Powered by Deep Web Technologies
Note: This page contains sample records for the topic "area 1996-2011 actual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

EPRI Power Switching Safety and Reliability Project: Summaries of Published Reports and Listing of Conference Presentations 1996--2011  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) Switching Safety and Reliability (SS&R) Project was initiated in 1996. As of December of 2011, this project had published 46 products, including software and a training DVD, covering seven broad subject areas: Studies of the switching process Studies of tools and technological aids used in the planning and execution of switching Studies of switching errors Incident analysis and investigation Studies of management methods and processes Training and operator qua...

2012-07-17T23:59:59.000Z

2

AREA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AREA AREA FAQ # Question Response 316 vs DCAA FAQ 1 An inquiry from CH about an SBIR recipient asking if a DCAA audit is sufficient to comply with the regulation or if they need to add this to their audit they have performed yearly by a public accounting firm. 316 audits are essentially A-133 audits for for-profit entities. They DO NOT replace DCAA or other audits requested by DOE to look at indirect rates or incurred costs or closeouts. DCAA would never agree to perform A-133 or our 316 audits. They don't do A-133 audits for DOD awardees. The purpose of the audits are different, look at different things and in the few instances of overlap, from different perspectives. 316

3

How People Actually Use Thermostats  

Science Conference Proceedings (OSTI)

Residential thermostats have been a key element in controlling heating and cooling systems for over sixty years. However, today's modern programmable thermostats (PTs) are complicated and difficult for users to understand, leading to errors in operation and wasted energy. Four separate tests of usability were conducted in preparation for a larger study. These tests included personal interviews, an on-line survey, photographing actual thermostat settings, and measurements of ability to accomplish four tasks related to effective use of a PT. The interviews revealed that many occupants used the PT as an on-off switch and most demonstrated little knowledge of how to operate it. The on-line survey found that 89% of the respondents rarely or never used the PT to set a weekday or weekend program. The photographic survey (in low income homes) found that only 30% of the PTs were actually programmed. In the usability test, we found that we could quantify the difference in usability of two PTs as measured in time to accomplish tasks. Users accomplished the tasks in consistently shorter times with the touchscreen unit than with buttons. None of these studies are representative of the entire population of users but, together, they illustrate the importance of improving user interfaces in PTs.

Meier, Alan; Aragon, Cecilia; Hurwitz, Becky; Mujumdar, Dhawal; Peffer, Therese; Perry, Daniel; Pritoni, Marco

2010-08-15T23:59:59.000Z

4

Before Getting There: Potential and Actual Collaboration  

Science Conference Proceedings (OSTI)

In this paper we introduce the concepts of Actual and Potential Collaboration Spaces. The former applies to the space where collaborative activities are performed, while the second relates to the initial space where opportunities for collaboration are ... Keywords: Doc2U, PIÑAS, casual and informal interactions, potential and actual collaboration spaces, potential collaboration awareness

Alberto L. Morán; Jesús Favela; Ana María Martínez Enríquez; Dominique Decouchant

2002-09-01T23:59:59.000Z

5

Tropical Africa: Calculated Actual Aboveground Live Biomass in Open and  

NLE Websites -- All DOE Office Websites (Extended Search)

Calculated Actual Aboveground Live Biomass in Open and Calculated Actual Aboveground Live Biomass in Open and Closed Forests (1980) image Brown, S., and G. Gaston. 1996. Tropical Africa: Land Use, Biomass, and Carbon Estimates For 1980. ORNL/CDIAC-92, NDP-055. Carbon Dioxide Information Analysis Center, U.S. Department of Energy, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A. More Maps Land Use Maximum Potential Biomass Density Area of Closed Forests (By Country) Mean Biomass of Closed Forests (By Country) Area of Open Forests (By Country) Mean Biomass of Open Forests (By County) Percent Forest Cover (By Country) Total Forest Biomass (By Country) Population Density - 1990 (By Administrative Unit) Population Density - 1980 (By Administrative Unit) Population Density - 1970 (By Administrative Unit) Population Density - 1960 (By Administrative Unit)

6

Use of Remotely Sensed Actual Evapotranspiration to Improve Rainfall–Runoff Modeling in Southeast Australia  

Science Conference Proceedings (OSTI)

This paper explores the use of the Moderate Resolution Imaging Spectroradiometer (MODIS), mounted on the polar-orbiting Terra satellite, to determine leaf area index (LAI), and use actual evapotranspiration estimated using MODIS LAI data combined ...

Yongqiang Zhang; Francis H. S. Chiew; Lu Zhang; Hongxia Li

2009-08-01T23:59:59.000Z

7

Table 13. Coal Production, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Production, Projected vs. Actual" Coal Production, Projected vs. Actual" "Projected" " (million short tons)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",999,1021,1041,1051,1056,1066,1073,1081,1087,1098,1107,1122,1121,1128,1143,1173,1201,1223 "AEO 1995",,1006,1010,1011,1016,1017,1021,1027,1033,1040,1051,1066,1076,1083,1090,1108,1122,1137 "AEO 1996",,,1037,1044,1041,1045,1061,1070,1086,1100,1112,1121,1135,1156,1161,1167,1173,1184,1190 "AEO 1997",,,,1028,1052,1072,1088,1105,1110,1115,1123,1133,1146,1171,1182,1190,1193,1201,1209 "AEO 1998",,,,,1088,1122,1127.746338,1144.767212,1175.662598,1176.493652,1182.742065,1191.246948,1206.99585,1229.007202,1238.69043,1248.505981,1260.836914,1265.159424,1284.229736

8

Table 22. Energy Intensity, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Intensity, Projected vs. Actual" Energy Intensity, Projected vs. Actual" "Projected" " (quadrillion Btu / real GDP in billion 2005 chained dollars)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",11.24893441,11.08565002,10.98332766,10.82852279,10.67400621,10.54170176,10.39583203,10.27184573,10.14478673,10.02575883,9.910410202,9.810812106,9.69894802,9.599821783,9.486985399,9.394733753,9.303329725,9.221322623 "AEO 1995",,10.86137373,10.75116461,10.60467959,10.42268977,10.28668187,10.14461664,10.01081222,9.883759026,9.759022105,9.627404949,9.513643295,9.400418762,9.311729546,9.226142899,9.147374752,9.071102491,8.99599906 "AEO 1996",,,10.71047701,10.59846153,10.43655044,10.27812088,10.12746866,9.9694713,9.824165152,9.714832565,9.621874334,9.532324916,9.428169355,9.32931308,9.232716414,9.170931044,9.086870061,9.019963901,8.945602337

9

Improving Industrial Refrigeration System Efficiency - Actual Applications  

E-Print Network (OSTI)

This paper discusses actual design and modifications for increased system efficiency and includes reduced chilled liquid flow during part load operation, reduced condensing and increased evaporator temperatures for reduced system head, thermosiphon cycle cooling during winter operation, compressor intercooling, direct refrigeration vs. brine cooling, insulation of cold piping to reduce heat gain, multiple screw compressors for improved part load operation, evaporative condensers for reduced system head and pumping energy, and using high efficiency motors.

White, T. L.

1980-01-01T23:59:59.000Z

10

A Sensitivity Study of Building Performance Using 30-Year Actual...  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts Media Contacts A Sensitivity Study of Building Performance Using 30-Year Actual Weather Data Title A Sensitivity Study of Building Performance Using 30-Year Actual...

11

Table 14. Coal Production, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Coal Production, Projected vs. Actual Coal Production, Projected vs. Actual (million short tons) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 914 939 963 995 1031 1080 AEO 1983 900 926 947 974 1010 1045 1191 AEO 1984 899 921 948 974 1010 1057 1221 AEO 1985 886 909 930 940 958 985 1015 1041 1072 1094 1116 AEO 1986 890 920 954 962 983 1017 1044 1073 1097 1126 1142 1156 1176 1191 1217 AEO 1987 917 914 932 962 978 996 1020 1043 1068 1149 AEO 1989* 941 946 977 990 1018 1039 1058 1082 1084 1107 1130 1152 1171 AEO 1990 973 987 1085 1178 1379 AEO 1991 1035 1002 1016 1031 1043 1054 1065 1079 1096 1111 1133 1142 1160 1193 1234 1272 1309 1349 1386 1433 AEO 1992 1004 1040 1019 1034 1052 1064 1074 1087 1102 1133 1144 1156 1173 1201 1229 1272 1312 1355 1397 AEO 1993 1039 1043 1054 1065 1076 1086 1094 1102 1125 1136 1148 1161 1178 1204 1237 1269 1302 1327 AEO 1994 999 1021

12

Definition: Net Actual Interchange | Open Energy Information  

Open Energy Info (EERE)

interchange, balancing authority, smart grid, Balancing Authority Area References Glossary of Terms Used in Reliability Standards An inli LikeLike UnlikeLike You like this.Sign...

13

Table 23. Energy Intensity, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Energy Intensity, Projected vs. Actual Energy Intensity, Projected vs. Actual (quadrillion Btu / $Billion Nominal GDP) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 20.1 18.5 16.9 15.5 14.4 13.2 AEO 1983 19.9 18.7 17.4 16.2 15.1 14.0 9.5 AEO 1984 20.1 19.0 17.7 16.5 15.5 14.5 10.2 AEO 1985 20.0 19.1 18.0 16.9 15.9 14.7 13.7 12.7 11.8 11.0 10.3 AEO 1986 18.3 17.8 16.8 16.1 15.2 14.3 13.4 12.6 11.7 10.9 10.2 9.5 8.9 8.3 7.8 AEO 1987 17.6 17.0 16.3 15.4 14.5 13.7 12.9 12.1 11.4 8.2 AEO 1989* 16.9 16.2 15.2 14.2 13.3 12.5 11.7 10.9 10.2 9.6 9.0 8.5 8.0 AEO 1990 16.1 15.4 11.7 8.6 6.4 AEO 1991 15.5 14.9 14.2 13.6 13.0 12.5 11.9 11.3 10.8 10.3 9.7 9.2 8.7 8.3 7.9 7.4 7.0 6.7 6.3 6.0 AEO 1992 15.0 14.5 13.9 13.3 12.7 12.1 11.6 11.0 10.5 10.0 9.5 9.0 8.6 8.1 7.7 7.3 6.9 6.6 6.2 AEO 1993 14.7 13.9 13.4 12.8 12.3 11.8 11.2 10.7 10.2 9.6 9.2 8.7 8.3 7.8 7.4 7.1 6.7 6.4

14

The University of Texas at Austin Jan-00 PART I CRIMES Reported Unfounded Actual Cleared % Clrd.  

E-Print Network (OSTI)

The University of Texas at Austin Jan-00 PART I CRIMES Reported Unfounded Actual Cleared % Clrd. 1.3% DP Form #31 - Page 1(Rev. 1/93) #12;The University of Texas at Austin Jan-00 PART I CRIMES BURGLARY of Texas at Austin Jan-00 PART I CRIMES BURGLARY & THEFT TARGET SECTION (List Other Target Areas) #/Month

Johns, Russell Taylor

15

The University of Texas at Austin Jan-04 PART I CRIMES Reported Unfounded Actual Cleared % Clrd.  

E-Print Network (OSTI)

The University of Texas at Austin Jan-04 PART I CRIMES Reported Unfounded Actual Cleared % Clrd. 1.1% DP Form #31 - Page 1(Rev. 1/93) #12;The University of Texas at Austin Jan-04 PART I CRIMES BURGLARY University of Texas at Austin Jan-04 PART I CRIMES BURGLARY & THEFT TARGET SECTION (List Other Target Areas

Johns, Russell Taylor

16

Table 14a. Average Electricity Prices, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

a. Average Electricity Prices, Projected vs. Actual" "Projected Price in Constant Dollars" " (constant dollars, cents per kilowatt-hour in ""dollar year"" specific to each AEO)"...

17

Shale Gas Production: Potential versus Actual GHG Emissions  

E-Print Network (OSTI)

Shale Gas Production: Potential versus Actual GHG Emissions Francis O'Sullivan and Sergey Paltsev://globalchange.mit.edu/ Printed on recycled paper #12;1 Shale Gas Production: Potential versus Actual GHG Emissions Francis O'Sullivan* and Sergey Paltsev* Abstract Estimates of greenhouse gas (GHG) emissions from shale gas production and use

18

Table 13. Coal Production, Projected vs. Actual Projected  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Production, Projected vs. Actual Projected (million short tons) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 999...

19

Table 14b. Average Electricity Prices, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

b. Average Electricity Prices, Projected vs. Actual Projected Price in Nominal Dollars (nominal dollars, cents per kilowatt-hour) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002...

20

Table 14b. Average Electricity Prices, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

b. Average Electricity Prices, Projected vs. Actual" "Projected Price in Nominal Dollars" " (nominal dollars, cents per kilowatt-hour)" ,1993,1994,1995,1996,1997,1998,1999,2000,200...

Note: This page contains sample records for the topic "area 1996-2011 actual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Table 8. Total Natural Gas Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Consumption, Projected vs. Actual" "Projected" " (trillion cubic feet)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011...

22

Predicted vs. Actual Energy Savings of Retrofitted House  

E-Print Network (OSTI)

This paper reports the results of actual energy savings and the predicted energy savings of retrofitted one-story house located in Dhahran, Saudi Arabia. The process started with modeling the house prior to retrofitting and after retrofitting. The monthly metered energy consumption is acquired from the electric company archives for seven years prior to retrofitting and recording the actual monthly energy consumption of the post retrofitting. The house model is established on DOE 2.1. Actual monthly energy consumption is used to calibrate and fine-tuning the model until the gap between actual and predicted consumption was narrowed. Then the Energy Conservation Measures (ECMs) are entered into the modeled house according to the changes in thermo-physical properties of the envelope and the changes in schedules and number of users. In order to account for those differences, electrical consumption attributed to A/C in summer was isolated and compared. The study followed the International Performance Measurement & Verification Protocol (IPMVP) in assessing the impact of energy conservation measures on actual, metered, building energy consumption. The study aimed to show the predicted savings by the simulated building model and the actual utility bills' analysis in air conditioning consumption and peak at monthly load due to building envelope.

Al-Mofeez, I.

2010-01-01T23:59:59.000Z

23

Shale gas production: potential versus actual greenhouse gas emissions*  

E-Print Network (OSTI)

Shale gas production: potential versus actual greenhouse gas emissions* Francis O Environ. Res. Lett. 7 (2012) 044030 (6pp) doi:10.1088/1748-9326/7/4/044030 Shale gas production: potential gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level

24

Attachment Implementation Procedures to Report Deferred, Actual, and Required Maintenance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft July 9, 2009 Draft July 9, 2009 1 Attachment Implementation Procedures to Report Deferred, Actual, and Required Maintenance On Real Property 1. The following is the FY 2009 implementation procedures for the field offices/sites to determine and report deferred maintenance on real property as required by the Statement of Federal Financial Accounting Standards (SFFAS) No. 6, Accounting for Property, Plant, and Equipment (PP&E) and DOE Order 430.1B, Real Property Asset Management (RPAM). a. This document is intended to assist field offices/sites in consistently and accurately applying the appropriate methods to determine and report deferred maintenance estimates and reporting of annual required and actual maintenance costs. b. This reporting satisfies the Department's obligation to recognize and record deferred

25

Table 12. Total Coal Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Consumption, Projected vs. Actual" Coal Consumption, Projected vs. Actual" "Projected" " (million short tons)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",920,928,933,938,943,948,953,958,962,967,978,990,987,992,1006,1035,1061,1079 "AEO 1995",,935,940,941,947,948,951,954,958,963,971,984,992,996,1002,1013,1025,1039 "AEO 1996",,,937,942,954,962,983,990,1004,1017,1027,1033,1046,1067,1070,1071,1074,1082,1087 "AEO 1997",,,,948,970,987,1003,1017,1020,1025,1034,1041,1054,1075,1086,1092,1092,1099,1104 "AEO 1998",,,,,1009,1051,1043.875977,1058.292725,1086.598145,1084.446655,1089.787109,1096.931763,1111.523926,1129.833862,1142.338257,1148.019409,1159.695312,1162.210815,1180.029785

26

Table 4. Total Petroleum Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Petroleum Consumption, Projected vs. Actual Petroleum Consumption, Projected vs. Actual Projected (million barrels) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 6450 6566 6643 6723 6811 6880 6957 7059 7125 7205 7296 7377 7446 7523 7596 7665 7712 7775 AEO 1995 6398 6544 6555 6676 6745 6822 6888 6964 7048 7147 7245 7337 7406 7472 7537 7581 7621 AEO 1996 6490 6526 6607 6709 6782 6855 6942 7008 7085 7176 7260 7329 7384 7450 7501 7545 7581 AEO 1997 6636 6694 6826 6953 7074 7183 7267 7369 7461 7548 7643 7731 7793 7833 7884 7924 AEO 1998 6895 6906 7066 7161 7278 7400 7488 7597 7719 7859 7959 8074 8190 8286 8361 AEO 1999 6884 7007 7269 7383 7472 7539 7620 7725 7841 7949 8069 8174 8283 8351 AEO 2000 7056 7141 7266 7363 7452 7578 7694 7815 7926 8028 8113 8217 8288

27

Table 6. Petroleum Net Imports, Projected vs. Actual Projected  

U.S. Energy Information Administration (EIA) Indexed Site

Petroleum Net Imports, Projected vs. Actual Petroleum Net Imports, Projected vs. Actual Projected (million barrels) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 2935 3201 3362 3504 3657 3738 3880 3993 4099 4212 4303 4398 4475 4541 4584 4639 4668 4672 AEO 1995 2953 3157 3281 3489 3610 3741 3818 3920 4000 4103 4208 4303 4362 4420 4442 4460 4460 AEO 1996 3011 3106 3219 3398 3519 3679 3807 3891 3979 4070 4165 4212 4260 4289 4303 4322 4325 AEO 1997 3099 3245 3497 3665 3825 3975 4084 4190 4285 4380 4464 4552 4617 4654 4709 4760 AEO 1998 3303 3391 3654 3713 3876 4053 4137 4298 4415 4556 4639 4750 4910 4992 5087 AEO 1999 3380 3442 3888 4022 4153 4238 4336 4441 4545 4652 4780 4888 4999 5073 AEO 2000 3599 3847 4036 4187 4320 4465 4579 4690 4780 4882 4968 5055 5113

28

Attachment Implementation Procedures to Report Deferred, Actual, and Required Maintenance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final July 01, 2010 Final July 01, 2010 1 Attachment Implementation Procedures to Report Deferred, Actual, and Required Maintenance On Real Property 1. The following is the FY 2010 implementation procedures for the field offices/sites to determine and report deferred maintenance on real property as required by the Statement of Federal Financial Accounting Standards (SFFAS) No. 6, Accounting for Property, Plant, and Equipment (PP&E) and DOE Order 430.1B, Real Property Asset Management (RPAM). a. This document is intended to assist field offices/sites in consistently and accurately applying the appropriate methods to determine and report deferred maintenance estimates and reporting of annual required and actual maintenance costs. b. This reporting satisfies the Department's obligation to recognize and record deferred

29

Table 5. Domestic Crude Oil Production, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Crude Oil Production, Projected vs. Actual Domestic Crude Oil Production, Projected vs. Actual Projected (million barrels) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 2508 2373 2256 2161 2088 2022 1953 1891 1851 1825 1799 1781 1767 1759 1778 1789 1807 1862 AEO 1995 2402 2307 2205 2095 2037 1967 1953 1924 1916 1905 1894 1883 1887 1887 1920 1945 1967 AEO 1996 2387 2310 2248 2172 2113 2062 2011 1978 1953 1938 1916 1920 1927 1949 1971 1986 2000 AEO 1997 2362 2307 2245 2197 2143 2091 2055 2033 2015 2004 1997 1989 1982 1975 1967 1949 AEO 1998 2340 2332 2291 2252 2220 2192 2169 2145 2125 2104 2087 2068 2050 2033 2016 AEO 1999 2340 2309 2296 2265 2207 2171 2141 2122 2114 2092 2074 2057 2040 2025 AEO 2000 2193 2181 2122 2063 2016 1980 1957 1939 1920 1904 1894 1889 1889

30

Table 7b. Natural Gas Wellhead Prices, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

b. Natural Gas Wellhead Prices, Projected vs. Actual" b. Natural Gas Wellhead Prices, Projected vs. Actual" "Projected Price in Nominal Dollars" " (nominal dollars per thousand cubic feet)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",1.983258692,2.124739238,2.26534793,2.409252566,2.585728477,2.727400662,2.854942053,2.980927152,3.13861755,3.345819536,3.591100993,3.849544702,4.184279801,4.510016556,4.915074503,5.29147351,5.56022351,5.960471854 "AEO 1995",,1.891706924,1.998384058,1.952818035,2.064227053,2.152302174,2.400016103,2.569033816,2.897681159,3.160088567,3.556344605,3.869033816,4.267391304,4.561932367,4.848599034,5.157246377,5.413405797,5.660917874 "AEO 1996",,,1.630674532,1.740334763,1.862956911,1.9915856,2.10351261,2.194934146,2.287655669,2.378991658,2.476043002,2.589847464,2.717610782,2.836870306,2.967124845,3.117719429,3.294003735,3.485657428,3.728419409

31

Steam Trap Testing and Evaluation: An Actual Plant Case Study  

E-Print Network (OSTI)

With rising steam costs and a high failure rate on the Joliet Plants standard steam trap, a testing and evaluation program was begun to find a steam trap that would work at Olin-Joliet. The basis was to conduct the test on the actual process equipment and that a minimum life be achieved. This paper deals with the history of the steam system/condensate systems, the setting up of the testing procedure, which traps were and were not tested and the results of the testing program to date.

Feldman, A. L.

1981-01-01T23:59:59.000Z

32

Table 16. Total Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Consumption, Projected vs. Actual" Total Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",88.02,89.53,90.72,91.73,92.71,93.61,94.56,95.73,96.69,97.69,98.89,100,100.79,101.7,102.7,103.6,104.3,105.23 "AEO 1995",,89.21,89.98,90.57,91.91,92.98,93.84,94.61,95.3,96.19,97.18,98.38,99.37,100.3,101.2,102.1,102.9,103.88 "AEO 1996",,,90.6,91.26,92.54,93.46,94.27,95.07,95.94,96.92,97.98,99.2,100.38,101.4,102.1,103.1,103.8,104.69,105.5 "AEO 1997",,,,92.64,93.58,95.13,96.59,97.85,98.79,99.9,101.2,102.4,103.4,104.7,105.8,106.6,107.2,107.9,108.6 "AEO 1998",,,,,94.68,96.71,98.61027527,99.81855774,101.254303,102.3907928,103.3935776,104.453476,105.8160553,107.2683716,108.5873566,109.8798981,111.0723877,112.166893,113.0926208

33

Table 7a. Natural Gas Wellhead Prices, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

a. Natural Gas Wellhead Prices, Projected vs. Actual" a. Natural Gas Wellhead Prices, Projected vs. Actual" "Projected Price in Constant Dollars" " (constant dollars per thousand cubic feet in ""dollar year"" specific to each AEO)" ,"AEO Dollar Year",1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",1992,1.9399,2.029,2.1099,2.1899,2.29,2.35,2.39,2.42,2.47,2.55,2.65,2.75,2.89,3.01,3.17,3.3,3.35,3.47 "AEO 1995",1993,,1.85,1.899,1.81,1.87,1.8999,2.06,2.14,2.34,2.47,2.69,2.83,3.02,3.12,3.21,3.3,3.35,3.39 "AEO 1996",1994,,,1.597672343,1.665446997,1.74129355,1.815978527,1.866241336,1.892736554,1.913619637,1.928664207,1.943216205,1.964540124,1.988652706,2.003382921,2.024799585,2.056392431,2.099974155,2.14731431,2.218094587

34

Table 14a. Average Electricity Prices, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

a. Average Electricity Prices, Projected vs. Actual a. Average Electricity Prices, Projected vs. Actual Projected Price in Constant Dollars (constant dollars, cents per kilowatt-hour in "dollar year" specific to each AEO) AEO Dollar Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1995 1993 6.80 6.80 6.70 6.70 6.70 6.70 6.70 6.80 6.80 6.90 6.90 6.90 7.00 7.00 7.10 7.10 7.20 AEO 1996 1994 7.09 6.99 6.94 6.93 6.96 6.96 6.96 6.97 6.98 6.97 6.98 6.95 6.95 6.94 6.96 6.95 6.91 AEO 1997 1995 6.94 6.89 6.90 6.91 6.86 6.84 6.78 6.73 6.66 6.60 6.58 6.54 6.49 6.48 6.45 6.36

35

Table 4. Total Petroleum Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Petroleum Consumption, Projected vs. Actual" Total Petroleum Consumption, Projected vs. Actual" "Projected" " (million barrels)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",6449.55,6566.35,6643,6723.3,6810.9,6880.25,6956.9,7059.1,7124.8,7205.1,7296.35,7376.65,7446,7522.65,7595.65,7665,7712.45,7774.5 "AEO 1995",,6398.45,6544.45,6555.4,6675.85,6745.2,6821.85,6887.55,6964.2,7048.15,7146.7,7245.25,7336.5,7405.85,7471.55,7537.25,7581.05,7621.2 "AEO 1996",,,6489.7,6526.2,6606.5,6708.7,6781.7,6854.7,6942.3,7008,7084.65,7175.9,7259.85,7329.2,7383.95,7449.65,7500.75,7544.55,7581.05 "AEO 1997",,,,6635.7,6694.1,6825.5,6953.25,7073.7,7183.2,7267.15,7369.35,7460.6,7548.2,7643.1,7730.7,7792.75,7832.9,7884,7924.15

36

Table 10. Natural Gas Net Imports, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Net Imports, Projected vs. Actual" Natural Gas Net Imports, Projected vs. Actual" "Projected" " (trillion cubic feet)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",2.02,2.4,2.66,2.74,2.81,2.85,2.89,2.93,2.95,2.97,3,3.16,3.31,3.5,3.57,3.63,3.74,3.85 "AEO 1995",,2.46,2.54,2.8,2.87,2.87,2.89,2.9,2.9,2.92,2.95,2.97,3,3.03,3.19,3.35,3.51,3.6 "AEO 1996",,,2.56,2.75,2.85,2.88,2.93,2.98,3.02,3.06,3.07,3.09,3.12,3.17,3.23,3.29,3.37,3.46,3.56 "AEO 1997",,,,2.82,2.96,3.16,3.43,3.46,3.5,3.53,3.58,3.64,3.69,3.74,3.78,3.83,3.87,3.92,3.97 "AEO 1998",,,,,2.95,3.19,3.531808376,3.842532873,3.869043112,3.894513845,3.935930967,3.976293564,4.021911621,4.062207222,4.107616425,4.164502144,4.221304417,4.277039051,4.339964867

37

Table 12. Total Coal Consumption, Projected vs. Actual Projected  

U.S. Energy Information Administration (EIA) Indexed Site

Total Coal Consumption, Projected vs. Actual Total Coal Consumption, Projected vs. Actual Projected (million short tons) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 920 928 933 938 943 948 953 958 962 967 978 990 987 992 1006 1035 1061 1079 AEO 1995 935 940 941 947 948 951 954 958 963 971 984 992 996 1002 1013 1025 1039 AEO 1996 937 942 954 962 983 990 1004 1017 1027 1033 1046 1067 1070 1071 1074 1082 1087 AEO 1997 948 970 987 1003 1017 1020 1025 1034 1041 1054 1075 1086 1092 1092 1099 1104 AEO 1998 1009 1051 1044 1058 1087 1084 1090 1097 1112 1130 1142 1148 1160 1162 1180 AEO 1999 1040 1075 1092 1109 1113 1118 1120 1120 1133 1139 1150 1155 1156 1173 AEO 2000 1053 1086 1103 1124 1142 1164 1175 1184 1189 1194 1199 1195 1200 AEO 2001 1078 1112 1135 1153 1165 1183 1191 1220 1228 1228 1235 1240

38

Table 22. Total Carbon Dioxide Emissions, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Total Carbon Dioxide Emissions, Projected vs. Actual Total Carbon Dioxide Emissions, Projected vs. Actual (million metric tons) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 AEO 1983 AEO 1984 AEO 1985 AEO 1986 AEO 1987 AEO 1989* AEO 1990 AEO 1991 AEO 1992 AEO 1993 5009 5053 5130 5207 5269 5335 5401 5449 5504 5562 5621 5672 5724 5771 5819 5867 5918 5969 AEO 1994 5060 5130 5185 5240 5287 5335 5379 5438 5482 5529 5599 5658 5694 5738 5797 5874 5925 AEO 1995 5137 5174 5188 5262 5309 5361 5394 5441.3 5489.0 5551.3 5621.0 5679.7 5727.3 5775.0 5841.0 5888.7 AEO 1996 5182 5224 5295 5355 5417 5464 5525 5589 5660 5735 5812 5879 5925 5981 6030 AEO 1997 5295 5381 5491 5586 5658 5715 5781 5863 5934 6009 6106 6184 6236 6268 AEO 1998 5474 5621 5711 5784 5893 5957 6026 6098 6192 6292 6379 6465 6542 AEO 1999 5522 5689 5810 5913 5976 6036 6084 6152 6244 6325 6418 6493 AEO 2000

39

Table 16. Total Electricity Sales, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Electricity Sales, Projected vs. Actual Electricity Sales, Projected vs. Actual (billion kilowatt-hours) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 2364 2454 2534 2626 2708 2811 AEO 1983 2318 2395 2476 2565 2650 2739 3153 AEO 1984 2321 2376 2461 2551 2637 2738 3182 AEO 1985 2317 2360 2427 2491 2570 2651 2730 2808 2879 2949 3026 AEO 1986 2363 2416 2479 2533 2608 2706 2798 2883 2966 3048 3116 3185 3255 3324 3397 AEO 1987 2460 2494 2555 2622 2683 2748 2823 2902 2977 3363 AEO 1989* 2556 2619 2689 2760 2835 2917 2994 3072 3156 3236 3313 3394 3473 AEO 1990 2612 2689 3083 3488.0 3870.0 AEO 1991 2700 2762 2806 2855 2904 2959 3022 3088 3151 3214 3282 3355 3427 3496 3563 3632 3704 3776 3846 3916 AEO 1992 2746 2845 2858 2913 2975 3030 3087 3146 3209 3276 3345 3415 3483 3552 3625 3699 3774 3847 3921 AEO 1993 2803 2840 2893 2946 2998 3052 3104 3157 3214 3271 3327

40

Table 5. Domestic Crude Oil Production, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Crude Oil Production, Projected vs. Actual" Domestic Crude Oil Production, Projected vs. Actual" "Projected" " (million barrels)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",2507.55,2372.5,2255.7,2160.8,2087.8,2022.1,1952.75,1890.7,1850.55,1825,1799.45,1781.2,1766.6,1759.3,1777.55,1788.5,1806.75,1861.5 "AEO 1995",,2401.7,2306.8,2204.6,2095.1,2036.7,1967.35,1952.75,1923.55,1916.25,1905.3,1894.35,1883.4,1887.05,1887.05,1919.9,1945.45,1967.35 "AEO 1996",,,2387.1,2310.45,2248.4,2171.75,2113.35,2062.25,2011.15,1978.3,1952.75,1938.15,1916.25,1919.9,1927.2,1949.1,1971,1985.6,2000.2 "AEO 1997",,,,2361.55,2306.8,2244.75,2197.3,2142.55,2091.45,2054.95,2033.05,2014.8,2003.85,1996.55,1989.25,1981.95,1974.65,1967.35,1949.1

Note: This page contains sample records for the topic "area 1996-2011 actual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Direct quantum communication without actual transmission of the message qubits  

E-Print Network (OSTI)

Recently an orthogonal state based protocol of direct quantum communication without actual transmission of particles is proposed by Salih \\emph{et al.}{[}Phys. Rev. Lett. \\textbf{110} (2013) 170502{]} using chained quantum Zeno effect. As the no-transmission of particle claim is criticized by Vaidman {[}arXiv:1304.6689 (2013){]}, the condition (claim) of Salih \\emph{et al.} is weaken here to the extent that transmission of particles is allowed, but transmission of the message qubits (the qubits on which the secret information is encoded) is not allowed. Remaining within this weaker condition it is shown that there exists a large class of quantum states, that can be used to implement an orthogonal state based protocol of secure direct quantum communication using entanglement swapping, where actual transmission of the message qubits is not required. The security of the protocol originates from monogamy of entanglement. As the protocol can be implemented without using conjugate coding its security is independent of non-commutativity.

Chitra Shukla; Anirban Pathak

2013-07-23T23:59:59.000Z

42

Table 9. Natural Gas Production, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Production, Projected vs. Actual" Natural Gas Production, Projected vs. Actual" "Projected" " (trillion cubic feet)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",17.71,17.68,17.84,18.12,18.25,18.43,18.58,18.93,19.28,19.51,19.8,19.92,20.13,20.18,20.38,20.35,20.16,20.19 "AEO 1995",,18.28,17.98,17.92,18.21,18.63,18.92,19.08,19.2,19.36,19.52,19.75,19.94,20.17,20.28,20.6,20.59,20.88 "AEO 1996",,,18.9,19.15,19.52,19.59,19.59,19.65,19.73,19.97,20.36,20.82,21.25,21.37,21.68,22.11,22.47,22.83,23.36 "AEO 1997",,,,19.1,19.7,20.17,20.32,20.54,20.77,21.26,21.9,22.31,22.66,22.93,23.38,23.68,23.99,24.25,24.65 "AEO 1998",,,,,18.85,19.06,20.34936142,20.27427673,20.60257721,20.94442177,21.44076347,21.80969238,22.25416183,22.65365219,23.176651,23.74545097,24.22989273,24.70069313,24.96691322

43

Table 7a. Natural Gas Wellhead Prices, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

a. Natural Gas Wellhead Prices, Projected vs. Actual a. Natural Gas Wellhead Prices, Projected vs. Actual Projected Price in Constant Dollars (constant dollars per thousand cubic feet in "dollar year" specific to each AEO) AEO Dollar Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 1992 1.94 2.03 2.11 2.19 2.29 2.35 2.39 2.42 2.47 2.55 2.65 2.75 2.89 3.01 3.17 3.30 3.35 3.47 AEO 1995 1993 1.85 1.90 1.81 1.87 1.90 2.06 2.14 2.34 2.47 2.69 2.83 3.02 3.12 3.21 3.30 3.35 3.39 AEO 1996 1994 1.60 1.67 1.74 1.82 1.87 1.89 1.91 1.93 1.94 1.96 1.99 2.00 2.02 2.06 2.10 2.15 2.22

44

Nonlinear excitations in DNA: Aperiodic models vs actual genome sequences  

E-Print Network (OSTI)

We study the effects of the sequence on the propagation of nonlinear excitations in simple models of DNA in which we incorporate actual DNA sequences obtained from human genome data. We show that kink propagation requires forces over a certain threshold, a phenomenon already found for aperiodic sequences [F. Dom\\'\\i nguez-Adame {\\em et al.}, Phys. Rev. E {\\bf 52}, 2183 (1995)]. For forces below threshold, the final stop positions are highly dependent on the specific sequence. The results of our model are consistent with the stick-slip dynamics of the unzipping process observed in experiments. We also show that the effective potential, a collective coordinate formalism introduced by Salerno and Kivshar [Phys. Lett. A {\\bf 193}, 263 (1994)] is a useful tool to identify key regions in DNA that control the dynamical behavior of large segments. Additionally, our results lead to further insights in the phenomenology observed in aperiodic systems.

Sara Cuenda; Angel Sanchez

2004-07-02T23:59:59.000Z

45

Table 17. Total Delivered Residential Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Residential Energy Consumption, Projected vs. Actual Total Delivered Residential Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 10.3 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.5 10.5 10.5 10.5 10.5 10.6 10.6 AEO 1995 11.0 10.8 10.8 10.8 10.8 10.8 10.8 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.8 10.8 10.9 AEO 1996 10.4 10.7 10.7 10.7 10.8 10.8 10.9 10.9 11.0 11.2 11.2 11.3 11.4 11.5 11.6 11.7 11.8 AEO 1997 11.1 10.9 11.1 11.1 11.2 11.2 11.2 11.3 11.4 11.5 11.5 11.6 11.7 11.8 11.9 12.0 AEO 1998 10.7 11.1 11.2 11.4 11.5 11.5 11.6 11.7 11.8 11.9 11.9 12.1 12.1 12.2 12.3 AEO 1999 10.5 11.1 11.3 11.3 11.4 11.5 11.5 11.6 11.6 11.7 11.8 11.9 12.0 12.1 AEO 2000 10.7 10.9 11.0 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 12.0

46

Table 2. Real Gross Domestic Product, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Real Gross Domestic Product, Projected vs. Actual Real Gross Domestic Product, Projected vs. Actual Projected Real GDP Growth Trend (cumulative average percent growth in projected real GDP from first year shown for each AEO) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 3.1% 3.2% 2.9% 2.8% 2.7% 2.7% 2.6% 2.6% 2.6% 2.5% 2.5% 2.5% 2.4% 2.4% 2.4% 2.4% 2.3% 2.3% AEO 1995 3.7% 2.8% 2.5% 2.7% 2.7% 2.6% 2.6% 2.5% 2.5% 2.5% 2.5% 2.4% 2.4% 2.4% 2.3% 2.3% 2.2% AEO 1996 2.6% 2.2% 2.5% 2.5% 2.5% 2.5% 2.4% 2.4% 2.4% 2.4% 2.4% 2.3% 2.3% 2.2% 2.2% 2.2% 1.6% AEO 1997 2.1% 1.9% 2.0% 2.2% 2.3% 2.3% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.1% 2.1% 1.5% AEO 1998 3.4% 2.9% 2.6% 2.5% 2.4% 2.4% 2.3% 2.3% 2.3% 2.3% 2.3% 2.3% 2.3% 2.2% 1.8% AEO 1999 3.4% 2.5% 2.5% 2.4% 2.4% 2.4% 2.3% 2.4% 2.4% 2.4% 2.4% 2.4% 2.4% 1.8% AEO 2000 3.8% 2.9% 2.7% 2.6% 2.6% 2.6% 2.6% 2.6% 2.5% 2.5%

47

Table 7. Petroleum Net Imports, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Net Imports, Projected vs. Actual Petroleum Net Imports, Projected vs. Actual (million barrels per day) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 7.58 7.45 7.12 6.82 6.66 7.09 AEO 1983 5.15 5.44 5.73 5.79 5.72 5.95 6.96 AEO 1984 4.85 5.11 5.53 5.95 6.31 6.59 8.65 AEO 1985 4.17 4.38 4.73 4.93 5.36 5.72 6.23 6.66 7.14 7.39 7.74 AEO 1986 5.15 5.38 5.46 5.92 6.46 7.09 7.50 7.78 7.96 8.20 8.47 8.74 9.04 9.57 9.76 AEO 1987 5.81 6.04 6.81 7.28 7.82 8.34 8.71 8.94 8.98 10.01 AEO 1989* 6.28 6.84 7.49 7.96 8.53 8.83 9.04 9.28 9.60 9.64 9.75 10.02 10.20 AEO 1990 7.20 7.61 9.13 9.95 11.02 AEO 1991 7.28 7.25 7.34 7.48 7.72 8.10 8.57 9.09 9.61 10.07 10.51 11.00 11.44 11.72 11.86 12.11 12.30 12.49 12.71 12.91 AEO 1992 6.86 7.42 7.88 8.16 8.55 8.80 9.06 9.32 9.50 9.80 10.17 10.35 10.56 10.61 10.85 11.00 11.15 11.29 11.50 AEO 1993 7.25 8.01 8.49 9.06

48

Table 7b. Natural Gas Wellhead Prices, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

b. Natural Gas Wellhead Prices, Projected vs. Actual b. Natural Gas Wellhead Prices, Projected vs. Actual Projected Price in Nominal Dollars (nominal dollars per thousand cubic feet) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 1.98 2.12 2.27 2.41 2.59 2.73 2.85 2.98 3.14 3.35 3.59 3.85 4.18 4.51 4.92 5.29 5.56 5.96 AEO 1995 1.89 2.00 1.95 2.06 2.15 2.40 2.57 2.90 3.16 3.56 3.87 4.27 4.56 4.85 5.16 5.41 5.66 AEO 1996 1.63 1.74 1.86 1.99 2.10 2.19 2.29 2.38 2.48 2.59 2.72 2.84 2.97 3.12 3.29 3.49 3.73 AEO 1997 2.03 1.82 1.90 1.99 2.06 2.13 2.21 2.32 2.43 2.54 2.65 2.77 2.88 3.00 3.11 3.24 AEO 1998 2.30 2.20 2.26 2.31 2.38 2.44 2.52 2.60 2.69 2.79 2.93 3.06 3.20 3.35 3.48 AEO 1999 1.98 2.15 2.20 2.32 2.43 2.53 2.63 2.76 2.90 3.02 3.12 3.23 3.35 3.47

49

Table 20. Total Delivered Transportation Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Transportation Energy Consumption, Projected vs. Actual Total Delivered Transportation Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 23.6 24.1 24.5 24.7 25.1 25.4 25.7 26.2 26.5 26.9 27.2 27.6 27.9 28.3 28.6 28.9 29.2 29.5 AEO 1995 23.3 24.0 24.2 24.7 25.1 25.5 25.9 26.2 26.5 26.9 27.3 27.7 28.0 28.3 28.5 28.7 28.9 AEO 1996 23.9 24.1 24.5 24.8 25.3 25.7 26.0 26.4 26.7 27.1 27.5 27.8 28.1 28.4 28.6 28.9 29.1 AEO 1997 24.7 25.3 25.9 26.4 27.0 27.5 28.0 28.5 28.9 29.4 29.8 30.3 30.6 30.9 31.1 31.3 AEO 1998 25.3 25.9 26.7 27.1 27.7 28.3 28.8 29.4 30.0 30.6 31.2 31.7 32.3 32.8 33.1 AEO 1999 25.4 26.0 27.0 27.6 28.2 28.8 29.4 30.0 30.6 31.2 31.7 32.2 32.8 33.1 AEO 2000 26.2 26.8 27.4 28.0 28.5 29.1 29.7 30.3 30.9 31.4 31.9 32.5 32.9

50

Table 22. Energy Intensity, Projected vs. Actual Projected  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Intensity, Projected vs. Actual Energy Intensity, Projected vs. Actual Projected (quadrillion Btu / real GDP in billion 2005 chained dollars) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 11.2 11.1 11.0 10.8 10.7 10.5 10.4 10.3 10.1 10.0 9.9 9.8 9.7 9.6 9.5 9.4 9.3 9.2 AEO 1995 10.9 10.8 10.6 10.4 10.3 10.1 10.0 9.9 9.8 9.6 9.5 9.4 9.3 9.2 9.1 9.1 9.0 AEO 1996 10.7 10.6 10.4 10.3 10.1 10.0 9.8 9.7 9.6 9.5 9.4 9.3 9.2 9.2 9.1 9.0 8.9 AEO 1997 10.3 10.3 10.2 10.1 9.9 9.8 9.7 9.6 9.5 9.4 9.3 9.2 9.2 9.1 9.0 8.9 AEO 1998 10.1 10.1 10.1 10.0 9.9 9.8 9.7 9.6 9.5 9.5 9.4 9.3 9.2 9.1 9.0 AEO 1999 9.6 9.7 9.7 9.7 9.6 9.4 9.3 9.1 9.0 8.9 8.8 8.7 8.6 8.5 AEO 2000 9.4 9.4 9.3 9.2 9.1 9.0 8.9 8.8 8.7 8.7 8.6 8.5 8.4 AEO 2001 8.7 8.6 8.5 8.4 8.3 8.1 8.0 7.9 7.8 7.6 7.5 7.4

51

Table 18. Total Delivered Commercial Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Commercial Energy Consumption, Projected vs. Actual Total Delivered Commercial Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 6.8 6.9 6.9 7.0 7.1 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.4 7.5 7.5 7.5 7.5 7.6 AEO 1995 6.9 6.9 7.0 7.0 7.0 7.1 7.1 7.1 7.1 7.1 7.2 7.2 7.2 7.2 7.3 7.3 7.3 AEO 1996 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.5 7.6 7.6 7.7 7.7 7.8 7.9 8.0 8.0 8.1 AEO 1997 7.4 7.4 7.4 7.5 7.5 7.6 7.7 7.7 7.8 7.8 7.9 7.9 8.0 8.1 8.1 8.2 AEO 1998 7.5 7.6 7.7 7.8 7.9 8.0 8.0 8.1 8.2 8.3 8.4 8.4 8.5 8.6 8.7 AEO 1999 7.4 7.8 7.9 8.0 8.1 8.2 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 AEO 2000 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.5 8.7 8.7 8.8 AEO 2001 7.8 8.1 8.3 8.6 8.7 8.9 9.0 9.2 9.3 9.5 9.6 9.7 AEO 2002 8.2 8.4 8.7 8.9 9.0 9.2 9.4 9.6 9.7 9.9 10.1

52

Table 21. Total Transportation Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Transportation Energy Consumption, Projected vs. Actual Transportation Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 18.6 18.2 17.7 17.3 17.0 16.9 AEO 1983 19.8 20.1 20.4 20.4 20.5 20.5 20.7 AEO 1984 19.2 19.0 19.0 19.0 19.1 19.2 20.1 AEO 1985 20.0 19.8 20.0 20.0 20.0 20.1 20.3 AEO 1986 20.5 20.8 20.8 20.6 20.7 20.3 21.0 AEO 1987 21.3 21.5 21.6 21.7 21.8 22.0 22.0 22.0 21.9 22.3 AEO 1989* 21.8 22.2 22.4 22.4 22.5 22.5 22.5 22.5 22.6 22.7 22.8 23.0 23.2 AEO 1990 22.0 22.4 23.2 24.3 25.5 AEO 1991 22.1 21.6 21.9 22.1 22.3 22.5 22.8 23.1 23.4 23.8 24.1 24.5 24.8 25.1 25.4 25.7 26.0 26.3 26.6 26.9 AEO 1992 21.7 22.0 22.5 22.9 23.2 23.4 23.6 23.9 24.1 24.4 24.8 25.1 25.4 25.7 26.0 26.3 26.6 26.9 27.1 AEO 1993 22.5 22.8 23.4 23.9 24.3 24.7 25.1 25.4 25.7 26.1 26.5 26.8 27.2 27.6 27.9 28.1 28.4 28.7 AEO 1994 23.6

53

Table 10. Natural Gas Production, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Production, Projected vs. Actual Production, Projected vs. Actual (trillion cubic feet) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 14.74 14.26 14.33 14.89 15.39 15.88 AEO 1983 16.48 16.27 16.20 16.31 16.27 16.29 14.89 AEO 1984 17.48 17.10 17.44 17.58 17.52 17.32 16.39 AEO 1985 16.95 17.08 17.11 17.29 17.40 17.33 17.32 17.27 17.05 16.80 16.50 AEO 1986 16.30 16.27 17.15 16.68 16.90 16.97 16.87 16.93 16.86 16.62 16.40 16.33 16.57 16.23 16.12 AEO 1987 16.21 16.09 16.38 16.32 16.30 16.30 16.44 16.62 16.81 17.39 AEO 1989* 16.71 16.71 16.94 17.01 16.83 17.09 17.35 17.54 17.67 17.98 18.20 18.25 18.49 AEO 1990 16.91 17.25 18.84 20.58 20.24 AEO 1991 17.40 17.48 18.11 18.22 18.15 18.22 18.39 18.82 19.03 19.28 19.62 19.89 20.13 20.07 19.95 19.82 19.64 19.50 19.30 19.08 AEO 1992 17.43 17.69 17.95 18.00 18.29 18.27 18.51 18.75 18.97

54

Table 17. Total Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption, Projected vs. Actual Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 79.1 79.6 79.9 80.8 82.1 83.3 AEO 1983 78.0 79.5 81.0 82.4 83.9 84.6 89.0 AEO 1984 78.5 79.4 81.2 83.1 85.1 86.4 93.0 AEO 1985 77.6 78.5 79.8 81.2 82.7 83.3 84.2 85.0 85.7 86.3 87.2 AEO 1986 77.0 78.8 79.8 80.7 81.5 82.9 83.8 84.6 85.3 86.0 86.6 87.4 88.3 89.4 90.2 AEO 1987 78.9 80.0 82.0 82.8 83.9 85.1 86.2 87.1 87.9 92.5 AEO 1989* 82.2 83.8 84.5 85.4 86.2 87.1 87.8 88.7 89.5 90.4 91.4 92.4 93.5 AEO 1990 84.2 85.4 91.9 97.4 102.8 AEO 1991 84.4 85.0 86.0 87.0 87.9 89.1 90.4 91.8 93.1 94.3 95.6 97.1 98.4 99.4 100.3 101.4 102.5 103.6 104.7 105.8 AEO 1992 84.7 87.0 88.0 89.2 90.5 91.4 92.4 93.4 94.5 95.6 96.9 98.0 99.0 100.0 101.2 102.2 103.2 104.3 105.2 AEO 1993 87.0 88.3 89.8 91.4 92.7 94.0 95.3 96.3 97.5 98.6

55

Table 3. Gross Domestic Product, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Gross Domestic Product, Projected vs. Actual Gross Domestic Product, Projected vs. Actual (cumulative average percent growth in projected real GDP from first year shown for each AEO) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 4.3% 3.8% 3.6% 3.3% 3.2% 3.2% AEO 1983 3.3% 3.3% 3.4% 3.3% 3.2% 3.1% 2.7% AEO 1984 2.7% 2.4% 2.9% 3.1% 3.1% 3.1% 2.7% AEO 1985 2.3% 2.2% 2.7% 2.8% 2.9% 3.0% 3.0% 3.0% 2.9% 2.8% 2.8% AEO 1986 2.6% 2.5% 2.7% 2.5% 2.5% 2.6% 2.6% 2.6% 2.5% 2.5% 2.5% 2.5% 2.5% 2.5% 2.5% AEO 1987 2.7% 2.3% 2.4% 2.5% 2.5% 2.6% 2.6% 2.5% 2.4% 2.3% AEO 1989* 4.0% 3.4% 3.1% 3.0% 2.9% 2.8% 2.7% 2.7% 2.7% 2.6% 2.6% 2.6% 2.6% AEO 1990 2.9% 2.3% 2.5% 2.5% 2.4% AEO 1991 0.8% 1.0% 1.7% 1.8% 1.8% 1.9% 2.0% 2.1% 2.1% 2.1% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% AEO 1992 -0.1% 1.6% 2.0% 2.2% 2.3% 2.2% 2.2% 2.2% 2.2% 2.3% 2.3% 2.3% 2.3% 2.2%

56

Table 20. Total Industrial Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Industrial Energy Consumption, Projected vs. Actual Industrial Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 24.0 24.1 24.4 24.9 25.5 26.1 AEO 1983 23.2 23.6 23.9 24.4 24.9 25.0 25.4 AEO 1984 24.1 24.5 25.4 25.5 27.1 27.4 28.7 AEO 1985 23.2 23.6 23.9 24.4 24.8 24.8 24.4 AEO 1986 22.2 22.8 23.1 23.4 23.4 23.6 22.8 AEO 1987 22.4 22.8 23.7 24.0 24.3 24.6 24.6 24.7 24.9 22.6 AEO 1989* 23.6 24.0 24.1 24.3 24.5 24.3 24.3 24.5 24.6 24.8 24.9 24.4 24.1 AEO 1990 25.0 25.4 27.1 27.3 28.6 AEO 1991 24.6 24.5 24.8 24.8 25.0 25.3 25.7 26.2 26.5 26.1 25.9 26.2 26.4 26.6 26.7 27.0 27.2 27.4 27.7 28.0 AEO 1992 24.6 25.3 25.4 25.6 26.1 26.3 26.5 26.5 26.0 25.6 25.8 26.0 26.1 26.2 26.4 26.7 26.9 27.2 27.3 AEO 1993 25.5 25.9 26.2 26.8 27.1 27.5 27.8 27.4 27.1 27.4 27.6 27.8 28.0 28.2 28.4 28.7 28.9 29.1 AEO 1994 25.4 25.9

57

Table 8. Natural Gas Wellhead Prices, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Wellhead Prices, Projected vs. Actual Natural Gas Wellhead Prices, Projected vs. Actual (current dollars per thousand cubic feet) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 4.32 5.47 6.67 7.51 8.04 8.57 AEO 1983 2.93 3.11 3.46 3.93 4.56 5.26 12.74 AEO 1984 2.77 2.90 3.21 3.63 4.13 4.79 9.33 AEO 1985 2.60 2.61 2.66 2.71 2.94 3.35 3.85 4.46 5.10 5.83 6.67 AEO 1986 1.73 1.96 2.29 2.54 2.81 3.15 3.73 4.34 5.06 5.90 6.79 7.70 8.62 9.68 10.80 AEO 1987 1.83 1.95 2.11 2.28 2.49 2.72 3.08 3.51 4.07 7.54 AEO 1989* 1.62 1.70 1.91 2.13 2.58 3.04 3.48 3.93 4.76 5.23 5.80 6.43 6.98 AEO 1990 1.78 1.88 2.93 5.36 9.2 AEO 1991 1.77 1.90 2.11 2.30 2.42 2.51 2.60 2.74 2.91 3.29 3.75 4.31 5.07 5.77 6.45 7.29 8.09 8.94 9.62 10.27 AEO 1992 1.69 1.85 2.03 2.15 2.35 2.51 2.74 3.01 3.40 3.81 4.24 4.74 5.25 5.78 6.37 6.89 7.50 8.15 9.05 AEO 1993 1.85 1.94 2.09 2.30

58

Table 16. Total Energy Consumption, Projected vs. Actual Projected  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Consumption, Projected vs. Actual Total Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 88.0 89.5 90.7 91.7 92.7 93.6 94.6 95.7 96.7 97.7 98.9 100.0 100.8 101.7 102.7 103.6 104.3 105.2 AEO 1995 89.2 90.0 90.6 91.9 93.0 93.8 94.6 95.3 96.2 97.2 98.4 99.4 100.3 101.2 102.1 102.9 103.9 AEO 1996 90.6 91.3 92.5 93.5 94.3 95.1 95.9 96.9 98.0 99.2 100.4 101.4 102.1 103.1 103.8 104.7 105.5 AEO 1997 92.6 93.6 95.1 96.6 97.9 98.8 99.9 101.2 102.4 103.4 104.7 105.8 106.6 107.2 107.9 108.6 AEO 1998 94.7 96.7 98.6 99.8 101.3 102.4 103.4 104.5 105.8 107.3 108.6 109.9 111.1 112.2 113.1 AEO 1999 94.6 97.0 99.2 100.9 102.0 102.8 103.6 104.7 106.0 107.2 108.5 109.7 110.8 111.8

59

Table 9. Natural Gas Production, Projected vs. Actual Projected  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Production, Projected vs. Actual Natural Gas Production, Projected vs. Actual Projected (trillion cubic feet) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 17.71 17.68 17.84 18.12 18.25 18.43 18.58 18.93 19.28 19.51 19.80 19.92 20.13 20.18 20.38 20.35 20.16 20.19 AEO 1995 18.28 17.98 17.92 18.21 18.63 18.92 19.08 19.20 19.36 19.52 19.75 19.94 20.17 20.28 20.60 20.59 20.88 AEO 1996 18.90 19.15 19.52 19.59 19.59 19.65 19.73 19.97 20.36 20.82 21.25 21.37 21.68 22.11 22.47 22.83 23.36 AEO 1997 19.10 19.70 20.17 20.32 20.54 20.77 21.26 21.90 22.31 22.66 22.93 23.38 23.68 23.99 24.25 24.65 AEO 1998 18.85 19.06 20.35 20.27 20.60 20.94 21.44 21.81 22.25 22.65 23.18 23.75 24.23 24.70 24.97 AEO 1999 18.80 19.13 19.28 19.82 20.23 20.77 21.05 21.57 21.98 22.47 22.85 23.26 23.77 24.15

60

Table 19. Total Delivered Industrial Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Industrial Energy Consumption, Projected vs. Actual Total Delivered Industrial Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 25.4 25.9 26.3 26.7 27.0 27.1 26.8 26.6 26.9 27.2 27.7 28.1 28.3 28.7 29.1 29.4 29.7 30.0 AEO 1995 26.2 26.3 26.5 27.0 27.3 26.9 26.6 26.8 27.1 27.5 27.9 28.2 28.4 28.7 29.0 29.3 29.6 AEO 1996 26.5 26.6 27.3 27.5 26.9 26.5 26.7 26.9 27.2 27.6 27.9 28.2 28.3 28.5 28.7 28.9 29.2 AEO 1997 26.2 26.5 26.9 26.7 26.6 26.8 27.1 27.4 27.8 28.0 28.4 28.7 28.9 29.0 29.2 29.4 AEO 1998 27.2 27.5 27.2 26.9 27.1 27.5 27.7 27.9 28.3 28.7 29.0 29.3 29.7 29.9 30.1 AEO 1999 26.7 26.4 26.4 26.8 27.1 27.3 27.5 27.9 28.3 28.6 28.9 29.2 29.5 29.7 AEO 2000 25.8 25.5 25.7 26.0 26.5 26.9 27.4 27.8 28.1 28.3 28.5 28.8 29.0

Note: This page contains sample records for the topic "area 1996-2011 actual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Table 18. Total Residential Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Residential Energy Consumption, Projected vs. Actual Residential Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 10.1 10.1 10.1 10.1 10.2 10.2 AEO 1983 9.8 9.9 10.0 10.1 10.2 10.1 10.0 AEO 1984 9.9 9.9 10.0 10.2 10.3 10.3 10.5 AEO 1985 9.8 10.0 10.1 10.3 10.6 10.6 10.9 AEO 1986 9.6 9.8 10.0 10.3 10.4 10.8 10.9 AEO 1987 9.9 10.2 10.3 10.3 10.4 10.5 10.5 10.5 10.5 10.6 AEO 1989* 10.3 10.5 10.4 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 AEO 1990 10.4 10.7 10.8 11.0 11.3 AEO 1991 10.2 10.7 10.7 10.8 10.8 10.8 10.9 10.9 10.9 11.0 11.0 11.0 11.1 11.2 11.2 11.3 11.4 11.4 11.5 11.6 AEO 1992 10.6 11.1 11.1 11.1 11.1 11.1 11.2 11.2 11.3 11.3 11.4 11.5 11.5 11.6 11.7 11.8 11.8 11.9 12.0 AEO 1993 10.7 10.9 11.0 11.0 11.0 11.1 11.1 11.1 11.1 11.2 11.2 11.2 11.2 11.3 11.3 11.4 11.4 11.5 AEO 1994 10.3 10.4 10.4 10.4

62

Table 6. Domestic Crude Oil Production, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Domestic Crude Oil Production, Projected vs. Actual Domestic Crude Oil Production, Projected vs. Actual (million barrels per day) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 8.79 8.85 8.84 8.80 8.66 8.21 AEO 1983 8.67 8.71 8.66 8.72 8.80 8.63 8.11 AEO 1984 8.86 8.70 8.59 8.45 8.28 8.25 7.19 AEO 1985 8.92 8.96 9.01 8.78 8.38 8.05 7.64 7.27 6.89 6.68 6.53 AEO 1986 8.80 8.63 8.30 7.90 7.43 6.95 6.60 6.36 6.20 5.99 5.80 5.66 5.54 5.45 5.43 AEO 1987 8.31 8.18 8.00 7.63 7.34 7.09 6.86 6.64 6.54 6.03 AEO 1989* 8.18 7.97 7.64 7.25 6.87 6.59 6.37 6.17 6.05 6.00 5.94 5.90 5.89 AEO 1990 7.67 7.37 6.40 5.86 5.35 AEO 1991 7.23 6.98 7.10 7.11 7.01 6.79 6.48 6.22 5.92 5.64 5.36 5.11 4.90 4.73 4.62 4.59 4.58 4.53 4.46 4.42 AEO 1992 7.37 7.17 6.99 6.89 6.68 6.45 6.28 6.16 6.06 5.91 5.79 5.71 5.66 5.64 5.62 5.63 5.62 5.55 5.52 AEO 1993 7.20 6.94 6.79 6.52 6.22 6.00 5.84 5.72

63

Table 15. Average Electricity Prices, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Average Electricity Prices, Projected vs. Actual Average Electricity Prices, Projected vs. Actual (nominal cents per kilowatt-hour) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 6.38 6.96 7.63 8.23 8.83 9.49 AEO 1983 6.85 7.28 7.74 8.22 8.68 9.18 13.12 AEO 1984 6.67 7.05 7.48 7.89 8.25 8.65 11.53 AEO 1985 6.62 6.94 7.32 7.63 7.89 8.15 8.46 8.85 9.20 9.61 10.04 AEO 1986 6.67 6.88 7.05 7.18 7.35 7.52 7.65 7.87 8.31 8.83 9.41 10.01 10.61 11.33 12.02 AEO 1987 6.63 6.65 6.92 7.12 7.38 7.62 7.94 8.36 8.86 11.99 AEO 1989* 6.50 6.75 7.14 7.48 7.82 8.11 8.50 8.91 9.39 9.91 10.49 11.05 11.61 AEO 1990 6.49 6.72 8.40 10.99 14.5 AEO 1991 6.94 7.31 7.59 7.82 8.18 8.38 8.54 8.73 8.99 9.38 9.83 10.29 10.83 11.36 11.94 12.58 13.21 13.88 14.58 15.21 AEO 1992 6.97 7.16 7.32 7.56 7.78 8.04 8.29 8.57 8.93 9.38 9.82 10.26 10.73 11.25 11.83 12.37 12.96 13.58 14.23 AEO 1993

64

Table 11. Natural Gas Net Imports, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Net Imports, Projected vs. Actual Natural Gas Net Imports, Projected vs. Actual (trillion cubic feet) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 1.19 1.19 1.19 1.19 1.19 1.19 AEO 1983 1.08 1.16 1.23 1.23 1.23 1.23 1.23 AEO 1984 0.99 1.05 1.16 1.27 1.43 1.57 2.11 AEO 1985 0.94 1.00 1.19 1.45 1.58 1.86 1.94 2.06 2.17 2.32 2.44 AEO 1986 0.74 0.88 0.62 1.03 1.05 1.27 1.39 1.47 1.66 1.79 1.96 2.17 2.38 2.42 2.43 AEO 1987 0.84 0.89 1.07 1.16 1.26 1.36 1.46 1.65 1.75 2.50 AEO 1989* 1.15 1.32 1.44 1.52 1.61 1.70 1.79 1.87 1.98 2.06 2.15 2.23 2.31 AEO 1990 1.26 1.43 2.07 2.68 2.95 AEO 1991 1.36 1.53 1.70 1.82 2.11 2.30 2.33 2.36 2.42 2.49 2.56 2.70 2.75 2.83 2.90 2.95 3.02 3.09 3.17 3.19 AEO 1992 1.48 1.62 1.88 2.08 2.25 2.41 2.56 2.68 2.70 2.72 2.76 2.84 2.92 3.05 3.10 3.20 3.25 3.30 3.30 AEO 1993 1.79 2.08 2.35 2.49 2.61 2.74 2.89 2.95 3.00 3.05 3.10

65

Table 8. Total Natural Gas Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Natural Gas Consumption, Projected vs. Actual Total Natural Gas Consumption, Projected vs. Actual Projected (trillion cubic feet) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 19.87 20.21 20.64 20.99 21.20 21.42 21.60 21.99 22.37 22.63 22.95 23.22 23.58 23.82 24.09 24.13 24.02 24.14 AEO 1995 20.82 20.66 20.85 21.21 21.65 21.95 22.12 22.25 22.43 22.62 22.87 23.08 23.36 23.61 24.08 24.23 24.59 AEO 1996 21.32 21.64 22.11 22.21 22.26 22.34 22.46 22.74 23.14 23.63 24.08 24.25 24.63 25.11 25.56 26.00 26.63 AEO 1997 22.15 22.75 23.24 23.64 23.86 24.13 24.65 25.34 25.82 26.22 26.52 27.00 27.35 27.70 28.01 28.47 AEO 1998 21.84 23.03 23.84 24.08 24.44 24.81 25.33 25.72 26.22 26.65 27.22 27.84 28.35 28.84 29.17 AEO 1999 21.35 22.36 22.54 23.18 23.65 24.17 24.57 25.19 25.77 26.41 26.92 27.42 28.02 28.50

66

Proved Nonproducing Reserves of Crude Oil  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Crude Oil Lease Condensate Total Gas Nonassociated Gas Associated Gas Period: Product: Crude Oil Lease Condensate Total Gas Nonassociated Gas Associated Gas Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2006 2007 2008 2009 2010 2011 View History U.S. 5,174 5,455 5,400 6,015 6,980 9,049 1996-2011 Federal Offshore U.S. 1,921 2,304 2,297 2,150 1,710 2,662 1996-2011 Pacific (California) 37 20 12 12 13 13 1996-2011 Louisiana & Alabama 1,816 2,231 2,229 2,013 1,595 2,597 1996-2011 Texas 68 53 56 125 102 52 1996-2011 Alaska 442 400 529 633 622 566 1996-2011 Lower 48 States 4,732 5,055 4,871 5,382 6,358 8,483 1996-2011 Alabama 0 0 0 0 0 1 1996-2011 Arkansas 1 0 0 0 1 0 1996-2011

67

Table 19. Total Commercial Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Commercial Energy Consumption, Projected vs. Actual Commercial Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 6.6 6.7 6.8 6.8 6.8 6.9 AEO 1983 6.4 6.6 6.8 6.9 7.0 7.1 7.2 AEO 1984 6.2 6.4 6.5 6.7 6.8 6.9 7.3 AEO 1985 5.9 6.1 6.2 6.3 6.4 6.5 6.7 AEO 1986 6.2 6.3 6.4 6.4 6.5 7.1 7.4 AEO 1987 6.1 6.1 6.3 6.4 6.6 6.7 6.8 6.9 6.9 7.3 AEO 1989* 6.6 6.7 6.9 7.0 7.0 7.1 7.2 7.3 7.3 7.4 7.5 7.6 7.7 AEO 1990 6.6 6.8 7.1 7.4 7.8 AEO 1991 6.7 6.9 7.0 7.1 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.6 8.7 AEO 1992 6.8 7.1 7.2 7.3 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 AEO 1993 7.2 7.3 7.4 7.4 7.5 7.6 7.7 7.7 7.8 7.9 7.9 8.0 8.0 8.1 8.1 8.1 8.2 8.2 AEO 1994 6.8 6.9 6.9 7.0 7.1 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.4 7.5 7.5 7.5 7.5 AEO 1995 6.94 6.9 7.0 7.0 7.0 7.1 7.1 7.1 7.1 7.1 7.2 7.2 7.2 7.2 7.3 7.3 AEO 1996 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.5 7.6 7.6 7.7 7.7 7.8 7.9 8.0

68

Meteorological field measurements at potential and actual wind turbine sites  

DOE Green Energy (OSTI)

An overview of experiences gained in a meteorological measurement program conducted at a number of locations around the United States for the purpose of site evaluation for wind energy utilization is provided. The evolution of the measurement program from its inception in 1976 to the present day is discussed. Some of the major accomplishments and areas for improvement are outlined. Some conclusions on research using data from this program are presented.

Renne, D.S.; Sandusky, W.F.; Hadley, D.L.

1982-09-01T23:59:59.000Z

69

The University of Texas at Austin Jan-03 PART I CRIMES Reported Unfounded Actual Cleared % Clrd.  

E-Print Network (OSTI)

The University of Texas at Austin Jan-03 PART I CRIMES Reported Unfounded Actual Cleared % Clrd. 1/93) #12;The University of Texas at Austin Feb-03 PART I CRIMES Reported Unfounded Actual Cleared % Clrd. 1/93) #12;The University of Texas at Austin Mar-03 PART I CRIMES Reported Unfounded Actual Cleared % Clrd. 1

Johns, Russell Taylor

70

Stress Actually Makes You Stronger ... At Least Some of the Time  

Office of Science (SC) Website

Stress Actually Makes You Stronger ... At Least Some of the Time News Featured Articles 2013 2012 2011 2010 2009 2008 2007 2006 2005 Science Headlines Presentations & Testimony...

71

The Multiple Peril Crop Insurance Actual Production History (APH) Insurance Plan  

E-Print Network (OSTI)

The Actual Production History insurance plan protects against crop losses from a number of causes. All aspects of this insurance are described, including reporting requirements for the producer.

Stokes, Kenneth; Barnaby, G. A. Art; Waller, Mark L.; Outlaw, Joe

2008-10-07T23:59:59.000Z

72

Predicted Versus Actual Savings for a Low-Rise Multifamily Retrofit in Boulder, Colorado  

SciTech Connect

To determine the most cost-effective methods of improving buildings, accurate analysis and prediction of the energy use of existing buildings is essential. However, multiple studies confirm that analysis methods tend to over-predict energy use in poorly insulated, leaky homes and thus, the savings associated with improving those homes. In NREL's report titled 'Assessing and Improving the Accuracy of Energy Analysis of Residential Buildings,' researchers propose a method for improving the accuracy of residential energy analysis methods. A key step in this process involves the comparisons of predicted versus metered energy use and savings. In support of this research need, CARB evaluated the retrofit of a multifamily building in Boulder, CO. The updated property is a 37 unit, 2 story apartment complex built in 1950, which underwent renovations in early 2009 to bring it into compliance with Boulder, CO's SmartRegs ordinance. Goals of the study were to: 1) evaluate predicted versus actual savings due to the improvements, 2) identify areas where the modeling assumptions may need to be changed, and 3) determine common changes made by renters that would negatively impact energy savings. In this study, CARB seeks to improve the accuracy of modeling software while assessing retrofit measures to specifically determine which are most effective for large multifamily complexes in the cold climate region. Other issues that were investigated include the effects of improving building efficiency on tenant comfort, the impact on tenant turnover rates, and the potential market barriers for this type of community scale project.

Arena, L.; Williamson, J.

2013-11-01T23:59:59.000Z

73

Research Areas  

NLE Websites -- All DOE Office Websites (Extended Search)

Areas Areas Research Areas Print Scientists from a wide variety of fields come to the ALS to perform experiements. Listed below are some of the most common research areas covered by ALS beamlines. Below each heading are a few examples of the specific types of topics included in that category. Click on a heading to learn more about that research area at the ALS. Energy Science Photovoltaics, photosynthesis, biofuels, energy storage, combustion, catalysis, carbon capture/sequestration. Bioscience General biology, structural biology. Materials/Condensed Matter Correlated materials, nanomaterials, magnetism, polymers, semiconductors, water, advanced materials. Physics Atomic, molecular, and optical (AMO) physics; accelerator physics. Chemistry Surfaces/interfaces, catalysts, chemical dynamics (gas-phase chemistry), crystallography, physical chemistry.

74

Research Areas  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Areas Print Research Areas Print Scientists from a wide variety of fields come to the ALS to perform experiements. Listed below are some of the most common research areas covered by ALS beamlines. Below each heading are a few examples of the specific types of topics included in that category. Click on a heading to learn more about that research area at the ALS. Energy Science Photovoltaics, photosynthesis, biofuels, energy storage, combustion, catalysis, carbon capture/sequestration. Bioscience General biology, structural biology. Materials/Condensed Matter Correlated materials, nanomaterials, magnetism, polymers, semiconductors, water, advanced materials. Physics Atomic, molecular, and optical (AMO) physics; accelerator physics. Chemistry Surfaces/interfaces, catalysts, chemical dynamics (gas-phase chemistry), crystallography, physical chemistry.

75

Assessing Climate Information Use in Agribusiness. Part I: Actual and Potential Use and Impediments to Usage  

Science Conference Proceedings (OSTI)

A project for the development of methodology to enable agribusiness decision makers to utilize more effectively climate information involved investigation of three agribusiness firms, as well as measurement of their actual and potential use. The ...

Stanley A. Changnon; Steven T. Sonka; Steven Hofing

1988-08-01T23:59:59.000Z

76

Trends of Calculated and Simulated Actual Evaporation in the Yangtze River Basin  

Science Conference Proceedings (OSTI)

Actual evaporation in the Yangtze River basin is calculated by the complementary relationship approach—that is, the advection–aridity (AA) model with parameter validation from 1961 to 2007—and simulated by the general circulation model (GCM) ...

Yanjun Wang; Bo Liu; Buda Su; Jianqing Zhai; Marco Gemmer

2011-08-01T23:59:59.000Z

77

Estimating Actual Evapotranspiration from Satellite and Meteorological Data in Central Bolivia  

Science Conference Proceedings (OSTI)

Spatial estimates of actual evapotranspiration are useful for calculating the water balance of river basins, quantifying hydrological services provided by ecosystems, and assessing the hydrological impacts of land-use practices. To provide this ...

Christian Seiler; Arnold F. Moene

2011-05-01T23:59:59.000Z

78

A Sensitivity Study of Building Performance Using 30-Year Actual Weather  

NLE Websites -- All DOE Office Websites (Extended Search)

Sensitivity Study of Building Performance Using 30-Year Actual Weather Sensitivity Study of Building Performance Using 30-Year Actual Weather Data Title A Sensitivity Study of Building Performance Using 30-Year Actual Weather Data Publication Type Conference Paper Year of Publication 2013 Authors Hong, Tianzhen, Wen-Kuei Chang, and Hung-Wen Lin Date Published 05/2013 Keywords Actual meteorological year, Building simulation, Energy use, Peak electricity demand, Typical meteorological year, Weather data Abstract Traditional energy performance calculated using building simulation with the typical meteorological year (TMY) weather data represents the energy performance in a typical year but not necessarily the average or typical energy performance of a building in long term. Furthermore, the simulated results do not provide the range of variations due to the change of weather, which is important in building energy management and risk assessment of energy efficiency investment. This study analyzes the weather impact on peak electric demand and energy use by building simulation using 30-year actual meteorological year (AMY) weather data for three types of office buildings at two design efficiency levels across all 17 climate zones. The simulated results from the AMY are compared to those from TMY3 to determine and analyze the differences. It was found that yearly weather variation has significant impact on building performance especially peak electric demand. Energy savings of building technologies should be evaluated using simulations with multi-decade actual weather data to fully consider investment risk and the long term performance.

79

Radiological Areas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Revision to Clearance Policy Associated with Recycle of Scrap Metals Originating from Revision to Clearance Policy Associated with Recycle of Scrap Metals Originating from Radiological Areas On July 13, 2000, the Secretary of Energy imposed an agency-wide suspension on the unrestricted release of scrap metal originating from radiological areas at Department of Energy (DOE) facilities for the purpose of recycling. The suspension was imposed in response to concerns from the general public and industry groups about the potential effects of radioactivity in or on material released in accordance with requirements established in DOE Order 5400.5, Radiation Protection of the Public and Environment. The suspension was to remain in force until DOE developed and implemented improvements in, and better informed the public about, its release process. In addition, in 2001 the DOE announced its intention to prepare a

80

Comparison of actual and predicted energy savings in Minnesota gas-heated single-family homes  

Science Conference Proceedings (OSTI)

Data available from a recent evaluation of a home energy audit program in Minnesota are sufficient to allow analysis of the actual energy savings achieved in audited homes and of the relationship between actual and predicted savings. The program, operated by Northern States Power in much of the southern half of the state, is part of Minnesota's version of the federal Residential Conservation Service. NSP conducted almost 12 thousand RCS audits between April 1981 (when the progam began) and the end of 1982. The data analyzed here, available for 346 homes that obtained an NSP energy audit, include monthly natural gas bills from October 1980 through April 1983; heating degree day data matched to the gas bills; energy audit reports; and information on household demographics, structure characteristics, and recent conservation actions from mail and telephone surveys. The actual reduction in weather-adjusted natural gas use between years 1 and 3 averaged 19 MBtu across these homes (11% of preprogram consumption); the median value of the saving was 16 MBtu/year. The variation in actual saving is quite large: gas consumption increased in almost 20% of the homes, while gas consumption decreased by more than 50 MBtu/year in more than 10% of the homes. These households reported an average expenditure of almost $1600 for the retrofit measures installed in their homes; the variation in retrofit cost, while large, was not as great as the variation in actual natural gas savings.

Hirst, E.; Goeltz, R.

1984-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "area 1996-2011 actual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

The University of Texas at Austin Jan-11 PART I CRIMES Reported Unfounded Actual Cleared % Clrd.  

E-Print Network (OSTI)

The University of Texas at Austin Jan-11 PART I CRIMES Reported Unfounded Actual Cleared % Clrd. 1.7% DP Form #31 - Page 1(Rev. 1/93) #12;The University of Texas at Austin Jan-11 PART I CRIMES BURGLARY/93) #12;The University of Texas at Austin Jan-11 PART I CRIMES BURGLARY & THEFT TARGET SECTION (List Other

Johns, Russell Taylor

82

The University of Texas at Austin Jan-06 PART I CRIMES Reported Unfounded Actual Cleared % Clrd.  

E-Print Network (OSTI)

The University of Texas at Austin Jan-06 PART I CRIMES Reported Unfounded Actual Cleared % Clrd. 1 Total % Rcvd. 1.0% DP Form #31 - Page 1(Rev. 1/93) #12;The University of Texas at Austin Jan-06 PART I/93) #12;The University of Texas at Austin Jan-06 PART I CRIMES BURGLARY & THEFT TARGET SECTION (List Other

Johns, Russell Taylor

83

The University of Texas at Austin Jan-09 PART I CRIMES Reported Unfounded Actual Cleared % Clrd.  

E-Print Network (OSTI)

The University of Texas at Austin Jan-09 PART I CRIMES Reported Unfounded Actual Cleared % Clrd. 1. 8.0% DP Form #31 - Page 1(Rev. 1/93) #12;The University of Texas at Austin Jan-09 PART I CRIMES/93) #12;The University of Texas at Austin Jan-09 PART I CRIMES BURGLARY & THEFT TARGET SECTION (List Other

Johns, Russell Taylor

84

The University of Texas at Austin Jan-08 PART I CRIMES Reported Unfounded Actual Cleared % Clrd.  

E-Print Network (OSTI)

The University of Texas at Austin Jan-08 PART I CRIMES Reported Unfounded Actual Cleared % Clrd. 1 Total % Rcvd. 2.2% DP Form #31 - Page 1(Rev. 1/93) #12;The University of Texas at Austin Jan-08 PART I(Rev. 1/93) #12;The University of Texas at Austin Jan-08 PART I CRIMES BURGLARY & THEFT TARGET SECTION

Johns, Russell Taylor

85

The University of Texas at Austin Jan-01 PART I CRIMES Reported Unfounded Actual Cleared % Clrd.  

E-Print Network (OSTI)

The University of Texas at Austin Jan-01 PART I CRIMES Reported Unfounded Actual Cleared % Clrd. 1/93) #12;The University of Texas at Austin Jan-01 PART I CRIMES BURGLARY & THEFT TARGET SECTION Maintenance. 1/93)Co #12;The University of Texas at Austin Jan-01 PART I CRIMES BURGLARY & THEFT TARGET SECTION

Johns, Russell Taylor

86

The University of Texas at Austin Jan-05 PART I CRIMES Reported Unfounded Actual Cleared % Clrd.  

E-Print Network (OSTI)

The University of Texas at Austin Jan-05 PART I CRIMES Reported Unfounded Actual Cleared % Clrd. 1/93) #12;The University of Texas at Austin Jan-05 PART I CRIMES BURGLARY & THEFT TARGET SECTION Maintenance - Page 2(Rev. 1/93) #12;The University of Texas at Austin Jan-05 PART I CRIMES BURGLARY & THEFT TARGET

Johns, Russell Taylor

87

The University of Texas at Austin Jan-10 PART I CRIMES Reported Unfounded Actual Cleared % Clrd.  

E-Print Network (OSTI)

The University of Texas at Austin Jan-10 PART I CRIMES Reported Unfounded Actual Cleared % Clrd. 1 of Texas at Austin Jan-10 PART I CRIMES BURGLARY & THEFT TARGET SECTION Maintenance Shops Offices 6 OF REPORT DP Form #31 - Page 2(Rev. 1/93) #12;The University of Texas at Austin Jan-10 PART I CRIMES

Johns, Russell Taylor

88

The University of Texas at Austin Jan-02 PART I CRIMES Reported Unfounded Actual Cleared % Clrd.  

E-Print Network (OSTI)

The University of Texas at Austin Jan-02 PART I CRIMES Reported Unfounded Actual Cleared % Clrd. 1 Theft Total $280 $280 Total % Rcvd 0.4% DP Form #31 - Page 1(Rev. 1/93) #12;The University of Texas/93)Co #12;The University of Texas at Austin Jan-02 PART I CRIMES BURGLARY & THEFT TARGET SECTION (List

Johns, Russell Taylor

89

The University of Texas at Austin Jan07 PART I CRIMES Reported Unfounded Actual Cleared % Clrd.  

E-Print Network (OSTI)

The University of Texas at Austin Jan07 PART I CRIMES Reported Unfounded Actual Cleared.1% DP Form #31 Page 1(Rev. 1/93) #12;The University of Texas at Austin Jan07 PART I CRIMES BURGLARY Form #31 Page 2(Rev. 1/93) #12;The University of Texas at Austin Jan07 PART I CRIMES BURGLARY

Johns, Russell Taylor

90

Modeling of Optimal Oil Production and Comparing with Actual and Contractual Oil Production: Iran Case  

E-Print Network (OSTI)

Modeling of Optimal Oil Production and Comparing with Actual and Contractual Oil Production: Iran, Davis Introduction · The Iran Oil Project, initiated in 2007, aims to find the inefficiencies and their possible sources in Iranian oil and gas policies. Background Information Assumptions · Perfect Competition

California at Davis, University of

91

Satellite-Based Actual Evapotranspiration over Drying Semiarid Terrain in West Africa  

Science Conference Proceedings (OSTI)

A simple satellite-based algorithm for estimating actual evaporation based on Makkink’s equation is applied to a seasonal cycle in 2002 at three test sites in Ghana, West Africa: at a location in the humid tropical southern region and two in the ...

D. Schüttemeyer; Ch Schillings; A. F. Moene; H. A. R. de Bruin

2007-01-01T23:59:59.000Z

92

"Table 21. Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual" Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual" "Projected" " (million metric tons)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",5060,5129.666667,5184.666667,5239.666667,5287.333333,5335,5379,5437.666667,5481.666667,5529.333333,5599,5657.666667,5694.333333,5738.333333,5797,5874,5925.333333,5984 "AEO 1995",,5137,5173.666667,5188.333333,5261.666667,5309.333333,5360.666667,5393.666667,5441.333333,5489,5551.333333,5621,5679.666667,5727.333333,5775,5841,5888.666667,5943.666667 "AEO 1996",,,5181.817301,5223.645142,5294.776326,5354.687297,5416.802205,5463.67395,5525.288005,5588.52771,5660.226888,5734.87972,5812.398031,5879.320068,5924.814575,5981.291626,6029.640422,6086.804077,6142.120972

93

Actual and Estimated Energy Savings Comparison for Deep Energy Retrofits in the Pacific Northwest  

Science Conference Proceedings (OSTI)

Seven homes from the Pacific Northwest were selected to evaluate the differences between estimated and actual energy savings achieved from deep energy retrofits. The energy savings resulting from these retrofits were estimated, using energy modeling software, to save at least 30% on a whole-house basis. The modeled pre-retrofit energy use was trued against monthly utility bills. After the retrofits were completed, each of the homes was extensively monitored, with the exception of one home which was monitored pre-retrofit. This work is being conducted by Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy Building Technologies Program as part of the Building America Program. This work found many discrepancies between actual and estimated energy savings and identified the potential causes for the discrepancies. The differences between actual energy use and modeled energy use also suggest improvements to improve model accuracy. The difference between monthly whole-house actual and estimated energy savings ranged from 75% more energy saved than predicted by the model to 16% less energy saved for all the monitored homes. Similarly, the annual energy savings difference was between 36% and -14%, which was estimated based on existing monitored savings because an entire year of data is not available. Thus, on average, for all six monitored homes the actual energy use is consistently less than estimates, indicating home owners are saving more energy than estimated. The average estimated savings for the eight month monitoring period is 43%, compared to an estimated savings average of 31%. Though this average difference is only 12%, the range of inaccuracies found for specific end-uses is far greater and are the values used to directly estimate energy savings from specific retrofits. Specifically, the monthly post-retrofit energy use differences for specific end-uses (i.e., heating, cooling, hot water, appliances, etc.) ranged from 131% under-predicted to 77% over-predicted by the model with respect to monitored energy use. Many of the discrepancies were associated with occupant behavior which influences energy use, dramatically in some cases, actual versus modeled weather differences, modeling input limitations, and complex homes that are difficult to model. The discrepancy between actual and estimated energy use indicates a need for better modeling tools and assumptions. Despite the best efforts of researchers, the estimated energy savings are too inaccurate to determine reliable paybacks for retrofit projects. While the monitored data allows researchers to understand why these differences exist, it is not cost effective to monitor each home with the level of detail presented here. Therefore an appropriate balance between modeling and monitoring must be determined for more widespread application in retrofit programs and the home performance industry. Recommendations to address these deficiencies include: (1) improved tuning process for pre-retrofit energy use, which currently utilized broad-based monthly utility bills; (2) developing simple occupant-based energy models that better address the many different occupant types and their impact on energy use; (3) incorporating actual weather inputs to increase accuracy of the tuning process, which uses utility bills from specific time period; and (4) developing simple, cost-effective monitoring solutions for improved model tuning.

Blanchard, Jeremy; Widder, Sarah H.; Giever, Elisabeth L.; Baechler, Michael C.

2012-10-01T23:59:59.000Z

94

The Actual Impact of the International Tribunal for former Yugoslavia on the Reconciliation Process in Bosnia-Herzegovina.  

E-Print Network (OSTI)

??This thesis explores the actual impact of the International Criminal Tribunal for the former Yugoslavia (ICTY) on the reconciliation process in Bosnia-Herzegovina and analyses possible… (more)

Johansen, Kristine

2011-01-01T23:59:59.000Z

95

How many people actually see the price signal? Quantifying market failures in the end use of energy  

E-Print Network (OSTI)

investment, behaviour, energy price, consumers Abstract “suggest that raising energy prices—such as in the form ofconsumers actually “see” energy prices and are therefore

Meier, Alan; Eide, Anita

2007-01-01T23:59:59.000Z

96

Actual versus predicted impacts of three ethanol plants on aquatic and terrestrial resources  

DOE Green Energy (OSTI)

To help reduce US dependence on imported petroleum, Congress passed the Energy Security Act of 1980 (public Law 96-294). This legislation authorized the US Department of Energy (DOE) to promote expansion of the fuel alcohol industry through, among other measures, its Alcohol Fuels Loan Guarantee Program. Under this program, selected proposals for the conversion of plant biomass into fuel-grade ethanol would be granted loan guarantees. of 57 applications submitted for loan guarantees to build and operate ethanol fuel projects under this program, 11 were considered by DOE to have the greatest potential for satisfying DOE`s requirements and goals. In accordance with the National Environmental Policy Act (NEPA), DOE evaluated the potential impacts of proceeding with the Loan Guarantee Program in a programmatic environmental assessment (DOE 1981) that resulted in a finding of no significant impact (FANCY) (47 Federal Register 34, p. 7483). The following year, DOE conducted site-specific environmental assessments (EAs) for 10 of the proposed projects. These F-As predicted no significant environmental impacts from these projects. Eventually, three ethanol fuel projects received loan guarantees and were actually built: the Tennol Energy Company (Tennol; DOE 1982a) facility near Jasper in southeastern Tennessee; the Agrifuels Refining Corporation (Agrifuels; DOE 1985) facility near New Liberia in southern Louisiana; and the New Energy Company of Indiana (NECI; DOE 1982b) facility in South Bend, Indiana. As part of a larger retrospective examination of a wide range of environmental effects of ethanol fuel plants, we compared the actual effects of the three completed plants on aquatic and terrestrial resources with the effects predicted in the NEPA EAs several years earlier. A secondary purpose was to determine: Why were there differences, if any, between actual effects and predictions? How can assessments be improved and impacts reduced?

Eddlemon, G.K.; Webb, J.W.; Hunsaker, D.B. Jr.; Miller, R.L.

1993-03-15T23:59:59.000Z

97

Method and apparatus for distinguishing actual sparse events from sparse event false alarms  

DOE Patents (OSTI)

Remote sensing method and apparatus wherein sparse optical events are distinguished from false events. "Ghost" images of actual optical phenomena are generated using an optical beam splitter and optics configured to direct split beams to a single sensor or segmented sensor. True optical signals are distinguished from false signals or noise based on whether the ghost image is presence or absent. The invention obviates the need for dual sensor systems to effect a false target detection capability, thus significantly reducing system complexity and cost.

Spalding, Richard E. (Albuquerque, NM); Grotbeck, Carter L. (Albuquerque, NM)

2000-01-01T23:59:59.000Z

98

Table 11b. Coal Prices to Electric Generating Plants, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

b. Coal Prices to Electric Generating Plants, Projected vs. Actual" b. Coal Prices to Electric Generating Plants, Projected vs. Actual" "Projected Price in Nominal Dollars" " (nominal dollars per million Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",1.502753725,1.549729719,1.64272351,1.727259934,1.784039735,1.822135762,1.923203642,2.00781457,2.134768212,2.217425497,2.303725166,2.407715232,2.46134106,2.637086093,2.775389073,2.902293046,3.120364238,3.298013245 "AEO 1995",,1.4212343,1.462640338,1.488780998,1.545300242,1.585877053,1.619428341,1.668671498,1.7584219,1.803937198,1.890547504,1.968695652,2.048913043,2.134750403,2.205281804,2.281690821,2.375434783,2.504830918 "AEO 1996",,,1.346101641,1.350594221,1.369020126,1.391737646,1.421340737,1.458772082,1.496497523,1.561369914,1.619940033,1.674758358,1.749420803,1.800709877,1.871110564,1.924495246,2.006850327,2.048938234,2.156821499

99

"Table 20. Total Delivered Transportation Energy Consumption, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Transportation Energy Consumption, Projected vs. Actual" Total Delivered Transportation Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",23.62,24.08,24.45,24.72,25.06,25.38,25.74,26.16,26.49,26.85,27.23,27.55,27.91,28.26,28.61,28.92,29.18,29.5 "AEO 1995",,23.26,24.01,24.18,24.69,25.11,25.5,25.86,26.15,26.5,26.88,27.28,27.66,27.99,28.25,28.51,28.72,28.94 "AEO 1996",,,23.89674759,24.08507919,24.47502899,24.84881783,25.25887871,25.65527534,26.040205,26.38586426,26.72540092,27.0748024,27.47158241,27.80837631,28.11616135,28.3992157,28.62907982,28.85912895,29.09081459 "AEO 1997",,,,24.68686867,25.34906006,25.87225533,26.437994,27.03513145,27.52499771,27.96490097,28.45482063,28.92999458,29.38239861,29.84147453,30.26097488,30.59760475,30.85550499,31.10873222,31.31938744

100

"Table 19. Total Delivered Industrial Energy Consumption, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Industrial Energy Consumption, Projected vs. Actual" Total Delivered Industrial Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",25.43,25.904,26.303,26.659,26.974,27.062,26.755,26.598,26.908,27.228,27.668,28.068,28.348,28.668,29.068,29.398,29.688,30.008 "AEO 1995",,26.164,26.293,26.499,27.044,27.252,26.855,26.578,26.798,27.098,27.458,27.878,28.158,28.448,28.728,29.038,29.298,29.608 "AEO 1996",,,26.54702756,26.62236823,27.31312376,27.47668697,26.90313339,26.47577946,26.67685979,26.928811,27.23795407,27.58448499,27.91057103,28.15050595,28.30145734,28.518,28.73702901,28.93001263,29.15872662 "AEO 1997",,,,26.21291769,26.45981795,26.88483478,26.67847443,26.55107968,26.78246968,27.07367604,27.44749539,27.75711339,28.02446072,28.39156621,28.69999783,28.87316602,29.01207631,29.19475644,29.37683575

Note: This page contains sample records for the topic "area 1996-2011 actual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

File:Theoretical vs Actual Data Lesson Plan .pdf | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search File Edit History Facebook icon Twitter icon » File:Theoretical vs Actual Data Lesson Plan .pdf Jump to: navigation, search File File history File usage Metadata File:Theoretical vs Actual Data Lesson Plan .pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 257 KB, MIME type: application/pdf, 2 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 09:33, 3 January 2014 Thumbnail for version as of 09:33, 3 January 2014 1,275 × 1,650, 2 pages (257 KB) Foteri (Talk | contribs) Category:Wind for Schools Portal CurriculaCategory:Wind for Schools High School Curricula

102

Table 3a. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

a. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual a. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual Projected Price in Constant Dollars (constant dollars per barrel in "dollar year" specific to each AEO) AEO Dollar Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 1992 16.69 16.43 16.99 17.66 18.28 19.06 19.89 20.72 21.65 22.61 23.51 24.29 24.90 25.60 26.30 27.00 27.64 28.16 AEO 1995 1993 14.90 16.41 16.90 17.45 18.00 18.53 19.13 19.65 20.16 20.63 21.08 21.50 21.98 22.44 22.94 23.50 24.12 AEO 1996 1994 16.81 16.98 17.37 17.98 18.61 19.27 19.92 20.47 20.97 21.41 21.86 22.25 22.61 22.97 23.34 23.70 24.08

103

Table 3b. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

b. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual b. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual Projected Price in Nominal Dollars (nominal dollars per barrel) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 17.06 17.21 18.24 19.43 20.64 22.12 23.76 25.52 27.51 29.67 31.86 34.00 36.05 38.36 40.78 43.29 45.88 48.37 AEO 1995 15.24 17.27 18.23 19.26 20.39 21.59 22.97 24.33 25.79 27.27 28.82 30.38 32.14 33.89 35.85 37.97 40.28 AEO 1996 17.16 17.74 18.59 19.72 20.97 22.34 23.81 25.26 26.72 28.22 29.87 31.51 33.13 34.82 36.61 38.48 40.48

104

Table 11a. Coal Prices to Electric Generating Plants, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

a. Coal Prices to Electric Generating Plants, Projected vs. Actual a. Coal Prices to Electric Generating Plants, Projected vs. Actual Projected Price in Constant Dollars (constant dollars per million Btu in "dollar year" specific to each AEO) AEO Dollar Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 1992 1.47 1.48 1.53 1.57 1.58 1.57 1.61 1.63 1.68 1.69 1.70 1.72 1.70 1.76 1.79 1.81 1.88 1.92 AEO 1995 1993 1.39 1.39 1.38 1.40 1.40 1.39 1.39 1.42 1.41 1.43 1.44 1.45 1.46 1.46 1.46 1.47 1.50 AEO 1996 1994 1.32 1.29 1.28 1.27 1.26 1.26 1.25 1.27 1.27 1.27 1.28 1.27 1.28 1.27 1.28 1.26 1.28

105

Filtration and Leach Testing for REDOX Sludge and S-Saltcake Actual Waste Sample Composites  

Science Conference Proceedings (OSTI)

A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan.( ) The test program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Under test plan TP-RPP-WTP-467, eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. Under this test plan, a waste-testing program was implemented that included: • Homogenizing the archive samples by group as defined in the test plan • Characterizing the homogenized sample groups • Performing parametric leaching testing on each group for compounds of interest • Performing bench-top filtration/leaching tests in the hot cell for each group to simulate filtration and leaching activities if they occurred in the UFP2 vessel of the WTP Pretreatment Facility. This report focuses on filtration/leaching tests performed on two of the eight waste composite samples and follow-on parametric tests to support aluminum leaching results from those tests.

Shimskey, Rick W.; Billing, Justin M.; Buck, Edgar C.; Daniel, Richard C.; Draper, Kathryn E.; Edwards, Matthew K.; Geeting, John GH; Hallen, Richard T.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Snow, Lanee A.; Swoboda, Robert G.

2009-02-20T23:59:59.000Z

106

Laboratory Demonstration of the Pretreatment Process with Caustic and Oxidative Leaching Using Actual Hanford Tank Waste  

Science Conference Proceedings (OSTI)

This report describes the bench-scale pretreatment processing of actual tank waste materials through the entire baseline WTP pretreatment flowsheet in an effort to demonstrate the efficacy of the defined leaching processes on actual Hanford tank waste sludge and the potential impacts on downstream pretreatment processing. The test material was a combination of reduction oxidation (REDOX) tank waste composited materials containing aluminum primarily in the form of boehmite and dissolved S saltcake containing Cr(III)-rich entrained solids. The pretreatment processing steps tested included • caustic leaching for Al removal • solids crossflow filtration through the cell unit filter (CUF) • stepwise solids washing using decreasing concentrations of sodium hydroxide with filtration through the CUF • oxidative leaching using sodium permanganate for removing Cr • solids filtration with the CUF • follow-on solids washing and filtration through the CUF • ion exchange processing for Cs removal • evaporation processing of waste stream recycle for volume reduction • combination of the evaporated product with dissolved saltcake. The effectiveness of each process step was evaluated by following the mass balance of key components (such as Al, B, Cd, Cr, Pu, Ni, Mn, and Fe), demonstrating component (Al, Cr, Cs) removal, demonstrating filterability by evaluating filter flux rates under various processing conditions (transmembrane pressure, crossflow velocities, wt% undissolved solids, and PSD) and filter fouling, and identifying potential issues for WTP. The filterability was reported separately (Shimskey et al. 2008) and is not repeated herein.

Fiskum, Sandra K.; Billing, Justin M.; Buck, Edgar C.; Daniel, Richard C.; Draper, Kathryn E.; Edwards, Matthew K.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Shimskey, Rick W.; Snow, Lanee A.

2009-01-01T23:59:59.000Z

107

Comparison of Projections to Actual Performance in the DOE-EPRI Wind Turbine Verification Program  

DOE Green Energy (OSTI)

As part of the US Department of Energy/Electric Power Research Institute (DOE-EPRI) Wind Turbine Verification Program (TVP), Global Energy Concepts (GEC) worked with participating utilities to develop a set of performance projections for their projects based on historical site atmospheric conditions, turbine performance data, operation and maintenance (O and M) strategies, and assumptions about various energy losses. After a preliminary operation period at each project, GEC compared the actual performance to projections and evaluated the accuracy of the data and assumptions that formed the performance projections. This paper presents a comparison of 1999 power output, turbine availability, and other performance characteristics to the projections for TVP projects in Texas, Vermont, Iowa, Nebraska, Wisconsin, and Alaska. Factors that were overestimated or underestimated are quantified. Actual wind speeds are compared to projections based on long-term historical measurements. Turbine power curve measurements are compared with data provided by the manufacturers, and loss assumptions are evaluated for accuracy. Overall, the projects performed well, particularly new commercial turbines in the first few years of operation. However, some sites experienced below average wind resources and greater than expected losses. The TVP project owners successfully developed and constructed wind power plants that are now in full commercial operation, serving a total of approximately 12,000 households.

Rhoads, H.; VandenBosche, J.; McCoy, T.; Compton, A. (Global Energy Concepts, LLC); Smith, B. (National Renewable Energy Laboratory)

2000-09-11T23:59:59.000Z

108

PERFORMANCE TESTING OF THE NEXT-GENERATION CSSX SOLVENT WITH ACTUAL SRS TANK WASTE  

Science Conference Proceedings (OSTI)

Efforts are underway to qualify the Next-Generation Solvent for the Caustic Side Solvent Extraction (CSSX) process. Researchers at multiple national laboratories have been involved in this effort. As part of the effort to qualify the solvent extraction system at the Savannah River Site (SRS), SRNL performed a number of tests at various scales. First, SRNL completed a series of batch equilibrium, or Extraction-Scrub-Strip (ESS), tests. These tests used {approx}30 mL of Next-Generation Solvent and either actual SRS tank waste, or waste simulant solutions. The results from these cesium mass transfer tests were used to predict solvent behavior under a number of conditions. At a larger scale, SRNL assembled 12 stages of 2-cm (diameter) centrifugal contactors. This rack of contactors is structurally similar to one tested in 2001 during the demonstration of the baseline CSSX process. Assembly and mechanical testing found no issues. SRNL performed a nonradiological test using 35 L of cesium-spiked caustic waste simulant and 39 L of actual tank waste. Test results are discussed; particularly those related to the effectiveness of extraction.

Pierce, R.; Peters, T.; Crowder, M.; Fink, S.

2011-11-01T23:59:59.000Z

109

"Table 18. Total Delivered Commercial Energy Consumption, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Commercial Energy Consumption, Projected vs. Actual" Total Delivered Commercial Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",6.82,6.87,6.94,7,7.06,7.13,7.16,7.22,7.27,7.32,7.36,7.38,7.41,7.45,7.47,7.5,7.51,7.55 "AEO 1995",,6.94,6.9,6.95,6.99,7.02,7.05,7.08,7.09,7.11,7.13,7.15,7.17,7.19,7.22,7.26,7.3,7.34 "AEO 1996",,,7.059859276,7.17492485,7.228339195,7.28186655,7.336973667,7.387932777,7.442782879,7.501244545,7.561584473,7.623688221,7.684037209,7.749266148,7.815915108,7.884147644,7.950204372,8.016282082,8.085801125 "AEO 1997",,,,7.401538849,7.353548527,7.420701504,7.48336792,7.540113449,7.603093624,7.663851738,7.723834991,7.783358574,7.838726044,7.89124918,7.947964668,8.008976936,8.067288399,8.130317688,8.197405815

110

Characterization, Leaching, and Filtrations Testing of Ferrocyanide Tank sludge (Group 8) Actual Waste Composite  

SciTech Connect

This is the final report in a series of eight reports defining characterization, leach, and filtration testing of a wide variety of Hanford tank waste sludges. The information generated from this series is intended to supplement the Waste Treatment and Immobilization Plant (WTP) project understanding of actual waste behaviors associated with tank waste sludge processing through the pretreatment portion of the WTP. The work described in this report presents information on a high-iron waste form, specifically the ferrocyanide tank waste sludge. Iron hydroxide has been shown to pose technical challenges during filtration processing; the ferrocyanide tank waste sludge represented a good source of the high-iron matrix to test the filtration processing.

Fiskum, Sandra K.; Billing, Justin M.; Crum, J. V.; Daniel, Richard C.; Edwards, Matthew K.; Shimskey, Rick W.; Peterson, Reid A.; MacFarlan, Paul J.; Buck, Edgar C.; Draper, Kathryn E.; Kozelisky, Anne E.

2009-02-28T23:59:59.000Z

111

Building a Model Patient Room to Test Design Innovations With Actual Patients  

E-Print Network (OSTI)

comfortable hospital environment SUMMARY Designing and constructing a new hospital is a complex and costly undertaking that involves experts from many disciplines both inside and outside the health care arena. But despite expending funds and time, hospital leaders often discover significant flaws once a hospital opens that can undermine the quality of patient care and staff effectiveness and efficiency. From 2010 to 2012, a team at the Princeton HealthCare System worked to devise an optimal design for inpatient rooms at a new hospital: the University Medical Center of Princeton at Plainsboro. The project entailed building a “functional model patient room.” This was a unique and innovative method to allow the team to test design innovations with actual patients, according to project director Susan Lorenz, DrNP, RN, vice president of patient care services and chief nursing officer for the Princeton HealthCare System. The project helped support the emerging field of evidence-based hospital design.

A Princeton; More Efficient; Key Results

2013-01-01T23:59:59.000Z

112

Exposure of Ceramics and Ceramic Matrix Composites in Simulated and Actual Combustor Environments  

DOE Green Energy (OSTI)

A high-temperature, high-pressure, tube furnace has been used to evaluate the long term stability of different monolithic ceramic and ceramic matrix composite materials in a simulated combustor environment. All of the tests have been run at 150 psia, 1204 degrees C, and 15% steam in incremental 500 h runs. The major advantage of this system is the high sample throughput; >20 samples can be exposed in each tube at the same time under similar exposure conditions. Microstructural evaluations of the samples were conducted after each 500 h exposure to characterize the extent of surface damage, to calculate surface recession rates, and to determine degradation mechanisms for the different materials. The validity of this exposure rig for simulating real combustor environments was established by comparing materials exposed in the test rig and combustor liner materials exposed for similar times in an actual gas turbine combustor under commercial operating conditions.

Brentnall, W.D.; Ferber, M.K.; Keiser, j.R.; Miriyala, N.; More, K.L.; Price, J.R.; Tortorelli, P.F.; Walker, L.R.

1999-06-07T23:59:59.000Z

113

The Premier Information Source for Professionals Who Track Environmental and Energy Policy. 1996-2011 E&E Publishing, LLC Privacy Policy Site Map  

E-Print Network (OSTI)

The Premier Information Source for Professionals Who Track Environmental and Energy Policy. © 1996 testified before Congress in recent years on the economics of climate change and energy policy. He has also-2011 E&E Publishing, LLC Privacy Policy Site Map 11. TREASURY: Tufts economics professor picked to lead

Tufts University

114

Actual Scale MOX Powder Mixing Test for MOX Fuel Fabrication Plant in Japan  

Science Conference Proceedings (OSTI)

Japan Nuclear Fuel Ltd. (hereafter, JNFL) promotes a program of constructing a MOX fuel fabrication plant (hereafter, J-MOX) to fabricate MOX fuels to be loaded in domestic light water reactors. Since Japanese fiscal year (hereafter, JFY) 1999, JNFL, to establish the technology for a smooth start-up and the stable operation of J-MOX, has executed an evaluation test for technology to be adopted at J-MOX. JNFL, based on a consideration that J-MOX fuel fabrication comes commercial scale production, decided an introduction of MIMAS technology into J-MOX main process, from powder mixing through pellet sintering, well recognized as mostly important to achieve good quality product of MOX fuel, since it achieves good results in both fuel production and actual reactor irradiation in Europe, but there is one difference that JNFL is going to use Japanese typical plutonium and uranium mixed oxide powder converted with the micro-wave heating direct de-nitration technology (hereafter, MH-MOX) but normal PuO{sub 2} of European MOX fuel fabricators. Therefore, in order to evaluate the suitability of the MH-MOX powder for the MIMAS process, JNFL manufactured small scale test equipment, and implemented a powder mixing evaluation test up until JFY 2003. As a result, the suitability of the MH-MOX powder for the MIMAS process was positively evaluated and confirmed It was followed by a five-years test named an 'actual test' from JFY 2003 to JFY 2007, which aims at demonstrating good operation and maintenance of process equipment as well as obtaining good quality of MOX fuel pellets. (authors)

Osaka, Shuichi; Kurita, Ichiro; Deguchi, Morimoto [Japan Nuclear Fuel Ltd., 4-108, Aza okitsuke, oaza obuchi rokkasyo-mura, kamikita-gun, Aomori 039-3212 (Japan); Ito, Masanori [Japan Atomic Energy Agency, 4-33 Muramatu, Tokai-mura, Ibaraki 319-1194 (Japan); Goto, Masakazu [Nuclear Fuel Industries, Ltd., 14-10, Mita 3-chome, Minato-ku, Tokyo 108-0073 (Japan)

2007-07-01T23:59:59.000Z

115

BENCH-SCALE STEAM REFORMING OF ACTUAL TANK 48H WASTE  

Science Conference Proceedings (OSTI)

Fluidized Bed Steam Reforming (FBSR) has been demonstrated to be a viable technology to remove >99% of the organics from Tank 48H simulant, to remove >99% of the nitrate/nitrite from Tank 48H simulant, and to form a solid product that is primarily carbonate based. The technology was demonstrated in October of 2006 in the Engineering Scale Test Demonstration Fluidized Bed Steam Reformer1 (ESTD FBSR) at the Hazen Research Inc. (HRI) facility in Golden, CO. The purpose of the Bench-scale Steam Reformer (BSR) testing was to demonstrate that the same reactions occur and the same product is formed when steam reforming actual radioactive Tank 48H waste. The approach used in the current study was to test the BSR with the same Tank 48H simulant and same Erwin coal as was used at the ESTD FBSR under the same operating conditions. This comparison would allow verification that the same chemical reactions occur in both the BSR and ESTD FBSR. Then, actual radioactive Tank 48H material would be steam reformed in the BSR to verify that the actual tank 48H sample reacts the same way chemically as the simulant Tank 48H material. The conclusions from the BSR study and comparison to the ESTD FBSR are the following: (1) A Bench-scale Steam Reforming (BSR) unit was successfully designed and built that: (a) Emulated the chemistry of the ESTD FBSR Denitration Mineralization Reformer (DMR) and Carbon Reduction Reformer (CRR) known collectively as the dual reformer flowsheet. (b) Measured and controlled the off-gas stream. (c) Processed real (radioactive) Tank 48H waste. (d) Met the standards and specifications for radiological testing in the Savannah River National Laboratory (SRNL) Shielded Cells Facility (SCF). (2) Three runs with radioactive Tank 48H material were performed. (3) The Tetraphenylborate (TPB) was destroyed to > 99% for all radioactive Bench-scale tests. (4) The feed nitrate/nitrite was destroyed to >99% for all radioactive BSR tests the same as the ESTD FBSR. (5) The radioactive Tank 48H DMR product was primarily made up of soluble carbonates. The three most abundant species were thermonatrite, [Na{sub 2}CO{sub 3} {center_dot} H{sub 2}O], sodium carbonate, [Na{sub 2}CO{sub 3}], and trona, [Na{sub 3}H(CO{sub 3}){sub 2} {center_dot} 2H{sub 2}O] the same as the ESTD FBSR. (6) Insoluble solids analyzed by X-Ray Diffraction (XRD) did not detect insoluble carbonate species. However, they still may be present at levels below 2 wt%, the sensitivity of the XRD methodology. Insoluble solids XRD characterization indicated that various Fe/Ni/Cr/Mn phases are present. These crystalline phases are associated with the insoluble sludge components of Tank 48H slurry and impurities in the Erwin coal ash. The percent insoluble solids, which mainly consist of un-burnt coal and coal ash, in the products were 4 to 11 wt% for the radioactive runs. (7) The Fe{sup +2}/Fe{sub total} REDOX measurements ranged from 0.58 to 1 for the three radioactive Bench-scale tests. REDOX measurements > 0.5 showed a reducing atmosphere was maintained in the DMR indicating that pyrolysis was occurring. (8) Greater than 90% of the radioactivity was captured in the product for all three runs. (9) The collective results from the FBSR simulant tests and the BSR simulant tests indicate that the same chemistry occurs in the two reactors. (10) The collective results from the BSR simulant runs and the BSR radioactive waste runs indicates that the same chemistry occurs in the simulant as in the real waste. The FBSR technology has been proven to destroy the organics and nitrates in the Tank 48H waste and form the anticipated solid carbonate phases as expected.

Burket, P; Gene Daniel, G; Charles Nash, C; Carol Jantzen, C; Michael Williams, M

2008-09-25T23:59:59.000Z

116

Table 12. Coal Prices to Electric Generating Plants, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Coal Prices to Electric Generating Plants, Projected vs. Actual Coal Prices to Electric Generating Plants, Projected vs. Actual (nominal dollars per million Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 2.03 2.17 2.33 2.52 2.73 2.99 AEO 1983 1.99 2.10 2.24 2.39 2.57 2.76 4.29 AEO 1984 1.90 2.01 2.13 2.28 2.44 2.61 3.79 AEO 1985 1.68 1.76 1.86 1.95 2.05 2.19 2.32 2.49 2.66 2.83 3.03 AEO 1986 1.61 1.68 1.75 1.83 1.93 2.05 2.19 2.35 2.54 2.73 2.92 3.10 3.31 3.49 3.68 AEO 1987 1.52 1.55 1.65 1.75 1.84 1.96 2.11 2.27 2.44 3.55 AEO 1989* 1.50 1.51 1.68 1.77 1.88 2.00 2.13 2.26 2.40 2.55 2.70 2.86 3.00 AEO 1990 1.46 1.53 2.07 2.76 3.7 AEO 1991 1.51 1.58 1.66 1.77 1.88 1.96 2.06 2.16 2.28 2.41 2.57 2.70 2.85 3.04 3.26 3.46 3.65 3.87 4.08 4.33 AEO 1992 1.54 1.61 1.66 1.75 1.85 1.97 2.03 2.14 2.26 2.44 2.55 2.69 2.83 3.00 3.20 3.40 3.58 3.78 4.01 AEO 1993 1.92 1.54 1.61 1.70

117

Examining the Cycle: How Perceived and Actual Bicycling Risk Influence Cycling Frequency, Roadway Design Preferences, and Support for Cycling Among Bay Area Residents  

E-Print Network (OSTI)

street parking, lighting, presence, width, quality, and placement of bicycle infrastructure, etc. However, with the exception of research

Sanders, Rebecca Lauren

2013-01-01T23:59:59.000Z

118

Actual Dose Variation of Parotid Glands and Spinal Cord for Nasopharyngeal Cancer Patients During Radiotherapy  

Science Conference Proceedings (OSTI)

Purpose: For intensity-modulated radiotherapy of nasopharyngeal cancer, accurate dose delivery is crucial to the success of treatment. This study aimed to evaluate the significance of daily image-guided patient setup corrections and to quantify the parotid gland volume and dose variations for nasopharyngeal cancer patients using helical tomotherapy megavoltage computed tomography (CT). Methods and Materials: Five nasopharyngeal cancer patients who underwent helical tomotherapy were selected retrospectively. Each patient had received 70 Gy in 35 fractions. Daily megavoltage CT scans were registered with the planning CT images to correct the patient setup errors. Contours of the spinal cord and parotid glands were drawn on the megavoltage CT images at fixed treatment intervals. The actual doses delivered to the critical structures were calculated using the helical tomotherapy Planned Adaptive application. Results: The maximal dose to the spinal cord showed a significant increase and greater variation without daily setup corrections. The significant decrease in the parotid gland volume led to a greater median dose in the later phase of treatment. The average parotid gland volume had decreased from 20.5 to 13.2 cm{sup 3} by the end of treatment. On average, the median dose to the parotid glands was 83 cGy and 145 cGy for the first and the last treatment fractions, respectively. Conclusions: Daily image-guided setup corrections can eliminate significant dose variations to critical structures. Constant monitoring of patient anatomic changes and selective replanning should be used during radiotherapy to avoid critical structure complications.

Han Chunhui [Division of Radiation Oncology, City of Hope National Medical Center, Duarte, CA (United States)], E-mail: chan@coh.org; Chen Yijen; Liu An; Schultheiss, Timothy E.; Wong, Jeffrey Y.C. [Division of Radiation Oncology, City of Hope National Medical Center, Duarte, CA (United States)

2008-03-15T23:59:59.000Z

119

Modeling of Boehmite Leaching from Actual Hanford High-Level Waste Samples  

SciTech Connect

The Department of Energy plans to vitrify approximately 60,000 metric tons of high level waste sludge from underground storage tanks at the Hanford Nuclear Reservation. To reduce the volume of high level waste requiring treatment, a goal has been set to remove about 90 percent of the aluminum, which comprises nearly 70 percent of the sludge. Aluminum in the form of gibbsite and sodium aluminate can be easily dissolved by washing the waste stream with caustic, but boehmite, which comprises nearly half of the total aluminum, is more resistant to caustic dissolution and requires higher treatment temperatures and hydroxide concentrations. In this work, the dissolution kinetics of aluminum species during caustic leaching of actual Hanford high level waste samples is examined. The experimental results are used to develop a shrinking core model that provides a basis for prediction of dissolution dynamics from known process temperature and hydroxide concentration. This model is further developed to include the effects of particle size polydispersity, which is found to strongly influence the rate of dissolution.

Peterson, Reid A.; Lumetta, Gregg J.; Rapko, Brian M.; Poloski, Adam P.

2007-06-27T23:59:59.000Z

120

Actinide partitioning from actual Idaho chemical processing plant acidic tank waste using centrifugal contactors  

Science Conference Proceedings (OSTI)

The TRUEX process is being evaluated at the Idaho Chemical Processing Plant (ICPP) for the separation of the actinides from acidic radioactive wastes stored at the ICPP. These efforts have culminated in a recent demonstration of the TRUEX process with actual tank waste. This demonstration was performed using 24 stages of 2-cm diameter centrifugal contactors installed in a shielded hot cell at the ICPP Remote Analytical Laboratory. An overall removal efficiency of 99.97% was obtained for the actinides. As a result, the activity of the actinides was reduced from 457 nCi/g in the feed to 0.12 nCi/g in the aqueous raffinate, which is well below the U.S. NRC Class A LLW requirement of 10 nCi/g for non-TRU waste. Iron was partially extracted by the TRUEX solvent, resulting in 23% of the Fe exiting in the strip product. Mercury was also extracted by the TRUEX solvent (76%) and stripped from the solvent in the 0.25 M Na{sub 2}CO{sub 3} wash section.

Law, J.D.; Brewer, K.N.; Todd, T.A.

1997-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "area 1996-2011 actual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Actual versus design performance of solar systems in the National Solar Data Network  

Science Conference Proceedings (OSTI)

This report relates field measured performance to the designer predicted performance. The field measured data was collected by the National Solar Data Network (NSDN) over a period of six years. Data from 25 solar systems was selected from a data pool of some 170 solar systems. The scope of the project extends beyond merely presenting comparisons of data. There is an attempt to provide answers which will move the solar industry forward. As a result of some industry and research workshops, several concerns arose which can be partially allayed by careful study of the NSDN data. These are: What types of failures occurred and why. How good was the design versus actual performance. Why was predicted performance not achieved in the field. Which components should be integrated with a system type for good performance. Since the designs span several years and since design philosophies are quite variable, the measured results were also compared to f-Chart 5.1 results. This comparison is a type of normalization in that all systems are modeled with the same process. An added benefit of this normalization is a further validation of the f-Chart model on a fairly large scale. The systems were modeled using equipment design parameters, measured loads, and f-Chart weather data from nearby cities.

Logee, T.L.; Kendall, P.W.

1984-09-01T23:59:59.000Z

122

Strategic Focus Areas  

NLE Websites -- All DOE Office Websites (Extended Search)

Focus Areas Lockheed Martin on behalf of Sandia National Laboratories will consider grant requests that best support the Corporation's strategic focus areas and reflect effective...

123

Performance evaluation of 24 ion exchange materials for removing cesium and strontium from actual and simulated N-Reactor storage basin water  

Science Conference Proceedings (OSTI)

This report describes the evaluation of 24 organic and inorganic ion exchange materials for removing cesium and strontium from actual and simulated waters from the 100 Area 105 N-Reactor fuel storage basin. The data described in this report can be applied for developing and evaluating ion exchange pre-treatment process flowsheets. Cesium and strontium batch distribution ratios (K{sub d}`s), decontamination factors (DF), and material loadings (mmol g{sup -1}) are compared as a function of ion exchange material and initial cesium concentration. The actual and simulated N-Basin waters contain relatively low levels of aluminum, barium, calcium, potassium, and magnesium (ranging from 8.33E-04 to 6.40E-05 M), with slightly higher levels of boron (6.63E-03 M) and sodium (1.62E-03 M). The {sup 137}Cs level is 1.74E-06 Ci L-{sup 1} which corresponds to approximately 4.87E-10 M Cs. The initial Na/Cs ratio was 3.33E+06. The concentration of total strontium is 4.45E-06 M, while the {sup 90}Sr radioactive component was measured to be 6.13E-06 Ci L{sup -1}. Simulant tests were conducted by contacting 0.067 g or each ion exchange material with approximately 100 mL of either the actual or simulated N-Basin water. The simulants contained variable initial cesium concentrations ranging from 1.00E-04 to 2.57E- 10 M Cs while all other components were held constant. For all materials, the average cesium K{sub d} was independent of cesium concentration below approximately 1.0E-06 M. Above this level, the average cesium K{sub d} values decreased significantly. Cesium K{sub d} values exceeding 1.0E+07 mL g{sup -1} were measured in the simulated N-Basin water. However, when measured in the actual N-Basin water the values were several orders of magnitude lower, with a maximum of 1.24E+05 mL g{sup -1} observed.

Brown, G.N.; Carson, K.J.; DesChane, J.R.; Elovich, R.J.

1997-09-01T23:59:59.000Z

124

Filtration and Leach Testing for PUREX Cladding Sludge and REDOX Cladding Sludge Actual Waste Sample Composites  

SciTech Connect

A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan (Barnes and Voke 2006). The test program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Hanford Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Under test plan TP RPP WTP 467 (Fiskum et al. 2007), eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. Under this test plan, a waste testing program was implemented that included: • Homogenizing the archive samples by group as defined in the test plan. • Characterizing the homogenized sample groups. • Performing parametric leaching testing on each group for compounds of interest. • Performing bench-top filtration/leaching tests in the hot cell for each group to simulate filtration and leaching activities if they occurred in the UFP2 vessel of the WTP Pretreatment Facility. This report focuses on a filtration/leaching test performed using two of the eight waste composite samples. The sample groups examined in this report were the plutonium-uranium extraction (PUREX) cladding waste sludge (Group 3, or CWP) and reduction-oxidation (REDOX) cladding waste sludge (Group 4, or CWR). Both the Group 3 and 4 waste composites were anticipated to be high in gibbsite, thus requiring caustic leaching. WTP RPT 167 (Snow et al. 2008) describes the homogenization, characterization, and parametric leaching activities before benchtop filtration/leaching testing of these two waste groups. Characterization and initial parametric data in that report were used to plan a single filtration/leaching test using a blend of both wastes. The test focused on filtration testing of the waste and caustic leaching for aluminum, in the form of gibbsite, and its impact on filtration. The initial sample was diluted with a liquid simulant to simulate the receiving concentration of retrieved tank waste into the UFP2 vessel (< 10 wt% undissolved solids). Filtration testing was performed on the dilute waste sample and dewatered to a higher solids concentration. Filtration testing was then performed on the concentrated slurry. Afterwards, the slurry was caustic leached to remove aluminum present in the undissolved solid present in the waste. The leach was planned to simulate leaching conditions in the UFP2 vessel. During the leach, slurry supernate samples were collected to measure the dissolution rate of aluminum in the waste. After the slurry cooled down from the elevated leach temperature, the leach liquor was dewatered from the solids. The remaining slurry was rinsed and dewatered with caustic solutions to remove a majority of the dissolved aluminum from the leached slurry. The concentration of sodium hydroxide in the rinse solutions was high enough to maintain the solubility of the aluminum in the dewatered rinse solutions after dilution of the slurry supernate. Filtration tests were performed on the final slurry to compare to filtration performance before and after caustic leaching.

Shimskey, Rick W.; Billing, Justin M.; Buck, Edgar C.; Casella, Amanda J.; Crum, Jarrod V.; Daniel, Richard C.; Draper, Kathryn E.; Edwards, Matthew K.; Hallen, Richard T.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Swoboda, Robert G.

2009-03-02T23:59:59.000Z

125

ACTUAL-WASTE TESTING OF ULTRAVIOLET LIGHT TO AUGMENT THE ENHANCED CHEMICAL CLEANING OF SRS SLUDGE  

SciTech Connect

In support of Savannah River Site (SRS) tank closure efforts, the Savannah River National Laboratory (SRNL) conducted Real Waste Testing (RWT) to evaluate Enhanced Chemical Cleaning (ECC), an alternative to the baseline 8 wt% oxalic acid (OA) chemical cleaning technology for tank sludge heel removal. ECC utilizes a more dilute OA solution (2 wt%) and an oxalate destruction technology using ozonolysis with or without the application of ultraviolet (UV) light. SRNL conducted tests of the ECC process using actual SRS waste material from Tanks 5F and 12H. The previous phase of testing involved testing of all phases of the ECC process (sludge dissolution, OA decomposition, product evaporation, and deposition tank storage) but did not involve the use of UV light in OA decomposition. The new phase of testing documented in this report focused on the use of UV light to assist OA decomposition, but involved only the OA decomposition and deposition tank portions of the process. Compared with the previous testing at analogous conditions without UV light, OA decomposition with the use of UV light generally reduced time required to reach the target of <100 mg/L oxalate. This effect was the most pronounced during the initial part of the decomposition batches, when pH was <4. For the later stages of each OA decomposition batch, the increase in OA decomposition rate with use of the UV light appeared to be minimal. Testing of the deposition tank storage of the ECC product resulted in analogous soluble concentrations regardless of the use or non-use of UV light in the ECC reactor.

Martino, C.; King, W.; Ketusky, E.

2012-07-10T23:59:59.000Z

126

STEAM REFORMING TECHNOLOGY DEMONSTRATION FOR THE DESTRUCTION OF ORGANICS ON ACTUAL DOE SAVANNAH RIVER SITE TANK 48H WASTE 9138  

SciTech Connect

This paper describes the design of the Bench-scale Steam Reformer (BSR); a processing unit for demonstrating steam reforming technology on actual radioactive waste [1]. It describes the operating conditions of the unit used for processing a sample of Savannah River Site (SRS) Tank 48H waste. Finally, it compares the results from processing the actual waste in the BSR to processing simulant waste in the BSR to processing simulant waste in a large pilot scale unit, the Fluidized Bed Steam Reformer (FBSR), operated at Hazen Research Inc. in Golden, CO. The purpose of this work was to prove that the actual waste reacted in the same manner as the simulant waste in order to validate the work performed in the pilot scale unit which could only use simulant waste.

Burket, P

2009-02-24T23:59:59.000Z

127

DEMONSTRATION OF THE GLYCOLIC-FORMIC FLOWSHEET IN THE SRNL SHIELDED CELLS USING ACTUAL WASTE  

SciTech Connect

Glycolic acid was effective at dissolving many metals, including iron, during processing with simulants. Criticality constraints take credit for the insolubility of iron during processing to prevent criticality of fissile materials. Testing with actual waste was needed to determine the extent of iron and fissile isotope dissolution during Chemical Process Cell (CPC) processing. The Alternate Reductant Project was initiated by the Savannah River Remediation (SRR) Company to explore options for the replacement of the nitric-formic flowsheet used for the CPC at the Defense Waste Processing Facility (DWPF). The goals of the Alternate Reductant Project are to reduce CPC cycle time, increase mass throughput of the facility, and reduce operational hazards. In order to achieve these goals, several different reductants were considered during initial evaluations conducted by Savannah River National Laboratory (SRNL). After review of the reductants by SRR, SRNL, and Energy Solutions (ES) Vitreous State Laboratory (VSL), two flowsheets were further developed in parallel. The two flowsheet options included a nitric-formic-glycolic flowsheet, and a nitric-formic-sugar flowsheet. As of July 2011, SRNL and ES/VSL have completed the initial flowsheet development work for the nitric-formic-glycolic flowsheet and nitric-formic-sugar flowsheet, respectively. On July 12th and July 13th, SRR conducted a Systems Engineering Evaluation (SEE) to down select the alternate reductant flowsheet. The SEE team selected the Formic-Glycolic Flowsheet for further development. Two risks were identified in SEE for expedited research. The first risk is related to iron and plutonium solubility during the CPC process with respect to criticality. Currently, DWPF credits iron as a poison for the fissile components of the sludge. Due to the high iron solubility observed during the flowsheet demonstrations with simulants, it was necessary to determine if the plutonium in the radioactive sludge slurry demonstrated the same behavior. The second risk is related to potential downstream impacts of glycolate on Tank Farm processes. The downstream impacts will be evaluated by a separate research team. Waste Solidification Engineering (WSE) has requested a radioactive demonstration of the Glycolic-Formic Flowsheet with radioactive sludge slurry be completed in the Shielded Cells Facility of the SRNL. The Shielded Cells demonstration only included a Sludge Receipt and Adjustment Tank (SRAT) cycle, and not a Slurry Mix Evaporator (SME) cycle or the co-processing of salt products. Sludge Batch 5 (SB5) slurry was used for the demonstration since it was readily available, had been previously characterized, and was generally representative of sludges being processing in DWPF. This sample was never used in the planned Shielded Cells Run 7 (SC-7).

Lambert, D.; Pareizs, J.; Click, D.

2011-11-07T23:59:59.000Z

128

Division/ Interest Area Information  

Science Conference Proceedings (OSTI)

Learn more about Divisions and Interest areas. Division/ Interest Area Information Membership Information achievement application award Awards distinguished division Divisions fats job Join lipid lipids Member member get a member Membership memori

129

The influence of indoor temperature on the difference between actual and theoretical energy consumption for space heating  

Science Conference Proceedings (OSTI)

The Energy Advice procedure (EAP) is developed to evaluate the energetic performance of "existing" dwellings to generate a useful advice for the occupants of the dwelling to invest in rational energy measures. The EAP is based on a theoretical calculation ... Keywords: actual energy consumption, consumer behaviour, indoor temperature, space heating, theoretical energy consumption

Amaryllis Audenaert; Katleen Briffaerts; Dries De Boeck

2011-11-01T23:59:59.000Z

130

Next Update: November 2013  

Gasoline and Diesel Fuel Update (EIA)

Next Update: November 2013 Table 3B.1. FRCC monthly peak hour demand, by North American Electric Reliability Corporation Assesment Area, 1996-2011 actual, 2012-2013 projected megawatts FRCC Year January February March April May June July August September October November December 1996 39,860 41,896 32,781 28,609 32,059 33,886 35,444 34,341 34,797 30,037 29,033 34,191 1997 37,127 28,144 27,998 28,458 33,859 34,125 35,356 35,375 33,620 31,798 27,669 31,189

131

DOE Designates Southwest Area and Mid-Atlantic Area National...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Designates Southwest Area and Mid-Atlantic Area National Interest Electric Transmission Corridors October 2, 2007 DOE Designates Southwest Area and Mid-Atlantic Area National...

132

DOE Designates Southwest Area and Mid-Atlantic Area National...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Designates Southwest Area and Mid-Atlantic Area National Interest Electric Transmission Corridors DOE Designates Southwest Area and Mid-Atlantic Area National Interest Electric...

133

Geothermal br Resource br Area Geothermal br Resource br Area...  

Open Energy Info (EERE)

Brady Hot Springs Geothermal Area Brady Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region MW K Coso Geothermal Area Coso Geothermal Area Walker Lane...

134

Effects of Synoptic-scale Wind under the Typical Summer Pressure Pattern on the Mesoscale High-Temperature Events in the Osaka and Kyoto Urban Areas in Japan by the WRF model  

Science Conference Proceedings (OSTI)

The actual conditions of the mesoscale summer high temperatures (HT) recorded in Osaka-Kyoto urban area in Japan were investigated by using our observation network. The daytime temperatures observed on ten HT events in this area were the highest ...

Yuya Takane; Yukitaka Ohashi; Hiroyuki Kusaka; Yoshinori Shigeta; Yukihiro Kikegawa

135

Material Disposal Areas  

NLE Websites -- All DOE Office Websites (Extended Search)

Material Disposal Areas Material Disposal Areas Material Disposal Areas Material Disposal Areas, also known as MDAs, are sites where material was disposed of below the ground surface in excavated pits, trenches, or shafts. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Material Disposal Areas at LANL The following are descriptions and status updates of each MDA at LANL. To view a current fact sheet on the MDAs, click on LA-UR-13-25837 (pdf). MDA A MDA A is a Hazard Category 2 nuclear facility comprised of a 1.25-acre, fenced, and radiologically controlled area situated on the eastern end of Delta Prime Mesa. Delta Prime Mesa is bounded by Delta Prime Canyon to the north and Los Alamos Canyon to the south.

136

Naval applications study areas  

SciTech Connect

This memorandum discusses study areas and items that will require attention for the naval studies of the utilization of nuclear propulsion in a submarine-based missile system.

Hadley, J. W.

1962-06-20T23:59:59.000Z

137

Boulder Area Transportation  

Science Conference Proceedings (OSTI)

... NIST does not endorse or guarantee the quality or services provided by these businesses. All Denver/Boulder area transportation companies. ...

2011-11-16T23:59:59.000Z

138

NIST Aperture area measurements  

Science Conference Proceedings (OSTI)

... particularly critical, for example, in climate and weather applications on ... of aperture areas used in exo-atmospheric solar irradiance measurements; ...

2011-11-03T23:59:59.000Z

139

Wind Plant Capacity Credit Variations: A Comparison of Results Using Multiyear Actual and Simulated Wind-Speed Data  

DOE Green Energy (OSTI)

Although it is widely recognized that variations in annual wind energy capture can be significant, it is not clear how significant this effect is on accurately calculating the capacity credit of a wind plant. An important question is raised concerning whether one year of wind data is representative of long-term patterns. This paper calculates the range of capacity credit measures based on 13 years of actual wind-speed data. The results are compared to those obtained with synthetic data sets that are based on one year of data. Although the use of synthetic data sets is a considerable improvement over single-estimate techniques, this paper finds that the actual inter- annual variation in capacity credit is still understated by the synthetic data technique.

Milligan, Michael

1997-06-01T23:59:59.000Z

140

Fueling area site assessment  

SciTech Connect

This report provides results of a Site Assessment performed at the Fuel Storage Area at Buckley ANG Base in Aurora, Colorado. Buckley ANG Base occupies 3,328 acres of land within the City of Aurora in Arapahoe County, Colorado. The Fuel Storage Area (also known as the Fueling Area) is located on the west side of the Base at the intersection of South Powderhorn Street and East Breckenridge Avenue. The Fueling Area consists of above ground storage tanks in a bermed area, pumps, piping, valves, an unloading stand and a fill stand. Jet fuel from the Fueling Area is used to support aircraft operations at the Base. Jet fuel is stored in two 200,000 gallon above ground storage tanks. Fuel is received in tanker trucks at the unloading stand located south and east of the storage tanks. Fuel required for aircraft fueling and other use is transferred into tanker trucks at the fill stand and transported to various points on the Base. The Fuel Storage Area has been in operation for over 20 years and handles approximately 7 million gallons of jet fuel annually.

1996-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "area 1996-2011 actual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

NSTB Summarizes Vulnerable Areas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NSTB Summarizes Vulnerable Areas NSTB Summarizes Vulnerable Areas Commonly Found in Energy Control Systems Experts at the National SCADA Test Bed (NSTB) discovered some common areas of vulnerability in the energy control systems assessed between late 2004 and early 2006. These vulnerabilities ranged from conventional IT security issues to specific weaknesses in control system protocols. The paper "Lessons Learned from Cyber Security Assessments of SCADA and Energy Management Systems" describes the vulnerabilities and recommended strategies for mitigating them. It should be of use to asset owners and operators, control system vendors, system integrators, and third-party vendors interested in enhancing the security characteristics of current and future products.

142

area | OpenEI  

Open Energy Info (EERE)

area area Dataset Summary Description These estimates are derived from a composite of high resolution wind resource datasets modeled for specific countries with low resolution data originating from the National Centers for Environmental Prediction (United States) and the National Center for Atmospheric Research (United States) as processed for use in the IMAGE model. The high resolution datasets were produced by the National Renewable Energy Laboratory (United States), Risø DTU National Laboratory (Denmark), the National Institute for Space Research (Brazil), and the Canadian Wind Energy Association. The data repr Source National Renewable Energy Laboratory Date Released Unknown Date Updated Unknown Keywords area capacity clean energy international National Renewable Energy Laboratory

143

Geographic Area Month  

Gasoline and Diesel Fuel Update (EIA)

Fuels by PAD District and State (Cents per Gallon Excluding Taxes) - Continued Geographic Area Month No. 1 Distillate No. 2 Distillate a No. 4 Fuel b Sales to End Users Sales for...

144

3. Producing Areas  

U.S. Energy Information Administration (EIA)

The OCS area provides surplus capacity to meet major seasonal swings in the lower 48 States gas requirements. The ... Jun-86 9,878 17,706 1,460 19,166 9,288 51.5

145

Western Area Power Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Loveland Area Projects November 29-30, 2011 2 Agenda * Overview of Western Area Power Administration * Post-1989 Loveland Area Projects (LAP) Marketing Plan * Energy Planning and Management Program * Development of the 2025 PMI Proposal * 2025 PMI Proposal * 2025 PMI Comment Period & Proposal Information * Questions 3 Overview of Western Area Power Administration (Western) * One of four power marketing administrations within the Department of Energy * Mission: Market and deliver reliable, renewable, cost-based Federal hydroelectric power and related services within a 15-state region of the central and western U.S. * Vision: Provide premier power marketing and transmission services Rocky Mountain Region (RMR) is one of five regional offices 4 Rocky Mountain Region

146

300 AREA URANIUM CONTAMINATION  

SciTech Connect

{sm_bullet} Uranium fuel production {sm_bullet} Test reactor and separations experiments {sm_bullet} Animal and radiobiology experiments conducted at the. 331 Laboratory Complex {sm_bullet} .Deactivation, decontamination, decommissioning,. and demolition of 300 Area facilities

BORGHESE JV

2009-07-02T23:59:59.000Z

147

Decontamination & decommissioning focus area  

Science Conference Proceedings (OSTI)

In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

NONE

1996-08-01T23:59:59.000Z

148

APS Area Emergency Supervisors  

NLE Websites -- All DOE Office Websites (Extended Search)

Area Emergency Supervisors BUILDING AES AAES 400-EAA Raul Mascote Debra Eriksen-Bubulka 400-A (SPX) Tim Jonasson 400-Sectors 25-30 Reggie Gilmore 401-CLO Steve Downey Ed Russell...

149

Demonstration of a SREX flowsheet for the partitioning of strontium and lead from actual ICPP sodium-bearing waste  

SciTech Connect

Laboratory experimentation has indicated that the SREX process is effective for partitioning {sup 90}Sr and Pb from acidic radioactive waste solutions located at the Idaho Chemical Processing Plant. Previous countercurrent flowsheet testing of the SREX process with simulated waste resulted in 99.98% removal of Sr and 99.9% removal of Pb. Based on the results of these studies, a demonstration of the SREX flowsheet was performed. The demonstration consisted of (1) countercurrent flowsheet testing of the SREX process using simulated sodium-bearing waste spiked with {sup 85}Sr and (2) countercurrent flowsheet testing of the SREX process using actual waste from tank WM-183. All testing was performed using 24 stages of 2-cm diameter centrifugal contactors which are installed in the Remote Analytical Laboratory hot cell. The flowsheet tested consisted of an extraction section (0. 15 M 4`,4`(5)-di-(tert-butyldicyclohexo)-18-crown-6 and 1.5 M TBP in Isopar-L{reg_sign}), a 2.0 MHNO{sub 3} scrub section to remove extracted K from the SREX solvent, a 0.05 M HNO{sub 3} strip section for the removal of Sr from the SREX solvent, a 0.1 M ammonium citrate strip section for the removal of Pb from the SREX solvent, and a 3.0 M HNO{sub 3} equilibration section. The behavior of {sup 90}Sr, Pb, Na, K, Hg, H{sup +}, the actinides, and numerous other non-radioactive elements was evaluated. The described flowsheet successfully extracted and selectively stripped Sr and Ph from the SBW simulant and the actual tank waste. For the testing with actual tank waste (WM - 183), removal efficiencies of 99.995 % and >94% were obtained for {sup 90}Sr and Pb, respectively.

Law, J.D.; Wood, D.J.; Olson, L.G.; Todd, T.A.

1997-08-01T23:59:59.000Z

150

Core Analysis At Coso Geothermal Area (1980) | Open Energy Information  

Open Energy Info (EERE)

Core Analysis At Coso Geothermal Area (1980) Core Analysis At Coso Geothermal Area (1980) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Core Analysis Activity Date 1980 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the heat transfer mechanism Notes In an investigation of the thermal regime of this Basin and Range geothermal area, temperature measurements were made in 25 shallow and 1 intermediate depth borehole. Thermal conductivity measurements were made on 312 samples from cores and drill cuttings. The actual process by which heat is transferred is rather complex; however, the heat flow determinations can be divided into two groups. The first group, less than 4.0 HFU, are indicative of regions with primarily conductive regimes, although

151

Operational Area Monitoring Plan  

Office of Legacy Management (LM)

' ' SECTION 11.7B Operational Area Monitoring Plan for the Long -Term H yd rol og ical M o n i to ri ng - Program Off The Nevada Test Site S . C. Black Reynolds Electrical & Engineering, Co. and W. G. Phillips, G. G. Martin, D. J. Chaloud, C. A. Fontana, and 0. G. Easterly Environmental Monitoring Systems Laboratory U. S. Environmental Protection Agency October 23, 1991 FOREWORD This is one of a series of Operational Area Monitoring Plans that comprise the overall Environmental Monitoring Plan for the DOE Field Office, Nevada (DOEINV) nuclear and non- nuclear testing activities associated with the Nevada Test Site (NTS). These Operational Area Monitoring Plans are prepared by various DOE support contractors, NTS user organizations, and federal or state agencies supporting DOE NTS operations. These plans and the parent

152

Is interactivity actually important?  

Science Conference Proceedings (OSTI)

It appears that it is a well-accepted assumption that interactivity will improve the entertainment and/or learning value of a media. This paper reviews various studies exploring the role of interactivity and reports on a study conducted to see whether ... Keywords: game engine, interactivity, learning, simulation, training

Debbie Richards

2006-12-01T23:59:59.000Z

153

Bay Area | Open Energy Information  

Open Energy Info (EERE)

Bay Area Bay Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Bay Area 1.1 Products and Services in the Bay Area 1.2 Research and Development Institutions in the Bay Area 1.3 Networking Organizations in the Bay Area 1.4 Investors and Financial Organizations in the Bay Area 1.5 Policy Organizations in the Bay Area Clean Energy Clusters in the Bay Area Products and Services in the Bay Area Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

154

Texas Area | Open Energy Information  

Open Energy Info (EERE)

Area Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Texas Area 1.1 Products and Services in the Texas Area 1.2 Research and Development Institutions in the Texas Area 1.3 Networking Organizations in the Texas Area 1.4 Investors and Financial Organizations in the Texas Area 1.5 Policy Organizations in the Texas Area Clean Energy Clusters in the Texas Area Products and Services in the Texas Area Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

155

Rockies Area | Open Energy Information  

Open Energy Info (EERE)

Rockies Area Rockies Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Rockies Area 1.1 Products and Services in the Rockies Area 1.2 Research and Development Institutions in the Rockies Area 1.3 Networking Organizations in the Rockies Area 1.4 Investors and Financial Organizations in the Rockies Area 1.5 Policy Organizations in the Rockies Area Clean Energy Clusters in the Rockies Area Products and Services in the Rockies Area Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

156

An experimental and computational leakage investigation of labyrinth seals with rub grooves of actual size and shape  

E-Print Network (OSTI)

A large scale water test facility and a commercial CFD computer program were used to investigate labyrinth seals with rub grooves of actual size and shape found in aircraft engines. The 2-D test rig cases focused on the effect of tooth position and operating condition for the standard geometry. The computed cases considered tooth axial and radial position, different operating conditions, and several geometric dimensions. This investigation also compares the leakage of the standard geometry to that of a modified convex wall geometry. The test facility is a 33 times enlargement of the actual seal. The pressure drop leakage rate and flow visualization digital images for the standard geometry seal were measured at various Reynolds numbers and at nine different tooth positions. The discharge coefficient and a dimensionless pressure drop number were used to plot the leakage data to make it easier for seal designers to predict the leakage of labyrinth seals. The experimental visualization results show for a given Reynolds number that the closer the labryinth tooth gets to the step the deeper the throughflow jet penetrated into the seal cavity. The decrease of the tooth tip clearance also has a similar effect. Specifically the smaller the tooth tip clearance the deeper the flow path penetrated into the seal cavity. The experimental measurements show that the tooth tip axial position, as well as the minimum-tooth clearance, affect the leakage. A significant improvement in leakage was generally observed when the minimum-distance tooth clearance occurs across the entire tip of the tooth. This occurs only at the most upstream tooth position tested. Similarly, the computed results show that the tooth axial position affects the seal leakage. It was also found that the leakage of the modified convex wall geometry was significantly less than that of the standard geometry.

Ambrosia, Matthew Stanley

2001-01-01T23:59:59.000Z

157

borrow_area.cdr  

Office of Legacy Management (LM)

information information at Weldon Spring, Missouri. This site is managed by the U.S. Department of Energy Office of Legacy Management. developed by the former WSSRAP Community Relations Department to provide comprehensive descriptions of key activities that took place throughout the cleanup process The Missouri Department of Conservation (MDC) approved a plan on June 9, 1995, allowing the U.S. Department of Energy (DOE) at the Weldon Spring Site Remedial Action Project (WSSRAP) to excavate nearly 2 million cubic yards of clay material from land in the Weldon Spring Conservation Area. Clay soil from a borrow area was used to construct the permanent disposal facility at the Weldon Spring site. Clay soil was chosen to construct the disposal facility because it has low permeability when

158

Focus Area Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

information provided was consolidated from the original five focus areas for the EM information provided was consolidated from the original five focus areas for the EM Corporate QA Board. The status of QAP/QIP approvals etc. was accurate at the time of posting; however, additional approvals may have been achieved since that time. If you have any questions about the information provided, please contact Bob Murray at robert.murray@em.doe.gov Task # Task Description Status 1.1 Develop a brief questionnaire to send out to both commercial and EM contractors to describe their current approach for identifying the applicable QA requirements for subcontractors, tailoring the requirements based upon risk, process for working with procurement to ensure QA requirements are incorporated into subcontracts, and implementing verification of requirement flow-down by their

159

Focus Area 3 Deliverables  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 - Commercial Grade item and Services 3 - Commercial Grade item and Services Dedication Implementation and Nuclear Services Office of Environmental Management And Energy Facility Contractors Group Quality Assurance Improvement Project Plan Project Focus Area Task # and Description Deliverable Project Area 3-Commercial Grade Item and Services Dedication 3.1-Complete a survey of selected EM contractors to identify the process and basis for their CGI dedication program including safety classification of items being dedicated for nuclear applications within their facilities Completed Survey Approvals: Yes/No/NA Project Managers: S. Waisley, D. Tuttel Yes Executive Committee: D. Chung, J. Yanek, N. Barker, D. Amerine No EM QA Corporate Board: No Energy Facility Contractors Group

160

Argonne area restaurants  

NLE Websites -- All DOE Office Websites (Extended Search)

area restaurants area restaurants Amber Cafe 13 N. Cass Ave. Westmont, IL 60559 630-515-8080 www.ambercafe.net Argonne Guest House Building 460 Argonne, IL 60439 630-739-6000 www.anlgh.org Ballydoyle Irish Pub & Restaurant 5157 Main Street Downers Grove, IL 60515 630-969-0600 www.ballydoylepub.com Bd's Mongolian Grill The Promenade Shopping Center Boughton Rd. & I-355 Bolingbrook, IL 60440 630-972-0450 www.gomongo.com Branmor's American Grill 300 Veterans Parkway Bolingbrook, IL 60440 630-226-9926 www.branmors.com Buca di Beppo 90 Yorktown Convenience Center Lombard, IL 60148 630-932-7673 www.bucadibeppo.com California Pizza Kitchen 551 Oakbrook Center Oak Brook, IL 60523 630-571-7800 www.cpk.com Capri Ristorante 5101 Main Street Downers Grove, IL 60516 630-241-0695 www.capriristorante.com Carrabba's Italian Grill

Note: This page contains sample records for the topic "area 1996-2011 actual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

EA-1177: Salvage/Demolition of 200 West Area, 200 East Area, and 300 Area  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: Salvage/Demolition of 200 West Area, 200 East Area, and 7: Salvage/Demolition of 200 West Area, 200 East Area, and 300 Area Steam Plants, Richland, Washington EA-1177: Salvage/Demolition of 200 West Area, 200 East Area, and 300 Area Steam Plants, Richland, Washington SUMMARY This EA evaluates the environmental impacts for the proposal to salvage and demolish the 200 West Area, 200 East Area, and 300 Area steam plants and their associated steam distribution piping equipment, and ancillary facilities at the U.S. Department of Energy Hanford Site in Richland, Washington. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD October 21, 1996 EA-1177: Finding of No Significant Impact Salvage/Demolition of 200 West Area, 200 East Area, and 300 Area Steam Plants October 21, 1996 EA-1177: Final Environmental Assessment

162

Rainfall-Induced Changes in Actual Surface Backscattering Cross Sections and Effects on Rain-Rate Estimates by Spaceborne Precipitation Radar  

Science Conference Proceedings (OSTI)

In this study, the authors used Tropical Rainfall Measuring Mission precipitation radar (TRMM PR) data to investigate changes in the actual (attenuation corrected) surface backscattering cross section (?0e) due to changes in surface conditions ...

Shinta Seto; Toshio Iguchi

2007-10-01T23:59:59.000Z

163

Estimation of daily actual evapotranspiration from remotely sensed data under complex terrain over the upper Chao river basin in North China  

Science Conference Proceedings (OSTI)

Daily actual evapotranspiration over the upper Chao river basin in North China on 23 June 2005 was estimated based on the Surface Energy Balance Algorithm for Land (SEBAL), in which the parameterization schemes for calculating the instantaneous solar ...

Yanchun Gao; Di Long; Zhao-Liang Li

2008-06-01T23:59:59.000Z

164

The Theoretical, Discrete, and Actual Response of the Barnes Objective Analysis Scheme for One- and Two-Dimensional Fields  

Science Conference Proceedings (OSTI)

This paper examines the response of the Barnes objective analysis scheme as a function of wavenumber or wavelength and extends previous work in two primary areas. First, the first- and second-pass theoretical response functions for continuous two-...

Patricia M. Pauley; Xiaihua Wu

1990-05-01T23:59:59.000Z

165

Large area bulk superconductors  

DOE Patents (OSTI)

A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.

Miller, Dean J. (Darien, IL); Field, Michael B. (Jersey City, NJ)

2002-01-01T23:59:59.000Z

166

Western Area Power Administration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

v*Zy- i , . v*Zy- i , . r ,v * -i S # Af [, (e- . - o -A tl }r- 0 v-" l^~4~S J l ^-)^ I^U^ck iM clti ^ Area Power Administration Follow-up to Nov. 25, 2008 Transition Meeting Undeveloped Transmission Right-of-Way Western has very little undeveloped transmission right-of-way. There is a 7-mile right- of-way between Folsom, CA and Roseville, CA where Western acquired a 250' wide right-of-way but is only using half of it. Another line could be built parallel to Western's line to relieve congestion in the Sacramento area. In addition, Western has rights-of- way for many transmission lines that could be rebuilt to increase transmission capacity. For example, Western's Tracy-Livermore 230-kV line is a single circuit line but the existing towers could support a double circuit line. These rights-of-way would have to

167

Geothermal Areas | Open Energy Information  

Open Energy Info (EERE)

Geothermal Areas Geothermal Areas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Areas Geothermal Areas are specific locations of geothermal potential (e.g., Coso Geothermal Area). The base set of geothermal areas used in this database came from the 253 geothermal areas identified by the USGS in their 2008 Resource Assessment.[1] Additional geothermal areas were added, as needed, based on a literature search and on projects listed in the GTP's 2011 database of funded projects. Add.png Add a new Geothermal Resource Area Map of Areas List of Areas Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":2500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

168

Demonstration of the UNEX Process for the Simultaneous Separation of Cesium, Strontium, and the Actinides from Actual INEEL Tank Waste  

Science Conference Proceedings (OSTI)

A universal solvent extraction (UNEX) process for the simultaneous separation of cesium, strontium, and the actinides from actual radioactive acidic tank waste was demonstrated at the Idaho National Engineering and Environmental Laboratory. The waste solution used in the countercurrent flowsheet demonstration was obtained from tank WM-185. The UNEX process uses a tertiary solvent containing 0.08 M chlorinated cobalt dicarbollide, 0.5% polyethylene glycol-400 (PEG-400), and 0.02 M diphenyl-N,N-dibutylcarbamoyl phosphine oxide (Ph2Bu2CMPO) in a diluent consisting of phenyltrifluoromethyl sulfone (FS-13). The countercurrent flowsheet demonstration was performed in a shielded cell facility using 24 stages of 2-cm diameter centrifugal contactors. Removal efficiencies of 99.4%, 99.995%, and 99.96% were obtained for 137Cs, 90Sr, and total alpha, respectively. This is sufficient to reduce the activities of 137Cs, 90Sr, and actinides in the WM-185 waste to below NRC Class A LLW requirement s. Flooding and/or precipitate formation were not observed during testing. Significant amounts of the Zr (87%), Ba (>99%), Pb (98.8%), Fe (8%), Ca (10%), Mo (32%), and K (28%) were also removed from the feed with the universal solvent extraction flowsheet. 99Tc, Al, Hg, and Na were essentially inextractable (<1% extracted).

Law, J.D.; Herbst, R.S.; Todd, T.A. (INEEL); Romanovskiy, V.N.; Esimantovskiy, V.M.; Smirnov, I.V.; Babain, V.A.; Zaitsev, B.N. (V. G. Khlopin Radium Institute); Logunov, M.V. (MAYAK Production Association)

1999-10-01T23:59:59.000Z

169

Demonstration of the SREX process for the removal of {sup 90}Sr from actual highly radioactive solutions in centrifugal contactors  

Science Conference Proceedings (OSTI)

The SREX process is being evaluated at the Idaho Chemical Processing Plant (ICPP) for the separation of {sup 90}Sr from acidic radioactive wastes stored at the ICPP. These efforts have culminated in a recent demonstration of the SREX process with actual tank waste. This demonstration was performed using 24 stages of 2-cm diameter centrifugal contactors installed in a shielded hot cell at the ICPP Remote Analytical Laboratory. An overall removal efficiency of 99.995% was obtained for {sup 90}Sr. As a result, the activity of {sup 90}Sr was reduced from 201 Ci/m{sup 3} in the feed solution of 0.0089 Ci/m{sup 3} in the aqueous raffinate, which is below the U.S. NRC Class A LLW limit of 0.04 Ci/m{sup 3} for {sup 90}Sr. Lead was extracted by the SREX solvent and successfully partitioned from the {sup 90}Sr using an ammonium citrate strip solution. Additionally, 94% of the total alpha activity, 1.9% of the {sup 241}Am, 99.94% of the {sup 238}Pu, 99.97% of the {sup 239}Pu, 36.4% of the K, 64% of the Ba, and >83% of the Zr were extracted by the SREX solvent. Cs, B, Cd, Ca, Cr, Fe, Mn, Ni, and Na were essentially inextractable. 10 refs., 2 figs., 3 tabs.

Law, J.D.; Wood, D.J.; Todd, T.A.; Olson, L.G.

1997-10-01T23:59:59.000Z

170

Western Area Power Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Western Area Power Administration Customer Meeting The meeting will begin at 12:30 pm MST We have logged on early for connectivity purposes Please stand-by until the meeting begins Please be sure to call into the conference bridge at: 888-989-6414 Conf. Code 60223 If you have connectivity issues, please contact: 866-900-1011 1 Introduction ï‚— Welcome ï‚— Introductions ï‚— Purpose of Meeting â—¦ Status of the SLCA/IP Rate â—¦ SLCA/IP Marketing Plan â—¦ Credit Worthiness Policy â—¦ LTEMP EIS update â—¦ Access to Capital ï‚— Handout Materials http://www.wapa.gov/crsp/ratescrsp/default.htm 2 SLCA/IP Rate 3 1. Status of Repayment 2. Current SLCA/IP Firm Power Rate (SLIP-F9) 3. Revenue Requirements Comparison Table 4.SLCA/IP Rate 5. Next Steps

171

AREA RADIATION MONITOR  

DOE Patents (OSTI)

S>An improved area radiation dose monitor is designed which is adapted to compensate continuously for background radiation below a threshold dose rate and to give warning when the dose integral of the dose rate of an above-threshold radiation excursion exceeds a selected value. This is accomplished by providing means for continuously charging an ionization chamber. The chamber provides a first current proportional to the incident radiation dose rate. Means are provided for generating a second current including means for nulling out the first current with the second current at all values of the first current corresponding to dose rates below a selected threshold dose rate value. The second current has a maximum value corresponding to that of the first current at the threshold dose rate. The excess of the first current over the second current, which occurs above the threshold, is integrated and an alarm is given at a selected integrated value of the excess corresponding to a selected radiation dose. (AEC)

Manning, F.W.; Groothuis, S.E.; Lykins, J.H.; Papke, D.M.

1962-06-12T23:59:59.000Z

172

Electrical substation service-area estimation using Cellular Automata: An initial report  

SciTech Connect

The service areas for electric power substations can be estimated using a Cellular Automata (CA) model. The CA model is a discrete, iterative process whereby substations acquire service area by claiming neighboring cells. The service area expands from a substation until a neighboring substation service area is met or the substation`s total capacity or other constraints are reached. The CA-model output is dependent on the rule set that defines cell interactions. The rule set is based on a hierarchy of quantitative metrics that represent real-world factors such as land use and population density. Together, the metrics determine the rate of cell acquisition and the upper bound for service area size. Assessing the CA-model accuracy requires comparisons to actual service areas. These actual service areas can be extracted from distribution maps. Quantitative assessment of the CA-model accuracy can be accomplished by a number of methods. Some are as simple as finding the percentage of cells predicted correctly, while others assess a penalty based on the distance from an incorrectly predicted cell to its correct service area. This is an initial report of a work in progress.

Fenwick, J.W.; Dowell, L.J.

1998-07-01T23:59:59.000Z

173

The Large Area Lyman Alpha Survey  

E-Print Network (OSTI)

The Lyman-$\\alpha$ line is expected to be strong in the presence of active star formation and the absence of dust, making it a good tool for finding chemically primitive galaxies in the early universe. We report on a new survey for high redshift Lyman-$\\alpha$ sources, the Large Area Lyman Alpha (LALA) survey. Our survey achieves an unprecedented combination of volume and sensitivity by using narrow-band filters on the new $8192^2$ pixel CCD Mosaic Camera at the 4 meter Mayall telescope of Kitt Peak National Observatory. Well-detected sources with flux and equivalent width matching known high redshift Lyman-$\\alpha$ galaxies have an observed surface density corresponding to $11000 \\pm 700$ per square degree per unit redshift at $z=4.5$. Early spectroscopic followup from the Keck telescope suggests that $\\sim 1/3$ of these are actually at $z\\approx 4.5$, and has confirmed five $z > 4$ Lyman-$\\alpha$ emitters so far. Combining our photometric survey with spectroscopic results, we estimate a net density of $\\sim...

Rhoads, J E; Dey, A; Jannuzi, B T; Stern, D; Spinrad, H; Rhoads, James E.; Malhotra, Sangeeta; Dey, Arjun; Jannuzi, Buell T.; Stern, Daniel

2001-01-01T23:59:59.000Z

174

Hydrologic budget for A/M Area, Savannah River Site  

SciTech Connect

In this investigation different components of the hydrologic budget for the groundwater flow system beneath the A/M Area were quantified. To accomplish this a regional groundwater flow mode, previously calibrated to the groundwater flow system beneath the A/M Area, was used to generate flux terms which could then be used to quantify specific components of the hydrologic budget. Sub-zones within the constructed model were defined in terms of groups of model nodes using the US Geological Survey code ZONEBUDGET. Cell-by-cell flux terms generated by the groundwater model for each node were used as input to calculate the hydrologic budgets for each of the defined sub-zones. Results were tabulated both as actual groundwater fluxes and as normalized quantities to allow easy comparison of flux magnitudes for different sub-zones. In the process of defining sub-zones and calculating the flux magnitude for different components of the hydrologic flow system, the adequacy of the groundwater flow model in describing the actual flow system was better determined. In effect, quantification of flux terms from the groundwater model functioned as a ``calibration tool`` in that specific changes to the groundwater model which would enhance its calibration were identified and are described in this report.

Hiergesell, R.A.; Haselow, J.S.; Jackson, D.G.; Ehrke, L.

1994-09-01T23:59:59.000Z

175

Cuttings Analysis At Coso Geothermal Area (1980) | Open Energy Information  

Open Energy Info (EERE)

80) 80) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Cuttings Analysis Activity Date 1980 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the heat transfer mechanism Notes In an investigation of the thermal regime of this Basin and Range geothermal area, temperature measurements were made in 25 shallow and 1 intermediate depth borehole. Thermal conductivity measurements were made on 312 samples from cores and drill cuttings. The actual process by which heat is transferred is rather complex; however, the heat flow determinations can be divided into two groups. The first group, less than 4.0 HFU, are indicative of regions with primarily conductive regimes, although deep-seated mass transfer is implied. The second group, greater than 4.0

176

ACTUAL-WASTE TESTS OF ENHANCED CHEMICAL CLEANING FOR RETRIEVAL OF SRS HLW SLUDGE TANK HEELS AND DECOMPOSITION OF OXALIC ACID  

Science Conference Proceedings (OSTI)

Savannah River National Laboratory conducted a series of tests on the Enhanced Chemical Cleaning (ECC) process using actual Savannah River Site waste material from Tanks 5F and 12H. Testing involved sludge dissolution with 2 wt% oxalic acid, the decomposition of the oxalates by ozonolysis (with and without the aid of ultraviolet light), the evaporation of water from the product, and tracking the concentrations of key components throughout the process. During ECC actual waste testing, the process was successful in decomposing oxalate to below the target levels without causing substantial physical or chemical changes in the product sludge.

Martino, C.; King, W.; Ketusky, E.

2012-01-12T23:59:59.000Z

177

Program Areas | National Security | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Programs Initiatives Facilities Events and Conferences Supporting Organizations National Security Home | Science & Discovery | National Security | Program Areas SHARE Program...

178

Body Area Networks: A Survey  

Science Conference Proceedings (OSTI)

Advances in wireless communication technologies, such as wearable and implantable biosensors, along with recent developments in the embedded computing area are enabling the design, development, and implementation of body area networks. This class of ... Keywords: body area networks, survey, wireless sensor networks

Min Chen; Sergio Gonzalez; Athanasios Vasilakos; Huasong Cao; Victor C. Leung

2011-04-01T23:59:59.000Z

179

1Satellite Surface Areas The NASA Imager for Magnetosphere-to-Aurora Global Exploration (IMAGE) satellite was  

E-Print Network (OSTI)

that cover the satellite's surface actually face the sun at any given moment? #12;Answer Key 1 Question 1) satellite was launched on March 25, 2000. The instruments and other electrical systems inside the satellite area of the satellite, and how much electrical power can be collected by the satellite. (Hints - http

180

Geothermal resource area 9: Nye County. Area development plan  

DOE Green Energy (OSTI)

Geothermal Resource area 9 encompasses all of Nye County, Nevada. Within this area there are many different known geothermal sites ranging in temperature from 70/sup 0/ to over 265/sup 0/ F. Fifteen of the more major sites have been selected for evaluation in this Area Development Plan. Various potential uses of the energy found at each of the resource sites discussed in this Area Development Plan were determined after evaluating the area's physical characteristics, land ownership and land use patterns, existing population and projected growth rates, and transportation facilities, and comparing those with the site specific resource characteristics. The uses considered were divided into five main categories: electrical generation, space heating, recreation, industrial process heat, and agriculture. Within two of these categories certain subdivisions were considered separately. The findings about each of the 15 geothermal sites considered in this Area Development Plan are summarized.

Pugsley, M.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "area 1996-2011 actual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Site investigation report for Waste Area Grouping 4 at Oak Ridge National Laboratory. Volume 2, Appendixes: Environmental Restoration Program  

SciTech Connect

This report documents the UltraSonic Ranging and Data Systems (USRADS) survey conducted for radiological characterization of approximately 5 acres located at the Oak Ridge National Laboratory (ORNL) Waste Area Grouping (WAG) 4. The survey was conducted by Chemrad Tennessee Corporation under subcontract No. 7908-RS-00902 to CDM Federal Programs Corporation. The field survey began June 23, 1994 (Chemrad survey team was unable to actually enter field until June 24 awaiting sign-off of CDM plans by MMES) and was terminated on June 29, 1994. The designated survey area is located on the DOE X-10 facility and South of the main X-10 building complex. The entire north boundary of the site is adjacent to SWSA 4, with the Bath Tubbing Trench Seep Area (BTT) actually being a part of that SWSA (See Figure 1). Approximately one-third of the designated area was actually surveyed. The BTT area slopes moderately eastward toward a small stream in the WAG 4 area. The area is open and had recently been trimmed for the survey. The balance of the designated survey area lies along the small stream within WAG 4 and is densely wooded with heavy underbrush. The area had not been cleared or brushed. Survey reference points for the BTT area mere directly tied into the X-10 coordinate system while the t bale,ice of the designated survey area mere tied into an existing relative metric grid system. The designated area was surveyed for radiological characterization using near-surface gamma and beta detectors as well as an energy independent dosimeter. This report describes the survey method and presents the survey findings.

NONE

1995-08-01T23:59:59.000Z

182

Proved Nonproducing Reserves of Crude Oil  

U.S. Energy Information Administration (EIA)

413: 418: 419: 1996-2011: RRC District 9: 9: 12: 8: 25: 21: 20: 1996-2011: RRC District 10: 9: 12: 16: 29: 35: 51: 1996-2011: State Offshore: 0: 0: 0: 0: 0: 1: 1996 ...

183

Property:AreaGeology | Open Energy Information  

Open Energy Info (EERE)

AreaGeology AreaGeology Jump to: navigation, search Property Name AreaGeology Property Type String Description A description of the area geology This is a property of type String. Subproperties This property has the following 22 subproperties: A Amedee Geothermal Area B Beowawe Hot Springs Geothermal Area Blue Mountain Geothermal Area Brady Hot Springs Geothermal Area C Chena Geothermal Area Coso Geothermal Area D Desert Peak Geothermal Area D cont. Dixie Valley Geothermal Area E East Mesa Geothermal Area G Geysers Geothermal Area K Kilauea East Rift Geothermal Area L Lightning Dock Geothermal Area Long Valley Caldera Geothermal Area R Raft River Geothermal Area Roosevelt Hot Springs Geothermal Area S Salt Wells Geothermal Area Salton Sea Geothermal Area San Emidio Desert Geothermal Area

184

The Large Area Lyman Alpha Survey  

E-Print Network (OSTI)

The Lyman-$\\alpha$ line is expected to be strong in the presence of active star formation and the absence of dust, making it a good tool for finding chemically primitive galaxies in the early universe. We report on a new survey for high redshift Lyman-$\\alpha$ sources, the Large Area Lyman Alpha (LALA) survey. Our survey achieves an unprecedented combination of volume and sensitivity by using narrow-band filters on the new $8192^2$ pixel CCD Mosaic Camera at the 4 meter Mayall telescope of Kitt Peak National Observatory. Well-detected sources with flux and equivalent width matching known high redshift Lyman-$\\alpha$ galaxies have an observed surface density corresponding to $11000 \\pm 700$ per square degree per unit redshift at $z=4.5$. Early spectroscopic followup from the Keck telescope suggests that $\\sim 1/3$ of these are actually at $z\\approx 4.5$, and has confirmed five $z > 4$ Lyman-$\\alpha$ emitters so far. Combining our photometric survey with spectroscopic results, we estimate a net density of $\\sim 4000 $ Lyman-$\\alpha$ emitters per square degree per unit redshift at $z\\approx 4.5$. The star formation rate density (estimated both from UV continuum and from line emission) is comparable to that of the Lyman break galaxy population within present uncertainties. The most extreme Lyman-$\\alpha$ emitters in our sample have rest frame equivalent widths $> 100\\AA$, consistent with the expectations for the first burst of star formation in a primitive, dust-free galaxy.

James E. Rhoads; Sangeeta Malhotra; Arjun Dey; Buell T. Jannuzi; Daniel Stern; Hyron Spinrad

2001-04-18T23:59:59.000Z

185

Transforming Parks and Protected Areas  

E-Print Network (OSTI)

areas Lisa M. Campbell, Noella J. Gray; and Zoe A. Meletis In many countries, parks and protected areas construction of nature, conservation and development narratives, and alternative consumption - and what World' or 'developing' countries. One feature of political ecology has been an overriding emphasis

Bolch, Tobias

186

Data Administration Area: Date Issued  

E-Print Network (OSTI)

Policy Data Administration Policy Area: Date Issued: April, 1994 Title: Data Administration Last. INTRODUCTION The President established the Committee on Data Administration (CODA) in May, 1992, to advise him on policies in the area of data administration (attached as references Policy ADC 011 and TOR for CODA

Brownstone, Rob

187

Area 410 status and capabilities  

SciTech Connect

This memo is distributed to acquaint personnel with (a) the status of the various 410 areas, (b) time and personnel required to do optic experiments in the ``Dog`` area, and (c) status of the timing and firing system and conditions of cables from Able to Dog.

Bennett, W. P.

1962-10-01T23:59:59.000Z

188

Report Wildland Fire Area Hazard  

NLE Websites -- All DOE Office Websites (Extended Search)

Report Wildland Fire Area Hazard Report Wildland Fire Area Hazard Report Wildland Fire Area Hazard Report wildland fire area hazards or incidents that are non-life threatening only. Call 911 for all emergencies that require immediate assistance. How to report wildland fire hazard Use the following form to report any wildland fire area hazards or incidents that are non-life threatening only. Call 911 for all emergencies that require immediate assistance. Fill out this form as completely as possible so we can better assess the hazard. All submissions will be assessed as promptly as possible. For assistance with a non-emergency situation, contact the Operations Support Center at 667-6211. Name (optional): Hazard Type (check one): Wildlife Sighting (check box if animal poses serious threat) Trails (access/egress)

189

Tech Area II: A History  

E-Print Network (OSTI)

This report documents the history of the major buildings in Sandia National Laboratories' Technical Area II. It was prepared in support of the Department of Energy's compliance with Section 106 of the National Historic Preservation Act. Technical Area II was designed and constructed in 1948 specifically for the final assembly of the non-nuclear components of nuclear weapons, and was the primary site conducting such assembly until 1952. Both the architecture and location of the oldest buildings in the area reflect their original purpose. Assembly activities continued in Area II from 1952 to 1957, but the major responsibility for this work shifted to other sites in the Atomic Energy Commission's integrated contractor complex. Gradually, additional buildings were constructed and the original buildings were modified. After 1960, the Area's primary purpose was the research and testing of high-explosive components for nuclear weapons. In 1994, Sandia constructed new facilities for work on hi...

Rebecca Ullrich; Rebecca Ullrich

1998-01-01T23:59:59.000Z

190

Characterization, Leaching, and Filtration Testing for Bismuth Phosphate Sludge (Group 1) and Bismuth Phosphate Saltcake (Group 2) Actual Waste Sample Composites  

SciTech Connect

A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan.() The test program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. The actual waste-testing program included homogenizing the samples by group, characterizing the solids and aqueous phases, and performing parametric leaching tests. Two of the eight defined groups—bismuth phosphate sludge (Group 1) and bismuth phosphate saltcake (Group 2)—are the subjects of this report. The Group 1 waste was anticipated to be high in phosphorus and was implicitly assumed to be present as BiPO4 (however, results presented here indicate that the phosphate in Group 1 is actually present as amorphous iron(III) phosphate). The Group 2 waste was also anticipated to be high in phosphorus, but because of the relatively low bismuth content and higher aluminum content, it was anticipated that the Group 2 waste would contain a mixture of gibbsite, sodium phosphate, and aluminum phosphate. Thus, the focus of the Group 1 testing was on determining the behavior of P removal during caustic leaching, and the focus of the Group 2 testing was on the removal of both P and Al. The waste-type definition, archived sample conditions, homogenization activities, characterization (physical, chemical, radioisotope, and crystal habit), and caustic leaching behavior as functions of time, temperature, and hydroxide concentration are discussed in this report. Testing was conducted according to TP-RPP-WTP-467.

Lumetta, Gregg J.; Buck, Edgar C.; Daniel, Richard C.; Draper, Kathryn; Edwards, Matthew K.; Fiskum, Sandra K.; Hallen, Richard T.; Jagoda, Lynette K.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Shimskey, Rick W.; Sinkov, Sergey I.; Snow, Lanee A.

2009-02-19T23:59:59.000Z

191

Babb, MT Natural Gas Export to Canada  

Gasoline and Diesel Fuel Update (EIA)

6 2007 2008 2009 2010 2011 View History Pipeline Volumes 0 0 0 0 0 20 1996-2011 Pipeline Prices -- -- -- -- -- 3.39 1996-2011...

192

Characterization and Leach Testing for PUREX Cladding Waste Sludge (Group 3) and REDOX Cladding Waste Sludge (Group 4) Actual Waste Sample Composites  

SciTech Connect

A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan.(a) The testing program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. The actual wastetesting program included homogenizing the samples by group, characterizing the solids and aqueous phases, and performing parametric leaching tests. Two of the eight defined groups—plutonium-uranium extraction (PUREX) cladding waste sludge (Group 3, or CWP) and reduction-oxidation (REDOX) cladding waste sludge (Group 4, or CWR)—are the subjects of this report. Both the Group 3 and 4 waste composites were anticipated to be high in gibbsite, requiring caustic leaching. Characterization of the composite Group 3 and Group 4 waste samples confirmed them to be high in gibbsite. The focus of the Group 3 and 4 testing was on determining the behavior of gibbsite during caustic leaching. The waste-type definition, archived sample conditions, homogenization activities, characterization (physical, chemical, radioisotope, and crystal habit), and caustic leaching behavior as functions of time, temperature, and hydroxide concentration are discussed in this report. Testing was conducted according to TP-RPP-WTP-467.

Snow, Lanee A.; Buck, Edgar C.; Casella, Amanda J.; Crum, Jarrod V.; Daniel, Richard C.; Draper, Kathryn E.; Edwards, Matthew K.; Fiskum, Sandra K.; Jagoda, Lynette K.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Swoboda, Robert G.

2009-02-13T23:59:59.000Z

193

Thermal energy storage application areas  

DOE Green Energy (OSTI)

The use of thermal energy storage in the areas of building heating and cooling, recovery of industrial process and waste heat, solar power generation, and off-peak energy storage and load management in electric utilities is reviewed. (TFD)

Not Available

1979-03-01T23:59:59.000Z

194

Accelerating Observers, Area and Entropy  

E-Print Network (OSTI)

We consider an explicit example of a process, where the entropy carried by radiation through an accelerating two-plane is proportional to the decrease in the area of that two-plane even when the two-plane is not a part of any horizon of spacetime. Our results seem to support the view that entropy proportional to area is possessed not only by horizons but by all spacelike two-surfaces of spacetime.

Makela, J

2005-01-01T23:59:59.000Z

195

Accelerating Observers, Area and Entropy  

E-Print Network (OSTI)

We consider an explicit example of a process, where the entropy carried by radiation through an accelerating two-plane is proportional to the decrease in the area of that two-plane even when the two-plane is not a part of any horizon of spacetime. Our results seem to support the view that entropy proportional to area is possessed not only by horizons but by all spacelike two-surfaces of spacetime.

Jarmo Makela

2005-06-16T23:59:59.000Z

196

Variable area fuel cell cooling  

DOE Patents (OSTI)

A fuel cell arrangement having cooling fluid flow passages which vary in surface area from the inlet to the outlet of the passages. A smaller surface area is provided at the passage inlet, which increases toward the passage outlet, so as to provide more uniform cooling of the entire fuel cell. The cooling passages can also be spaced from one another in an uneven fashion.

Kothmann, Richard E. (Churchill Borough, PA)

1982-01-01T23:59:59.000Z

197

Geothermal resource area 3: Elko County. Area development plan  

DOE Green Energy (OSTI)

Geothermal Resource Area 3 includes all of the land in Elko County, Nevada. There are in excess of 50 known thermal anomalies in this area. Several of the more major resources have been selected for detailed description and evaluation in this Area Development Plan. The other resources are considered too small, too low in temperature, or too remote to be considered for development in the near future. Various potential uses of the energy found at each of the studied resource sites in Elko County were determined after evaluating the area's physical characteristics; the land ownership and land use patterns; existing population and projected growth rates; transportation facilities and energy requirements. These factors were then compared with resource site specific data to determine the most likely uses of the resource. The uses considered in this evaluation were divided into five main categories: electrical generation, space heating, recreation, industrial process heat, and agriculture. Within two of these categories several subdivisions were considered separately. It was determined that several of the geothermal resources evaluated in the Area Development Plan could be commercially developed. The potential for development for the seven sites considered in this study is summarized.

Pugsley, M.

1981-01-01T23:59:59.000Z

198

Geothermal resource area 11, Clark County area development plan  

DOE Green Energy (OSTI)

Geothermal Resource Area 11 includes all of the land in Clark County, Nevada. Within this area are nine geothermal anomalies: Moapa Area, Las Vegas Valley, Black Canyon, Virgin River Narrows, Roger's Springs, Indian Springs, White Rock Springs, Brown's Spring, and Ash Creek Spring. All of the geothermal resources in Clark County have relatively low temperatures. The highest recorded temperature is 145{sup 0}F at Black Canyon. The temperatures of the other resources range from 70 to 90{sup 0}F. Because of the low temperature of the resources and, for the most part, the distance of the resources from any population base, the potential for the development of the resources are considered to be somewhat limited.

Pugsley, M.

1981-01-01T23:59:59.000Z

199

Focus Areas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mission » Focus Areas Mission » Focus Areas Focus Areas Safety With this focus on cleanup completion and risk reducing results, safety still remains the utmost priority. EM will continue to maintain and demand the highest safety performance. All workers deserve to go home as healthy as they were when they came to the job in the morning. There is no schedule or milestone worth any injury to the work force. Project Management EM is increasing its concentration on project management to improve its overall performance toward cost-effective risk reduction. This will involve review of validated project baselines, schedules, and assumptions about effective identification and management of risks. Instrumental in refining the technical and business approaches to project management are the senior

200

100 Areas CERCLA ecological investigations  

SciTech Connect

This document reports the results of the field terrestrial ecological investigations conducted by Westinghouse Hanford Company during fiscal years 1991 and 1992 at operable units 100-FR-3, 100-HR-3, 100-NR-2, 100-KR-4, and 100-BC-5. The tasks reported here are part of the Remedial Investigations conducted in support of the Comprehensive Environmental Response, compensation, and Liability Act of 1980 studies for the 100 Areas. These ecological investigations provide (1) a description of the flora and fauna associated with the 100 Areas operable units, emphasizing potential pathways for contaminants and species that have been given special status under existing state and/or federal laws, and (2) an evaluation of existing concentrations of heavy metals and radionuclides in biota associated with the 100 Areas operable units.

Landeen, D.S.; Sackschewsky, M.R.; Weiss, S.

1993-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "area 1996-2011 actual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Manhattan Project: Tech Area Gallery  

Office of Scientific and Technical Information (OSTI)

TECH AREA GALLERY (LARGE) TECH AREA GALLERY (LARGE) Los Alamos: The Laboratory Resources > Photo Gallery All of the photographs below are of the "Tech Area" at Los Alamos during or shortly after the wartime years. If this page is taking a long time to load, click here for a photo gallery with smaller versions of the same images. There is a map of the Tech Area at the top and again at the bottom. The first image below is courtesy the Los Alamos National Laboratory. All of the other photographs are reproduced from Edith C. Truslow, with Kasha V. Thayer, ed., Manhattan Engineer District: Nonscientific Aspects of Los Alamos Project Y, 1942 through 1946 (Los Alamos, NM: Manhattan Engineer District, ca. 1946; first printed by Los Alamos Scientific Laboratory as LA-5200, March 1973; reprinted in 1997 by the Los Alamos Historical Society). This is a reprint of an unpublished volume originally written in 1946 by 2nd Lieutenant Edith C. Truslow, a member of the Women's Army Corps, as a contribution to the Manhattan Engineer District History.

202

Boehmite Actual Waste Dissolutions Studies  

SciTech Connect

The U.S. Department of Energy plans to vitrify approximately 60,000 metric tons of high-level waste (HLW) sludge from underground storage tanks at the Hanford Nuclear Reservation. To reduce the volume of HLW requiring treatment, a goal has been set to remove a significant quantity of the aluminum, which comprises nearly 70 percent of the sludge. Aluminum is found in the form of gibbsite, sodium aluminate and boehmite. Gibbsite and sodium aluminate can be easily dissolved by washing the waste stream with caustic. Boehmite, which comprises nearly half of the total aluminum, is more resistant to caustic dissolution and requires higher treatment temperatures and hydroxide concentrations. Samples were taken from four Hanford tanks and homogenized in order to give a sample that is representative of REDOX (Reduction Oxidation process for Pu recovery) sludge solids. Bench scale testing was performed on the homogenized waste to study the dissolution of boehmite. Dissolution was studied at three different hydroxide concentrations, with each concentration being run at three different temperatures. Samples were taken periodically over the 170 hour runs in order to determine leaching kinetics. Results of the dissolution studies and implications for the proposed processing of these wastes will be discussed.

Snow, Lanee A.; Lumetta, Gregg J.; Fiskum, Sandra K.; Peterson, Reid A.

2008-07-15T23:59:59.000Z

203

CENTRAL NEVPJJA SUPPLEMENTAL TEST AREA  

NLE Websites -- All DOE Office Websites (Extended Search)

r r r r r t r r t r r r * r r r r r r CENTRAL NEVPJJA SUPPLEMENTAL TEST AREA ,FACILITY RECORDS 1970 UNITED STATES ATOMIC ENERGY COMMlSSION NEVADA OPERATIONS OFFICE LAS VEGAS, NEVADA September 1970 Prepared By Holmes & Narver. Inc. On-Continent Test Division P.O. Box 14340 Las Vegas, Nevada 338592 ...._- _._--_ .. -- - - - - - - .. .. - .. - - .. - - - CENTRAL NEVPJJA SUPPLEMENTAL TEST AREA FACILITY RECORDS 1970 This page intentionally left blank - - .. - - - PURPOSE This facility study has been prepared in response to a request of the AEC/NVOO Property Management Division and confirmed by letter, W. D. Smith to L. E. Rickey, dated April 14, 1970, STS Program Administrative Matters. The purpose is to identify each facility, including a brief description, the acquisition cost either purchase and/or construction, and the AE costs if identi- fiable. A narrative review of the history of the subcontracts

204

RHIC | New Areas of Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

A New Area of Physics A New Area of Physics RHIC has created a new state of hot, dense matter out of the quarks and gluons that are the basic particles of atomic nuclei, but it is a state quite different and even more remarkable than had been predicted. Instead of behaving like a gas of free quarks and gluons, as was expected, the matter created in RHIC's heavy ion collisions is more like a liquid. Quarks Gluons and quarks Ions Ions about to collide Impact Just after collision Perfect Liquid The "perfect" liquid hot matter Hot Nuclear Matter A review article in the journal Science describes groundbreaking discoveries that have emerged from RHIC, synergies with the heavy-ion program at the Large Hadron Collider, and the compelling questions that will drive this research forward on both sides of the Atlantic.

205

Variable area light reflecting assembly  

DOE Patents (OSTI)

Device is described for tracking daylight and projecting it into a building. The device tracks the sun and automatically adjusts both the orientation and area of the reflecting surface. The device may be mounted in either a wall or roof of a building. Additionally, multiple devices may be employed in a light shaft in a building, providing daylight to several different floors. The preferred embodiment employs a thin reflective film as the reflecting device. One edge of the reflective film is fixed, and the opposite end is attached to a spring-loaded take-up roller. As the sun moves across the sky, the take-up roller automatically adjusts the angle and surface area of the film. Additionally, louvers may be mounted at the light entrance to the device to reflect incoming daylight in an angle perpendicular to the device to provide maximum reflective capability when daylight enters the device at non-perpendicular angles. 9 figs.

Howard, T.C.

1986-12-23T23:59:59.000Z

206

Variable area light reflecting assembly  

DOE Patents (OSTI)

Device for tracking daylight and projecting it into a building. The device tracks the sun and automatically adjusts both the orientation and area of the reflecting surface. The device may be mounted in either a wall or roof of a building. Additionally, multiple devices may be employed in a light shaft in a building, providing daylight to several different floors. The preferred embodiment employs a thin reflective film as the reflecting device. One edge of the reflective film is fixed, and the opposite end is attached to a spring-loaded take-up roller. As the sun moves across the sky, the take-up roller automatically adjusts the angle and surface area of the film. Additionally, louvers may be mounted at the light entrance to the device to reflect incoming daylight in an angle perpendicular to the device to provide maximum reflective capability when daylight enters the device at non-perpendicular angles.

Howard, Thomas C. (Raleigh, NC)

1986-01-01T23:59:59.000Z

207

Carlsbad Area Office Executive Summary  

NLE Websites -- All DOE Office Websites (Extended Search)

June 1998 June 1998 Carlsbad Area Office Executive Summary The mission of the Carlsbad Area Office (CAO) is to protect human health and the environment by opening and operating the Waste Isolation Pilot Plant (WIPP) for safe disposal of transuranic (TRU) waste and by establishing an effective system for management of TRU waste from generation to disposal. It includes personnel assigned to CAO, WIPP site operations, transportation, and other activities associated with the National TRU Program (NTP). The CAO develops and directs implementation of the TRU waste program, and assesses compliance with the program guidance, as well as the commonality of activities and assumptions among all TRU waste sites. A cornerstone of the Department of Energy's (DOE) national cleanup strategy, WIPP is

208

Kilauea Summit Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kilauea Summit Geothermal Area Kilauea Summit Geothermal Area (Redirected from Kilauea Summit Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kilauea Summit Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (12) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

209

Blackfoot Reservoir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Blackfoot Reservoir Geothermal Area Blackfoot Reservoir Geothermal Area (Redirected from Blackfoot Reservoir Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Blackfoot Reservoir Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Idaho Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

210

Wister Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Wister Geothermal Area Wister Geothermal Area (Redirected from Wister Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Wister Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

211

Teels Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Teels Marsh Geothermal Area Teels Marsh Geothermal Area (Redirected from Teels Marsh Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Teels Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

212

Truckhaven Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Truckhaven Geothermal Area Truckhaven Geothermal Area (Redirected from Truckhaven Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Truckhaven Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

213

Mokapu Penninsula Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mokapu Penninsula Geothermal Area Mokapu Penninsula Geothermal Area (Redirected from Mokapu Penninsula Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mokapu Penninsula Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

214

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area (Redirected from Flint Geothermal Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

215

Innovation investment area: Technology summary  

Science Conference Proceedings (OSTI)

The mission of Environmental Management`s (EM) Office of Technology Development (OTD) Innovation Investment Area is to identify and provide development support for two types of technologies that are developed to characterize, treat and dispose of DOE waste, and to remediate contaminated sites. They are: technologies that show promise to address specific EM needs, but require proof-of-principle experimentation; and (2) already proven technologies in other fields that require critical path experimentation to demonstrate feasibility for adaptation to specific EM needs. The underlying strategy is to ensure that private industry, other Federal Agencies, universities, and DOE National Laboratories are major participants in developing and deploying new and emerging technologies. To this end, about 125 different new and emerging technologies are being developed through Innovation Investment Area`s (IIA) two program elements: RDDT&E New Initiatives (RD01) and Interagency Agreements (RD02). Both of these activities are intended to foster research and development partnerships so as to introduce innovative technologies into other OTD program elements for expedited evaluation.

Not Available

1994-03-01T23:59:59.000Z

216

Slim Holes At Newberry Caldera Area (Combs, Et Al., 1999) | Open Energy  

Open Energy Info (EERE)

Newberry Caldera Area (Combs, Et Al., Newberry Caldera Area (Combs, Et Al., 1999) Exploration Activity Details Location Newberry Caldera Area Exploration Technique Slim Holes Activity Date Usefulness useful DOE-funding Unknown Notes Negotiations with California Energy Company, Incorporated (CECI), which owns leases in the Newberry KGRA led to an agreement for a cost-shared exploratory drilling project on CECI'Slease. In return for the cost-share, Sandia was to receive testing, production and cost data from the slhnholes and from the production wells drilled nearby, giving a direct comparison of productivity predicted from tests on the slimholes and that achieved by the actual production wells. Since locations, depths and lithology are also similar, there would also be a close comparison of drilling costs.

217

Geothermal resource areas database for monitoring the progress of development in the United States  

DOE Green Energy (OSTI)

The Geothermal Resource Areas Database (GRAD) and associated data system provide broad coverage of information on the development of geothermal resources in the United States. The system is designed to serve the information requirements of the National Progress Monitoring System. GRAD covers development from the initial exploratory phase through plant construction and operation. Emphasis is on actual facts or events rather than projections and scenarios. The selection and organization of data are based on a model of geothermal development. Subjects in GRAD include: names and addresses, leases, area descriptions, geothermal wells, power plants, direct use facilities, and environmental and regulatory aspects of development. Data collected in the various subject areas are critically evaluated, and then entered into an on-line interactive computer system. The system is publically available for retrieval and use. The background of the project, conceptual development, software development, and data collection are described here. Appendices describe the structure of the database in detail.

Lawrence, J.D.; Lepman, S.R.; Leung, K.; Phillips, S.L.

1981-01-01T23:59:59.000Z

218

DESTRUCTION OF TETRAPHENYLBORATE IN TANK 48H USING WET AIR OXIDATION BATCH BENCH SCALE AUTOCLAVE TESTING WITH ACTUAL RADIOACTIVE TANK 48H WASTE  

DOE Green Energy (OSTI)

Wet Air Oxidation (WAO) is one of the two technologies being considered for the destruction of Tetraphenylborate (TPB) in Tank 48H. Batch bench-scale autoclave testing with radioactive (actual) Tank 48H waste is among the tests required in the WAO Technology Maturation Plan. The goal of the autoclave testing is to validate that the simulant being used for extensive WAO vendor testing adequately represents the Tank 48H waste. The test objective was to demonstrate comparable test results when running simulated waste and real waste under similar test conditions. Specifically: (1) Confirm the TPB destruction efficiency and rate (same reaction times) obtained from comparable simulant tests, (2) Determine the destruction efficiency of other organics including biphenyl, (3) Identify and quantify the reaction byproducts, and (4) Determine off-gas composition. Batch bench-scale stirred autoclave tests were conducted with simulated and actual Tank 48H wastes at SRNL. Experimental conditions were chosen based on continuous-flow pilot-scale simulant testing performed at Siemens Water Technologies Corporation (SWT) in Rothschild, Wisconsin. The following items were demonstrated as a result of this testing. (1) Tetraphenylborate was destroyed to below detection limits during the 1-hour reaction time at 280 C. Destruction efficiency of TPB was > 99.997%. (2) Other organics (TPB associated compounds), except biphenyl, were destroyed to below their respective detection limits. Biphenyl was partially destroyed in the process, mainly due to its propensity to reside in the vapor phase during the WAO reaction. Biphenyl is expected to be removed in the gas phase during the actual process, which is a continuous-flow system. (3) Reaction byproducts, remnants of MST, and the PUREX sludge, were characterized in this work. Radioactive species, such as Pu, Sr-90 and Cs-137 were quantified in the filtrate and slurry samples. Notably, Cs-137, boron and potassium were shown as soluble as a result of the WAO reaction. (4) Off-gas composition was measured in the resulting gas phase from the reaction. Benzene and hydrogen were formed during the reaction, but they were reasonably low in the off-gas at 0.096 and 0.0063 vol% respectively. Considering the consistency in replicating similar test results with simulated waste and Tank 48H waste under similar test conditions, the results confirm the validity of the simulant for other WAO test conditions.

Adu-Wusu, K; Paul Burket, P

2009-03-31T23:59:59.000Z

219

Tanks focus area. Annual report  

SciTech Connect

The U.S. Department of Energy Office of Environmental Management is tasked with a major remediation project to treat and dispose of radioactive waste in hundreds of underground storage tanks. These tanks contain about 90,000,000 gallons of high-level and transuranic wastes. We have 68 known or assumed leaking tanks, that have allowed waste to migrate into the soil surrounding the tank. In some cases, the tank contents have reacted to form flammable gases, introducing additional safety risks. These tanks must be maintained in the safest possible condition until their eventual remediation to reduce the risk of waste migration and exposure to workers, the public, and the environment. Science and technology development for safer, more efficient, and cost-effective waste treatment methods will speed up progress toward the final remediation of these tanks. The DOE Office of Environmental Management established the Tanks Focus Area to serve as the DOE-EM`s technology development program for radioactive waste tank remediation in partnership with the Offices of Waste Management and Environmental Restoration. The Tanks Focus Area is responsible for leading, coordinating, and facilitating science and technology development to support remediation at DOE`s four major tank sites: the Hanford Site in Washington State, Idaho National Engineering and Environmental Laboratory in Idaho, Oak Ridge Reservation in Tennessee, and the Savannah River Site in South Carolina. The technical scope covers the major functions that comprise a complete tank remediation system: waste retrieval, waste pretreatment, waste immobilization, tank closure, and characterization of both the waste and tank. Safety is integrated across all the functions and is a key component of the Tanks Focus Area program.

Frey, J.

1997-12-31T23:59:59.000Z

220

History of 100-B Area  

SciTech Connect

The initial three production reactors and their support facilities were designated as the 100-B, 100-D, and 100-F areas. In subsequent years, six additional plutonium-producing reactors were constructed and operated at the Hanford Site. Among them was one dual-purpose reactor (100-N) designed to supply steam for the production of electricity as a by-product. Figure 1 pinpoints the location of each of the nine Hanford Site reactors along the Columbia River. This report documents a brief description of the 105-B reactor, support facilities, and significant events that are considered to be of historical interest. 21 figs.

Wahlen, R.K.

1989-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "area 1996-2011 actual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Carlsbad Area Office strategic plan  

SciTech Connect

This edition of the Carlsbad Area Office Strategic Plan captures the U.S. Department of Energy`s new focus, and supercedes the edition issued previously in 1995. This revision reflects a revised strategy designed to demonstrate compliance with environmental regulations earlier than the previous course of action; and a focus on the selected combination of scientific investigations, engineered alternatives, and waste acceptance criteria for supporting the compliance applications. An overview of operations and historical aspects of the Waste Isolation Pilot Plant near Carlsbad, New Mexico is presented.

1995-10-01T23:59:59.000Z

222

Blackfoot Reservoir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Blackfoot Reservoir Geothermal Area Blackfoot Reservoir Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Blackfoot Reservoir Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Idaho Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

223

Wister Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Wister Geothermal Area Wister Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Wister Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

224

Area Science Park | Open Energy Information  

Open Energy Info (EERE)

Area Science Park Jump to: navigation, search Name Area Science Park Place Italy Sector Services Product General Financial & Legal Services ( Government Public sector )...

225

Southwest Area Corridor Map | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Map DOE Designates Southwest Area and Mid-Atlantic Area National Interest Electric Transmission Corridors October 2, 2007 FACT SHEET: Designation of National Interest Electric...

226

Southwest Area Corridor Map | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Map DOE Designates Southwest Area and Mid-Atlantic Area National Interest Electric Transmission Corridors October 2, 2007 Proposed Energy Transport Corridors: West-wide energy...

227

White Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

White Mountains Geothermal Area White Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: White Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: New Hampshire Exploration Region: Other GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

228

Truckhaven Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Truckhaven Geothermal Area Truckhaven Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Truckhaven Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

229

Honokowai Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Honokowai Geothermal Area Honokowai Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Honokowai Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

230

Redevelopment of Areas Needing Redevelopment Generally (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

Local redevelopment commissions may be established to oversee areas needing redevelopment (previously known as blighted, deteriorated, or deteriorating areas). The clearance, replanning, and...

231

Hydrogen, Fuel Cells, & Infrastructure - Program Areas - Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel cell Welcome> Program Areas> Program Areas Hydrogen, Fuel Cells & Infrastructure Production & Delivery | Storage | Fuel Cell R&D | Systems Integration & Analysis | Safety...

232

Aquifer Protection Area Land Use Regulations (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations describe allowable activities within aquifer protection areas, the procedure by which such areas are delineated, and relevant permit requirements. The regulations also describe...

233

Geothermal Literature Review At International Geothermal Area...  

Open Energy Info (EERE)

Latera area, Tuscany, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples...

234

Geothermal Literature Review At International Geothermal Area...  

Open Energy Info (EERE)

Hvalfjordur Fjord area, re: Heat flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples...

235

Lualualei Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Lualualei Valley Geothermal Area (Redirected from Lualualei Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lualualei Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content

236

Manhattan Project: Tech Area Gallery  

Office of Scientific and Technical Information (OSTI)

SMALL) SMALL) Los Alamos: The Laboratory Resources > Photo Gallery All of the photographs below are of the "Tech Area" at Los Alamos during or shortly after the wartime years. If you have a fast internet connection, you may wish to click here for a photo gallery with larger versions of the same images. There is a map of the Tech Area at the top and again at the bottom. The first image below is courtesy the Los Alamos National Laboratory. All of the other photographs are reproduced from Edith C. Truslow, with Kasha V. Thayer, ed., Manhattan Engineer District: Nonscientific Aspects of Los Alamos Project Y, 1942 through 1946 (Los Alamos, NM: Manhattan Engineer District, ca. 1946; first printed by Los Alamos Scientific Laboratory as LA-5200, March 1973; reprinted in 1997 by the Los Alamos Historical Society). This is a reprint of an unpublished volume originally written in 1946 by 2nd Lieutenant Edith C. Truslow, a member of the Women's Army Corps, as a contribution to the Manhattan Engineer District History.

237

Chena Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Chena Geothermal Area Chena Geothermal Area (Redirected from Chena Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Chena Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Technical Problems and Solutions 8 Geology of the Area 9 Heat Source 10 Geofluid Geochemistry 11 NEPA-Related Analyses (1) 12 Exploration Activities (9) 13 References Map: Chena Geothermal Area Chena Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Fairbanks, Alaska Exploration Region: Alaska Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

238

Source Release Modeling for the Idaho National Engineering and Environmental Laboratory's Subsurface Disposal Area  

SciTech Connect

A source release model was developed to determine the release of contaminants into the shallow subsurface, as part of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) evaluation at the Idaho National Engineering and Environmental Laboratory's (INEEL) Subsurface Disposal Area (SDA). The output of the source release model is used as input to the subsurface transport and biotic uptake models. The model allowed separating the waste into areas that match the actual disposal units. This allows quantitative evaluation of the relative contribution to the total risk and allows evaluation of selective remediation of the disposal units within the SDA.

Becker, Bruce Harley

2002-08-01T23:59:59.000Z

239

Mapping Population onto Priority Conservation Areas  

E-Print Network (OSTI)

areas and (in every case except Mesoamerican Reef and Namib-Karoo) are higher in areas within aggregated. Rural areas in Namib-Karoo have the highest total fertility rates (mean rate of 6.2). Areas inside / Namib Karoo (p

Lopez-Carr, David

240

Boulder Area Directions and Transportation Information  

Science Conference Proceedings (OSTI)

Boulder Area Directions and Transportation Information. NIST Boulder Visitor Check-In & Parking. Transportation. ...

2013-02-27T23:59:59.000Z

Note: This page contains sample records for the topic "area 1996-2011 actual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Geothermal resource evaluation of the Yuma area  

DOE Green Energy (OSTI)

This report presents an evaluation of the geothermal potential of the Yuma, Arizona area. A description of the study area and the Salton Trough area is followed by a geothermal analysis of the area, a discussion of the economics of geothermal exploration and exploitation, and recommendations for further testing. It was concluded economic considerations do not favor geothermal development at this time. (ACR)

Poluianov, E.W.; Mancini, F.P.

1985-11-29T23:59:59.000Z

242

Ashland Area Support Substation Project  

Science Conference Proceedings (OSTI)

The Bonneville Power Administration (BPA) provides wholesale electric service to the City of Ashland (the City) by transferring power over Pacific Power Light Company's (PP L) 115-kilovolt (kV) transmission lines and through PP L's Ashland and Oak Knoll Substations. The City distributes power over a 12.5-kV system which is heavily loaded during winter peak periods and which has reached the limit of its ability to serve peak loads in a reliable manner. Peak loads under normal winter conditions have exceeded the ratings of the transformers at both the Ashland and Oak Knoll Substations. In 1989, the City modified its distribution system at the request of PP L to allow transfer of three megawatts (MW's) of electric power from the overloaded Ashland Substation to the Oak Knoll Substation. In cooperation with PP L, BPA installed a temporary 6-8 megavolt-amp (MVA) 115-12.5-kV transformer for this purpose. This additional transformer, however, is only a temporary remedy. BPA needs to provide additional, reliable long-term service to the Ashland area through additional transformation in order to keep similar power failures from occurring during upcoming winters in the Ashland area. The temporary installation of another 20-MVA mobile transformer at the Ashland Substation and additional load curtailment are currently being studied to provide for sustained electrical service by the peak winter period 1992. Two overall electrical plans-of-service are described and evaluated in this report. One of them is proposed for action. Within that proposed plan-of-service are location options for the substation. Note that descriptions of actions that may be taken by the City of Ashland are based on information provided by them.

Not Available

1992-06-01T23:59:59.000Z

243

Obsidian Cliff Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Obsidian Cliff Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Obsidian Cliff Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

244

Chena Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Chena Geothermal Area Chena Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Chena Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Technical Problems and Solutions 8 Geology of the Area 9 Heat Source 10 Geofluid Geochemistry 11 NEPA-Related Analyses (1) 12 Exploration Activities (9) 13 References Map: Chena Geothermal Area Chena Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Fairbanks, Alaska Exploration Region: Alaska Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

245

Southern CA Area | Open Energy Information  

Open Energy Info (EERE)

Southern CA Area Southern CA Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Southern CA Area 1.1 Products and Services in the Southern CA Area 1.2 Research and Development Institutions in the Southern CA Area 1.3 Networking Organizations in the Southern CA Area 1.4 Investors and Financial Organizations in the Southern CA Area 1.5 Policy Organizations in the Southern CA Area Clean Energy Clusters in the Southern CA Area Products and Services in the Southern CA Area Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

246

Pumpernickel Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Pumpernickel Valley Geothermal Area Pumpernickel Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Pumpernickel Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Map: Pumpernickel Valley Geothermal Area Pumpernickel Valley Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

247

Whiskey Flats Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Whiskey Flats Geothermal Area Whiskey Flats Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Whiskey Flats Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Map: Whiskey Flats Geothermal Area Whiskey Flats Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

248

Pacific Northwest Area | Open Energy Information  

Open Energy Info (EERE)

Pacific Northwest Area Pacific Northwest Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Pacific Northwest Area 1.1 Products and Services in the Pacific Northwest Area 1.2 Research and Development Institutions in the Pacific Northwest Area 1.3 Networking Organizations in the Pacific Northwest Area 1.4 Investors and Financial Organizations in the Pacific Northwest Area 1.5 Policy Organizations in the Pacific Northwest Area Clean Energy Clusters in the Pacific Northwest Area Products and Services in the Pacific Northwest Area Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

249

Greater Boston Area | Open Energy Information  

Open Energy Info (EERE)

Greater Boston Area Greater Boston Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Greater Boston Area 1.1 Products and Services in the Greater Boston Area 1.2 Research and Development Institutions in the Greater Boston Area 1.3 Networking Organizations in the Greater Boston Area 1.4 Investors and Financial Organizations in the Greater Boston Area 1.5 Policy Organizations in the Greater Boston Area Clean Energy Clusters in the Greater Boston Area Products and Services in the Greater Boston Area Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

250

Safety analysis, 200 Area, Savannah River Plant: Separations area operations  

Science Conference Proceedings (OSTI)

The nev HB-Line, located on the fifth and sixth levels of Building 221-H, is designed to replace the aging existing HB-Line production facility. The nev HB-Line consists of three separate facilities: the Scrap Recovery Facility, the Neptunium Oxide Facility, and the Plutonium Oxide Facility. There are three separate safety analyses for the nev HB-Line, one for each of the three facilities. These are issued as supplements to the 200-Area Safety Analysis (DPSTSA-200-10). These supplements are numbered as Sup 2A, Scrap Recovery Facility, Sup 2B, Neptunium Oxide Facility, Sup 2C, Plutonium Oxide Facility. The subject of this safety analysis, the, Plutonium Oxide Facility, will convert nitrate solutions of {sup 238}Pu to plutonium oxide (PuO{sub 2}) powder. All these new facilities incorporate improvements in: (1) engineered barriers to contain contamination, (2) barriers to minimize personnel exposure to airborne contamination, (3) shielding and remote operations to decrease radiation exposure, and (4) equipment and ventilation design to provide flexibility and improved process performance.

Perkins, W.C.; Lee, R.; Allen, P.M.; Gouge, A.P.

1991-07-01T23:59:59.000Z

251

Demonstration of the UNEX Process for the Simultaneous Separation of Cesium, Strontium, and the Actinides from Actual INEEL Sodium-Bearing Waste  

SciTech Connect

A universal solvent extraction (UNEX) process for the simultaneous separation of cesium, strontium, and the actinides from actual radioactive acidic tank waste was demonstrated at the Idaho National Engineering and Environmental Laboratory. The waste solution used in the countercurrent flowsheet demonstration was obtained from tank WM-185. The UNEX process uses a tertiary solvent containing 0.08 M chlorinated cobalt dicarbollide, 0.5% polyethylene glycol-400 (PEG-400), and 0.02 M diphenyl-N,N-dibutylcarbamoyl phosphine oxide (Ph2Bu2CMPO) in a diluent consisting of phenyltrifluoromethyl sulfone (FS-13). The countercurrent flowsheet demonstration was performed in a shielded cell facility using 24 stages of 2-cm diameter centrifugal contactors. Removal efficiencies of 99.4%, 99.995%, and 99.96% were obtained for 137Cs, 90Sr, and total alpha, respectively. This is sufficient to reduce the activities of 137Cs, 90Sr, and actinides in the WM-185 waste to below NRC Class A LLW requirements. Flooding and/or precipitate formation were not observed during testing. Significant amounts of the Zr (87%), Ba (>99%), Pb (98.8%), Fe (8%), Ca (10%), Mo (32%), and K (28%) were also removed from the feed with the universal solvent extraction flowsheet. 99Tc, Al, Hg, and Na were essentially inextractable (<1% extracted).

Law, Jack Douglas; Herbst, Ronald Scott; Todd, Terry Allen; Romanovskiy, V.; Smirnov, I.; Babain, V.; Zaitsev, B.; Esimantovskiy, V.

1999-11-01T23:59:59.000Z

252

The Universal Solvent Exchange (UNEX) Process II: Flowsheet Development & Demonstration of the UNEX Process for the Separation of Cesium, Strontium, and Actinides from Actual Acidic Radioactive Waste  

Science Conference Proceedings (OSTI)

A novel solvent extraction process, the Universal Extraction (UNEX) process, has been developed for the simultaneous separation of cesium, strontium, and the actinides from acidic waste solutions. The UNEX process solvent consists of chlorinated cobalt dicarbollide for the extraction of 137Cs, polyethylene glycol for the extraction of 90Sr, and diphenyl-N,N-dibutylcarbamoyl phosphine oxide for the extraction of the actinides and lanthanides. A nonnitroaromatic polar diluent consisting of phenyltrifluoromethyl sulfone has been developed for this process. A UNEX flowsheet consisting of a single solvent extraction cycle has been developed as a part of a collaborative effort between the Khlopin Radium Institute (KRI) and the Idaho National Engineering and Environmental Laboratory (INEEL). This flowsheet has been demonstrated with actual acidic radioactive tank waste at the INEEL using 24 stages of 2-cm diameter centrifugal contactors installed in a shielded cell facility. The activities of 137Cs, 90Sr, and the actinides were reduced to levels at which a grout waste form would meet NRC Class A LLW requirements. The extraction of 99Tc and several nonradioactive metals by the UNEX solvent has also been evaluated.

Law, Jack Douglas; Herbst, Ronald Scott; Todd, Terry Allen; Romanovskiy, V. N.; Smirnov, I. V.; Esimantovskiy, V. M.; Zaitsev. B. N.; Babain, V. A.

2001-01-01T23:59:59.000Z

253

Maui Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Maui Geothermal Area Maui Geothermal Area (Redirected from Maui Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Maui Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (13) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

254

Glass Buttes Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Glass Buttes Geothermal Area Glass Buttes Geothermal Area (Redirected from Glass Buttes Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Glass Buttes Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (14) 10 References Area Overview Geothermal Area Profile Location: Oregon Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

255

Obsidian Cliff Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Obsidian Cliff Geothermal Area Obsidian Cliff Geothermal Area (Redirected from Obsidian Cliff Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Obsidian Cliff Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

256

Gabbs Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Gabbs Valley Geothermal Area Gabbs Valley Geothermal Area (Redirected from Gabbs Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Gabbs Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (4) 9 Exploration Activities (11) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

257

Salt Wells Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Salt Wells Geothermal Area Salt Wells Geothermal Area (Redirected from Salt Wells Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Salt Wells Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 9.1 Regional Setting 9.2 Stratigraphy 9.3 Structure 10 Hydrothermal System 11 Heat Source 12 Geofluid Geochemistry 13 NEPA-Related Analyses (9) 14 Exploration Activities (28) 15 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

258

Marysville Mt Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Marysville Mt Geothermal Area Marysville Mt Geothermal Area (Redirected from Marysville Mt Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Marysville Mt Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Montana Exploration Region: Other GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

259

Fort Bliss Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fort Bliss Geothermal Area Fort Bliss Geothermal Area (Redirected from Fort Bliss Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fort Bliss Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (22) 10 References Area Overview Geothermal Area Profile Location: Texas Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

260

Amedee Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Amedee Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Amedee Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Map: Amedee Geothermal Area Amedee Geothermal Area Location Map Area Overview Geothermal Area Profile Location: California Exploration Region: Walker-Lane Transition Zone GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

Note: This page contains sample records for the topic "area 1996-2011 actual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

New River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

New River Geothermal Area New River Geothermal Area (Redirected from New River Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: New River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (13) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

262

Kawaihae Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kawaihae Geothermal Area Kawaihae Geothermal Area (Redirected from Kawaihae Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kawaihae Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

263

Jemez Pueblo Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Pueblo Geothermal Area Jemez Pueblo Geothermal Area (Redirected from Jemez Pueblo Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Pueblo Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

264

Socorro Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Socorro Mountain Geothermal Area Socorro Mountain Geothermal Area (Redirected from Socorro Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Socorro Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (10) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

265

Kauai Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kauai Geothermal Area Kauai Geothermal Area (Redirected from Kauai Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kauai Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

266

Dixie Meadows Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Dixie Meadows Geothermal Area Dixie Meadows Geothermal Area (Redirected from Dixie Meadows Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Dixie Meadows Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

267

Jemez Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Mountain Geothermal Area Jemez Mountain Geothermal Area (Redirected from Jemez Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

268

Alderwood Area Service Environmental Assessment.  

SciTech Connect

Bonneville Power Administration's (BPA's) proposal to build a new 115-kV transmission line and 115-12.5-kV, 25-MW substation in the Alderwood, Oregon, area is discussed in the attached Environmental Assessment. The proposed substation site has been relocated about 500 feet east of the site outlined in the Environmental Assessment, but in the same field. This is not a substantial change relevant to environmental concerns. Environmental impacts of the new site differ only in that: Two residences will be visually affected. The substation will be directly across Highway 36 from two houses and would be seen in their primary views. This impact will be mitigated by landscaping the substation to create a vegetative screen. To provide access to the new site and provide for Blachly-Lane Cooperative's distribution lines, a 60-foot-wide right-of-way about 200 feet long will be needed. The total transmission line length will be less than originally planned. However, the tapline into the substation will be about 50 feet longer. 4 figs.

United States. Bonneville Power Administration.

1982-06-01T23:59:59.000Z

269

Wide-Area Energy Storage and Management system to Balance Intermittent Resources in the Bonneville Power Administration and California ISO Control Areas  

DOE Green Energy (OSTI)

The entire project addresses the issue of mitigating additional intermittency and fast ramps that occur at higher penetration of intermittent resources, including wind genera-tion, in the Bonneville Power Administration (BPA) and the California Independent Sys-tem Operator (California ISO) control areas. The proposed Wide Area Energy Storage and Management System (WAEMS) will address the additional regulation requirement through the energy exchange between the participating control areas and through the use of energy storage and other generation resources. For the BPA and California ISO control centers, the new regulation service will look no different comparing with the traditional regulation resources. The proposed project will benefit the regulation service in these service areas, regardless of the actual degree of penetration of the intermittent resources in the regions. The project develops principles, algorithms, market integration rules, functional de-sign and technical specifications for the WAEMS system. The project is sponsored by BPA and supported in kind by California ISO, Beacon Power Corporation, and the Cali-fornia Energy Commission (CEC).

Makarov, Yuri V.; Yang, Bo; DeSteese, John G.; Lu, Shuai; Miller, Carl H.; Nyeng, Preben; Ma, Jian; Hammerstrom, Donald J.; Vishwanathan, Vilanyur V.

2008-06-30T23:59:59.000Z

270

Aeromagnetic Survey At Mt St Helens Area (Towle, 1983) | Open Energy  

Open Energy Info (EERE)

Towle, 1983) Towle, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Mt St Helens Area (Towle, 1983) Exploration Activity Details Location Mt St Helens Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness useful DOE-funding Unknown Notes The VLF method has proved useful in mapping the crater and central dome of Mount St. Helens. More detailed and extensive VLF investigations as well as other electrical and electromagnetic studies will be useful in determining the electrical structure of Mount St. Helens in more detail. Electrical and electromagnetic methods would be especially useful in determining the actual electrical conductivity of partial melt beneath the dome. The ability of these methods to determine the correlation of surface features

271

Bristol Bay Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Bristol Bay Geothermal Area Bristol Bay Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Bristol Bay Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Area Overview Geothermal Area Profile Location: Bristol Bay Borough, Alaska Exploration Region: Alaska Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

272

Teels Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Teels Marsh Geothermal Area Teels Marsh Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Teels Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

273

Haleakala Volcano Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Haleakala Volcano Geothermal Area Haleakala Volcano Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Haleakala Volcano Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

274

Fort Bliss Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fort Bliss Geothermal Area Fort Bliss Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fort Bliss Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (22) 10 References Area Overview Geothermal Area Profile Location: Texas Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

275

Jemez Pueblo Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Pueblo Geothermal Area Jemez Pueblo Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Pueblo Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

276

Global Vegetation Data: Leaf Area Index  

NLE Websites -- All DOE Office Websites (Extended Search)

Leaf Area Index Data Available The ORNL DAAC announces the availability of a global data set containing approximately 1000 estimates of leaf area index (LAI) for a variety of...

277

Salt Wells Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Salt Wells Geothermal Area Salt Wells Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Salt Wells Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 9.1 Regional Setting 9.2 Stratigraphy 9.3 Structure 10 Hydrothermal System 11 Heat Source 12 Geofluid Geochemistry 13 NEPA-Related Analyses (9) 14 Exploration Activities (28) 15 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

278

Kilauea Summit Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kilauea Summit Geothermal Area Kilauea Summit Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kilauea Summit Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (12) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

279

Florida Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Florida Mountains Geothermal Area Florida Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Florida Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

280

Molokai Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Molokai Geothermal Area Molokai Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Molokai Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

Note: This page contains sample records for the topic "area 1996-2011 actual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Maui Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Maui Geothermal Area Maui Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Maui Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (13) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

282

Rhodes Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Rhodes Marsh Geothermal Area (Redirected from Rhodes Marsh Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Rhodes Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase:

283

Jersey Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jersey Valley Geothermal Area Jersey Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jersey Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Area Overview Geothermal Area Profile Location: near Fallon, NV Exploration Region: Central Nevada Seismic Zone Geothermal Region GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

284

Glass Buttes Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Glass Buttes Geothermal Area Glass Buttes Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Glass Buttes Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (14) 10 References Area Overview Geothermal Area Profile Location: Oregon Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

285

Separation Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Separation Creek Geothermal Area Separation Creek Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Separation Creek Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Oregon Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

286

Areas Participating in the Reformulated Gasoline Program  

Gasoline and Diesel Fuel Update (EIA)

Reformulated Gasoline Program Reformulated Gasoline Program Contents * Introduction * Mandated RFG Program Areas o Table 1. Mandated RFG Program Areas * RFG Program Opt-In Areas o Table 2. RFG Program Opt-In Areas * RFG Program Opt-Out Procedures and Areas o Table 3. History of EPA Rulemaking on Opt-Out Procedures o Table 4. RFG Program Opt-Out Areas * State Programs o Table 5. State Reformulated Gasoline Programs * Endnotes Spreadsheets Referenced in this Article * Reformulated Gasoline Control Area Populations Related EIA Short-Term Forecast Analysis Products * Demand and Price Outlook for Phase 2 Reformulated Gasoline, 2000 * Environmental Regulations and Changes in Petroleum Refining Operations * Areas Participating in Oxygenated Gasoline Program

287

Kauai Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kauai Geothermal Area Kauai Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kauai Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

288

Rhodes Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Rhodes Marsh Geothermal Area Rhodes Marsh Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Rhodes Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

289

Kawaihae Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kawaihae Geothermal Area Kawaihae Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kawaihae Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

290

Mokapu Penninsula Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mokapu Penninsula Geothermal Area Mokapu Penninsula Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mokapu Penninsula Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

291

Socorro Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Socorro Mountain Geothermal Area Socorro Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Socorro Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (10) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

292

Jemez Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Mountain Geothermal Area Jemez Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

293

Augusta Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Augusta Mountains Geothermal Area Augusta Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Augusta Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (3) 9 Exploration Activities (0) 10 References Area Overview Geothermal Area Profile Location: Fallon, NV Exploration Region: Central Nevada Seismic Zone Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

294

Marysville Mt Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Marysville Mt Geothermal Area Marysville Mt Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Marysville Mt Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Montana Exploration Region: Other GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

295

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

296

Lualualei Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lualualei Valley Geothermal Area Lualualei Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lualualei Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

297

New River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

New River Geothermal Area New River Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: New River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (13) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

298

AREA USA LLC | Open Energy Information  

Open Energy Info (EERE)

AREA USA LLC Jump to: navigation, search Name AREA USA LLC Place Washington, DC Zip 20004 Sector Services Product Washington, D.C.-based division of Fabiani & Company providing...

299

For the B-Area Operable Unit  

NLE Websites -- All DOE Office Websites (Extended Search)

3 April 16, 2013 Notice of Availability Record of Decision For the B-Area Operable Unit The Record of Decision (ROD) Remedial Alternative Selection for the B-Area Operable Unit...

300

Desert Queen Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Desert Queen Geothermal Area Desert Queen Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Desert Queen Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (4) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

Note: This page contains sample records for the topic "area 1996-2011 actual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Dixie Meadows Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Dixie Meadows Geothermal Area Dixie Meadows Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Dixie Meadows Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

302

Lester Meadow Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lester Meadow Geothermal Area Lester Meadow Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lester Meadow Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Washington Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

303

Mt Ranier Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mt Ranier Geothermal Area Mt Ranier Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mt Ranier Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Washington Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

304

Cryptographic Challenges for Smart Grid Home Area ...  

Science Conference Proceedings (OSTI)

Page 1. Cryptographic Challenges for Smart Grid Home Area Networks Secure Networking Author – Apurva Mohan, Honeywell ACS Labs ...

2012-05-09T23:59:59.000Z

305

Optimization Online - All Areas Submissions - February 2011  

E-Print Network (OSTI)

... Optimization for Power System Configuration with Renewable Energy in Remote Areas ... Robust Energy Cost Optimization of Water Distribution System with ...

306

Optimization Online - All Areas Submissions - October 2013  

E-Print Network (OSTI)

All Areas Submissions - October 2013. Network Optimization Optimization Models for Differentiating Quality of Service Levels in Probabilistic Network Capacity ...

307

Demonstration of a Universal Solvent Extraction Process for the Separation of Cesium and Strontium from Actual Acidic Tank Waste at the INEEL  

Science Conference Proceedings (OSTI)

A universal solvent extraction process is being evaluated for the simultaneous separation of Cs, Sr, and the actinides from acidic high-activity tank waste at the Idaho National Engineering and Environmental Laboratory (INEEL) with the goal of minimizing the high-activity waste volume to be disposed in a deep geological repository. The universal solvent extraction process is being developed as a collaborative effort between the INEEL and the Khlopin Radium Institute in St. Petersburg, Russia. The process was recently demonstrated at the INEEL using actual radioactive, acidic tank waste in 24 stages of 2-cm diameter centrifugal contactors located in a shielded cell facility. With this testing, removal efficiencies of 99.95%, 99.985%, and 95.2% were obtained for 137 Cs, 90 Sr, and total alpha, respectively. This is sufficient to reduce the activities of 137 Cs and 90 Sr to below NRC Class A LLW requirements. The total alpha removal efficiency was not sufficient to reduce the activity of the tank waste to below NRC Class A non-TRU requirements. The lower than expected removal efficiency for the actinides is due to loading of the Ph2Bu2CMPO in the universal solvent exiting the actinide strip section and entering the wash section resulted in the recycle of the actinides back to the extraction section. This recycle of the actinides contributed to the low removal efficiency. Significant amounts of the Zr (>97.7%), Ba (>87%), Pb (>98.5%), Fe (6.9%), Mo (19%), and K (17%) were also removed from the feed with the universal solvent extraction flowsheet.

Law, Jack Douglas; Herbst, Ronald Scott; Todd, Terry Allen; Brewer, Ken Neal; Romanovskiy, V.N.; Esimantovskiy, V.M.; Smirnov, I.V.; Babain, V.A.; Zaitsev, B.N.

1999-09-01T23:59:59.000Z

308

Demonstration of the TRUEX process for partitioning of actinides from actual ICPP tank waste using centrifugal contactors in a shielded cell facility  

Science Conference Proceedings (OSTI)

TRUEX is being evaluated at Idaho Chemical Processing Plant (ICPP) for separating actinides from acidic radioactive waste stored at ICPP; efforts have culminated in a recent demonstration with actual tank waste. A continuous countercurrent flowsheet test was successfully completed at ICPP using waste from tank WM-183. This demonstration was performed using 24 states of 2-cm dia centrifugal contactors in the shielded hot cell at the ICPP Remote Analytical Laboratory. The flowsheet had 8 extraction stages, 5 scrub stages, 6 strip stages, 3 solvent wash stages, and 2 acid rinse stages. A centrifugal contactor stage in the scrub section was not working during testing, and the scrub feed (aqueous) solution followed the solvent into the strip section, eliminating the scrub section in the flowsheet. An overall removal efficiency of 99.97% was obtained for the actinides, reducing the activity from 457 nCi/g in the feed to 0.12 nCi/g in the aqueous raffinate, well below the NRC Class A LLW requirement of 10 nCi/g for non-TRU waste.The 0.04 M HEDPA strip section back-extracted 99.9998% of the actinide from the TRUEX solvent. Removal efficiencies of >99. 90, 99.96, 99.98, >98.89, 93.3, and 89% were obtained for {sup 241}Am, {sup 238}Pu, {sup 239}Pu, {sup 235}U, {sup 238}U, and {sup 99}Tc. Fe was partially extracted by the TRUEX solvent, resulting in 23% of the Fe exiting in the strip product. Hg was also extracted by the TRUEX solvent (73%) and stripped from the solvent in the 0.25 M Na2CO3 wash section. Only 1.4% of the Hg exited with the high activity waste strip product.

Law, J.D.; Brewer, K.N.; Herbst, R.S.; Todd, T.A.

1996-09-01T23:59:59.000Z

309

Demonstration of an optimized TRUEX flowsheet for partitioning of actinides from actual ICPP sodium-bearing waste using centrifugal contactors in a shielded cell facility  

Science Conference Proceedings (OSTI)

The TRUEX process is being evaluated at the Idaho Chemical Processing Plant (ICPP) for the separation of the actinides from acidic radioactive wastes stored at the ICPP. These efforts have culminated in recent demonstrations of the TRUEX process with actual tank waste. The first demonstration was performed in 1996 using 24 stages of 2-cm diameter centrifugal contactors and waste from tank WM-183. Based on the results of this flowsheet demonstration, the flowsheet was optimized and a second flowsheet demonstration was performed. This test also was performed using 2-cm diameter centrifugal contactors and waste from tank WM-183. However, the total number of contactor stages was reduced from 24 to 20. Also, the concentration of HEDPA in the strip solution was reduced from 0.04 M to 0.01 M in order to minimize the amount of phosphate in the HLW fraction, which would be immobilized into a glass waste form. This flowsheet demonstration was performed using centrifugal contactors installed in the shielded hot cell at the ICPP Remote Analytical Laboratory. The flowsheet tested consisted of six extraction stages, four scrub stages, six strip stages, two solvent was stages, and two acid rinse stages. An overall removal efficiency of 99.79% was obtained for the actinides. As a result, the activity of the actinides was reduced from 540 nCi/g in the feed to 0.90 nCi/g in the aqueous raffinate, which is well below the NRC Class A LLW requirement of 10 nCi/g for non-TRU waste. Removal efficiencies of 99.84%, 99.97%, 99.97%, 99.85%, and 99.76% were obtained for {sup 241}Am, {sup 238}Pu, {sup 239}Pu, {sup 235}U, and {sup 238}U, respectively.

Law, J.D.; Brewer, K.N.; Herbst, R.S.; Todd, T.A.; Olson, L.G.

1998-01-01T23:59:59.000Z

310

Demonstration of a Universal Solvent Extraction Process for the Separation of Cesium and Strontium from Actual Acidic Tank Waste at the INEEL  

Science Conference Proceedings (OSTI)

A universal solvent extraction process is being evaluated for the simultaneous separation of Cs, Sr, and the actinides from acidic high-activity tank waste at the Idaho National Engineering and Environmental Laboratory (INEEL) with the goal of minimizing the high-activity waste volume to be disposed in a deep geological repository. The universal solvent extraction process is being developed as a collaborative effort between the INEEL and the Khlopin Radium Institute in St. Petersburg, Russia. The process was recently demonstrated at the INEEL using actual radioactive, acidic tank waste in 24 stages of 2-cm-diameter centrifugal contactors located in a shielded cell facility. With the testing, removal efficiencies of 99.95%, 99.985%, and 95.2% were obtained for Cs-137, Sr-90, and total alpha, respectively. This is sufficient to reduce the activities of Cs-137 and Sr-90 to below NRC Class A LLW requirements. The total alpha removal efficiency was not sufficient to reduce the activity of the tank waste to below NRC Class A non-TRU requirements. The lower than expected removal efficiency for the actinides is due to loading of the Ph2Bu2CMPO in the universal solvent with actinides and metals (Zr, Fe, and Mo). Also, the carryover of aqueous solution (flooding) with the solvent exiting the actinide strip section and entering the wash section resulted in the recycle of the actinides back to the extraction section. This recycle of the actinides contributed to the low removal efficiency. Significant amounts of the Zr (>97.7%), Ba (>87%), Pb (>98.5%), Fe (>6.9%), Mo (19%), and K (17%) were also removed from the feed with the universal solvent extraction flowsheet.

B. N. Zaitsev (Khlopin Radium Institute); D. J. Wood (INEEL); I. V. Smirnov; J. D. Law; R. S. Herbst; T. A. Todd; V. A. Babain; V. M. Esimantovskiy; V. N. Romanovskiy

1999-08-01T23:59:59.000Z

311

Local control of area-preserving maps  

E-Print Network (OSTI)

We present a method of control of chaos in area-preserving maps. This method gives an explicit expression of a control term which is added to a given area-preserving map. The resulting controlled map which is a small and suitable modification of the original map, is again area-preserving and has an invariant curve whose equation is explicitly known.

Cristel Chandre; Michel Vittot; Guido Ciraolo

2008-09-01T23:59:59.000Z

312

Geothermal br Resource br Area Geothermal br Resource br Area Geothermal  

Open Energy Info (EERE)

Geothermal Area Brady Hot Springs Geothermal Area Geothermal Area Brady Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region MW K Coso Geothermal Area Coso Geothermal Area Walker Lane Transition Zone Geothermal Region Pull Apart in Strike Slip Fault Zone Mesozoic Granitic MW K Dixie Valley Geothermal Area Dixie Valley Geothermal Area Central Nevada Seismic Zone Geothermal Region Stepover or Relay Ramp in Normal Fault Zones major range front fault Jurassic Basalt MW K Geysers Geothermal Area Geysers Geothermal Area Holocene Magmatic Geothermal Region Pull Apart in Strike Slip Fault Zone intrusion margin and associated fractures MW K Long Valley Caldera Geothermal Area Long Valley Caldera Geothermal Area Walker Lane Transition Zone Geothermal Region Displacement Transfer Zone Caldera Margin Quaternary Rhyolite MW K

313

EA-1177: Salvage/Demolition of 200 West Area, 200 East Area,...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

demolish the 200 West Area, 200 East Area, and 300 Area steam plants and their associated steam distribution piping equipment, and ancillary facilities at the U.S. Department of...

314

Gabbs Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Gabbs Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Gabbs Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (4) 9 Exploration Activities (11) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

315

Redfield Campus Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Redfield Campus Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Redfield Campus Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate

316

Category Key Area Sub Area Do?an, Ö.N., "Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Papers funded by the Fuels Program (2013) Category Key Area Sub Area Doan, .N., "Materials Development for Fossil Fueled Energy Conversion Systems," Materials Science...

317

9/18/09 2:44 PMThunderbolts Forum View topic -Dark Energy may not actually exist Page 1 of 12http://www.thunderbolts.info/forum/phpBB3/viewtopic.php?p=25303&sid=87fbf6c3a5361ee50b143431ee0e553d  

E-Print Network (OSTI)

9/18/09 2:44 PMThunderbolts Forum · View topic - Dark Energy may not actually exist Page 1 of 12 Dark Energy may not actually exist Moderators: arc - On With the New #12;9/18/09 2:44 PMThunderbolts Forum · View topic - Dark Energy may not actually exist Page 2

Temple, Blake

318

Chocolate Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Chocolate Mountains Geothermal Area Chocolate Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Chocolate Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Map: Chocolate Mountains Geothermal Area Chocolate Mountains Geothermal Area Location Map Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: Phase II - Resource Exploration and Confirmation Coordinates: 33.352°, -115.353° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.352,"lon":-115.353,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

319

Magic Reservoir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Magic Reservoir Geothermal Area Magic Reservoir Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Magic Reservoir Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.32833333,"lon":-114.3983333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

320

Mcgee Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mcgee Mountain Geothermal Area Mcgee Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mcgee Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (7) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8,"lon":-118.87,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "area 1996-2011 actual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Astor Pass Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Astor Pass Geothermal Area Astor Pass Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Astor Pass Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.352110729808,"lon":-118.48461985588,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

322

South Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

South Geothermal Area South Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: South Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":66.15,"lon":-157.1166667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

323

Boiling Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Boiling Springs Geothermal Area Boiling Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Boiling Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.3641,"lon":-115.856,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

324

Geysers Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Geysers Geothermal Area Geysers Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Geysers Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Heat Source 8 Geofluid Geochemistry 9 NEPA-Related Analyses (2) 10 Exploration Activities (22) 11 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.8,"lon":-122.8,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

325

Banbury Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Banbury Geothermal Area Banbury Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Banbury Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.688,"lon":-114.8256,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

326

Weiser Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Weiser Geothermal Area Weiser Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Weiser Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.29833333,"lon":-117.0483333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

327

Tungsten Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Tungsten Mountain Geothermal Area Tungsten Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Tungsten Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (4) 9 Exploration Activities (4) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6751,"lon":-117.6945,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

328

Colado Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Colado Geothermal Area Colado Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Colado Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.23,"lon":-118.37,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

329

Moana Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Moana Geothermal Area Moana Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Moana Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.495,"lon":-119.815,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

330

Kilo Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kilo Geothermal Area Kilo Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kilo Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":65.8101865,"lon":-151.2360627,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

331

Sierra Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Sierra Valley Geothermal Area Sierra Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Sierra Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.71166667,"lon":-120.3216667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

332

Wendel Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Wendel Geothermal Area Wendel Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Wendel Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.35734979,"lon":-120.2549785,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

333

Crane Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Crane Creek Geothermal Area Crane Creek Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Crane Creek Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.3064,"lon":-116.7447,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

334

Mother Goose Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mother Goose Geothermal Area Mother Goose Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mother Goose Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":57.18,"lon":-157.0183,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

335

Fireball Ridge Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fireball Ridge Geothermal Area Fireball Ridge Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fireball Ridge Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.92,"lon":-119.07,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

336

Newcastle Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Newcastle Geothermal Area Newcastle Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Newcastle Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.66166667,"lon":-113.5616667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

337

Klamath Falls Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Klamath Falls Geothermal Area Klamath Falls Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Klamath Falls Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.23333333,"lon":-121.7666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

338

Clear Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Geothermal Area Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Clear Creek Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64.85,"lon":-162.3,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

339

Heber Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Heber Geothermal Area Heber Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Heber Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Heat Source 8 Geofluid Geochemistry 9 NEPA-Related Analyses (0) 10 Exploration Activities (2) 11 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.71666667,"lon":-115.5283333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

340

South Brawley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

South Brawley Geothermal Area South Brawley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: South Brawley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.90607,"lon":-115.54,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "area 1996-2011 actual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Medicine Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Medicine Lake Geothermal Area Medicine Lake Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Medicine Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (9) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.57,"lon":-121.57,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

342

Fernley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fernley Geothermal Area Fernley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fernley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.598803,"lon":-119.110415,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

343

Lakeview Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lakeview Geothermal Area Lakeview Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lakeview Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.2,"lon":-120.36,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

344

Drum Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Drum Mountain Geothermal Area Drum Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Drum Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.544722222222,"lon":-112.91611111111,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

345

The Needles Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

The Needles Geothermal Area The Needles Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: The Needles Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (15) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.15,"lon":-119.68,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

346

Mt Signal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Signal Geothermal Area Signal Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mt Signal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.65,"lon":-115.71,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

347

Carson River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

River Geothermal Area River Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Carson River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.77,"lon":-119.715,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

348

Harney Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lake Geothermal Area Lake Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Harney Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.18166667,"lon":-119.0533333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

349

Maazama Well Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Maazama Well Geothermal Area Maazama Well Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Maazama Well Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8965,"lon":-121.9865,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

350

False Pass Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

False Pass Geothermal Area False Pass Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: False Pass Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":54.93,"lon":-163.24,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

351

Okpilak Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Okpilak Springs Geothermal Area Okpilak Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Okpilak Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":69.3,"lon":-144.0333333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

352

Hot Pot Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Hot Pot Geothermal Area Hot Pot Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Hot Pot Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.922,"lon":-117.108,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

353

Stillwater Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Stillwater Geothermal Area Stillwater Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Stillwater Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.51666667,"lon":-118.5516667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

354

Willow Well Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Well Geothermal Area Well Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Willow Well Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.6417,"lon":-150.095,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

355

Area Guide - National Transportation Research Center (NTRC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Area Guide Area Guide Recreational & Cultural Opportunities Some Things To Do In and Around the NTRC Area Area Attractions Big South Fork The following links offer general information about parks, cultural events, and recreational opportunities available. All locations listed are within a few hours' drive. Big South Fork National River and Recreation Area of the U.S. National Park Service, located near Oak Ridge. Biltmore Estate- A 250-room historical chateau in located in Asheville, North Carolina (about 3 hours from Oak Ridge); open all year Knoxville, Tennessee Women's Basketball Hall of Fame, Knoxville Star of Knoxville Riverboat Ice Rinks Ice Chalet Icearium Korrnet - Website for area nonprofit organizations Big South Fork Park - Canoeing, fishing, camping, hiking; located near

356

Akutan Fumaroles Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Akutan Fumaroles Geothermal Area Akutan Fumaroles Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Akutan Fumaroles Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":54.1469,"lon":-165.9078,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

357

Fallon Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fallon Geothermal Area Fallon Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fallon Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.38,"lon":-118.65,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

358

Randsburg Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Randsburg Geothermal Area Randsburg Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Randsburg Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.38333333,"lon":-117.5333333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

359

Kwiniuk Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kwiniuk Geothermal Area Kwiniuk Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kwiniuk Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64.70787,"lon":-162.46488,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

360

Worswick Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Worswick Geothermal Area Worswick Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Worswick Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.5636,"lon":-114.7986,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "area 1996-2011 actual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Area Information | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

Visiting Us / Area Information Visiting Us / Area Information Area Information Guides, Area Maps, Airport... Airport, About: McGhee Tyson Airport Airport: map to Oak Ridge/Knoxville Oak Ridge: City Guide for City of Oak Ridge, Tennessee Knoxville: maps for visitors Oak Ridge: area map with location of Y-12 Visitor's Center Oak Ridge: map of city streets Roane County: Roane County Guide Resources: News, History... Knoxville: Knoxville, Tennessee Knoxville: Museums Knoxville: Knoxville News-Sentinel Oak Ridge: City of Oak Ridge Oak Ridge: Chamber of Commerce Oak Ridge: Convention and Visitors Bureau Oak Ridge: Oak Ridger Oak Ridge: Secret City History Area Attractions: To Do and See Knoxville: Clarence Brown Theater Knoxville: Frank H. McClung Museum Knoxville: Knoxville Opera Company, Francis Graffeo, General

362

Radio Towers Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Radio Towers Geothermal Area Radio Towers Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Radio Towers Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.03666667,"lon":-115.4566667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

363

Newberry Caldera Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Newberry Caldera Geothermal Area Newberry Caldera Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Newberry Caldera Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (18) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.71666667,"lon":-121.2333333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

364

Serpentine Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Serpentine Springs Geothermal Area Serpentine Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Serpentine Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":65.85703165,"lon":-164.7097211,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

365

North Brawley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

North Brawley Geothermal Area North Brawley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: North Brawley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.0153,"lon":-115.5153,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

366

Canby Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Canby Geothermal Area Canby Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Canby Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.438,"lon":-120.8676,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

367

Mcleod 88 Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mcleod 88 Geothermal Area Mcleod 88 Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mcleod 88 Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.028,"lon":-117.136,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

368

Mitchell Butte Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mitchell Butte Geothermal Area Mitchell Butte Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mitchell Butte Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.763,"lon":-117.156,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

369

Circle Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Circle Geothermal Area Circle Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Circle Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":65.48236057,"lon":-144.6372556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

370

Patua Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Patua Geothermal Area Patua Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Patua Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (11) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.598611111111,"lon":-119.215,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

371

Ophir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Ophir Geothermal Area Ophir Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Ophir Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.1925,"lon":-159.8589,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

372

Hawthorne Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Hawthorne Geothermal Area Hawthorne Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Hawthorne Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.53,"lon":-118.65,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

373

Manley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Manley Geothermal Area Manley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Manley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":65,"lon":-150.633333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

374

Routt Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Routt Geothermal Area Routt Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Routt Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.56,"lon":-106.85,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

375

Definition: Reliability Coordinator Area | Open Energy Information  

Open Energy Info (EERE)

Coordinator Area Coordinator Area Jump to: navigation, search Dictionary.png Reliability Coordinator Area The collection of generation, transmission, and loads within the boundaries of the Reliability Coordinator. Its boundary coincides with one or more Balancing Authority Areas.[1] Related Terms transmission lines, Reliability Coordinator, Balancing Authority Area, transmission line, balancing authority, smart grid References ↑ Glossary of Terms Used in Reliability Standards An inlin LikeLike UnlikeLike You like this.Sign Up to see what your friends like. e Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Reliability_Coordinator_Area&oldid=502626" Categories: Definitions ISGAN Definitions What links here Related changes Special pages

376

Paso Robles Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Geothermal Area Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Paso Robles Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.657,"lon":-120.6945,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

377

Emmons Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lake Geothermal Area Lake Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Emmons Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.3333,"lon":-162.14,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

378

Dulbi Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Dulbi Geothermal Area Dulbi Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Dulbi Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":65.2667,"lon":-155.2667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

379

Mcdermitt Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mcdermitt Geothermal Area Mcdermitt Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mcdermitt Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.08092,"lon":-117.75895,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

380

Cherry Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Cherry Creek Geothermal Area Cherry Creek Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Cherry Creek Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.85,"lon":-114.905,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "area 1996-2011 actual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Kanuti Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kanuti Geothermal Area Kanuti Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kanuti Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":66.3425,"lon":-150.846,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

382

East Brawley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

East Brawley Geothermal Area East Brawley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: East Brawley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.99,"lon":-115.35,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

383

Butte Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Springs Geothermal Area Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Butte Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.771138,"lon":-119.114138,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

384

Emigrant Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Emigrant Geothermal Area Emigrant Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Emigrant Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.86,"lon":-117.87,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

385

Milky River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Milky River Geothermal Area Milky River Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Milky River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":52.32,"lon":-174.1472,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

386

Dunes Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Dunes Geothermal Area Dunes Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Dunes Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.80333333,"lon":-115.0133333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

387

Black Warrior Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Black Warrior Geothermal Area Black Warrior Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Black Warrior Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.9,"lon":-119.22,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

388

Idaho Bath Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Bath Geothermal Area Bath Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Idaho Bath Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.7211,"lon":-115.0144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

389

Shakes Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Shakes Springs Geothermal Area Shakes Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Shakes Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":56.71765648,"lon":-132.0025034,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

390

Adak Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Adak Geothermal Area Adak Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Adak Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.975,"lon":-176.616,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

391

Clark Ranch Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Ranch Geothermal Area Ranch Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Clark Ranch Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.8569,"lon":-118.5453,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

392

Fort Bidwell Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fort Bidwell Geothermal Area Fort Bidwell Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fort Bidwell Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8617,"lon":-120.1592,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

393

Silver Peak Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Silver Peak Geothermal Area Silver Peak Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Silver Peak Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (5) 9 Exploration Activities (26) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.746167220142,"lon":-117.60267734528,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

394

Geyser Bight Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Geyser Bight Geothermal Area Geyser Bight Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Geyser Bight Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.21666667,"lon":-168.4666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

395

Reese River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Reese River Geothermal Area Reese River Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Reese River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (3) 9 Exploration Activities (10) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.89,"lon":-117.14,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

396

Tolovana Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Tolovana Geothermal Area Tolovana Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Tolovana Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":65.2728,"lon":-148.851,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

397

Cove Fort Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Cove Fort Geothermal Area Cove Fort Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Cove Fort Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (30) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.6,"lon":-112.55,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

398

Lava Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lava Creek Geothermal Area Lava Creek Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lava Creek Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":65.2283,"lon":-162.894,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

399

Riverside Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Riverside Geothermal Area Riverside Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Riverside Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.46666667,"lon":-118.1883333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

400

Desert Peak Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Desert Peak Geothermal Area Desert Peak Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Desert Peak Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (3) 9 Exploration Activities (8) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.75,"lon":-118.95,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "area 1996-2011 actual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

2010sr29[M Area].doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Wednesday, October 20, 2010 Wednesday, October 20, 2010 Paivi Nettamo, SRNS, (803) 952-6938 Savannah River Site Marks Recovery Act Cleanup Milestone M Area cleanup work was finished nearly two years ahead of schedule AIKEN, S.C. (October 20) - Department of Energy, contractor and regulatory representatives gathered today to celebrate the completion of cleanup work at Savannah River Site's M Area, nearly two years ahead of schedule. This area

402

How China utilizes biogas in rural areas  

SciTech Connect

An outline is presented of how China utilizes biogas in rural areas. Already, 7,140,000 small biogas digesters have been built. Sichuan province has 4,160,000 digesters including about 20,000 large digesters which operate diesel engines to generate electricity. This is seen as the key area for further research and development. In rural areas, biogas is used principally for cooking and to power stationary units such as grinding mills, electric generators and crop driers.

Ji, M.

1981-05-01T23:59:59.000Z

403

3D Technologies for Large Area Trackers  

E-Print Network (OSTI)

We describe technologies which can be developed to produce large area, low cost pixelated tracking detec- tors. These utilize wafer-scale 3D electronics and sensor technologies currently being developed in industry. This can result in fully active sensor/readout chip tiles which can be assembled into large area arrays with good yield and minimal dead area. The ability to connect though the bulk of the device can also provide better electrical performance and lower mass.

Deptuch, G; Johnson, M; Kenney, C; Lipton, R; Narian, M; Parker, S; Shenai, A; Spiegel, L; Thom, J; Ye, Z

2013-01-01T23:59:59.000Z

404

3D Technologies for Large Area Trackers  

E-Print Network (OSTI)

We describe technologies which can be developed to produce large area, low cost pixelated tracking detec- tors. These utilize wafer-scale 3D electronics and sensor technologies currently being developed in industry. This can result in fully active sensor/readout chip tiles which can be assembled into large area arrays with good yield and minimal dead area. The ability to connect though the bulk of the device can also provide better electrical performance and lower mass.

G. Deptuch; U. Heintz; M. Johnson; C. Kenney; R. Lipton; M. Narian; S. Parker; A. Shenai; L. Spiegel; J. Thom; Z. Ye

2013-07-16T23:59:59.000Z

405

Geothermal br Resource br Area Geothermal br Resource br Area Geothermal  

Open Energy Info (EERE)

Tectonic br Setting Host br Rock br Age Host br Rock br Lithology Tectonic br Setting Host br Rock br Age Host br Rock br Lithology Mean br Capacity Mean br Reservoir br Temp Amedee Geothermal Area Amedee Geothermal Area Walker Lane Transition Zone Geothermal Region Extensional Tectonics Mesozoic granite granodiorite MW K Beowawe Hot Springs Geothermal Area Beowawe Hot Springs Geothermal Area Central Nevada Seismic Zone Geothermal Region Extensional Tectonics MW K Blue Mountain Geothermal Area Blue Mountain Geothermal Area Northwest Basin and Range Geothermal Region Extensional Tectonics triassic metasedimentary MW K Brady Hot Springs Geothermal Area Brady Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region Extensional Tectonics MW Coso Geothermal Area Coso Geothermal Area Walker Lane Transition Zone

406

Wildlife Management Areas (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Minnesota) Minnesota) Wildlife Management Areas (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Minnesota Program Type Siting and Permitting Certain areas of the State are designated as wildlife protection areas and refuges; new construction and development is restricted in these areas

407

Wildlife Management Areas (Maryland) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wildlife Management Areas (Maryland) Wildlife Management Areas (Maryland) Wildlife Management Areas (Maryland) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor Industrial Installer/Contractor Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Retail Supplier Rural Electric Cooperative State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maryland Program Type Environmental Regulations Siting and Permitting Provider Maryland Department of Natural Resources Wildlife Management Areas exist in the State of Maryland as wildlife sanctuaries, and vehicles, tree removal, and construction are severely

408

Groundwater Management Areas (Texas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management Areas (Texas) Management Areas (Texas) Groundwater Management Areas (Texas) < Back Eligibility Utility Fed. Government Commercial Investor-Owned Utility Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Texas Program Type Environmental Regulations Provider Texas Commission on Environmental Quality This legislation authorizes the Texas Commission on Environmental Quality and the Texas Water Development Board to establish Groundwater Management Areas to provide for the conservation, preservation, protection, recharging, and prevention of waste of groundwater and groundwater

409

Rangely Oilfield Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Plants (0) Projects (0) Activities (1) NEPA(0) Geothermal Area Profile Location Colorado Exploration Region Other GEA Development Phase 2008 USGS Resource Estimate Mean Reservoir...

410

Optimization Online - All Areas Submissions - August 2012  

E-Print Network (OSTI)

All Areas Submissions - August 2012. Convex and ... Dual-level scenario trees - Scenario generation and applications in energy planning. Michal Kaut, Kjetil T.

411

Optimization Online - All Areas Submissions - December 2012  

E-Print Network (OSTI)

All Areas Submissions - December 2012. Linear, Cone and ... Solving the integrated airline recovery problem using column-and-row generation. Stephen J  ...

412

Optimization Online - All Areas Submissions - June 2012  

E-Print Network (OSTI)

All Areas Submissions - June 2012. Convex and ... A new warmstarting strategy for the primal-dual column generation method. Jacek Gondzio, Pablo González-  ...

413

NETL: Energy System Dynamics Focus Area  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy System Dynamics Onsite Research Energy System Dynamics Energy System Dynamics (ESD) is a focus area of the National Energy Technology Laboratory's Office of Research and...

414

Rangely Oilfield Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Well Field Information Development Area: Number of Production Wells: Number of Injection Wells: Number of Replacement Wells: Average Temperature of Geofluid: Sanyal...

415

Haleakala Volcano Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Well Field Information Development Area: Number of Production Wells: Number of Injection Wells: Number of Replacement Wells: Average Temperature of Geofluid: Sanyal...

416

Federal Energy Management Program: Program Areas  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

program areas of the Federal Energy Management Program (FEMP) focus on specific energy management actions to help Federal agencies deploy the available technologies appropriate...

417

Railroad Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Power Plants (0) Projects (0) Activities (1) NEPA(0) Geothermal Area Profile Location Nevada Exploration Region Northern Basin and Range Geothermal Region GEA Development Phase...

418

Research Areas | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

energy density plasmas at the quantum electrodynamic (QED) limit, relativistic thermal plasmas, and relativistic shocks. Warm Dense Matter Specific areas of interest...

419

Western Area Power Administration, Desert Southwest Region  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Western Area Power Administration, Desert Southwest Region Liberty-Parker 2 230-kV Transmission Line Optical Power Ground Wire Repairs - Continuation Sheet Project Description...

420

Areas Participating in the Oxygenated Gasoline Program  

U.S. Energy Information Administration (EIA)

Demand and Price Outlook ... is a colorless, odorless, and poisonous gas ... oxygen by weight is to be used in the wintertime in those areas of the county that ...

Note: This page contains sample records for the topic "area 1996-2011 actual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Geographic Information System At International Geothermal Area...  

Open Energy Info (EERE)

Indonesia (Nash, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At International Geothermal Area...

422

Definition: Balancing Authority Area | Open Energy Information  

Open Energy Info (EERE)

The Balancing Authority maintains loadresource balance within this area.1 Related Terms transmission lines, Balancing Authority, transmission line, smart grid References ...

423

Sacramento Area Voltage Support - Environment - Sierra Nevada...  

NLE Websites -- All DOE Office Websites (Extended Search)

Western's Sierra Nevada Region (SNR) operates and maintains more than 1,200 miles of transmission lines. These transmission lines are interconnected to other Sacramento area...

424

Geothermal Literature Review At International Geothermal Area...  

Open Energy Info (EERE)

Taupo, North Island, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples...

425

Bay Area Simulation and Ramp Metering Study  

E-Print Network (OSTI)

and testing new ramp metering strategies, ranging fromArea Simulation and Ramp Metering Study – Initial Projectfor Evaluating Ramp Metering Algorithm”, University of

Gardes, Yonnel; May, Adolf D.; Dahlgren, Joy; Skarbardonis, Alex

2002-01-01T23:59:59.000Z

426

NSTB Summarizes Vulnerable Areas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

vulnerabilities ranged from conventional IT security issues to specific weaknesses in control system protocols. NSTB Summarizes Vulnerable Areas More Documents & Publications...

427

Optimization Online - All Areas Submissions - May 2013  

E-Print Network (OSTI)

All Areas Submissions - May 2013. Convex and Nonsmooth Optimization About uniform regularity of collections of sets. Alexander Y. Kruger, Nguyen H. Thao.

428

Optimization Online - All Areas Submissions - June 2013  

E-Print Network (OSTI)

All Areas Submissions - June 2013. Nonlinear Optimization A Riemannian symmetric rank-one trust-region method. Wen Huang, P.-A. Absil, K. A. Gallivan.

429

Sierra Nevada Region - Western Area Power Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Contact Us Customers Environmental Review (NEPA) Power Marketing Power Operations The Sierra Nevada Region is one of five offices in the Western Area Power Administration. SN...

430

A Program to Stabilize Nuclear Materials as Managed by the Plutonium Focus Area  

Science Conference Proceedings (OSTI)

This paper describes the program to stabilize nuclear materials, consistent with the Department of Energy Office of Environmental Management (EM) plan, Accelerating Cleanup: Paths to Closure. The program is managed by the Plutonium Stabilization and Disposition Focus Area, which defines and manages technology development programs to stabilize nuclear materials and assure their subsequent safe storage and final disposition. The scope of the Plutonium Stabilization and Disposition Focus Area (PFA) activities includes non-weapons plutonium materials, special isotopes, and other fissile materials. The PFA provides solutions to site-specific and complex wide technology issues associated with plutonium remediation, stabilization, and preparation for disposition. Our paper describes an important programmatic function of the Department of Energy nuclear materials stabilization program, including the tie-in of policy to research needs and funding for the nuclear materials disposition area. The PFA uses a rigorous systems engineering determination of technology needs and gaps, under the guidance of a Technical Advisory Panel, consisting of complex-wide experts. The Research and Development planning provides an example for other waste areas and should be of interest to Research and Development managers. The materials disposition maps developed by the PFA and described in this paper provide an evaluation of research needs, data gaps and subsequent guidance for the development of technologies for nuclear materials disposition. This paper also addresses the PFA prioritization methodology and its ability to forecast actual time to implementation.

B. Kenley (Kenley Consulting); B. Scott; B. Seidel (ANL-W); D. Knecht (LMITCO); F. Southworth; K. Osborne (DOE-ID); N. Chipman; T. Creque

1999-03-01T23:59:59.000Z

431

A survey on wireless body area networks  

Science Conference Proceedings (OSTI)

The increasing use of wireless networks and the constant miniaturization of electrical devices has empowered the development of Wireless Body Area Networks (WBANs). In these networks various sensors are attached on clothing or on the body or even implanted ... Keywords: MAC, Routing, Wireless body area networks

Benoît Latré; Bart Braem; Ingrid Moerman; Chris Blondia; Piet Demeester

2011-01-01T23:59:59.000Z

432

Louisiana Coastal Area, Louisiana Ecosystem Restoration  

E-Print Network (OSTI)

1 Louisiana Coastal Area, Louisiana Ecosystem Restoration Six Projects Authorized by Section 7006(e for the Louisiana Coastal Area, dated January 31, 2005, (hereinafter referred to as the "restoration plan"), described a program to address the most critical restoration needs to reduce the severe wetland losses

US Army Corps of Engineers

433

Variation of Area Variables in Regge Calculus  

E-Print Network (OSTI)

We consider the possibility to use the areas of two-simplexes, instead of lengths of edges, as the dynamical variables of Regge calculus. We show that if the action of Regge calculus is varied with respect to the areas of two-simplexes, and appropriate constraints are imposed between the variations, the Einstein-Regge equations are recovered.

Jarmo Makela

1998-01-09T23:59:59.000Z

434

Geothermal applications for highway rest areas  

SciTech Connect

A feasibility study, made for the South Dakota Department of Transportation, regarding geothermal applications for highway rest areas is described. This preliminary information indicated that the retrofit of the heating systems in the rest area structures was feasible. Specific design assumptions, equipment selections, costs, and other data are reported. This information is conceptual in nature.

Strawn, J.A.; Engen, I.A.

1982-02-01T23:59:59.000Z

435

DOE Designates Southwest Area and Mid-Atlantic Area National Interest  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Designates Southwest Area and Mid-Atlantic Area National Designates Southwest Area and Mid-Atlantic Area National Interest Electric Transmission Corridors DOE Designates Southwest Area and Mid-Atlantic Area National Interest Electric Transmission Corridors October 2, 2007 - 2:50pm Addthis WASHINGTON, DC - U.S. Department of Energy (DOE) Assistant Secretary for Electricity Delivery and Energy Reliability Kevin M. Kolevar today announced the Department's designation of two National Interest Electric Transmission Corridors (National Corridors) -- the Mid-Atlantic Area National Interest Electric Transmission Corridor, and the Southwest Area National Interest Electric Transmission Corridor. These corridors include areas in two of the Nation's most populous regions with growing electricity congestion problems. The Department based its designations on data and

436

DOE Designates Southwest Area and Mid-Atlantic Area National Interest  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Designates Southwest Area and Mid-Atlantic Area National Designates Southwest Area and Mid-Atlantic Area National Interest Electric Transmission Corridors October 2, 2007 DOE Designates Southwest Area and Mid-Atlantic Area National Interest Electric Transmission Corridors October 2, 2007 U.S. Department of Energy (DOE) Assistant Secretary for Electricity Delivery and Energy Reliability Kevin M. Kolevar today announced the Department's designation of two National Interest Electric Transmission Corridors (National Corridors) -- the Mid-Atlantic Area National Interest Electric Transmission Corridor, and the Southwest Area National Interest Electric Transmission Corridor. These corridors include areas in two of the Nation's most populous regions with growing electricity congestion problems. The Department based its designations on data and analysis

437

Definition: Home Area Network | Open Energy Information  

Open Energy Info (EERE)

Area Network Area Network Jump to: navigation, search Dictionary.png Home Area Network A communication network within the home of a residential electricity customer that allows transfer of information between electronic devices, including, but not limited to, in-home displays, computers, energy management devices, direct load control devices, distributed energy resources, and smart meters. Home area networks can be wired or wireless.[1] Related Terms electricity generation, distributed energy resource References ↑ https://www.smartgrid.gov/category/technology/home_area_network [[Ca LikeLike UnlikeLike You like this.Sign Up to see what your friends like. tegory: Smart Grid Definitionssustainability,smart grid,sustainability,smart grid, |Template:BASEPAGENAME]]sustainability,smart grid,sustainability,smart

438

Sacramento Area Technology Alliance | Open Energy Information  

Open Energy Info (EERE)

Sacramento Area Technology Alliance Sacramento Area Technology Alliance Jump to: navigation, search Logo: Sacramento Area Technology Alliance Name Sacramento Area Technology Alliance Address 5022 Bailey Loop Place McClellan, California Zip 95652 Region Bay Area Coordinates 38.657365°, -121.390278° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.657365,"lon":-121.390278,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

439

Sacramento Area Voltage Support Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

E E R R A N E V A D A R E G I O N Sacramento Area Voltage Support DRAFT ENVIRONMENTAL IMPACT STATEMENT DRAFT ENVIRONMENTAL IMPACT STATEMENT DOE/EIS-0323 NOVEMBER 2002 COVER SHEET Title: Sacramento Area Voltage Support Draft Environmental Impact Statement (EIS) Lead Agency: Western Area Power Administration (Western) Location: Alameda, Contra Costa, Placer, Sacramento, San Joaquin, and Sutter Counties, State of California. EIS Number: DOE/EIS-0323 Contact: Ms. Loreen McMahon, Environmental Project Manager Western Area Power Administration Sierra Nevada Region 114 Parkshore Drive Folsom, CA 95630 (916) 353-4460 (916) 985-1936 fax email: mcmahon@wapa.gov Website: Information is also available on our website: www.wapa.gov Hotline: 1-877-913-4440 (toll-free) Abstract The Western Area Power Administration's Central Valley Project transmission system forms an integral part of

440

Focus Areas 1 and 4 Deliverables  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 - Requirements Flow Down 1 - Requirements Flow Down and Focus Area #4 - Graded Approach to Quality Assurance Graded Approach Model and Expectation Page 1 of 18 Office of Environmental Management And Energy Facility Contractors Group Quality Assurance Improvement Project Plan Project Focus Area Task # and Description Deliverable Project Area 1: Requirements Flow Down Task #1.9 - Complete White Paper covering procurement QA process flow diagram Draft White Paper and Amended Flow Diagram Project Area 4: Graded Approach Implementation Task #4.4 - In coordination with Project Focus Area #1, provide an EM expectation for application of the graded approach to procurement. EM Graded Approach Procedure for Procurements Approvals: Yes/No/NA Project Managers: S. Waisley, D. Tuttel Y

Note: This page contains sample records for the topic "area 1996-2011 actual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Aquarious Mountain Area, Arizona: APossible HDR Prospect  

DOE Green Energy (OSTI)

Exploration for Hot Dry Rock (HDR) requires the ability to delineate areas of thermal enhancement. It is likely that some of these areas will exhibit various sorts of anomalous conditions such as seismic transmission delays, low seismic velocities, high attenuation of seismic waves, high electrical conductivity in the crust, and a relatively shallow depth to Curie point of Magnetization. The Aquarius Mountain area of northwest Arizona exhibits all of these anomalies. The area is also a regional Bouguer gravity low, which may indicate the presence of high silica type rocks that often have high rates of radioactive heat generation. The one deficiency of the area as a HDR prospect is the lack of a thermal insulating blanket.

West, F.G.; Laughlin, A.W.

1979-05-01T23:59:59.000Z

442

Berkshire East Ski Area | Open Energy Information  

Open Energy Info (EERE)

Ski Area Ski Area Jump to: navigation, search Name Berkshire East Ski Area Facility Berkshire East Ski Area Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Sustainable Energy Development Energy Purchaser Berkshire East Ski Area Location Charlemont MA Coordinates 42.61621237°, -72.86660671° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.61621237,"lon":-72.86660671,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

443

Wetland Preservation Areas (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wetland Preservation Areas (Minnesota) Wetland Preservation Areas (Minnesota) Wetland Preservation Areas (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Minnesota Program Type Siting and Permitting A wetland owner can apply to the host county for designation of a wetland preservation area. Once designated, the area remains designated until the

444

D-Area Sulfate Reduction Studty Comprehensive Final Report  

Science Conference Proceedings (OSTI)

An acidic/metals/sulfate, groundwater contaminant plume emanates from the D-Area Coal Pile Runoff Basin (DCPRB) at the Savannah River Site (SRS), due to the contaminated runoff the basin receives from the D-Area coal pile. A Treatability Study Work Plan (TSWP) (WSRC 2001) was implemented to evaluate the potential for the sulfate reduction remediation of the DCPRB acidic/metals/sulfate, groundwater contaminant plume. The following studies, implemented as part of the TSWP, are documented herein: Bacteria Population and Organic Selection Laboratory Testing; DTT-1 Trench Evaluation; DIW-1 Organic Application Field Study-Part 1; and DIW-1 Organic Application Field Study-Part 2. Evaluation of sulfate reduction applicability actually began with a literature search and feasibility report in mid 2001, which fed into the TSWP. Physical completion of TSWP work occurred in late 2004 with the completion of the DIW-1 Organic Application Field Study-Part 2. The following are the primary conclusions drawn based upon this 3-year effort: (1) Pure soybean oil provides a long-term, indirect, SRB carbon source that floats on top of the water table (by indirect it means that the soybean oil must be degraded by other microbes prior to utilization by SRB) for the promotion of sulfate reduction remediation. Soybean oil produces no known SRB inhibitory response and therefore large quantities can be injected. (2) Sodium lactate provides a short-term, immediately available, direct, SRB carbon source that is miscible with the groundwater and therefore flows with the groundwater until it has been completely utilized for the promotion of sulfate reduction remediation. Lactate at elevated concentrations (greater than 6 g/L) does produce a SRB inhibitory response and therefore small quantities must be injected frequently. (3) The use of limestone to buffer the contaminated groundwater facilitates sulfate reduction remediation through the injection of organic substrate. Additionally conclusions and recommendations are made in Sections 8 and 9 regarding continuation of this study, the potential for an interim action, and the final remediation once discharge to the DCPRB has been discontinued.

Phifer, M

2005-02-11T23:59:59.000Z

445

Dixie Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Dixie Valley Geothermal Area Dixie Valley Geothermal Area (Redirected from Dixie Valley Geothermal Field Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Dixie Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (25) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.967665,"lon":-117.855074,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

446

Fort Bidwell Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fort Bidwell Geothermal Area Fort Bidwell Geothermal Area (Redirected from Fort Bidwell Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fort Bidwell Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8617,"lon":-120.1592,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

447

The Needles Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

The Needles Geothermal Area The Needles Geothermal Area (Redirected from The Needles Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: The Needles Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (15) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.15,"lon":-119.68,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

448

Geysers Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Geysers Geothermal Area Geysers Geothermal Area (Redirected from Geysers Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Geysers Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Heat Source 8 Geofluid Geochemistry 9 NEPA-Related Analyses (2) 10 Exploration Activities (22) 11 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.8,"lon":-122.8,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

449

Mcgee Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mcgee Mountain Geothermal Area Mcgee Mountain Geothermal Area (Redirected from Mcgee Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mcgee Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (7) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8,"lon":-118.87,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

450

Coyote Canyon Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Coyote Canyon Geothermal Area Coyote Canyon Geothermal Area (Redirected from Coyote Canyon Geothermal Resource Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Coyote Canyon Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.927105,"lon":-117.927225,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

451

Grass Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Grass Valley Geothermal Area Grass Valley Geothermal Area (Redirected from Grass Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Grass Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (1) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.60333333,"lon":-117.645,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

452

Cove Fort Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Cove Fort Geothermal Area Cove Fort Geothermal Area (Redirected from Cove Fort Geothermal Area - Vapor) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Cove Fort Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (30) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.6,"lon":-112.55,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

453

Lightning Dock Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lightning Dock Geothermal Area Lightning Dock Geothermal Area (Redirected from Lightning Dock Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lightning Dock Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology