.4 Oct-2013 1,070.0 270.0 125.0 105.0 23.8 13.8 182.0 0.0 0.0 0.0 0.0 739.2 151.2 27.5 Nov-2013 1,105.0 150.0 100.0 85.0 26.4 15.6 182.0 0.0 0.0 0.0 0.0 796.6 49.4 8.6 Dec-2013 1,175.0 130.0 100.0 95.0 26.6 16.0 182.0 0.0 0.0 0.0 0.0 866.4 19.0 3.0 Jan-2014 1,155.0 140.0 100.0 95.0 26.0 16.0 182.0 0.0 0.0 0.0 0.0 847.0 29.0 4.6 Feb-2014 1,180.0 140.0 30.0 15.0 26.7 15.0 182.0 0.0 0.0 0.0 0.0 941.3 110.0 17.4 Mar-2014 1,210.0 190.0 55.0 30.0 24.7 14.7 182.0 0.0 0.0 0.0 0.0 948.3 145.3 20.6 Apr-2014 1,320.0 230.0 50.0 30.0 23.8 13.7 182.0 0.0 0.0 0.0 0.0 1,064.2 186.3 24.3 May-2014 1,425.0 510.0 70.0 50.0 21.9 13.9 182.0 0.0 0.0 0.0 0.0 1,151.1 446.1 52.1 Jun-2014

Note: This page contains sample records for the topic "area activity start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Western Area Power Administration Starting Forecast Month: Sierra Nevada Region  

NLE Websites -- All DOE Office Websites (Extended Search)

Aug-2013 Aug-2013 1,586.0 523.0 167.0 89.0 26.6 14.8 182.0 0.0 0.0 0.0 0.0 1,210.4 419.2 46.6 Sep-2013 1,499.0 309.0 216.0 92.0 23.2 13.2 182.0 0.0 0.0 0.0 0.0 1,077.8 203.8 26.3 Oct-2013 1,229.0 230.0 268.0 105.0 23.8 13.8 182.0 0.0 0.0 0.0 0.0 755.2 111.2 19.8 Nov-2013 1,384.0 192.0 268.0 96.0 26.4 15.6 182.0 0.0 0.0 0.0 0.0 907.6 80.4 12.3 Dec-2013 1,470.0 165.0 344.0 119.0 26.6 16.0 182.0 0.0 0.0 0.0 0.0 917.4 30.0 4.4 Jan-2014 1,509.0 160.0 351.0 126.0 26.0 16.0 182.0 0.0 0.0 0.0 0.0 950.0 18.0 2.5 Feb-2014 1,353.0 162.0 351.0 119.0 26.7 15.0 182.0 0.0 0.0 0.0 0.0 793.3 28.0 5.2 Mar-2014 1,559.0 191.0 282.0 95.0 24.7 14.7 182.0 0.0 0.0 0.0 0.0 1,070.3 81.3 10.2 Apr-2014 1,558.0 312.0 147.5 52.0 23.8 13.7 182.0 0.0 0.0 0.0 0.0 1,204.7 246.3 28.4 May-2014 1,677.0 455.0 108.5 40.0 21.9 13.9 182.0 0.0 0.0 0.0 0.0 1,364.6 401.1 39.5 Jun-2014 1,740.0 525.0 162.0 78.0 23.9 12.9 182.0 0.0 0.0 0.0 0.0 1,372.1 434.1

62

Western Area Power Administration Starting Forecast Month: Sierra Nevada Region  

NLE Websites -- All DOE Office Websites (Extended Search)

Jun-2013 Jun-2013 1,560.0 640.0 55.0 35.0 23.9 12.9 182.0 0.0 0.0 0.0 0.0 1,299.1 592.1 63.3 Jul-2013 1,465.0 690.0 125.0 70.0 27.9 15.2 182.0 0.0 0.0 0.0 0.0 1,130.1 604.8 71.9 Aug-2013 1,400.0 500.0 170.0 95.0 26.6 14.8 182.0 0.0 0.0 0.0 0.0 1,021.4 390.2 51.4 Sep-2013 1,235.0 310.0 165.0 110.0 23.2 13.2 182.0 0.0 0.0 0.0 0.0 864.8 186.8 30.0 Oct-2013 1,040.0 270.0 125.0 100.0 23.8 13.8 182.0 0.0 0.0 0.0 0.0 709.2 156.2 29.6 Nov-2013 1,145.0 150.0 100.0 85.0 26.4 15.6 182.0 0.0 0.0 0.0 0.0 836.6 49.4 8.2 Dec-2013 1,190.0 120.0 100.0 95.0 26.6 16.0 182.0 0.0 0.0 0.0 0.0 881.4 9.0 1.4 Jan-2014 1,130.0 140.0 100.0 95.0 26.0 16.0 182.0 0.0 0.0 0.0 0.0 822.0 29.0 4.7 Feb-2014 1,145.0 130.0 30.0 15.0 26.7 15.0 182.0 0.0 0.0 0.0 0.0 906.3 100.0 16.4 Mar-2014 1,185.0 190.0 55.0 25.0 24.7 14.7 182.0 0.0 0.0 0.0 0.0 923.3 150.3 21.9 Apr-2014 1,330.0 220.0 45.0 30.0 23.8 13.7 182.0 0.0 0.0 0.0 0.0 1,079.2 176.3 22.7 May-2014

63

Western Area Power Administration Starting Forecast Month: Sierra Nevada Region  

NLE Websites -- All DOE Office Websites (Extended Search)

Nov-2013 Nov-2013 1,165.0 150.0 85.0 75.0 26.4 15.6 182.0 0.0 0.0 0.0 0.0 871.6 59.4 9.5 Dec-2013 1,345.0 130.0 100.0 115.0 26.6 16.0 182.0 0.0 0.0 1.0 0.0 1,036.4 0.0 0.0 Jan-2014 1,100.0 120.0 100.0 115.0 26.0 16.0 182.0 0.0 0.0 11.0 0.0 792.0 0.0 0.0 Feb-2014 1,120.0 140.0 30.0 15.0 26.7 15.0 182.0 0.0 0.0 0.0 0.0 881.3 110.0 18.6 Mar-2014 1,275.0 190.0 35.0 20.0 24.7 14.7 182.0 0.0 0.0 0.0 0.0 1,033.3 155.3 20.2 Apr-2014 1,560.0 310.0 45.0 25.0 23.8 13.7 182.0 0.0 0.0 0.0 0.0 1,309.2 271.3 28.8 May-2014 1,550.0 410.0 55.0 35.0 21.9 13.9 182.0 0.0 0.0 0.0 0.0 1,291.1 361.1 37.6 Jun-2014 1,585.0 540.0 45.0 30.0 23.9 12.9 182.0 0.0 0.0 0.0 0.0 1,334.1 497.1 51.7 Jul-2014 1,470.0 500.0 115.0 65.0 27.9 15.2 182.0 0.0 0.0 0.0 0.0 1,145.1 419.8 49.3 Aug-2014 1,270.0 420.0 135.0 80.0 26.6 14.8 182.0 0.0 0.0 0.0 0.0 926.4 325.2 47.2 Sep-2014 1,105.0 310.0 140.0 90.0 23.2 13.2 182.0 0.0 0.0 0.0 0.0 759.8 206.8 37.8 Oct-2014

64

Western Area Power Administration Starting Forecast Month: Sierra Nevada Region  

NLE Websites -- All DOE Office Websites (Extended Search)

Feb-2013 Feb-2013 1,165.0 260.0 105.0 75.0 26.7 15.0 182.0 0.0 0.0 0.0 0.0 851.3 170.0 29.7 Mar-2013 1,280.0 310.0 125.0 110.0 24.7 14.7 182.0 0.0 0.0 0.0 0.0 948.3 185.3 26.3 Apr-2013 1,330.0 380.0 50.0 30.0 23.8 13.7 182.0 0.0 0.0 0.0 0.0 1,074.2 336.3 43.5 May-2013 1,560.0 530.0 75.0 50.0 21.9 13.9 182.0 0.0 0.0 0.0 0.0 1,281.1 466.1 48.9 Jun-2013 1,745.0 640.0 120.0 85.0 23.9 12.9 182.0 0.0 0.0 0.0 0.0 1,419.1 542.1 53.1 Jul-2013 1,780.0 650.0 210.0 145.0 27.9 15.2 182.0 0.0 0.0 0.0 0.0 1,360.1 489.8 48.4 Aug-2013 1,670.0 500.0 190.0 135.0 26.6 14.8 182.0 0.0 0.0 0.0 0.0 1,271.4 350.2 37.0 Sep-2013 1,445.0 380.0 145.0 100.0 23.2 13.2 182.0 0.0 0.0 0.0 0.0 1,094.8 266.8 33.9 Oct-2013 1,225.0 330.0 180.0 140.0 23.8 13.8 182.0 0.0 0.0 0.0 0.0 839.2 176.2 28.2 Nov-2013 1,340.0 200.0 170.0 140.0 26.4 15.6 182.0 0.0 0.0 0.0 0.0 961.6 44.4 6.4 Dec-2013 1,255.0 180.0 130.0 105.0 26.6 16.0 182.0 0.0 0.0 0.0 0.0 916.4

65

Western Area Power Administration Starting Forecast Month: Sierra Nevada Region  

NLE Websites -- All DOE Office Websites (Extended Search)

Mar-2013 Mar-2013 1,475.0 220.0 30.0 20.0 24.7 14.7 182.0 0.0 0.0 0.0 0.0 1,238.3 185.3 20.1 Apr-2013 1,400.0 380.0 45.0 30.0 23.8 13.7 182.0 0.0 0.0 0.0 0.0 1,149.2 336.3 40.6 May-2013 1,455.0 550.0 65.0 45.0 21.9 13.9 182.0 0.0 0.0 0.0 0.0 1,186.1 491.1 55.7 Jun-2013 1,650.0 610.0 100.0 65.0 23.9 12.9 182.0 0.0 0.0 0.0 0.0 1,344.1 532.1 55.0 Jul-2013 1,590.0 630.0 195.0 135.0 27.9 15.2 182.0 0.0 0.0 0.0 0.0 1,185.1 479.8 54.4 Aug-2013 1,560.0 480.0 175.0 115.0 26.6 14.8 182.0 0.0 0.0 0.0 0.0 1,176.4 350.2 40.0 Sep-2013 1,290.0 360.0 145.0 110.0 23.2 13.2 182.0 0.0 0.0 0.0 0.0 939.8 236.8 35.0 Oct-2013 1,090.0 290.0 170.0 140.0 23.8 13.8 182.0 0.0 0.0 0.0 0.0 714.2 136.2 25.6 Nov-2013 1,115.0 170.0 125.0 105.0 26.4 15.6 182.0 0.0 0.0 0.0 0.0 781.6 49.4 8.8 Dec-2013 1,195.0 150.0 145.0 125.0 26.6 16.0 182.0 0.0 0.0 0.0 0.0 841.4 9.0 1.4 Jan-2014 1,180.0 150.0 100.0 95.0 26.0 16.0 182.0 0.0 0.0 0.0 0.0 872.0 39.0

66

Department of Energy Announces Start of Western Area Power Administrat...  

Office of Environmental Management (EM)

16, 2009 - 12:00am Addthis WASHINGTON, DC - With the goal of bringing new jobs and green power to the West, Energy Secretary Steven Chu announced today a large-scale...

67

Western Area Power Administration Starting Forecast Month: Sierra Nevada Region  

NLE Websites -- All DOE Office Websites (Extended Search)

May-2013 May-2013 1,460.0 520.0 95.0 55.0 21.9 13.9 182.0 0.0 0.0 0.0 0.0 1,161.1 451.1 52.2 Jun-2013 1,580.0 620.0 55.0 40.0 23.9 12.9 182.0 0.0 0.0 0.0 0.0 1,319.1 567.1 59.7 Jul-2013 1,510.0 730.0 160.0 105.0 27.9 15.2 182.0 0.0 0.0 0.0 0.0 1,140.1 609.8 71.9 Aug-2013 1,590.0 510.0 150.0 95.0 26.6 14.8 182.0 0.0 0.0 0.0 0.0 1,231.4 400.2 43.7 Sep-2013 1,275.0 350.0 165.0 115.0 23.2 13.2 182.0 0.0 0.0 0.0 0.0 904.8 221.8 34.1 Oct-2013 1,070.0 270.0 125.0 120.0 23.8 13.8 182.0 0.0 0.0 0.0 0.0 739.2 136.2 24.8 Nov-2013 1,090.0 160.0 105.0 100.0 26.4 15.6 182.0 0.0 0.0 0.0 0.0 776.6 44.4 7.9 Dec-2013 1,170.0 140.0 105.0 120.0 26.6 16.0 182.0 0.0 0.0 0.0 0.0 856.4 4.0 0.6 Jan-2014 1,155.0 140.0 100.0 110.0 26.0 16.0 182.0 0.0 0.0 0.0 0.0 847.0 14.0 2.2 Feb-2014 1,210.0 130.0 55.0 25.0 26.7 15.0 182.0 0.0 0.0 0.0 0.0 946.3 90.0 14.1 Mar-2014 1,240.0 190.0 60.0 30.0 24.7 14.7 182.0 0.0 0.0 0.0 0.0 973.3 145.3 20.1 Apr-2014

68

Introduction to Matlab Starting Matlab  

E-Print Network (OSTI)

Introduction to Matlab · Starting Matlab ­ right click the desktop and choose open terminal ­ type matlab · Commands in Matlab ­ enter commands at the prompt >> ­ ; will suppress output ­ , separates commands ­ >> help elfun lists elementary math functions, i.e. ex is exp(x). ­ Matlab is case sensitive

Mead, Jodi L.

69

Summary of environmental characterization activities at the Oak Ridge National Laboratory Solid Waste Storage Area Six, FY 1986 through 1987  

SciTech Connect

The Oak Ridge National Laboratory (ORNL) Remedial Action Program (RAP), has supported characterization activities in Solid Waste Storage Area (SWSA 6) to acquire information necessary for identification and planning of remedial actions that may be warranted, and to facilitate eventual closure of the site. In FY 1986 investigations began in the areas of site hydrology, geochemistry, soils, geology, and geohydrologic model application. This report summarizes work carried out in each of these areas during FY`s 1986 and 1987 and serves as a status report pulling together the large volume of data that has resulted. Characterization efforts are by no means completed; however, a sufficient data base has been generated to begin data interpretation and analysis of site contaminants.

Davis, E.C.; Solomon, D.K.; Dreier, R.B.; Lee, S.Y.; Kelmers, A.D.; Lietzke, D.A. [Oak Ridge National Lab., TN (United States); Craig, P.M. [Environmental Consulting Engineers, Inc., Knoxville, TN (United States)

1987-09-30T23:59:59.000Z

70

Summary of environmental characterization activities at the Oak Ridge National Laboratory Solid Waste Storage Area Six, FY 1986 through 1987  

SciTech Connect

The Oak Ridge National Laboratory (ORNL) Remedial Action Program (RAP), has supported characterization activities in Solid Waste Storage Area (SWSA 6) to acquire information necessary for identification and planning of remedial actions that may be warranted, and to facilitate eventual closure of the site. In FY 1986 investigations began in the areas of site hydrology, geochemistry, soils, geology, and geohydrologic model application. This report summarizes work carried out in each of these areas during FY's 1986 and 1987 and serves as a status report pulling together the large volume of data that has resulted. Characterization efforts are by no means completed; however, a sufficient data base has been generated to begin data interpretation and analysis of site contaminants.

Davis, E.C.; Solomon, D.K.; Dreier, R.B.; Lee, S.Y.; Kelmers, A.D.; Lietzke, D.A. (Oak Ridge National Lab., TN (United States)); Craig, P.M. (Environmental Consulting Engineers, Inc., Knoxville, TN (United States))

1987-09-30T23:59:59.000Z

71

Science on Saturday starts Jan. 11 | Princeton Plasma Physics...  

NLE Websites -- All DOE Office Websites (Extended Search)

Primary tabs View(active tab) High Resolution News Science on Saturday starts Jan. 11 By Jeanne Jackson DeVoe January 10, 2014 Tweet Widget Google Plus One Share on Facebook Joshua...

72

Starting apparatus for internal combustion engines  

DOE Patents (OSTI)

This report is a patent description for a system to start an internal combustion engine. Remote starting and starting by hearing impaired persons are addressed. The system monitors the amount of current being drawn by the starter motor to determine when the engine is started. When the engine is started the system automatically deactivates the starter motor. Five figures are included.

Dyches, G.M.; Dudar, A.M.

1995-01-01T23:59:59.000Z

73

Getting Started Videoconferences | Argonne Leadership Computing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Services User Support Machine Status Presentations Training & Outreach Getting Started Videoconferences Getting Started with ParaView Mira Performance Boot Camp 2014 Data...

74

2005 Getting Started with Epics Videos  

NLE Websites -- All DOE Office Websites (Extended Search)

Video Library APS Colloquium Videos * 2007 * 2006 * 2005 * 2004 Getting Started with Epics * 2005 * 2004 2005 Getting Started with Epics Videos ASD Controls and AOD BCDA have...

75

Starting Points | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

(M&O) Contract Competition Starting Points Starting Points Kansas City Plant Related Web Pages Summary Kansas City Plant Home Page Kansas City Plant Contracts DOE Directives...

76

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Environmental assessment of deep-water sponge fields in relation to oil and gas  

E-Print Network (OSTI)

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Environmental assessment of deep-water sponge fields in relation to oil and gas activity: a west of Shetland case study industry and government identified sponge grounds in areas of interest to the oil and gas sector

Henderson, Gideon

77

Present concept on current water protection and remediation activities for the areas contaminated by the 1986 Chernobyl accident  

SciTech Connect

The results of radiation monitoring data and migration pathway analysis of water bodies within areas affected by the 1986 Chernobyl accident provide a unique opportunity for decision-makers working in other extensively contaminated regions to optimize their approaches to surface and groundwater protection. Most engineering measures within the Chernobyl 30-km exclusion zone were focused on preventing secondary contamination of surface and groundwater from entering the Pripyat River and the Kiev Reservoir. However, implementation of these measures required huge financial and human resources. Therefore, lessons about post-accidental water protection activities can be learned form the Chernobyl example. 9 refs., 9 figs.

Voitsekhovitch, O.; Prister, B.; Nasvit, O.; Los, I.; Berkovski, V.

1996-07-01T23:59:59.000Z

78

Rapid starting methanol reactor system  

DOE Patents (OSTI)

The invention relates to a methanol-to-hydrogen cracking reactor for use with a fuel cell vehicular power plant. The system is particularly designed for rapid start-up of the catalytic methanol cracking reactor after an extended shut-down period, i.e., after the vehicular fuel cell power plant has been inoperative overnight. Rapid system start-up is accomplished by a combination of direct and indirect heating of the cracking catalyst. Initially, liquid methanol is burned with a stoichiometric or slightly lean air mixture in the combustion chamber of the reactor assembly. The hot combustion gas travels down a flue gas chamber in heat exchange relationship with the catalytic cracking chamber transferring heat across the catalyst chamber wall to heat the catalyst indirectly. The combustion gas is then diverted back through the catalyst bed to heat the catalyst pellets directly. When the cracking reactor temperature reaches operating temperature, methanol combustion is stopped and a hot gas valve is switched to route the flue gas overboard, with methanol being fed directly to the catalytic cracking reactor. Thereafter, the burner operates on excess hydrogen from the fuel cells.

Chludzinski, Paul J. (38 Berkshire St., Swampscott, MA 01907); Dantowitz, Philip (39 Nancy Ave., Peabody, MA 01960); McElroy, James F. (12 Old Cart Rd., Hamilton, MA 01936)

1984-01-01T23:59:59.000Z

79

PHEV Engine Cold Start Emissions Management  

Energy.gov (U.S. Department of Energy (DOE))

Coordination of engine and powertrain supervisory control strategies to minimize cold start emissions

80

The Third Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Telescope  

E-Print Network (OSTI)

The third catalog of active galactic nuclei (AGNs) detected by the Fermi-LAT (3LAC) is presented. It is based on the third Fermi-LAT catalog (3FGL) of sources detected with a test statistic (TS) greater than 25, using the first 4 years of data. The 3LAC includes 1591 AGNs located at high Galactic latitudes (|b|>10{\\deg}), which is a 71% increase over the second catalog that was based on 2 years of data. There are 28 duplicate associations (two counterparts to the same gamma-ray source), thus 1563 of the 2192 high-latitude gamma-ray sources of the 3FGL catalog are AGNs. A very large majority of these AGNs (98%) are blazars. About half of the newly detected blazars are of unknown type, i.e., they lack spectroscopic information of sufficient quality to determine the strength of their emission lines. Based on their spectral properties, these sources are evenly split between FSRQs and BL~Lacs. The general properties of the 3LAC sample confirm previous findings from earlier catalogs, but some new subclasses (e.g., ...

Ackermann, M; Atwood, W; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Gonzalez, J; Bellazzini, R; Bissaldi, E; Blandford, R; Bloom, E; Bonino, R; Bottacini, E; Brandt, T; Bregeon, J; Britto, R; Bruel, P; Buehler, R; Buson, S; Caliandro, G; Cameron, R; Caragiulo, M; Caraveo, P; Casandjian, J; Cavazzuti, E; Cecchi, C; Charles, E; Chekhtman, A; Cheung, C; Chiang, J; Chiaro, G; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L; Conrad, J; Cutini, S; D'Abrusco, R; D'Ammando, F; Angelis, A; Desiante, R; Digel, S; Venere, L; Drell, P; Favuzzi, C; Fegan, S; Ferrara, E; Finke, J; Focke, W; Franckowiak, A; Fuhrmann, L; Furniss, A; Fusco, P; Gargano, F; Gasparrini, D; Giglietto, N; Giommi, P; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I; Grove, J; Guiriec, S; Hewitt, J W; Hill, A; Horan, D; J'ohannesson, G; Johnson, A; Johnson, W; Kataoka, J; Kuss, M; Mura, G; Larsson, S; Latronico, L; Leto, C; Li, J; Li, L; Longo, F; Loparco, F; Lott, B; Lovellette, M; Lubrano, P; Madejski, G; Mayer, M; Mazziotta, M; McEnery, J; Michelson, P; Mizuno, T; Moiseev, A; Monzani, M; Morselli, A; Moskalenko, I; Murgia, S; Nuss, E; Ohno, M; Ohsugi, T; Ojha, R; Omodei, N; Orienti, M; Orlando, E; Paggi, A; Paneque, D; Perkins, J; Pesce-Rollins, M; Piron, F; Pivato, G; Porter, T; Rain`o, S; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Romani, R; Salvetti, D; Schaal, M; Schinzel, F; Schulz, A; Sgr`o, C; Siskind, E; Sokolovsky, K; Spada, F; Spandre, G; Spinelli, P; Stawarz, L; Suson, D; Takahashi, H; Takahashi, T; Tanaka, Y; Thayer, J; Thayer, J; Tibaldo, L; Torres, D; Torresi, E; Tosti, G; Troja, E; Uchiyama, Y; Vianello, G; Winer, B; Wood, K; Zimmer, S

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "area activity start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Electro-catalytically Active, High Surface Area Cathodes for Low Temperature SOFCs  

SciTech Connect

This research focused on developing low polarization (area specific resistance, ASR) cathodes for intermediate temperature solid oxide fuel cells (IT-SOFCs). In order to accomplish this we focused on two aspects of cathode development: (1) development of novel materials; and (2) developing the relationships between microstructure and electrochemical performance. The materials investigated ranged from Ag-bismuth oxide composites (which had the lowest reported ASR at the beginning of this contract) to a series of pyrochlore structured ruthenates (Bi{sub 2-x}M{sub x}Ru{sub 2}O{sub 7}, where M = Sr, Ca, Ag; Pb{sub 2}Ru{sub 2}O{sub 6.5}; and Y{sub 2-2x}Pr{sub 2x}Ru{sub 2}O{sub 7}), to composites of the pyrochlore ruthenates with bismuth oxide. To understand the role of microstructure on electrochemical performance, we optimized the Ag-bismuth oxide and the ruthenate-bismuth oxide composites in terms of both two-phase composition and particle size/microstructure. We further investigated the role of thickness and current collector on ASR. Finally, we investigated issues of stability and found the materials investigated did not form deleterious phases at the cathode/electrolyte interface. Further, we established the ability through particle size modification to limit microstructural decay, thus, enhancing stability. The resulting Ag-Bi{sub 0.8}Er{sub 0.2}O{sub 1.5} and Bi{sub 2}Ru{sub 2}O{sub 7{sup -}}Bi{sub 0.8}Er{sub 0.2}O{sub 1.5} composite cathodes had ASRs of 1.0 {Omega} cm{sup 2} and 0.73 {Omega}cm{sup 2} at 500 C and 0.048 {Omega}cm{sup 2} and 0.053 {Omega}cm{sup 2} at 650 C, respectively. These ASRs are truly impressive and makes them among the lowest IT-SOFC ASRs reported to date.

Eric D. Wachsman

2006-09-30T23:59:59.000Z

82

Template:DivStartLeft | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Template Edit History Facebook icon Twitter icon » Template:DivStartLeft Jump to: navigation, search This is the 'DivStartLeft' template. It is used in conjuction with Template:DivEnd to put surround the "free text" area in the geothermal region template. Usage It should be called in the following format: {{DivStartLeft}} Retrieved from "http://en.openei.org/w/index.php?title=Template:DivStartLeft&oldid=403880" Categories: Templates Formatting Templates What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

83

Help:Starting a new page | Open Energy Information  

Open Energy Info (EERE)

Starting a new page Starting a new page Jump to: navigation, search An example of how to add a company to the Solar Gateway There are several ways to start a new page. These can vary based on the type of page started, as well as the wiki and namespace. The first thing you should do is know which topic area your page falls under. OpenEI has several gateways around specific topics, such as Solar, Wind, and Geothermal. In these Gateways, you'll immediately see forms for adding content. Forms were created to standardize the information you put in, and make it fast and easy to get your content published on OpenEI. For example, in the Solar Gateway, you'll see a map of Solar Energy companies, under which you can add a new company that will add a new page and populate the map. Companies, like many other categories of information

84

Clean Start/McClellan Technology Incubator | Open Energy Information  

Open Energy Info (EERE)

Start/McClellan Technology Incubator Start/McClellan Technology Incubator Jump to: navigation, search Logo: Clean Start/McClellan Technology Incubator Name Clean Start/McClellan Technology Incubator Address 5022 Bailey Loop Place McClellan, California Zip 95652 Region Bay Area Coordinates 38.657365°, -121.390278° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.657365,"lon":-121.390278,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

85

Argonne starts huilding huge bubble chamber  

Science Journals Connector (OSTI)

Argonne starts huilding huge bubble chamber ... Construction has started on the $10 million bubble chamber to be built at Argonne National Laboratory, Argonne, 111. ... Claimed by Argonne to be the world's largest chamber, it will be completed in 1969. ...

1967-06-26T23:59:59.000Z

86

Environmental Controls on the Activity of Aquifer Microbial Communities in the 300 Area of the Hanford Site  

SciTech Connect

Aquifer microbes in the 300 Area of the Hanford Site in southeastern Washington State, USA are periodically exposed to U(VI) concentrations that can range up to 10 ?M in small sediment fractures. Assays of 35 H-leucine incorporation indicated that both sediment-associated and planktonic microbes were metabolically active, and that organic C was growth-limiting in the sediments. Although bacteria suspended in native groundwater retained high activity when exposed to 100 ?M U(VI), they were inhibited by U(VI) < 1 ?M in synthetic groundwater that lacked added bicarbonate. Chemical speciation modeling suggested that positively-charged species and particularly (UO2)3(OH)5+ rose in concentration as more U(VI) was added to synthetic groundwater, but that carbonate complexes dominated U(VI) speciation in natural groundwater. U toxicity was relieved when increasing amounts of bicarbonate were added to synthetic groundwater containing 4.5 ?M U(VI). Pertechnetate, an oxyanion that is another contaminant of concern at the Hanford Site, was not toxic to groundwater microbes at concentrations up to 125 ?M.

Konopka, Allan; Plymale, Andrew E.; Carvajal, Denny A.; Lin, Xueju; McKinley, James P.

2013-11-06T23:59:59.000Z

87

Public Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

publicactivities_header.jpg publicactivities_header.jpg Public Activities Citizens are encouraged to learn about the Department of Energy's programs through a variety of activities that are open to the public. Our goal is to educate citizens and seek their meaningful involvement. If you are visiting the area, the American Museum of Science and Energy in Oak Ridge is the best starting point for exhibits and information about DOE programs in science, environmental management, nuclear fuel supply, and national security. Tours are conducted of the Oak Ridge National Laboratory, Y-12 National Security Complex and East Tennessee Technology Park during the summer months departing from the Museum. For those with more specific interests in our programs, each month we publish a calendar of public involvement activities, which identifies announcements, comment periods and public meetings of potential interest. Our Environmental Management Program has a Site Specific Advisory Board composed of area citizens who meet the second Wednesday of each month.

88

Widget:ExpandableBoxStart | Open Energy Information  

Open Energy Info (EERE)

ExpandableBoxStart ExpandableBoxStart Jump to: navigation, search The widget creates an expandable text box which can contain any standard wiki content. The box will be collapsed upon page load and can be expanded by clicking anywhere on the box. Once expanded, the box can be collapsed by clicking anywhere on the box header (the original box). Users of this widget must use the Start and End variants of the widget, as shown below. While slightly less convenient for the wiki content developer to use two widgets, this allows full wikitext in the expandable text area, which would otherwise just be limited to plaintext. Note: You must also use the accompanying variant of this widget: Widget:ExpandableBoxEnd Parameters label - text label of the box header (optional, default "More

89

Fast Start Financing | Open Energy Information  

Open Energy Info (EERE)

Fast Start Financing Fast Start Financing Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Fast Start Financing Agency/Company /Organization: Government of the Netherlands Partner: United Nations Environment Programme, United Nations Development Programme, United Nations Framework Convention on Climate Change, World Bank Topics: Finance, Market analysis Resource Type: Maps Website: www.faststartfinance.org/home Fast Start Financing Screenshot References: Fast Start Financing [1] Overview "www.faststartfinance.org aims to provide transparency about the amount, direction and use of fast start climate finance, in turn building trust in its delivery and impact. Development of the website was initiated by the government of the Netherlands, with support from the governments of Costa Rica, Colombia,

90

SWERA/Getting Started | Open Energy Information  

Open Energy Info (EERE)

Getting Started Getting Started < SWERA Jump to: navigation, search SWERA logo.png Solar and Wind Energy Resource Assessment (SWERA) Getting StartedPowered by OpenEI Getting Started Data Sets Analysis Tools About SWERA How to use SWERA Users can start from the SWERA home page to assess renewable energy data available for their country. Begin by clicking on the SWERA icon next to "Getting Started" and then clicking on a geographic location of interest on the map displayed. Clicking a country on the map will present the user with the option to view that country's profile in OpenEI or open the OpenCarto GIS analysis tool, allowing the user to search, visualize and explore the data. The tool provides a legend display for data searching, meta data information, detailed resource information provision at click, temporal

91

Start II, red ink, and Boris Yeltsin  

SciTech Connect

Apart from the vulnerability implied by the START II treaty, it will bear the burden of the general political opposition to the Yeltsin administration. START II will be seen as part of an overall Yeltsin-Andrei Kozyrev foreign policy that is under fire for selling out Russian national interests in Yugoslavia, the Persian Gulf, and elsewhere. This article discusses public opinion concerning START II, the cost of its implementation, and the general purpose of the treaty.

Arbatov, A.

1993-04-01T23:59:59.000Z

92

Knoxville Area Transit: Propane Hybrid ElectricTrolleys; Advanced Technology Vehicles in Service, Advanced Vehicle Testing Activity (Fact Sheet)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

website and in print publications. website and in print publications. TESTING ADVANCED VEHICLES KNOXVILLE AREA TRANSIT ◆ PROPANE HYBRID ELECTRIC TROLLEYS Knoxville Area Transit PROPANE HYBRID ELECTRIC TROLLEYS NREL/PIX 13795 KNOXVILLE AREA TRANSIT (KAT) is recognized nationally for its exceptional service to the City of Knoxville, Tennessee. KAT received the American Public Transportation Associa- tion's prestigious Outstanding Achievement Award in 2004.

93

Getting Started Videoconference | Argonne Leadership Computing...  

NLE Websites -- All DOE Office Websites (Extended Search)

News & Events Web Articles In the News Upcoming Events Past Events Informational Materials Photo Galleries Getting Started Videoconference Event Sponsor: Argonne Leadership...

94

START Alaska Historical Energy Usage Spreadsheet | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alaska Historical Energy Usage Spreadsheet START Alaska Historical Energy Usage Spreadsheet Communities applying for the DOE Office of Indian Energy Strategic Technical Assistance...

95

Off to a flying jump-start  

Science Journals Connector (OSTI)

... take flight. Could this also be how their distant ancestors got off the ground? John Whitfield investigates. start in life, explains David Adam. Once a body is off ...

John Whitfield

2000-03-10T23:59:59.000Z

96

START Program 2013: Alaska | Department of Energy  

Energy Savers (EERE)

Assistance Response Team (START) Program is part of the DOE Office of Indian Energy Policy and Programs effort to assist in the development of tribal renewable energy projects....

97

PHEV Engine Cold Start Emissions Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cold Start Emissions Management Paul Chambon, Dr. David Smith Oak Ridge National Laboratory Dr. David Irick, Dean Deter The University of Tennessee Poster Location P-05 2 Managed...

98

Widget:ExpandableTextStart | Open Energy Information  

Open Energy Info (EERE)

ExpandableTextStart ExpandableTextStart Jump to: navigation, search This widget allows text to start hidden then expand and re-hide when clicked. Users will see "....[read more]" when hidden and "[show less]" when expanded. (configurable in Widget:ExpandableTextEnd) This widget does not allow any parameters. Users of this widget must use the Start and End variants of the widget, as shown below. While slightly less convenient for the wiki content developer to use two widgets, this allows full wikitext in the expandable text area, which would otherwise just be limited to plaintext. Usage: Be what you would seem to be - or if you'd like it put more simply {{#Widget:ExpandableTextStart}}- Never imagine yourself not to be otherwise than what it might appear to others that what you were or might have been was not otherwise than what you had been would have appeared to them to be otherwise. Lewis Carroll (1832 - 1898) from '''Alice's Adventures in Wonderland and Through the Looking Glass.'''

99

Abstract--Recent brain imaging studies on primates revealed that a network of brain areas is activated both during  

E-Print Network (OSTI)

9 Abstract-- Recent brain imaging studies on primates revealed that a network of brain areas and constitutes an efficient behavior of mammals. Recent brain imaging studies investigate where and how observed to this direction [23]. Additional studies [10],[16] indicate the existence of a much wider network of brain areas

Trahanias, Panos

100

Property:ExpActivityDate | Open Energy Information  

Open Energy Info (EERE)

ExpActivityDate ExpActivityDate Jump to: navigation, search Property Name ExpActivityDate Property Type Date Description Exploration Activity Date started or year of activity. Pages using the property "ExpActivityDate" Showing 25 pages using this property. (previous 25) (next 25) 2 2-M Probe At Desert Peak Area (Sladek, Et Al., 2007) + 2007 + 2-M Probe Survey At Coso Geothermal Area (1977) + 1977 + 2-M Probe Survey At Coso Geothermal Area (1979) + 1979 + 2-M Probe Survey At Coso Geothermal Area (2007) + 2007 + 2-M Probe Survey At Salt Wells Area (Coolbaugh, Et Al., 2006) + 2005 + 2-M Probe Survey At Salt Wells Area (Skord, Et Al., 2011) + 2011 + A Acoustic Logs At Coso Geothermal Area (1977) + 1977 + Acoustic Logs At Coso Geothermal Area (2005) + 2005 +

Note: This page contains sample records for the topic "area activity start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

WestStart CALSTART | Open Energy Information  

Open Energy Info (EERE)

WestStart CALSTART WestStart CALSTART Jump to: navigation, search Name WestStart-CALSTART Place Pasadena, California Zip 91106 Product String representation "WestStart-CALST ... nd create jobs." is too long. Coordinates 29.690847°, -95.196308° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.690847,"lon":-95.196308,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

102

START USING THE NEW ONLINE METER  

E-Print Network (OSTI)

START USING THE NEW ONLINE METER REQUEST FORM TOOL CAS login Logging in with your Princeton Net and convenient way for departments to send outgoing metered mail with Mail Services! The new Online Meter Request

Singh, Jaswinder Pal

103

Janices start at Training & Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Janice's start at Training & Technology Janice West Christman, Vice President, Y-12 Quality Assurance, agreed to share her story the week she was retiring. Maybe I caught her at...

104

The Physics of Tokamak Start-up  

SciTech Connect

Tokamak start-up on present-day devices usually relies on inductively induced voltage from a central solenoid. In some cases inductive startup is assisted with auxiliary power from electron cyclotron radio frequency heating. ITER, the National Spherical Torus eXperiment Upgrade and JT60, now under construction, will make use of the understanding gained from present-day devices to ensure successful start-up. Design of a spherical tokamak (ST) with DT capability for nuclear component testing would require an alternative to a central solenoid because the small central column in an ST has insufficient space to provide shielding for the insulators in the solenoid. Alternative start-up techniques such as induction using outer poloidal field coils, electron Bernstein wave start-up, coaxial helicity injection and point source helicity injection have been used with success, but require demonstration of scaling to higher plasma current.

D. Mueller

2012-11-13T23:59:59.000Z

105

The physics of tokamak start-up  

SciTech Connect

Tokamak start-up on present-day devices usually relies on inductively induced voltage from a central solenoid. In some cases, inductive startup is assisted with auxiliary power from electron cyclotron radio frequency heating. International Thermonuclear Experimental Reactor, the National Spherical Torus Experiment Upgrade and JT60, now under construction, will make use of the understanding gained from present-day devices to ensure successful start-up. Design of a spherical tokamak (ST) with DT capability for nuclear component testing would require an alternative to a central solenoid because the small central column in an ST has insufficient space to provide shielding for the insulators in the solenoid. Alternative start-up techniques such as induction using outer poloidal field coils, electron Bernstein wave start-up, coaxial helicity injection, and point source helicity injection have been used with success, but require demonstration of scaling to higher plasma current.

Mueller, D. [Princeton Plasma Physics Laboratory, P.O. Box 451 Princeton, New Jersey 08543 (United States)] [Princeton Plasma Physics Laboratory, P.O. Box 451 Princeton, New Jersey 08543 (United States)

2013-05-15T23:59:59.000Z

106

Does Head Start help hispanic children?  

Science Journals Connector (OSTI)

Poor educational attainment is a persistent problem among US hispanic children, relative to non-hispanics. Many of these children are immigrants and/or come from households that use a minority language in the home. This paper examines the effects of participation in a government sponsored preschool program called Head Start on these children. We find that large and significant benefits accrue to Head Start children when we compare them to siblings who did not participate in the program. On average, Head Start closes at least 1/4 of the gap in test scores between hispanic children and non-hispanic white children, and 2/3 of the gap in the probability of grade repetition. However, we find that the benefits of Head Start are not evenly distributed across sub-groups.

Janet Currie; Duncan Thomas

1999-01-01T23:59:59.000Z

107

Research Assistantship Available Starting Spring 2013  

E-Print Network (OSTI)

Research Assistantship Available Starting Spring 2013 A research assistantship is available including fac- ulty and students from electrical engineering, computer science, biological sciences Spring 2013 and be funded through Spring 2015. Inter- ested students should submit a resume to David

Koppelman, David M.

108

Multiple aspects of neural activity during reaching preparation in the medial posterior parietal area v6a  

Science Journals Connector (OSTI)

The posterior parietal cortex is involved in the visuomotor transformations occurring during arm-reaching movements. The medial posterior parietal area V6A has been shown to be implicated in reaching execution, but its role in reaching preparation has ...

Rossella Breveglieri; Claudio Galletti; Giulia Dal Bò; Kostas Hadjidimitrakis; Patrizia Fattori

2014-04-01T23:59:59.000Z

109

CleanStart | Open Energy Information  

Open Energy Info (EERE)

CleanStart CleanStart Jump to: navigation, search Name CleanStart Place McClellan, California Zip CA 95652 Product US Business Technology Incubator located in California. Coordinates 38.668696°, -121.394799° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.668696,"lon":-121.394799,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

110

2003 American Solar Challenge Official Starting Lineup  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American Solar Challenge Official Starting Lineup American Solar Challenge Official Starting Lineup Starting Team Car # Time 9:00 Kansas State University 28 9:01 University of Minnesota 35 9:02 University of Missouri - Rolla 42 9:03 University of Missouri - Columbia 43 9:04 University of Toronto 11 9:05 University of Waterloo 24 9:06 North Dakota State University 22 9:07 Auburn University 7 9:08 CalSol 254 9:09 Principia College 32 9:10 Queen's University 100 9:11 Western Michigan University 786 9:12 Purdue University 314 9:13 University of Pennsylvania 76 9:14 Iowa State University 9 9:15 Texas A&M University 12 9:16 McGill University 66 9:17 University of Arizona 8 9:18 Stanford University 16 9:19 California Polytechnic State University - SLO 5

111

DOE Order Self Study Modules - Getting Started  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Getting Started DOE Orders Self-Study Program Getting Started August 2011 1 U.S. DEPARTMENT OF ENERGY ORDERS SELF-STUDY PROGRAM GETTING STARTED This course was developed using the Criterion Referenced Instruction (CRI) method of training. That means the course contains only the information you need to perform your job. You will be shown the learning objectives at the beginning of the course. If you think you can demonstrate competency without additional instruction, you may complete the practice at any time. When you complete all of the practices successfully, you may ask the course manager for the criterion test. The familiar level requires that you understand and remember the material. The general level requires that you understand the applicability of the material. If you are unsure of the level of proficiency

112

Getting Started | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

Getting Started Getting Started Create a Profile Students working in lab Your candidate profile is your way to communicate to our recruiters information about your experience, education, and job preferences. Feel free to update it as frequently as necessary. You may attach resumes and transcripts to the profile. Additionally, you must release your profile for us to access it. You may enter the profile and release it for viewing by our recruiters at any time. Apply For Jobs The profile you create is considered a crucial part of your employment application. Once you have completed your profile, you can start applying for jobs. To apply for job openings simply use the job search to find something that interests you and click apply inside the job posting. You can apply for as many jobs as you like. College program opportunities, such

113

It Starts with Science... | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

It Starts with Science... It Starts with Science... It Starts with Science... Addthis Description Secretary Chu sits down with a journalism student at Carnegie Mellon's Education City campus in Qatar to discuss the value of science in education and what attracted him to the study of Physics. Speakers Secretary Steven Chu, Thouria Mahmoud Duration 3:09 Topic Science Education Energy Economy Credit Energy Department Video THOURIA MAHMOUD: And I'm a student in Northwestern in Qatar, a sophomore in journalism. And now we're in Carnegie Mellon University in Qatar, and I'm talking to Mr. Secretary. If you had any advice for students who are, like, looking forward to pursue any science major, what would you tell them? SECRETARY OF ENERGY STEVEN CHU: In universities they call a liberal arts

114

Method Development to Evaluate the Oxygen Reduction Activity of High-Surface-Area Catalysts for Li-Air Batteries  

E-Print Network (OSTI)

This study presents a new method to quantitatively determine the electrocatalytic activity of Vulcan carbon and Vulcan-supported Au nanoparticles, dispersed as catalyst thin films on glass carbon, for oxygen reduction in ...

Lu, Yi-Chun

115

Getting Started Advanced Search for Funding Opportunities  

E-Print Network (OSTI)

Getting Started Advanced Search for Funding Opportunities For Assistance Delete Criteria to Update Search Funding ­ Finding Additional Sources Saving and Printing SPIN Search Results Past funding opportunities can be searched in InfoEd to: · find opportunities that were added prior to your account set

Duchowski, Andrew T.

116

Proposed Start Date: Title of Project  

E-Print Network (OSTI)

Proposed Start Date: Title of Project: 1 Department:Principal Investigator(s): 1. College: Phone/ Email: 5 6 7 8 Does project involve: Human subjects? No Yes VertebrateAnimals? No Yes Radioactive understand and agree to comply with the URI policies and procedures for misconduct, conflict of interest

Rhode Island, University of

117

Particle Physics at the LHC start  

Science Journals Connector (OSTI)

......Switzerland I present a concise review of the major issues and...brief overview of the Standard Model and of QCD, I...sector of the minimal Standard Model is so far just...start is as follows. The Standard Model (SM)1) is a...going on. The current plan is to collect 1 fb-1......

Guido Altarelli

2011-01-01T23:59:59.000Z

118

First Sustained Burning Plasma. Starts in 2019.  

E-Print Network (OSTI)

-T fusion power density is approximated by: Plasma pressure in atmospheres We need >1MWm-3 for an economic system -- need a few Atmospheres of plasma pressure. Can we hold it with a magnetic field? MagneticITER JET (to scale) JET (to scale) First Sustained Burning Plasma. Starts in 2019. BASIC PARAMETERS

119

Health Coaching Available Starting November 20th  

E-Print Network (OSTI)

Health Coaching Available Starting November 20th ! If you've completed your health survey and printed your report, which explains what you are doing well and what you can do better, health coaches are now available. . Our health coaches can work with you to help you take your health to the next level

Marsh, David

120

Health&Safety PreventionStartsHere  

E-Print Network (OSTI)

Health&Safety atWork PreventionStartsHere Workers have the right to: · Know about workplace hazards and what to do about them. · Participate in solving workplace health and safety problems. · Refuse work they believe is unsafe. Workers must: · Follow the law and workplace health and safety policies and procedures

Czarnecki, Krzysztof

Note: This page contains sample records for the topic "area activity start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Getting Started Quick Search for Collaborators  

E-Print Network (OSTI)

Getting Started Quick Search for Collaborators For Assistance Advanced Search for Collaborators the Advanced Search feature of GENIUS / CV Database to search for collaborators, and using the "Full Profile" in blue sidebar on left of screen. 2. Select the hyperlinked "Advanced Search." 3. Advanced Search

Stuart, Steven J.

122

Verifying the INF and START treaties  

SciTech Connect

The INF and START Treaties form the basis for constraints on nuclear weapons. Their verification provisions are one of the great success stories of modern arms control and will be an important part of the foundation upon which the verification regime for further constraints on nuclear weapons will be constructed.

Ifft, Edward [School of Foreign Service, Georgetown University, Washington, DC 20057 (United States)

2014-05-09T23:59:59.000Z

123

Project LIBERTY Biorefinery Starts Cellulosic Ethanol Production  

Office of Energy Efficiency and Renewable Energy (EERE)

Project LIBERTY, the nation’s first commercial-scale cellulosic ethanol plant to use corn waste as a feedstock, announced the start of production today. Once operating at full, commercial-scale, the biorefinery in Emmetsburg, Iowa will produce 25 million gallons of cellulosic ethanol per year - enough to avoid approximately 210,000 tons of CO2 emissions annually.

124

Property:StartDate | Open Energy Information  

Open Energy Info (EERE)

StartDate" StartDate" Showing 25 pages using this property. (previous 25) (next 25) 4 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - April 2008 + 1 April 2008 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - August 2008 + 1 August 2008 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - December 2008 + 1 December 2008 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2008 + 1 February 2008 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2009 + 1 February 2009 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - January 2008 + 1 January 2008 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - January 2009 + 1 January 2009 +

125

Getting Started: What to Ask the Developer  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GETTING STARTED: WHAT TO ASK THE DEVELOPER? GETTING STARTED: WHAT TO ASK THE DEVELOPER? Below is a list of preliminary questions to think about when approached by a developer or technology representative for developing clean energy resources on tribal lands. For more assistance, contact the DOE Office of Indian Energy at indianenergy@hq.doe.gov. Resources: * Which resources have been identified as being available? * What data was used to identify the resources? * Has the development of all available resources been evaluated separately as well as optimally combined with others? * What is the effective resource capacity? Development: * What is the proposed scale (MW capacity) for the project? * How will construction be accomplished? * How long will development and construction to commercial operation date (COD) take?

126

Clustering of metal atoms in organic media. 9. High-activity Ni/MgO catalysts prepared by metal vapor methods. Surface area and particle size effects  

SciTech Connect

A metal vapor method was employed to prepare highly dispersed Ni metal catalysts (solvated metal atom dispersed = SMAD catalyst) supported on MgO. Compared with conventional Ni/MgO compositions, the SMAD catalysts showed much greater activities for all reactions studied (hydrogenolysis of methylcyclopentane, MCP; hydrogenation/hydrogenolysis of toluene, TOL; methanation of carbon monoxide, CO; dehydration of isopropyl alcohol, IPA). These high activities for the SMAD catalysts are attributed to the high surface area of Ni on MgO and the high percentage of this Ni in a zero-valent state (reduction degree). Conventional methods for preparing Ni/MgO catalysts did not yield nearly such favorable surface areas or reduction degrees. Nickel particle size effects were observed during hydrogenolysis studies of MCP and hydrogenation studies of TOL. These phenomena are explained by assuming the size of an active Ni particle to be largest for hydrogenolysis of MCP > hydrogenation of TOL > methanation of CO approx. = dehydrogenation of IPA. 8 figures, 2 tables.

Matsuo, K.; Klabunde, K.J.

1982-02-01T23:59:59.000Z

127

Eine Einfhrung Getting Started with MATLAB  

E-Print Network (OSTI)

MATLAB Eine Einführung Getting Started with MATLAB �bersetzt und gestaltet von Robert Wilke und Ulf Informatik und Mathematik FH Regensburg Prof. Dr. H.-J. Wagner und Prof. Dr. H.-W. Goelden Version 2.0 MATLAB-Version 5.3 1 #12;Hinweise Alle Beispiele wurden mit MATLAB Version 5.3 getestet. Wenn auf Ihrem Computer

Hinze, Michael

128

VolumeI:QuickStart for Grassland,  

E-Print Network (OSTI)

Range Focus Group and scientists from the Estacion Experimental La Campana in Chihuahua, Mexico Protected Natural Areas (Chihuahua and Sonora, Mexico) The Nature Conservancy Natural Resources Conservation

Barger, Nichole

129

Precursor systems analyses of automated highway systems. Activity area C. Automated check-out. Final report, September 1993-November 1994  

SciTech Connect

The activity evaluates potential automatic-to-manual transition scenarios in terms of relative feasibility, safety, cost, and social implications. The check-out alternatives range from minimal testing of the operator and the vehicle to extensive testing of the operator and vehicle. The vehicle functions analysis presents a summary of functions that are critical to safe manual operation and proposes several options for validation. Two possible check-out processes are discussed, one intended for AHS lanes dedicated to automated traffic, and one intended for mixed mode lanes in which AHS and non-AHS vehicles are traveling. The transition to manual control will involve preparing the driver to resume manual operation prior to release of vehicle functions. Proposed tasks which could be used to determine that the driver is ready to receive control of the automated vehicle are examined.

Mangarelli, F.; Cochran, A.; Craig, D.; Michael, B.; Halseth, M.

1995-05-01T23:59:59.000Z

130

National High Magnetic Field Laboratory - Science Starts Here...  

NLE Websites -- All DOE Office Websites (Extended Search)

Features > Science Starts Here Arrow Science Starts Here: Forest White Forest White Forest White. Name Forest White. Current position Assistant Professor, Massachusetts Institute...

131

National High Magnetic Field Laboratory - Science Starts Here...  

NLE Websites -- All DOE Office Websites (Extended Search)

Facts & Features > Science Starts Here Arrow Science Starts Here: Vivien Zapf Vivien Zapf Vivien Zapf. Name Vivien Zapf. Age 29. Current position Scientific staff member, Los...

132

Recent drilling activities at the earth power resources Tuscarora geothermal power project's hot sulphur springs lease area.  

SciTech Connect

Earth Power Resources, Inc. recently completed a combined rotary/core hole to a depth of 3,813 feet at it's Hot Sulphur Springs Tuscarora Geothermal Power Project Lease Area located 70-miles north of Elko, Nevada. Previous geothermal exploration data were combined with geologic mapping and newly acquired seismic-reflection data to identify a northerly tending horst-graben structure approximately 2,000 feet wide by at least 6,000 feet long with up to 1,700 feet of vertical offset. The well (HSS-2) was successfully drilled through a shallow thick sequence of altered Tertiary Volcanic where previous exploration wells had severe hole-caving problems. The ''tight-hole'' drilling problems were reduced using drilling fluids consisting of Polymer-based mud mixed with 2% Potassium Chloride (KCl) to reduce Smectite-type clay swelling problems. Core from the 330 F fractured geothermal reservoir system at depths of 2,950 feet indicated 30% Smectite type clays existed in a fault-gouge zone where total loss of circulation occurred during coring. Smectite-type clays are not typically expected at temperatures above 300 F. The fracture zone at 2,950 feet exhibited a skin-damage during injection testing suggesting that the drilling fluids may have caused clay swelling and subsequent geothermal reservoir formation damage. The recent well drilling experiences indicate that drilling problems in the shallow clays at Hot Sulphur Springs can be reduced. In addition, average penetration rates through the caprock system can be on the order of 25 to 35 feet per hour. This information has greatly reduced the original estimated well costs that were based on previous exploration drilling efforts. Successful production formation drilling will depend on finding drilling fluids that will not cause formation damage in the Smectite-rich fractured geothermal reservoir system. Information obtained at Hot Sulphur Springs may apply to other geothermal systems developed in volcanic settings.

Goranson, Colin

2005-03-01T23:59:59.000Z

133

The radio/gamma-ray connection in Active Galactic Nuclei in the era of the Fermi Large Area Telescope  

E-Print Network (OSTI)

We present a detailed statistical analysis of the correlation between radio and gamma-ray emission of the Active Galactic Nuclei (AGN) detected by Fermi during its first year of operation, with the largest datasets ever used for this purpose. We use both archival interferometric 8.4 GHz data (from the VLA and ATCA, for the full sample of 599 sources) and concurrent single-dish 15 GHz measurements from the Owens Valley Radio Observatory (OVRO, for a sub sample of 199 objects). Our unprecedentedly large sample permits us to assess with high accuracy the statistical significance of the correlation, using a surrogate-data method designed to simultaneously account for common-distance bias and the effect of a limited dynamical range in the observed quantities. We find that the statistical significance of a positive correlation between the cm radio and the broad band (E>100 MeV) gamma-ray energy flux is very high for the whole AGN sample, with a probability <1e-7 for the correlation appearing by chance. Using the...

Ackermann, M; Allafort, A; Angelakis, E; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bouvier, A; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Cannon, A; Caraveo, P A; Casandjian, J M; Cavazzuti, E; Cecchi, C; Charles, E; Chekhtman, A; Cheung, C C; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cutini, S; de Palma, F; Dermer, C D; Silva, E do Couto e; Drell, P S; Dubois, R; Dumora, D; Escande, L; Favuzzi, C; Fegan, S J; Focke, W B; Fortin, P; Frailis, M; Fuhrmann, L; Fukazawa, Y; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Giglietto, N; Giommi, P; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grandi, P; Grenier, I A; Guiriec, S; Hadasch, D; Hayashida, M; Hays, E; Healey, S E; J, G; Johnson, A S; Kamae, T; Katagiri, H; Kataoka, J; Kn, J; Kuss, M; Lande, J; Lee, S -H; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Makeev, A; Max-Moerbeck, W; Mazziotta, M N; McEnery, J E; Mehault, J; Michelson, P F; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Naumann-Godo, M; Nishino, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paneque, D; Pavlidou, V; Pelassa, V; Pepe, M; Pesce-Rollins, M; Pierbattista, M; Piron, F; Porter, T A; Rain, S; Razzano, M; Readhead, A; Reimer, A; Reimer, O; Richards, J L; Romani, R W; Sadrozinski, H F -W; Scargle, J D; Sgr, C; Siskind, E J; Smith, P D; Spandre, G; Spinelli, P; Strickman, M S; Suson, D J; Takahashi, H; Tanaka, T; Taylor, G B; Thayer, J G; Thayer, J B; Thompson, D J; Torres, D F; Tosti, G; Tramacere, A; Troja, E; Vandenbroucke, J; Vianello, G; Vitale, V; Waite, A P; Wang, P; Winer, B L; Wood, K S; Yang, Z; Ziegler, M

2011-01-01T23:59:59.000Z

134

VolumeI:QuickStart for Grassland,  

E-Print Network (OSTI)

the Estacion Experimental La Campana in Chihuahua, Mexico, in particular, have provided ongoing support y Pecuarias (México) Land EKG Inc. (Montana) Mexican Protected Natural Areas (Chihuahua and Sonora

135

Geothermal Literature Review At Lightning Dock Geothermal Area...  

Open Energy Info (EERE)

Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Grant, 1978) Exploration Activity Details Location Lightning Dock Geothermal Area...

136

Magnetotellurics At Glass Mountain Area (Cumming And Mackie,...  

Open Energy Info (EERE)

Area (Cumming And Mackie, 2007) Exploration Activity Details Location Glass Mountain Geothermal Area Exploration Technique Magnetotellurics Activity Date Usefulness useful...

137

A QuickStart Guide to printing a  

E-Print Network (OSTI)

A QuickStart Guide to printing a 3D model starting from a block of bytes Bridget CarragherStart Guide to printing a 3D model starting from a block of bytes This is currently a three step process. (1 and selecting a new size (of 3 inches for example). Once you have done this, choose Print from the File menu

138

Corrective Action Plan for CAU No. 95: Area 15 EPA Farm Laboratory Building, Decontamination and Demolition Closure Activities - Nevada Test Site. Rev. 0  

SciTech Connect

This Corrective Action Plan (CAP) provides the selected corrective action alternative and proposes the closure implementation methodology for the Environmental Protection Agency (EPA) Farm Laboratory Building 15-06 located in Area 15 of the Nevada Test Site (NTS), Nye County, Nevada. The facility is part of the Environmental Restoration Project managed by the U.S. Department of Energy/Nevada Operations Office (DOE/NV) under the Decontamination and Decommissioning (D&D) Subproject which serves to manage and dispose of surplus facilities at the NTS in a manner that will protect personnel, the public, and the environment. It is identified as Corrective Action Unit (CAU) 95 in Appendix III of the Federal Facilities Agreement and Consent Order (FFACO). In July 1997, the DOE/NV verbally requested approval from the Nevada Division of Environmental Protection (NDEP) for the closure schedule to be accelerated. Currently, field activities are anticipated to be completed by September 30, 1997. In order to meet this new schedule NDEP has agreed to review this document as expeditiously as possible. Comments will be addressed in the Closure Report after field activities have been completed, unless significant issues require resolution during closure activities.

Olson, A.L.; Nacht, S.J.

1997-11-01T23:59:59.000Z

139

ORNL/RASA-85/1 RESULTS OF THE II4OBILE GAMMA SCANNING ACTIVITIES IN NIAGARA FALLS, NEvl YORK AREA  

Office of Legacy Management (LM)

Nf7 n-q Nf7 n-q gz75 tLtY r 1 irl,r:'a :.a l: i , l : i l ',:lr.:'. itl:t i .,,::l ' i , t . . ORNL/RASA-85/1 RESULTS OF THE II4OBILE GAMMA SCANNING ACTIVITIES IN NIAGARA FALLS, NEvl YORK AREA Access to the information in this report is limited to thoss indicated on the distribution list and io Department ol Energy ancl Depsrtment of Energy Contractors This report was prepared as an account ol work sponsored by an agency of the United States Government. Neither the U nited StatesGovernment nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any informalion, apparatus, product, or process disclosed, or represents thal its use would not inf ringe

140

Ladies and Gentlemen, Start Your Engines | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Ladies and Gentlemen, Start Your Engines Ladies and Gentlemen, Start Your Engines Stories of Discovery & Innovation Ladies and Gentlemen, Start Your Engines Enlarge Photo Photo courtesy of Pacific Northwest National Laboratory 900-MHz NMR spectrometer allows scientists to transcend previous limits in catalyst characterization. In addition [to new understanding of sulfur poisoning and thermal damage], I would like to acknowledge that the CRADA provided us with access to the other discoveries made at PNNL in the area of NOX storage component morphological mobility, which proved key to interpreting many features of these uniquely complex catalytic systems. Dr. John C. Wall Cummins Vice President and Chief Technical Officer 03.28.11 Ladies and Gentlemen, Start Your Engines Fundamental studies in catalysis enabled the use of efficient "lean-burn" engines

Note: This page contains sample records for the topic "area activity start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Evaluation Of Baltazor Known Geothermal Resources Area, Nevada | Open  

Open Energy Info (EERE)

Baltazor Known Geothermal Resources Area, Nevada Baltazor Known Geothermal Resources Area, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Evaluation Of Baltazor Known Geothermal Resources Area, Nevada Details Activities (3) Areas (1) Regions (0) Abstract: By virtue of the Geothermal Steam Act of 1970, the U.S. Geological Survey is required to appraise geothermal resources of the United States prior to competitive lease sales. This appraisal involves coordinated input from a variety of disciplines, starting with reconnaissance geology and geophysics. This paper describes how the results of several geophysical methods used in KGRA evaluation were interpreted by the authors, two geophysicists, involved with both the Evaluation Committee and the research program responsible for obtaining and interpreting the

142

AVTA: 2010 Volkswagon Golf Diesel Start-Stop Testing Results  

Energy.gov (U.S. Department of Energy (DOE))

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a 2010 Volkswagon Golf Diesel vehicle with stop-start technology. Baseline data, which provides a point of comparison for the other test results, was collected at two different research laboratories. Baseline and other data collected at Idaho National Laboratory is in the attached documents. Baseline and battery testing data collected at Argonne National Laboratory is available in summary and CSV form on the Argonne Downloadable Dynometer Database site (http://www.transportation.anl.gov/D3/2010_vw_golf_tdi_bluemotion.html). Taken together, these reports give an overall view of how this vehicle functions under extensive testing.

143

AVTA: Volkswagon Golf Diesel Start-Stop 2010 Testing Results  

Energy.gov (U.S. Department of Energy (DOE))

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a 2010 Volkswagon Golf Diesel vehicle with stop-start technology. Baseline data, which provides a point of comparison for the other test results, was collected at two different research laboratories. Baseline and other data collected at Idaho National Laboratory is in the attached documents. Baseline and battery testing data collected at Argonne National Laboratory is available in summary and CSV form on the Argonne Downloadable Dynometer Database site (http://www.transportation.anl.gov/D3/2010_vw_golf_tdi_bluemotion.html). Taken together, these reports give an overall view of how this vehicle functions under extensive testing.

144

Honey Lake Geothermal Area  

Energy.gov (U.S. Department of Energy (DOE))

The Honey Lake geothermal area is located in Lassen County, California and Washoe County, Nevada. There are three geothermal projects actively producing electrical power. They are located at Wendel...

145

Making Fast Start Finance Work | Open Energy Information  

Open Energy Info (EERE)

Making Fast Start Finance Work Making Fast Start Finance Work Jump to: navigation, search Tool Summary Name: Making Fast Start Finance Work Agency/Company /Organization: European Climate Foundation Sector: Energy Topics: Finance Resource Type: Guide/manual, Training materials Website: www.project-catalyst.info/images/publications/2010-06-07_project_catal Making Fast Start Finance Work Screenshot References: Making Fast Start Finance Work[1] Logo: Making Fast Start Finance Work This paper aims to provide a fact base on the current sources of Fast Start Finance,including size, composition, and intended use, as well as analysis on the Fast Start Finance priorities and the institutional mechanisms needed to ensure that it delivers real impact. "...This paper aims to provide a fact base on the current sources of Fast

146

Sandia National Laboratories: Power Production Started on All...  

NLE Websites -- All DOE Office Websites (Extended Search)

ClimateECEnergyPower Production Started on All Three SWiFT Turbines Power Production Started on All Three SWiFT Turbines Sandia Maps Multiple Paths to Cleaner, Low-Temp Diesels CRF...

147

NNSA Authorizes Start-Up of Highly Enriched Uranium Materials...  

National Nuclear Security Administration (NNSA)

Releases NNSA Authorizes Start-Up of Highly Enriched Uranium ... NNSA Authorizes Start-Up of Highly Enriched Uranium Materials Facility at Y-12 applicationmsword icon R-10-01...

148

Slim Holes At Salton Sea Area (Sabin, Et Al., 2010) | Open Energy  

Open Energy Info (EERE)

Slim Holes At Salton Sea Area (Sabin, Et Al., 2010) Slim Holes At Salton Sea Area (Sabin, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Salton Sea Area (Sabin, Et Al., 2010) Exploration Activity Details Location Salton Sea Area Exploration Technique Slim Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes NAF El Centro work started as a consulting project in 2003. An overlapping TGH and geophysical target prompted GPO to follow up with drilling that was initiated in 2008. Technical problems with both holes has prompted GPO to drill one more deep, slim hole on this anomaly in the summer of 2010. The details of GPO's plans and prior work at NAFEC are available elsewhere in this volume. References Andrew Sabin, S. Bjornstad, M. Lazaro, D. Meade, C. Page, S. Alm, A.

149

EIA-Voluntary Reporting of Greenhouse Gases Program - Getting Started  

U.S. Energy Information Administration (EIA) Indexed Site

Getting Started Getting Started Voluntary Reporting of Greenhouse Gases Program Getting Started Form EIA-1605 may seem daunting at first, even for entities that have reported under the original program. That's why EIA has developed the Getting Started page to help entities take a systematic approach to reporting their emissions and reductions. The Voluntary Reporting of Greenhouse Gases Program suggests that prospective reporters familiarize themselves with the specific requirements for reporting their entity's inventory and reductions by answering the questions embodied in the 10 steps below. In addition, EIA has prepared the interactive Getting Started tool to help reporters determine what parts of Form EIA-1605 they need to complete. Getting Started Tool Getting Started PDF Tables

150

Activities  

Energy.gov (U.S. Department of Energy (DOE))

Activities and events provide Residential Network members the opportunity to discuss similar needs and challenges, and to collectively identify effective strategies and useful resources.

151

Research Areas  

NLE Websites -- All DOE Office Websites (Extended Search)

Areas Areas Research Areas Print Scientists from a wide variety of fields come to the ALS to perform experiements. Listed below are some of the most common research areas covered by ALS beamlines. Below each heading are a few examples of the specific types of topics included in that category. Click on a heading to learn more about that research area at the ALS. Energy Science Photovoltaics, photosynthesis, biofuels, energy storage, combustion, catalysis, carbon capture/sequestration. Bioscience General biology, structural biology. Materials/Condensed Matter Correlated materials, nanomaterials, magnetism, polymers, semiconductors, water, advanced materials. Physics Atomic, molecular, and optical (AMO) physics; accelerator physics. Chemistry Surfaces/interfaces, catalysts, chemical dynamics (gas-phase chemistry), crystallography, physical chemistry.

152

DOE Hydrogen Analysis Repository: Quick Starting Fuel Processors - A  

NLE Websites -- All DOE Office Websites (Extended Search)

Quick Starting Fuel Processors - A Feasibility Study Quick Starting Fuel Processors - A Feasibility Study Project Summary Full Title: Quick Starting Fuel Processors - A Feasibility Study Project ID: 164 Principal Investigator: Shabbir Ahmed Brief Description: This project studied the feasibility of fast-starting fuel processors to meet DOE goals for on-board fuel processing. Keywords: On-board fuel processor Purpose Study the feasibility of developing fast-starting fuel processors that can meet DOE's targets, investigate designs and strategies capable of meeting the start-up targets, and validate models using experimental and hardware data. Performer Principal Investigator: Shabbir Ahmed Organization: Argonne National Laboratory (ANL) Address: 9700 South Cass Ave Argonne, IL 60439 Telephone: 630-252-4553

153

Property:Incentive/StartDateString | Open Energy Information  

Open Energy Info (EERE)

StartDateString StartDateString Jump to: navigation, search Property Name Incentive/StartDateString Property Type String Description Start Date string property. Use this property in queries until the Property:Incentive/StartDate property is populated with valid dates only. Currently, some are populated with additional notes included. Pages using the property "Incentive/StartDateString" Showing 25 pages using this property. (previous 25) (next 25) 3 30% Business Tax Credit for Solar (Vermont) + 01/01/2009 + A AEP Appalachian Power - Commercial and Industrial Rebate Programs (West Virginia) + 3/11/2011 + AEP Appalachian Power - Residential Home Retrofit Program (West Virginia) + 3/11/2011 + AEP Ohio - Commercial Self Direct Rebate Program (Ohio) + 1/1/2008 +

154

COST BREAKDOWN AWARD NO: START DATE: EXPIRATION DATE: FISCAL...  

NLE Websites -- All DOE Office Websites (Extended Search)

COST BREAKDOWN AWARD NO: START DATE: EXPIRATION DATE: FISCAL YEAR BREAKDOWN OF FUNDS ELEMENTS FY FY FY FY FY TOTAL Direct Labor Overhead Materials Supplies Travel Other Direct...

155

START Program for Renewable Energy Project Development Assistance...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program for Renewable Energy Project Development Assistance START Program for Renewable Energy Project Development Assistance The Strategic Technical Assistance Response Team...

156

Sandia National Laboratories: reducing start-up risks for solar...  

NLE Websites -- All DOE Office Websites (Extended Search)

start-up risks for solar thermal generation Sandia Solar Energy Test System Cited in National Engineering Competition On May 16, 2013, in Concentrating Solar Power, Energy, Energy...

157

Assess your starting point | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Assess your starting point Assess your starting point Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Learn the benefits Get started Read the ENERGY STAR Guidelines for Energy Management Get buy-in from leadership and staff Make a commitment Assess your starting point Use Portfolio Manager Save energy Find financing Earn recognition Communicate your success

158

Ahuachapan Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Activities (0) 10 References Area Overview Geothermal Area Profile Location: El Salvador Exploration Region: Central American Volcanic Arc Chain GEA Development Phase: Phase...

159

Berlín Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Activities (0) 10 References Area Overview Geothermal Area Profile Location: El Salvador Exploration Region: Central American Volcanic Arc Chain GEA Development Phase: Phase...

160

Aquifer Protection Area Land Use Regulations (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations describe allowable activities within aquifer protection areas, the procedure by which such areas are delineated, and relevant permit requirements. The regulations also describe...

Note: This page contains sample records for the topic "area activity start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Fukushima Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Activities (0) 10 References Area Overview Geothermal Area Profile Location: Fukushima, Japan Exploration Region: Northeast Honshu Arc GEA Development Phase: Coordinates:...

162

Research Areas  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Areas Print Research Areas Print Scientists from a wide variety of fields come to the ALS to perform experiements. Listed below are some of the most common research areas covered by ALS beamlines. Below each heading are a few examples of the specific types of topics included in that category. Click on a heading to learn more about that research area at the ALS. Energy Science Photovoltaics, photosynthesis, biofuels, energy storage, combustion, catalysis, carbon capture/sequestration. Bioscience General biology, structural biology. Materials/Condensed Matter Correlated materials, nanomaterials, magnetism, polymers, semiconductors, water, advanced materials. Physics Atomic, molecular, and optical (AMO) physics; accelerator physics. Chemistry Surfaces/interfaces, catalysts, chemical dynamics (gas-phase chemistry), crystallography, physical chemistry.

163

coherence area  

Science Journals Connector (OSTI)

1....In an electromagnetic wave, such as a lightwave or a radio wave, the area of a surface (a) every point on which the surface is perpendicular to the direction of propagation, (b) over which the e...

2001-01-01T23:59:59.000Z

164

Getting Started with MATLAB The Language of Technical Computing  

E-Print Network (OSTI)

Getting Started with MATLAB® Version 7 MATLAB ® The Language of Technical Computing #12;How to Contact The MathWorks: www.mathworks.com Web comp.soft-sys.matlab Newsgroup supportWorks Web site. Getting Started with MATLAB © COPYRIGHT 1984 - 2004 by The MathWorks, Inc. The software

deYoung, Brad

165

Starting your career in Russia Country Guide for International Students  

E-Print Network (OSTI)

Starting your career in Russia Country Guide for International Students #12;Country profile Main country, Russia. You stand at the beginning of an exciting career, but what are the steps you need to take provides you with practical advice about returning to work in Russia, to help you make a successful start

Neirotti, Juan Pablo

166

Interim Activities at Corrective Action Unit 114: Area 25 EMAD Facility, Nevada National Security Site, Nevada, for Fiscal Years 2012 and 2013  

SciTech Connect

This letter report documents interim activities that have been completed at CAU 114 in fiscal years 2012 and 2013.

Silvas, A J

2013-10-24T23:59:59.000Z

167

PSNH - Municipal Smart Start Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PSNH - Municipal Smart Start Program PSNH - Municipal Smart Start Program PSNH - Municipal Smart Start Program < Back Eligibility Local Government Savings Category Other Maximum Rebate Not specified Program Info State New Hampshire Program Type Utility Loan Program Rebate Amount No up front costs: Payments made over time with the savings obtained from lower energy costs. Provider Public Service of New Hampshire Public Service of New Hampshire (PSNH), an electric utility, offers the Smart Start Program to Municipal customers. This program assists municipalities in reducing energy consumption and electric bills at facilities by installing energy-saving measures. Payment for services and products will be made over time with the savings obtained from lower energy costs. Under the Smart Start Program, PSNH pays all of the costs associated

168

Property:Incentive/StartDate | Open Energy Information  

Open Energy Info (EERE)

StartDate StartDate Jump to: navigation, search Property Name Incentive/StartDate Property Type Date Description Start Date. In order to see all values for this property, Property:Incentive/StartDateString should be used in queries until only valid dates are in this property. Currently, some entries include notes after the date or are just notes. Subproperties This property has the following 50 subproperties: A Alcohol Fuels Exemption (Hawaii) Alternative Energy Personal Property Tax Exemption (Michigan) Anne Arundel County - Solar and Geothermal Equipment Property Tax Credits (Maryland) B Broward County - Energy Sense Appliance Rebate Program (Florida) C CCEF - Commercial, Industrial, Institutional PV Grant Program (Connecticut) California Solar Initiative - Solar Thermal Program (California)

169

Occurrence, fate and ecotoxicological assessment of pharmaceutically active compounds in wastewater and sludge from wastewater treatment plants in Chongqing, the Three Gorges Reservoir Area  

Science Journals Connector (OSTI)

Abstract The occurrence, removal and ecotoxicological assessment of 21 pharmaceutically active compounds (PhACs) including antibiotics, analgesics, antiepileptics, antilipidemics and antihypersensitives, were studied at four municipal wastewater treatment plants (WWTP) in Chongqing, the Three Gorges Reservoir Area. Individual treatment unit effluents, as well as primary and secondary sludge, were sampled and analyzed for the selected PhACs to evaluate their biodegradation, persistence and partitioning behaviors. PhACs were identified and quantified using high performance liquid chromatography/tandem mass spectrometry after solid-phase extraction. All the 21 analyzed PhACs were detected in wastewater and the target PhACs except acetaminophen, ibuprofen and gemfibrozil, were also found in sludge. The concentrations of the antibiotics and SVT were comparable to or even higher than those reported in developed countries, while the case of other target PhACs was opposite. The elimination of PhACs except acetaminophen was incomplete and a wide range of elimination efficiencies during the treatment were observed, i.e. from “negative removal” to 99.5%. The removal of PhACs was insignificant in primary and disinfection processes, and was mainly achieved during the biological treatment. Based on the mass balance analysis, biodegradation is believed to be the primary removal mechanism, whereas only about 1.5% of the total mass load of the target PhACs was removed by sorption. Experimentally estimated distribution coefficients (< 500 L/kg, with a few exceptions) also indicate that biodegradation/transformation was responsible for the removal of the target PhACs. Ecotoxicological assessment indicated that the environment concentrations of single compounds (including sulfadiazine, sulfamethoxazole, ofloxacin, azithromycin and erythromycin-H2O) in effluent and sludge, as well as the mixture of the 21 detected PhACs in effluent, sludge and receiving water had a significant ecotoxicological risk to algae. Therefore, further control of PhACs in effluent and sludge is required before their discharge and application to prevent their introduction into the environment.

Qing Yan; Xu Gao; You-Peng Chen; Xu-Ya Peng; Yi-Xin Zhang; Xiu-Mei Gan; Cheng-Fang Zi; Jin-Song Guo

2014-01-01T23:59:59.000Z

170

Quick start user%3CU%2B2019%3Es guide for the PATH/AWARE decision support system.  

SciTech Connect

The Prioritization Analysis Tool for All-Hazards/Analyzer for Wide Area Restoration Effectiveness (PATH/AWARE) software system, developed by Sandia National Laboratories, is a comprehensive decision support tool designed to analyze situational awareness, as well as response and recovery actions, following a wide-area release of chemical, biological or radiological materials. The system provides capability to prioritize critical infrastructure assets and services for restoration. It also provides a capability to assess resource needs (e.g., number of sampling teams, laboratory capacity, decontamination units, etc.), timelines for consequence management activities, and costs. PATH/AWARE is a very comprehensive tool set with a considerable amount of database information managed through a Microsoft SQL (Structured Query Language) database engine, a Geographical Information System (GIS) engine that provides comprehensive mapping capabilities, as well as comprehensive decision logic to carry out the functional aspects of the tool set. This document covers the basic installation and operation of the PATH/AWARE tool in order to give the user enough information to start using the tool. A companion users manual is under development with greater specificity of the PATH/AWARE functionality.

Knowlton, Robert G.; Melton, Brad Joseph; Einfeld, Wayne; Tucker, Mark D; Franco, David Oliver [Sandia National Laboratories, Livermore, CA; Yang, Lynn I. [Sandia National Laboratories, Livermore, CA

2013-06-01T23:59:59.000Z

171

START Fact Sheet START, June 2014 1 The Evolution of the Islamic State of Iraq and the Levant (ISIL)  

E-Print Network (OSTI)

START Fact Sheet � START, June 2014 1 FACT SHEET The Evolution of the Islamic State of Iraq PREVIOUSLY POSITIVE 1) The group currently known as Islamic State of Iraq and the Levant (ISIL, to Iraq.2 At the request of al-Qa'ida leaders, Zarqawi began facilitating the move of militants into Iraq

Hill, Wendell T.

172

Ground Gravity Survey At Dixie Valley Geothermal Area (Schaefer...  

Open Energy Info (EERE)

Area (Schaefer, 1983) Exploration Activity Details Location Dixie Valley Geothermal Area Exploration Technique Ground Gravity Survey Activity Date 1983 - 1983 Usefulness...

173

Flow Test At Wister Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Wister Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Wister Area (DOE GTP) Exploration Activity...

174

Flow Test At Colrado Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Colrado Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Colrado Area (DOE GTP) Exploration Activity...

175

Flow Test At Alum Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Alum Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Alum Area (DOE GTP) Exploration Activity Details...

176

Multispectral Imaging At Columbus Salt Marsh Area (Shevenell...  

Open Energy Info (EERE)

Area (Shevenell, Et Al., 2008) Exploration Activity Details Location Columbus Salt Marsh Area Exploration Technique Multispectral Imaging Activity Date Usefulness useful...

177

Stepout-Deepening Wells At Medicine Lake Area (Warpinski, Et...  

Open Energy Info (EERE)

Home Exploration Activity: Stepout-Deepening Wells At Medicine Lake Area (Warpinski, Et Al., 2004) Exploration Activity Details Location Medicine Lake Area Exploration Technique...

178

Compound and Elemental Analysis At Rye Patch Area (DOE GTP) ...  

Open Energy Info (EERE)

Compound and Elemental Analysis At Rye Patch Area (DOE GTP) Exploration Activity Details Location Rye Patch Area Exploration Technique Compound and Elemental Analysis Activity Date...

179

Vertical Seismic Profiling At Rye Patch Area (DOE GTP, 2011)...  

Open Energy Info (EERE)

Vertical Seismic Profiling At Rye Patch Area (DOE GTP, 2011) Exploration Activity Details Location Rye Patch Area Exploration Technique Vertical Seismic Profiling Activity Date...

180

Exploratory Well At Long Valley Caldera Geothermal Area (Smith...  

Open Energy Info (EERE)

Home Exploration Activity: Exploratory Well At Long Valley Caldera Geothermal Area (Smith & Rex, 1977) Exploration Activity Details Location Long Valley Caldera Geothermal Area...

Note: This page contains sample records for the topic "area activity start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Field Mapping At Dixie Valley Geothermal Area (Smith, Et Al....  

Open Energy Info (EERE)

Field Mapping At Dixie Valley Geothermal Area (Smith, Et Al., 2001) Exploration Activity Details Location Dixie Valley Geothermal Area Exploration Technique Field Mapping Activity...

182

Thermal Gradient Holes At Glass Mountain Area (Cumming And Mackie...  

Open Energy Info (EERE)

Area (Cumming And Mackie, 2007) Exploration Activity Details Location Glass Mountain Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not...

183

Compound and Elemental Analysis At Glass Buttes Area (DOE GTP...  

Open Energy Info (EERE)

Area (DOE GTP) Exploration Activity Details Location Glass Buttes Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding...

184

Geothermometry At Fort Bliss Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Fort Bliss Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Fort Bliss Area (DOE GTP) Exploration Activity...

185

Compound and Elemental Analysis At Fort Bliss Area (DOE GTP)...  

Open Energy Info (EERE)

Compound and Elemental Analysis At Fort Bliss Area (DOE GTP) Exploration Activity Details Location Fort Bliss Area Exploration Technique Compound and Elemental Analysis Activity...

186

Multispectral Imaging At Fort Bliss Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Multispectral Imaging At Fort Bliss Area (DOE GTP) Exploration Activity Details Location Fort Bliss Area Exploration Technique Multispectral Imaging Activity Date Usefulness not...

187

Geographic Information System At International Geothermal Area...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At International Geothermal Area, Indonesia (Nash, Et Al., 2002) Exploration...

188

Program Areas  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy's Fuel Cell Technologies Office is the lead federal agency for directing and integrating activities in hydrogen...

189

START Program for Renewable Energy Project Development Assistance |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program for Renewable Energy Program for Renewable Energy Project Development Assistance START Program for Renewable Energy Project Development Assistance The Strategic Technical Assistance Response Team (START) Program is part of the DOE Office of Indian Energy effort to assist in the development of tribal renewable energy projects. Through the START Program for Renewable Energy Project Development Assistance, a team of DOE and national laboratory experts will work directly with tribal communities to evaluate project financial and technical feasibility, provide on-going training to community members, and help implement a variety of clean energy projects, including energy storage infrastructure, renewable energy deployment, and energy efficiency. The following projects were selected for the 2013 START Renewable Energy

190

GRR/GRR Getting Started | Open Energy Information  

Open Energy Info (EERE)

GRR Getting Started GRR Getting Started < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Print PDF Getting Started with the Roadmap The Geothermal Regulatory Roadmap has 3 main parts: Flowcharts, Narratives, and Reference Materials, described in more detail below. GRR Product Overview For more information, watch the GRR Product Overview (Video) (approximate length: 10 minutes), or download the Original PowerPoint Presentation. Contents 1 Getting Started with the Roadmap 1.1 1. Flowcharts 1.1.1 Flowchart Shapes 1.1.2 Flowchart Colors 1.1.3 Flowchart Features 1.1.4 Element Features 1.1.5 Example 1.2 2. Narratives 1.3 3. Reference Material 1.4 Did we miss a permit? 1.5 Does content need updating? 1.6 Are you an agency with regulatory authority over a required permit?

191

DOE Provides $30 Million to Jump Start Bioenergy Research Centers |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30 Million to Jump Start Bioenergy Research Centers 30 Million to Jump Start Bioenergy Research Centers DOE Provides $30 Million to Jump Start Bioenergy Research Centers October 1, 2007 - 2:49pm Addthis DOE Bioenergy Research Center Investment Tops $400 Million WASHINGTON, DC-The U.S. Department of Energy (DOE) today announced it has invested nearly $30 million in end-of-fiscal-year (2007) funds to accelerate the start-up of its three new Bioenergy Research Centers, bringing total DOE Bioenergy Research Center investment to over $400 million. The three DOE Bioenergy Research Centers-located in Oak Ridge, Tennessee; Madison, Wisconsin; and near Berkeley, California-selected by DOE this June, bring together multidisciplinary teams of leading scientists to advance research needed to make cellulosic ethanol and other biofuels

192

Property:Building/StartPeriod | Open Energy Information  

Open Energy Info (EERE)

StartPeriod StartPeriod Jump to: navigation, search This is a property of type Date. Start of the period (first day o the month) Pages using the property "Building/StartPeriod" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 1 January 2004 + Sweden Building 05K0002 + 1 January 2004 + Sweden Building 05K0003 + 1 January 2004 + Sweden Building 05K0004 + 1 January 2004 + Sweden Building 05K0005 + 1 October 2004 + Sweden Building 05K0006 + 1 October 2004 + Sweden Building 05K0007 + 1 October 2004 + Sweden Building 05K0008 + 1 October 2004 + Sweden Building 05K0009 + 1 October 2004 + Sweden Building 05K0010 + 1 October 2004 + Sweden Building 05K0011 + 1 October 2004 + Sweden Building 05K0012 + 1 January 2004 + Sweden Building 05K0013 + 1 October 2004 +

193

Modeling Cold Start in a Polymer-Electrolyte Fuel Cell  

E-Print Network (OSTI)

Boundary conditions used for fuel—cell simulations. 3.12to the Problem of Cold Start 1.1 Polymer—Electrolyte Fuelin Polymer Electrolyte Fuel Cells — II. Parametric Study,”

Balliet, Ryan

2010-01-01T23:59:59.000Z

194

Visualizing Mathematics Modules 1 (Dis)Orientation--Getting Started  

E-Print Network (OSTI)

-Ray, http://www.povray.org · SketchUp, http://www.sketchup.com 4. Mathematical tools for describing three your own computer, install the software listed above. Start playing with SketchUp, GeoGebra, and Open

Lee, Carl

195

INFRARED THERMAL IMAGING OF AUTOMOBILES: Identification of Cold Start Vehicles  

E-Print Network (OSTI)

INFRARED THERMAL IMAGING OF AUTOMOBILES: Identification of Cold Start Vehicles Angela M. Monateri at the infrared image from an automobile. ·The camera was set up with a FEAT 3000 unit to compare emissions vs

Denver, University of

196

St. Gobain Innovation Competition for Start-Ups  

Energy.gov (U.S. Department of Energy (DOE))

The Saint-Gobain NOVA Innovation Competition rewards start-ups offering the most innovative solutions in the field of habitat, sustainable products, advanced materials, renewable energy sources and high-efficiency building solutions.

197

Cold-Start Performance and Emissions Behavior of Alcohol Fuels...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Emissions Behavior of Alcohol Fuels in an SIDI Engine Using Transient Hardware-In-Loop Test Meth Cold-Start Performance and Emissions Behavior of Alcohol Fuels in an SIDI Engine...

198

Science on Saturday starts Jan. 11 | Princeton Plasma Physics...  

NLE Websites -- All DOE Office Websites (Extended Search)

Science on Saturday starts Jan. 11 By Jeanne Jackson DeVoe January 10, 2014 Tweet Widget Google Plus One Share on Facebook Joshua E. G. Peek, a Hubble Fellow at Columbia...

199

Virtual start-up of plants using formal methods  

Science Journals Connector (OSTI)

Control software of a manufacturing system is usually designed separated from the real plant or its simulation. Undesired behavior can occur after transferring software to the controller. At best, errors are recognized when starting-up, but there can ...

Sebastian Preuß;   e; Christian Gerber; Hans-Michael Hanisch

2011-02-01T23:59:59.000Z

200

Radiological Areas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Revision to Clearance Policy Associated with Recycle of Scrap Metals Originating from Revision to Clearance Policy Associated with Recycle of Scrap Metals Originating from Radiological Areas On July 13, 2000, the Secretary of Energy imposed an agency-wide suspension on the unrestricted release of scrap metal originating from radiological areas at Department of Energy (DOE) facilities for the purpose of recycling. The suspension was imposed in response to concerns from the general public and industry groups about the potential effects of radioactivity in or on material released in accordance with requirements established in DOE Order 5400.5, Radiation Protection of the Public and Environment. The suspension was to remain in force until DOE developed and implemented improvements in, and better informed the public about, its release process. In addition, in 2001 the DOE announced its intention to prepare a

Note: This page contains sample records for the topic "area activity start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Detecting Things We Cannot See: Learning the Concepts of Control and Detecting Things We Cannot See: Learning the Concepts of Control and Variable in an Experiment Submitted by Anita Brook-Dupree, 1996 TRAC teacher at Fermilab, Teacher, Alternative Middle Years School, Philadelphia, PA. Particle physicists at Fermilab in Batavia, Illinois are faced with the problem of detecting the presence of sub-atomic particles they cannot see. During my summer as a TRAC teacher at Fermilab, I tried to think of ways to teach middle school students about things we cannot see. I want to thank my nine-year-old daughter Gia for the idea for the following activity. I was lamenting that I could not come up with ideas of how to relate the work of Fermilab scientists to anything that my students would understand. Then I was reminded by my daughter, that when I brought her to school on the

202

Feasibility of Starting a Waterjet Fabrication Plant in Amman, Jordan  

E-Print Network (OSTI)

Engineering Management Field Project Feasibility of Starting a Waterjet Fabrication Plant in Amman, Jordan By Khaled A. Ahmad Spring Semester, 2010 An EMGT Field Project report submitted to the Engineering Management... and library search support. 3 Preface It has been my desire for a long time to investigate what it takes to start a water jet fabrication plant in Amman, Jordan to precisely cut marble, granite, and ceramics. I worked in the manufacturing...

Ahmad, Khaled A.

2010-05-14T23:59:59.000Z

203

Photovoltaic module start-up for the International Space Station  

SciTech Connect

The International Space Station (ISS) US On-Orbit Segment Electric Power System (EPS) uses four photovoltaic modules (PVMs). Each PVM consists of solar array wings (SAW) for converting solar flux to electric power, nickel-hydrogen batteries for electric energy storage, electronic boxes for electric voltage control and power switching, and a thermal control system (TCS) for maintaining selected PVM components within their normal operating temperature ranges. Each PVM consists of two independent power channels, which are started sequentially. The start-up consists of deploying the SAW and photovoltaic radiator (PVR), initialization and check out of all hardware, thermally conditioning batteries, and charging batteries. After start-up, each PVM power channel is able to generate, store, and distribute electric power to ISS loads. Electric power to support start-up of the first PVM is provided by the NSTS via two auxiliary power converter units (APCUs), one per channel. During sunlit periods, the SAW provides power for the battery heaters (for thermal conditioning, as needed) and battery charging. During eclipse periods, the APCU maintains the channel in a standby mode. After start-up is complete, the APCU is disconnected and the PVM operates independently. The process used to start-up the first PVM on the ISS is described in this paper. Procedures used to bring dormant batteries to their normal operating temperature range and then to charge them to 100% state of charge (SOC) are also described. Total time required to complete start-up and the APCU power required during start-up are computed and compared to the requirements.

Hajela, G.P.; Hague, L.M. [Rockwell International, Canoga Park, CA (United States). Rocketdyne Div.

1996-12-31T23:59:59.000Z

204

Decontamination & decommissioning focus area  

SciTech Connect

In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

NONE

1996-08-01T23:59:59.000Z

205

Major Projects with Quick Starts & Jobs Creation Office of Clean Coal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Projects with Quick Starts & Jobs Creation Projects with Quick Starts & Jobs Creation Office of Clean Coal Summary of Projects and Job Creation The following table outlines the near-term possibilities for projects that capture and sequester carbon from coal-based systems. The potential jobs associated with these activities are listed along with likely construction and operation dates. Since the funding is primarily for construction and associated activities, a rough estimate of 30 job years per $1 million dollars expended was used. COAL/CCS PROJECTS & JOBS CREATION GOV'T INDUSTRY TOTAL TOTAL FUNDING FUNDING FUNDING AWARD JOB PROGRAM/PROJECT ($Million) ($Million) ($Million) DATE CONSTRUCT OPERATE YEARS Current CCPI 440 660 1,100 2010 late 2011 2014 33,000 CCPI Plus $1000M for Additional Projects 1000 1000 2,000 2010 late 2011 2014 60,000

206

Geothermal Literature Review At Lightning Dock Geothermal Area...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Schochet, Et Al., 2001) Exploration Activity...

207

Geographic Information System At Lightning Dock Geothermal Area...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Lightning Dock Geothermal Area (Getman, 2014) Exploration Activity...

208

Isotopic Analysis- Gas At Dixie Valley Geothermal Area (Kennedy...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Gas At Dixie Valley Geothermal Area (Kennedy & Soest, 2006) Exploration Activity Details...

209

Observation Wells At Lightning Dock Geothermal Area (Reeder,...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Observation Wells At Lightning Dock Geothermal Area (Reeder, 1957) Exploration Activity Details Location...

210

Apps for Energy Public Voting Starts Today! | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Apps for Energy Public Voting Starts Today! Apps for Energy Public Voting Starts Today! Apps for Energy Public Voting Starts Today! May 17, 2012 - 3:53pm Addthis The Energy Department's digital team tested out Apps for Energy submissions in preparation for public voting. | Photo by Hantz Leger. The Energy Department's digital team tested out Apps for Energy submissions in preparation for public voting. | Photo by Hantz Leger. Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs How can I participate? View the Apps for Energy submissions and vote for your favorite! Back in April, we launched Apps for Energy -- challenging developers to build mobile and web applications that bring Green Button electricity data to life. You answered our call -- sending in innovative, creative and fun

211

Entergy Arkansas - CitySmart Quick Start Energy Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Entergy Arkansas - CitySmart Quick Start Energy Efficiency Program Entergy Arkansas - CitySmart Quick Start Energy Efficiency Program Entergy Arkansas - CitySmart Quick Start Energy Efficiency Program < Back Eligibility Institutional Local Government Schools Tribal Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Program Info State Arkansas Program Type Utility Rebate Program Rebate Amount One Measure: $0.10/kWh saved in first year Two Measures: $0.11/kWh saved in first year Three Measures: $0.12/kWh saved in first year Comprehensive Measures (4 +): $0.14/kWh saved in first year Benchmarking/Master Planning: Free to eligible customers Provider Entergy Arkansas, Inc. The CitySmart Program is an energy efficiency program designed to provide

212

STARTING TODAY: Bloomberg, Daniels, Musk, Pickens, Chu and Energy Leaders  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

STARTING TODAY: Bloomberg, Daniels, Musk, Pickens, Chu and Energy STARTING TODAY: Bloomberg, Daniels, Musk, Pickens, Chu and Energy Leaders Headline 3-Day ARPA-E Summit STARTING TODAY: Bloomberg, Daniels, Musk, Pickens, Chu and Energy Leaders Headline 3-Day ARPA-E Summit February 25, 2013 - 1:59pm Addthis NEWS MEDIA CONTACT (202) 586-4940 Follow @energy on Twitter for live coverage of the ARPA-E Summit. Check the energy.gov blog for daily wrapups and photo galleries. WASHINGTON - Building on the President's call in his State of the Union address to further American energy independence through innovation, key thought leaders from academia, business, and government will come together next week to discuss cutting-edge energy issues at the Advanced Research Projects Agency - Energy's (ARPA-E) fourth annual Energy Innovation

213

Spring Forward and Start Saving Money | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Forward and Start Saving Money Forward and Start Saving Money Spring Forward and Start Saving Money March 8, 2013 - 10:15am Addthis Installing blinds or draperies can help you save on cooling costs during the summer months. | Photo courtesy of ©iStockphoto.com/powershot Installing blinds or draperies can help you save on cooling costs during the summer months. | Photo courtesy of ©iStockphoto.com/powershot Jason Lutterman Communications Specialist, Office of Energy Efficiency and Renewable Energy How can I participate? Follow these spring tips to save money in your home. March has begun, and as millions around the world prepare to "spring forward" one hour for Daylight Saving Time on March 10th, you might consider this as an opportunity to also save some money to use in the

214

Environmental Justice Starts with Education | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Justice Starts with Education Environmental Justice Starts with Education Environmental Justice Starts with Education December 15, 2010 - 4:50pm Addthis Bill Valdez Bill Valdez Principal Deputy Director Today, Obama Administration officials and hundreds of advocates of environmental justice gathered at the White House Summit on Environmental Justice to discuss green jobs and clean energy, and open up a dialogue on these and other issues. We owe these advocates a big thank you for their work to make sure every American has clean water to drink, clean air to breathe, and clean communities to live in. The office of Economic Impact and Diversity is helping coordinate the Department's efforts to promote environmental justice both internally and with communities. Community education is one of the most important parts of what we do at the

215

Saving Energy and Money Starts at Home | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Money Starts at Home Money Starts at Home Saving Energy and Money Starts at Home July 28, 2010 - 2:28pm Addthis Kevin Brosnahan What does this mean for me? The first step to getting your home drastically more energy efficient is by getting a professionally conducted home energy audit. Energysavers.gov has tons of facts on keeping your home energy efficient. Every year, the typical U.S. family spends about $1,900 on home utility bills. Unfortunately, a large portion of that energy is wasted - and subsequently, families are spending their hard-earned dollars on that wasted energy. For many low-income Americans, these energy bills absorb quite a significant amount of family income. The good news is that there are easy, no-cost or low-cost projects that you can do in one day to save energy and money at home. One of the best

216

scriptEnv - loading modules before starting a script  

NLE Websites -- All DOE Office Websites (Extended Search)

scriptEnv - loading modules before starting a script scriptEnv - loading modules before starting a script scriptEnv - loading modules before starting a script In some cases a script needs to load modules before the script can be executed, but it can often be inconvenient or impossible to provide wrapper scripts which load the needed modules. CGI scripts on the gpweb resources or in the NERSC portal environment which require the genepool-specific python/perl/R or databases configuration modules are a strong example of this. NERSC provides the scriptEnv as a custom drop-in replacement for /usr/bin/env. scriptEnv loads your selected modules to allow your scripts to run easily and reproducibly. After constructing your scriptEnv, you only need replace the shebang line of your script to use your custom scriptEnv

217

Testimony Before the Senate Armed Services Committee, New START Treaty  

National Nuclear Security Administration (NNSA)

Before the Senate Armed Services Committee, New START Treaty Before the Senate Armed Services Committee, New START Treaty Hearing | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Congressional Testimony > Testimony Before the Senate Armed Services Committee, ... Congressional Testimony Testimony Before the Senate Armed Services Committee, New START Treaty

218

FY 2000 Deactivation and Decommissioning Focus Area Annual Report  

SciTech Connect

This document describes activities of the Deactivation and Decommissioning Focus Area for the past year.

None

2001-03-01T23:59:59.000Z

219

Operational Area Monitoring Plan  

Office of Legacy Management (LM)

' ' SECTION 11.7B Operational Area Monitoring Plan for the Long -Term H yd rol og ical M o n i to ri ng - Program Off The Nevada Test Site S . C. Black Reynolds Electrical & Engineering, Co. and W. G. Phillips, G. G. Martin, D. J. Chaloud, C. A. Fontana, and 0. G. Easterly Environmental Monitoring Systems Laboratory U. S. Environmental Protection Agency October 23, 1991 FOREWORD This is one of a series of Operational Area Monitoring Plans that comprise the overall Environmental Monitoring Plan for the DOE Field Office, Nevada (DOEINV) nuclear and non- nuclear testing activities associated with the Nevada Test Site (NTS). These Operational Area Monitoring Plans are prepared by various DOE support contractors, NTS user organizations, and federal or state agencies supporting DOE NTS operations. These plans and the parent

220

Impact of IrRu Oxygen Evolution Reaction Catalysts on Pt Nanostructured Thin Films under Start-Up/Shutdown Cycling  

SciTech Connect

Electron microscopy and X-ray photoelectron spectroscopy (XPS) methods have been utilized to study the role of oxygen evolution reaction (OER) catalysts in mitigating degradation arising from start-up/shutdown events. Pt nanostructured thin films (NSTF) were coated with a Ru0.1Ir0.9 OER catalyst at loadings ranging from 1 to 10 g/cm2 and submitted to 5,000 potential cycles within a membrane electrode assembly. Analysis of the as-deposited catalyst showed that Ir and Ru coating is primarily metallic, and further evidence is provided to support the previously reported interaction between Ru and the perylene-red support. Aberration-corrected scanning transmission electron microscopy and energy dispersive X-ray spectroscopy were used to observe the impact of the OER catalysts on Pt dissolution and migration through the membrane. Elemental mapping showed a high percentage of the Ir catalyst was maintained on the NSTF whisker surfaces following testing. The presence of the OER catalysts greatly reduced the smoothing of the Pt NSTF whiskers, which has been correlated with Pt dissolution and losses in electrochemically active surface area. The dissolution of both Ir and Pt led to the formation of IrPt nanoparticle clusters in the membrane close to the cathode, as well as the formation of a Pt band deeper in the membrane.

Cullen, David A [ORNL; More, Karren Leslie [ORNL; Atanasoska, Liliana [3M, Industrial Mineral Products Division; Atanasoski, Radoslav [3M, Industrial Mineral Products Division

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "area activity start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

MATLAB Tutorial Getting Started with Calculations, Graphing and Programming  

E-Print Network (OSTI)

MATLAB Tutorial Getting Started with Calculations, Graphing and Programming Nicholas R. Kirchner UI 2 Calculations with MATLAB Standard Calculations and Variables Matrices and Vectors 3 Graphing NRK;Matrices and Vectors, Definitions MATLAB is short for MATrix LABoratory. It was built for high-speed matrix

Weinberger, Hans

222

Search Technology Internet Start-Ups Business Computing Companies  

E-Print Network (OSTI)

#12;Search Technology Internet Start-Ups Business Computing Companies Inside Technology Bits Blog engineer at Google, uses statistical analysis of data to help improve the company's search engine » Cellphones, Cameras, Computers and more Personal Tech » Advertise on NYTimes.com Search All NYTimes

Oyet, Alwell

223

Quick Start Guide: Completing Your CHP September 2013  

E-Print Network (OSTI)

Quick Start Guide: Completing Your CHP September 2013 This Laboratory Safety Manual (LSM) is your of what the Washington Department of Labor and Industries calls a "Chemical Hygiene Plan (CHP)." The CHP is required for all laboratories that use hazardous chemicals. EH&S developed much of your CHP for you

Wilcock, William

224

A quick start guide designed to help you successfully  

E-Print Network (OSTI)

will be locked out of your myProvidence account for a period of time. 2. Call the myProvidence Help Desk at 8772012 A quick start guide designed to help you successfully complete steps in the Health Engagement conversations (PEBB calls these "e-lessons"). · Tools for meeting your personal health goals. Before you begin

Oregon, University of

225

MATLAB Tutorial Getting Started with Calculations, Graphing and Programming  

E-Print Network (OSTI)

MATLAB Tutorial Getting Started with Calculations, Graphing and Programming Nicholas R. Kirchner University of Minnesota Thursday, August 30, 2012 #12;Outline 1 MATLAB installation NRK (University of Minnesota) MATLAB 2012.08.30 2 / 28 #12;Outline 1 MATLAB installation 2 The MATLAB UI NRK (University

Weinberger, Hans

226

Getting Started with Plain TEX D. R. Wilkins  

E-Print Network (OSTI)

Getting Started with Plain TEX D. R. Wilkins April 18, 1994 Contents 1 Introduction to Plain TEX 2 1.1 What is Plain TEX? . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 A Typical Plain TEX . . . . . . . . . . . . . . . . 4 2 Producing Simple Documents using Plain TEX 6 2.1 Producing Ordinary Text using Plain TEX

227

1Center for Wireless Technology Eindhoven Where innovation starts  

E-Print Network (OSTI)

1Center for Wireless Technology Eindhoven Where innovation starts Department of Electrical Engineering Center for Wireless Technology Eindhoven #12;2 3Center for Wireless Technology Eindhoven Wireless communication Wireless communication is an integral and increasingly important aspect of our daily lives

Franssen, Michael

228

Fall 2011 CSC Help Desk Information Starting August 29, 2011  

E-Print Network (OSTI)

Fall 2011 CSC Help Desk Information Starting August 29, 2011 Teaching assistants maintain a help. These assistants focus on programming and basic system issues. Each of the assistants can help with Java or C programming and may be able to help with almost anything dealing with undergraduate courses. Help

Papalaskari, Mary-Angela

229

Technology Services @ Pitt 2014 2015 PittStart  

E-Print Network (OSTI)

Technology Services @ Pitt 2014 ­ 2015 PittStart #12;Technology Services @ Pitt · We provide the technology tools and services that make your life at Pitt easier! Visit us at technology.pitt.edu Presentation available at technology.pitt.edu\\pittstart #12;Technology Services @ Pitt facebook

Jiang, Huiqiang

230

Blackfoot Reservoir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Blackfoot Reservoir Geothermal Area Blackfoot Reservoir Geothermal Area (Redirected from Blackfoot Reservoir Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Blackfoot Reservoir Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Idaho Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

231

Wister Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Wister Geothermal Area Wister Geothermal Area (Redirected from Wister Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Wister Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

232

Teels Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Teels Marsh Geothermal Area Teels Marsh Geothermal Area (Redirected from Teels Marsh Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Teels Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

233

Truckhaven Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Truckhaven Geothermal Area Truckhaven Geothermal Area (Redirected from Truckhaven Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Truckhaven Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

234

Mokapu Penninsula Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mokapu Penninsula Geothermal Area Mokapu Penninsula Geothermal Area (Redirected from Mokapu Penninsula Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mokapu Penninsula Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

235

Kilauea Summit Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kilauea Summit Geothermal Area Kilauea Summit Geothermal Area (Redirected from Kilauea Summit Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kilauea Summit Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (12) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

236

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area (Redirected from Flint Geothermal Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

237

Western Pond Turtle Head-starting and Reintroduction; 2003-2004 Annual Report.  

SciTech Connect

This report covers the results of the western pond turtle head-starting and reintroduction project for the period of October 2003-September 2004. Wild hatchling western pond turtles from the Columbia River Gorge were reared at the Woodland Park and Oregon Zoos in 2003 and 2004 as part of the recovery effort for this Washington State endangered species. The objective of the program is to reduce losses to introduced predators like bullfrogs and largemouth bass by raising the hatchlings to a size where they are too large to be eaten by most of these predators. Sixty-nine turtles were over-wintered at the Woodland Park Zoo and 69 at the Oregon Zoo. Of these, 136 head-started juvenile turtles were released at three sites in the Columbia Gorge in 2004. Two were held back to attain more growth in captivity. Thirty-four were released at the Klickitat ponds, 19 at the Klickitat lake, 21 at the Skamania site, and 62 at Pierce National Wildlife Refuge (NWR). This brought the total number of head-start turtles released since 1991 to 246 for the Klickitat ponds, 114 for the Klickitat lake, 167 for the Skamania pond complex, and 250 at Pierce NWR. In 2004, 32 females from the two Columbia Gorge populations were equipped with transmitters and monitored for nesting activity. Twenty-one of the females nested and produced 85 hatchlings. The hatchlings were collected in September and October and transported to the Woodland Park and Oregon zoos for rearing in the head-start program. Data collection for a four-year telemetry study of survival and habitat use by juvenile western pond turtles at Pierce NWR concluded in 2004. Radio transmitters on study animals were replaced as needed until all replacements were in service; afterward, the turtles were monitored until their transmitters failed. The corps of study turtles ranged from 39 in August 2003 to 2 turtles at the end of August 2004. These turtles showed the same seasonal pattern of movements between summer water and upland winter habitats observed in previous years. During the 2004 field season trapping effort, 345 western pond turtles were captured in the Columbia Gorge, including 297 previously head-started turtles. These recaptures, together with confirmed nesting by head-start females and visual resightings, indicate the program is succeeding in boosting juvenile recruitment to increase the populations. Records were also collected on 224 individual painted turtles captured in 2004 during trapping efforts at Pierce NWR, to gather baseline information on this native population. Bonneville Power Administration (BPA) funded approximately 60% of program activities in the Columbia River Gorge from October 2003 through September 2004.

Van Leuven, Susan; Allen, Harriet; Slavin, Kate (Washington Department of Fish and Wildlife, Wildlife Management Program, Olympia, WA)

2004-09-01T23:59:59.000Z

238

Western Pond Turtle Head-starting and Reintroduction; 2004-2005 Annual Report.  

SciTech Connect

This report covers the results of the western pond turtle head-starting and reintroduction project for the period of October 2004-September 2005. Wild hatchling western pond turtles from the Columbia River Gorge were reared at the Woodland Park and Oregon Zoos in 2004 and 2005 as part of the recovery effort for this Washington State endangered species. The objective of the program is to reduce losses to introduced predators like bullfrogs and largemouth bass by raising the hatchlings to a size where they are too large to be eaten by most of these predators. Thirty-five turtles were placed at the Woodland Park Zoo and 53 at the Oregon Zoo. Of these, 77 head-started juvenile turtles were released at three sites in the Columbia Gorge in 2005. Four were held back to attain more growth in captivity. Eleven were released at the Klickitat ponds, 22 at the Klickitat lake, 39 at the Skamania site, and 5 at Pierce National Wildlife Refuge (NWR). This brought the total number of head-start turtles released since 1991 to 257 for the Klickitat ponds, 136 for the Klickitat lake, 206 for the Skamania pond complex, and 255 at Pierce NWR. In 2005, 34 females from the two Columbia Gorge populations were equipped with transmitters and monitored for nesting activity. Twenty-four nests were located and protected; these produced 90 hatchlings. The hatchlings were collected in September and transported to the Oregon and Woodland Park zoos for rearing in the head-start program. During the 2005 field season trapping effort, 486 western pond turtles were captured in the Columbia Gorge, including 430 previously head-started turtles. These recaptures, together with confirmed nesting by head-start females and visual resightings, indicate the program is succeeding in boosting juvenile recruitment to increase the populations. Records were also collected on 216 individual painted turtles captured in 2005 during trapping efforts at Pierce NWR, to gather baseline information on this native population. Bonneville Power Administration (BPA) funded approximately 75% of program activities in the Columbia River Gorge from October 2004 through September 2005.

Van Leuven, Susan; Allen, Harriet; Slavin, Kate (Washington Department of Fish and Wildlife, Wildlife Management Program, Olympia, WA)

2005-09-01T23:59:59.000Z

239

Southeast Idaho Area Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Area Attractions and Events Area Geography Area History Area Links Driving Directions Idaho Falls Attractions and Events INL History INL Today Research Park Sagebrush Steppe...

240

START-GAP3/DLC3 is a GAP for RhoA and Cdc42 and is localized in focal adhesions regulating cell morphology  

SciTech Connect

In the human genome there are three genes encoding RhoGAPs that contain the START (steroidogenic acute regulatory protein (StAR)-related lipid transfer)-domain. START-GAP3/DLC3 is a tumor suppressor gene similar to two other human START-GAPs known as DLC1 or DLC2. Although expression of START-GAP3/DLC3 inhibits the proliferation of cancer cells, its molecular function is not well understood. In this study we carried out biochemical characterization of START-GAP3/DLC3, and explored the effects of its expression on cell morphology and intracellular localization. We found that START-GAP3/DLC3 serves as a stimulator of PLC{delta}1 and as a GAP for both RhoA and Cdc42 in vitro. Moreover, we found that the GAP activity is responsible for morphological changes. The intracellular localization of endogenous START-GAP3/DLC3 was explored by immunocytochemistry and was revealed in focal adhesions. These results indicate that START-GAP3/DLC3 has characteristics similar to other START-GAPs and the START-GAP family seems to share common characteristics.

Kawai, Katsuhisa; Kiyota, Minoru; Seike, Junichi; Deki, Yuko [Graduate School of Life Science, University of Hyogo, Harima Science Garden City, Hyogo-ken 678-1297 (Japan); Yagisawa, Hitoshi [Graduate School of Life Science, University of Hyogo, Harima Science Garden City, Hyogo-ken 678-1297 (Japan)], E-mail: yagisawa@sci.u-hyogo.ac.jp

2007-12-28T23:59:59.000Z

Note: This page contains sample records for the topic "area activity start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Context at the start The idea about a Centre for the study of Regulated Industries started in 1989 with the  

E-Print Network (OSTI)

which are required in the RPI-x system. The Central Electricity Generating Board (CEGB) was split up monopoly' parts (ie, competitive electricity generation, natural monopoly transmission and distribution, followed by the privatisation of the restructured electricity industry, which started in 1990

Burton, Geoffrey R.

242

In-Situ Radiological Surveys to Address Nuclear Criticality Safety Requirements During Remediation Activities at the Shallow Land Disposal Area, Armstrong County, Pennsylvania - 12268  

SciTech Connect

Cabrera Services Inc. (CABRERA) is the remedial contractor for the Shallow Land Disposal Area (SLDA) Site in Armstrong County Pennsylvania, a United States (US) Army Corps of Engineers - Buffalo District (USACE) contract. The remediation is being completed under the USACE's Formerly Utilized Sites Remedial Action Program (FUSRAP) which was established to identify, investigate, and clean up or control sites previously used by the Atomic Energy Commission (AEC) and its predecessor, the Manhattan Engineer District (MED). As part of the management of the FUSRAP, the USACE is overseeing investigation and remediation of radiological contamination at the SLDA Site in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), 42 US Code (USC), Section 9601 et. seq, as amended and, the National Oil and Hazardous Substance Pollution Contingency Plan (NCP), Title 40 of the Code of Federal Regulations (CFR) Section 300.430(f) (2). The objective of this project is to clean up radioactive waste at SLDA. The radioactive waste contains special nuclear material (SNM), primarily U-235, in 10 burial trenches, Cabrera duties include processing, packaging and transporting the waste to an offsite disposal facility in accordance with the selected remedial alternative as defined in the Final Record of Decision (USACE, 2007). Of particular importance during the remediation is the need to address nuclear criticality safety (NCS) controls for the safe exhumation and management of waste containing fissile materials. The partnership between Cabrera Services, Inc. and Measutronics Corporation led to the development of a valuable survey tool and operating procedure that are essential components of the SLDA Criticality Safety and Material Control and Accountability programs. Using proven existing technologies in the design and manufacture of the Mobile Survey Cart, the continued deployment of the Cart will allow for an efficient and reliable methodology to allow for the safe exhumation of the Special Nuclear Material in existing SLDA trenches. (authors)

Norris, Phillip; Mihalo, Mark; Eberlin, John; Lambert, Mike [Cabrera Services (United States); Matthews, Brian [Nuclear Safety Associates (United States)

2012-07-01T23:59:59.000Z

243

About Armstrong Coal Company In just a few short years, Armstrong Coal has grown from a start-up  

E-Print Network (OSTI)

About Armstrong Coal Company In just a few short years, Armstrong Coal has grown from a start approximately 370 million tons of coal reserves, Armstrong operates six active mines in Western Kentucky, along the U.S. Midwest and Southeast. Armstrong is fully committed to meeting strict environmental standards

Fisher, Kathleen

244

New Jersey SmartStart Buildings - New Construction and Retrofits |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » New Jersey SmartStart Buildings - New Construction and Retrofits New Jersey SmartStart Buildings - New Construction and Retrofits < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Nonprofit Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Manufacturing Other Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Maximum Rebate General: incentives may be limited to $500,000 per utility account per year. Custom Measures: limited to lesser of $0.16/kWh or $1.60/therm saved annually; 50% of total costs; or buydown to a 1-year payback period Program Info Funding Source New Jersey Societal Benefits Charge (public benefits fund)

245

Green Start-Ups: Opportunities, Technology, and Financing  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Start-Ups: Opportunities, Technology, and Financing Green Start-Ups: Opportunities, Technology, and Financing Speaker(s): Stephen Lin Date: December 19, 2008 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Dale Sartor Please join us for a brown bag lunch to hear about a new green technology and new ways of doing business in Asia, the US and in between. A foreign-invented power efficiency technology will be described and demonstrated. Entrepreneurial plans for its deployment in the US will be described including a pilot with the San Francisco Giants. Besides giving the Giants 5% savings with no upfront cost, the entrepreneurial team hopes to develop a proof-of-concept test case where Securitized Energy Savings (SESs) are created for green and social investors. A brief introduction on carbon credits and Voluntary Emission Reduction credits (VERs) will be

246

Dynamic optimization of a plate reactor start-up  

E-Print Network (OSTI)

Dynamic optimization of a plate reactor start-up Staffan Haugwitz, Per Hagander and John Bagterp Jørgensen Lund-Lyngby-�lborg-dagen 061101 Staffan Haugwitz et al Control of a plate reactor #12;Process configurations : 2 inj. / 1 cool zone T T T T T T T T T T Reactor outletReactant A Reactant B Cooling water uB1 u

247

START Site Visit Examines Viability of Tribal Community Solar Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

START Site Visit Examines Viability of Tribal Community Solar START Site Visit Examines Viability of Tribal Community Solar Project START Site Visit Examines Viability of Tribal Community Solar Project August 21, 2013 - 12:50pm Addthis From left to right: James Jensen, Tom Johnson, Jody Rosier, and Rebecca Kauffman of Southern Ute Alternative Energy, and Otto VanGeet and Alex Dane of NREL, tour a potential solar array site on Southern Ute tribal land in Ignacio, CO. Photo by Dennis Schroeder, NREL From left to right: James Jensen, Tom Johnson, Jody Rosier, and Rebecca Kauffman of Southern Ute Alternative Energy, and Otto VanGeet and Alex Dane of NREL, tour a potential solar array site on Southern Ute tribal land in Ignacio, CO. Photo by Dennis Schroeder, NREL NREL's Otto VanGeet (right) shows James Jensen of Southern Ute Alternative Energy how to use a SunEye tool to check solar availability of the site. Photo by Dennis Schroeder, NREL

248

Property:Project Start Date | Open Energy Information  

Open Energy Info (EERE)

Property Name Project Start Date Property Name Project Start Date Property Type String Pages using the property "Project Start Date" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + 1/1/2012 + MHK Projects/ADM 3 + 1/1/2010 + MHK Projects/ADM 4 + 1/1/2010 + MHK Projects/ADM 5 + 1/11/2009 + MHK Projects/AW Energy EMEC + 1/1/2004 + MHK Projects/Admirality Inlet Tidal Energy Project + 1/1/2006 + MHK Projects/Agucadoura + 1/1/2008 + MHK Projects/Alaska 1 + 1/1/2007 + MHK Projects/Alaska 13 + 1/1/2008 + MHK Projects/Alaska 17 + 1/1/2007 + MHK Projects/Alaska 18 + 1/1/2008 + MHK Projects/Alaska 24 + 1/1/2007 + MHK Projects/Alaska 25 + 1/1/2007 + MHK Projects/Alaska 28 + 1/1/2007 + MHK Projects/Alaska 31 + 1/1/2007 + MHK Projects/Alaska 33 + 1/1/2007 +

249

White Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

White Mountains Geothermal Area White Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: White Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: New Hampshire Exploration Region: Other GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

250

Truckhaven Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Truckhaven Geothermal Area Truckhaven Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Truckhaven Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

251

Honokowai Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Honokowai Geothermal Area Honokowai Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Honokowai Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

252

Blackfoot Reservoir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Blackfoot Reservoir Geothermal Area Blackfoot Reservoir Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Blackfoot Reservoir Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Idaho Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

253

Wister Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Wister Geothermal Area Wister Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Wister Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

254

Lualualei Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Lualualei Valley Geothermal Area (Redirected from Lualualei Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lualualei Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content

255

Western Pond Turtle Head-starting and Reintroduction, 2005-2006 Annual Report.  

SciTech Connect

This report covers the results of the western pond turtle head-starting and reintroduction project for the period of October 2005-September 2006. Wild hatchling western pond turtles from the Columbia River Gorge were reared at the Woodland Park and Oregon zoos in 2005 and 2006 as part of the recovery effort for this Washington State endangered species. The objective of the program is to reduce losses to introduced predators like bullfrogs and largemouth bass by raising the hatchlings to a size where they are too large to be eaten by most of these predators. Twenty-six turtles were placed at the Woodland Park Zoo and 62 at the Oregon Zoo in fall 2005. These turtles joined two that were held back from release in summer 2005 due to their small size. All 90 juvenile turtles were released at three sites in the Columbia Gorge in 2006. Twenty-eight juvenile turtles were released at the Klickitat ponds, 22 at the Klickitat lake, 21 at the Skamania site, and 19 at Pierce National Wildlife Refuge (NWR). This brought the total number of head-start turtles released since 1991 to 944; 285 for the Klickitat ponds, 158 for the Klickitat lake, 227 for the Skamania pond complex, and 274 at Pierce NWR. In 2006, 20 females from the Klickitat population were equipped with transmitters and monitored for nesting activity. Fifteen nests were located and protected; these produced 55 hatchlings. The hatchlings were collected in September and transported to the Oregon and Woodland Park zoos for rearing in the head-start program. One wild hatchling captured in spring 2006 was placed in the head-start program to attain more growth in captivity. During the 2006 field season trapping effort, 414 western pond turtles were captured in the Columbia Gorge, including 374 previously head-started turtles. These recaptures, together with confirmed nesting by head-start females and visual resightings, indicate the program is succeeding in boosting juvenile recruitment to increase the populations. Records were also collected on 179 individual painted turtles captured in 2006 during trapping efforts at Pierce NWR, to gather baseline information on this native population.

Van Leuven, Susan; Allen, Harriet; Slavens, Kate (Washington Department of Fish and Wildlife, Wildlife Management Program, Olympia, WA)

2006-11-01T23:59:59.000Z

256

borrow_area.cdr  

Office of Legacy Management (LM)

information information at Weldon Spring, Missouri. This site is managed by the U.S. Department of Energy Office of Legacy Management. developed by the former WSSRAP Community Relations Department to provide comprehensive descriptions of key activities that took place throughout the cleanup process The Missouri Department of Conservation (MDC) approved a plan on June 9, 1995, allowing the U.S. Department of Energy (DOE) at the Weldon Spring Site Remedial Action Project (WSSRAP) to excavate nearly 2 million cubic yards of clay material from land in the Weldon Spring Conservation Area. Clay soil from a borrow area was used to construct the permanent disposal facility at the Weldon Spring site. Clay soil was chosen to construct the disposal facility because it has low permeability when

257

Hyperspectral Imaging At Fish Lake Valley Area (Littlefield ...  

Open Energy Info (EERE)

Fish Lake Valley Area (Littlefield & Calvin, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Fish Lake Valley Area...

258

Pressure Temperature Log At Fish Lake Valley Area (DOE GTP) ...  

Open Energy Info (EERE)

Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Pressure Temperature Log At Fish Lake Valley Area (DOE GTP)...

259

Geothermometry At Fish Lake Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Fish Lake Valley Area (DOE GTP) Exploration...

260

Thermochronometry At Fish Lake Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermochronometry At Fish Lake Valley Area (DOE GTP) Exploration...

Note: This page contains sample records for the topic "area activity start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Geographic Information System At Dixie Valley Geothermal Area...  

Open Energy Info (EERE)

Geographic Information System At Dixie Valley Geothermal Area (Iovenitti, Et Al., 2012) Exploration Activity Details Location Dixie Valley Geothermal Area Exploration Technique...

262

Core Holes At Steamboat Springs Area (Warpinski, Et Al., 2004...  

Open Energy Info (EERE)

Steamboat Springs Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Holes At Steamboat Springs Area (Warpinski,...

263

Modeling-Computer Simulations At Chocolate Mountains Area (Alm...  

Open Energy Info (EERE)

Area (Alm, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Chocolate Mountains Area (Alm, Et Al.,...

264

Geothermometry At Gabbs Alkali Flat Area (Kratt, Et Al., 2008...  

Open Energy Info (EERE)

Alkali Flat Area (Kratt, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Gabbs Alkali Flat Area (Kratt, Et Al.,...

265

Multispectral Imaging At Salton Sea Area (Reath, Et Al., 2010...  

Open Energy Info (EERE)

Salton Sea Area (Reath, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Multispectral Imaging At Salton Sea Area (Reath, Et Al.,...

266

Ground Gravity Survey At Under Steamboat Springs Area (Warpinski...  

Open Energy Info (EERE)

Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Under Steamboat Springs Area (Warpinski,...

267

Audio-Magnetotellurics At Chena Geothermal Area (Holdmann, Et...  

Open Energy Info (EERE)

Chena Geothermal Area (Holdmann, Et Al., 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Audio-Magnetotellurics At Chena Geothermal Area...

268

Slim Holes At Blue Mountain Area (Warpinski, Et Al., 2002) |...  

Open Energy Info (EERE)

Blue Mountain Area (Warpinski, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Blue Mountain Area (Warpinski, Et Al.,...

269

Thermal Gradient Holes At Obsidian Cliff Area (Hulen, Et Al....  

Open Energy Info (EERE)

Obsidian Cliff Area (Hulen, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Obsidian Cliff Area (Hulen,...

270

Analytical Modeling At Valles Caldera - Redondo Geothermal Area...  

Open Energy Info (EERE)

Analytical Modeling At Valles Caldera - Redondo Geothermal Area (White, 1986) Exploration Activity Details Location Valles Caldera - Redondo Geothermal Area Exploration Technique...

271

Geothermal Literature Review At White Mountains Area (Goff &...  

Open Energy Info (EERE)

White Mountains Area (Goff & Decker, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At White Mountains Area...

272

Gas Sampling At Wister Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Wister Area (DOE GTP) (Redirected from Water-Gas Samples At Wister Area (DOE GTP)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Sampling...

273

Surface Gas Sampling At Valles Caldera - Sulphur Springs Area...  

Open Energy Info (EERE)

Surface Gas Sampling At Valles Caldera - Sulphur Springs Area (Goff & Janik, 2002) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique...

274

Soil Gas Sampling At Kilauea East Rift Geothermal Area (Cox,...  

Open Energy Info (EERE)

Soil Gas Sampling At Kilauea East Rift Geothermal Area (Cox, 1980) Exploration Activity Details Location Kilauea East Rift Geothermal Area Exploration Technique Soil Gas Sampling...

275

Geothermal Literature Review At Lightning Dock Geothermal Area...  

Open Energy Info (EERE)

Geothermal Literature Review At Lightning Dock Geothermal Area (Smith, 1978) Exploration Activity Details Location Lightning Dock Geothermal Area Exploration Technique Geothermal...

276

Development Wells At Glass Buttes Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Development Wells At Glass Buttes Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Glass Buttes Area (DOE GTP)...

277

Cuttings Analysis At Glass Buttes Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Cuttings Analysis At Glass Buttes Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Glass Buttes Area (DOE GTP)...

278

Pressure Temperature Log At Fort Bliss Area (DOE GTP) | Open...  

Open Energy Info (EERE)

Fort Bliss Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Pressure Temperature Log At Fort Bliss Area (DOE GTP) Exploration...

279

Cold start characteristics of ethanol as an automobile fuel  

DOE Patents (OSTI)

An alcohol fuel burner and decomposer in which one stream of fuel is preheated by passing it through an electrically heated conduit to vaporize the fuel, the fuel vapor is mixed with air, the air-fuel mixture is ignited and combusted, and the combustion gases are passed in heat exchange relationship with a conduit carrying a stream of fuel to decompose the fuel forming a fuel stream containing hydrogen gas for starting internal combustion engines, the mass flow of the combustion gas being increased as it flows in heat exchange relationship with the fuel carrying conduit, is disclosed.

Greiner, Leonard (2750-C Segerstrom, Santa Ana, CA 92704)

1982-01-01T23:59:59.000Z

280

Site Monitoring Area Maps  

NLE Websites -- All DOE Office Websites (Extended Search)

to the Site Monitoring Area (SMA) The Site Monitoring Area sampler Control measures (best management practices) installed at the Site Monitoring Area Structures such as...

Note: This page contains sample records for the topic "area activity start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Long Pulse EBW Start-up Experiments in MAST  

E-Print Network (OSTI)

The non-solenoid start-up technique reported here relies on a double mode conversion for electron Bernstein wave (EBW) excitation. It consists of the mode conversion of the ordinary mode, entering the plasma from the low field side of the tokamak, into the extraordinary (X) mode at a mirror-polarizer located at the high field side. The X mode propagates back to the plasma, passes through electron cyclotron resonance and experiences a subsequent X to EBW mode conversion near the upper hybrid resonance. Finally the excited EBW mode is totally absorbed at the Doppler shifted electron cyclotron resonance. The absorption of EBW remains high even in cold rarefied plasmas. Furthermore, EBW can generate significant plasma current giving the prospect of a fully solenoid-free plasma start-up. First experiments using this scheme were carried out on MAST [V. Shevchenko et al, Nuclear Fusion 50, 022004 (2010)]. Plasma currents up to 33 kA have been achieved using 28 GHz 100kW 90ms RF pulses. Recently experimental results ...

Shevchenko, V F; Caughman, J B; Diem, S; Mailloux, J; Brien, M R O; Peng, M; Saveliev, A N; Takase, Y; Tanaka, H; Taylor, G

2015-01-01T23:59:59.000Z

282

Obsidian Cliff Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Obsidian Cliff Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Obsidian Cliff Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

283

Salt Wells Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Salt Wells Geothermal Area Salt Wells Geothermal Area (Redirected from Salt Wells Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Salt Wells Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 9.1 Regional Setting 9.2 Stratigraphy 9.3 Structure 10 Hydrothermal System 11 Heat Source 12 Geofluid Geochemistry 13 NEPA-Related Analyses (9) 14 Exploration Activities (28) 15 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

284

Chena Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Chena Geothermal Area Chena Geothermal Area (Redirected from Chena Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Chena Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Technical Problems and Solutions 8 Geology of the Area 9 Heat Source 10 Geofluid Geochemistry 11 NEPA-Related Analyses (1) 12 Exploration Activities (9) 13 References Map: Chena Geothermal Area Chena Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Fairbanks, Alaska Exploration Region: Alaska Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

285

Appendix H Colorado Statewide Forest Resource Assessment Urban Influence Areas  

E-Print Network (OSTI)

1 Appendix H ­ Colorado Statewide Forest Resource Assessment Urban Influence Areas Overview of the Urban and Community Forestry Layer 1. Start with Night Lights data and clip to Colorado Boundary code = 11020). a. Create a new shapefile called UrbanInfluenceAreas_withCapacity.shp. b. Add fields

286

Cyclic Voltammetry Study of Ice Formation in the PEFC Catalyst Layer during Cold Start  

E-Print Network (OSTI)

in the cathode catalyst layer CL . The presence of ice may also result in damage to the structures and materials degradation and a decrease in the electrochemically active area ECA of the cathode CL mea- sured at room developed to investigate the effect of ice formation in the cathode catalyst layer CL on electrochemically

287

Microsoft Word - START Application_eaform_FINAL.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technical Technical A ssistance O pportunity f or T ribes: Strategic T echnical A ssistance R esponse T eam ( START) P rogram f or t he Development o f R enewable E nergy P rojects About t he O ffice The Office of Indian Energy Policy and Programs (IE) is charged by Congress to direct, foster, coordinate, and implement energy planning, education, management, and programs that assist Tribes with energy development, capacity building, energy infrastructure, energy costs, and electrification of Indian lands and homes. IE works within the U.S. Department of Energy (DOE), across government agencies, and with Indian Tribes and organizations to promote Indian energy policies and initiatives. IE performs these functions within the scope of DOE's mission and consistently with the federal government's trust responsibility, tribal self- determination policy, and government-to-government relationship with Indian Tribes.

288

Microsoft Word - START-Alaska Application_FINAL.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technical Technical A ssistance O pportunity f or A laska N ative E ntities: Strategic T echnical A ssistance R esponse T eam ( START) I nitiative f or A laska N ative Tribal G overnment C ommunity E nergy P lanning About t he O ffice The Office of Indian Energy Policy and Programs (IE) is charged by Congress to direct, foster, coordinate, and implement energy planning and deployment, education, management, and programs that assist Tribes with energy development, capacity building, energy infrastructure, energy costs, and electrification of Indian lands and homes. IE works within the U.S. Department of Energy (DOE), across government agencies, and with Indian Tribes and organizations to promote Indian energy policies and initiatives. IE performs these functions within the scope of DOE's mission and consistently with the federal government's trust responsibility, tribal self-

289

Nuclear Safety Information Dashboard QuickStart Guide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Safety Information Dashboard Nuclear Safety Information Dashboard QuickStart Guide September 2012 Office of Analysis (HS-24) Office of Environmental Protection, Sustainability Support and Corporate Safety Analysis Office of Health, Safety and Security (HSS) Purpose of Nuclear Safety Information (NSI) Dashboard * The NSI Dashboard provides a new user interface to the Occurrence Reporting and Processing System (ORPS) to easily identify, organize, and analyze nuclear safety-related events reported into ORPS. * ORPS reporting criteria associated with events at nuclear facilities have pre-assigned weighting factors according to their relative importance and are placed into groups. * This information can be evaluated to identify trends and, using insights from current events and nature of operations, enable

290

NREL: News - Helping Cleantech Start-ups Understand Social Media  

NLE Websites -- All DOE Office Websites (Extended Search)

713 713 Helping Cleantech Start-ups Understand Social Media May 13, 2013 The Colorado Center for Renewable Energy Economic Development (CREED) at the Energy Department's National Renewable Energy Laboratory (NREL) in collaboration with the Colorado Cleantech Industry Association (CCIA) invites cleantech entrepreneurs to attend the next event in its Entrepreneur Series. The May 15 class, "Social Media and Strategic Messaging," will help cleantech entrepreneurs learn how to craft language about their companies that can be used in pitches and news releases, and on websites. CREED's Entrepreneur Series provides support for companies trying to get off the ground. The Entrepreneur Series builds a community among cleantech participants so they can draw on one another for expertise, support and

291

Property:ASHRAE 169 Start Date | Open Energy Information  

Open Energy Info (EERE)

This is a property of type Date. This is a property of type Date. Pages using the property "ASHRAE 169 Start Date" Showing 25 pages using this property. (previous 25) (next 25) A Abbeville County, South Carolina ASHRAE 169-2006 Climate Zone + 1 January 2006 + Acadia Parish, Louisiana ASHRAE 169-2006 Climate Zone + 1 January 2006 + Accomack County, Virginia ASHRAE 169-2006 Climate Zone + 1 January 2006 + Ada County, Idaho ASHRAE 169-2006 Climate Zone + 1 January 2006 + Adair County, Iowa ASHRAE 169-2006 Climate Zone + 1 January 2006 + Adair County, Kentucky ASHRAE 169-2006 Climate Zone + 1 January 2006 + Adair County, Missouri ASHRAE 169-2006 Climate Zone + 1 January 2006 + Adair County, Oklahoma ASHRAE 169-2006 Climate Zone + 1 January 2006 + Adams County, Colorado ASHRAE 169-2006 Climate Zone + 1 January 2006 +

292

Verification of Readiness to Start Up or Restart Nuclear Facilities  

Directives, Delegations, and Requirements

The order establishes requirements for verifying readiness for startup of new Hazard Category 1, 2, and 3 nuclear facilities, activities, and operations, and for restart of existing Hazard Category 1, 2, and 3 nuclear facilities, activities, and operations that have been shut down. Cancels DOE O 425.1C. Adm Chg 1, dated 4-2-13.

2010-04-16T23:59:59.000Z

293

Western Pond Turtle Head-starting and Reintroduction; 2002-2003 Progress Report.  

SciTech Connect

This report covers the results of the western pond turtle head-starting and reintroduction project for the period of June 2002-September 2003. Wild hatchling western pond turtles from the Columbia River Gorge were reared at the Woodland Park and Oregon Zoos in 2002 and 2003 as part of the recovery effort for this Washington State endangered species. The objective of the program is to reduce losses to introduced predators like bullfrogs and largemouth bass by raising the hatchlings to a size where they are too large to be eaten by most of these predators. In 2002, 27 females from the two Columbia Gorge populations were equipped with transmitters and monitored until they nested. Four more females carrying old transmitters were also monitored; only one of these transmitters lasted through the nesting season. In 2003, 30 females were monitored. Twenty-three of the females monitored in 2002 nested and produced 84 hatchlings. The hatchlings were collected in fall 2002 and reared in captivity at the Woodland Park and Oregon zoos in the head-start program. Twenty-seven of the turtles monitored in 2003 nested. Six of the turtles nested twice, producing a total of 33 nests. The nests will be checked in September and October 2003 for hatchlings. Of 121 head-started juvenile western pond turtles collected in the Columbia Gorge during the 2001 nesting season, 119 were released at three sites in the Columbia Gorge in 2002, and 2 held over for additional growth. Of 86 turtles reared in the head-start program at the Woodland Park and Oregon Zoos fall 2002 through summer 2003, 67 were released at sites in the Columbia Gorge in summer of 2003, and 15 held over for more growth. Fifty-nine juveniles were released at Pierce National Wildlife Refuge in July 2002, and 51 released there in July 2003. Sixteen of those released in 2002 and 16 released in 2003 were instrumented with radio transmitters and monitored for varying amounts of time for survival and habitat use between the time of release and August 2003, together with juveniles from the 2001 release which were monitored from June 2001 through August 2003, and juveniles from the 2000 release which were monitored from August 2000 through August 2003. The number of functioning transmitters varied due to transmitter failures and detachments, and availability of replacement transmitters, as well as opportunities to recapture turtles. By August 15, 2003, a total of 39 turtles were being monitored: 6 from the 2000 release, 8 from the 2001 release, 10 from the 2002 release, and 15 from the 2003 release. During the 2002 field season trapping effort, 280 turtles were captured in the Columbia Gorge, including 236 previously head-started turtles. During the 2003 trapping season, 349 turtles were captured in the Columbia Gorge; 304 of these had been head-started. These recaptures, together with confirmed nesting by head-start females and visual re-sightings, indicate the program is succeeding in boosting juvenile recruitment to increase the populations. Records were also collected on 160 individual painted turtles captured in 2002 and 189 painted turtles captured in 2003 during trapping efforts at Pierce NWR, to gather baseline information on this native population. Eight female painted turtles were monitored by telemetry during the 2002 nesting season; 4 nests were recorded for these animals, plus 35 nests located incidentally. Preferred habitat for nesting was identified based on the telemetry results, to be considered in anticipating future turtle habitat needs and in management planning at Pierce NWR. Bonneville Power Administration (BPA) funding supported activities in the Columbia River Gorge from June 2002 through September 2003.

Van Leuven, Susan; Allen, Harriet; Slavin, Kate (Washington Department of Fish and Wildlife, Wildlife Management Program, Olympia, WA)

2004-02-01T23:59:59.000Z

294

Micro-Earthquake At Roosevelt Hot Springs Geothermal Area (Zandt...  

Open Energy Info (EERE)

Activity Details Location Roosevelt Hot Springs Geothermal Area Exploration Technique Micro-Earthquake Activity Date 1982 Usefulness not indicated DOE-funding Unknown...

295

Mercury Vapor At Vale Hot Springs Area (Varekamp & Buseck, 1983...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Vale Hot Springs Area (Varekamp & Buseck, 1983) Exploration Activity Details...

296

Mercury Vapor At Breitenbush Hot Springs Area (Varekamp & Buseck...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Breitenbush Hot Springs Area (Varekamp & Buseck, 1983) Exploration Activity...

297

Mercury Vapor At Mickey Hot Springs Area (Varekamp & Buseck,...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Mickey Hot Springs Area (Varekamp & Buseck, 1983) Exploration Activity...

298

Mercury Vapor At Desert Peak Area (Varekamp & Buseck, 1983) ...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Desert Peak Area (Varekamp & Buseck, 1983) Exploration Activity Details...

299

Mercury Vapor At Socorro Mountain Area (Kooten, 1987) | Open...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Socorro Mountain Area (Kooten, 1987) Exploration Activity Details Location...

300

Refraction Survey At North Brawley Geothermal Area (Fruis & Kohler...  

Open Energy Info (EERE)

(Fruis & Kohler, 1984) Exploration Activity Details Location North Brawley Geothermal Area Exploration Technique Refraction Survey Activity Date 1979 - 1979 Usefulness useful...

Note: This page contains sample records for the topic "area activity start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz...  

Open Energy Info (EERE)

ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish...

302

Core Analysis At Jemez Mountain Area (Eichelberger & Koch, 1979...  

Open Energy Info (EERE)

1979) Exploration Activity Details Location Jemez Mountain Area Exploration Technique Core Analysis Activity Date Usefulness useful DOE-funding Unknown References John C....

303

Core Analysis At Colrado Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Colrado Area (DOE GTP) Exploration Activity Details Location Colado...

304

Core Holes At Blue Mountain Geothermal Area (Fairbank & Niggemann...  

Open Energy Info (EERE)

Exploration Activity Details Location Blue Mountain Geothermal Area Exploration Technique Core Holes Activity Date 2002 - 2004 Usefulness useful DOE-funding Unknown Exploration...

305

Core Analysis At Fenton Hill HDR Geothermal Area (Laughlin, Et...  

Open Energy Info (EERE)

Activity Details Location Fenton Hill HDR Geothermal Area Exploration Technique Core Analysis Activity Date - 1983 Usefulness useful DOE-funding Unknown Notes A few cores...

306

Core Analysis At Long Valley Caldera Geothermal Area (Pribnow...  

Open Energy Info (EERE)

Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Core Analysis Activity Date - 2003 Usefulness useful DOE-funding Unknown Notes "Here we...

307

Core Analysis At Alum Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Alum Area (DOE GTP) Exploration Activity Details Location Alum Geothermal...

308

Core Analysis At Fenton Hill HDR Geothermal Area (Brookins &...  

Open Energy Info (EERE)

Activity Details Location Fenton Hill HDR Geothermal Area Exploration Technique Core Analysis Activity Date - 1983 Usefulness useful DOE-funding Unknown Notes See linked...

309

Thermal Gradient Holes At Chena Geothermal Area (EERE, 2010)...  

Open Energy Info (EERE)

EERE, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Chena Geothermal Area (EERE, 2010) Exploration Activity...

310

Geographic Information System At Chena Geothermal Area (Holdmann...  

Open Energy Info (EERE)

Activity Details Location Chena Geothermal Area Exploration Technique Geographic Information System Activity Date 2005 - 2007 Usefulness useful DOE-funding Unknown Exploration...

311

Geographic Information System At Cove Fort Area - Vapor (Nash...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Cove Fort Area - Vapor (Nash, Et Al., 2002) Exploration Activity Details...

312

Flow Test At Fenton Hill HDR Geothermal Area (Brown, 1994) |...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Fenton Hill HDR Geothermal Area (Brown, 1994) Exploration Activity Details Location...

313

Flow Test At Fenton Hill HDR Geothermal Area (Callahan, 1996...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Fenton Hill HDR Geothermal Area (Callahan, 1996) Exploration Activity Details...

314

Flow Test At Roosevelt Hot Springs Geothermal Area (Faulder,...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Roosevelt Hot Springs Geothermal Area (Faulder, 1991) Exploration Activity Details...

315

Tracer Testing At East Mesa Geothermal Area (1984) | Open Energy...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Tracer Testing At East Mesa Geothermal Area (1984) Exploration Activity Details Location East Mesa...

316

Tracer Testing At Fenton Hill HDR Geothermal Area (Callahan,...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Tracer Testing At Fenton Hill HDR Geothermal Area (Callahan, 1996) Exploration Activity Details...

317

Injectivity Test At Dixie Valley Geothermal Area (Benoit, Et...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Dixie Valley Geothermal Area (Benoit, Et Al., 2000) Exploration Activity Details...

318

Flow Test At Chena Geothermal Area (Holdmann, Et Al., 2006) ...  

Open Energy Info (EERE)

Exploration Activity Details Location Chena Geothermal Area Exploration Technique Flow Test Activity Date 2005 - 2007 Usefulness useful DOE-funding Unknown Exploration Basis...

319

Flow Test At Fenton Hill HDR Geothermal Area (Brown, 1995) |...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Fenton Hill HDR Geothermal Area (Brown, 1995) Exploration Activity Details Location...

320

Flow Test At Dixie Valley Geothermal Area (Desormier, 1987) ...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Dixie Valley Geothermal Area (Desormier, 1987) Exploration Activity Details Location...

Note: This page contains sample records for the topic "area activity start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Flow Test At Long Valley Caldera Geothermal Area (Farrar, Et...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration Activity...

322

Injectivity Test At Long Valley Caldera Geothermal Area (Farrar...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration Activity...

323

Flow Test At Roosevelt Hot Springs Geothermal Area (Faulder,...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Roosevelt Hot Springs Geothermal Area (Faulder, 1994) Exploration Activity Details...

324

Flow Test At Blue Mountain Geothermal Area (Fairbank Engineering...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Exploration Activity...

325

Aerial Photography At Nevada Test And Training Range Area (Sabin...  

Open Energy Info (EERE)

GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aerial Photography At Nevada Test And Training Range Area (Sabin, Et Al., 2004) Exploration Activity Details Location...

326

Ground Magnetics At Cove Fort Area - Vapor (Warpinski, Et Al...  

Open Energy Info (EERE)

Vapor (Warpinski, Et Al., 2004) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Ground Magnetics Activity Date Usefulness useful DOE-funding...

327

Isotopic Analysis At Valles Caldera - Redondo Geothermal Area...  

Open Energy Info (EERE)

White, Et Al., 1992) Exploration Activity Details Location Valles Caldera - Redondo Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date - 1992 Usefulness...

328

Modeling-Computer Simulations At White Mountains Area (Goff ...  

Open Energy Info (EERE)

GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At White Mountains Area (Goff & Decker, 1983) Exploration Activity Details Location White...

329

Isotopic Analysis At Valles Caldera - Redondo Geothermal Area...  

Open Energy Info (EERE)

White, 1986) Exploration Activity Details Location Valles Caldera - Redondo Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date - 1986 Usefulness not...

330

Surface Gas Sampling At Valles Caldera - Redondo Area (Goff ...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Valles Caldera - Redondo Area (Goff & Janik, 2002) Exploration Activity...

331

Soil Gas Sampling At Chena Geothermal Area (Kolker, 2008) | Open...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Gas Sampling At Chena Geothermal Area (Kolker, 2008) Exploration Activity Details Location...

332

Isotopic Analysis- Gas At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Gas At Long Valley Caldera Geothermal Area (Welhan, Et Al., 1988) Exploration Activity...

333

Gas Sampling At Colrado Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Sampling At Colrado Area (DOE GTP) Exploration Activity Details Location Colado...

334

Gas Flux Sampling At Desert Peak Area (Lechler And Coolbaugh...  

Open Energy Info (EERE)

2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Desert Peak Area (Lechler And Coolbaugh, 2007) Exploration Activity...

335

Surface Gas Sampling At Fenton Hill HDR Geothermal Area (Goff...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Fenton Hill HDR Geothermal Area (Goff & Janik, 2002) Exploration Activity...

336

Gas Flux Sampling At Kilauea East Rift Geothermal Area (Thomas...  

Open Energy Info (EERE)

1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Kilauea East Rift Geothermal Area (Thomas, 1986) Exploration Activity...

337

Core Analysis At Long Valley Caldera Geothermal Area (Smith ...  

Open Energy Info (EERE)

Smith & Suemnicht, 1991) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Core Analysis Activity Date 1985 - 1988 Usefulness useful...

338

Well Log Data At North Brawley Geothermal Area (Matlick & Jayne...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Well Log Data At North Brawley Geothermal Area (Matlick & Jayne, 2008) Exploration Activity Details...

339

Water Sampling At Lightning Dock Geothermal Area (Swanberg, 1976...  

Open Energy Info (EERE)

Activity Details Location Lightning Dock Geothermal Area Exploration Technique Water Sampling Activity Date Usefulness useful DOE-funding Unknown Exploration Basis...

340

Production Wells At Lightning Dock Geothermal Area (McCants,...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Production Wells At Lightning Dock Geothermal Area (McCants, 1974) Exploration Activity Details...

Note: This page contains sample records for the topic "area activity start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

LEDS Tier I Activities | Open Energy Information  

Open Energy Info (EERE)

Tier I Activities Tier I Activities Jump to: navigation, search Name LEDS Tier I Activities Agency/Company /Organization United States Department of State, United States Department of Agriculture Partner Multiple Ministries of Agriculture Sector Climate, Land Focus Area Agriculture, Land Use Topics Co-benefits assessment, Low emission development planning, -LEDS Website http://transition.usaid.gov/ou Program Start 2011 Program End 2014 Country Costa Rica, Kenya Central America, Eastern Africa References Enhancing Capacity for Low Emission Development Strategies Program[1] Overview "Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) is a U.S. Government initiative to support developing countries' efforts to pursue long-term, transformative development and accelerate sustainable,

342

Pumpernickel Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Pumpernickel Valley Geothermal Area Pumpernickel Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Pumpernickel Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Map: Pumpernickel Valley Geothermal Area Pumpernickel Valley Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

343

Whiskey Flats Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Whiskey Flats Geothermal Area Whiskey Flats Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Whiskey Flats Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Map: Whiskey Flats Geothermal Area Whiskey Flats Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

344

Chena Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Chena Geothermal Area Chena Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Chena Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Technical Problems and Solutions 8 Geology of the Area 9 Heat Source 10 Geofluid Geochemistry 11 NEPA-Related Analyses (1) 12 Exploration Activities (9) 13 References Map: Chena Geothermal Area Chena Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Fairbanks, Alaska Exploration Region: Alaska Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

345

Flow Test At Hot Pot Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Hot Pot Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Hot Pot Area (DOE GTP) Exploration Activity...

346

Flow Test At The Needles Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At The Needles Area (DOE GTP) Exploration Activity Details Location The Needles Area...

347

Flow Test At New River Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At New River Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At New River Area (DOE GTP) Exploration Activity...

348

Flow Test At Fort Bliss Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Fort Bliss Area (DOE GTP) Exploration Activity Details Location Fort Bliss Area...

349

Stepout-Deepening Wells At Rye Patch Area (DOE GTP, 2011) | Open...  

Open Energy Info (EERE)

Stepout-Deepening Wells At Rye Patch Area (DOE GTP, 2011) Exploration Activity Details Location Rye Patch Area Exploration Technique Step-out Well Activity Date Usefulness not...

350

Gas Sampling At Rye Patch Area (DOE GTP, 2011) | Open Energy...  

Open Energy Info (EERE)

Gas Sampling At Rye Patch Area (DOE GTP, 2011) Exploration Activity Details Location Rye Patch Area Exploration Technique Gas Sampling Activity Date Usefulness not indicated...

351

Reflection Survey At Rye Patch Area (DOE GTP, 2011) | Open Energy...  

Open Energy Info (EERE)

Reflection Survey At Rye Patch Area (DOE GTP, 2011) Exploration Activity Details Location Rye Patch Area Exploration Technique Reflection Survey Activity Date Usefulness not...

352

Flow Test At Rye Patch Area (DOE GTP, 2011) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Rye Patch Area (DOE GTP, 2011) Exploration Activity Details Location Rye Patch Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding...

353

Gas Flux Sampling At Maui Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Maui Area (DOE GTP) Exploration Activity Details Location Maui Area...

354

Slim Holes At Glass Buttes Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Glass Buttes Area (DOE GTP) Exploration Activity Details Location Glass Buttes Area...

355

Core Analysis At Fort Bliss Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Fort Bliss Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Fort Bliss Area (DOE GTP) Exploration Activity Details...

356

2-M Probe At Fort Bliss Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Fort Bliss Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: 2-M Probe At Fort Bliss Area (DOE GTP) Exploration Activity Details...

357

Density Log at Fort Bliss Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Fort Bliss Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Density Log at Fort Bliss Area (DOE GTP) Exploration Activity Details...

358

Salt Wells Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Salt Wells Geothermal Area Salt Wells Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Salt Wells Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 9.1 Regional Setting 9.2 Stratigraphy 9.3 Structure 10 Hydrothermal System 11 Heat Source 12 Geofluid Geochemistry 13 NEPA-Related Analyses (9) 14 Exploration Activities (28) 15 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

359

Data Acquisition-Manipulation At Truckhaven Area (Layman Energy...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Truckhaven Area (Layman Energy Associates, 2007)...

360

Verification of Readiness to Start Up or Restart Nuclear Facilities  

Directives, Delegations, and Requirements

The order establishes requirements for verifying readiness for startup of new Hazard Category 1, 2, and 3 nuclear facilities, activities, and operations, and for restart of existing Hazard Category 1, 2, and 3 nuclear facilities, activities, and operations that have been shut down. Cancels DOE O 425.1C. Adm Chg 1, dated 4-2-13, cancels DOE O 425.1D.

2010-04-16T23:59:59.000Z

Note: This page contains sample records for the topic "area activity start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Thermal-induced conformational changes in the product release area drive the enzymatic activity of xylanases 10B: Crystal structure, conformational stability and functional characterization of the xylanase 10B from Thermotoga petrophila RKU-1  

SciTech Connect

Research highlights: {yields} The hyperthermostable xylanase 10B from Thermotoga petrophila RKU-1 produces exclusively xylobiose at the optimum temperature. {yields} Circular dichroism spectroscopy suggests a coupling effect of temperature-induced structural changes with its enzymatic behavior. {yields} Crystallographic and molecular dynamics studies indicate that conformational changes in the product release area modulate the enzyme action mode. -- Abstract: Endo-xylanases play a key role in the depolymerization of xylan and recently, they have attracted much attention owing to their potential applications on biofuels and paper industries. In this work, we have investigated the molecular basis for the action mode of xylanases 10B at high temperatures using biochemical, biophysical and crystallographic methods. The crystal structure of xylanase 10B from hyperthermophilic bacterium Thermotoga petrophila RKU-1 (TpXyl10B) has been solved in the native state and in complex with xylobiose. The complex crystal structure showed a classical binding mode shared among other xylanases, which encompasses the -1 and -2 subsites. Interestingly, TpXyl10B displayed a temperature-dependent action mode producing xylobiose and xylotriose at 20 {sup o}C, and exclusively xylobiose at 90 {sup o}C as assessed by capillary zone electrophoresis. Moreover, circular dichroism spectroscopy suggested a coupling effect of temperature-induced structural changes with this particular enzymatic behavior. Molecular dynamics simulations supported the CD analysis suggesting that an open conformational state adopted by the catalytic loop (Trp297-Lys326) provokes significant modifications in the product release area (+1,+2 and +3 subsites), which drives the enzymatic activity to the specific release of xylobiose at high temperatures.

Santos, Camila Ramos; Meza, Andreia Navarro [Laboratorio Nacional de Biociencias (LNBio), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP (Brazil)] [Laboratorio Nacional de Biociencias (LNBio), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP (Brazil); Hoffmam, Zaira Bruna; Silva, Junio Cota; Alvarez, Thabata Maria; Ruller, Roberto [Laboratorio Nacional de Ciencia e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP (Brazil)] [Laboratorio Nacional de Ciencia e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP (Brazil); Giesel, Guilherme Menegon; Verli, Hugo [Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil)] [Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Squina, Fabio Marcio [Laboratorio Nacional de Ciencia e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP (Brazil)] [Laboratorio Nacional de Ciencia e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP (Brazil); Prade, Rolf Alexander [Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK (United States)] [Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK (United States); Murakami, Mario Tyago, E-mail: mario.murakami@lnbio.org.br [Laboratorio Nacional de Biociencias (LNBio), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP (Brazil)

2010-12-10T23:59:59.000Z

362

DOE Solar Decathlon: Team Germany: Starting a Solar Revolution  

NLE Websites -- All DOE Office Websites (Extended Search)

surPLUShome at the U.S. Department of Energy Solar Decathlon 2009 with Silo House and the Washington Monument in the background. surPLUShome at the U.S. Department of Energy Solar Decathlon 2009 with Silo House and the Washington Monument in the background. Enlarge image Team Germany's surPLUShome took first place in Solar Decathlon 2009. It is now permanently placed on the Technische Universität Darmstadt campus. (Credit: Jim Tetro/U.S. Department of Energy Solar Decathlon) Who: Team Germany What: surPLUShome Where: Technische Universität Darmstadt El-Lissitzky-Str. 3 64287 Darmstadt, Deutschland Map This House Public tours: Not available Solar Decathlon 2009 Team Germany: Starting a Solar Revolution In June 2010, Team Germany's surPLUShome returned to the Technische Universität Darmstadt campus for permanent placement next to Solarhouse, from the U.S. Department of Energy Solar Decathlon 2007. As part of the

363

New Albany shale gas flow starts in western Indiana  

SciTech Connect

This paper briefly describes the stratigraphy and lithology of the New Albany shale and how this affects the placement of gas recovery wells in the Greene County, Indiana area. It reviews the project planning aspects including salt water reinjection and well spacing for optimum gas recovery. It also briefly touches on how the wells were completed and brought on-line for production and distribution.

NONE

1996-04-29T23:59:59.000Z

364

Feedback" An Article for Smart Grid News The Smart Grid Transition-Getting Started  

NLE Websites -- All DOE Office Websites (Extended Search)

Sharing Smart Grid Experiences through Performance Sharing Smart Grid Experiences through Performance Feedback" An Article for Smart Grid News The Smart Grid Transition-Getting Started We are on the ground floor of a Smart Grid transition that is leading us out of a centralized, information- limited infrastructure into an intelligent, modernized electric system. Simply put, our aim is to achieve a smarter grid, one that is merged with ubiquitous information and communication technologies that support a balance of centralized and distributed resources of all kinds and the active engagement of its consumers. Since 2005, a great deal of work has been done to define the vision for the Smart Grid and to communicate that vision to stakeholders. As a result, understanding has increased and many

365

Gabbs Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Gabbs Valley Geothermal Area Gabbs Valley Geothermal Area (Redirected from Gabbs Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Gabbs Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (4) 9 Exploration Activities (11) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

366

Marysville Mt Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Marysville Mt Geothermal Area Marysville Mt Geothermal Area (Redirected from Marysville Mt Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Marysville Mt Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Montana Exploration Region: Other GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

367

Fort Bliss Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fort Bliss Geothermal Area Fort Bliss Geothermal Area (Redirected from Fort Bliss Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fort Bliss Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (22) 10 References Area Overview Geothermal Area Profile Location: Texas Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

368

Amedee Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Amedee Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Amedee Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Map: Amedee Geothermal Area Amedee Geothermal Area Location Map Area Overview Geothermal Area Profile Location: California Exploration Region: Walker-Lane Transition Zone GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

369

New River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

New River Geothermal Area New River Geothermal Area (Redirected from New River Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: New River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (13) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

370

Kawaihae Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kawaihae Geothermal Area Kawaihae Geothermal Area (Redirected from Kawaihae Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kawaihae Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

371

Maui Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Maui Geothermal Area Maui Geothermal Area (Redirected from Maui Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Maui Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (13) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

372

Glass Buttes Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Glass Buttes Geothermal Area Glass Buttes Geothermal Area (Redirected from Glass Buttes Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Glass Buttes Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (14) 10 References Area Overview Geothermal Area Profile Location: Oregon Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

373

Obsidian Cliff Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Obsidian Cliff Geothermal Area Obsidian Cliff Geothermal Area (Redirected from Obsidian Cliff Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Obsidian Cliff Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

374

Jemez Pueblo Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Pueblo Geothermal Area Jemez Pueblo Geothermal Area (Redirected from Jemez Pueblo Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Pueblo Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

375

Socorro Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Socorro Mountain Geothermal Area Socorro Mountain Geothermal Area (Redirected from Socorro Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Socorro Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (10) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

376

Kauai Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kauai Geothermal Area Kauai Geothermal Area (Redirected from Kauai Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kauai Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

377

Dixie Meadows Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Dixie Meadows Geothermal Area Dixie Meadows Geothermal Area (Redirected from Dixie Meadows Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Dixie Meadows Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

378

Jemez Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Mountain Geothermal Area Jemez Mountain Geothermal Area (Redirected from Jemez Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

379

Kick-Start Loans: Money Matters Workshop Financing Your Business Better  

E-Print Network (OSTI)

Kick-Start Loans: Money Matters Workshop Financing Your Business Better Summer 2014 Workshop Application Kick-Start Loans: Money Matters Workshop is a special program for M/W/DBE Construction Contractors

Kim, Philip

380

Investigations of an air starting motor of marine medium-speed diesel engine with numerical analyses  

Science Journals Connector (OSTI)

The marine medium-speed diesel engines are started by two methods; one is ... though air starting motor is dependent of the engine types and sizes, it has been widely...

Yeon Won Lee; Yoon Hwan Choi; Deog Hee Doh

2010-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "area activity start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Jump-Starting Zero Energy Home Design and Student Careers | Department...  

Office of Environmental Management (EM)

Jump-Starting Zero Energy Home Design and Student Careers Jump-Starting Zero Energy Home Design and Student Careers April 24, 2014 - 9:28am Addthis University of Las Vegas 1 of 5...

382

Numerical and analytical studies of single and multiphase starting jets and plumes  

E-Print Network (OSTI)

Multiphase starting jets and plumes are widely observed in nature and engineering systems. An environmental engineering example is open-water disposal of sediments. The present study numerically simulates such starting ...

Wang, Ruo-Qian

2014-01-01T23:59:59.000Z

383

Data Acquisition-Manipulation At Marysville Mt Area (Blackwell) | Open  

Open Energy Info (EERE)

Marysville Mt Area (Blackwell) Marysville Mt Area (Blackwell) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Marysville Mt Area (Blackwell) Exploration Activity Details Location Marysville Mt Area Exploration Technique Data Acquisition-Manipulation Activity Date Usefulness useful DOE-funding Unknown Notes Heat flow analysis. References D. D. Blackwell (Unknown) Exploration In A Blind Geothermal Area Near Marysville, Montana, Usa Retrieved from "http://en.openei.org/w/index.php?title=Data_Acquisition-Manipulation_At_Marysville_Mt_Area_(Blackwell)&oldid=388982" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs

384

Electrical Resistivity At Coso Geothermal Area (1972) | Open Energy  

Open Energy Info (EERE)

Electrical Resistivity At Coso Geothermal Area (1972) Electrical Resistivity At Coso Geothermal Area (1972) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Electrical Resistivity At Coso Geothermal Area (1972) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date 1972 Usefulness useful DOE-funding Unknown Exploration Basis Identify drilling sites for exploration Notes Electrical resistivity studies outline areas of anomalously conductive ground that may be associated with geothermal activity and assist in locating drilling sites to test the geothermal potential. References Ferguson, R. B. (1 June 1973) Progress report on electrical resistivity studies, COSO Geothermal Area, Inyo County, California

385

Geothermal Literature Review At International Geothermal Area, Iceland  

Open Energy Info (EERE)

Geothermal Literature Review At International Geothermal Area, Iceland Geothermal Literature Review At International Geothermal Area, Iceland (Ranalli & Rybach, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area, Iceland (Ranalli & Rybach, 2005) Exploration Activity Details Location International Geothermal Area Iceland Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes Hvalfjordur Fjord area, re: Heat flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_International_Geothermal_Area,_Iceland_(Ranalli_%26_Rybach,_2005)&oldid=510812

386

Geothermal Literature Review At International Geothermal Area, Italy  

Open Energy Info (EERE)

International Geothermal Area, Italy International Geothermal Area, Italy (Ranalli & Rybach, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area, Italy (Ranalli & Rybach, 2005) Exploration Activity Details Location International Geothermal Area Italy Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes Latera area, Tuscany, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_International_Geothermal_Area,_Italy_(Ranalli_%26_Rybach,_2005)&oldid=510813

387

Existing generating assets squeezed as new project starts slow  

SciTech Connect

Most forecasting reports concentrate on political or regulatory events to predict future industry trends. Frequently overlooked are the more empirical performance trends of the principal power generation technologies. Solomon and Associates queried its many power plant performance databases and crunched some numbers to identify those trends. Areas of investigation included reliability, utilization (net output factor and net capacity factor) and cost (operating costs). An in-depth analysis for North America and Europe is presented in this article, by region and by regeneration technology. 4 figs., 2 tabs.

Jones, R.B.; Tiffany, E.D. [HSB Solomon Associates LLC (USA)

2009-01-15T23:59:59.000Z

388

Modern Devonian shale gas search starting in southwestern Indiana  

SciTech Connect

The New Albany shale of southwestern Indiana is a worthwhile exploration and exploitation objective. The technical ability to enhance natural fractures is available, the drilling depths are shallow, long term gas reserves are attractive, markets are available, drilling costs are reasonable, risks are very low, multiple drilling objectives are available, and the return on investment is good. Indiana Geological Survey records are well organized, accessible, and easy to use. The paper describes the New Albany shale play, play size, early exploration, geologic setting, completion techniques, and locating prime areas.

Minihan, E.D.; Buzzard, R.D. (Minihan/Buzzard Consulting Firm, Fort Worth, TX (United States))

1995-02-27T23:59:59.000Z

389

Building starting model for full waveform inversion from wide-aperture data by stereotomography  

E-Print Network (OSTI)

Building starting model for full waveform inversion from wide-aperture data by stereotomography CGG Veritas, Massy, France; 3 LGIT - UJF - CNRS, France Abstract Building reliable starting model). In this study, we assess the stereotomography as a tool to build reliable starting model for frequency

Vallée, Martin

390

Self-starting ultralow-jitter pulse source based on coupled optoelectronic oscillators with an  

E-Print Network (OSTI)

Self-starting ultralow-jitter pulse source based on coupled optoelectronic oscillators, 2004 A self-starting optical pulse source based on mutually coupled optoelectronic oscillators optoelectronic oscillator with an intracavity fiber parametric amplifier. It self-starts and exhibits 3 ps pulses

Eisenstein, Gadi

391

Kilauea Summit Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kilauea Summit Geothermal Area Kilauea Summit Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kilauea Summit Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (12) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

392

Florida Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Florida Mountains Geothermal Area Florida Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Florida Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

393

Molokai Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Molokai Geothermal Area Molokai Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Molokai Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

394

Maui Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Maui Geothermal Area Maui Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Maui Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (13) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

395

Rhodes Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Rhodes Marsh Geothermal Area (Redirected from Rhodes Marsh Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Rhodes Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase:

396

Jersey Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jersey Valley Geothermal Area Jersey Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jersey Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Area Overview Geothermal Area Profile Location: near Fallon, NV Exploration Region: Central Nevada Seismic Zone Geothermal Region GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

397

Glass Buttes Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Glass Buttes Geothermal Area Glass Buttes Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Glass Buttes Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (14) 10 References Area Overview Geothermal Area Profile Location: Oregon Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

398

Separation Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Separation Creek Geothermal Area Separation Creek Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Separation Creek Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Oregon Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

399

Kauai Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kauai Geothermal Area Kauai Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kauai Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

400

Rhodes Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Rhodes Marsh Geothermal Area Rhodes Marsh Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Rhodes Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

Note: This page contains sample records for the topic "area activity start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Kawaihae Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kawaihae Geothermal Area Kawaihae Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kawaihae Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

402

Mokapu Penninsula Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mokapu Penninsula Geothermal Area Mokapu Penninsula Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mokapu Penninsula Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

403

Socorro Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Socorro Mountain Geothermal Area Socorro Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Socorro Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (10) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

404

Jemez Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Mountain Geothermal Area Jemez Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

405

Augusta Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Augusta Mountains Geothermal Area Augusta Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Augusta Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (3) 9 Exploration Activities (0) 10 References Area Overview Geothermal Area Profile Location: Fallon, NV Exploration Region: Central Nevada Seismic Zone Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

406

Marysville Mt Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Marysville Mt Geothermal Area Marysville Mt Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Marysville Mt Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Montana Exploration Region: Other GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

407

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

408

Lualualei Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lualualei Valley Geothermal Area Lualualei Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lualualei Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

409

New River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

New River Geothermal Area New River Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: New River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (13) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

410

Bristol Bay Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Bristol Bay Geothermal Area Bristol Bay Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Bristol Bay Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Area Overview Geothermal Area Profile Location: Bristol Bay Borough, Alaska Exploration Region: Alaska Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

411

Teels Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Teels Marsh Geothermal Area Teels Marsh Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Teels Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

412

Haleakala Volcano Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Haleakala Volcano Geothermal Area Haleakala Volcano Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Haleakala Volcano Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

413

Fort Bliss Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fort Bliss Geothermal Area Fort Bliss Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fort Bliss Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (22) 10 References Area Overview Geothermal Area Profile Location: Texas Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

414

Jemez Pueblo Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Pueblo Geothermal Area Jemez Pueblo Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Pueblo Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

415

Desert Queen Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Desert Queen Geothermal Area Desert Queen Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Desert Queen Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (4) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

416

Dixie Meadows Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Dixie Meadows Geothermal Area Dixie Meadows Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Dixie Meadows Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

417

Lester Meadow Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lester Meadow Geothermal Area Lester Meadow Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lester Meadow Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Washington Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

418

Mt Ranier Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mt Ranier Geothermal Area Mt Ranier Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mt Ranier Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Washington Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

419

Alternative Fuels Data Center: Ten Ways You Can Start to Cut Petroleum Use  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

About About Printable Version Share this resource Send a link to Alternative Fuels Data Center: Ten Ways You Can Start to Cut Petroleum Use Right Now to someone by E-mail Share Alternative Fuels Data Center: Ten Ways You Can Start to Cut Petroleum Use Right Now on Facebook Tweet about Alternative Fuels Data Center: Ten Ways You Can Start to Cut Petroleum Use Right Now on Twitter Bookmark Alternative Fuels Data Center: Ten Ways You Can Start to Cut Petroleum Use Right Now on Google Bookmark Alternative Fuels Data Center: Ten Ways You Can Start to Cut Petroleum Use Right Now on Delicious Rank Alternative Fuels Data Center: Ten Ways You Can Start to Cut Petroleum Use Right Now on Digg Find More places to share Alternative Fuels Data Center: Ten Ways You Can Start to Cut Petroleum Use Right Now on AddThis.com...

420

SunShot Initiative: Four Solar-Saving Strategies Starting with WWW  

NLE Websites -- All DOE Office Websites (Extended Search)

Four Solar-Saving Strategies Four Solar-Saving Strategies Starting with WWW to someone by E-mail Share SunShot Initiative: Four Solar-Saving Strategies Starting with WWW on Facebook Tweet about SunShot Initiative: Four Solar-Saving Strategies Starting with WWW on Twitter Bookmark SunShot Initiative: Four Solar-Saving Strategies Starting with WWW on Google Bookmark SunShot Initiative: Four Solar-Saving Strategies Starting with WWW on Delicious Rank SunShot Initiative: Four Solar-Saving Strategies Starting with WWW on Digg Find More places to share SunShot Initiative: Four Solar-Saving Strategies Starting with WWW on AddThis.com... Concentrating Solar Power Photovoltaics Research & Development Competitive Awards Diversity in Science and Technology Advances National Clean Energy in Solar

Note: This page contains sample records for the topic "area activity start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Dominican Republic-OAS Activities | Open Energy Information  

Open Energy Info (EERE)

Republic-OAS Activities Republic-OAS Activities Jump to: navigation, search Name Dominican Republic-OAS Activities Agency/Company /Organization Organization of American States (OAS) Sector Energy Focus Area Biomass Topics Background analysis Website http://www.sepa-americas.net/p Program Start 2009 Program End 2010 Country Dominican Republic UN Region Latin America and the Caribbean References OAS Project Database[1] "A bioenergy development project in the rural community of Mata de Palma, Dominican Republic." References ↑ "OAS Project Database" Retrieved from "http://en.openei.org/w/index.php?title=Dominican_Republic-OAS_Activities&oldid=374412" Category: Programs What links here Related changes Special pages Printable version Permanent link Browse properties

422

Discontinuing Donepezil or Starting Memantine for Alzheimer's Disease  

Science Journals Connector (OSTI)

To the Editor: In the Donepezil and Memantine in Moderate to Severe Alzheimer's Disease (DOMINO) study, Howard and coauthors (March 8 issue) found that the magnitude of benefit, as assessed with the Standardized Mini–Mental State Examination (SMMSE) and the Bristol Activities of Daily Living Scale... To the Editor: In the Donepezil and Memantine in Moderate to Severe Alzheimer's Disease (DOMINO) study, Howard and coauthors (March 8 issue)1 found that the magnitude of benefit, as assessed with the Standardized Mini–Mental State Examination (SMMSE) and ...

2012-06-07T23:59:59.000Z

423

Carlsbad Area Office Executive Summary  

NLE Websites -- All DOE Office Websites (Extended Search)

June 1998 June 1998 Carlsbad Area Office Executive Summary The mission of the Carlsbad Area Office (CAO) is to protect human health and the environment by opening and operating the Waste Isolation Pilot Plant (WIPP) for safe disposal of transuranic (TRU) waste and by establishing an effective system for management of TRU waste from generation to disposal. It includes personnel assigned to CAO, WIPP site operations, transportation, and other activities associated with the National TRU Program (NTP). The CAO develops and directs implementation of the TRU waste program, and assesses compliance with the program guidance, as well as the commonality of activities and assumptions among all TRU waste sites. A cornerstone of the Department of Energy's (DOE) national cleanup strategy, WIPP is

424

Knoxville Area Transit: Propane Hybrid Electric Trolleys  

SciTech Connect

A 2-page fact sheet summarizing the evaluation done by the U.S. Department of Energy's Advanced Vehicle Testing Activity on the Knoxville Area Transit's use of propane hybrid electric trolleys.

Not Available

2005-04-01T23:59:59.000Z

425

Independent Oversight Activity Report, Hanford Waste Treatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

observing a limited portion of the start of the hazard analysis (HA) for WTP Low Activity Waste (LAW) Primary Off-gas System. The primary purpose of this HSS field activity was to...

426

Summary of Weldon Spring Site Focus Area  

Office of Legacy Management (LM)

of Weldon Spring Site Focus Area of Weldon Spring Site Focus Area Work Session February 5, 2003 Weldon Spring Interpretive Center Focus Area: Monitoring and Maintenance This was the third of three work sessions that focus on specific issues addressed in the draft Long-Term Stewardship Plan for the Weldon Spring, Missouri, Site, dated August 9, 2002. At 6:00 p.m., before the start of the work session, Dan Collette, Technical Support Manager for S.M. Stoller, the U.S. Department of Energy (DOE) Grand Junction Office (GJO) contractor, gave a demonstration of the on-line document retrieval and geographic information systems. Introduction Dave Geiser, DOE Headquarters Director of the Office of Long-Term Stewardship, discussed a DOE Headquarters proposal to establish the Office of Legacy Management in fiscal year 2004.

427

Geothermal Literature Review At International Geothermal Area, New Zealand  

Open Energy Info (EERE)

Area, New Zealand Area, New Zealand (Ranalli & Rybach, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area New Zealand (Ranalli & Rybach, 2005) Exploration Activity Details Location International Geothermal Area New Zealand Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes Lake Taupo, North Island, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_International_Geothermal_Area,_New_Zealand_(Ranalli_%26_Rybach,_2005)&oldid=510814

428

AVTA: Smart Fortwo Start-Stop 2010 Testing Results  

Energy.gov (U.S. Department of Energy (DOE))

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. Baseline data, which provides a point of comparison for the other test results, was collected at two different research laboratories. Baseline and other data collected at Idaho National Laboratory is in the attached documents. Baseline and battery testing data collected at Argonne National Laboratory is available in summary and CSV form on the Argonne Downloadable Dynometer Database site (http://www.transportation.anl.gov/D3/2010_smartcar_mhd.html). Taken together, these reports give an overall view of how this vehicle functions under extensive testing.

429

AVTA: 2010 Smart Fortwo Start-Stop Testing Results  

Energy.gov (U.S. Department of Energy (DOE))

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. Baseline data, which provides a point of comparison for the other test results, was collected at two different research laboratories. Baseline and other data collected at Idaho National Laboratory is in the attached documents. Baseline and battery testing data collected at Argonne National Laboratory is available in summary and CSV form on the Argonne Downloadable Dynometer Database site (http://www.transportation.anl.gov/D3/2010_smartcar_mhd.html). Taken together, these reports give an overall view of how this vehicle functions under extensive testing.

430

Hualalai Northwest Rift Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Hualalai Northwest Rift Geothermal Area Hualalai Northwest Rift Geothermal Area (Redirected from Hualalai Northwest Rift Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Hualalai Northwest Rift Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

431

Under Steamboat Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Under Steamboat Springs Geothermal Area Under Steamboat Springs Geothermal Area (Redirected from Under Steamboat Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Under Steamboat Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure

432

Columbus Salt Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Columbus Salt Marsh Geothermal Area Columbus Salt Marsh Geothermal Area (Redirected from Columbus Salt Marsh Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Columbus Salt Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure

433

Static Temperature Survey At Wister Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Static Temperature Survey At Wister Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Wister Area (DOE GTP) Exploration Activity Details Location Wister Area Exploration Technique Static Temperature Survey Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Retrieved from "http://en.openei.org/w/index.php?title=Static_Temperature_Survey_At_Wister_Area_(DOE_GTP)&oldid=511165" Categories: Exploration Activities DOE Funded Activities

434

Colorado Start-Up Awarded First 'America's Next Top Energy Innovator'  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Start-Up Awarded First 'America's Next Top Energy Start-Up Awarded First 'America's Next Top Energy Innovator' Agreement Colorado Start-Up Awarded First 'America's Next Top Energy Innovator' Agreement May 20, 2011 - 5:42pm Addthis Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs While visiting the National Renewable Energy Laboratory in Golden, Colorado, today, Vice President Biden announced that the Colorado-based start-up company U.S. e-Chromic LLC has signed the first agreement in the "America's Next Top Energy Innovator" challenge. The challenge, which started on May 2, allows start-up companies to apply for the Department of Energy's many thousand unlicensed patents for reduced cost and paperwork. Part of the Obama Administration's Startup America

435

Subfreezing Start/Stop Protocol for an Advanced Metallic Open-Flowfield Fuel Cell Stack  

NLE Websites -- All DOE Office Websites (Extended Search)

Subfreezing Start/Stop Protocol for an Advanced Subfreezing Start/Stop Protocol for an Advanced Subfreezing Start/Stop Protocol for an Advanced Subfreezing Start/Stop Protocol for an Advanced Subfreezing Start/Stop Protocol for an Advanced Metallic Open Metallic Open Metallic Open Metallic Open- - - -Flowfield Flowfield Flowfield Flowfield Fuel Cell Stack Fuel Cell Stack Fuel Cell Stack Fuel Cell Stack Presented at: US DOE New Projects Kickoff Meeting Washington, DC 13-14 February 2007 Alternative Energy Efficient Simple Clean Today Alternative Energy Efficient Simple Clean Today Objective Objective Objective Objective This project will demonstrate a PEM fuel cell stack that is able to perform and start up in subfreezing conditions, respecting allowed energy budget, and showing limited impact at extreme temperatures over multiple

436

Wisconsin Start-up Taps into Wind Supply Chain | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Start-up Taps into Wind Supply Chain Start-up Taps into Wind Supply Chain Wisconsin Start-up Taps into Wind Supply Chain August 10, 2010 - 2:00pm Addthis Renewegy, LLC received a $525,000 Recovery Act loan to help start its smaller-scale wind turbine business. This fall, the company will begin production on its first batch of turbine systems. | Photo courtesy of Renewegy Renewegy, LLC received a $525,000 Recovery Act loan to help start its smaller-scale wind turbine business. This fall, the company will begin production on its first batch of turbine systems. | Photo courtesy of Renewegy Stephen Graff Former Writer & editor for Energy Empowers, EERE What are the key facts? Renewegy received $525,000 Recovery Act loan to start wind turbine business Business hired 16 people and projects at least three more by end of

437

Integrated starting and running amalgam assembly for an electrodeless fluorescent lamp  

DOE Patents (OSTI)

An integrated starting and running amalgam assembly for an electrodeless SEF fluorescent lamp includes a wire mesh amalgam support constructed to jointly optimize positions of a starting amalgam and a running amalgam in the lamp, thereby optimizing mercury vapor pressure in the lamp during both starting and steady-state operation in order to rapidly achieve and maintain high light output. The wire mesh amalgam support is constructed to support the starting amalgam toward one end thereof and the running amalgam toward the other end thereof, and the wire mesh is rolled for friction-fitting within the exhaust tube of the lamp. The positions of the starting and running amalgams on the wire mesh are jointly optimized such that high light output is achieved quickly and maintained, while avoiding any significant reduction in light output between starting and running operation.

Borowiec, Joseph Christopher (Schenectady, NY); Cocoma, John Paul (Clifton Park, NY); Roberts, Victor David (Burnt Hills, NY)

1998-01-01T23:59:59.000Z

438

Redfield Campus Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Redfield Campus Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Redfield Campus Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate

439

Gabbs Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Gabbs Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Gabbs Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (4) 9 Exploration Activities (11) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

440

200 North Aggregate Area source AAMS report  

SciTech Connect

This report presents the results of an aggregate area management study (AAMS) for the 200 North Aggregate Area in the 200 Areas of the US Department of Energy (DOE) Hanford Site in Washington State. This scoping level study provides the basis for initiating Remedial Investigation/Feasibility Study (RI/FS) activities under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) or Resource Conservation and Recovery Act (RCRA) Facility Investigations (RFI) and Corrective Measures Studies (CMS) under RCRA. This report also integrates select RCRA treatment, storage, or disposal (TSD) closure activities with CERCLA and RCRA past practice investigations.

Not Available

1993-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "area activity start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Starting points "To ensure that federal and state resources are being focused on  

E-Print Network (OSTI)

Starting points "To ensure that federal and state resources are being focused on important STATEWIDE FOREST RESOURCE ASSESSMENT "... address the rural-to-urban continuum and identify opportunities

442

Fact #853 December 29, 2014 Stop/Start Technology is in nearly...  

Energy Savers (EERE)

without delay. Hybrid vehicles have always employed the strategy of shutting off their engines when not needed. However, manufacturers are beginning to add StopStart technology to...

443

An analysis of the sliding pressure start-up of SCWR  

SciTech Connect

In this paper, the preliminary sliding pressure start-up system and scheme of supercritical water-cooled reactor in CGNPC (CGN-SCWR) were proposed. Thermal-hydraulic behavior in start-up procedures was analyzed in detail by employing advanced reactor subchannel analysis software ATHAS. The maximum cladding temperature (MCT for short) and core power of fuel assembly during the whole start-up process were investigated comparatively. The results show that the recommended start-up scheme meets the design requirements from the perspective of thermal-hydraulic. (authors)

Wang, F.; Yang, J.; Li, H.; Zhang, Y.; Zhang, J. [China Nuclear Power Technology Research Inst. CNPRI, China Guangdong Nuclear Power Corporation CGNPC, Shenzhen (China); Shan, J.; Gou, J.; Zhang, B.; Chen, C. [Xian Jiaotong Univ. XJTU, Xian (China)

2012-07-01T23:59:59.000Z

444

Text-Alternative Version: L Prize-PAR 38 Competition: A New Start  

Energy.gov (U.S. Department of Energy (DOE))

Below is the text-alternative version of the "L Prize-PAR 38 Competition: A New Start" webcast, held March 27, 2012.

445

The Art of the Start: Moving Science from the Lab to the Marketplace  

ScienceCinema (OSTI)

April 25, 2009 Berkeley Lab Nano*High lecture: The Art of the Start: Moving Science from the Lab to the Marketplace

Larry Bock

2010-01-08T23:59:59.000Z

446

Beowawe Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Beowawe Hot Springs Geothermal Area Beowawe Hot Springs Geothermal Area (Redirected from Beowawe Hot Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Beowawe Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 10 Geofluid Geochemistry 11 NEPA-Related Analyses (0) 12 Exploration Activities (8) 13 References Map: Beowawe Hot Springs Geothermal Area Beowawe Hot Springs Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Beowawe, Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

447

Roosevelt Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Roosevelt Hot Springs Geothermal Area Roosevelt Hot Springs Geothermal Area (Redirected from Roosevelt Hot Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Roosevelt Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 10 Heat Source 11 Geofluid Geochemistry 12 NEPA-Related Analyses (0) 13 Exploration Activities (9) 14 References Map: Roosevelt Hot Springs Geothermal Area Roosevelt Hot Springs Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Milford, Utah Exploration Region: Northern Basin and Range Geothermal Region

448

Material Disposal Areas  

NLE Websites -- All DOE Office Websites (Extended Search)

Material Disposal Areas Material Disposal Areas Material Disposal Areas Material Disposal Areas, also known as MDAs, are sites where material was disposed of below the ground surface in excavated pits, trenches, or shafts. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Material Disposal Areas at LANL The following are descriptions and status updates of each MDA at LANL. To view a current fact sheet on the MDAs, click on LA-UR-13-25837 (pdf). MDA A MDA A is a Hazard Category 2 nuclear facility comprised of a 1.25-acre, fenced, and radiologically controlled area situated on the eastern end of Delta Prime Mesa. Delta Prime Mesa is bounded by Delta Prime Canyon to the north and Los Alamos Canyon to the south.

449

The Challenge for Arms Control Verification in the Post-New START World  

SciTech Connect

Nuclear weapon arms control treaty verification is a key aspect of any agreement between signatories to establish that the terms and conditions spelled out in the treaty are being met. Historically, arms control negotiations have focused more on the rules and protocols for reducing the numbers of warheads and delivery systems - sometimes resorting to complex and arcane procedures for counting forces - in an attempt to address perceived or real imbalances in a nation's strategic posture that could lead to instability. Verification procedures are generally defined in arms control treaties and supporting documents and tend to focus on technical means and measures designed to ensure that a country is following the terms of the treaty and that it is not liable to engage in deception or outright cheating in an attempt to circumvent the spirit and the letter of the agreement. As the Obama Administration implements the articles, terms, and conditions of the recently ratified and entered-into-force New START treaty, there are already efforts within and outside of government to move well below the specified New START levels of 1550 warheads, 700 deployed strategic delivery vehicles, and 800 deployed and nondeployed strategic launchers (Inter-Continental Ballistic Missile (ICBM) silos, Submarine-Launched Ballistic Missile (SLBM) tubes on submarines, and bombers). A number of articles and opinion pieces have appeared that advocate for significantly deeper cuts in the U.S. nuclear stockpile, with some suggesting that unilateral reductions on the part of the U.S. would help coax Russia and others to follow our lead. Papers and studies prepared for the U.S. Department of Defense and at the U.S. Air War College have also been published, suggesting that nuclear forces totaling no more than about 300 warheads would be sufficient to meet U.S. national security and deterrence needs. (Davis 2011, Schaub and Forsyth 2010) Recent articles by James M. Acton and others suggest that the prospects for maintaining U.S. security and minimizing the chances of nuclear war, while deliberately reducing stockpiles to a few hundred weapons, is possible but not without risk. While the question of the appropriate level of cuts to U.S. nuclear forces is being actively debated, a key issue continues to be whether verification procedures are strong enough to ensure that both the U.S. and Russia are fulfilling their obligations under the current New Start treaty and any future arms reduction treaties. A recent opinion piece by Henry Kissinger and Brent Scowcroft (2012) raised a number of issues with respect to governing a policy to enhance strategic stability, including: in deciding on force levels and lower numbers, verification is crucial. Particularly important is a determination of what level of uncertainty threatens the calculation of stability. At present, that level is well within the capabilities of the existing verification systems. We must be certain that projected levels maintain - and when possible, reinforce - that confidence. The strengths and weaknesses of the New START verification regime should inform and give rise to stronger regimes for future arms control agreements. These future arms control agreements will likely need to include other nuclear weapons states and so any verification regime will need to be acceptable to all parties. Currently, China is considered the most challenging party to include in any future arms control agreement and China's willingness to enter into verification regimes such as those implemented in New START may only be possible when it feels it has reached nuclear parity with the U.S. and Russia. Similarly, in keeping with its goals of reaching peer status with the U.S. and Russia, Frieman (2004) suggests that China would be more willing to accept internationally accepted and applied verification regimes rather than bilateral ones. The current verification protocols specified in the New START treaty are considered as the baseline case and are contrasted with possible alternative verification protocols that could be e

Wuest, C R

2012-05-24T23:59:59.000Z

450

Kenya-LEDS Tier I Activities | Open Energy Information  

Open Energy Info (EERE)

Kenya-LEDS Tier I Activities Kenya-LEDS Tier I Activities Jump to: navigation, search Name Kenya-LEDS Tier I Activities Agency/Company /Organization United States Department of State, United States Department of Agriculture Partner Multiple Ministries of Agriculture Sector Climate, Land Focus Area Agriculture, Land Use Topics Co-benefits assessment, Low emission development planning, -LEDS Website http://transition.usaid.gov/ou Program Start 2011 Program End 2014 Country Kenya Eastern Africa References Enhancing Capacity for Low Emission Development Strategies Program[1] Overview "Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) is a U.S. Government initiative to support developing countries' efforts to pursue long-term, transformative development and accelerate sustainable,

451

Costa Rica-LEDS Tier I Activities | Open Energy Information  

Open Energy Info (EERE)

Costa Rica-LEDS Tier I Activities Costa Rica-LEDS Tier I Activities Jump to: navigation, search Name Costa Rica-LEDS Tier I Activities Agency/Company /Organization United States Department of State, United States Department of Agriculture Partner Multiple Ministries of Agriculture Sector Climate, Land Focus Area Agriculture, Land Use Topics Co-benefits assessment, Low emission development planning, -LEDS Website http://transition.usaid.gov/ou Program Start 2011 Program End 2014 Country Costa Rica Central America References Enhancing Capacity for Low Emission Development Strategies Program[1] Overview "Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) is a U.S. Government initiative to support developing countries' efforts to pursue long-term, transformative development and accelerate sustainable,

452

Bringing a Range of Supported Mitigation Activities in Selected Countries  

Open Energy Info (EERE)

Bringing a Range of Supported Mitigation Activities in Selected Countries Bringing a Range of Supported Mitigation Activities in Selected Countries to the Next Level Jump to: navigation, search Name Bringing a Range of Supported Mitigation Activities in Selected Countries to the Next Level Agency/Company /Organization Energy Research Centre of the Netherlands (ECN), Ecofys Sector Climate Focus Area Renewable Energy, Agriculture, People and Policy Topics Low emission development planning, Policies/deployment programs Website http://www.ecn.nl/docs/library Program Start 2011 Program End 2014 Country Chile, Indonesia, Kenya, Peru, Tunisia South America, South-Eastern Asia, Eastern Africa, South America, Northern Africa References ECN[1] Ecofys[2] Program Overview This project runs from March 2012 to December 2014, and is a collaboration

453

Genome-Wide Identification of Transcriptional Start Sites in the Plant Pathogen Pseudomonas syringae pv. tomato  

E-Print Network (OSTI)

identified 59-ends of transcripts for the plant pathogen Pseudomonas syringae pv. tomato str. DC3000-Wide Identification of Transcriptional Start Sites in the Plant Pathogen Pseudomonas syringae pv. tomato str. DC3000Genome-Wide Identification of Transcriptional Start Sites in the Plant Pathogen Pseudomonas

Myers, Chris

454

FLTC Sponsored Research and Development Project Wins NEH Digital Humanities Start-up Grant!  

E-Print Network (OSTI)

FLTC Sponsored Research and Development Project Wins NEH Digital Humanities Start-up Grant! A six technology has been awarded a National Endowment for the Humanities (NEH) Digital Humanities Start-up Grant (German) 6. Krysta Ryzewski, Department of Anthropology (Anthropology) The official list of 2014 NEH Grant

Cinabro, David

455

The slow start power controlled MAC protocol for mobile ad hoc networks and its performance analysis  

E-Print Network (OSTI)

is achieved by allowing more transmissions to take place simultaneously. The slow start principle used energy consumption and increase network throughput and lifetime. In our scheme the transmission power used for the RTS frames is not constant, but follows a slow start principle. The CTS frames, which

Varvarigo, Emmanouel "Manos"

456

Relay Attacks on Passive Keyless Entry and Start Systems in Modern Cars  

E-Print Network (OSTI)

to certain types of relay attacks 1 . Our attack allowed to open and start the car while the true distanceRelay Attacks on Passive Keyless Entry and Start Systems in Modern Cars Aur´elien Francillon, Boris.francillon, boris.danev, srdjan.capkun}@inf.ethz.ch Abstract We demonstrate relay attacks on Passive Keyless Entry

457

Core Analysis At Dunes Geothermal Area (1976) | Open Energy Information  

Open Energy Info (EERE)

Dunes Geothermal Area (1976) Dunes Geothermal Area (1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Dunes Geothermal Area (1976) Exploration Activity Details Location Dunes Geothermal Area Exploration Technique Core Analysis Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Fracture analysis to determine if sealing or open fractures exist Notes Core samples show diagenesis superimposed on episodic fracturing and fracture sealing. The minerals that fill fractures show significant temporal variations. Fracture sealing and low fracture porosity imply that only the most recently formed fractures are open to fluids. References Michael L. Batzle; Gene Simmons (1 January 1976) Microfractures in rocks from two geothermal areas

458

Geothermometry At Honokowai Area (Thomas, 1986) | Open Energy Information  

Open Energy Info (EERE)

Geothermometry At Honokowai Area (Thomas, 1986) Geothermometry At Honokowai Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Honokowai Area (Thomas, 1986) Exploration Activity Details Location Honokowai Area Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes Temperature and groundwater chemistry analyses were performed on three wells along the alluvial fan above Honokowai. Water temperatures were approximately 20degrees C and normal basal aquifer water chemistry was observed (Table 4). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Geothermometry_At_Honokowai_Area_(Thomas,_1986)&oldid=387033"

459

Geothermal Literature Review At Medicine Lake Geothermal Area (1984) | Open  

Open Energy Info (EERE)

Geothermal Area (1984) Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Medicine Lake Geothermal Area (1984) Exploration Activity Details Location Medicine Lake Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1984 Usefulness not indicated DOE-funding Unknown Notes The melt zones of volcanic clusters was analyzed with recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. References Goldstein, N. E.; Flexser, S. (1 December 1984) Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences

460

Cuttings Analysis At Imperial Valley Geothermal Area (1976) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Cuttings Analysis At Imperial Valley Geothermal Area (1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Imperial Valley Geothermal Area (1976) Exploration Activity Details Location Imperial Valley Geothermal Area Exploration Technique Cuttings Analysis Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the geologic environment of the geothermal area Notes The geologic environment of the particular areas of interest are described, including rock types, geologic structure, and other important parameters

Note: This page contains sample records for the topic "area activity start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Earth Tidal Analysis At Marysville Mountain Geothermal Area (1984) | Open  

Open Energy Info (EERE)

Mountain Geothermal Area (1984) Mountain Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Earth Tidal Analysis At Marysville Mountain Geothermal Area (1984) Exploration Activity Details Location Marysville Mountain Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1984 Usefulness useful DOE-funding Unknown Exploration Basis Determine porosity of the reservoir Notes The response of a confined, areally infinite aquifer to external loads imposed by earth tides is examined. Because the gravitational influence of celestial objects occurs over large areas of the earth, the confined aquifer is assumed to respond in an undrained fashion. Since undrained response is controlled by water compressibility, earth tide response can be

462

Geothermal Literature Review At Salton Trough Geothermal Area (1984) | Open  

Open Energy Info (EERE)

Trough Geothermal Area (1984) Trough Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Salton Trough Geothermal Area (1984) Exploration Activity Details Location Salton Trough Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1984 Usefulness not indicated DOE-funding Unknown Notes The melt zones of volcanic clusters was analyzed with recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. References Goldstein, N. E.; Flexser, S. (1 December 1984) Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences

463

Cuttings Analysis At Roosevelt Hot Springs Geothermal Area (1976) | Open  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Cuttings Analysis At Roosevelt Hot Springs Geothermal Area (1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Roosevelt Hot Springs Geothermal Area (1976) Exploration Activity Details Location Roosevelt Hot Springs Geothermal Area Exploration Technique Cuttings Analysis Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the geologic environment of the geothermal area Notes The geologic environment of the particular areas of interest are described, including rock types, geologic structure, and other important parameters that help describe the reservoir and overlying cap rock. References Pratt, H. R.; Simonson, E. R. (1 January 1976) Geotechnical

464

Geographic Information System At International Geothermal Area, Indonesia  

Open Energy Info (EERE)

International Geothermal Area, Indonesia International Geothermal Area, Indonesia (Nash, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At International Geothermal Area Indonesia (Nash, Et Al., 2002) Exploration Activity Details Location International Geothermal Area Indonesia Exploration Technique Geographic Information System Activity Date Usefulness not indicated DOE-funding Unknown Notes GIs also facilitates grid data (raster) analysis and visualization. For example, a raster GIs layer, derived from an enhanced Landsat 7 Thematic Mapper (TM) image of the Karaha-Telaga Bodas area, Indonesia, is shown in Figure 2. References Gregory D. Nash, Christopher Kesler, Michael C. Adam (2002) Geographic Information Systems- Tools For Geotherm Exploration, Tracers

465

DOE Announces Webinars on Kick-Starting an Energy Management Program,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kick-Starting an Energy Management Kick-Starting an Energy Management Program, SunShot Incubator Projects, and More DOE Announces Webinars on Kick-Starting an Energy Management Program, SunShot Incubator Projects, and More December 20, 2013 - 8:58am Addthis EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies to training for the clean energy workforce. Webinars are free; however, advanced registration is typically required. You can also watch archived webinars and browse previously aired videos, slides, and transcripts. Upcoming Webinars January 7: Live Webinar on Kick-starting Your Energy Management Program Webinar Sponsor: EERE's Better Buildings Initiative The Energy Department will present a live webinar titled "Kick-Starting

466

Crane Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Crane Creek Geothermal Area Crane Creek Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Crane Creek Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.3064,"lon":-116.7447,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

467

Mother Goose Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mother Goose Geothermal Area Mother Goose Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mother Goose Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":57.18,"lon":-157.0183,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

468

Fireball Ridge Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fireball Ridge Geothermal Area Fireball Ridge Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fireball Ridge Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.92,"lon":-119.07,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

469

Newcastle Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Newcastle Geothermal Area Newcastle Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Newcastle Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.66166667,"lon":-113.5616667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

470

Klamath Falls Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Klamath Falls Geothermal Area Klamath Falls Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Klamath Falls Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.23333333,"lon":-121.7666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

471

Clear Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Geothermal Area Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Clear Creek Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64.85,"lon":-162.3,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

472

Heber Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Heber Geothermal Area Heber Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Heber Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Heat Source 8 Geofluid Geochemistry 9 NEPA-Related Analyses (0) 10 Exploration Activities (2) 11 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.71666667,"lon":-115.5283333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

473

South Brawley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

South Brawley Geothermal Area South Brawley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: South Brawley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.90607,"lon":-115.54,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

474

Medicine Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Medicine Lake Geothermal Area Medicine Lake Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Medicine Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (9) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.57,"lon":-121.57,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

475

Fernley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fernley Geothermal Area Fernley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fernley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.598803,"lon":-119.110415,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

476

Lakeview Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lakeview Geothermal Area Lakeview Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lakeview Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.2,"lon":-120.36,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

477

Drum Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Drum Mountain Geothermal Area Drum Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Drum Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.544722222222,"lon":-112.91611111111,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

478

The Needles Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

The Needles Geothermal Area The Needles Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: The Needles Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (15) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.15,"lon":-119.68,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

479

Mt Signal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Signal Geothermal Area Signal Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mt Signal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.65,"lon":-115.71,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

480

Carson River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

River Geothermal Area River Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Carson River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.77,"lon":-119.715,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "area activity start" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Harney Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lake Geothermal Area Lake Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Harney Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.18166667,"lon":-119.0533333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

482

Maazama Well Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Maazama Well Geothermal Area Maazama Well Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Maazama Well Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8965,"lon":-121.9865,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

483

False Pass Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

False Pass Geothermal Area False Pass Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: False Pass Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":54.93,"lon":-163.24,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

484

Okpilak Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Okpilak Springs Geothermal Area Okpilak Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Okpilak Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":69.3,"lon":-144.0333333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

485

Hot Pot Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Hot Pot Geothermal Area Hot Pot Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Hot Pot Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.922,"lon":-117.108,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

486

Stillwater Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Stillwater Geothermal Area Stillwater Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Stillwater Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.51666667,"lon":-118.5516667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

487

Willow Well Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Well Geothermal Area Well Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Willow Well Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.6417,"lon":-150.095,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

488

Akutan Fumaroles Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Akutan Fumaroles Geothermal Area Akutan Fumaroles Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Akutan Fumaroles Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":54.1469,"lon":-165.9078,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

489

Fallon Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fallon Geothermal Area Fallon Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fallon Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.38,"lon":-118.65,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

490

Randsburg Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Randsburg Geothermal Area Randsburg Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Randsburg Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.38333333,"lon":-117.5333333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

491

Kwiniuk Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kwiniuk Geothermal Area Kwiniuk Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kwiniuk Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64.70787,"lon":-162.46488,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

492

Worswick Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Worswick Geothermal Area Worswick Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Worswick Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.5636,"lon":-114.7986,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

493

Radio Towers Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Radio Towers Geothermal Area Radio Towers Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Radio Towers Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.03666667,"lon":-115.4566667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

494

Newberry Caldera Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Newberry Caldera Geothermal Area Newberry Caldera Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Newberry Caldera Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (18) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.71666667,"lon":-121.2333333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

495

Serpentine Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Serpentine Springs Geothermal Area Serpentine Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Serpentine Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":65.85703165,"lon":-164.7097211,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

496

North Brawley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

North Brawley Geothermal Area North Brawley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: North Brawley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.0153,"lon":-115.5153,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

497

Canby Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Canby Geothermal Area Canby Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Canby Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.438,"lon":-120.8676,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

498

Mcleod 88 Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mcleod 88 Geothermal Area Mcleod 88 Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mcleod 88 Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.028,"lon":-117.136,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

499

Mitchell Butte Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mitchell Butte Geothermal Area Mitchell Butte Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mitchell Butte Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.763,"lon":-117.156,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

500

Circle Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Circle Geothermal Area Circle Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Circle Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":65.48236057,"lon":-144.6372556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}