Sample records for arctic clouds download

  1. Interannual Variations of Arctic Cloud Types

    E-Print Network [OSTI]

    Hochberg, Michael

    Sciences #12;Changes in Arctic Climate What is the role of cloud cover in Arctic climate change? What is the Cloud Radiative Effect (CRE) in the Arctic? #12;CRE depends on season, cloud type CRE ­ whether clouds specifically chosen to include nighttime obs Total cloud cover and nine cloud types: - High cloud (cirriform

  2. Interannual Variations of Arctic Cloud Types

    E-Print Network [OSTI]

    Hochberg, Michael

    Declining September sea-ice extent #12;Clouds & Changes in Arctic Climate What is the role of cloud cover in Arctic climate change? What is the Cloud Radiative Effect (CRE) in the Arctic? #12;CRE Defined CRE nighttime obs Total cloud cover and nine cloud types: - High cloud (cirriform) - Middle Clouds: Altocumulus

  3. arctic cloud experiment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    low-level Arctic clouds in cold seasons and have a significant impact on the surface energy budget. However, the treatment of mixed-phase clouds in most current climate models...

  4. Cloud water contents and hydrometeor sizes during the FIRE Arctic Clouds Experiment

    E-Print Network [OSTI]

    Shupe, Matthew

    of radiometers at an ice station frozen into the drifting ice pack of the Arctic Ocean. The NASA/FIRE Arctic- dependent water contents and hydrometeor sizes for all-ice and all-liquid clouds. For the spring and early summer period, all-ice cloud retrievals showed a mean particle diameter of about 60 m and ice water

  5. JP2.3 CLOUD RADIATIVE HEATING RATE FORCING FROM PROFILES OF RETRIEVED ARCTIC CLOUD MICROPHYSICS

    E-Print Network [OSTI]

    Shupe, Matthew

    JP2.3 CLOUD RADIATIVE HEATING RATE FORCING FROM PROFILES OF RETRIEVED ARCTIC CLOUD MICROPHYSICS surface. In 1997-1998, a large multi-agency effort made the Surface Heat Budget of the Arctic (SHEBA with the ice pack in the Beaufort and Chukchi Seas for one year. Surface-based remote sensors generated

  6. Intercomparison of cloud model simulations of Arctic mixed-phase boundary layer clouds observed during

    E-Print Network [OSTI]

    Zuidema, Paquita

    /crystal concentration also suggests the need for improved understanding of ice nucleation and its parameterizationIntercomparison of cloud model simulations of Arctic mixed-phase boundary layer clouds observed is presented. This case study is based on observations of a persistent mixed-phase boundary layer cloud

  7. Mesoscale Modeling During Mixed-Phase Arctic Cloud Experiment

    SciTech Connect (OSTI)

    Avramov, A.; Harringston, J.Y.; Verlinde, J.

    2005-03-18T23:59:59.000Z

    Mixed-phase arctic stratus clouds are the predominant cloud type in the Arctic (Curry et al. 2000) and through various feedback mechanisms exert a strong influence on the Arctic climate. Perhaps one of the most intriguing of their features is that they tend to have liquid tops that precipitate ice. Despite the fact that this situation is colloidally unstable, these cloud systems are quite long lived - from a few days to over a couple of weeks. It has been hypothesized that mixed-phase clouds are maintained through a balance between liquid water condensation resulting from the cloud-top radiative cooling and ice removal by precipitation (Pinto 1998; Harrington et al. 1999). In their modeling study Harrington et al. (1999) found that the maintenance of this balance depends strongly on the ambient concentration of ice forming nucleus (IFN). In a follow-up study, Jiang et al. (2002), using only 30% of IFN concentration predicted by Meyers et al. (1992) IFN parameterization were able to obtain results similar to the observations reported by Pinto (1998). The IFN concentration measurements collected during the Mixed-Phase Arctic Cloud Experiment (M-PACE), conducted in October 2004 over the North Slope of Alaska and the Beaufort Sea (Verlinde et al. 2005), also showed much lower values then those predicted (Prenne, pers. comm.) by currently accepted ice nucleation parameterizations (e.g. Meyers et al. 1992). The goal of this study is to use the extensive IFN data taken during M-PACE to examine what effects low IFN concentrations have on mesoscale cloud structure and coastal dynamics.

  8. Aerosol Effects on Cloud Emissivity and Surface Longwave Heating in the Arctic TIMOTHY J. GARRETT1,*

    E-Print Network [OSTI]

    ) studies show that in the Arctic cloud cover generally acts to warm the surface, while coolingAerosol Effects on Cloud Emissivity and Surface Longwave Heating in the Arctic TIMOTHY J. GARRETT1 in the atmosphere tend to increase the reflectance of solar (shortwave) radiation from water clouds, which can lead

  9. arctic mixed-phase clouds: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    low-level Arctic clouds in cold seasons and have a significant impact on the surface energy budget. However, the treatment of mixed-phase clouds in most current climate models...

  10. Interannual Variations of Arctic Cloud Types in Relation to Sea Ice RYAN EASTMAN AND STEPHEN G. WARREN

    E-Print Network [OSTI]

    Hochberg, Michael

    longwave cloud radiative effect (CRE), sug- gesting that infrared radiation emitted toward the surface and cloud temperatures greater than 2318C. Cloud radiative effect over the Arctic likely varies seasonally of clouds have different effects on sea ice. Visual cloud reports from land and ocean regions of the Arctic

  11. On the Microphysical Representation of Observed Arctic Mixed-Phase Clouds

    E-Print Network [OSTI]

    Zuidema, Paquita

    On the Microphysical Representation of Observed Arctic Mixed-Phase Clouds Paquita Zuidema, Paul Lawson, Hugh Morrison U of Miami/SPEC, Inc. Boulder CO/NCAR #12;Arctic clouds are often: mixed-phase (ie. both ice + supercooled water) yet long-lasting (despite disequilibrium) #12;why? - are ice nuclei over

  12. Interannual variations of Arctic cloud types in relation to Ryan Eastman

    E-Print Network [OSTI]

    Hochberg, Michael

    increasing cloud cover, which may promote ice loss by the longwave effect. The trends are positive in all in sea ice extent and thickness may be affected by cloud radiative effect (CRE), and seaice changes may in turn impart changes to cloud cover. Visual cloud reports from land and ocean regions of the Arctic

  13. ARM - Field Campaign - FIRE-Arctic Cloud Experiment/SHEBA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 CampaignSP2govCampaignsFIRE-Arctic Cloud

  14. ARM - Field Campaign - Mixed-Phase Arctic Cloud Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL)govCampaignsMixed-Phase Arctic Cloud Experiment

  15. Investigation of Microphysical Parameterizations of Snow and Ice in Arctic Clouds during M-PACE through ModelObservation Comparisons

    E-Print Network [OSTI]

    Solomon, Amy

    Investigation of Microphysical Parameterizations of Snow and Ice in Arctic Clouds during M the microphysical properties of Arctic mixed-phase stratocumulus. Intensive measurements taken during the Department of Energy Atmospheric Radiation Measurement Program Mixed-Phase Arctic Cloud Experiment (M

  16. Relationships between Arctic Sea Ice and Clouds during Autumn AXEL J. SCHWEIGER AND RON W. LINDSAY

    E-Print Network [OSTI]

    Francis, Jennifer

    , as the direct radiative effects of cloud cover changes are compensated for by changes in the temperature The connection between sea ice variability and cloud cover over the Arctic seas during autumn is investigated that cloud cover variability near the sea ice margins is strongly linked to sea ice variability. Sea ice

  17. Arctic-Winter Climatology and Radiative Effects of Clouds and Aerosols Based on Lidar and Radar Measurements at PEARL

    E-Print Network [OSTI]

    Eloranta, Edwin W.

    Arctic-Winter Climatology and Radiative Effects of Clouds and Aerosols Based on Lidar and Radar Atmospheric Radiative Transfer (SBDART) code. Results on the climatology and radiative effects of clouds, arctic regions are the site of interactions between aerosols, clouds, radiation and precipitations

  18. Retrieval of Cloud Phase Using the Moderate Resolution Imaging Spectroradiometer Data during the Mixed-Phase Arctic Cloud Experiment

    SciTech Connect (OSTI)

    Spangenberg, D.; Minnis, P.; Shupe, M.; Uttal, T.; Poellot, M.

    2005-03-18T23:59:59.000Z

    Improving climate model predictions over Earth's polar regions requires a comprehensive knowledge of polar cloud microphysics. Over the Arctic, there is minimal contrast between the clouds and background snow surface, making it difficult to detect clouds and retrieve their phase from space. Snow and ice cover, temperature inversions, and the predominance of mixed-phase clouds make it even more difficult to determine cloud phase. Also, since determining cloud phase is the first step toward analyzing cloud optical depth, particle size, and water content, it is vital that the phase be correct in order to obtain accurate microphysical and bulk properties. Changes in these cloud properties will, in turn, affect the Arctic climate since clouds are expected to play a critical role in the sea ice albedo feedback. In this paper, the IR trispectral technique (IRTST) is used as a starting point for a WV and 11-{micro}m brightness temperature (T11) parameterization (WVT11P) of cloud phase using MODIS data. In addition to its ability to detect mixed-phase clouds, the WVT11P also has the capability to identify thin cirrus clouds overlying mixed or liquid phase clouds (multiphase ice). Results from the Atmospheric Radiation Measurement (ARM) MODIS phase model (AMPHM) are compared to the surface-based cloud phase retrievals over the ARM North Slope of Alaska (NSA) Barrow site and to in-situ data taken from University of North Dakota Citation (CIT) aircraft which flew during the Mixed-Phase Arctic Cloud Experiment (MPACE). It will be shown that the IRTST and WVT11P combined to form the AMPHM can achieve a relative high accuracy of phase discrimination compared to the surface-based retrievals. Since it only uses MODIS WV and IR channels, the AMPHM is robust in the sense that it can be applied to daytime, twilight, and nighttime scenes with no discontinuities in the output phase.

  19. LES Simulations of Roll Clouds Observed During Mixed- Phase Arctic Cloud Experiment

    SciTech Connect (OSTI)

    Greenberg, S.D.; Harrington, J.Y.; Prenni, A.; DeMott, P.

    2005-03-18T23:59:59.000Z

    Roll clouds, and associated roll convection, are fairly common features of the atmospheric boundary layer. While these organized cumuliform clouds are found over many regions of the planet, they are quite ubiquitous near the edge of the polar ice sheets. In particular, during periods of off-ice flow, when cold polar air flows from the ice pack over the relatively warm ocean water, strong boundary layer convection develops along with frequent rolls. According to Bruemmer and Pohlman (2000), most of the total cloud cover in the Arctic is due to roll clouds. In an effort to examine the influences of mixed-phase microphysics on the boundary layer evolution of roll clouds during off-ice flow, Olsson and Harrington (2000) used a 2D mesoscale model coupled to a bulk microphysical scheme (see Section 2). Their results showed that mixed-phase clouds produced more shallow boundary layers with weaker turbulence than liquid-phase cases. Furthermore, their results showed that because of th e reduced turbulent drag on the atmosphere in the mixed-phase case, regions of mesoscale divergence in the marginal ice-zone were significantly affected. A follow-up 2D study (Harrington and Olsson 2001) showed that the reduced turbulent intensity in mixed-phase cases was due to precipitation. Ice precipitation caused downdraft stabilization which fed back and caused a reduction in the surface heat fluxes. In this work, we extend the work of Olsson and Harrington (2000) and Harrington and Olsson (2001) by examining the impacts of ice microphysics on roll convection. We will present results that illustrate how microphysics alters roll cloud structure and dynamics.

  20. Radiative and microphysical properties of Arctic stratus clouds from multiangle downwelling infrared radiances

    E-Print Network [OSTI]

    Shupe, Matthew

    climate is strongly influenced by an extensive and persistent pattern of cloud cover [Francis, 1997 properties can have significant effects on long- wave radiation, which dominates the radiation energy budgetRadiative and microphysical properties of Arctic stratus clouds from multiangle downwelling

  1. Expected magnitude of the aerosol shortwave indirect effect in springtime Arctic liquid water clouds

    E-Print Network [OSTI]

    reflection of photons between the snow or sea ice surface and cloud base, the shortwave first indirect effect of high quality longwave spectral radiation measurements in the Arctic from which the indirect effect can clouds both absorb and scatter radiation. We therefore do not yet have a comparable spectral capability

  2. Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part II: Multi-layered cloud

    SciTech Connect (OSTI)

    Morrison, H; McCoy, R B; Klein, S A; Xie, S; Luo, Y; Avramov, A; Chen, M; Cole, J; Falk, M; Foster, M; Genio, A D; Harrington, J; Hoose, C; Khairoutdinov, M; Larson, V; Liu, X; McFarquhar, G; Poellot, M; Shipway, B; Shupe, M; Sud, Y; Turner, D; Veron, D; Walker, G; Wang, Z; Wolf, A; Xu, K; Yang, F; Zhang, G

    2008-02-27T23:59:59.000Z

    Results are presented from an intercomparison of single-column and cloud-resolving model simulations of a deep, multi-layered, mixed-phase cloud system observed during the ARM Mixed-Phase Arctic Cloud Experiment. This cloud system was associated with strong surface turbulent sensible and latent heat fluxes as cold air flowed over the open Arctic Ocean, combined with a low pressure system that supplied moisture at mid-level. The simulations, performed by 13 single-column and 4 cloud-resolving models, generally overestimate the liquid water path and strongly underestimate the ice water path, although there is a large spread among the models. This finding is in contrast with results for the single-layer, low-level mixed-phase stratocumulus case in Part I of this study, as well as previous studies of shallow mixed-phase Arctic clouds, that showed an underprediction of liquid water path. The overestimate of liquid water path and underestimate of ice water path occur primarily when deeper mixed-phase clouds extending into the mid-troposphere were observed. These results suggest important differences in the ability of models to simulate Arctic mixed-phase clouds that are deep and multi-layered versus shallow and single-layered. In general, models with a more sophisticated, two-moment treatment of the cloud microphysics produce a somewhat smaller liquid water path that is closer to observations. The cloud-resolving models tend to produce a larger cloud fraction than the single-column models. The liquid water path and especially the cloud fraction have a large impact on the cloud radiative forcing at the surface, which is dominated by the longwave flux for this case.

  3. A transitioning Arctic surface energy budget: the impacts of solar zenith angle, surface albedo and cloud radiative forcing

    E-Print Network [OSTI]

    Brooks, Ian M.

    A transitioning Arctic surface energy budget: the impacts of solar zenith angle, surface albedo surface and sea-ice energy budgets were measured near 87.5°N during the Arctic Summer Cloud Ocean Study regimes, characterized by varying cloud, thermody- namic and solar properties. An initial warm, melt

  4. A New Double-Moment Microphysics Parameterization for Application in Cloud and Climate Models. Part II: Single-Column Modeling of Arctic Clouds

    E-Print Network [OSTI]

    Shupe, Matthew

    of the arctic bound- ary layer, the presence of leads (cracks) in the sea ice surface, the persistence of mixed-phaseA New Double-Moment Microphysics Parameterization for Application in Cloud and Climate Models. Part- dicted cloud boundaries and total cloud fraction compare reasonably well with observations. Cloud phase

  5. Final Technical Report for Project "Improving the Simulation of Arctic Clouds in CCSM3"

    SciTech Connect (OSTI)

    Stephen J. Vavrus

    2008-11-15T23:59:59.000Z

    This project has focused on the simulation of Arctic clouds in CCSM3 and how the modeled cloud amount (and climate) can be improved substantially by altering the parameterized low cloud fraction. The new formula, dubbed 'freeezedry', alleviates the bias of excessive low clouds during polar winter by reducing the cloud amount under very dry conditions. During winter, freezedry decreases the low cloud amount over the coldest regions in high latitudes by over 50% locally and more than 30% averaged across the Arctic (Fig. 1). The cloud reduction causes an Arctic-wide drop of 15 W m{sup -2} in surface cloud radiative forcing (CRF) during winter and about a 50% decrease in mean annual Arctic CRF. Consequently, wintertime surface temperatures fall by up to 4 K on land and 2-8 K over the Arctic Ocean, thus significantly reducing the model's pronounced warm bias (Fig. 1). While improving the polar climate simulation in CCSM3, freezedry has virtually no influence outside of very cold regions (Fig. 2) or during summer (Fig. 3), which are space and time domains that were not targeted. Furthermore, the simplicity of this parameterization allows it to be readily incorporated into other GCMs, many of which also suffer from excessive wintertime polar cloudiness, based on the results from the CMIP3 archive (Vavrus et al., 2008). Freezedry also affects CCSM3's sensitivity to greenhouse forcing. In a transient-CO{sub 2} experiment, the model version with freezedry warms up to 20% less in the North Polar and South Polar regions (1.5 K and 0.5 K smaller warming, respectively) (Fig. 4). Paradoxically, the muted high-latitude response occurs despite a much larger increase in cloud amount with freezedry during non-summer months (when clouds warm the surface), apparently because of the colder modern reference climate. These results of the freezedry parameterization have recently been published (Vavrus and D. Waliser, 2008: An improved parameterization for simulating Arctic cloud amount in the CCSM3 climate model. J. Climate, 21, 5673-5687.). The article also provides a novel synthesis of surface- and satellite-based Arctic cloud observations that show how much the new freezedry parameterization improves the simulated cloud amount in high latitudes (Fig. 3). Freezedry has been incorporated into the CCSM3.5 version, in which it successfully limits the excessive polar clouds, and may be used in CCSM4. Material from this work is also appearing in a synthesis article on future Arctic cloud changes (Vavrus, D. Waliser, J. Francis, and A. Schweiger, 'Simulations of 20th and 21st century Arctic cloud amount in the global climate models assessed in the IPCC AR4', accepted in Climate Dynamics) and was used in a collaborative paper on Arctic cloud-sea ice coupling (Schweiger, A., R. Lindsay, S. Vavrus, and J. Francis, 2008: Relationships between Arctic sea ice and clouds during autumn. J. Climate, 21, 4799-4810.). This research was presented at the 2007 CCSM Annual Workshop, as well as the CCSM's 2007 Atmospheric Model Working Group and Polar Working Group Meetings. The findings were also shown at the 2007 Climate Change Prediction Program's Science Team Meeting. In addition, I served as an instructor at the International Arctic Research Center's (IARC) Summer School on Arctic Climate Modeling in Fairbanks this summer, where I presented on the challenges and techniques used in simulating polar clouds. I also contributed to the development of a new Arctic System Model by attending a workshop in Colorado this summer on this fledgling project. Finally, an outreach activity for the general public has been the development of an interactive web site () that displays Arctic cloud amount in the CMIP3 climate model archive under present and future scenarios. This site allows users to make polar and global maps of a variety of climate variables to investigate the individual and ensemble-mean GCM response to greenhouse warming and the extent to which models adequately represent Arctic clouds in the modern clima

  6. Microphysical Properties of Single and Mixed-Phase Arctic Clouds Derived from AERI Observations

    SciTech Connect (OSTI)

    Turner, David D.

    2003-06-01T23:59:59.000Z

    A novel new approach to retrieve cloud microphysical properties from mixed-phase clouds is presented. This algorithm retrieves cloud optical depth, ice fraction, and the effective size of the water and ice particles from ground-based, high-resolution infrared radiance observations. The theoretical basis is that the absorption coefficient of ice is stronger than that of liquid water from 10-13 mm, whereas liquid water is more absorbing than ice from 16-25 um. However, due to strong absorption in the rotational water vapor absorption band, the 16-25 um spectral region becomes opaque for significant water vapor burdens (i.e., for precipitable water vapor amounts over approximately 1 cm). The Arctic is characterized by its dry and cold atmosphere, as well as a preponderance of mixed-phase clouds, and thus this approach is applicable to Arctic clouds. Since this approach uses infrared observations, cloud properties are retrieved at night and during the long polar wintertime period. The analysis of the cloud properties retrieved during a 7 month period during the Surface Heat Budget of the Arctic (SHEBA) experiment demonstrates many interesting features. These results show a dependence of the optical depth on cloud phase, differences in the mode radius of the water droplets in liquid-only and mid-phase clouds, a lack of temperature dependence in the ice fraction for temperatures above 240 K, seasonal trends in the optical depth with the clouds being thinner in winter and becoming more optically thick in the late spring, and a seasonal trend in the effective size of the water droplets in liquid-only and mixed-phase clouds that is most likely related to aerosol concentration.

  7. Process-model Simulations of Cloud Albedo Enhancement by Aerosols in the Arctic

    SciTech Connect (OSTI)

    Kravitz, Benjamin S.; Wang, Hailong; Rasch, Philip J.; Morrison, H.; Solomon, Amy

    2014-11-17T23:59:59.000Z

    A cloud-resolving model is used to simulate the effectiveness of Arctic marine cloud brightening via injection of cloud condensation nuclei (CCN). An updated cloud microphysical scheme is employed, with prognostic CCN and cloud particle numbers in both liquid and mixed-phase marine low clouds. Injection of CCN into the marine boundary layer can delay the collapse of the boundary layer and increase low-cloud albedo. Because nearly all of the albedo effects are in the liquid phase due to the removal of ice water by snowfall when ice processes are involved, albedo increases are stronger for pure liquid clouds than mixed-phase clouds. Liquid precipitation can be suppressed by CCN injection, whereas ice precipitation (snow) is affected less; thus the effectiveness of brightening mixed-phase clouds is lower than for liquid-only clouds. CCN injection into a clean regime results in a greater albedo increase than injection into a polluted regime, consistent with current knowledge about aerosol-cloud interactions. Unlike previous studies investigating warm clouds, dynamical changes in circulation due to precipitation changes are small.

  8. Summertime Arctic Clouds observed during SHEBA Paquita Zuidema

    E-Print Network [OSTI]

    Zuidema, Paquita

    understanding the underlying cloud processes (that impact the cloud optical depth). With the goal in mind consistently southerly and warm.The ice melt rate was directly measured to be 2.3-2.5 cm/day from gauges). The responsive surface melting during July suggests not only a high Sun angle,but also low cloud optical depths

  9. Fine-scale Horizontal Structure of Arctic Mixed-Phase Clouds.

    SciTech Connect (OSTI)

    Rambukkange,M.; Verlinde, J.; Elorante, E.; Luke, E.; Kollias, P.; Shupe, M.

    2006-07-10T23:59:59.000Z

    Recent in situ observations in stratiform clouds suggest that mixed phase regimes, here defined as limited cloud volumes containing both liquid and solid water, are constrained to narrow layers (order 100 m) separating all-liquid and fully glaciated volumes (Hallett and Viddaurre, 2005). The Department of Energy Atmospheric Radiation Measurement Program's (DOE-ARM, Ackerman and Stokes, 2003) North Slope of Alaska (NSA) ARM Climate Research Facility (ACRF) recently started collecting routine measurement of radar Doppler velocity power spectra from the Millimeter Cloud Radar (MMCR). Shupe et al. (2004) showed that Doppler spectra has potential to separate the contributions to the total reflectivity of the liquid and solid water in the radar volume, and thus to investigate further Hallett and Viddaurre's findings. The Mixed-Phase Arctic Cloud Experiment (MPACE) was conducted along the NSA to investigate the properties of Arctic mixed phase clouds (Verlinde et al., 2006). We present surface based remote sensing data from MPACE to discuss the fine-scale structure of the mixed-phase clouds observed during this experiment.

  10. Intercomparison of cloud model simulations of Arctic mixed-phase boundary layer clouds observed during SHEBA/FIRE-ACE

    SciTech Connect (OSTI)

    Morrison, H.; Zuidema, Paquita; Ackerman, Andrew; Avramov, Alexander; de Boer, Gijs; Fan, Jiwen; Fridlind, Ann; Hashino, Tempei; Harrington, Jerry Y.; Luo, Yali; Ovchinnikov, Mikhail; Shipway, Ben

    2011-06-16T23:59:59.000Z

    An intercomparison of six cloud-resolving and large-eddy simulation models is presented. This case study is based on observations of a persistent mixed-phase boundary layer cloud gathered on 7 May, 1998 from the Surface Heat Budget of Arctic Ocean (SHEBA) and First ISCCP Regional Experiment - Arctic Cloud Experiment (FIRE-ACE). Ice nucleation is constrained in the simulations in a way that holds the ice crystal concentration approximately fixed, with two sets of sensitivity runs in addition to the baseline simulations utilizing different specified ice nucleus (IN) concentrations. All of the baseline and sensitivity simulations group into two distinct quasi-steady states associated with either persistent mixed-phase clouds or all-ice clouds after the first few hours of integration, implying the existence of multiple equilibria. These two states are associated with distinctly different microphysical, thermodynamic, and radiative characteristics. Most but not all of the models produce a persistent mixed-phase cloud qualitatively similar to observations using the baseline IN/crystal concentration, while small increases in the IN/crystal concentration generally lead to rapid glaciation and conversion to the all-ice state. Budget analysis indicates that larger ice deposition rates associated with increased IN/crystal concentrations have a limited direct impact on dissipation of liquid in these simulations. However, the impact of increased ice deposition is greatly enhanced by several interaction pathways that lead to an increased surface precipitation flux, weaker cloud top radiative cooling and cloud dynamics, and reduced vertical mixing, promoting rapid glaciation of the mixed-phase cloud for deposition rates in the cloud layer greater than about 1-2x10-5 g kg-1 s-1. These results indicate the critical importance of precipitation-radiative-dynamical interactions in simulating cloud phase, which have been neglected in previous fixed-dynamical parcel studies of the cloud phase parameter space. Large sensitivity to the IN/crystal concentration also suggests the need for improved understanding of ice nucleation and its parameterization in models.

  11. Simulating mixed-phase Arctic stratus clouds: Sensitivity to ice initiationmechanisms

    SciTech Connect (OSTI)

    Sednev, I.; Menon, S.; McFarquhar, G.

    2009-04-10T23:59:59.000Z

    The importance of Arctic mixed-phase clouds on radiation and the Arctic climate is well known. However, the development of mixed-phase cloud parameterization for use in large scale models is limited by lack of both related observations and numerical studies using multidimensional models with advanced microphysics that provide the basis for understanding the relative importance of different microphysical processes that take place in mixed-phase clouds. To improve the representation of mixed-phase cloud processes in the GISS GCM we use the GISS single-column model coupled to a bin resolved microphysics (BRM) scheme that was specially designed to simulate mixed-phase clouds and aerosol-cloud interactions. Using this model with the microphysical measurements obtained from the DOE ARM Mixed-Phase Arctic Cloud Experiment (MPACE) campaign in October 2004 at the North Slope of Alaska, we investigate the effect of ice initiation processes and Bergeron-Findeisen process (BFP) on glaciation time and longevity of single-layer stratiform mixed-phase clouds. We focus on observations taken during October 9th-10th, which indicated the presence of a single-layer mixed-phase clouds. We performed several sets of 12-hour simulations to examine model sensitivity to different ice initiation mechanisms and evaluate model output (hydrometeors concentrations, contents, effective radii, precipitation fluxes, and radar reflectivity) against measurements from the MPACE Intensive Observing Period. Overall, the model qualitatively simulates ice crystal concentration and hydrometeors content, but it fails to predict quantitatively the effective radii of ice particles and their vertical profiles. In particular, the ice effective radii are overestimated by at least 50%. However, using the same definition as used for observations, the effective radii simulated and that observed were more comparable. We find that for the single-layer stratiform mixed-phase clouds simulated, process of ice phase initiation due to freezing of supercooled water in both saturated and subsaturated (w.r.t. water) environments is as important as primary ice crystal origination from water vapor. We also find that the BFP is a process mainly responsible for the rates of glaciation of simulated clouds. These glaciation rates cannot be adequately represented by a water-ice saturation adjustment scheme that only depends on temperature and liquid and solid hydrometeors contents as is widely used in bulk microphysics schemes and are better represented by processes that also account for supersaturation changes as the hydrometeors grow.

  12. Simulating mixed-phase Arctic stratus clouds: sensitivity to ice initiation mechanisms

    SciTech Connect (OSTI)

    Sednev, Igor; Sednev, I.; Menon, S.; McFarquhar, G.

    2008-02-18T23:59:59.000Z

    The importance of Arctic mixed-phase clouds on radiation and the Arctic climate is well known. However, the development of mixed-phase cloud parameterization for use in large scale models is limited by lack of both related observations and numerical studies using multidimensional models with advanced microphysics that provide the basis for understanding the relative importance of different microphysical processes that take place in mixed-phase clouds. To improve the representation of mixed-phase cloud processes in the GISS GCM we use the GISS single-column model coupled to a bin resolved microphysics (BRM) scheme that was specially designed to simulate mixed-phase clouds and aerosol-cloud interactions. Using this model with the microphysical measurements obtained from the DOE ARM Mixed-Phase Arctic Cloud Experiment (MPACE) campaign in October 2004 at the North Slope of Alaska, we investigate the effect of ice initiation processes and Bergeron-Findeisen process (BFP) on glaciation time and longevity of single-layer stratiform mixed-phase clouds. We focus on observations taken during 9th-10th October, which indicated the presence of a single-layer mixed-phase clouds. We performed several sets of 12-h simulations to examine model sensitivity to different ice initiation mechanisms and evaluate model output (hydrometeors concentrations, contents, effective radii, precipitation fluxes, and radar reflectivity) against measurements from the MPACE Intensive Observing Period. Overall, the model qualitatively simulates ice crystal concentration and hydrometeors content, but it fails to predict quantitatively the effective radii of ice particles and their vertical profiles. In particular, the ice effective radii are overestimated by at least 50%. However, using the same definition as used for observations, the effective radii simulated and that observed were more comparable. We find that for the single-layer stratiform mixed-phase clouds simulated, process of ice phase initiation due to freezing of supercooled water in both saturated and undersaturated (w.r.t. water) environments is as important as primary ice crystal origination from water vapor. We also find that the BFP is a process mainly responsible for the rates of glaciation of simulated clouds. These glaciation rates cannot be adequately represented by a water-ice saturation adjustment scheme that only depends on temperature and liquid and solid hydrometeors contents as is widely used in bulk microphysics schemes and are better represented by processes that also account for supersaturation changes as the hydrometeors grow.

  13. Ice Formation in Arctic Mixed-Phase Clouds: Insights from a 3-D Cloud-Resolving Model with Size-Resolved Aerosol and Cloud Microphysics

    SciTech Connect (OSTI)

    Fan, Jiwen; Ovtchinnikov, Mikhail; Comstock, Jennifer M.; McFarlane, Sally A.; Khain, Alexander

    2009-02-27T23:59:59.000Z

    The single-layer mixed-phase clouds observed during the Atmospheric Radiation Measurement (ARM) program’s Mixed-Phase Arctic Cloud Experiment (MPACE) are simulated with a 3-dimensional cloud-resolving model the System for Atmospheric Modeling (SAM) coupled with an explicit bin microphysics scheme and a radar-lidar simulator. Two possible ice enhancement mechanisms – activation of droplet evaporation residues by condensation-followed-by-freezing and droplet freezing by contact freezing inside-out, are scrutinized by extensive comparisons with aircraft and radar and lidar measurements. The locations of ice initiation associated with each mechanism and the role of ice nuclei (IN) in the evolution of mixed-phase clouds are mainly addressed. Simulations with either mechanism agree well with the in-situ and remote sensing measurements on ice microphysical properties but liquid water content is slightly underpredicted. These two mechanisms give very similar cloud microphysical, macrophysical, dynamical, and radiative properties, although the ice nucleation properties (rate, frequency and location) are completely different. Ice nucleation from activation of evaporation nuclei is most efficient near cloud top areas concentrated on the edges of updrafts, while ice initiation from the drop freezing process has no significant location preference (occurs anywhere that droplet evaporation is significant). Both enhanced nucleation mechanisms contribute dramatically to ice formation with ice particle concentration of 10-15 times higher relative to the simulation without either of them. The contribution of ice nuclei (IN) recycling from ice particle evaporation to IN and ice particle concentration is found to be very significant in this case. Cloud can be very sensitive to IN initially and form a nonquilibrium transition condition, but become much less sensitive as cloud evolves to a steady mixed-phase condition. The parameterization of Meyers et al. [1992] with the observed MPACE IN concentration is able to predict the observed mixed-phase clouds reasonably well. This validation may facilitate the application of this parameterization in the cloud and climate models to simulate Arctic clouds.

  14. Simulations of Arctic Mixed-Phase Clouds in Forecasts with CAM3 and AM2 for M-PACE

    SciTech Connect (OSTI)

    Xie, Shaocheng; Boyle, James; Klein, Stephen A.; Liu, Xiaohong; Ghan, Steven J.

    2008-02-29T23:59:59.000Z

    Simulations of mixed-phase clouds in short-range forecasts with the National Center for Atmospheric Research Community Atmosphere Model version 3 (CAM3) and the Geophysical Fluid Dynamics Laboratory (GFDL) climate model (AM2) for the Mixed-Phase Arctic Cloud Experiment (M-PACE) are performed under the DOE CCPP-ARM Parameterization Testbed (CAPT), which initializes the climate models with analysis data produced from numerical weather prediction (NWP) centers. It is shown that CAM3 significantly underestimates the observed boundary layer mixed-phase clouds and cannot realistically simulate the variations with temperature and cloud height of liquid water fraction in the total cloud condensate based an oversimplified cloud microphysical scheme. In contrast, AM2 reasonably reproduces the observed boundary layer clouds while its clouds contain much less cloud condensate than CAM3 and the observations. Both models underestimate the observed cloud top and base for the boundary layer clouds. The simulation of the boundary layer mixed-phase clouds and their microphysical properties is considerably improved in CAM3 when a new physically based cloud microphysical scheme is used. The new scheme also leads to an improved simulation of the surface and top of the atmosphere longwave radiative fluxes in CAM3. It is shown that the Bergeron-Findeisen process, i.e., the ice crystal growth by vapor deposition at the expense of coexisting liquid water, is important for the models to correctly simulate the characteristics of the observed microphysical properties in mixed-phase clouds. Sensitivity tests show that these results are not sensitive to the analysis data used for model initializations. Increasing model horizontal resolution helps capture the subgrid-scale features in Arctic frontal clouds but does not help improve the simulation of the single-layer boundary layer clouds. Ice crystal number density has large impact on the model simulated mixed-phase clouds and their microphysical properties and needs to be accurately represented in climate models.

  15. Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part I: Single layer cloud

    SciTech Connect (OSTI)

    Klein, S A; McCoy, R B; Morrison, H; Ackerman, A; Avramov, A; deBoer, G; Chen, M; Cole, J; DelGenio, A; Golaz, J; Hashino, T; Harrington, J; Hoose, C; Khairoutdinov, M; Larson, V; Liu, X; Luo, Y; McFarquhar, G; Menon, S; Neggers, R; Park, S; Poellot, M; von Salzen, K; Schmidt, J; Sednev, I; Shipway, B; Shupe, M; Spangenberg, D; Sud, Y; Turner, D; Veron, D; Falk, M; Foster, M; Fridlind, A; Walker, G; Wang, Z; Wolf, A; Xie, S; Xu, K; Yang, F; Zhang, G

    2008-02-27T23:59:59.000Z

    Results are presented from an intercomparison of single-column and cloud-resolving model simulations of a cold-air outbreak mixed-phase stratocumulus cloud observed during the Atmospheric Radiation Measurement (ARM) program's Mixed-Phase Arctic Cloud Experiment. The observed cloud occurred in a well-mixed boundary layer with a cloud top temperature of -15 C. The observed liquid water path of around 160 g m{sup -2} was about two-thirds of the adiabatic value and much greater than the mass of ice crystal precipitation which when integrated from the surface to cloud top was around 15 g m{sup -2}. The simulations were performed by seventeen single-column models (SCMs) and nine cloud-resolving models (CRMs). While the simulated ice water path is generally consistent with the observed values, the median SCM and CRM liquid water path is a factor of three smaller than observed. Results from a sensitivity study in which models removed ice microphysics indicate that in many models the interaction between liquid and ice-phase microphysics is responsible for the large model underestimate of liquid water path. Despite this general underestimate, the simulated liquid and ice water paths of several models are consistent with the observed values. Furthermore, there is some evidence that models with more sophisticated microphysics simulate liquid and ice water paths that are in better agreement with the observed values, although considerable scatter is also present. Although no single factor guarantees a good simulation, these results emphasize the need for improvement in the model representation of mixed-phase microphysics. This case study, which has been well observed from both aircraft and ground-based remote sensors, could be a benchmark for model simulations of mixed-phase clouds.

  16. A transitioning Arctic surface energy budget: the impacts of solar zenith angle, surface albedo and cloud radiative forcing

    E-Print Network [OSTI]

    Shupe, Matthew

    A transitioning Arctic surface energy budget: the impacts of solar zenith angle, surface albedo Springer-Verlag 2010 Abstract Snow surface and sea-ice energy budgets were measured near 87.5°N during indicated four distinct tempera- ture regimes, characterized by varying cloud, thermody- namic and solar

  17. Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part I: Single layer cloud

    SciTech Connect (OSTI)

    Klein, Stephen A.; McCoy, Renata B.; Morrison, Hugh; Ackerman, Andrew S.; Avramov, Alexander; de Boer, Gijs; Chen, Mingxuan; Cole, Jason N.S.; Del Genio, Anthony D.; Falk, Michael; Foster, Michael J.; Fridlind, Ann; Golaz, Jean-Christophe; Hashino, Tempei; Harrington, Jerry Y.; Hoose, Corinna; Khairoutdinov, Marat F.; Larson, Vincent E.; Liu, Xiaohong; Luo, Yali; McFarquhar, Greg M.; Menon, Surabi; Neggers, Roel A. J.; Park, Sungsu; Poellot, Michael R.; Schmidt, Jerome M.; Sednev, Igor; Shipway, Ben J.; Shupe, Matthew D.; Spangenberg, Douglas A.; Sud, Yogesh C.; Turner, David D.; Veron, Dana E.; von Salzen, Knut; Walker, Gregory K.; Wang, Zhien; Wolf, Audrey B.; Xie, Shaocheng; Xu, Kuan-Man; Yang, Fanglin; Zhang, Gong

    2009-02-02T23:59:59.000Z

    Results are presented from an intercomparison of single-column and cloud-resolving model simulations of a cold-air outbreak mixed-phase stratocumulus cloud observed during the Atmospheric Radiation Measurement (ARM) program's Mixed-Phase Arctic Cloud Experiment. The observed cloud occurred in a well-mixed boundary layer with a cloud top temperature of -15 C. The observed average liquid water path of around 160 g m{sup -2} was about two-thirds of the adiabatic value and much greater than the average mass of ice crystal precipitation which when integrated from the surface to cloud top was around 15 g m{sup -2}. The simulations were performed by seventeen single-column models (SCMs) and nine cloud-resolving models (CRMs). While the simulated ice water path is generally consistent with the observed values, the median SCM and CRM liquid water path is a factor of three smaller than observed. Results from a sensitivity study in which models removed ice microphysics suggest that in many models the interaction between liquid and ice-phase microphysics is responsible for the large model underestimate of liquid water path. Despite this general underestimate, the simulated liquid and ice water paths of several models are consistent with the observed values. Furthermore, there is evidence that models with more sophisticated microphysics simulate liquid and ice water paths that are in better agreement with the observed values, although considerable scatter is also present. Although no single factor guarantees a good simulation, these results emphasize the need for improvement in the model representation of mixed-phase microphysics.

  18. Using Radar, Lidar and Radiometer Data from NSA and SHEBA to Quantify Cloud Property Effects on the Surface Heat Budget in the Arctic

    SciTech Connect (OSTI)

    Janet Intrieri; Mathhew Shupe

    2005-01-01T23:59:59.000Z

    Cloud and radiation data from two distinctly different Arctic areas are analyzed to study the differences between coastal Alaskan and open Arctic Ocean region clouds and their respective influence on the surface radiation budget. The cloud and radiation datasets were obtained from (1) the DOE North Slope of Alaska (NSA) facility in the coastal town of Barrow, Alaska, and (2) the SHEBA field program, which was conducted from an icebreaker frozen in, and drifting with, the sea-ice for one year in the Western Arctic Ocean. Radar, lidar, radiometer, and sounding measurements from both locations were used to produce annual cycles of cloud occurrence and height, atmospheric temperature and humidity, surface longwave and shortwave broadband fluxes, surface albedo, and cloud radiative forcing. In general, both regions revealed a similar annual trend of cloud occurrence fraction with minimum values in winter (60-75%) and maximum values during spring, summer and fall (80-90%). However, the annual average cloud occurrence fraction for SHEBA (76%) was lower than the 6-year average cloud occurrence at NSA (92%). Both Arctic areas also showed similar annual cycle trends of cloud forcing with clouds warming the surface through most of the year and a period of surface cooling during the summer, when cloud shading effects overwhelm cloud greenhouse effects. The greatest difference between the two regions was observed in the magnitude of the cloud cooling effect (i.e., shortwave cloud forcing), which was significantly stronger at NSA and lasted for a longer period of time than at SHEBA. This is predominantly due to the longer and stronger melt season at NSA (i.e., albedo values that are much lower coupled with Sun angles that are somewhat higher) than the melt season observed over the ice pack at SHEBA. Longwave cloud forcing values were comparable between the two sites indicating a general similarity in cloudiness and atmospheric temperature and humidity structure between the two regions.

  19. Evaluation of Mixed-Phase Cloud Parameterizations in Short-Range Weather Forecasts with CAM3 and AM2 for Mixed-Phase Arctic Cloud Experiment

    SciTech Connect (OSTI)

    Xie, S; Boyle, J; Klein, S; Liu, X; Ghan, S

    2007-06-01T23:59:59.000Z

    By making use of the in-situ data collected from the recent Atmospheric Radiation Measurement Mixed-Phase Arctic Cloud Experiment, we have tested the mixed-phase cloud parameterizations used in the two major U.S. climate models, the National Center for Atmospheric Research Community Atmosphere Model version 3 (CAM3) and the Geophysical Fluid Dynamics Laboratory climate model (AM2), under both the single-column modeling framework and the U.S. Department of Energy Climate Change Prediction Program-Atmospheric Radiation Measurement Parameterization Testbed. An improved and more physically based cloud microphysical scheme for CAM3 has been also tested. The single-column modeling tests were summarized in the second quarter 2007 Atmospheric Radiation Measurement metric report. In the current report, we document the performance of these microphysical schemes in short-range weather forecasts using the Climate Chagne Prediction Program Atmospheric Radiation Measurement Parameterizaiton Testbest strategy, in which we initialize CAM3 and AM2 with realistic atmospheric states from numerical weather prediction analyses for the period when Mixed-Phase Arctic Cloud Experiment was conducted.

  20. An annual cycle of Arctic cloud characteristics observed by radar and lidar at SHEBA

    E-Print Network [OSTI]

    Shupe, Matthew

    distribution of cloud boundary heights, and occurrence of liquid phase in clouds are determined from radar-observed clouds containing liquid was 73% for the year. The least amount of liquid water phase was observed during-detected clouds. Liquid was distributed in a combination of all-liquid and mixed phase clouds, and was detected

  1. On the Relationship between Thermodynamic Structure and Cloud Top, and Its Climate Significance in the Arctic

    E-Print Network [OSTI]

    Shupe, Matthew

    longwave radiation, resulting in a warming at the surface--the cloud ``greenhouse'' effect. The mag. The authors test the longwave radiative impact of cloud liquid above the inversion through hypothetical liquid water distributions. Optically thin CII clouds alter the effective cloud emission temperature and can

  2. Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part I: Single layer cloud

    E-Print Network [OSTI]

    Klein, Stephen A.

    2009-01-01T23:59:59.000Z

    cloud has the correct effect on surface fluxes of radiation.radiation is 200 W m –2 in clear-sky STREAMER calculations, the longwave cloud radiative effect

  3. P2.11 AN ANNUAL CYCLE OF ARCTIC CLOUD MICROPHYSICS Matthew D. Shupe*

    E-Print Network [OSTI]

    Shupe, Matthew

    to classify cloud scenes as all- ice, all-liquid, mixed-phase, or precipitating so that the appropriate ice/snow-covered surfaces. Several studies have demonstrated the importance of specific cloud microphysical properties on cloud-radiation and ice-albedo feedback mechanisms; these in turn have bearing

  4. NGEE Arctic Webcam Photographs, Barrow Environmental Observatory, Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Bob Busey; Larry Hinzman

    The NGEE Arctic Webcam (PTZ Camera) captures two views of seasonal transitions from its generally south-facing position on a tower located at the Barrow Environmental Observatory near Barrow, Alaska. Images are captured every 30 minutes. Historical images are available for download. The camera is operated by the U.S. DOE sponsored Next Generation Ecosystem Experiments - Arctic (NGEE Arctic) project.

  5. NGEE Arctic Webcam Photographs, Barrow Environmental Observatory, Barrow, Alaska

    SciTech Connect (OSTI)

    Bob Busey; Larry Hinzman

    2012-04-01T23:59:59.000Z

    The NGEE Arctic Webcam (PTZ Camera) captures two views of seasonal transitions from its generally south-facing position on a tower located at the Barrow Environmental Observatory near Barrow, Alaska. Images are captured every 30 minutes. Historical images are available for download. The camera is operated by the U.S. DOE sponsored Next Generation Ecosystem Experiments - Arctic (NGEE Arctic) project.

  6. Indirect and Semi-Direct Aerosol Campaign: The Impact of Arctic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Indirect and Semi-Direct Aerosol Campaign: The Impact of Arctic Aerosols on Clouds . Indirect and Semi-Direct Aerosol Campaign: The Impact of Arctic Aerosols on Clouds . Abstract:...

  7. Parameterization of the Extinction Coefficient in Ice and Mixed-Phase Arctic Clouds during the ISDAC Field Campaign

    SciTech Connect (OSTI)

    Korolev, A; Shashkov, A; Barker, H

    2012-03-06T23:59:59.000Z

    This report documents the history of attempts to directly measure cloud extinction, the current measurement device known as the Cloud Extinction Probe (CEP), specific problems with direct measurement of extinction coefficient, and the attempts made here to address these problems. Extinction coefficient is one of the fundamental microphysical parameters characterizing bulk properties of clouds. Knowledge of extinction coefficient is of crucial importance for radiative transfer calculations in weather prediction and climate models given that Earth's radiation budget (ERB) is modulated much by clouds. In order for a large-scale model to properly account for ERB and perturbations to it, it must ultimately be able to simulate cloud extinction coefficient well. In turn this requires adequate and simultaneous simulation of profiles of cloud water content and particle habit and size. Similarly, remote inference of cloud properties requires assumptions to be made about cloud phase and associated single-scattering properties, of which extinction coefficient is crucial. Hence, extinction coefficient plays an important role in both application and validation of methods for remote inference of cloud properties from data obtained from both satellite and surface sensors (e.g., Barker et al. 2008). While estimation of extinction coefficient within large-scale models is relatively straightforward for pure water droplets, thanks to Mie theory, mixed-phase and ice clouds still present problems. This is because of the myriad forms and sizes that crystals can achieve, each having their own unique extinction properties. For the foreseeable future, large-scale models will have to be content with diagnostic parametrization of crystal size and type. However, before they are able to provide satisfactory values needed for calculation of radiative transfer, they require the intermediate step of assigning single-scattering properties to particles. The most basic of these is extinction coefficient, yet it is rarely measured directly, and therefore verification of parametrizations is difficult. The obvious solution is to be able to measure microphysical properties and extinction at the same time and for the same volume. This is best done by in situ sampling by instruments mounted on either balloon or aircraft. The latter is the usual route and the one employed here. Yet the problem of actually measuring extinction coefficient directly for arbitrarily complicated particles still remains unsolved.

  8. arctic flora origins: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    combustion of fossil fuels and biomass, may have a severe impact on the sensitive Arctic climate, possibly altering the temperature profile, cloud temperature and amount, the...

  9. arctic research station: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Rocky Mountain Research Sta- tion is one of five 19 Z .Atmospheric Research 51 1999 4575 Cloud resolving simulations of Arctic stratus Geosciences Websites Summary: Z...

  10. Downloads Feed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ble-sound-wave-levitation April 22, 2014 Downloads Feed Poster: Reporting Unethical or Illegal Activity http:www.anl.govdownloadsposter-reporting-unethical-or-illegal-activity...

  11. Evolution of non-uniformly seeded warm clouds in idealized turbulent conditions This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Falkovich, Gregory

    clouds containing only the liquid phase, which are one of the most important in their effect on radiation to condensation and collisions and droplet loss due to fallout. The model accounts for the effects of cloud forcing by anthropogenic aerosols is their effect on clouds, referred to as the aerosol indirect effect [1

  12. Museum Fan Downloads

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Museum Fan Downloads Participate with us Participate Become a Volunteer Share Your Stories Museum Fan Downloads Q&A Blog Contact us invisible utility element Museum Fan Downloads...

  13. Arctic Mixed-Phase Cloud Properties Derived from Surface-Based Sensors at SHEBA MATTHEW D. SHUPE AND SERGEY Y. MATROSOV

    E-Print Network [OSTI]

    Shupe, Matthew

    , cloud-top liquid layer from which ice particles formed and fell, although deep, multilayered mixed-phase. These values are all larger than those found in single-phase ice clouds at SHEBA. Vertically resolved cloud phases can coexist is in question. A re- view of model parameterizations shows the lower tem- perature

  14. Arctic house

    E-Print Network [OSTI]

    Turkel, Joel A. (Joel Abram), 1969-

    1999-01-01T23:59:59.000Z

    Currently available housing in the Arctic is limited to solutions that have been adapted from designs for less severe climates. This thesis has developed a new manner of residential construction designed specifically for ...

  15. Cloud Services Cloud Services

    E-Print Network [OSTI]

    Cloud Services Cloud Services In 2012 UCD IT Services launched an exciting new set of cloud solutions called CloudEdu, which includes cloud servers, cloud storage, cloud hosting and cloud network. The CloudEdu package includes a consultancy service in design, deployment, management and utilisation

  16. The Arctic Lower Troposphere Observed Structure (ALTOS) Campaign

    SciTech Connect (OSTI)

    Verlinde, J

    2010-10-18T23:59:59.000Z

    The ALTOS campaign focuses on operating a tethered observing system for routine in situ sampling of low-level (< 2 km) Arctic clouds. It has been a long-term hope to fly tethered systems at Barrow, Alaska, but it is clear that the Federal Aviation Administration (FAA) will not permit in-cloud tether systems at Barrow, even if unmanned aerial vehicle (UAV) operations are allowed in the future. We have provided the scientific rationale for long-term, routine in situ measurements of cloud and aerosol properties in the Arctic. The existing restricted air space at Oliktok offers an opportunity to do so.

  17. Downloads | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Downloads Topic - Any - General Argonne Information -Awards -Honors Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Biofuels ---Diesel...

  18. A Coordinated Effort to Improve Parameterization of High-Latitude Cloud and Radiation Processes

    SciTech Connect (OSTI)

    J. O. Pinto, A.H. Lynch

    2005-12-14T23:59:59.000Z

    The goal of this project is the development and evaluation of improved parameterization of arctic cloud and radiation processes and implementation of the parameterizations into a climate model. Our research focuses specifically on the following issues: (1) continued development and evaluation of cloud microphysical parameterizations, focusing on issues of particular relevance for mixed phase clouds; and (2) evaluation of the mesoscale simulation of arctic cloud system life cycles.

  19. K-12 Popular Downloads

    Office of Energy Efficiency and Renewable Energy (EERE)

    Checkout these easy to use and downloadable items to start engaging your students in energy today. These items are intended for K-12 audience.

  20. Download Data | Transparent Cost Database

    Open Energy Info (EERE)

    You are here Home Download Data Click to download data from the following areas: Generation data - last updated November 14, 2014. Fuels data - last updated August 8, 2014....

  1. Carbon dynamics in arctic vegetation 

    E-Print Network [OSTI]

    Street, Lorna Elizabeth

    2011-11-24T23:59:59.000Z

    Rapid climate change in Arctic regions is of concern due to important feedbacks between the Arctic land surface and the global climate system. A large amount of organic carbon (C) is currently stored in Arctic soils; if ...

  2. How does the atmospheric variability drive the aerosol residence time in the Arctic region?

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    for enhanced cloud evaporation and hence a decrease in the fraction of solar radiation reflected by the cloud cover. This strong climatic retroaction is referred to as the `semi-direct effect' of BC aerosols. BC of the atmospheric aerosol concentration is paramount to assess its radiative effects in the Arctic, a region

  3. Arctic Oscillation response to the 1991 Mount Pinatubo eruption: Effects of volcanic aerosols and ozone depletion

    E-Print Network [OSTI]

    Robock, Alan

    of perturbation experiments, the full radiative effects of the observed Pinatubo aerosol cloud were included eruption, which produced the largest global volcanic aerosol cloud in the twentieth century. A seriesArctic Oscillation response to the 1991 Mount Pinatubo eruption: Effects of volcanic aerosols

  4. Past and future conditions for polar stratospheric cloud formation simulated

    E-Print Network [OSTI]

    Wirosoetisno, Djoko

    . In the future, radiative cooling in the Arctic winter due to climate change is more than compensated by an inPast and future conditions for polar stratospheric cloud formation simulated by the Canadian Middle Chemistry and Physics Past and future conditions for polar stratospheric cloud formation simulated

  5. Using Radar, Lidar, and Radiometer measurements to Classify Cloud Type and Study Middle-Level Cloud Properties

    SciTech Connect (OSTI)

    Wang, Zhien

    2010-06-29T23:59:59.000Z

    The project is mainly focused on the characterization of cloud macrophysical and microphysical properties, especially for mixed-phased clouds and middle level ice clouds by combining radar, lidar, and radiometer measurements available from the ACRF sites. First, an advanced mixed-phase cloud retrieval algorithm will be developed to cover all mixed-phase clouds observed at the ACRF NSA site. The algorithm will be applied to the ACRF NSA observations to generate a long-term arctic mixed-phase cloud product for model validations and arctic mixed-phase cloud processes studies. To improve the representation of arctic mixed-phase clouds in GCMs, an advanced understanding of mixed-phase cloud processes is needed. By combining retrieved mixed-phase cloud microphysical properties with in situ data and large-scale meteorological data, the project aim to better understand the generations of ice crystals in supercooled water clouds, the maintenance mechanisms of the arctic mixed-phase clouds, and their connections with large-scale dynamics. The project will try to develop a new retrieval algorithm to study more complex mixed-phase clouds observed at the ACRF SGP site. Compared with optically thin ice clouds, optically thick middle level ice clouds are less studied because of limited available tools. The project will develop a new two wavelength radar technique for optically thick ice cloud study at SGP site by combining the MMCR with the W-band radar measurements. With this new algorithm, the SGP site will have a better capability to study all ice clouds. Another area of the proposal is to generate long-term cloud type classification product for the multiple ACRF sites. The cloud type classification product will not only facilitates the generation of the integrated cloud product by applying different retrieval algorithms to different types of clouds operationally, but will also support other research to better understand cloud properties and to validate model simulations. The ultimate goal is to improve our cloud classification algorithm into a VAP.

  6. Water vapor, cloud liquid water paths, and rain rates over northern high latitude open seas

    E-Print Network [OSTI]

    Zuidema, Paquita

    longwave radiation caused by differences in cloud cover can produce an JOURNAL OF GEOPHYSICAL RESEARCH, VOL-level stratus con- tribute the most to the total Arctic cloud cover of any cloud type according to surface presence during summertime but otherwise the Wentz internal sea-ice screening appears effective

  7. 6, 96559722, 2006 Arctic smoke

    E-Print Network [OSTI]

    Boyer, Edmond

    Discussions Arctic smoke ­ record high air pollution levels in the European Arctic due to agricultural fires into the European Arctic and caused the most severe air pollution episodes ever recorded there. This paper confirms that biomass burning (BB) was in-5 deed the source of the observed air pollution, studies the transport

  8. INSTRUCTIONS for DOWNLOADING COURSE ROSTERS

    E-Print Network [OSTI]

    saerens

    2009-02-27T23:59:59.000Z

    Feb 27, 2009 ... Please view rather than print this information. A version without pictures is ... 3d Click on the file Download my Course Rosters. Picture of my ...

  9. Arctic ice islands

    SciTech Connect (OSTI)

    Sackinger, W.M.; Jeffries, M.O.; Lu, M.C.; Li, F.C.

    1988-01-01T23:59:59.000Z

    The development of offshore oil and gas resources in the Arctic waters of Alaska requires offshore structures which successfully resist the lateral forces due to moving, drifting ice. Ice islands are floating, a tabular icebergs, up to 60 meters thick, of solid ice throughout their thickness. The ice islands are thus regarded as the strongest ice features in the Arctic; fixed offshore structures which can directly withstand the impact of ice islands are possible but in some locations may be so expensive as to make oilfield development uneconomic. The resolution of the ice island problem requires two research steps: (1) calculation of the probability of interaction between an ice island and an offshore structure in a given region; and (2) if the probability if sufficiently large, then the study of possible interactions between ice island and structure, to discover mitigative measures to deal with the moving ice island. The ice island research conducted during the 1983-1988 interval, which is summarized in this report, was concerned with the first step. Monte Carlo simulations of ice island generation and movement suggest that ice island lifetimes range from 0 to 70 years, and that 85% of the lifetimes are less then 35 years. The simulation shows a mean value of 18 ice islands present at any time in the Arctic Ocean, with a 90% probability of less than 30 ice islands. At this time, approximately 34 ice islands are known, from observations, to exist in the Arctic Ocean, not including the 10-meter thick class of ice islands. Return interval plots from the simulation show that coastal zones of the Beaufort and Chukchi Seas, already leased for oil development, have ice island recurrences of 10 to 100 years. This implies that the ice island hazard must be considered thoroughly, and appropriate safety measures adopted, when offshore oil production plans are formulated for the Alaskan Arctic offshore. 132 refs., 161 figs., 17 tabs.

  10. Sandia National Laboratories: Arctic sea ice

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arctic sea ice Sierra Unmanned Aerial Vehicle to Begin Flights Over Arctic Sea Ice On July 25, 2013, in Climate, Customers & Partners, Global, Monitoring, News, News & Events,...

  11. Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shupe, Matthew

    Time-height fields of retrieved in-cloud vertical wind velocity and turbulent dissipation rate, both retrieved primarily from vertically-pointing, Ka-band cloud radar measurements. Files are available for manually-selected, stratiform, mixed-phase cloud cases observed at the North Slope of Alaska (NSA) site during periods covering the Mixed-Phase Arctic Cloud Experiment (MPACE, late September through early November 2004) and the Indirect and Semi-Direct Aerosol Campaign (ISDAC, April-early May 2008). These time periods will be expanded in a future submission.

  12. Testing Cloud Microphysics Parameterizations in NCAR CAM5 with ISDAC and M-PACE Observations

    SciTech Connect (OSTI)

    Liu, Xiaohong; Xie, Shaocheng; Boyle, James; Klein, Stephen A.; Shi, Xiangjun; Wang, Zhien; Lin, Wuyin; Ghan, Steven J.; Earle, Michael; Liu, Peter; Zelenyuk, Alla

    2011-12-24T23:59:59.000Z

    Arctic clouds simulated by the NCAR Community Atmospheric Model version 5 (CAM5) are evaluated with observations from the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Indirect and Semi-Direct Aerosol Campaign (ISDAC) and Mixed-Phase Arctic Cloud Experiment (M-PACE), which were conducted at its North Slope of Alaska site in April 2008 and October 2004, respectively. Model forecasts for the Arctic Spring and Fall seasons performed under the Cloud- Associated Parameterizations Testbed (CAPT) framework generally reproduce the spatial distributions of cloud fraction for single-layer boundary layer mixed-phase stratocumulus, and multilayer or deep frontal clouds. However, for low-level clouds, the model significantly underestimates the observed cloud liquid water content in both seasons and cloud fraction in the Spring season. As a result, CAM5 significantly underestimates the surface downward longwave (LW) radiative fluxes by 20-40 W m-2. The model with a new ice nucleation parameterization moderately improves the model simulations by increasing cloud liquid water content in mixed-phase clouds through the reduction of the conversion rate from cloud liquid to ice by the Wegener-Bergeron- Findeisen (WBF) process. The CAM5 single column model testing shows that change in the homogeneous freezing temperature of rain to form snow from -5 C to -40 C has a substantial impact on the modeled liquid water content through the slowing-down of liquid and rain-related processes. In contrast, collections of cloud ice by snow and cloud liquid by rain are of minor importance for single-layer boundary layer mixed-phase clouds in the Arctic.

  13. Testing cloud microphysics parameterizations in NCAR CAM5 with ISDAC and M-PACE observations

    SciTech Connect (OSTI)

    Liu X.; Lin W.; Xie, S.; Boyle, J.; Klein, S. A.; Shi, X.; Wang, Z.; Ghan, S. J.; Earle, M.; Liu, P. S. K.; Zelenyuk, A.

    2011-12-24T23:59:59.000Z

    Arctic clouds simulated by the National Center for Atmospheric Research (NCAR) Community Atmospheric Model version 5 (CAM5) are evaluated with observations from the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Indirect and Semi-Direct Aerosol Campaign (ISDAC) and Mixed-Phase Arctic Cloud Experiment (M-PACE), which were conducted at its North Slope of Alaska site in April 2008 and October 2004, respectively. Model forecasts for the Arctic spring and fall seasons performed under the Cloud-Associated Parameterizations Testbed framework generally reproduce the spatial distributions of cloud fraction for single-layer boundary-layer mixed-phase stratocumulus and multilayer or deep frontal clouds. However, for low-level stratocumulus, the model significantly underestimates the observed cloud liquid water content in both seasons. As a result, CAM5 significantly underestimates the surface downward longwave radiative fluxes by 20-40 W m{sup -2}. Introducing a new ice nucleation parameterization slightly improves the model performance for low-level mixed-phase clouds by increasing cloud liquid water content through the reduction of the conversion rate from cloud liquid to ice by the Wegener-Bergeron-Findeisen process. The CAM5 single-column model testing shows that changing the instantaneous freezing temperature of rain to form snow from -5 C to -40 C causes a large increase in modeled cloud liquid water content through the slowing down of cloud liquid and rain-related processes (e.g., autoconversion of cloud liquid to rain). The underestimation of aerosol concentrations in CAM5 in the Arctic also plays an important role in the low bias of cloud liquid water in the single-layer mixed-phase clouds. In addition, numerical issues related to the coupling of model physics and time stepping in CAM5 are responsible for the model biases and will be explored in future studies.

  14. Cloud is not a silver bullet: A case study of cloud-based mobile browsing

    E-Print Network [OSTI]

    Greenberg, Albert

    and device energy con- sumption. While these efforts have adopted different ap- proaches to cloud not provide clear benefits over Direct either in energy or download time. For e.g. while CB decreases for other pages. Sim- ilarly while CB decreases the total energy by up to 20.77J compared to Direct for 52

  15. Potential Oil Production from the Coastal Plain of the Arctic...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment 1. Overview of the Arctic National Wildlife Refuge Background The Arctic...

  16. Parameterizing Size Distribution in Ice Clouds

    SciTech Connect (OSTI)

    DeSlover, Daniel; Mitchell, David L.

    2009-09-25T23:59:59.000Z

    PARAMETERIZING SIZE DISTRIBUTIONS IN ICE CLOUDS David L. Mitchell and Daniel H. DeSlover ABSTRACT An outstanding problem that contributes considerable uncertainty to Global Climate Model (GCM) predictions of future climate is the characterization of ice particle sizes in cirrus clouds. Recent parameterizations of ice cloud effective diameter differ by a factor of three, which, for overcast conditions, often translate to changes in outgoing longwave radiation (OLR) of 55 W m-2 or more. Much of this uncertainty in cirrus particle sizes is related to the problem of ice particle shattering during in situ sampling of the ice particle size distribution (PSD). Ice particles often shatter into many smaller ice fragments upon collision with the rim of the probe inlet tube. These small ice artifacts are counted as real ice crystals, resulting in anomalously high concentrations of small ice crystals (D < 100 µm) and underestimates of the mean and effective size of the PSD. Half of the cirrus cloud optical depth calculated from these in situ measurements can be due to this shattering phenomenon. Another challenge is the determination of ice and liquid water amounts in mixed phase clouds. Mixed phase clouds in the Arctic contain mostly liquid water, and the presence of ice is important for determining their lifecycle. Colder high clouds between -20 and -36 oC may also be mixed phase but in this case their condensate is mostly ice with low levels of liquid water. Rather than affecting their lifecycle, the presence of liquid dramatically affects the cloud optical properties, which affects cloud-climate feedback processes in GCMs. This project has made advancements in solving both of these problems. Regarding the first problem, PSD in ice clouds are uncertain due to the inability to reliably measure the concentrations of the smallest crystals (D < 100 µm), known as the “small mode”. Rather than using in situ probe measurements aboard aircraft, we employed a treatment of ice cloud optical properties formulated in terms of PSD parameters in combination with remote measurements of thermal radiances to characterize the small mode. This is possible since the absorption efficiency (Qabs) of small mode crystals is larger at 12 µm wavelength relative to 11 µm wavelength due to the process of wave resonance or photon tunneling more active at 12 µm. This makes the 12/11 µm absorption optical depth ratio (or equivalently the 12/11 µm Qabs ratio) a means for detecting the relative concentration of small ice particles in cirrus. Using this principle, this project tested and developed PSD schemes that can help characterize cirrus clouds at each of the three ARM sites: SGP, NSA and TWP. This was the main effort of this project. These PSD schemes and ice sedimentation velocities predicted from them have been used to test the new cirrus microphysics parameterization in the GCM known as the Community Climate Systems Model (CCSM) as part of an ongoing collaboration with NCAR. Regarding the second problem, we developed and did preliminary testing on a passive thermal method for retrieving the total water path (TWP) of Arctic mixed phase clouds where TWPs are often in the range of 20 to 130 g m-2 (difficult for microwave radiometers to accurately measure). We also developed a new radar method for retrieving the cloud ice water content (IWC), which can be vertically integrated to yield the ice water path (IWP). These techniques were combined to determine the IWP and liquid water path (LWP) in Arctic clouds, and hence the fraction of ice and liquid water. We have tested this approach using a case study from the ARM field campaign called M-PACE (Mixed-Phase Arctic Cloud Experiment). This research led to a new satellite remote sensing method that appears promising for detecting low levels of liquid water in high clouds typically between -20 and -36 oC. We hope to develop this method in future research.

  17. Downloads: August 6-8, 2013 National Veterans Small Business...

    Energy Savers [EERE]

    Downloads: August 6-8, 2013 National Veterans Small Business Conference Downloads: August 6-8, 2013 National Veterans Small Business Conference Download materials from the August...

  18. Cloud Computing

    SciTech Connect (OSTI)

    Pete Beckman and Ian Foster

    2009-12-04T23:59:59.000Z

    Chicago Matters: Beyond Burnham (WTTW). Chicago has become a world center of "cloud computing." Argonne experts Pete Beckman and Ian Foster explain what "cloud computing" is and how you probably already use it on a daily basis.

  19. Time varying arctic climate change amplification

    SciTech Connect (OSTI)

    Chylek, Petr [Los Alamos National Laboratory; Dubey, Manvendra K [Los Alamos National Laboratory; Lesins, Glen [DALLHOUSIE U; Wang, Muyin [NOAA/JISAO

    2009-01-01T23:59:59.000Z

    During the past 130 years the global mean surface air temperature has risen by about 0.75 K. Due to feedbacks -- including the snow/ice albedo feedback -- the warming in the Arctic is expected to proceed at a faster rate than the global average. Climate model simulations suggest that this Arctic amplification produces warming that is two to three times larger than the global mean. Understanding the Arctic amplification is essential for projections of future Arctic climate including sea ice extent and melting of the Greenland ice sheet. We use the temperature records from the Arctic stations to show that (a) the Arctic amplification is larger at latitudes above 700 N compared to those within 64-70oN belt, and that, surprisingly; (b) the ratio of the Arctic to global rate of temperature change is not constant but varies on the decadal timescale. This time dependence will affect future projections of climate changes in the Arctic.

  20. Canada's Arctic Gateway: Discussion Paper Summary

    E-Print Network [OSTI]

    Martin, Jeff

    Canada's Arctic Gateway: Discussion Paper Summary September 2010 The following summarizes key Canada's Arctic Gateway a reality in terms of both national public policy and international presence the Government of Canada's national gateway policy framework. This discussion paper's use of the term "Arctic

  1. Using Doppler spectra to separate hydrometeor populations and analyze ice precipitation in multilayered mixed-phase clouds

    SciTech Connect (OSTI)

    Rambukkange, Mahlon P.; Verlinde, J.; Eloranta, E. W.; Flynn, Connor J.; Clothiaux, Eugene E.

    2011-01-31T23:59:59.000Z

    Multimodality of cloud radar Doppler spectra is used to partition cloud particle phases and to separate distinct ice populations in the radar sample volume, thereby facilitating analysis of individual ice showers in multilayered mixed-phase clouds. A 35-GHz cloud radar located at Barrow, Alaska, during the Mixed-Phase Arctic Cloud Experiment collected the Doppler spectra. Data from a pair of collocated depolarization lidars confirmed the presence of two liquid cloud layers reported in this study. Surprisingly, both of these cloud layers were embedded in ice precipitation yet maintained their liquid. Our spectral separation of the ice precipitation yielded two distinct ice populations: ice initiated within the two liquid cloud layers and ice precipitation formed in higher cloud layers. Comparisons of ice fall velocity versus radar reflectivity relationships derived for distinct showers reveal that a single relationship might not properly represent the ice showers during this period.

  2. INFLUENCE OF ARCTIC CLOUD THERMODYNAMIC PHASE ON SURFACE SHORTWAVE FLUX

    E-Print Network [OSTI]

    -phase" category, can affect the surface energy balance at the same order of magnitude as greenhouse gas increases. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains of this manuscript, or allow others to do so, for United States Government purposes. BNL-90978-2010-CP #12;

  3. arctic stratus clouds: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    collaboration and standardization ac- tivities of the StratusLab project at the end of Project the project can make use, while in Year 2 more focus will be put on driving...

  4. Towards a Characterization of Arctic Mixed-Phase Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.04.2o

  5. Nighttime Cloud Detection Over the Arctic Using AVHRR Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2April 2013we have solar panels but not

  6. Simulating Arctic mixed-phase clouds: Sensitivity to environmental

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9Morgan McCorkle Communications and Media

  7. Relationship Between Arctic Clouds and Synoptic-Scale Variability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberg andReindustrializationLivermore

  8. How to download your course rosters

    E-Print Network [OSTI]

    saerens

    2008-12-08T23:59:59.000Z

    Please view rather than print documents. Graduate instructors and ... 3d Click on the file Download my Course Rosters. 4 If need be, select the relevant semester ...

  9. How to download your course rosters

    E-Print Network [OSTI]

    saerens

    2008-12-08T23:59:59.000Z

    Please view rather than print documents. Graduate instructors and ... 3d Click on the file Download my Course Rosters. Picture of my myPurdue Home page ...

  10. Arctic Ecologies: The Politics and Poetics of Northern Literary Environments

    E-Print Network [OSTI]

    Athens, Allison Katherine

    2013-01-01T23:59:59.000Z

    Efforts: Creating an Arctic Home. ” Coca-Cola Arctic Home.Coca-Cola and WWF. Web. 10 Apr. 2013. “Arctic NationalHarvard UP, 1997. Print. “Coca-Cola: Building Support for

  11. Evaluation of Arctic sea ice thickness simulated by Arctic Ocean Model Intercomparison Project models

    E-Print Network [OSTI]

    Zhang, Jinlun

    of fast ice formation and growth. Instead, the modeled fast ice is replaced with pack ice which driftsEvaluation of Arctic sea ice thickness simulated by Arctic Ocean Model Intercomparison Project with estimates of sea ice thickness derived from pan-Arctic satellite freeboard measurements (2004

  12. arctic vegetation amplify: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dynamics in arctic vegetation Edinburgh, University of - Research Archive Summary: Rapid climate change in Arctic regions is of concern due to important feedbacks between the...

  13. airborne arctic stratospheric: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Arctic System Reanalysis Natalia Tilinina1 , Sergey, Vienna MOTIVATION Key role of cyclone activity in the Arctic energy and hydrological cycles Cyclones impact on sea ice...

  14. arctic cloudy boundary: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Arctic System Reanalysis Natalia Tilinina1 , Sergey, Vienna MOTIVATION Key role of cyclone activity in the Arctic energy and hydrological cycles Cyclones impact on sea ice...

  15. arctic ground squirrel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Arctic System Reanalysis Natalia Tilinina1 , Sergey, Vienna MOTIVATION Key role of cyclone activity in the Arctic energy and hydrological cycles Cyclones impact on sea ice...

  16. alesund arctic base: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Arctic System Reanalysis Natalia Tilinina1 , Sergey, Vienna MOTIVATION Key role of cyclone activity in the Arctic energy and hydrological cycles Cyclones impact on sea ice...

  17. arctic stratospheric expedition: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Arctic System Reanalysis Natalia Tilinina1 , Sergey, Vienna MOTIVATION Key role of cyclone activity in the Arctic energy and hydrological cycles Cyclones impact on sea ice...

  18. arctic ground squirrels: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Arctic System Reanalysis Natalia Tilinina1 , Sergey, Vienna MOTIVATION Key role of cyclone activity in the Arctic energy and hydrological cycles Cyclones impact on sea ice...

  19. arctic shrub tundra: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sites, Abandoned Dwellings, and Trampled Tundra in the Eastern Canadian Arctic: A Multivariate Analysis CiteSeer Summary: ABSTRACT. Arctic terrestrial ecosystems subjected...

  20. Potential Oil Production from the Coastal Plain of the Arctic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment Preface Potential Oil Production from the Coastal Plain of the Arctic...

  1. arctic ecosystems dominated: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by: Arctic Institute of North America Stable URL: http Vermont, University of 7 Improved Climate Prediction through a System Level Understanding of Arctic Terrestrial Ecosystems...

  2. arctic ice islands: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    analogous to the effects of the Arctic region; KEYWORDS: Arctic Ocean, ice rafting, climate change Citation: Darby, D. A., and J. F. Bischof (2004), A Holocene record of...

  3. Arctic sea ice extent small as never before Alerting message from the Arctic: The extent the the Arctic sea ice has reached on Sep. 8

    E-Print Network [OSTI]

    Bremen, Universität

    Arctic sea ice extent small as never before Alerting message from the Arctic: The extent the the Arctic sea ice has reached on Sep. 8 with 4.240 million km2 a new historic minimum (Figure 1). Physicists of the University of Bremen now confirm the apprehension existing since July 2011 that the ice melt in the Arctic

  4. AVTA: 2009 Volkswagen Jetta TDI Diesel Downloadable Dynamometer...

    Energy Savers [EERE]

    09 Volkswagen Jetta TDI Diesel Downloadable Dynamometer Database Reports AVTA: 2009 Volkswagen Jetta TDI Diesel Downloadable Dynamometer Database Reports The Vehicle Technologies...

  5. AVTA: 2012 Chevrolet Volt PHEV Downloadable Dynamometer Database...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chevrolet Volt PHEV Downloadable Dynamometer Database Reports AVTA: 2012 Chevrolet Volt PHEV Downloadable Dynamometer Database Reports The Vehicle Technologies Office's Advanced...

  6. AVTA: 2012 Toyota Prius PHEV Downloadable Dynamometer Database...

    Energy Savers [EERE]

    Toyota Prius PHEV Downloadable Dynamometer Database Reports AVTA: 2012 Toyota Prius PHEV Downloadable Dynamometer Database Reports The Vehicle Technologies Office's Advanced...

  7. Cloud Computing Adam Barker

    E-Print Network [OSTI]

    St Andrews, University of

    Cloud Computing 1 Adam Barker #12;Overview · Introduction to Cloud computing · Enabling technologies · Di erent types of cloud: IaaS, PaaS and SaaS · Cloud terminology · Interacting with a cloud: management consoles · Launching an instance · Connecting to an instance · Running your application · Clouds

  8. Global Simulations of Ice nucleation and Ice Supersaturation with an Improved Cloud Scheme in the Community Atmosphere Model

    SciTech Connect (OSTI)

    Gettelman, A.; Liu, Xiaohong; Ghan, Steven J.; Morrison, H.; Park, Sungsu; Conley, Andrew; Klein, Stephen A.; Boyle, James; Mitchell, David; Li, J-L F.

    2010-09-28T23:59:59.000Z

    A process-based treatment of ice supersaturation and ice-nucleation is implemented in the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM). The new scheme is designed to allow (1) supersaturation with respect to ice, (2) ice nucleation by aerosol particles and (3) ice cloud cover consistent with ice microphysics. The scheme is implemented with a 4-class 2 moment microphysics code and is used to evaluate ice cloud nucleation mechanisms and supersaturation in CAM. The new model is able to reproduce field observations of ice mass and mixed phase cloud occurrence better than previous versions of the model. Simulations indicate heterogeneous freezing and contact nucleation on dust are both potentially important over remote areas of the Arctic. Cloud forcing and hence climate is sensitive to different formulations of the ice microphysics. Arctic radiative fluxes are sensitive to the parameterization of ice clouds. These results indicate that ice clouds are potentially an important part of understanding cloud forcing and potential cloud feedbacks, particularly in the Arctic.

  9. Download

    E-Print Network [OSTI]

    2004-12-01T23:59:59.000Z

    Dec 1, 2004 ... Nonlinear optimization for seismic travel time tomography. Geophysical Journal International, 115:929–940, 1993. [30] J. S. Shahabuddin.

  10. Download

    E-Print Network [OSTI]

    2006-03-29T23:59:59.000Z

    to satisfy the different types of demands while limiting inventories and shortages. A survey of these problems can be found in [12]. In this paper, we consider a ...

  11. Download

    E-Print Network [OSTI]

    2008-03-31T23:59:59.000Z

    Constraints (9) are the integrity constraints for the cycle variables. We can ..... As s and t are symmetric as well as U and V \\ U, we will only consider two cases :.

  12. Download

    E-Print Network [OSTI]

    2008-05-07T23:59:59.000Z

    May 7, 2008 ... Mathematics and Computer Science Division. Argonne ...... Computer Methods in Applied Mechanics and Engineering, 177:183–197, 1999.

  13. Download

    E-Print Network [OSTI]

    2012-06-11T23:59:59.000Z

    structure of graphs more compactly and therefore obtain (well-)readable drawings ...... scheduling [23], assessment of corruption perception [1] and ranking in sports ...... pores 1. 30. 0.236. 383. 383. 29.9. 351.02. 15340. 383. 286.5 ibm32. 32.

  14. Download

    E-Print Network [OSTI]

    2012-03-28T23:59:59.000Z

    4.3 Stochastic Service Systems Design Problems (SSSD) ..... Ph.D. thesis, Chemical Engineering Department, Carnegie Mellon University. Sawaya, N., C. D. ...

  15. Download

    E-Print Network [OSTI]

    2005-06-09T23:59:59.000Z

    NLMCF models congestion on transmission networks. When several messages must be ... allocate the flows on the generated paths in an optimal way. The authors in [3] use a .... The right derivative g+(y) of g at y = 0 is well-defined. Since g is ...

  16. Download

    E-Print Network [OSTI]

    2015-03-20T23:59:59.000Z

    Mar 20, 2015 ... and Yang, L., editors, High Performance Computing and Communications, volume 4782 of Lecture Notes in Computer Science, pages 62–73.

  17. Download

    E-Print Network [OSTI]

    G Bao et al

    2010-06-29T23:59:59.000Z

    Jul 1, 2010 ... To overcome these difficulties, a stable and efficient recursive .... model problems

  18. Download

    E-Print Network [OSTI]

    2007-05-15T23:59:59.000Z

    Developing a safe radiation therapy plan is not an easy task because tumors are ... For a survey see [39]. 2 ...... Health Care and Management Science 6:5–16.

  19. Download

    E-Print Network [OSTI]

    2008-04-15T23:59:59.000Z

    A conic integer program is an integer programming problem with conic constraints. Many problems in finance, engineering, statistical learning, and probabilistic .... Here Ai, Gi, b are rational matrices with mi rows, and c, r, di,ei are rational row.

  20. Downloadable

    E-Print Network [OSTI]

    2012-09-24T23:59:59.000Z

    Sep 24, 2012 ... As in most Data Mining procedures, how to tune the parameters of a Support Vector. Machine (SVM) ..... flare-solar 34.50. -0.50 .... nested VNS, in which the parameters obtained as output when optimizing simpler models are.

  1. Primary production of arctic waters

    SciTech Connect (OSTI)

    Rao, D.V.S.; Platt, T.

    1984-01-01T23:59:59.000Z

    Using data that have become available during the last ten years they have reestimated the annual production by phytoplankton in the arctic marine ecosystem. The new figure is some sixteen times higher than an estimate made in 1975. This is of considerable significance regionally, but still does not, of itself, imply that global phytoplankton production is underestimated at present. 82 references, 3 figures, 9 tables.

  2. Lecture Ch. 8 Cloud Classification

    E-Print Network [OSTI]

    Russell, Lynn

    clouds Middle clouds Grayish, block the sun, sometimes patchy Sharp outlines, rising, bright white1 Lecture Ch. 8 · Cloud Classification ­ Descriptive approach to clouds · Drop Growth and Precipitation Processes ­ Microphysical characterization of clouds · Complex (i.e. Real) Clouds ­ Examples

  3. Short-lived pollutants in the Arctic: their climate impact and possible mitigation strategies

    SciTech Connect (OSTI)

    Menon, Surabi; Quinn, P.K.; Bates, T.S.; Baum, E.; Doubleday, N.; Fiore, A.M.; Flanner, M.; Fridlind, A.; Garrett, T.J.; Koch, D.; Menon, S.; Shindell, D.; Stohl, A.; Warren, S.G.

    2007-09-24T23:59:59.000Z

    Several short-lived pollutants known to impact Arctic climate may be contributing to the accelerated rates of warming observed in this region relative to the global annually averaged temperature increase. Here, we present a summary of the short-lived pollutants that impact Arctic climate including methane, tropospheric ozone, and tropospheric aerosols. For each pollutant, we provide a description of the major sources and the mechanism of forcing. We also provide the first seasonally averaged forcing and corresponding temperature response estimates focused specifically on the Arctic. The calculations indicate that the forcings due to black carbon, methane, and tropospheric ozone lead to a positive surface temperature response indicating the need to reduce emissions of these species within and outside the Arctic. Additional aerosol species may also lead to surface warming if the aerosol is coincident with thin, low lying clouds. We suggest strategies for reducing the warming based on current knowledge and discuss directions for future research to address the large remaining uncertainties.

  4. Cloud Controlling Factors --Low Clouds BJORN STEVENS,

    E-Print Network [OSTI]

    Stevens, Bjorn

    Cloud Controlling Factors -- Low Clouds BJORN STEVENS, Department of Atmospheric and Oceanic) clouds is reviewed, with an emphasis on factors that may be expected to change in a changing climate of low-cloud control- ling processes are offered: these include renewing our focus on theory, model

  5. Cloud Controlling Factors --Low Clouds BJORN STEVENS,

    E-Print Network [OSTI]

    Stevens, Bjorn

    Cloud Controlling Factors -- Low Clouds BJORN STEVENS, Department of Atmospheric and Oceanic conspire to determine the statistics and cli- matology of layers of shallow (boundary layer) clouds of low-cloud control- ling processes are offered: these include renewing our focus on theory, model

  6. Cloud Tracking in Cloud-Resolving Models

    E-Print Network [OSTI]

    Plant, Robert

    Cloud Tracking in Cloud-Resolving Models RMetS Conference 4th September 2007 Bob Plant Department of Meteorology, University of Reading, UK #12;Introduction Obtain life cycle statistics for clouds in CRM simulations What is the distribution of cloud lifetimes? What factors determine the lifetime of an individual

  7. Cloud Security by Max Garvey

    E-Print Network [OSTI]

    Tolmach, Andrew

    Cloud Security Survey by Max Garvey #12;Cloudy Cloud is Cloudy What is the cloud? On Demand Service Network access Resource pooling Elasticity of Resources Measured Service #12;Cloud Types/Variants Iaa Cloud Public Cloud Hybrid Cloud combination. Private cloud with overflow going to public cloud. #12

  8. Next-Generation Ecosystem Experiments NGEE Arctic Quarterly Report

    E-Print Network [OSTI]

    to improve representation of the Arctic in Earth System Models Topography influences snow cover, thermal

  9. Evaluation of Mixed-Phase Cloud Microphysics Parameterizations with the NCAR Single Column Climate Model (SCAM) and ARM Observations

    SciTech Connect (OSTI)

    Liu, X; Ghan, SJ; Xie, S

    2007-04-01T23:59:59.000Z

    Mixed-phase stratus clouds are ubiquitous in the Arctic and play an important role in climate in this region. However, climate models have generally proven unsuccessful at simulating the partitioning of condensed water into liquid droplets and ice crystals in these Arctic clouds, which affect modeled cloud phase, cloud lifetime and radiative properties. An ice nucleation parameterization and a vapor deposition scheme were developed that together provide a physically-consistent treatment of mixed-phase clouds in global climate models. These schemes have been implemented in the National Center for Atmospheric Research (NCAR) Community Atmospheric Model Version 3 (CAM3). This report documents the performance of these schemes against ARM Mixed-phase Arctic Cloud Experiment (M-PACE) observations using the CAM single column model version (SCAM). SCAM with our new schemes has a more realistic simulation of the cloud phase structure and the partitioning of condensed water into liquid droplets against observations during the M-PACE than the standard CAM simulations.

  10. Cloud Computing og availability

    E-Print Network [OSTI]

    Christensen, Henrik Bćrbak

    Cloud Computing og availability Projekt i pĺlidelighed Henrik Lavdal - 20010210 Sřren Bardino Kaa - 20011654 Gruppe 8 19-03-2010 #12;Cloud Computing og availability Side 2 af 28 Indholdsfortegnelse as a Service (SaaS) ...................................................................9 Availability i cloud

  11. Ad hoc cloud computing 

    E-Print Network [OSTI]

    McGilvary, Gary Andrew

    2014-11-27T23:59:59.000Z

    Commercial and private cloud providers offer virtualized resources via a set of co-located and dedicated hosts that are exclusively reserved for the purpose of offering a cloud service. While both cloud models appeal to ...

  12. Springtime Arctic haze contributions of submicron organic particles from European and Asian combustion sources

    E-Print Network [OSTI]

    Kroll, Jesse

    The composition of Arctic aerosol, especially during the springtime Arctic haze, may play an important role in the radiative balance of the Arctic. The contribution of organic components to Arctic haze has only recently ...

  13. Source attributions of pollution to the Western Arctic during the NASA ARCTAS field campaign

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    multi-model assessment of pollution transport to the Arctic,Oscillation controls air pollution transport to the Arctic,al. : Source attributions of pollution to the Western Arctic

  14. Short-Term Arctic Cloud Statistics at NSA from the Infrared Cloud Imager

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9 SeptemberSetting theSheldonOctober 2002 13 13 13

  15. On Demand Surveillance Service in Vehicular Cloud

    E-Print Network [OSTI]

    Weng, Jui-Ting

    2013-01-01T23:59:59.000Z

    Toward Vehicular Service Cloud . . . . . . . . . . . . . . .4.2 Open Mobile Cloud Requirement . . . . .3.1 Mobile Cloud

  16. Application of Stochastic Radiative Transfer Theory to the ARM Cloud-Radiative Parameterization Problem

    SciTech Connect (OSTI)

    Dana E. Veron

    2012-04-09T23:59:59.000Z

    This project had two primary goals: (1) development of stochastic radiative transfer as a parameterization that could be employed in an AGCM environment, and (2) exploration of the stochastic approach as a means for representing shortwave radiative transfer through mixed-phase layer clouds. To achieve these goals, climatology of cloud properties was developed at the ARM CART sites, an analysis of the performance of the stochastic approach was performed, a simple stochastic cloud-radiation parameterization for an AGCM was developed and tested, a statistical description of Arctic mixed phase clouds was developed and the appropriateness of stochastic approach for representing radiative transfer through mixed-phase clouds was assessed. Significant progress has been made in all of these areas and is detailed in the final report.

  17. Cloud Computing For Bioinformatics

    E-Print Network [OSTI]

    Ferrara, Katherine W.

    Cloud Computing For Bioinformatics EC2 and AMIs #12;Quick-starting an EC2 instance (let's get our feet wet!) Cloud Computing #12;Cloud Computing: EC2 instance Quick Start · On EC2 console, we can click on Launch Instance · This will let us get up and going quickly #12;Cloud Computing: EC2 instance

  18. Tuktoyaktuk : responsive strategies for a new Arctic urbanism

    E-Print Network [OSTI]

    Ritchot, Pamela (Pamela Rae)

    2011-01-01T23:59:59.000Z

    The Canadian Arctic is facing a set of compounding crises that will drastically impact the future of its coastal frontier. At a time when climate change is having a detrimental impact on the Arctic landscape, Northern ...

  19. Economic feasibility of shipping containers through the Arctic

    E-Print Network [OSTI]

    Pollock, Russell (Russell Clayton)

    2009-01-01T23:59:59.000Z

    As the Arctic ice cover continues to retreat, the possibility of regular transit through the Arctic becomes an increasing reality. Liner companies could take advantage of distance savings (up to 4000 nautical miles less ...

  20. arctic ocean experiment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arctic Geosciences Websites Summary: Model predicted warming per century, Bitz et al In a global warming scenario, the Poles warm faster1 2012 Changing Arctic Ocean 506E497E -...

  1. arctic environmental change: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arctic Geosciences Websites Summary: Model predicted warming per century, Bitz et al In a global warming scenario, the Poles warm faster1 2012 Changing Arctic Ocean 506E497E -...

  2. Title: Open Street Map shapefile downloads Data Creator /

    E-Print Network [OSTI]

    Title: Open Street Map shapefile downloads Data Creator / Copyright Owner: OpenStreetMap Publisher applications. Data Type: Vector Digital Data Format: Shapefile Datum / Map Projection: WGS84 Resolution: N site: http://downloads.cloudmade.com/ Citation: OpenStreetMap. "OpenStreetMap shapefile downloads

  3. Lesson Summary Students will learn about the Arctic Beaufort Sea

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Lesson Summary Students will learn about the Arctic Beaufort Sea and research the adaptations of people and animals in the arctic regions. They will also learn about how their actions can affect the Arctic and learn about the International Polar Year. Prior Knowledge & Skills · Research skills

  4. Simulating Arctic Climate Warmth and Icefield Retreat in the

    E-Print Network [OSTI]

    Ingólfsson, Ólafur

    , Devon, and Meighen ice caps in the Canadian Arctic, and possibly in Camp Century (northwest Greenland the entire western Arctic from 57-N to 85-N, including Greenland and smaller scale ice caps in Iceland Project members In the future, Arctic warming and the melting of polar glaciers will be considerable

  5. This content has been downloaded from IOPscience. Please scroll down to see the full text. Download details

    E-Print Network [OSTI]

    Peinke, Joachim

    -limited and shaped pulses the multiphoton and avalanche coefficients were determined using a generic rate equationThis content has been downloaded from IOPscience. Please scroll down to see the full text. Download details: IP Address: 134.106.40.32 This content was downloaded on 13/01/2014 at 11:29 Please note

  6. Evaluation of a New Mixed-Phase Cloud Microphysics Parameterization with CAM3 Single-Column Model and M-PACE Observations

    SciTech Connect (OSTI)

    Liu, Xiaohong; Xie, Shaocheng; Ghan, Steven J.

    2007-12-14T23:59:59.000Z

    Most global climate models generally prescribe the partitioning of condensed water into liquid droplets and ice crystals in mixed-phase clouds according to a temperature-dependent function, which affects modeled cloud phase, cloud lifetime and radiative properties. This study evaluates a new mixed-phase cloud microphysics parameterization (for ice nucleation and water vapor deposition) against the Atmospheric Radiation Measurement (ARM) Mixed-phase Arctic Cloud Experiment (M-PACE) observations using the NCAR Community Atmospheric Model Version 3 (CAM3) single column model (SCAM). It is shown that SCAM with the new scheme produces a more realistic simulation of the cloud phase structure and the partitioning of condensed waterinto liquid droplets against observations during the M-PACE than the standard CAM. Sensitivity test indicates that ice number concentration could play an important role in the simulated mixed-phase cloud microphysics, and thereby needs to be realistically represented in global climate models.

  7. ARM - Publications: Science Team Meeting Documents: Interpretation of cloud

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa-Anomalous Radiative AbsorptionARM InArctic Facility forofCloudtheClouds and

  8. Improvements in Representations of Cloud Microphysics for BBHRP and Models using Data Collected during M-PACE and TWP-ICE

    SciTech Connect (OSTI)

    Greg M. McFarquhar

    2010-02-22T23:59:59.000Z

    In our research we proposed to use data collected during the 2004 Mixed-Phase Arctic Cloud Experiment (MPACE) and the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE) to improve retrievals of ice and mixed-phase clouds, to improve our understanding of how cloud and radiative processes affect cloud life cycles, and to develop and test methods for using ARM data more effectively in model. In particular, we proposed to: 1) use MPACE in-situ data to determine how liquid water fraction and cloud ice and liquid effective radius (r{sub ei} and r{sub ew}) vary with temperature, normalized cloud altitude and other variables for Arctic mixed-phase clouds, and to use these data to evaluate the performance of model parameterization schemes and remote sensing retrieval algorithms; 2) calculate rei and size/shape distributions using TWP-ICE in-situ data, investigate their dependence on cirrus type (oceanic or continental anvils or cirrus not directly traced to convection), and develop and test representations for MICROBASE; 3) conduct fundamental research enhancing our understanding of cloud/radiative interactions, concentrating on effects of small crystals and particle shapes and sizes on radiation; and 4) improve representations of microphysical processes for models (fall-out, effective density, mean scattering properties, rei and rew) and provide them to ARM PIs. In the course of our research, we made substantial progress on all four goals.

  9. RISK ASSESSMENT CLOUD COMPUTING

    E-Print Network [OSTI]

    Columbia University

    SECURITY RESEARCH PRIVACY RISK ASSESSMENT AMC DATA FISMA CLOUD COMPUTING MOBILE DEVICES OPERATIONS application hosted in the cloud · Alaska DHHS fined $1.7M ­ Portable device stolen from vehicle · Mass Eye

  10. Arctic Energy Summit | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA NewslettersPartnership of theArctic Energy Summit Arctic Energy Summit

  11. XSEDE Cloud Survey Report

    E-Print Network [OSTI]

    Walter, M.Todd

    XSEDE Cloud Survey Report David Lifka, Cornell Center for Advanced Computing Ian Foster, ANL, ANL and The University of Chicago A National Science Foundation-sponsored cloud user survey was conducted from September 2012 to April 2013 by the XSEDE Cloud Integration Investigation Team to better

  12. Research Cloud Computing Recommendations

    E-Print Network [OSTI]

    Qian, Ning

    Research Cloud Computing Recommendations SRCPAC December 3, 2014 #12;Mandate and Membership SRCPAC convened this committee in Sept 2014 to investigate the role that cloud computing should play in our & Academic Affairs (Social Work) #12;Questions discussed · What cloud resources are available? · Which kinds

  13. Arctic Energy Technology Development Laboratory

    SciTech Connect (OSTI)

    Sukumar Bandopadhyay; Charles Chamberlin; Robert Chaney; Gang Chen; Godwin Chukwu; James Clough; Steve Colt; Anthony Covescek; Robert Crosby; Abhijit Dandekar; Paul Decker; Brandon Galloway; Rajive Ganguli; Catherine Hanks; Rich Haut; Kristie Hilton; Larry Hinzman; Gwen Holdman; Kristie Holland; Robert Hunter; Ron Johnson; Thomas Johnson; Doug Kame; Mikhail Kaneveskly; Tristan Kenny; Santanu Khataniar; Abhijeet Kulkami; Peter Lehman; Mary Beth Leigh; Jenn-Tai Liang; Michael Lilly; Chuen-Sen Lin; Paul Martin; Pete McGrail; Dan Miller; Debasmita Misra; Nagendra Nagabhushana; David Ogbe; Amanda Osborne; Antoinette Owen; Sharish Patil; Rocky Reifenstuhl; Doug Reynolds; Eric Robertson; Todd Schaef; Jack Schmid; Yuri Shur; Arion Tussing; Jack Walker; Katey Walter; Shannon Watson; Daniel White; Gregory White; Mark White; Richard Wies; Tom Williams; Dennis Witmer; Craig Wollard; Tao Zhu

    2008-12-31T23:59:59.000Z

    The Arctic Energy Technology Development Laboratory was created by the University of Alaska Fairbanks in response to a congressionally mandated funding opportunity through the U.S. Department of Energy (DOE), specifically to encourage research partnerships between the university, the Alaskan energy industry, and the DOE. The enabling legislation permitted research in a broad variety of topics particularly of interest to Alaska, including providing more efficient and economical electrical power generation in rural villages, as well as research in coal, oil, and gas. The contract was managed as a cooperative research agreement, with active project monitoring and management from the DOE. In the eight years of this partnership, approximately 30 projects were funded and completed. These projects, which were selected using an industry panel of Alaskan energy industry engineers and managers, cover a wide range of topics, such as diesel engine efficiency, fuel cells, coal combustion, methane gas hydrates, heavy oil recovery, and water issues associated with ice road construction in the oil fields of the North Slope. Each project was managed as a separate DOE contract, and the final technical report for each completed project is included with this final report. The intent of this process was to address the energy research needs of Alaska and to develop research capability at the university. As such, the intent from the beginning of this process was to encourage development of partnerships and skills that would permit a transition to direct competitive funding opportunities managed from funding sources. This project has succeeded at both the individual project level and at the institutional development level, as many of the researchers at the university are currently submitting proposals to funding agencies, with some success.

  14. Application of Stochastic Radiative Transfer Theory to the ARM Cloud-Radiative Parameterization Problem

    SciTech Connect (OSTI)

    Veron, Dana E

    2009-03-12T23:59:59.000Z

    This project had two primary goals: 1) development of stochastic radiative transfer as a parameterization that could be employed in an AGCM environment, and 2) exploration of the stochastic approach as a means for representing shortwave radiative transfer through mixed-phase layer clouds. To achieve these goals, an analysis of the performance of the stochastic approach was performed, a simple stochastic cloud-radiation parameterization for an AGCM was developed and tested, a statistical description of Arctic mixed phase clouds was developed and the appropriateness of stochastic approach for representing radiative transfer through mixed-phase clouds was assessed. Significant progress has been made in all of these areas and is detailed below.

  15. Download the Final Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014ContributingDOEDepartment ofOff-GasServicesDownload the Final

  16. Circumpolar Arctic Tundra Vegetation Change Is Linked

    E-Print Network [OSTI]

    Bhatt, Uma

    of Plant Biology, Michigan State University, East Lansing, Michigan Received 7 December 2009; accepted 4Circumpolar Arctic Tundra Vegetation Change Is Linked to Sea Ice Decline Uma S. Bhatt*,1 Donald A Institute, and Department of Atmospheric Sciences, University of Alaska Fairbanks, Fairbanks, Alaska

  17. Using Surface Remote Sensors to Derive Radiative Characteristics of Mixed-Phase Clouds: An Example from M-PACE

    SciTech Connect (OSTI)

    de Boer, Gijs; Collins, William D.; Menon, Surabi; Long, Charles N.

    2011-12-02T23:59:59.000Z

    Measurements from ground-based cloud radar, high spectral resolution lidar and microwave radiometer are used in conjunction with a column version of the Rapid Radiative Transfer Model (RRTMG) and radiosonde measurements to derive the surface radiative properties under mixed-phase cloud conditions. These clouds were observed during the United States Department of Energy (US DOE) Atmospheric Radiation Measurement (ARM) Mixed-Phase Arctic Clouds Experiment (M-PACE) between September and November of 2004. In total, sixteen half hour time periods are reviewed due to their coincidence with radiosonde launches. Cloud liquid (ice) water paths are found to range between 11.0-366.4 (0.5-114.1) gm-2, and cloud physical thicknesses fall between 286-2075 m. Combined with temperature and hydrometeor size estimates, this information is used to calculate surface radiative flux densities using RRTMG, which are demonstrated to generally agree with measured flux densities from surface-based radiometric instrumentation. Errors in longwave flux density estimates are found to be largest for thin clouds, while shortwave flux density errors are generally largest for thicker clouds. A sensitivity study is performed to understand the impact of retrieval assumptions and uncertainties on derived surface radiation estimates. Cloud radiative forcing is calculated for all profiles, illustrating longwave dominance during this time of year, with net cloud forcing generally between 50 and 90 Wm-2.

  18. APPLICATION OF CARBOHYDRATES AND PHENOLS AS BIOMARKERS TO STUDY DISSOLVED ORGANIC MATTER RESERVOIRS IN ARCTIC RIVERS.

    E-Print Network [OSTI]

    McMahon, Rachel

    2014-01-22T23:59:59.000Z

    Arctic rivers are the dominant pathways for the transport of terrestrial dissolved organic carbon to the Arctic Ocean, but knowledge of sources, transformations and transfer of organic carbon and nitrogen in Arctic river watersheds is extremely...

  19. Reexamination of the State of the Art Cloud Modeling Shows Real Improvements

    SciTech Connect (OSTI)

    Muehlbauer, Andreas D.; Grabowski, Wojciech W.; Malinowski, S. P.; Ackerman, Thomas P.; Bryan, George; Lebo, Zachary; Milbrandt, Jason; Morrison, H.; Ovchinnikov, Mikhail; Tessendorf, Sarah; Theriault, Julie M.; Thompson, Gregory

    2013-05-25T23:59:59.000Z

    Following up on an almost thirty year long history of International Cloud Modeling Workshops, that started out with a meeting in Irsee, Germany in 1985, the 8th International Cloud Modeling Workshop was held in July 2012 in Warsaw, Poland. The workshop, hosted by the Institute of Geophysics at the University of Warsaw, was organized by Szymon Malinowski and his local team of students and co-chaired by Wojciech Grabowski (NCAR/MMM) and Andreas Muhlbauer (University of Washington). International Cloud Modeling Workshops have been held traditionally every four years typically during the week before the International Conference on Clouds and Precipitation (ICCP) . Rooted in the World Meteorological Organization’s (WMO) weather modification program, the core objectives of the Cloud Modeling Workshop have been centered at the numerical modeling of clouds, cloud microphysics, and the interactions between cloud microphysics and cloud dynamics. In particular, the goal of the workshop is to provide insight into the pertinent problems of today’s state-of-the-art of cloud modeling and to identify key deficiencies in the microphysical representation of clouds in numerical models and cloud parameterizations. In recent years, the workshop has increasingly shifted the focus toward modeling the interactions between aerosols and clouds and provided case studies to investigate both the effects of aerosols on clouds and precipitation as well as the impact of cloud and precipitation processes on aerosols. This time, about 60 (?) scientists from about 10 (?) different countries participated in the workshop and contributed with discussions, oral and poster presentations to the workshop’s plenary and breakout sessions. Several case leaders contributed to the workshop by setting up five observationally-based case studies covering a wide range of cloud types, namely, marine stratocumulus, mid-latitude squall lines, mid-latitude cirrus clouds, Arctic stratus and winter-time orographic clouds and precipitation. Interested readers are encouraged to visit the workshop website at http://www.atmos.washington.edu/~andreasm/workshop2012/ and browse through the list of case studies. The web page also provides a detailed list of participants and the workshop agenda. Aside from contributed oral and poster presentations during the workshop’s plenary sessions, parallel breakout sessions focused on presentations and discussions of the individual cases. A short summary and science highlights from each of the cases is presented below.

  20. Working inside the Cloud: Developing a Cloud Computing Infrastructure

    E-Print Network [OSTI]

    Krause, Rolf

    UROP 2012 Working inside the Cloud: Developing a Cloud Computing Infrastructure Cloud computing and live-migration of running VM. USI participates to the development of the first European Cloud computing for a motivated student that will have a chance to improve his/her knowledge on Cloud computing, Java and/or Ruby

  1. Dynamic Cloud Resource Reservation via Cloud Brokerage

    E-Print Network [OSTI]

    Li, Baochun

    Department of Electrical and Computer Engineering, University of Toronto Department of Electrical@eecg.toronto.edu, liang@utoronto.ca Abstract--Infrastructure-as-a-Service clouds offer diverse pric- ing options

  2. BuildingSync File Download | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Download BuildingSync represents a standard schema for organizing and expressing energy audit data, developed using the standard energy data terminology defined in the Building...

  3. E-Print Network 3.0 - arctic cooling silentium Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12;Abstract The Arctic is melting ...fast. 12;IMPACTS OF A WARMING ARCTIC... 's Greenhouse Effect Thesur face cools by radiating heat energyupward. ... Source: Zender, Charles -...

  4. An Autonomous Reliabilit Cloud Comput

    E-Print Network [OSTI]

    Buyya, Rajkumar

    An Autonomous Reliabilit Ami Cloud Comput Department of Computing and Informa Abstract--Cloud computing paradigm allo based access to computing and storages s Internet. Since with advances of Cloud. Keywords- Cloud computing; SLA negotiat I. INTRODUCTION Cloud computing has transferred the services

  5. arctic endemic brown: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geosciences Websites Summary: 12;4 C. Duguay, Interdisciplinary Centre on Climate Change & Department of Geography-Harte, Institute of Arctic Biology, University of Alaska...

  6. arctic populations differential: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    climate connection, total solar irradiance, Atlantic meridional overturning circulation, climate variability. Willie W. -h. Soon 2009-01-01 168 Arctic catastrophes in an idealized...

  7. arctic petroleum operators: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    operations waste water injection and disposal wells, geothermal resource development, and EORCO2 Southern California, University of 66 A Holocene record of changing Arctic Ocean...

  8. arctic region baltic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    look at the higher trophic re-lationships of the crustacean zooplankton of arctic polygon depression ponds, hoping not only to discover which species were predaceous, but to...

  9. arctic study area: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Explosion At The Polar Arctic Sunrise Physics (arXiv) Summary: We attempt is to provide accumulated evidence and qualitative understanding of the associated atmospheric phenomena...

  10. arctic polar vortex: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Explosion At The Polar Arctic Sunrise Physics (arXiv) Summary: We attempt is to provide accumulated evidence and qualitative understanding of the associated atmospheric phenomena...

  11. Potential Oil Production from the Coastal Plain of the Arctic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Slope ANWR: Arctic National Wildlife Refuge BBbls: billion barrels Bbls: barrels Daily Petroleum Production Rate: The amount of petroleum extracted per day from a well, group of...

  12. arctic crude oil: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    water to form an emulsion that often looks like chocolate pudding. This emulsion 89 Lesson Plan Arctic Biome Geosciences Websites Summary: -class instruction and small group...

  13. Potential Oil Production from the Coastal Plain of the Arctic...

    Gasoline and Diesel Fuel Update (EIA)

    Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment Executive Summary This Service Report, Potential Oil Production from the...

  14. Potential Oil Production from the Coastal Plain of the Arctic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment 2. Analysis Discussion Resource Assessment The USGS most recent...

  15. Potential Oil Production from the Coastal Plain of the Arctic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment References Energy Information Administration, Annual Energy Outlook 2000,...

  16. arctic ocean sediments: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Is the central Arctic Ocean a sediment starved basin, University of Bergen, Norway d Byrd Polar Research Center, Ohio State University, USA Abstract Numerous short...

  17. arctic marine environment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Technology, Cambridge, MA Patrikalakis, Nicholas M. 4 UiT The Arctic University of Norway Fakultet for biovitenskap, fiskeri og konomi -Inst. for arktisk og marin biologi...

  18. arctic ocean sediment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Is the central Arctic Ocean a sediment starved basin, University of Bergen, Norway d Byrd Polar Research Center, Ohio State University, USA Abstract Numerous short...

  19. arctic lake correlate: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alaskan arctic lake Sally MacIntyre,a,b* Geosciences Websites Summary: . In summers with cold surface temperatures, the surface energy fluxes which induce mixing by heat loss...

  20. arctic marine ecosystem: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Bamboung marine protected area social-ecosystem. Key words Social-ecological system, climate Paris-Sud XI, Universit de 6 Perfluoroalkyl Contaminants in an Arctic Marine...

  1. alaskan arctic tundra: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alaskan arctic lake Sally MacIntyre,a,b* Geosciences Websites Summary: . In summers with cold surface temperatures, the surface energy fluxes which induce mixing by heat loss...

  2. arctic charr salvelinus: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    have raised concern over potential responses of Arctic charr, Salvelinus alpinus, a cold-adapted freshwateranadromous fish species in (more) Sinnatamby, Ramila Niloshini...

  3. arctic char salvelinus: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    have raised concern over potential responses of Arctic charr, Salvelinus alpinus, a cold-adapted freshwateranadromous fish species in (more) Sinnatamby, Ramila Niloshini...

  4. arctic terns sterna: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    together. Amie L. Black; Antony W. Diamond 2 Duffy et al.: Arctic Tern migration over Patagonia 155 Marine Ornithology 41: 155159 (2013) Environmental Sciences and Ecology Websites...

  5. arctic climate system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alaskan arctic lake Sally MacIntyre,a,b* Geosciences Websites Summary: . In summers with cold surface temperatures, the surface energy fluxes which induce mixing by heat loss...

  6. alaskan arctic coastal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alaskan arctic lake Sally MacIntyre,a,b* Geosciences Websites Summary: . In summers with cold surface temperatures, the surface energy fluxes which induce mixing by heat loss...

  7. arctic tundra vegetation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of woody vegetation in arctic tundra? Biology and Medicine Websites Summary: 33124, USA. Global climate warming is projected to promote the increase of woody plants, especially of...

  8. arctas arctic research: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arctic. It often serves as the measuring stick for global climate change. It is where warming has been strongest in the past century, Environmental Sciences and Ecology Websites...

  9. ALUMINUM DISTRIBUTIONSIN THE EURASIAN BASIN OF THE ARCTIC OCEAN

    E-Print Network [OSTI]

    Luther, Douglas S.

    ALUMINUM DISTRIBUTIONSIN THE EURASIAN BASIN OF THE ARCTIC OCEAN A THESISSUBMITTEDTO THE GRADUATE Section(1994)cruiseswere analyzed for their aluminum (Al) content; these two data setswere then combined

  10. arctic marine food: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Next Page Last Page Topic Index 1 Perfluoroalkyl Contaminants in an Arctic Marine Food Web: Trophic Environmental Sciences and Ecology Websites Summary: Perfluoroalkyl...

  11. Clouds up close | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interactions that affect clouds and thus improve climate projections. Contact Heng Xiao Pacific Northwest National Laboratory 902 Battelle Blvd., PO Box 999 MSIN: K9-30...

  12. Finance Idol Word Cloud

    Broader source: Energy.gov [DOE]

    This word cloud represents the topics discussed during the Big and Small Ideas: How to Lower Solar Financing Costs breakout session at the SunShot Grand Challenge.

  13. SURFACE CLOUD RADIATIVE FORCING, CLOUD FRACTION AND CLOUD ALBEDO: THEIR RELATIONSHIP AND MULTISCALE VARIATION

    E-Print Network [OSTI]

    that have been used to quantify the effect of clouds on radiation budget in both modeling and observationalSURFACE CLOUD RADIATIVE FORCING, CLOUD FRACTION AND CLOUD ALBEDO: THEIR RELATIONSHIP AND MULTISCALE/Atmospheric Sciences Division Brookhaven National Laboratory P.O. Box, Upton, NY www.bnl.gov ABSTRACT Cloud-radiation

  14. Climate-derived tensions in Arctic security.

    SciTech Connect (OSTI)

    Backus, George A.; Strickland, James Hassler

    2008-09-01T23:59:59.000Z

    Globally, there is no lack of security threats. Many of them demand priority engagement and there can never be adequate resources to address all threats. In this context, climate is just another aspect of global security and the Arctic just another region. In light of physical and budgetary constraints, new security needs must be integrated and prioritized with existing ones. This discussion approaches the security impacts of climate from that perspective, starting with the broad security picture and establishing how climate may affect it. This method provides a different view from one that starts with climate and projects it, in isolation, as the source of a hypothetical security burden. That said, the Arctic does appear to present high-priority security challenges. Uncertainty in the timing of an ice-free Arctic affects how quickly it will become a security priority. Uncertainty in the emergent extreme and variable weather conditions will determine the difficulty (cost) of maintaining adequate security (order) in the area. The resolution of sovereignty boundaries affects the ability to enforce security measures, and the U.S. will most probably need a military presence to back-up negotiated sovereignty agreements. Without additional global warming, technology already allows the Arctic to become a strategic link in the global supply chain, possibly with northern Russia as its main hub. Additionally, the multinational corporations reaping the economic bounty may affect security tensions more than nation-states themselves. Countries will depend ever more heavily on the global supply chains. China has particular needs to protect its trade flows. In matters of security, nation-state and multinational-corporate interests will become heavily intertwined.

  15. Evaluation of A New Mixed-Phase Cloud Microphysics Parameterization with the NCAR Climate Atmospheric Model (CAM3) and ARM Observations Fourth Quarter 2007 ARM Metric Report

    SciTech Connect (OSTI)

    X Liu; SJ Ghan; S Xie; J Boyle; SA Klein

    2007-09-30T23:59:59.000Z

    Mixed-phase clouds are composed of a mixture of cloud droplets and ice crystals. The cloud microphysics in mixed-phase clouds can significantly impact cloud optical depth, cloud radiative forcing, and cloud coverage. However, the treatment of mixed-phase clouds in most current climate models is crude and the partitioning of condensed water into liquid droplets and ice crystals is prescribed as temperature dependent functions. In our previous 2007 ARM metric reports a new mixed-phase cloud microphysics parameterization (for ice nucleation and water vapor deposition) was documented and implemented in the NCAR Community Atmospheric Model Version 3 (CAM3). The new scheme was tested against the Atmospheric Radiation Measurement (ARM) Mixed-phase Arctic Cloud Experiment (M-PACE) observations using the single column modeling and short-range weather forecast approaches. In this report this new parameterization is further tested with CAM3 in its climate simulations. It is shown that the predicted ice water content from CAM3 with the new parameterization is in better agreement with the ARM measurements at the Southern Great Plain (SGP) site for the mixed-phase clouds.

  16. Sandia Energy - Cloud Computing Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Computing Services Home Stationary Power Safety, Security & Resilience of Energy Infrastructure Grid Modernization Cyber Security for Electric Infrastructure Cloud Computing...

  17. Profiling clouds' inner life | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    life Released: May 29, 2014 Subgrid modeling pinpoints cloud transformation to uncover true reflective power An accurate understanding of clouds over the ocean is important for...

  18. CONTRIBUTED Green Cloud Computing

    E-Print Network [OSTI]

    Tucker, Rod

    to manage energy consumption across the entire information and communications technology (ICT) sector. While considers both public and private clouds, and includes energy consumption in switching and transmission to energy consumption and cloud computing seems to be an alternative to office-based computing. By Jayant

  19. Toward Securing Sensor Clouds

    E-Print Network [OSTI]

    · 32 GB microSDHC storage 2 Image from http://hothardware.com/News/Leaked-Motorola-DROID-X-2-Daytona Computer Mini Computer External Storage External Storage Router Router Router Router Cloud Computing Cloud: micro surveys, amber alerts 4 #12;Router Router Router Router Mini Computer Mini Computer Mini Computer

  20. Critical Mechanisms for the Formation of Extreme Arctic Sea-Ice Extent in the Summers of 2007 and 1996

    SciTech Connect (OSTI)

    Dong, Xiquan; Zib, Benjamin J.; Xi, Baike; Stanfield, Ryan; Deng, Yi; Zhang, Xiangdong; Lin, B.; Long, Charles N.

    2014-07-29T23:59:59.000Z

    A warming Arctic climate is undergoing significant e 21 nvironmental change, most evidenced by the reduction of Arctic sea-ice extent during the summer. In this study, we examine two extreme anomalies of September sea-ice extent in 2007 and 1996, and investigate the impacts of cloud fraction (CF), atmospheric precipitable water vapor (PWV), downwelling longwave flux (DLF), surface air temperature (SAT), pressure and winds on the sea-ice variation in 2007 and 1996 using both satellite-derived sea-ice products and MERRA reanalysis. The area of the Laptev, East Siberian and West Chukchi seas (70-90oN, 90-180oE) has experienced the largest variation in sea-ice extent from year-to-year and defined here as the Area Of Focus (AOF). The record low September sea-ice extent in 2007 was associated with positive anomalies 30 of CF, PWV, DLF, and SAT over the AOF. Persistent anti-cyclone positioned over the Beaufort Sea coupled with low pressure over Eurasia induced easterly zonal and southerly meridional winds. In contrast, negative CF, PWV, DLF and SAT anomalies, as well as opposite wind patterns to those in 2007, characterized the 1996 high September sea-ice extent. Through this study, we hypothesize the following positive feedbacks of clouds, water vapor, radiation and atmospheric variables on the sea-ice retreat during the summer 2007. The record low sea-ice extent during the summer 2007 is initially triggered by the atmospheric circulation anomaly. The southerly winds across the Chukchi and East Siberian seas transport warm, moist air from the north Pacific, which is not only enhancing sea-ice melt across the AOF, but also increasing clouds. The positive cloud feedback results in higher SAT and more sea-ice melt. Therefore, 40 more water vapor could be evaporated from open seas and higher SAT to form more clouds, which will enhance positive cloud feedback. This enhanced positive cloud feedback will then further increase SAT and accelerate the sea-ice retreat during the summer 2007.

  1. Development and testing of an aerosol/stratus cloud parameterization scheme for middle and high latitudes. Year 3 technical progress report, November 1, 1996--August 31, 1997

    SciTech Connect (OSTI)

    Kreidenweis, S.M.; Cotton, W.R.

    1997-09-02T23:59:59.000Z

    At the present time, general circulation models (GCMs) poorly represent clouds, to the extent that they cannot be relied upon to simulate the climatic effects of increasing concentrations of greenhouse gases, or of anthropogenic perturbations to concentrations of cloud condensation nuclei (CCN) or ice nuclei (IN). The net radiative forcing of clouds varies strongly with latitude. Poleward of 30 degrees in both hemispheres, low-level clouds create a net cooling effect corresponding to radiative divergences of {minus}50 to {minus}100 W/m{sup 2}. It is likely that a combination of fogs, boundary-layer stratocumulus, and stratus clouds are the main contributors to this forcing. Models of the response of the microphysical and radiative properties of clouds to changes in aerosol abundance, for a variety of large-scale meteorological forcings, are important additions to GCMs used for the study of the role of Arctic systems in global climate. The overall objective of this research is the development of an aerosol/cloud microphysics parameterization of mixed-phase stratus and boundary-layer clouds which responds to variations in CCN and IN. The parameterization is to be designed for ultimate use in GCM simulations as a tool in understanding the role of CCN, IN, and Arctic clouds in radiation budgets. Several versions of the CSU RAMS (Regional Atmospheric Modeling System) will be used during the course of this work. The parameterizations developed in this research are intended for application in a single-column cloud model, designed as an adaptive grid model which can interface into a GCM vertical grid through distinct layers of the troposphere where the presence of layer clouds is expected.

  2. July 2012July 2012 Cloud Computing and Virtualization:Cloud Computing and Virtualization

    E-Print Network [OSTI]

    Liu, Jiangchuan (JC)

    July 2012July 2012 Cloud Computing and Virtualization:Cloud Computing and Virtualization/26/2633 Recent: CloudRecent: Cloud The fast growth of cloud computing Cloud file storage/synchronization services Google entries about cloud computing: 184,000,000 #12;July 2012July 2012 44/26/2644 Our CloudOur Cloud 7

  3. Network Modeling of Arctic Melt Ponds Meenakshi Barjatiaa

    E-Print Network [OSTI]

    Golden, Kenneth M.

    . In late spring and summer, the albedo of the ice pack is determined primarily by melt ponds that form­albedo feedback [7], and has played a significant role in the decline of the summer Arctic ice pack [8]. Sea ice precipitous losses of summer Arctic sea ice have outpaced the pro- jections of most climate models. Efforts

  4. THE SHRINKING ARCTIC ICE CAP From the IPCC* Summary For Policymakers...

    E-Print Network [OSTI]

    THE SHRINKING ARCTIC ICE CAP From the IPCC* Summary For Policymakers... "Sea ice is projected] - a phenomenon sometimes referred to as "Arctic amplification". As Arctic temperatures rise, sea ice melts for the 20th century. The rate at which the modeled 21st century Arctic warming and sea ice melting occurs

  5. When Clouds become Green: the Green Open Cloud Architecture

    E-Print Network [OSTI]

    Boyer, Edmond

    of a new original energy-efficient Cloud infrastructure called Green Open Cloud. Keywords. Energy with the support of energy-efficient frameworks dedicated to Cloud architectures. Virtualization is a key feature of the energy-aware Cloud infras- tructure that we propose. The conclusion and future works are reviewed

  6. 5, 90399063, 2005 Arctic aerosol effect

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Radiation Measurement (ARM) data, we find surface cloud radiative forcing (SCRF) is -22 W/m 2 for shortwave. If aerosols are taken into account, the SCRF has been increased during winter while15 negative SCRF has been

  7. 2012 Changing Arctic Ocean 506E/497E -Lecture 17 -Woodgate Global models in the Arctic

    E-Print Network [OSTI]

    Washington at Seattle, University of

    ;2 2012 Changing Arctic Ocean 506E/497E - Lecture 17 - Woodgate Deep waters of the Atlantic from http://sam://iodp.tamu.edu/publications/PR/303PR/images/Fig01.jpg Dickson et al, refs Denmark Strait ~ 650m deep Iceland Scotland Ridge ~ 400

  8. Attribution Analysis of Cloud Feedback

    E-Print Network [OSTI]

    Zhou, Chen

    2014-07-15T23:59:59.000Z

    -term global warming. If the EIS-low cloud fraction relationship holds under global warming, it is likely that the tropical low cloud fraction change is non-negative. Climate models without significant negative low cloud fraction change suggest that the cloud...

  9. Convective Cloud Lifecycles Lunchtime seminar

    E-Print Network [OSTI]

    Plant, Robert

    Convective Cloud Lifecycles Lunchtime seminar 19th May 2009 Bob Plant Department of Meteorology, University of Reading, UK #12;Introduction Obtain life cycle statistics for clouds in CRM simulations Why Conclusions Convective Cloud Lifecycles ­ p.1/3 #12;Why bother? Convective Cloud Lifecycles ­ p.2/3 #12;Some

  10. Development and testing of an aerosol/stratus cloud parameterization scheme for middle and high latitudes. Final technical progress report, November 1, 1994--October 31, 1998

    SciTech Connect (OSTI)

    Kreidenweis, S.M.; Cotton, W.R.

    1999-05-20T23:59:59.000Z

    At the present time, general circulation models (GCMs) poorly represent clouds, to the extent that they cannot be relied upon to simulate the climatic effects of increasing concentrations of greenhouse gases, or of anthropogenic perturbations to concentrations of cloud condensation nuclei (CCN) or ice nuclei (IN). The long-term objective of this research was the development of an aerosol/cloud microphysics parameterization of mixed-phase stratus and boundary-layer clouds which responds to variations in CCN and IN. The work plan was to perform simulations of these cloud systems to gain understanding of their dynamics and microphysics, especially how aerosols affect cloud development and properties, that cold then be used to guide parameterizations. Several versions of the CSU RAMS (Regional Atmospheric Modeling System), modified to treat Arctic clouds, have been used during the course of this work. The authors also developed a new modeling system, the Trajectory Ensemble Model, to perform detailed chemical and microphysical simulations off-line from the host LES model. The increased understanding of the cloud systems investigated in this research can be applied to a single-column cloud model, designed as an adaptive grid model which can interface into a GCM vertical grid through distinct layers of the troposphere where the presence of layer clouds is expected.

  11. First observations of tracking clouds using scanning ARM cloud radars

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Borque, Paloma; Giangrande, Scott; Kollias, Pavlos

    2014-12-01T23:59:59.000Z

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (‘‘first echo’’). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud fieldmore »and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.« less

  12. First observations of tracking clouds using scanning ARM cloud radars

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Borque, Paloma [McGill Univ., Montreal, QC (Canada); Giangrande, Scott [Brookhaven National Lab. (BNL), Upton, NY (United States); Kollias, Pavlos [McGill Univ., Montreal, QC (Canada)

    2014-12-01T23:59:59.000Z

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (‘‘first echo’’). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud field and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.

  13. Migrating enterprise storage applications to the cloud

    E-Print Network [OSTI]

    Vrable, Michael Daniel

    2011-01-01T23:59:59.000Z

    2.1 Cloud Providers . . . . . . . . . . . .2.1.1 Cloud Storage . . . . . . . . .2.1.2 Cloud Computation . . . . . . 2.2 Enterprise Storage

  14. A developer's survey on different cloud platforms

    E-Print Network [OSTI]

    Doan, Dzung

    2009-01-01T23:59:59.000Z

    1 Introduction Cloud computing is a computing paradigm inFor this reason, cloud computing has also been describedparallel processing. Cloud computing can be contrasted with

  15. Thin Cloud Length Scales Using CALIPSO and CloudSat Data

    E-Print Network [OSTI]

    Solbrig, Jeremy E.

    2010-10-12T23:59:59.000Z

    Thin clouds are the most difficult cloud type to observe. The recent availability of joint cloud products from the active remote sensing instruments aboard CloudSat and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO) facilitates...

  16. Download/Export Wimba Recordings Please see the instructions below on how to download/export Wimba recordings. If you need any

    E-Print Network [OSTI]

    Gaucher, Eric

    1 Download/Export Wimba Recordings Please see the instructions below on how to download/export and MP4 allows you to download both audio and video contents of the archive in .mp4 format. Export board /voice podcast you want to export. 5. Select Export on the top menu bar. You have the option

  17. Ice Heating Up Cold Clouds | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ice Heating Up Cold Clouds Ice Heating Up Cold Clouds Released: October 04, 2011 In a heated battle, ice crystals win the competition for cloud water vapor The mighty cloud ice...

  18. Cloud Based Applications and Platforms (Presentation)

    SciTech Connect (OSTI)

    Brodt-Giles, D.

    2014-05-15T23:59:59.000Z

    Presentation to the Cloud Computing East 2014 Conference, where we are highlighting our cloud computing strategy, describing the platforms on the cloud (including Smartgrid.gov), and defining our process for implementing cloud based applications.

  19. National Strategy for the Arctic Region Stakeholder Outreach...

    Energy Savers [EERE]

    energy deployment in the Arctic Region. The purpose of this round is to give feedback on the elements of the draft plan. DOE encourages stakeholders to provide comments on...

  20. Arctic Ecologies: The Politics and Poetics of Northern Literary Environments

    E-Print Network [OSTI]

    Athens, Allison Katherine

    2013-01-01T23:59:59.000Z

    which lives mainly on pack ice and is a powerful swimmerfor this change: “Arctic pack ice has formed progressivelychanges have resulted in pack ice that is a less stable

  1. National Strategy for the Arctic Tribal Consultation Session...

    Energy Savers [EERE]

    Tribal Consultation Session: Fairbanks National Strategy for the Arctic Tribal Consultation Session: Fairbanks February 19, 2015 9:30AM to 10:30AM AKST Fairbanks, Alaska BLM...

  2. Potential Oil Production from the Coastal Plain of the Arctic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment 3. Summary The 1.5 million-acre coastal plain of the 19 million-acre...

  3. arctic ocean ice: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AD of transient model simulations and a new type of sen- sitivity experiments with artificial sea ice growth Born, Andreas 320 The Thinning of Arctic Sea Ice, 19882003: Have...

  4. National Strategy for the Arctic Region Tribal Consultation Session...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arctic Region Tribal Consultation Session: Dutch HarborUnalaska February 27, 2015 10:00AM to 12:00PM EST Unalaska, Alaska Unalaska Public Library 64 Eleanor Dr. Unalaska, AK 99685...

  5. arctic ocean freshwater: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geosciences Websites Summary: Model predicted warming per century, Bitz et al In a global warming scenario, the Poles warm faster1 2012 Changing Arctic Ocean 506E497E -...

  6. arctic haze: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Srinivas 7 NASA ARCTAS PROJECT The Arctic. It often serves as the measuring stick for global climate change. It is where warming has been strongest in the past century,...

  7. The Genetic Prehistory of the New World Arctic

    E-Print Network [OSTI]

    Raghavan, Maanasa; DeGiorgio, Michael; Albrechtsen, Anders; Moltke, Ida; Skoglund, Pontus; Korneliussen, Thorfinn S.; Grřnnow, Bjarne; Appelt, Martin; Gullřv, Hans Christian; Friesen, T. Max; Fitzhugh, William; Malmström, Helena; Rasmussen, Simon; Olsen, Jesper; Melchior, Linea; Fuller, Benjamin T.; Fahrni, Simon M.; Stafford, Thomas Jr; Grimes, Vaughan; Renouf, M. A. Priscilla; Cybulski, Jerome; Lynnerup, Niels; Lahr, Marta Mirazon; Britton, Kate; Knecht, Rick; Arneborg, Jette; Metspalu, Mait; Cornejo, Omar E.; Malaspinas, Anna-Sapfo; Wang, Yong; Rasmussen, Morten; Raghavan, Vibha; Hansen, Thomas V. O.; Khusnutdinova, Elza; Pierre, Tracey; Dneprovsky, Kirill; Andreasen, Claus; Lange, Hans; Hayes, M. Geoffrey; Coltrain, Joan; Spitsyn, Victor A.; Götherström, Anders; Orlando, Ludovic; Kivisild, Toomas; Villems, Richard; Crawford, Michael H.; Nielsen, Finn C.; Dissing, Jřrgen; Heinemeier, Jan; Meldgaard, Morten; Bustamante, Carlos; O’Rourke, Dennis H.; Jakobsson, Matthias; Gilbert, M. Thomas P.; Nielsen, Rasmus; Willerslev, Eske

    2014-08-29T23:59:59.000Z

    archaeological phases within a culture are separated by a white line. Dark reddish-brown towards the top of the figure indicates historical times. Cultural contexts from which samples included in this study arise are highlighted in yellow. B) A two... -Eskimo beginnings in North America: a new discovery at Kuzitrin Lake, Alaska. Etudes Inuit 22, 61-81 (1998). 2. H. B. Collins, in Prehistoric cultural relations between the arctic and temperate zones of North America, J. M. Campbell, Ed. (Arctic Institute...

  8. Attribution Analysis of Cloud Feedback 

    E-Print Network [OSTI]

    Zhou, Chen

    2014-07-15T23:59:59.000Z

    Uncertainty on cloud feedback is the primary contributor to the large spread of equilibrium climate sensitivity (ECS) in climate models. In this study, we compare the short-term cloud feedback in climate models with observations, and evaluate...

  9. Modeling Incoherent Electron Cloud Effects

    E-Print Network [OSTI]

    Benedetto, E.

    2008-01-01T23:59:59.000Z

    electron-cloud effects and synchrotron radiation can lead toelectron-cloud effects and synchrotron radiation can lead tocloud phenomena in positrons storage rings the effect of syn- chrotron radiation

  10. Secure Cloud Computing With Brokered Trusted

    E-Print Network [OSTI]

    ) ·Audio ·QualComm 7201 528MHZ ·64MB Ram ·MicroSD Slow Storage ·Currently NO SIM CHIPS Monday, March 29 External Storage External Storage Router Router Router Router Cloud Computing Cloud Computing Cloud Storage External Storage Router Router Router Router Cloud Computing Cloud Computing Cloud Computing Tower

  11. Opaque cloud detection

    DOE Patents [OSTI]

    Roskovensky, John K. (Albuquerque, NM)

    2009-01-20T23:59:59.000Z

    A method of detecting clouds in a digital image comprising, for an area of the digital image, determining a reflectance value in at least three discrete electromagnetic spectrum bands, computing a first ratio of one reflectance value minus another reflectance value and the same two values added together, computing a second ratio of one reflectance value and another reflectance value, choosing one of the reflectance values, and concluding that an opaque cloud exists in the area if the results of each of the two computing steps and the choosing step fall within three corresponding predetermined ranges.

  12. Command Line Tools Cloud Computing

    E-Print Network [OSTI]

    Ferrara, Katherine W.

    Command Line Tools Cloud Computing #12;Everybody (or nearly everybody) loves GUI. AWS Command Line of advanced features. After surviving the cloud computing class till now, Your are almost a command line guru! You need AWS command line tools, ec2-api-tools, to maximize the power of AWS cloud computing. Plugging

  13. 8, 96979729, 2008 FRESCO+ cloud

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 8, 9697­9729, 2008 FRESCO+ cloud retrieval algorithm P. Wang et al. Title Page Abstract Chemistry and Physics Discussions FRESCO+: an improved O2 A-band cloud retrieval algorithm for tropospheric on behalf of the European Geosciences Union. 9697 #12;ACPD 8, 9697­9729, 2008 FRESCO+ cloud retrieval

  14. 3, 33013333, 2003 Cirrus cloud

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 3, 3301­3333, 2003 Cirrus cloud occurrence as function of ambient relative humidity J. Str and Physics Discussions Cirrus cloud occurrence as function of ambient relative humidity: A comparison¨om (johan@itm.su.se) 3301 #12;ACPD 3, 3301­3333, 2003 Cirrus cloud occurrence as function of ambient

  15. Cloud Formation, Evolution and Destruction

    E-Print Network [OSTI]

    Estalella, Robert

    Chapter 4 Cloud Formation, Evolution and Destruction We now begin to trace the journey towards a star. How long does this take? The answer is surprisingly short: a good many clouds already contain new stars and these stars tend to be young. The typical cloud cannot spend long, if any time at all

  16. 5, 60136039, 2005 FRESCO cloud

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 5, 6013­6039, 2005 FRESCO cloud algorithm N. Fournier et al. Title Page Abstract Introduction cloud information over deserts from SCIAMACHY O2 A-band N. Fournier 1 , P. Stammes 1 , M. de Graaf 1 , R, 6013­6039, 2005 FRESCO cloud algorithm N. Fournier et al. Title Page Abstract Introduction Conclusions

  17. NIST Cloud Computing Reference Architecture

    E-Print Network [OSTI]

    Perkins, Richard A.

    NIST Cloud Computing Reference Architecture Recommendations of the National Institute of Standards Publication 500-292 #12;i NIST Special Publication 500-292 NIST Cloud Computing Reference Architecture, John Messina, Lee Badger and Dawn Leaf Information Techonology Laboratory Cloud Computing Program

  18. Stratocumulus Clouds ROBERT WOOD

    E-Print Network [OSTI]

    Wood, Robert

    by latent heating in updrafts and cooling in downdrafts. Turbulent eddies and evaporative cooling drives, stratification of the STBL, and in some cases cloud breakup. Feedbacks between radiative cooling, precipitation- way interactions may be a key driver of aerosol concentrations over the remote oceans. Aerosol

  19. A Climatology of the Arctic on Mid-Tropospheric Temperature Regulation

    E-Print Network [OSTI]

    Anthony, Jeremy Patrick

    2014-06-24T23:59:59.000Z

    The Arctic is a unique and complex environment. Many factors play a role in determining the long-term climate of the Arctic, including mesoscale weather systems and many complex ice-albedo feedback mechanisms. Previous studies determined using real...

  20. Small Thaw Ponds: An Unaccounted Source of Methane in the Canadian High Arctic

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    other Archaea in high Arctic peat. ISME J 2: 37–48. 38. Hřjmethanogenic pathways in a peat from subarctic permafrost.Canadian Arctic tundra leads to peat erosion and slumping in

  1. Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part I: Cloud Radiative Kernels

    E-Print Network [OSTI]

    Hartmann, Dennis

    radiative forcing. The global and annual mean model-simulated cloud feedback is dominated by contributions to a hypothetical cloudless but other- wise identical planet, the global and annual mean effect of clouds at the top is how cloud radiative effects will change as the planet warms because of long-lived greenhouse gases

  2. Review: The Secret War Between Downloading and Uploading: Tales of the Computer as a Culture Machine by Peter Lunenfeld

    E-Print Network [OSTI]

    Milbourn, Amanda

    2013-01-01T23:59:59.000Z

    The Secret War Between Downloading and Uploading: Tales ofISBN 9780262015479. In The Secret War Between Downloadingproduced cultural goods. The Secret War Between Downloading

  3. Simulating mixed-phase Arctic stratus clouds: Sensitivity to ice initiation mechanisms

    E-Print Network [OSTI]

    Sednev, I.

    2009-01-01T23:59:59.000Z

    parameterization in BRM scheme accounts for two general mech- anisms distinguishable according to the involvement of liquid phase in the ice

  4. High Aitken Nucleus Concentrations Above Cloud Tops in the Arctic Timothy J. Garrett*

    E-Print Network [OSTI]

    cavity by passing the air flow through a cyclone separator. The separator removes droplets larger than 5

  5. Using A-Train Arctic cloud observations to constrain and improve climate models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrinceton PlasmaAfternoon4.CCSM4large.jpgbriefingUses of radiation

  6. Microphysical Properties of Single and Mixed-Phase Arctic Clouds Derived from AERI Observations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals fromprocess usedGE ResearchersIndustrial| The

  7. Session Papers North Slope of Alaska and Adjacent Arctic Ocean Cloud

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9 September 2009Energy,ServicesServicesSession Papers

  8. Review of technology for Arctic offshore oil and gas recovery. Appendices

    SciTech Connect (OSTI)

    Sackinger, W. M.

    1980-06-06T23:59:59.000Z

    This volume contains appendices of the following: US Geological Survey Arctic operating orders, 1979; Det Noske Vertas', rules for the design, construction and inspection of offshore technology, 1977; Alaska Oil and Gas Association, industry research projects, March 1980; Arctic Petroleum Operator's Association, industry research projects, January 1980; selected additional Arctic offshore bibliography on sea ice, icebreakers, Arctic seafloor conditions, ice-structures, frost heave and structure icing.

  9. Impacts of Climate Change on Human Access and Resource Development in the Arctic

    E-Print Network [OSTI]

    Stephenson, Scott Ryan

    2014-01-01T23:59:59.000Z

    September 22). Reuters. 56. Budzik, P. (2009). Arctic oilin Alaska, and one in Norway (Budzik, 2009). These fields

  10. Groundbased spectroscopic measurements of stratospheric NO[sub 2] and OClO in arctic winter 1989/90

    SciTech Connect (OSTI)

    Fiedler, M.; Frank, H.; Gomer, T.; Hausmann, M.; Pfeilsticker, K.; Platt, U.

    1993-05-21T23:59:59.000Z

    The authors report on column measurements of stratospheric nitrogen dioxide and OClO made near the arctic vortex. This is part of an effort to study ozone depletion effects in the artic region by looking for atmospheric signatures of gases which contribute to catalyzing ozone depletion, denitrification, and activation of halogen species. OClO is viewed as a sensitive indicator of activated halogene chemistry, since it is produced via chlorine oxide and bromine oxide interactions. It also is rapidly photolyzed. Using direct moonlight or zenith scattered sunlight, UV and visible spectroscopy was able to measure slant column integrated NO[sub 2] and OClO abundances, and convert them to vertical column densities. Elevated levels of OClO were detected during February 6, 8, 1990, when atmospheric temperatures may have favored formation of polar stratospheric clouds.

  11. Arctic sea ice declined rapidly to unprec-edented low extents in the summer of 2007,

    E-Print Network [OSTI]

    Clements, Craig

    Arctic sea ice declined rapidly to unprec- edented low extents in the summer of 2007, raising concern that the Arctic may be on the verge of a fundamental transition toward a seasonal ice cover. Arctic sea ice extent typically attains a seasonal maximum in March and minimum in September. Over

  12. Hydraulic controls of summer Arctic pack ice albedo H. Eicken,1

    E-Print Network [OSTI]

    Eicken, Hajo

    Hydraulic controls of summer Arctic pack ice albedo H. Eicken,1 T. C. Grenfell,2 D. K. Perovich,3 J. Perovich, J. A. Richter-Menge, and K. Frey (2004), Hydraulic controls of summer Arctic pack ice albedo, J that feedback processes involving the input of solar energy and subsequent changes in Arctic pack-ice albedo

  13. September Arctic sea ice predicted to disappear near 2 warming above present

    E-Print Network [OSTI]

    Fischlin, Andreas

    September Arctic sea ice predicted to disappear near 2 C global warming above present Irina; published 24 March 2012. [1] The decline of Arctic sea ice is one of the most visible signs of climate change over the past several decades. Arctic sea ice area shows large interannual variability due

  14. Arctic sea ice velocity field: General circulation and turbulent-like fluctuations

    E-Print Network [OSTI]

    Boyer, Edmond

    Arctic sea ice velocity field: General circulation and turbulent-like fluctuations P. Rampal,1,2 J the Arctic sea ice velocity field as the superposition of a mean field and fluctuations. We study how subtracting the mean field, are analyzed in terms of diffusion properties. Although the Arctic sea ice cover

  15. Carbonaceous species and humic like substances (HULIS) in Arctic snowpack during OASIS field campaign in Barrow

    E-Print Network [OSTI]

    Sheldon, Nathan D.

    Carbonaceous species and humic like substances (HULIS) in Arctic snowpack during OASIS field on snow albedo and arctic atmospheric chemistry. During the OASIS field campaign, in March and April 2009), Carbonaceous species and humic like substances (HULIS) in Arctic snowpack during OASIS field campaign in Barrow

  16. This Page Intentionally Left Blank Next-Generation Ecosystem Experiments (NGEE Arctic)

    E-Print Network [OSTI]

    Lincoln #12;This Page Intentionally Left Blank #12;#12;Next-Generation Ecosystem Experiments--Arctic iv#12;This Page Intentionally Left Blank #12;Next-Generation Ecosystem Experiments (NGEE Arctic This Page Intentionally Left Blank #12;Next-Generation Ecosystem Experiments--Arctic Contents v CONTENTS

  17. Surface salinity fields in the Arctic Ocean and statistical approaches to predicting anomalies and patterns

    E-Print Network [OSTI]

    Golden, Kenneth M.

    to changing environmental conditions. Its surface layer is a key component of the Arctic climate system, which. In this context, the Arctic Ocean surface layer is a critical indicator of climate change in the Arctic [Zaharov. Petersburg, Russia. Ivan Sudakov, Department of Mathematics, University of Utah, Salt Lake City, Utah, USA

  18. Distant origins of Arctic black carbon: A Goddard Institute for Space Studies ModelE experiment

    E-Print Network [OSTI]

    [Wallace and Thompson, 2002]. The Arctic climate is especially sensitive to changes in the hydrological005296. 1. Introduction [2] The Arctic is a particularly sensitive region to global climate change. Observations and models indicate that as the climate warms, the Arctic warms most and fastest [e.g., Manabe et

  19. NAO influence on net sea ice production and exchanges in the Arctic region

    E-Print Network [OSTI]

    Hu, Aixue

    NAO influence on net sea ice production and exchanges in the Arctic region Aixue Hu National Center of the net sea ice production and the sea ice exchanges between the Arctic and its adjacent seas are studied) is the major factor controlling the net sea ice production in the Arctic region since a thinning ice cover

  20. NAO influence on net sea ice production and exchanges in the Arctic region: a numerical study

    E-Print Network [OSTI]

    Hu, Aixue

    NAO influence on net sea ice production and exchanges in the Arctic region: a numerical study Aixue The variability of net sea ice production and sea ice exchange between the Arctic and its adjacent seas export) is the major factor controlling the net sea ice production in the Arctic region since a thinning

  1. EA-1852: Cloud County Community College Wind Energy Project,...

    Broader source: Energy.gov (indexed) [DOE]

    2: Cloud County Community College Wind Energy Project, Cloud County, Kansas EA-1852: Cloud County Community College Wind Energy Project, Cloud County, Kansas Summary This EA...

  2. Preliminary Geospatial Analysis of Arctic Ocean Hydrocarbon Resources

    SciTech Connect (OSTI)

    Long, Philip E.; Wurstner, Signe K.; Sullivan, E. C.; Schaef, Herbert T.; Bradley, Donald J.

    2008-10-01T23:59:59.000Z

    Ice coverage of the Arctic Ocean is predicted to become thinner and to cover less area with time. The combination of more ice-free waters for exploration and navigation, along with increasing demand for hydrocarbons and improvements in technologies for the discovery and exploitation of new hydrocarbon resources have focused attention on the hydrocarbon potential of the Arctic Basin and its margins. The purpose of this document is to 1) summarize results of a review of published hydrocarbon resources in the Arctic, including both conventional oil and gas and methane hydrates and 2) develop a set of digital maps of the hydrocarbon potential of the Arctic Ocean. These maps can be combined with predictions of ice-free areas to enable estimates of the likely regions and sequence of hydrocarbon production development in the Arctic. In this report, conventional oil and gas resources are explicitly linked with potential gas hydrate resources. This has not been attempted previously and is particularly powerful as the likelihood of gas production from marine gas hydrates increases. Available or planned infrastructure, such as pipelines, combined with the geospatial distribution of hydrocarbons is a very strong determinant of the temporal-spatial development of Arctic hydrocarbon resources. Significant unknowns decrease the certainty of predictions for development of hydrocarbon resources. These include: 1) Areas in the Russian Arctic that are poorly mapped, 2) Disputed ownership: primarily the Lomonosov Ridge, 3) Lack of detailed information on gas hydrate distribution, and 4) Technical risk associated with the ability to extract methane gas from gas hydrates. Logistics may control areas of exploration more than hydrocarbon potential. Accessibility, established ownership, and leasing of exploration blocks may trump quality of source rock, reservoir, and size of target. With this in mind, the main areas that are likely to be explored first are the Bering Strait and Chukchi Sea, in spite of the fact that these areas do not have highest potential for future hydrocarbon reserves. Opportunities for improving the mapping and assessment of Arctic hydrocarbon resources include: 1) Refining hydrocarbon potential on a basin-by-basin basis, 2) Developing more realistic and detailed distribution of gas hydrate, and 3) Assessing the likely future scenarios for development of infrastructure and their interaction with hydrocarbon potential. It would also be useful to develop a more sophisticated approach to merging conventional and gas hydrate resource potential that considers the technical uncertainty associated with exploitation of gas hydrate resources. Taken together, additional work in these areas could significantly improve our understanding of the exploitation of Arctic hydrocarbons as ice-free areas increase in the future.

  3. CloudAnalyst: A CloudSim-based Visual Modeller for Analysing Cloud Computing Environments and Applications

    E-Print Network [OSTI]

    Calheiros, Rodrigo N.

    CloudAnalyst: A CloudSim-based Visual Modeller for Analysing Cloud Computing Environments and Applications Bhathiya Wickremasinghe1 , Rodrigo N. Calheiros2 , and Rajkumar Buyya1 1 The Cloud Computing and Distributed Systems (CLOUDS) Laboratory Department of Computer Science and Software Engineering The University

  4. CloudSat Overview CloudSat will provide, from space, the first global survey of cloud profiles and

    E-Print Network [OSTI]

    on the radiative and water budgets of clouds are broadly referred to as indirect aerosol effects. The aerosol processes and their accumulated effects on the global scale. 2. Mission Description CloudSat is plannedCloudSat Overview CloudSat will provide, from space, the first global survey of cloud profiles

  5. Evaluation of Arctic Broadband Surface Radiation Measurements

    SciTech Connect (OSTI)

    Matsui, N.; Long, Charles N.; Augustine, J. A.; Halliwell, D.; Uttal, Taneil; Longenecker, D.; Niebergale, J.; Wendell, J.; Albee, R.

    2012-02-24T23:59:59.000Z

    The Arctic is a challenging environment for making in-situ radiation measurements. A standard suite of radiation sensors is typically designed to measure the total, direct and diffuse components of incoming and outgoing broadband shortwave (SW) and broadband thermal infrared, or longwave (LW) radiation. Enhancements can include various sensors for measuring irradiance in various narrower bandwidths. Many solar radiation/thermal infrared flux sensors utilize protective glass domes and some are mounted on complex mechanical platforms (solar trackers) that rotate sensors and shading devices that track the sun. High quality measurements require striking a balance between locating sensors in a pristine undisturbed location free of artificial blockage (such as buildings and towers) and providing accessibility to allow operators to clean and maintain the instruments. Three significant sources of erroneous data include solar tracker malfunctions, rime/frost/snow deposition on the instruments and operational problems due to limited operator access in extreme weather conditions. In this study, a comparison is made between the global and component sum (direct [vertical component] + diffuse) shortwave measurements. The difference between these two quantities (that theoretically should be zero) is used to illustrate the magnitude and seasonality of radiation flux measurement problems. The problem of rime/frost/snow deposition is investigated in more detail for one case study utilizing both shortwave and longwave measurements. Solutions to these operational problems are proposed that utilize measurement redundancy, more sophisticated heating and ventilation strategies and a more systematic program of operational support and subsequent data quality protocols.

  6. This article was downloaded by:[Roach, Greg] [Roach, Greg

    E-Print Network [OSTI]

    This article was downloaded by:[Roach, Greg] [Roach, Greg] On: 16 July 2007 Access Details: Sample D. Roach a a The Centre for Sleep Research, The University of South Australia. Adelaide. Australia, Drew and Roach, Gregory D. , (2006) 'Do Short International Layovers Allow Sufficient Opportunity

  7. This article was downloaded by:[Roach, Greg] [Roach, Greg

    E-Print Network [OSTI]

    This article was downloaded by:[Roach, Greg] [Roach, Greg] On: 16 July 2007 Access Details: Sample a ; Gregory D. Roach a ; Drew Dawson a ; Nicole Lamond a a The Centre for Sleep Research, University of South, Renée M., Roach, Gregory D., Dawson, Drew and Lamond, Nicole , (2006) 'The Sleep, Subjective Fatigue

  8. A Catalog of HI Clouds in the Large Magellanic Cloud

    E-Print Network [OSTI]

    S. Kim; E. Rosolowsky; Y. Lee; Y. Kim; Y. C. Jung; M. A. Dopita; B. G. Elmegreen; K. C. Freeman; R. J. Sault; M. J. Kesteven; D. McConnell; Y. -H. Chu

    2007-06-28T23:59:59.000Z

    A 21 cm neutral hydrogen interferometric survey of the Large Magellanic Cloud (LMC) combined with the Parkes multi-beam HI single-dish survey clearly shows that the HI gas is distributed in the form of clumps or clouds. The HI clouds and clumps have been identified using a thresholding method with three separate brightness temperature thresholds ($T_b$). Each catalog of HI cloud candidates shows a power law relationship between the sizes and the velocity dispersions of the clouds roughly following the Larson Law scaling $\\sigma_v \\propto R^{0.5}$, with steeper indices associated with dynamically hot regions. The clouds in each catalog have roughly constant virial parameters as a function mass suggesting that that the clouds are all in roughly the same dynamical state, but the values of the virial parameter are significantly larger than unity showing that turbulent motions dominate gravity in these clouds. The mass distribution of the clouds is a power law with differential indices between -1.6 and -2.0 for the three catalogs. In contrast, the distribution of mean surface densities is a log-normal distribution.

  9. Broken and inhomogeneous cloud impact on satellite cloud particle effective radius and cloudphase retrievals

    E-Print Network [OSTI]

    Stoffelen, Ad

    on the particle size distribution, height, and thermo- dynamic phase of clouds. Water and ice clouds have parameterizations is the global dis- tribution of cloud thermodynamic phase, i.e., whether a cloud is composed on satellitederived cloud particle effective radius (re) and cloud phase (CPH) for broken and overcast inhomogeneous

  10. 2009 Carb Sequestration Workshop Presentations for Download (zipped) 1. Click on Title to go to presentations and download.

    E-Print Network [OSTI]

    Daniels, Jeffrey J.

    Laboratory Geochemical Tools for Monitoring Geologic Carbon Sequestration, (David Cole, ORNL) Andre Duguid-surface carbon sequestration T.S. Ramakrishnan (Jim Johnson, speaker) Schlumberger Capacity and Injectivity2009 Carb Sequestration Workshop Presentations for Download (zipped) 1. Click on Title to go

  11. A Survey on Cloud Provider Security

    E-Print Network [OSTI]

    A Survey on Cloud Provider Security Measures Alex Pucher, Stratos Dimopoulos Abstract Cloud take advantage of this model already, but security and privacy concerns limit the further adoption agencies and start offering security certifications and separate tightly controlled "government" cloud

  12. Cicada: Predictive Guarantees for Cloud Network Bandwidth

    E-Print Network [OSTI]

    LaCurts, Katrina

    2014-03-24T23:59:59.000Z

    In cloud-computing systems, network-bandwidth guarantees have been shown to improve predictability of application performance and cost. Most previous work on cloud-bandwidth guarantees has assumed that cloud tenants know ...

  13. Electron-Cloud Build-Up: Summary

    E-Print Network [OSTI]

    Furman, M.A.

    2007-01-01T23:59:59.000Z

    Properties In?uencing Electron Cloud Phenomena,” Appl. Surf.Dissipation of the Electron Cloud,” Proc. PAC03 (Portland,is no signi?cant electron-cloud under nominal operating

  14. DIRSIG Cloud Modeling Capabilities; A Parametric Study

    E-Print Network [OSTI]

    Salvaggio, Carl

    1 DIRSIG Cloud Modeling Capabilities; A Parametric Study Kristen Powers powers:................................................................................................................... 13 Calculation of Sensor Reaching Radiance Truth Values for Cloudless & Stratus Cloud Scenes and Atmospheric Database Creation for Stratus Cloud Scene & Calculation of Associated Sensor Reaching Radiance

  15. Magellan: experiences from a Science Cloud

    E-Print Network [OSTI]

    Ramakrishnan, Lavanya

    2013-01-01T23:59:59.000Z

    2010. From Clusters To Clouds: xCAT 2 Is Out Of The Bag.Cost of Doing Science on the Cloud: The Montage Example. Incost of doing science on the cloud: the montage example. In

  16. The Cloud Computing and Other Variables

    E-Print Network [OSTI]

    Borjon-Kubota, Martha Estela

    2011-01-01T23:59:59.000Z

    12. Fragments in Six 13. Cloud Computing 14. Phase 15.Note 48. Devoured vi Cloud Computing and other Variables I.moment. Lasts hours. Cloud Computing Just there Over the

  17. The Magellan Final Report on Cloud Computing

    E-Print Network [OSTI]

    Coghlan, Susan

    2013-01-01T23:59:59.000Z

    4.3.1 Cloud Computing Attractive Features . 4.3.2A berkeley view of cloud computing. Technical Report UCB/matching computations on cloud computing platforms and hpc

  18. Sensitivity of Remote Aerosol Distributions to Representation of Cloud-Aerosol Interactions in a Global Climate Model

    SciTech Connect (OSTI)

    Wang, Hailong; Easter, Richard C.; Rasch, Philip J.; Wang, Minghuai; Liu, Xiaohong; Ghan, Steven J.; Qian, Yun; Yoon, Jin-Ho; Ma, Po-Lun; Vinoj, V.

    2013-06-05T23:59:59.000Z

    Many global aerosol and climate models, including the widely used Community Atmosphere Model version 5 (CAM5), have large biases in predicting aerosols in remote regions such as upper troposphere and high latitudes. In this study, we conduct CAM5 sensitivity simulations to understand the role of key processes associated with aerosol transformation and wet removal affecting the vertical and horizontal long-range transport of aerosols to the remote regions. Improvements are made to processes that are currently not well represented in CAM5, which are guided by surface and aircraft measurements together with results from a multi-scale aerosol-climate model (PNNL-MMF) that explicitly represents convection and aerosol-cloud interactions at cloud-resolving scales. We pay particular attention to black carbon (BC) due to its importance in the Earth system and the availability of measurements. We introduce into CAM5 a new unified scheme for convective transport and aerosol wet removal with explicit aerosol activation above convective cloud base. This new implementation reduces the excessive BC aloft to better simulate observed BC profiles that show decreasing mixing ratios in the mid- to upper-troposphere. After implementing this new unified convective scheme, we examine wet removal of submicron aerosols that occurs primarily through cloud processes. The wet removal depends strongly on the sub-grid scale liquid cloud fraction and the rate of conversion of liquid water to precipitation. These processes lead to very strong wet removal of BC and other aerosols over mid- to high latitudes during winter months. With our improvements, the Arctic BC burden has a10-fold (5-fold) increase in the winter (summer) months, resulting in a much better simulation of the BC seasonal cycle as well. Arctic sulphate and other aerosol species also increase but to a lesser extent. An explicit treatment of BC aging with slower aging assumptions produces an additional 30-fold (5-fold) increase in the Arctic winter (summer) BC burden. This BC aging treatment, however, has minimal effect on other under-predicted species. Interestingly, our modifications to CAM5 that aim at improving prediction of high-latitude and upper tropospheric aerosols also produce much better AOD and AAOD over various other regions globally when compared to multi-year AERONET retrievals. The improved aerosol distributions have impacts on other aspects of CAM5, improving the simulation of global mean liquid water path and cloud forcing.

  19. Final Report for "Improved Representations of Cloud Microphysics for Model and Remote Sensing Evaluation using Data Collected during ISDAC, TWP-ICE and RACORO

    SciTech Connect (OSTI)

    McFarquhar, Greg M. [University of Illinois] University of Illinois

    2003-06-11T23:59:59.000Z

    We were funded by ASR to use data collected during ISDAC and TWP-ICE to evaluate models with a variety of temporal and spatial scales, to evaluate ground-based remote sensing retrievals and to develop cloud parameterizations with the end goal of improving the modeling of cloud processes and properties and their impact on atmospheric radiation. In particular, we proposed to: 1) Calculate distributions of microphysical properties observed in arctic stratus during ISDAC for initializing and evaluating LES and GCMs, and for developing parameterizations of effective particle sizes, mean fall velocities, and mean single-scattering properties for such models; 2) Improve representations of particle sizes, fall velocities and scattering properties for tropical and arctic cirrus using TWP-ICE, ISDAC and M-PACE data, and to determine the contributions that small ice crystals, with maximum dimensions D less than 50 ?m, make to mass and radiative properties; 3) Study fundamental interactions between clouds and radiation by improving representations of small quasi-spherical particles and their scattering properties. We were additionally funded 1-year by ASR to use RACORO data to develop an integrated product of cloud microphysical properties. We accomplished all of our goals.

  20. Final Technical Report for "Ice nuclei relation to aerosol properties: Data analysis and model parameterization for IN in mixed-phase clouds"Ă?Âť (DOE/SC00002354)

    SciTech Connect (OSTI)

    Paul J. DeMott, Anthony J. Prenni; Sonia M. Kreidenweis

    2012-09-28T23:59:59.000Z

    Clouds play an important role in weather and climate. In addition to their key role in the hydrologic cycle, clouds scatter incoming solar radiation and trap infrared radiation from the surface and lower atmosphere. Despite their importance, feedbacks involving clouds remain as one of the largest sources of uncertainty in climate models. To better simulate cloud processes requires better characterization of cloud microphysical processes, which can affect the spatial extent, optical depth and lifetime of clouds. To this end, we developed a new parameterization to be used in numerical models that describes the variation of ice nuclei (IN) number concentrations active to form ice crystals in mixed-phase (water droplets and ice crystals co-existing) cloud conditions as these depend on existing aerosol properties and temperature. The parameterization is based on data collected using the Colorado State University continuous flow diffusion chamber in aircraft and ground-based campaigns over a 14-year period, including data from the DOE-supported Mixed-Phase Arctic Cloud Experiment. The resulting relationship is shown to more accurately represent the variability of ice nuclei distributions in the atmosphere compared to currently used parameterizations based on temperature alone. When implemented in one global climate model, the new parameterization predicted more realistic annually averaged cloud water and ice distributions, and cloud radiative properties, especially for sensitive higher latitude mixed-phase cloud regions. As a test of the new global IN scheme, it was compared to independent data collected during the 2008 DOE-sponsored Indirect and Semi-Direct Aerosol Campaign (ISDAC). Good agreement with this new data set suggests the broad applicability of the new scheme for describing general (non-chemically specific) aerosol influences on IN number concentrations feeding mixed-phase Arctic stratus clouds. Finally, the parameterization was implemented into a regional cloud-resolving model to compare predictions of ice crystal concentrations and other cloud properties to those observed in two intensive case studies of Arctic stratus during ISDAC. Our implementation included development of a prognostic scheme of ice activation using the IN parameterization so that the most realistic treatment of ice nuclei, including their budget (gains and losses), was achieved. Many cloud microphysical properties and cloud persistence were faithfully reproduced, despite a tendency to under-predict (by a few to several times) ice crystal number concentrations and cloud ice mass, in agreement with some other studies. This work serves generally as the basis for improving predictive schemes for cloud ice crystal activation in cloud and climate models, and more specifically as the basis for such a scheme to be used in a Multi-scale Modeling Format (MMF) that utilizes a connected system of cloud-resolving models on a global grid in an effort to better resolve cloud processes and their influence on climate.

  1. Sunlight Changes Aerosols in Clouds | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sunlight Changes Aerosols in Clouds Sunlight Changes Aerosols in Clouds Released: October 20, 2011 Scientists show how sunlight alters optical, chemical properties of atmospheric...

  2. 3, 44614488, 2003 Cloud particle

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    effects. On one hand, clouds reflect the incoming solar radiation and thus cool the Earth significant effect on the radiation balance (Wielicki et al, 1996; Mitchell, 1989) due to two competing-Atmosphere system. On the other hand, clouds absorb longwave thermal radiation coming from the surface and then re

  3. Arctic ozone loss and climate sensitivity: Updated threedimensional model study

    E-Print Network [OSTI]

    Feng, Wuhu

    Arctic ozone loss and climate sensitivity: Updated three­dimensional model study Chipperfield winter­spring chemical ozone loss from 1991 2003, its observed correlation with low temperatures. CTM throughout studied. The model reproduces large column winters also captures shape of ozone loss profile

  4. Underwater ambient noise in the Alaskan Arctic from 20062009

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    , a proxy for multiyear ice. Perennial pack ice is diminishing while thin seasonal pack ice is more The Arctic Ocean has experienced diminished ice cover as record lows have been measured for sea ice thickness prevalent. These changes in sea ice affect the acoustic field as well as the sources of sound, both natural

  5. arctic energy technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    arctic energy technology First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Energy distribution in an...

  6. arctic van test: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    arctic van test First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Action Refinement in Testing with uioco...

  7. UnderSea Solutions, Inc. Arctic AUV Proposal

    E-Print Network [OSTI]

    Wood, Stephen L.

    the conceptual design and analysis of an AUV, Autonomous Underwater Vehicle, for Arctic under-ice water sampling Electrical Design: ? Power Consumption ? Battery Requirements & Selection ? Thrust Motor Requirements for nose cone Lift points Hull Form The hydrodynamic form of the AUV determines the propulsion energy

  8. Next-Generation Ecosystem Experiments NGEE Arctic Quarterly Report

    E-Print Network [OSTI]

    1 Next-Generation Ecosystem Experiments ­ NGEE Arctic Quarterly Report December 31, 2011 A progress Dynamics Model Used to Design Permafrost Simulator 2 Details at a Glance 3 Progress and Accomplishments 3 sample in a sleeve of highly conductive copper foil (shown in red) and then cooling coils placed

  9. Arctic EnginEEring College of Engineering and Mines

    E-Print Network [OSTI]

    Hartman, Chris

    Arctic EnginEEring College of Engineering and Mines Department of Civil and Environmental Engineering Management. See Environmental Engineering and Environmental Quality Science. See Science Engineering 907-474-7241 http://cem.uaf.edu/cee/ MS Degree Minimum Requirements for Degree: 30 credits

  10. A new way to study the changing Arctic ecosystem

    ScienceCinema (OSTI)

    Hubbard, Susan

    2013-05-29T23:59:59.000Z

    Berkeley Lab scientists Susan Hubbard and Margaret Torn discuss the proposed Next Generation Ecosystem Experiment, which is designed to answer one of the most urgent questions facing researchers today: How will a changing climate impact the Arctic, and how will this in turn impact the planet's climate? More info: http://newscenter.lbl.gov/feature-stories/2011/09/14/alaska-climate-change/

  11. Global warming and Arctic climate. Raymond S. Bradley

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Global warming and Arctic climate. Raymond S. Bradley Climate System Research Center University of Massachusetts Amherst #12;How have global temperatures changed & why? 1. Average instrumental records from around the world; express all as anomalies from 1961-90 average #12;#12;Overall trend is upward ("global

  12. arctic food web: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    arctic food web First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Perfluoroalkyl Contaminants in an...

  13. Review of technology for Arctic offshore oil and gas recovery

    SciTech Connect (OSTI)

    Sackinger, W. M.

    1980-08-01T23:59:59.000Z

    The technical background briefing report is the first step in the preparation of a plan for engineering research oriented toward Arctic offshore oil and gas recovery. A five-year leasing schedule for the ice-prone waters of the Arctic offshore is presented, which also shows the projected dates of the lease sale for each area. The estimated peak production rates for these areas are given. There is considerable uncertainty for all these production estimates, since no exploratory drilling has yet taken place. A flow chart is presented which relates the special Arctic factors, such as ice and permafrost, to the normal petroleum production sequence. Some highlights from the chart and from the technical review are: (1) in many Arctic offshore locations the movement of sea ice causes major lateral forces on offshore structures, which are much greater than wave forces; (2) spray ice buildup on structures, ships and aircraft will be considerable, and must be prevented or accommodated with special designs; (3) the time available for summer exploratory drilling, and for deployment of permanent production structures, is limited by the return of the pack ice. This time may be extended by ice-breaking vessels in some cases; (4) during production, icebreaking workboats will service the offshore platforms in most areas throughout the year; (5) transportation of petroleum by icebreaking tankers from offshore tanker loading points is a highly probable situation, except in the Alaskan Beaufort; and (6) Arctic pipelines must contend with permafrost, making instrumentation necessary to detect subtle changes of the pipe before rupture occurs.

  14. Collaborative Research: Towards Advanced Understanding and Predictive Capability of Climate Change in the Arctic using a High-Resolution Regional Arctic Climate System Model

    SciTech Connect (OSTI)

    Lettenmaier, Dennis P

    2013-04-08T23:59:59.000Z

    Primary activities are reported in these areas: climate system component studies via one-way coupling experiments; development of the Regional Arctic Climate System Model (RACM); and physical feedback studies focusing on changes in Arctic sea ice using the fully coupled model.

  15. arctic east siberia: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cloud partially shielded the Earth from the solar radiation, producing the alteration of cold and warm periods characterizing the Pleistocene. The degree of shielding is sensitive...

  16. Platform for Hybrid Cloud Technical White Paper

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    Platform for Hybrid Cloud Technical White Paper Published: September 2013 (updated) Applies to: SQL Server and Windows Azure Summary: Cloud computing brings a new paradigm shift in computing in the cloud with greater scale and flexibility. Microsoft SQL Server runs very well in the cloud environment

  17. Cloud Computing An enterprise perspective Raghavan Subramanian

    E-Print Network [OSTI]

    Rajamani, Sriram K.

    Cloud Computing ­ An enterprise perspective Raghavan Subramanian Infosys Technologies Limited #12;2Infosys Confidential Overview of cloud computing? Cloud computing* Computing in which dynamically scalable of cloud computing 1. On-demand self-service 2. Ubiquitous network access 3. Location independent resource

  18. IBM Software Solution Brief Safeguarding the cloud

    E-Print Network [OSTI]

    IBM Software Solution Brief Safeguarding the cloud with IBM Security solutions Maintain visibility and control with proven security solutions for public, private and hybrid clouds Highlights Address cloud internal and external users, data, applications and workloads as they move to and from the cloud Regain

  19. 7, 1711717146, 2007 Dependence of cloud

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 7, 17117­17146, 2007 Dependence of cloud fraction and cloud height on temperature T. Wagner et a Creative Commons License. Atmospheric Chemistry and Physics Discussions Dependence of cloud fraction and cloud top height on surface temperature derived from spectrally resolved UV/vis satellite observations T

  20. Draft NISTIR 80061 NIST Cloud Computing2

    E-Print Network [OSTI]

    Draft NISTIR 80061 NIST Cloud Computing2 Forensic Science Challenges NIST Cloud Computing Forensic Computing11 Forensic Science Challenges 12 NIST Cloud Computing Forensic Science Working Group13 Information challenges77 faced by experts when responding to incidents that have occurred in a cloud-computing ecosystem

  1. Cloud Data Management (CDM) Yunpeng Chai

    E-Print Network [OSTI]

    /W performance / Parallelism No/ Simple SQL operations 12 /26 Survey of CDM Cloud Storage: Architecture: Master#12;Cloud Data Management (CDM) Yunpeng Chai 2 /26 Outline Motivation of CDM Survey of CDM IBM SUR Cloud China Mobile National Health Care #12;9 /26 Outline Motivation of CDM Survey of CDM IBM SUR Cloud

  2. 6, 43414373, 2006 Cloud-borne aerosol

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Discussions Impact of cloud-borne aerosol representation on aerosol direct and indirect effects S. J. Ghan of aerosols employ a variety of rep- resentations of such cloud-borne particles. Here we use a global aerosol- ulated aerosol, cloud and radiation fields to various approximations to the representa- tion of cloud

  3. Cloud radar Doppler spectra in drizzling stratiform clouds: 2. Observations and microphysical modeling of drizzle evolution

    E-Print Network [OSTI]

    Cloud radar Doppler spectra in drizzling stratiform clouds: 2. Observations and microphysical I, the influence of cloud microphysics and dynamics on the shape of cloud radar Doppler spectra in warm stratiform clouds was discussed. The traditional analysis of radar Doppler moments was extended

  4. Vision: Cloud-Powered Sight for All Showing the Cloud What You See

    E-Print Network [OSTI]

    Zhong, Lin

    Vision: Cloud-Powered Sight for All Showing the Cloud What You See Paramvir Bahl Matthai Philipose argue that for computers to do more for us, we need to show the cloud what we see and embrace cloud General Terms Algorithms, Design, Human Factors, Languages, Performance, Security Keywords Camera, cloud

  5. CLOUD, DRIZZLE, AND TURBULENCE OBSERVATIONS IN MARINE STRATOCUMULUS CLOUDS IN THE AZORES

    E-Print Network [OSTI]

    CLOUD, DRIZZLE, AND TURBULENCE OBSERVATIONS IN MARINE STRATOCUMULUS CLOUDS IN THE AZORES Jasmine at the Azores provided a unique, long-term record (May 2009 to December 2010) of cloud observations in a regime dominated by low-level stratiform clouds. First, a comprehensive cloud classification scheme that utilizes

  6. Cloud Futures Workshop 2010 Cloud Computing Support for Massively Social Gaming Alexandru Iosup

    E-Print Network [OSTI]

    Iosup, Alexandru

    1 Cloud Futures Workshop 2010 ­ Cloud Computing Support for Massively Social Gaming Alexandru Iosup Pierre (Vrije U.). Cloud Computing Support for Massively Social Gaming (Rain for the Thirsty) #12;Cloud Futures Workshop 2010 ­ Cloud Computing Support for Massively Social Gaming 2 Intermezzo: Tips on how

  7. Changes in Cloud Cover and Cloud Types Over the Ocean from Surface

    E-Print Network [OSTI]

    Hochberg, Michael

    Total cloud cover 54 68 Clear sky (frequency) 22 3 #12;Low Clouds & Solar Radiation Low clouds scatterChanges in Cloud Cover and Cloud Types Over the Ocean from Surface Observations, 1954-2008 Ryan This produces a weak net warming effect in the atmosphere, since more radiation comes in, and less goes out

  8. Decomposing aerosol cloud radiative effects into cloud cover, liquid water path and Twomey components

    E-Print Network [OSTI]

    Daniel, Rosenfeld

    Decomposing aerosol cloud radiative effects into cloud cover, liquid water path and Twomey interactions radiative effects, i.e., the cloud cover, liquid water path (LWP) and cloud drop radius (Twomey negative radiative forcing on the global scale, mainly due to the cloud cover effect. © 2013 Elsevier B

  9. A Survey of Changes in Cloud Cover and Cloud Types over Land from Surface Observations, 197196

    E-Print Network [OSTI]

    Hochberg, Michael

    of their effects on solar radiation, terrestrial radiation, and precipitation. These effects depend on cloud height, and the season of the year and time of day. The effect of clouds on the earth's radiation budget, the "cloud to be a useful classification in studies of cloud processes (Houze 1993). The climatic effects of clouds further

  10. Mixed phase clouds, cloud electrification and remote sensing.

    SciTech Connect (OSTI)

    Chylek, P. (Petr); Borel, C. C. (Christoph C.); Klett, James

    2004-01-01T23:59:59.000Z

    Most of hypothesis trying to explain charge separation in thunderstorm clouds require presence of ice and supercooled water. Thus the existence of ice or at least mixed phase regions near cloud tops should be a necessary (but not a sufficient) condition for development of lightning. We show that multispectral satellite based instruments, like the DOE MTI (Multispectral Thermal Imager) or NASA MODIS (Moderate Resolution Imaging Spectroradiometer), using the near infrared and visible spectral bands are able to distinguish between water, ice and mixed phase cloud regions. An analysis of the MTI images of mixed phase clouds - with spatial resolution of about 20 m - shows regions of pure water, pure ice as well as regions of water/ice mixtures. We suggest that multispectral satellite instruments may be useful for a short time forecast of lightning probabilities.

  11. Microwave and Millimeter-Wave Radiometric Studies of Temperature, Water Vapor and Clouds

    SciTech Connect (OSTI)

    Westwater, Edgeworth

    2011-05-06T23:59:59.000Z

    The importance of accurate measurements of column amounts of water vapor and cloud liquid has been well documented by scientists within the Atmospheric Radiation Measurement (ARM) Program. At the North Slope of Alaska (NSA), both microwave radiometers (MWR) and the MWRProfiler (MWRP), been used operationally by ARM for passive retrievals of the quantities: Precipitable Water Vapor (PWV) and Liquid Water Path (LWP). However, it has been convincingly shown that these instruments are inadequate to measure low amounts of PWV and LWP. In the case of water vapor, this is especially important during the Arctic winter, when PWV is frequently less than 2 mm. For low amounts of LWP (< 50 g/m{sup 2}), the MWR and MWRP retrievals have an accuracy that is also not acceptable. To address some of these needs, in March-April 2004, NOAA and ARM conducted the NSA Arctic Winter Radiometric Experiment - Water Vapor Intensive Operational Period at the ARM NSA/Adjacent Arctic Ocean (NSA/AAO) site. After this experiment, the radiometer group at NOAA moved to the Center for Environmental Technology (CET) of the Department of Electrical and Computer Engineering of the University of Colorado at Boulder. During this 2004 experiment, a total of 220 radiosondes were launched, and radiometric data from 22.235 to 380 GHz were obtained. Primary instruments included the ARM MWR and MWRP, a Global Positioning System (GPS), as well as the CET Ground-based Scanning Radiometer (GSR). We have analyzed data from these instruments to answer several questions of importance to ARM, including: (a) techniques for improved water vapor measurements; (b) improved calibration techniques during cloudy conditions; (c) the spectral response of radiometers to a variety of conditions: clear, liquid, ice, and mixed phase clouds; and (d) forward modeling of microwave and millimeter wave brightness temperatures from 22 to 380 GHz. Many of these results have been published in the open literature. During the third year of this contract, we participated in another ARM-sponsored experiment at the NSA during February-March 2007. This experiment is called the Radiative Heating in Underexplored Bands Campaign (RHUBC) and the GSR was operated successfully for the duration of the campaign. One of the principal goals of the experiment was to provide retrievals of water vapor during PWV amounts less than 2 mm and to compare GSR data with ARM radiometers and radiosondes. A secondary goal was to compare the radiometric response of the microwave and millimeter wavelength radiometers to water and ice clouds. In this final report, we will include the separate progress reports for each of the three years of the project and follow with a section on major accomplishments of the project.

  12. Plant Root Characteristics and Dynamics in Arctic Tundra Ecosystems, 1960-2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, Paddy; Sloan, Victoria; Warren, Jeff; McGuire, Dave; Euskirchen, Eugenie; Norby, Richard; Iversen, Colleen; Walker, Anthony; Wullschleger, Stan

    A synthesis of the available literature on tundra root distribution and dynamics, and their role in key ecosystem processes in the Arctic.

  13. arctic animals-a review: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Is the central Arctic Ocean a sediment starved basin, University of Bergen, Norway d Byrd Polar Research Center, Ohio State University, USA Abstract Numerous short...

  14. arctic-breeding glaucous gulls: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stress. Norwegian Polar Institute, Polar Environmental Centre, NO-9296 Troms, Norway. Tel.: 47 7775 0500; fax: 47 Bech, Claus 8 ARCTIC Sabines Gull (Xema...

  15. E-Print Network 3.0 - arctic fox pups Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . Mortality of arctic ... Source: Hayssen, Virginia - Department of Biological Sciences, Smith College Collection: Environmental Sciences and Ecology 2 Leashing the AlphaWolves:...

  16. Radiocarbon Content of CO 2 Respired from High Arctic Tundra in Northwest Greenland

    E-Print Network [OSTI]

    Czimczik, Claudia I; Welker, Jeffrey M

    2010-01-01T23:59:59.000Z

    J. E. , 2002: Survey of Greenland instrumental temperaturetypes in northwestern Greenland. Arctic, Antarctic, andfen ecosystem in NE-Greenland. Theoretical and Applied

  17. Oceanic periglacial in the evolution of the Arctic marine ecosystem

    SciTech Connect (OSTI)

    Matishov, G.G. [Russian Academy of Sciences, Murmansk (Russian Federation). Murmansk Marine Biological Inst.

    1996-12-31T23:59:59.000Z

    A study of the Arctic marine and land environment and biota is connected with the analysis of the global climatic changes and the general history of Arctic and subarctic ecological systems. Ancient glaciation not only influenced the geomorphology of landscapes, physical and chemical properties of the ocean and its seas, but also caused the global change of the morphoclimatic zonality in the ocean as a whole. Submarine and subaqual hydrological, geomorphological and biological processes on the shelves of polar and temperate latitudes had intensified especially during the melting of continental glaciers. The study of the periglacial problem consists, as a whole, in the research of the geological and biological phenomena which take place in the pelagial and the benthal outside the ice sheets and are connected with them by causal, spatial and temporal relations.

  18. Cloud Computing and Validation of Expandable In Silico Livers

    E-Print Network [OSTI]

    Ropella, Glen EP; Hunt, C Anthony

    2010-01-01T23:59:59.000Z

    benefit analysis of cloud computing versus desktop grids.as: Ropella and Hunt: Cloud computing and validation ofCloud computing and validation of expandable in silico

  19. Title: Networking the Cloud: Enabling Enterprise Computing and Storage Cloud computing has been changing how enterprises run and manage their IT systems. Cloud

    E-Print Network [OSTI]

    Title: Networking the Cloud: Enabling Enterprise Computing and Storage Abstract: Cloud computing has been changing how enterprises run and manage their IT systems. Cloud computing platforms provide introduction on Cloud Computing. We propose a Virtual Cloud Pool abstraction to logically unify cloud

  20. Planning the Next Generation of Arctic Ecosystem Experiments

    SciTech Connect (OSTI)

    Hinzman, Larry D [International Arctic Research Center; Wilson, Cathy [Los Alamos National Laboratory (LANL)

    2011-01-01T23:59:59.000Z

    Climate Change Experiments in High-Latitude Ecosystems; Fairbanks, Alaska, 13-14 October 2010; A 2-day climate change workshop was held at the International Arctic Research Center, University of Alaska Fairbanks. The workshop, sponsored by Biological and Environmental Research, Office of Science, U.S. Department of Energy (DOE), was attended by 45 subject matter experts from universities, DOE national laboratories, and other federal and nongovernmental organizations. The workshop sought to engage the Arctic science community in planning for a proposed Next-Generation Ecosystem Experiments (NGEE-Arctic) project in Alaska (http:// ngee.ornl.gov/). The goal of this activity is to provide data, theory, and models to improve representations of high-latitude terrestrial processes in Earth system models. In particular, there is a need to better understand the processes by which warming may drive increased plant productivity and atmospheric carbon uptake and storage in biomass and soils, as well as those processes that may drive an increase in the release of methane (CH{sub 4}) and carbon dioxide (CO{sub 2}) through microbial decomposition of soil carbon stored in thawing permafrost. This understanding is required to quantify the important feedback mechanisms that define the role of terrestrial processes in regional and global climate.

  1. Fleet DNA Project Â… Data Dictionary for Public Download Files

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New MexicoFinancingProof ofofDownloadsNewFlat-PlateFleet2562

  2. Cluster analysis of cloud properties : a method for diagnosing cloud-climate feedbacks

    E-Print Network [OSTI]

    Gordon, Neil D.

    2008-01-01T23:59:59.000Z

    represent cloud effects on gridbox mean visible radiationclouds and the resulting effect on the balance of radiationrepresent cloud effects on grid-box-mean visible radiation

  3. The Evolution of Cloud Computing in ATLAS

    E-Print Network [OSTI]

    Taylor, Ryan P.; The ATLAS collaboration; Love, Peter; Leblanc, Matthew Edgar; Di Girolamo, Alessandro; Paterson, Michael; Gable, Ian; Sobie, Randall; Field, Laurence

    2015-01-01T23:59:59.000Z

    The ATLAS experiment has successfully incorporated cloud computing technology and cloud resources into its primarily grid-based model of distributed computing. Cloud R&D activities continue to mature and transition into stable production systems, while ongoing evolutionary changes are still needed to adapt and refine the approaches used, in response to changes in prevailing cloud technology. In addition, completely new developments are needed to handle emerging requirements. This work will describe the overall evolution of cloud computing in ATLAS. The current status of the VM management systems used for harnessing IAAS resources will be discussed. Monitoring and accounting systems tailored for clouds are needed to complete the integration of cloud resources within ATLAS' distributed computing framework. We are developing and deploying new solutions to address the challenge of operation in a geographically distributed multi-cloud scenario, including a system for managing VM images across multiple clouds, ...

  4. PACIFIC VENTILATION OF THE ARCTIC OCEAN'S LOWER HALOCLINE BY UPWELLING AND DIAPYCNAL MIXING OVER THE CONTINENTAL MARGIN

    E-Print Network [OSTI]

    Washington at Seattle, University of

    PACIFIC VENTILATION OF THE ARCTIC OCEAN'S LOWER HALOCLINE BY UPWELLING AND DIAPYCNAL MIXING OVER of nutrients and buoyancy to the Arctic Ocean, are thought to ventilate the Arctic's lower halocline either waters upwelled onto the shelf. Although ventilation at salinity (S) > 34 psu has previously been

  5. IGS 2000: RGPS Albedo June 15, 2001 1 Arctic sea ice albedo derived from RGPS-based

    E-Print Network [OSTI]

    Lindsay, Ron

    of Arctic pack ice ia a highly significant factor for establishing the energy balance of the ice. The netIGS 2000: RGPS Albedo June 15, 2001 1 Arctic sea ice albedo derived from RGPS-based ice thickness Geophysical Processor System (RGPS) uses sequential synthetic aperture radar images of Arctic sea ice taken

  6. A Report on Surgery 101: The first 100,000 downloads What is Surgery 101?

    E-Print Network [OSTI]

    MacMillan, Andrew

    Republic of 21 Eritrea 3 United Arab Emirates 460 France 123 Latvia 21 Zambia 3 Singapore 432 Turkey 116 Region Downloads % United States 39,870 39 Canada 17,854 18 United Kingdom 12,058 12 Asia 8,255 8 Europe #12;Worldwide download data in detail Country # Country # Country # Country # United States 39

  7. ON THE IMPACT OF CONCURRENT DOWNLOADS Department of Electrical & Computer Engineering

    E-Print Network [OSTI]

    Liu, Yong

    ON THE IMPACT OF CONCURRENT DOWNLOADS Yong Liu Weibo Gong Department of Electrical & Computer Engineering University of Massachusetts Amherst, MA 01003, U.S.A. Prashant Shenoy Department of Computer Science University of Massachusetts Amherst, MA 01003, U.S.A. ABSTRACT Concurrent downloads accelerate

  8. Rate Adaptation and Base Station Reconfiguration for Battery Efficient Video Download

    E-Print Network [OSTI]

    Dey, Sujit

    dynamically depending on battery and buffer levels of the mobile device, the channel conditions experienced conditions so as to avoid stalling, and do not consider the effect of video download on mobile device batteryRate Adaptation and Base Station Reconfiguration for Battery Efficient Video Download Ranjini

  9. This article was downloaded by:[Bowling Green State University] [Bowling Green State University

    E-Print Network [OSTI]

    McGovern, Warren W.

    This article was downloaded by:[Bowling Green State University] [Bowling Green State University] On. © Taylor and Francis 2007 #12;DownloadedBy:[BowlingGreenStateUniversity]At:00:0621June2007 Communications and Statistics, Bowling Green State University, Bowling Green, Ohio, USA SP-domains were first introduced

  10. Arctic ice export events and their potential impact on global climate during the late Pleistocene

    E-Print Network [OSTI]

    Darby, Dennis

    Arctic ice export events and their potential impact on global climate during the late Pleistocene export events are identified from the Laurentide and the Innuitian ice sheets, between 14 and 34 ka, the Arctic export events appear to occur prior to Heinrich events. INDEX TERMS: 4207 Oceanography: General

  11. Impact of sudden Arctic sea-ice loss on stratospheric polar ozone recovery

    E-Print Network [OSTI]

    Wirosoetisno, Djoko

    Impact of sudden Arctic sea-ice loss on stratospheric polar ozone recovery 1234567 89A64BC7DEF72B4BE647 #12;Impact of sudden Arctic sea-ice loss on stratospheric polar ozone recovery J. F. Scinocca,1. [1] We investigate the sensitivity of Northern Hemisphere polar ozone recovery to a scenario in which

  12. Revised 1/11/05 BOWHEAD WHALE (Balaena mysticetus): Western Arctic Stock

    E-Print Network [OSTI]

    and the mobile polar pack ice. There is evidence of whales following each other, even when their route does+++++ +++++++ + +++++++++ Ice Front Revised 1/11/05 BOWHEAD WHALE (Balaena mysticetus): Western in seasonally ice-covered waters of the Arctic and near-Arctic, generally north of 60(N and south of 75(N

  13. Variability of sea ice cover in the Chukchi Sea (western Arctic Ocean) during the Holocene

    E-Print Network [OSTI]

    Darby, Dennis

    of the Arctic Ocean during the last decades suggest a decrease in areal extent and thickness of its pack ice [e be tentatively attributed to global warming and raises concerns about the stability and fate of the pack ice of Arctic pack ice, which cannot be fully assessed from short-term instrumental observations alone

  14. Mechanisms of summertime upper Arctic Ocean warming and the effect on sea ice melt

    E-Print Network [OSTI]

    Zhang, Jinlun

    but occurs over a much broader area of the ice pack. Citation: Steele, M., J. Zhang, and W. Ermold (2010Mechanisms of summertime upper Arctic Ocean warming and the effect on sea ice melt Michael Steele,1 summertime upper ocean warming and sea ice melt during the 21st century in the Arctic Ocean. Our first

  15. Future abrupt reductions in the summer Arctic sea ice Marika M. Holland,1

    E-Print Network [OSTI]

    Bitz, Cecilia

    years with considerable thinning of the ice pack [Rothrock et al., 1999; Wadhams and Davis, 2000Future abrupt reductions in the summer Arctic sea ice Marika M. Holland,1 Cecilia M. Bitz,2 12 December 2006. [1] We examine the trajectory of Arctic summer sea ice in seven projections from

  16. Impact of underwater-ice evolution on Arctic summer sea ice

    E-Print Network [OSTI]

    Worster, M. Grae

    Impact of underwater-ice evolution on Arctic summer sea ice Dirk Notz,1,4 Miles G. McPhee,2 M. Grae the simultaneous growth and ablation of a layer of ice between an under-ice melt pond and the underlying ocean. Such ``false bottoms'' are the only significant source of ice formation in the Arctic during summer. Analytical

  17. Conservative behavior of uranium vs. salinity in Arctic sea ice and brine Christelle Not a,

    E-Print Network [OSTI]

    Available online 23 December 2011 Keywords: Uranium Salinity Sea ice Brine Seawater Arctic UraniumConservative behavior of uranium vs. salinity in Arctic sea ice and brine Christelle Not a, ,1 disequilibrium The conservative behavior of uranium (U) with respect to salinity in open ocean waters is widely

  18. Be production-rate calibration for the Arctic NICOLA S E. YOUNG,1,2

    E-Print Network [OSTI]

    Briner, Jason P.

    A 10 Be production-rate calibration for the Arctic NICOLA´ S E. YOUNG,1,2 * JOERG M. SCHAEFER,1 2013; Accepted 18 April 2013 ABSTRACT: We present a Baffin Bay 10 Be production-rate calibration published 10 Be calibration datasets to develop an Arctic 10 Be production rate. Our calibration comprises

  19. ORIGINAL PAPER Sedimentary pellets as an ice-cover proxy in a High Arctic

    E-Print Network [OSTI]

    Vincent, Warwick F.

    ORIGINAL PAPER Sedimentary pellets as an ice-cover proxy in a High Arctic ice-covered lake Jessica-cover extent and dynamics on this perennially ice-covered, High Arctic lake. These pellets are interpreted growth. The pellets remain frozen in the ice until a summer or series of summers with reduced ice cover

  20. REGULAR ARTICLE Soil nitrogen cycling rates in low arctic shrub tundra

    E-Print Network [OSTI]

    Grogan, Paul

    of the soil microbial community in both ecosystems indicat- ed similar fungal dominance (epifluorescence landscape. Keywords 15 Nitrogen . Gross N mineralization . Arctic tundra . Litter. Soil microbial community). For example, remote sensing studies have characterized an increase in peak-season biomass across the Arctic

  1. ORIGINAL PAPER Arctic fisheries catches in Russia, USA, and Canada: baselines

    E-Print Network [OSTI]

    Pauly, Daniel

    years due to climate change. The Arctic is one of the last and most extensive ocean wilderness areas climate change pressures, is considerable. The United Nations Food and Agriculture Organization's (FAOORIGINAL PAPER Arctic fisheries catches in Russia, USA, and Canada: baselines for neglected

  2. The Arctic Ocean carbon sink G.A. MacGilchrist a,n

    E-Print Network [OSTI]

    Naveira Garabato, Alberto

    Carbon sequestration Biological pump a b s t r a c t We present observation based estimatesThe Arctic Ocean carbon sink G.A. MacGilchrist a,n , A.C. Naveira Garabato a , T. Tsubouchi b , S January 2014 Keywords: Arctic Ocean Dissolved inorganic carbon Carbon budget Air­sea carbon dioxide flux

  3. Duffy et al.: Arctic Tern migration over Patagonia 155 Marine Ornithology 41: 155159 (2013)

    E-Print Network [OSTI]

    Duffy, David Cameron

    Duffy et al.: Arctic Tern migration over Patagonia 155 Marine Ornithology 41: 155­159 (2013 productive offshore waters of Argentinian Patagonia. We then explore possible reasons for this behavior-ANDEAN PASSAGE OF MIGRATING ARCTIC TERNS OVER PATAGONIA DAVID CAMERON DUFFY1 , ALY MCKNIGHT2 & DAVID B. IRONS2 1

  4. Interannual variability of Arctic sea ice export into the East Greenland Current

    E-Print Network [OSTI]

    Rohling, Eelco

    Interannual variability of Arctic sea ice export into the East Greenland Current K. A. Cox,1 J. D cycle, Arctic sea ice decline, and increasing Greenland glacial melt. Here we use new d18 O data from the East Greenland Current system at Cape Farewell and Denmark Strait to determine the relative proportions

  5. Simulated Arctic atmospheric feedbacks associated with late summer sea ice anomalies

    E-Print Network [OSTI]

    Moore, John

    Simulated Arctic atmospheric feedbacks associated with late summer sea ice anomalies A. Rinke,1,2 K depend on regional and decadal variations in the coupled atmosphere-ocean-sea ice system. Citation: Rinke to investigate feedbacks between September sea ice anomalies in the Arctic and atmospheric conditions in autumn

  6. Growing season methyl bromide and methyl chloride fluxes at a sub-arctic wetland in Sweden 

    E-Print Network [OSTI]

    Hardacre, Catherine J.; Blei, Emanuel; Heal, Mathew R

    2009-01-01T23:59:59.000Z

    Methyl bromide and methyl chloride fluxes were measured at several sites in a sub-arctic wetland near Abisko, Sweden (68°28?N 18°49?E) throughout the 2008 growing season. Averaged over 92 flux measurements the sub-arctic wetland was found to be a...

  7. Climate warming will be particularly intense over the Arctic and several observations

    E-Print Network [OSTI]

    Strong, Kimberly

    -rein- forced research ship Mirai. The icebreaker Oden supports Sweden's program. Even China is now deploying appointed by the Natural Sciences and Engineering Research Council (NSERC) and the Social Sciences and Hu Canada Closing Arctic Ozone Observatory 6 Exploring for Gas Hydrate in the Arctic 9 Book Review: Writing

  8. Moisture budget of the Arctic atmosphere from TOVS satellite data David G. Groves

    E-Print Network [OSTI]

    Francis, Jennifer

    and radiative heating of the atmosphere. These, in turn, affect surface temperature, ice growth and melt and hemispheric atmospheric processes affect the Arctic Ocean. The lack of humidity data over the Arctic Ocean. Our method yields an average annual net precipitation of 15.1 cm yrŔ1 over the polar cap (poleward

  9. Melting of small Arctic ice caps observed from ERS scatterometer time series

    E-Print Network [OSTI]

    Smith, Laurence C.

    Melting of small Arctic ice caps observed from ERS scatterometer time series Laurence C. Smith,1 of melt onset can be observed over small ice caps, as well as the major ice sheets and multi-year sea ice for 14 small Arctic ice caps from 1992­2000. Interannual and regional variability in the timing of melt

  10. The Arctic Oscillation, climate change and the effects on precipitation in Israel

    E-Print Network [OSTI]

    Daniel, Rosenfeld

    in the Mediterranean basin. © 2013 Elsevier B.V. All rights reserved. Keywords: Climate change Arctic Oscillation) investigated the effect of climate change on water resources of Eastern Mediterranean and Middle East regionThe Arctic Oscillation, climate change and the effects on precipitation in Israel Amir Givati b

  11. U.S. Arctic Research Policy: What do we need to know now?

    E-Print Network [OSTI]

    Kuligowski, Bob

    ;11 September 2007 Arctic ice retreat ­ minimum coverage and thickness #12;Carbon dioxide climbs #12;Methane: mitigation, adaptation, Arctic feedbacks, alternative energy, sequestration, Black Carbon Task Force · Involve indigenous communities in decisions · Enhance scientific monitoring and research into local

  12. An energy-diagnostics intercomparison of coupled ice-ocean Arctic models

    E-Print Network [OSTI]

    Zhang, Jinlun

    An energy-diagnostics intercomparison of coupled ice-ocean Arctic models Petteri Uotila a,*, David. Understanding the Arctic Ocean energy balance is important because it can strengthen our understanding for Atmosphere-Ocean Science, Courant Institute of Mathematical Sciences, New York University, NYU, 200 Water

  13. Dust takes detour on ice-cloud journey | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dust takes detour on ice-cloud journey Dust takes detour on ice-cloud journey Pollution-coated particles bypass ice formation, but influence clouds Cirrus clouds are composed of...

  14. arctic aerosol burden: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is a very important concept to understand what kind of role the clouds play in climate change with thermal effect or albedo effect. In spite Paris-Sud XI, Universit de 2 A...

  15. Socially Optimal Pricing of Cloud Computing Resources

    E-Print Network [OSTI]

    Menache, Ishai

    The cloud computing paradigm offers easily accessible computing resources of variable size and capabilities. We consider a cloud-computing facility that provides simultaneous service to a heterogeneous, time-varying ...

  16. The Evolution of Cloud Computing in ATLAS

    E-Print Network [OSTI]

    Taylor, Ryan P; The ATLAS collaboration; Brasolin, Franco; Cordeiro, Cristovao; Desmarais, Ron; Field, Laurence; Gable, Ian; Giordano, Domenico; Di Girolamo, Alessandro; Hover, John; Leblanc, Matthew Edgar; Love, Peter; Paterson, Michael; Sobie, Randall; Zaytsev, Alexandr

    2015-01-01T23:59:59.000Z

    The ATLAS experiment has successfully incorporated cloud computing technology and cloud resources into its primarily grid-based model of distributed computing. Cloud R&D activities continue to mature and transition into stable production systems, while ongoing evolutionary changes are still needed to adapt and refine the approaches used, in response to changes in prevailing cloud technology. In addition, completely new developments are needed to handle emerging requirements. This paper describes the overall evolution of cloud computing in ATLAS. The current status of the virtual machine (VM) management systems used for harnessing infrastructure as a service (IaaS) resources are discussed. Monitoring and accounting systems tailored for clouds are needed to complete the integration of cloud resources within ATLAS' distributed computing framework. We are developing and deploying new solutions to address the challenge of operation in a geographically distributed multi-cloud scenario, including a system for ma...

  17. Disruptive technology business models in cloud computing

    E-Print Network [OSTI]

    Krikos, Alexis Christopher

    2010-01-01T23:59:59.000Z

    Cloud computing, a term whose origins have been in existence for more than a decade, has come into fruition due to technological capabilities and marketplace demands. Cloud computing can be defined as a scalable and flexible ...

  18. SCANNING CLOUD RADAR OBSERVATIONS AT AZORES: PRELIMINARY 3D CLOUD PRODUCTS

    E-Print Network [OSTI]

    SCANNING CLOUD RADAR OBSERVATIONS AT AZORES: PRELIMINARY 3D CLOUD PRODUCTS P. Kollias, I. Jo, A, NY www.bnl.gov ABSTRACT The deployment of the Scanning W-Band ARM Cloud Radar (SWACR) during the AMF campaign at Azores signals the first deployment of an ARM Facility-owned scanning cloud radar and offers

  19. Cloud-Top Temperatures for Precipitating Winter Clouds JAY W. HANNA

    E-Print Network [OSTI]

    Schultz, David

    1 Cloud-Top Temperatures for Precipitating Winter Clouds JAY W. HANNA NOAA/NESDIS Satellite of satellite-derived cloud-top brightness temperatures from GOES longwave infrared (channel 4) satellite data, rain, freezing rain, and sleet. The distributions of cloud-top brightness temperatures were constructed

  20. Cloud networking and communications Cloud computing is having an important impact on

    E-Print Network [OSTI]

    Boutaba, Raouf

    Editorial Cloud networking and communications Cloud computing is having an important impact attention has been devoted to system aspects of Cloud computing. More recently, however, the focus is shifting towards Cloud net- working and communications with evolutionary and revo- lutionary propositions

  1. Cloud seeding as a technique for studying aerosol-cloud interactions in marine stratocumulus

    E-Print Network [OSTI]

    Miami, University of

    Cloud seeding as a technique for studying aerosol-cloud interactions in marine stratocumulus hygroscopic aerosols were introduced into a solid marine stratocumulus cloud (200 m thick) by burning hygroscopic flares mounted on an aircraft. The cloud microphysical response in two parallel seeding plumes

  2. Cloud radar Doppler spectra in drizzling stratiform clouds: 1. Forward modeling and remote sensing applications

    E-Print Network [OSTI]

    Cloud radar Doppler spectra in drizzling stratiform clouds: 1. Forward modeling and remote sensing broadening and drizzle growth in shallow liquid clouds remain not well understood. Detailed, cloudscale. Profiling, millimeterwavelength (cloud) radars can provide such observations. In particular, the first three

  3. The Cloud Adoption Toolkit: Supporting Cloud Adoption Decisions in the Enterprise

    E-Print Network [OSTI]

    Sommerville, Ian

    1 The Cloud Adoption Toolkit: Supporting Cloud Adoption Decisions in the Enterprise Ali Khajeh-Hosseini, David Greenwood, James W. Smith, Ian Sommerville Cloud Computing Co-laboratory, School of Computer Science University of St Andrews, UK {akh, dsg22, jws7, ifs}@cs.st-andrews.ac.uk Abstract Cloud computing

  4. CLOUD COMPUTING AND INFORMATION POLICY 1 Cloud Computing and Information Policy

    E-Print Network [OSTI]

    Lin, Jimmy

    CLOUD COMPUTING AND INFORMATION POLICY 1 Cloud Computing and Information Policy: Computing in a Policy Cloud? Forthcoming in the Journal of Information Technology and Politics, 5(3). Paul T. Jaeger University of Maryland Jimmy Lin University of Maryland Justin M. Grimes University of Maryland #12;CLOUD

  5. HPI Cloud Symposium ,Operating The Cloud` 25.09.2013, Hasso-Plattner-Institut, Auditorium Building

    E-Print Network [OSTI]

    Weske, Mathias

    Agenda HPI Cloud Symposium ,Operating The Cloud` 25.09.2013, Hasso-Plattner-Institut, Auditorium Building 09:30h Registration 10:00h Opening Prof. Dr. Christoph Meinel, HPI Potsdam 10:30h Cloud-RAID: Eine Methode zur Bereitstellung zuverlässiger Speicherressourcen in Öffentlichen Clouds Maxim Schnajkin, HPI

  6. Cloud Verifier: Verifiable Auditing Service for IaaS Clouds Joshua Schiffman

    E-Print Network [OSTI]

    Jaeger, Trent

    Cloud Verifier: Verifiable Auditing Service for IaaS Clouds Joshua Schiffman Security Architecture University Park, PA, USA yus138,hvijay,tjaeger@cse.psu.edu Abstract--Cloud computing has commoditized compute paradigm, its adoption has been stymied by cloud platform's lack of trans- parency, which leaves customers

  7. Cloud Tracking in Cloud-Resolving Models R. S. Plant1

    E-Print Network [OSTI]

    Plant, Robert

    Cloud Tracking in Cloud-Resolving Models R. S. Plant1 1 Department of Meteorology, University. INTRODUCTION In recent years Cloud Resolving Models (CRMs) have become an increasingly important tool for CRM data, which allows one to investigate statistical prop- erties of the lifecycles of the "clouds

  8. From mini-clouds to Cloud Computing Boris Mejias, Peter Van Roy

    E-Print Network [OSTI]

    Bonaventure, Olivier

    From mini-clouds to Cloud Computing Boris Mej´ias, Peter Van Roy Universit´e catholique de Louvain ­ Belgium {boris.mejias|peter.vanroy}@uclouvain.be Abstract Cloud computing has many definitions with different views within industry and academia, but everybody agrees on that cloud computing is the way

  9. AnonymousCloud: A Data Ownership Privacy Provider Framework in Cloud Computing

    E-Print Network [OSTI]

    Hamlen, Kevin W.

    AnonymousCloud: A Data Ownership Privacy Provider Framework in Cloud Computing Safwan Mahmud Khan their computation results are ultimately delivered. To provide this data ownership privacy, the cloud's distributed-anonymity; authentication; cloud computing; in- formation security; privacy; Tor I. INTRODUCTION Revolutionary advances

  10. Leveraging Platform Basic Services in Cloud Application Platforms for the Development of Cloud

    E-Print Network [OSTI]

    Simons, Anthony J. H.

    Leveraging Platform Basic Services in Cloud Application Platforms for the Development of Cloud.Simons@dcs.shef.ac.uk Abstract-- Cloud application platforms gain popularity and have the potential to alter the way service based cloud applications are developed involving utilisation of platform basic services. A platform

  11. Carbon Chemistry in interstellar clouds

    E-Print Network [OSTI]

    Maryvonne Gerin; David Fosse; Evelyne Roueff

    2002-12-03T23:59:59.000Z

    We discuss new developments of interstellar chemistry, with particular emphasis on the carbon chemistry. We confirm that carbon chains and cycles are ubiquitous in the ISM and closely chemically related to ea ch other, and to carbon. Investigation of the carbon budget in shielded and UV illuminated gas shows that the inventory of interstellar molecules is not complete and more complex molecules with 4 or more carbon atoms must be present. Finally we discuss the consequences for the evolution of clouds and conclude that the ubiquitous presence of carbon chains and cycles is not a necessary consequence of a very young age for interstellar clouds.

  12. Changes in high cloud conditions

    E-Print Network [OSTI]

    Himebrook, Richard Frank

    1974-01-01T23:59:59.000Z

    ). When the effect of unknowns is added to the data (Figs. 3(a) and 3(b), p, 21), the period with most high-cloud cover seems to alter- nate back and forth almost monthly, The average, global, solar radiation (Fig. 3(c), p. 21) depicts a decrease from... radiation, per cent possible sunshine, and average sky cover. The increases in high-cloud cover occurred in areas with the following characteristics: strong upper-air flow; frequent jet ' aircraft traffic; coverage of less than half the sky; late...

  13. PROGRESS REPORT OF FY 2004 ACTIVITIES: IMPROVED WATER VAPOR AND CLOUD RETRIEVALS AT THE NSA/AAO

    SciTech Connect (OSTI)

    E. R. Westwater; V. V. Leuskiy; M. Klein; A. J. Gasiewski; and J. A. Shaw

    2004-11-01T23:59:59.000Z

    The basic goals of the research are to develop and test algorithms and deploy instruments that improve measurements of water vapor, cloud liquid, and cloud coverage, with a focus on the Arctic conditions of cold temperatures and low concentrations of water vapor. The importance of accurate measurements of column amounts of water vapor and cloud liquid has been well documented by scientists within the Atmospheric Radiation Measurement Program. Although several technologies have been investigated to measure these column amounts, microwave radiometers (MWR) have been used operationally by the ARM program for passive retrievals of these quantities: precipitable water vapor (PWV) and integrated water liquid (IWL). The technology of PWV and IWL retrievals has advanced steadily since the basic 2-channel MWR was first deployed at ARM CART sites Important advances are the development and refinement of the tipcal calibration method [1,2], and improvement of forward model radiative transfer algorithms [3,4]. However, the concern still remains that current instruments deployed by ARM may be inadequate to measure low amounts of PWV and IWL. In the case of water vapor, this is especially important because of the possibility of scaling and/or quality control of radiosondes by the water amount. Extremely dry conditions, with PWV less than 3 mm, commonly occur in Polar Regions during the winter months. Accurate measurements of the PWV during such dry conditions are needed to improve our understanding of the regional radiation energy budgets. The results of a 1999 experiment conducted at the ARM North Slope of Alaska/Adjacent Arctic Ocean (NSA/AAO) site during March of 1999 [5] have shown that the strength associated with the 183 GHz water vapor absorption line makes radiometry in this frequency regime suitable for measuring low amounts of PWV. As a portion of our research, we conducted another millimeter wave radiometric experiment at the NSA/AAO in March-April 2004. This experiment relied heavily on our experiences of the 1999 experiment. Particular attention was paid to issues of radiometric calibration and radiosonde intercomparisons. Our theoretical and experimental work also supplements efforts by industry (F. Solheim, Private Communication) to develop sub-millimeter radiometers for ARM deployment. In addition to quantitative improvement of water vapor measurements at cold temperature, the impact of adding millimeter-wave window channels to improve the sensitivity to arctic clouds was studied. We also deployed an Infrared Cloud Imager (ICI) during this experiment, both for measuring continuous day-night statistics of the study of cloud coverage and identifying conditions suitable for tipcal analysis. This system provided the first capability of determining spatial cloud statistics continuously in both day and night at the NSA site and has been used to demonstrate that biases exist in inferring cloud statistics from either zenith-pointing active sensors (lidars or radars) or sky imagers that rely on scattered sunlight in daytime and star maps at night [6].

  14. Interactive physically-based cloud simulation

    E-Print Network [OSTI]

    Overby, Derek Robert

    2002-01-01T23:59:59.000Z

    of digital artistic media. Previous methods for modeling the growth of clouds do not account for the fluid interactions that are responsible for cloud formation in the physical atmosphere. We propose a model for simulating cloud formation based on a basic...

  15. Dynamics of Clouds Fall Semester 2012

    E-Print Network [OSTI]

    ATS712 Dynamics of Clouds Fall Semester 2012 Meeting Times: T/Th: 9-10:15am Room: ATS 101-2pm Course Description: This class focuses on the general dynamics of cloud systems. Models of fog and other Tools / Skills Cotton, W.R., G.H. Bryan, and S.C. van den Heever, 2010: Storm and Cloud Dynamics

  16. Microsoft Private Cloud Title of document

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    Microsoft Private Cloud Title of document 1 1 Microsoft Private Cloud A Comparative Look at Functionality, Benefits, and Economics November2012 #12;Microsoft Private Cloud Title of document 2 2 Copyright Information © 2012 Microsoft Corporation. All rights reserved. This document is provided "as-is." Information

  17. Performance Engineering for Cloud Computing John Murphy

    E-Print Network [OSTI]

    Murphy, John

    Performance Engineering for Cloud Computing John Murphy Lero ­ The Irish Software Engineering.Murphy@ucd.ie Abstract. Cloud computing potentially solves some of the major challenges in the engineering of large efficient operation. This paper argues that cloud computing is an area where performance engineering must

  18. Level Set Implementations on Unstructured Point Cloud

    E-Print Network [OSTI]

    Duncan, James S.

    Level Set Implementations on Unstructured Point Cloud by HO, Hon Pong A Thesis Submitted;Level Set Implementations on Unstructured Point Cloud by HO, Hon Pong This is to certify that I have implementations on unstructured point cloud 15 3.1 Level set initialization

  19. 6, 93519388, 2006 Aerosol-cloud

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 6, 9351­9388, 2006 Aerosol-cloud interaction inferred from MODIS and models G. Myhre et al Chemistry and Physics Discussions Aerosol-cloud interaction inferred from MODIS satellite data and global 6, 9351­9388, 2006 Aerosol-cloud interaction inferred from MODIS and models G. Myhre et al. Title

  20. Cloud Security: Issues and Concerns Pierangela Samarati*

    E-Print Network [OSTI]

    Samarati, Pierangela

    1 Cloud Security: Issues and Concerns Authors Pierangela Samarati* Universitŕ degli Studi di Milano, Italy sabrina.decapitani@unimi.it Keywords cloud security confidentiality integrity availability secure data storage and processing Summary The cloud has emerged as a successful computing paradigm

  1. Cloud Computing: Centralization and Data Sovereignty

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Cloud Computing: Centralization and Data Sovereignty Primavera De Filippi, Smari McCarthy Abstract: Cloud computing can be defined as the provision of computing resources on-demand over and elasticity of costs, problems arise concerning the collection of personal information in the Cloud

  2. Optimizing Offloading Strategies in Mobile Cloud Computing

    E-Print Network [OSTI]

    Hyytiä, Esa

    Optimizing Offloading Strategies in Mobile Cloud Computing Esa Hyyti¨a Department of Communications Abstract--We consider a dynamic offloading problem arising in the context of mobile cloud computing (MCC consider the task assignment problem arising in the context of the mobile cloud computing (MCC). In MCC

  3. CONTROLLING DATA IN THE CLOUD: OUTSOURCING COMPUTATION

    E-Print Network [OSTI]

    Zou, Cliff C.

    #12;CONTROLLING DATA IN THE CLOUD: OUTSOURCING COMPUTATION WITHOUT OUTSOURCING CONTROL Paper By Laboratories Of America 2009 ACM WORKSHOP ON CLOUD COMPUTING SECURITY (CCSW 2009) Presented By Talal Basaif CAP that will arise later · New directions to solve some issues #12;INTRODUCTION · Cloud computing is one of desirable

  4. Towards a Ubiquitous Cloud Computing Infrastructure

    E-Print Network [OSTI]

    van der Merwe, Kobus

    Towards a Ubiquitous Cloud Computing Infrastructure Jacobus Van der Merwe, K.K. Ramakrishnan of a number of cloud computing use cases. We specifically consider cloudbursting and follow-the-sun and focus that are also network service providers. I. INTRODUCTION Cloud computing is rapidly gaining acceptance

  5. Cloud Computing: Legal Issues in Centralized Architectures

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Cloud Computing: Legal Issues in Centralized Architectures Primavera DE FILIPPI1 , Smari McCARTHY2, Reykjavik, 101, Iceland - Email: smari@gmail.com Abstract: Cloud computing can be defined as the provision they can access their data and the extent to which parties can exploit it. Keywords: Cloud Computing

  6. ARM - Publications: Science Team Meeting Documents: An Arctic Springtime

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa-Anomalous Radiative AbsorptionARM InArctic Facility for Atmospheric Remote

  7. Cloud Seeding By: Julie Walter

    E-Print Network [OSTI]

    Toohey, Darin W.

    , smoke, that then are cooled because of the high altitudes. As the water or condensation nuclei cool more pushed up enough the warm air that is filled with moisture should reach an optimum cooling point-based Western Weather Consultants, whose company supplied Vail Resorts with the cloud seeding generators

  8. Cloud and Autonomic Computing Center

    E-Print Network [OSTI]

    Gelfond, Michael

    boundary layers and wind turbine aerodynamics Siva Parameswarn, Ph.D. Professor in the Department vehicles » Wake development behind wind turbines PHYSICS Ismael Regis de Farias Jr., Ph.D. Associate in cloud environments » Intelligent data management & understanding » Automated web service composition

  9. Analysis of In situ Observations of Cloud Microphysics from M-PACE Final Report, DOE Grant Agreement No. DE-FG02-06ER64168

    SciTech Connect (OSTI)

    Michael R. Poellot

    2009-01-09T23:59:59.000Z

    This report summarizes the findings and accomplishments of work performed under DOE Grant Agreement No. DE-FG02-06ER64168. The focus of the work was the analysis of in situ observations collected by the University of North Dakota Citation research aircraft during the Mixed-Phase Arctic Cloud Experiment (M-PACE). This project was conducted in 2004 along the North Slope of Alaska. The objectives of the research were: to characterize certain microphysical properties of clouds sampled during M-PACE, including spatial variability, precipitation formation, ice multiplication; to examine instrument performance and certain data processing algorithms; and to collaborate with other M-PACE investigators on case study analyses. A summary of the findings of the first two objectives is given here in parts 1 and 2; full results are contained in reports listed in part 3 of this report. The collaborative efforts are described in the publications listed in part 3.

  10. Global cloud liquid water path simulations

    SciTech Connect (OSTI)

    Lemus, L. [Southern Hemisphere Meteorology, Clayton, Victoria (Australia)] [Southern Hemisphere Meteorology, Clayton, Victoria (Australia); Rikus, L. [Bureau of Meteorology Research Centre, Melbourne, Victoria (Australia)] [Bureau of Meteorology Research Centre, Melbourne, Victoria (Australia); Martin, C.; Platt, R. [CSIRO, Aspendale, Victoria (Australia)] [CSIRO, Aspendale, Victoria (Australia)

    1997-01-01T23:59:59.000Z

    A new parameterization of cloud liquid water and ice content has been included in the Bureau of Meteorology Global Assimilation and Prediction System. The cloud liquid water content is derived from the mean cloud temperatures in the model using an empirical relationship based on observations. The results from perpetual January and July simulations are presented and show that the total cloud water path steadily decreases toward high latitudes, with two relative maxima at midlatitudes and a peak at low latitudes. To validate the scheme, the simulated fields need to be processed to produce liquid water paths that can be directly compared with the corresponding field derived from Special Sensor Microwave/Imager (SSM/I) data. This requires the identification of cloud ice water content within the parameterization and a prescription to account for the treatment of strongly precipitating subgrid-scale cloud. The resultant cloud liquid water paths agree qualitatively with the SSM/I data but show some systematic errors that are attributed to corresponding errors in the model`s simulation of cloud amounts. Given that a more quantitative validation requires substantial improvement in the model`s diagnostic cloud scheme, the comparison with the SSM/I data indicates that the cloud water path, derived from the cloud liquid water content parameterization introduced in this paper, is consistent with the observations and can be usefully incorporated in the prediction system. 40 refs., 11 figs., 1 tab.

  11. Status of Wind-Diesel Applications in Arctic Climates: Preprint

    SciTech Connect (OSTI)

    Baring-Gould, I.; Corbus, D.

    2007-12-01T23:59:59.000Z

    The rising cost of diesel fuel and the environmental regulation for its transportation, use, and storage, combined with the clear impacts of increased arctic temperatures, is driving remote communities to examine alternative methods of providing power. Over the past few years, wind energy has been increasingly used to reduce diesel fuel consumption, providing economic, environmental, and security benefits to the energy supply of communities from Alaska to Antarctica. This summary paper describes the current state of wind-diesel systems, reviews the operation of wind-diesel plants in cold climates, discusses current research activities pertaining to these systems, and addresses their technical and commercial challenges. System architectures, dispatch strategies, and operating experience from a variety of wind-diesel systems in Alaska will be reviewed. Specific focus will also be given to the control of power systems with large amounts of wind generation and the complexities of replacing diesel engine waste heat with excess wind energy, a key factor in assessing power plants for retrofit. A brief overview of steps for assessing the viability of retrofitting diesel power systems with wind technologies will also be provided. Because of the large number of isolated diesel minigrids, the market for adding wind to these systems is substantial, specifically in arctic climates and on islands that rely on diesel-only power generation.

  12. Age characteristics in a multidecadal Arctic sea ice simulation

    SciTech Connect (OSTI)

    Hunke, Elizabeth C [Los Alamos National Laboratory; Bitz, Cecllia M [UNIV. OF WASHINGTON

    2008-01-01T23:59:59.000Z

    Results from adding a tracer for age of sea ice to a sophisticated sea ice model that is widely used for climate studies are presented. The consistent simulation of ice age, dynamics, and thermodynamics in the model shows explicitly that the loss of Arctic perennial ice has accelerated in the past three decades, as has been seen in satellite-derived observations. Our model shows that the September ice age average across the Northern Hemisphere varies from about 5 to 8 years, and the ice is much younger (about 2--3 years) in late winter because of the expansion of first-year ice. We find seasonal ice on average comprises about 5% of the total ice area in September, but as much as 1.34 x 10{sup 6} km{sup 2} survives in some years. Our simulated ice age in the late 1980s and early 1990s declined markedly in agreement with other studies. After this period of decline, the ice age began to recover, but in the final years of the simulation very little young ice remains after the melt season, a strong indication that the age of the pack will again decline in the future as older ice classes fail to be replenished. The Arctic ice pack has fluctuated between older and younger ice types over the past 30 years, while ice area, thickness, and volume all declined over the same period, with an apparent acceleration in the last decade.

  13. Heavy Metal Contamination in the Taimyr Peninsula, Siberian Arctic

    SciTech Connect (OSTI)

    Allen-Gil, Susan M.; Ford, Jesse; Lasorsa, Brenda K.; Monetti, Matthew; Vlasova, Tamara; Landers, Dixon H.

    2003-01-01T23:59:59.000Z

    The Taimyr Peninsula is directly north of the world's largest heavy metal smelting complex (Norilsk, Russia). Despite this proximity, there has been little research to examine the extent of contamination of the Taimyr Peninsula. We analyzed heavy metal concentrations in lichen (Cetraria cucullata), moss (Hylocomium splendens), soils, lake sediment, freshwater fish (Salvelinus alpinus, Lota lota, and Coregonus spp.) and collared lemming (Dicrostonyx torquatus) from 13 sites between 30 and 300 km from Norilsk. Element concentrations were low in both C. cucullata and H. splendens, although concentrations of Al, Fe, Cu, Ni, and Pb were significantly higher than those in Arctic Alaska, probably due to natural differences in the geochemical environments. Inorganic surface soils had significantly higher concentrations of Cd, Zn, Pb, and Mg than inorganic soils at depth, although a lake sediment core from the eastern Taimyr Peninsula indicated no recent enrichment by atmospherically transported elements. Tissue concentrations of heavy metals in fish and lemming were not elevated relative to other Arctic sites. Our results show that the impact of the Norilsk smelting complex is primarily localized rather than regional, and does not extend northward beyond 100 km.

  14. Cloud speed impact on solar variability scaling â?? Application to the wavelet variability model

    E-Print Network [OSTI]

    Lave, Matthew; Kleissl, Jan

    2013-01-01T23:59:59.000Z

    Kleissl, J. , 2013. Deriving cloud velocity from an array ofCloud Speed Impact on Solar Variability Scaling -this work, we determine from cloud speeds. Cloud simulator

  15. Mobilization pathways of organic carbon from permafrost to arctic rivers in a changing climate

    E-Print Network [OSTI]

    Guo, Laodong

    and subarctic river waters is dominated by contemporary sour- ces [Benner et al., 2004; Guo and Macdonald, 2006 in arctic rivers should then become older, reflecting the age of that reservoir [Schell and Ziemann, 1983

  16. Assessing the Predictability of the Beaufort Sea Minimum Ice Extent in a Changing Arctic Climate Regime

    E-Print Network [OSTI]

    Quirk, Laura Marie

    2014-04-25T23:59:59.000Z

    Understanding the climatic drivers of changes in sea ice extent in the Arctic has become increasingly important as record minima in the September sea ice extent continue to be reached. This research therefore addresses the question of which synoptic...

  17. Metal Analysis of Scales Taken from Arctic Grayling A. P. Farrell,1

    E-Print Network [OSTI]

    Farrell, Anthony P.

    scales taken from Arctic grayling using laser ablation­induc- tively coupled plasma mass spectrometry (LA of the scales. Ten elements (Mg, Ca, Ni, Zn, As, Se, Cd, Sb, Hg, and Pb) were measured in 10 to 16 ablation

  18. Building skills : a construction trades training facility for the eastern Canadian Arctic

    E-Print Network [OSTI]

    Roszler, Sarah Katherine, 1977-

    2005-01-01T23:59:59.000Z

    On April 1, 1999, the Inuit of the Eastern Canadian Arctic achieved sovereignty over a new territory, Nunavut, envisioning economic self-reliance, political self-determination, and renewal of confidence in Inuit community. ...

  19. Distribution and Validation of Cloud Cover Derived from AVHRR Data Over the Arctic Ocean During the SHEBA Year

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA : Papers SubfoldersU.S.PV FOR ELECTRICITYExports[pic]

  20. Real-time processing of remote sensor data as applied to Arctic ice classification

    E-Print Network [OSTI]

    Permenter, James Austin

    1973-01-01T23:59:59.000Z

    REAL-TIME PROCESSING OF REMOTE SENSOR DATA AS APPLIED TO ARCTIC ICE CLASSIFICATION A Thesis by JAMES AUSTIN PERMENTER partial ! Submitted to the Graduate College of Texas A)M University in fulfillment of the requirement for the degree... of MASTER OF SCIENCE December 1973 Major Subject: Electrical Engineering REAL-TIME PROCESSING OF REMOTE SENSOR DATA AS APPLIED TO ARCTIC ICE CLASSIFICATION A Thesis by James Austin Permenter Approved as to style and content by: ] ( rman of Commi...

  1. Effects of simulated natural variability on Arctic temperature projections

    E-Print Network [OSTI]

    Drange, Helge

    - sea ice-ocean model is used to examine the effects of natural variability on climate projections starting from different strengths and phases of the Atlantic Meridional Overturning Circulation and cryosphere give rise to a variety of climate feedbacks as such as ice- albedo and cloud feedbacks. The direct

  2. Determinating Timing Channels in Statistically Multiplexed Clouds

    E-Print Network [OSTI]

    Aviram, Amittai; Ford, Bryan; Gummadi, Ramakrishna

    2010-01-01T23:59:59.000Z

    Timing side-channels represent an insidious security challenge for cloud computing, because: (a) they enable one customer to steal information from another without leaving a trail or raising alarms; (b) only the cloud provider can feasibly detect and report such attacks, but the provider's incentives are not to; and (c) known general-purpose timing channel control methods undermine statistical resource sharing efficiency, and, with it, the cloud computing business model. We propose a new cloud architecture that uses provider-enforced deterministic execution to eliminate all timing channels internal to a shared cloud domain, without limiting internal resource sharing. A prototype determinism-enforcing hypervisor demonstrates that utilizing such a cloud might be both convenient and efficient. The hypervisor enables parallel guest processes and threads to interact via familiar shared memory and file system abstractions, and runs moderately coarse-grained parallel tasks as efficiently and scalably as current nond...

  3. Development, sensitivity analysis, and uncertainty quantification of high-fidelity arctic sea ice models.

    SciTech Connect (OSTI)

    Peterson, Kara J.; Bochev, Pavel Blagoveston; Paskaleva, Biliana S.

    2010-09-01T23:59:59.000Z

    Arctic sea ice is an important component of the global climate system and due to feedback effects the Arctic ice cover is changing rapidly. Predictive mathematical models are of paramount importance for accurate estimates of the future ice trajectory. However, the sea ice components of Global Climate Models (GCMs) vary significantly in their prediction of the future state of Arctic sea ice and have generally underestimated the rate of decline in minimum sea ice extent seen over the past thirty years. One of the contributing factors to this variability is the sensitivity of the sea ice to model physical parameters. A new sea ice model that has the potential to improve sea ice predictions incorporates an anisotropic elastic-decohesive rheology and dynamics solved using the material-point method (MPM), which combines Lagrangian particles for advection with a background grid for gradient computations. We evaluate the variability of the Los Alamos National Laboratory CICE code and the MPM sea ice code for a single year simulation of the Arctic basin using consistent ocean and atmospheric forcing. Sensitivities of ice volume, ice area, ice extent, root mean square (RMS) ice speed, central Arctic ice thickness, and central Arctic ice speed with respect to ten different dynamic and thermodynamic parameters are evaluated both individually and in combination using the Design Analysis Kit for Optimization and Terascale Applications (DAKOTA). We find similar responses for the two codes and some interesting seasonal variability in the strength of the parameters on the solution.

  4. Research on the seasonal snow of the Arctic Slope

    SciTech Connect (OSTI)

    Benson, C.S.

    1988-01-01T23:59:59.000Z

    The original objectives of this research included a regional study of snow on the entire Arctic Slope. During the first year the scope was restricted to the R{sub 4}D area. In the second and third years the primary focus was also on the R{sub 4}D area,but measurements were made at Prudhoe Bay, Atgasuk and Wainwright to determine the flux of wind-blown snow on a wider scale. Additional broadening of scope was discussed at the San Diego R{sub 4}D meetings in April 1986 and 1987 and at the extrapolation workshop held at Penn State University in Spring 1987. The broadening of scope has also included detailed studies of chemistry and controls exerted by large-scale advection of air masses on the longwave, thermal IR, and radiation. The latter phenomena are critical in initiating snowmelt.

  5. Analysis of cloud layer structure in Shouxian, China using RS92 radiosonde aided by 95 GHz cloud radar

    E-Print Network [OSTI]

    Li, Zhanqing

    Analysis of cloud layer structure in Shouxian, China using RS92 radiosonde aided by 95 GHz cloud to analyze cloud vertical structure over this area by taking advantage of the first direct measurements of cloud vertical layers from the 95 GHz radar. Singlelayer, twolayer, and threelayer clouds account for 28

  6. In Proceedings of APSEC 2010 Cloud Workshop, Sydney, Australia, 30th An Analysis of The Cloud Computing Security Problem

    E-Print Network [OSTI]

    Grundy, John

    of The Cloud Computing Security Problem Mohamed Al Morsy, John Grundy and Ingo Müller Computer Science to adopt IT without upfront investment. Despite the potential gains achieved from the cloud computing solution. Keywords: cloud computing; cloud computing security; cloud computing security management. I

  7. April 12, 2014: The Era of Cloud Computing is coming Headline: The Era of Cloud Computing is coming

    E-Print Network [OSTI]

    Buyya, Rajkumar

    April 12, 2014: The Era of Cloud Computing is coming #12;Headline: The Era of Cloud Computing of Cloud Computing at a seminar in MANIT and RGPV on Saturday. Inset headline: This is the right time to build a career in Cloud Computing Article: Prof. Rajkumar Buyya gave guidance to students about Cloud

  8. After the definition of Cloud Computing ... What has NIST done in the Cloud space lately? What's next?

    E-Print Network [OSTI]

    After the definition of Cloud Computing ... What has NIST done in the Cloud space lately? What Publication SP 500-292: Cloud Computing Reference Architecture. This document takes the NIST definition of Cloud Computing a step further by expanding the definition into a logical representation of the cloud

  9. Generated using version 3.0 of the official AMS LATEX template Computing and Partitioning Cloud Feedbacks using Cloud1

    E-Print Network [OSTI]

    Hartmann, Dennis

    by adjusting the change in cloud radiative forcing for non-cloud22 related effects as in Soden et al. (2008 planet, the global and annual mean effect40 of clouds at the top of atmosphere (TOA) is to increase Feedbacks using Cloud1 Property Histograms.2 Part I: Cloud Radiative Kernels3 Mark D. Zelinka Department

  10. Influence of Cloud-Top Height and Geometric Thickness on a MODIS Infrared-Based Ice Cloud Retrieval

    E-Print Network [OSTI]

    Baum, Bryan A.

    of the net cloud radiative forc- ing of these clouds requires a global, diurnal climatology, which can most and temporal scales. In this study, the sensitivity of an infrared-based ice cloud retrieval to effective cloud temperature is investigated, with a focus on the effects of cloud-top height and geometric thickness

  11. CHARACTERIZATION OF CLOUDS IN TITAN'S TROPICAL ATMOSPHERE

    SciTech Connect (OSTI)

    Griffith, Caitlin A.; Penteado, Paulo [Department of Planetary Sciences, University of Arizona, Tucson, AZ 85719 (United States); Rodriguez, Sebastien [Laboratoire AIM, Universite Paris 7/CNRS/CEA-Saclay, DSM/IRFU/SAp (France); Le Mouelic, Stephane [Laboratoire de Planetologie et Geodynamique, CNRS, UMR-6112, Universite de Nantes, 44000 Nantes (France); Baines, Kevin H.; Buratti, Bonnie; Sotin, Christophe [Jet Propulsion Laboratory, Pasadena, CA 91109 (United States); Clark, Roger [U.S. Geological Survey, Denver, CO 80225 (United States); Nicholson, Phil [Department of Astronomy, Cornell University, Ithaca, NY (United States); Jaumann, Ralf [Institute of Planetary Exploration, Deutsche Zentrum, fuer Luft- und Raumfahrt (Germany)

    2009-09-10T23:59:59.000Z

    Images of Titan's clouds, possible over the past 10 years, indicate primarily discrete convective methane clouds near the south and north poles and an immense stratiform cloud, likely composed of ethane, around the north pole. Here we present spectral images from Cassini's Visual Mapping Infrared Spectrometer that reveal the increasing presence of clouds in Titan's tropical atmosphere. Radiative transfer analyses indicate similarities between summer polar and tropical methane clouds. Like their southern counterparts, tropical clouds consist of particles exceeding 5 {mu}m. They display discrete structures suggestive of convective cumuli. They prevail at a specific latitude band between 8 deg. - 20 deg. S, indicative of a circulation origin and the beginning of a circulation turnover. Yet, unlike the high latitude clouds that often reach 45 km altitude, these discrete tropical clouds, so far, remain capped to altitudes below 26 km. Such low convective clouds are consistent with the highly stable atmospheric conditions measured at the Huygens landing site. Their characteristics suggest that Titan's tropical atmosphere has a dry climate unlike the south polar atmosphere, and despite the numerous washes that carve the tropical landscape.

  12. Interstellar Turbulence, Cloud Formation and Pressure Balance

    E-Print Network [OSTI]

    Enrique Vazquez-Semadeni

    1998-10-23T23:59:59.000Z

    We discuss HD and MHD compressible turbulence as a cloud-forming and cloud-structuring mechanism in the ISM. Results from a numerical model of the turbulent ISM at large scales suggest that the phase-like appearance of the medium, the typical values of the densities and magnetic field strengths in the intercloud medium, as well as Larson's velocity dispersion-size scaling relation in clouds may be understood as consequences of the interstellar turbulence. However, the density-size relation appears to only hold for the densest simulated clouds, there existing a large population of small, low-density clouds, which, on the other hand, are hardest to observe. We then discuss several tests and implications of a fully dynamical picture of interstellar clouds. The results imply that clouds are transient, constantly being formed, distorted and disrupted by the turbulent velocity field, with a fraction of these fluctuations undergoing gravitational collapse. Simulated line profiles and estimated cloud lifetimes are consistent with observational data. In this scenario, we suggest it is quite unlikely that quasi-hydrostatic structures on any scale can form, and that the near pressure balance between clouds and the intercloud medium is an incidental consequence of the density field driven by the turbulence and in the presence of appropriate cooling, rather than a driving or confining mechanism.

  13. An AeroCom Assessment of Black Carbon in Arctic Snow and Sea Ice

    SciTech Connect (OSTI)

    Jiao, C.; Flanner, M. G.; Balkanski, Y.; Bauer, S.; Bellouin, N.; Berntsen, T.; Bian, Huisheng; Carslaw, K. S.; Chin, Mian; De Luca, N.; Diehl, Thomas; Ghan, Steven J.; Iversen, T.; Kirkevag, A.; Koch, Dorothy; Liu, Xiaohong; Mann, G. W.; Penner, Joyce E.; Pitari, G.; Schulz, M.; Seland, O.; Skeie, R. B.; Steenrod, Stephen D.; Stier, P.; Takemura, T.; Tsigaridis, Kostas; van Noije, T.; Yun, Yuxing; Zhang, Kai

    2014-03-07T23:59:59.000Z

    Though many global aerosols models prognose surface deposition, only a few models have been used to directly simulate the radiative effect from black carbon (BC) deposition to snow and sea-ice. Here, we apply aerosol deposition fields from 25 models contributing to two phases of the Aerosol Comparisons between Observations and Models (AeroCom) project to simulate and evaluate within snow BC concentrations and radiative effect in the Arctic. We accomplish this by driving the offline land and sea-ice components of the Community Earth System Model with different deposition fields and meteorological conditions from 2004-2009, during which an extensive field campaign of BC measurements in Arctic snow occurred. We find that models generally underestimate BC concentrations in snow in northern Russia and Norway, while overestimating BC amounts elsewhere in the Arctic. Although simulated BC distributions in snow are poorly correlated with measurements, mean values are reasonable. The multi-model mean (range) bias in BC concentrations, sampled over the same grid cells, snow depths, and months of measurements, are -4.4 (-13.2 to +10.7) ng g?1 for an earlier Phase of AeroCom models (Phase I), and +4.1 (-13.0 to +21.4) ng g?1 for a more recent Phase of AeroCom models (Phase II), compared to the observational mean of 19.2 ng g?1. Factors determining model BC concentrations in Arctic snow include Arctic BC emissions, transport of extra-Arctic aerosols, precipitation, deposition efficiency of aerosols within the Arctic, and meltwater removal of particles in snow. Sensitivity studies show that the model–measurement evaluation is only weakly affected by meltwater scavenging efficiency because most measurements were conducted in non-melting snow. The Arctic (60-90?N) atmospheric residence time for BC in Phase II models ranges from 3.7 to 23.2 days, implying large inter-model variation in local BC deposition efficiency. Combined with the fact that most Arctic BC deposition originates from extra-Arctic emissions, these results suggest that aerosol removal processes are a leading source of variation in model performance. The multi-model mean (full range) of Arctic radiative effect from BC in snow is 0.15 (0.07-0.25) W m?2 and 0.18 (0.06-0.28) W m?2 in Phase I and Phase II models, respectively. After correcting for model biases relative to observed BC concentrations in different regions of the Arctic, we obtain a multi-model mean Arctic radiative effect of 0.17 W m?2 for the combined AeroCom ensembles. Finally, there is a high correlation between modeled BC concentrations sampled over the observational sites and the Arctic as a whole, indicating that the field campaign provided a reasonable sample of the Arctic.

  14. Dark Clouds on the Horizon: Using Cloud Storage as Attack Vector and Online Slack Space

    E-Print Network [OSTI]

    Dark Clouds on the Horizon: Using Cloud Storage as Attack Vector and Online Slack Space Martin this as online slack space. We conclude by discussing security improvements for mod- ern online storage services protocol. With the advent of cloud computing and the shared usage of resources, these centralized storage

  15. To Cloud or Not to Cloud: A Mobile Device Perspective on Energy Consumption of Applications

    E-Print Network [OSTI]

    Namboodiri, Vinod

    To Cloud or Not to Cloud: A Mobile Device Perspective on Energy Consumption of Applications Vinod important criteria might be the energy consumed by the applications they run. The goal of this work is to characterize under what scenarios cloud-based applications would be relatively more energy-efficient for users

  16. Aircraft Microphysical Documentation from Cloud Base to Anvils of Hailstorm Feeder Clouds in Argentina

    E-Print Network [OSTI]

    Daniel, Rosenfeld

    in Argentina DANIEL ROSENFELD The Hebrew University of Jerusalem, Jerusalem, Israel WILLIAM L. WOODLEY Woodley, Argentina, with a cloud-physics jet aircraft penetrating the major feeder clouds from cloud base to the 45°C. Introduction The province of Mendoza in western Argentina (32°S, 68°W), which is known worldwide for its wine

  17. Investigating the Radiative Impact Clouds Using Retrieved Properties to Classify Cloud Type

    E-Print Network [OSTI]

    Hogan, Robin

    of Reading, RG6 6AL, UK Abstract. Active remote sensing allows cloud properties such as ice and liquid water remote sensing, Cloud categorization, Cloud properties, Radiative impact. PACS: 92.60. Vb. INTRODUCTION in a radiation scheme which can simulate the radiation budget and heating rates throughout the atmospheric

  18. The Design of a Community Science Cloud: The Open Science Data Cloud Perspective

    E-Print Network [OSTI]

    Grossman, Robert

    The Design of a Community Science Cloud: The Open Science Data Cloud Perspective Robert L. Grossman, Matthew Greenway, Allison P. Heath, Ray Powell, Rafael D. Suarez, Walt Wells, and Kevin White University Abstract--In this paper we describe the design, and implemen- tation of the Open Science Data Cloud

  19. From Grid to private Clouds, to interClouds. Project Team

    E-Print Network [OSTI]

    Vialle, Stéphane

    24/10/2011 1 From Grid to private Clouds, to interClouds. AlGorille Project Team An overviewGorille INRIA Project Team October 21, 2011 I Premise of Grid ComputingI Premise of Grid Computing... From Grid to private Clouds, to inter

  20. LETTER The incidence and implications of clouds for cloud forest plant water relations

    E-Print Network [OSTI]

    Goldsmith, Greg

    , the montane forest experienced higher precipi- tation, cloud cover and leaf wetting events of longer duration for an improved understanding of clouds and their effects on cloud forest plant functioning. As summarised below (VPD) and photosynthetically active radiation. In turn, this decreases plant water demand. The suppres

  1. Variations in Cloud Cover and Cloud Types over the Ocean from Surface Observations, 19542008

    E-Print Network [OSTI]

    Hochberg, Michael

    ). MSC therefore have a cooling ef- fect on climate [negative cloud radiative effect (CRE)]. Randall et in climate, affecting both radiation fluxes and latent heat fluxes, but the various cloud types affect marine. By contrast, high (cirriform) clouds are thinner and colder, so their longwave effect dominates, giving them

  2. A 3D STOCHASTIC CLOUD MODEL FOR INVESTIGATING THE RADIATIVE PROPERTIES OF INHOMOGENEOUS CIRRUS CLOUDS

    E-Print Network [OSTI]

    Hogan, Robin

    A 3D STOCHASTIC CLOUD MODEL FOR INVESTIGATING THE RADIATIVE PROPERTIES OF INHOMOGENEOUS CIRRUS, Berkshire, United Kingdom 1 INTRODUCTION The importance of ice clouds on the earth's radiation budget for quantifying this effect, and several such models exist for boundary layer clouds, such as those of Cahalan et

  3. Assessing Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperational Management »EnergyHubs | DepartmentCloud Spatial

  4. 90 4,000 Meters under the Ice The Arctic is one of the habitats undergoing the most

    E-Print Network [OSTI]

    PlanckResearch 89 RUSSIA Special RUSSIA Special #12;#12;TEXT MAREN EMMERICH The Arctic is one of the habitats

  5. Shoring up Infrastructure Weaknesses with Hybrid Cloud Storage

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    Shoring up Infrastructure Weaknesses with Hybrid Cloud Storage #12;2StorSimple White Pages: Shoring Up Infrastructure Weaknesses with Hybrid Cloud Storage Table of Contents The Hybrid Cloud Context for IT Managers ............................................................. 3 The Bottleneck of Managing Storage

  6. Satellite Remote Sensing of Mid-level Clouds

    E-Print Network [OSTI]

    Jin, Hongchun 1980-

    2012-11-07T23:59:59.000Z

    algorithm is evaluated using the CALIPSO cloud phase products for single-layer, heterogeneous, and multi-layer scenes. The AIRS phase algorithm has excellent performance (>90%) in detecting ice clouds compared to the CALIPSO ice clouds. It is capable...

  7. A cloud-assisted design for autonomous driving

    E-Print Network [OSTI]

    Suresh Kumar, Swarun

    This paper presents Carcel, a cloud-assisted system for autonomous driving. Carcel enables the cloud to have access to sensor data from autonomous vehicles as well as the roadside infrastructure. The cloud assists autonomous ...

  8. Aneka Cloud Application Platform and Its Integration with Windows Azure

    E-Print Network [OSTI]

    Melbourne, University of

    scheduling, and energy efficient resource utilization. The Aneka Cloud Application platform, together. Ltd., Melbourne, Victoria, Australia 2 Cloud Computing and Distributed Systems (CLOUDS) Laboratory, Department of Computer Science and Software Engineering, The University of Melbourne, Australia Abstract

  9. Fair-weather clouds hold dirty secret | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fair-weather clouds hold dirty secret Fair-weather clouds hold dirty secret Released: May 05, 2013 New study reveals particles that seed small-scale clouds over Oklahoma Air...

  10. E-Cloud Build-up in Grooved Chambers

    E-Print Network [OSTI]

    Venturini, Marco

    2007-01-01T23:59:59.000Z

    and F. Zimmermann, ”LC e-Cloud Activities at CERN”, talkal. , Simulations of the Electron Cloud for Vari- ous Con?E-CLOUD BUILD-UP IN GROOVED CHAMBERS ? M. Venturini † LBNL,

  11. Building Dynamic Computing Infrastructures over Distributed Clouds Pierre Riteau

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Building Dynamic Computing Infrastructures over Distributed Clouds Pierre Riteau University--The emergence of cloud computing infrastructures brings new ways to build and manage computing systems objectives. First, leveraging virtualization and cloud computing infrastruc- tures to build distributed large

  12. Modelling Cloud Computing Infrastructure Marianne Hickey and Maher Rahmouni,

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Modelling Cloud Computing Infrastructure Marianne Hickey and Maher Rahmouni, HP Labs, Long Down, and shared vocabularies. Keywords: Modelling, Cloud Computing, RDF, Ontology, Rules, Validation 1 Introduction There is currently a shift towards cloud computing, which changes the model of provision

  13. Consistent cloud computing storage as the basis for distributed applications

    E-Print Network [OSTI]

    Anderson, James William

    2011-01-01T23:59:59.000Z

    Messaging in Cloud Computing . . . . . . . . . .7 1.4Eucalyptus Open—Source Cloud—Computing System. In C'C&#http://www.eweek.com/c/a/Cloud-Computing/Amazons—Head—Start—

  14. Dynamics of Arctic and Sub-Arctic Climate and Atmospheric Circulation: Diagnosis of Mechanisms and Biases Using Data Assimilation

    SciTech Connect (OSTI)

    Eric T. DeWeaver

    2010-02-17T23:59:59.000Z

    The overall goal of work performed under this grant is to enhance understanding of simulations of present-day climate and greenhouse gas-induced climate change. The examination of present-day climate also includes diagnostic intercomparison of model simulations and observed mean climate and climate variability using reanalysis and satellite datasets. Enhanced understanding is desirable 1) as a prerequisite for improving simulations; 2) for assessing the credibility of model simulations and their usefulness as tools for decision support; and 3) as a means to identify robust behaviors which commonly occur over a wide range of models, and may yield insights regarding the dominant physical mechanisms which determine mean climate and produce climate change. A further objective is to investigate the use of data assimilation as a means for examining and correcting model biases. Our primary focus is on the Arctic, but the scope of the work was expanded to include the global climate system.

  15. Dynamics of Arctic and Sub-Arctic Climate and Atmospheric Circulation: Diagnosis of Mechanisms and Biases Using Data Assimilation

    SciTech Connect (OSTI)

    Eric T. DeWeaver

    2010-01-19T23:59:59.000Z

    This is the final report for DOE grant DE-FG02-07ER64434 to Eric DeWeaver at the University of Wisconsin-Madison. The overall goal of work performed under this grant is to enhance understanding of simulations of present-day climate and greenhouse gas-induced climate change. Enhanced understanding is desirable 1) as a prerequisite for improving simulations; 2) for assessing the credibility of model simulations and their usefulness as tools for decision support; and 3) as a means to identify robust behaviors which commonly occur over a wide range of models, and may yield insights regarding the dominant physical mechanisms which determine mean climate and produce climate change. A furthe objective is to investigate the use of data assimilation as a means for examining and correcting model biases. Our primary focus is on the Arctic, but the scope of the work was expanded to include the global climate system to the extent that research targets of opportunity present themselves. Research performed under the grant falls into five main research areas: 1) a study of data assimilation using an ensemble filter with the atmospheric circulation model of the National Center for Atmospheric Research, in which both conventional observations and observations of the refraction of radio waves from GPS satellites were used to constrain the atmospheric state of the model; 2) research on the likely future status of polar bears, in which climate model simluations were used to assess the effectiveness of climate change mitigation efforts in preserving the habitat of polar bears, now considered a threatened species under global warming; 3) as assessment of the credibility of Arctic sea ice thickness simulations from climate models; 4) An examination of the persistence and reemergence of Northern Hemisphere sea ice area anomalies in climate model simulations and in observations; 5) An examination of the roles played by changes in net radiation and surface relative humidity in determine the response of the hydrological cycle to global warming.

  16. AEROSOL, CLOUDS, AND CLIMATE CHANGE

    SciTech Connect (OSTI)

    SCHWARTZ, S.E.

    2005-09-01T23:59:59.000Z

    Earth's climate is thought to be quite sensitive to changes in radiative fluxes that are quite small in absolute magnitude, a few watts per square meter, and in relation to these fluxes in the natural climate. Atmospheric aerosol particles exert influence on climate directly, by scattering and absorbing radiation, and indirectly by modifying the microphysical properties of clouds and in turn their radiative effects and hydrology. The forcing of climate change by these indirect effects is thought to be quite substantial relative to forcing by incremental concentrations of greenhouse gases, but highly uncertain. Quantification of aerosol indirect forcing by satellite- or ground-based remote sensing has proved quite difficult in view of inherent large variation in the pertinent observables such as cloud optical depth, which is controlled mainly by liquid water path and only secondarily by aerosols. Limited work has shown instances of large magnitude of aerosol indirect forcing, with local instantaneous forcing upwards of 50 W m{sup 66}-2. Ultimately it will be necessary to represent aerosol indirect effects in climate models to accurately identify the anthropogenic forcing at present and over secular time and to assess the influence of this forcing in the context of other forcings of climate change. While the elements of aerosol processes that must be represented in models describing the evolution and properties of aerosol particles that serve as cloud condensation particles are known, many important components of these processes remain to be understood and to be represented in models, and the models evaluated against observation, before such model-based representations can confidently be used to represent aerosol indirect effects in climate models.

  17. The Giant Molecular Cloud Environments of Infrared Dark Clouds

    E-Print Network [OSTI]

    Hernandez, Audra K

    2015-01-01T23:59:59.000Z

    We study the GMC environments surrounding 10 IRDCs, based on 13CO molecular line emission from the Galactic Ring Survey. Using a range of physical scales, we measure the physical properties of the IRDCs and their surrounding molecular material extending out to radii, R, of 30pc. By comparing different methods for defining cloud boundaries and for deriving mass surface densities, Sigma, and velocity dispersions, sigma, we settled on a preferred "CE,tau,G" method of "Connected Extraction" in position-velocity space along with Gaussian fitting to opacity-corrected line profiles for velocity dispersion and mass estimation. We examine how cloud definition affects measurements of the magnitude and direction of line of sight velocity gradients and velocity dispersions, including the associated dependencies on size scale. CE,tau,G-defined IRDCs and GMCs show velocity gradient versus size relations that scale approximately as dv_0/ds~s^(-1/2) and velocity dispersion versus size relations sigma~s^(1/2), which are consi...

  18. Electron Cloud Effects in Accelerators

    SciTech Connect (OSTI)

    Furman, M.A.

    2012-11-30T23:59:59.000Z

    Abstract We present a brief summary of various aspects of the electron-cloud effect (ECE) in accelerators. For further details, the reader is encouraged to refer to the proceedings of many prior workshops, either dedicated to EC or with significant EC contents, including the entire ?ECLOUD? series [1?22]. In addition, the proceedings of the various flavors of Particle Accelerator Conferences [23] contain a large number of EC-related publications. The ICFA Beam Dynamics Newsletter series [24] contains one dedicated issue, and several occasional articles, on EC. An extensive reference database is the LHC website on EC [25].

  19. ARM - Lesson Plans: Making Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDC documentationBarrow, Alaska OutreachMaking Clouds Outreach Home

  20. Sandia Energy - Cloud Computing Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatings Initiated at PNNL's Sequim BayCaptureCloud Computing Services

  1. Cloud a particle beam facility to investigate the influence of cosmic rays on clouds

    E-Print Network [OSTI]

    Kirkby, Jasper

    2001-01-01T23:59:59.000Z

    Palaeoclimatic data provide extensive evidence for solar forcing of the climate during the Holocene and the last ice age, but the underlying mechanism remains a mystery. However recent observations suggest that cosmic rays may play a key role. Satellite data have revealed a surprising correlation between cosmic ray intensity and the fraction of the Earth covered by low clouds \\cite{svensmark97,marsh}. Since the cosmic ray intensity is modulated by the solar wind, this may be an important clue to the long-sought mechanism for solar-climate variability. In order to test whether cosmic rays and clouds are causally linked and, if so, to understand the microphysical mechanisms, a novel experiment known as CLOUD\\footnotemark\\ has been proposed \\cite{cloud_proposal}--\\cite{cloud_addendum_2}. CLOUD proposes to investigate ion-aerosol-cloud microphysics under controlled laboratory conditions using a beam from a particle accelerator, which provides a precisely adjustable and measurable artificial source of cosmic rays....

  2. CloneCloud: Boosting Mobile Device Applications Through Cloud Clone Execution

    E-Print Network [OSTI]

    Chun, Byung-Gon; Maniatis, Petros; Naik, Mayur

    2010-01-01T23:59:59.000Z

    Mobile applications are becoming increasingly ubiquitous and provide ever richer functionality on mobile devices. At the same time, such devices often enjoy strong connectivity with more powerful machines ranging from laptops and desktops to commercial clouds. This paper presents the design and implementation of CloneCloud, a system that automatically transforms mobile applications to benefit from the cloud. The system is a flexible application partitioner and execution runtime that enables unmodified mobile applications running in an application-level virtual machine to seamlessly off-load part of their execution from mobile devices onto device clones operating in a computational cloud. CloneCloud uses a combination of static analysis and dynamic profiling to optimally and automatically partition an application so that it migrates, executes in the cloud, and re-integrates computation in a fine-grained manner that makes efficient use of resources. Our evaluation shows that CloneCloud can achieve up to 21.2x s...

  3. Public Cloud B CarbonEmission

    E-Print Network [OSTI]

    Buyya, Rajkumar

    Sensors, Demand Prediction Power Capping, Green Software Services such as energy-efficient scientific) Request a Cloud service 4) Allocate service 5) Request service allocation 3) Request energy efficiency information Green Offer Directory 2) Request any `Green Offer' Routers Internet Green Broker #12;Cloud

  4. The CloudNets Network Virtualization Architecture

    E-Print Network [OSTI]

    Schmid, Stefan

    Nets Network Virtualization Architecture Johannes Grassler jgrassler@inet.tu-berlin.de 05. Februar, 2014 Johannes Grassler jgrassler@inet.tu-berlin.de The CloudNets Network Virtualization Architecture #12;..... . .... . .... . ..... . .... . .... . .... . ..... . .... . .... . .... . ..... . .... . .... . .... . ..... . .... . ..... . .... . .... . Johannes Grassler jgrassler@inet.tu-berlin.de The CloudNets Network Virtualization Architecture #12

  5. 7, 80878111, 2007 Influence of cloud top

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 7, 8087­8111, 2007 Influence of cloud top variability on radiative transfer Richter, Barfus top variability from radar measurements on 3-D radiative transfer F. Richter 1 , K. Barfus 1 , F. H.richter@awi.de) 8087 #12;ACPD 7, 8087­8111, 2007 Influence of cloud top variability on radiative transfer Richter

  6. Verifiable Resource Accounting for Cloud Computing Services

    E-Print Network [OSTI]

    Maniatis, Petros

    Verifiable Resource Accounting for Cloud Computing Services Vyas Sekar Intel Labs Petros Maniatis Intel Labs ABSTRACT Cloud computing offers users the potential to reduce operating and capital expenses cause providers to incorrectly attribute resource consumption to customers or im- plicitly bear

  7. Compression of Antiproton Clouds for Antihydrogen Trapping

    E-Print Network [OSTI]

    G. B. Andresen; W. Bertsche; P. D. Bowe; C. C. Bray; E. Butler; C. L. Cesar; S. Chapman; M. Charlton; J. Fajans; M. C. Fujiwara; R. Funakoshi; D. R. Gill; J. S. Hangst; W. N. Hardy; R. S. Hayano; M. E. Hayden; R. Hydomako; M. J. Jenkins; L. V. Jorgensen; L. Kurchaninov; R. Lambo; N. Madsen; P. Nolan; K. Olchanski; A. Olin; A. Povilus; P. Pusa; F. Robicheaux; E. Sarid; S. Seif El Nasr; D. M. Silveira; J. W. Storey; R. I. Thompson; D. P. van der Werf; J. S. Wurtele; Y. Yamazaki

    2008-06-30T23:59:59.000Z

    Control of the radial profile of trapped antiproton clouds is critical to trapping antihydrogen. We report the first detailed measurements of the radial manipulation of antiproton clouds, including areal density compressions by factors as large as ten, by manipulating spatially overlapped electron plasmas. We show detailed measurements of the near-axis antiproton radial profile and its relation to that of the electron plasma.

  8. CLOUD COMPUTING INFRASTRUCTURE AND OPERATIONS PROGRAM

    E-Print Network [OSTI]

    Schaefer, Marcus

    theory and best practices, Cloud operations analytics, globally-responsive architecture, functional of Cloud infrastructures Best practices for building Infrastructure as a Service (IaaS), with an emphasis-distributed, responsive web application capable of massive scale with operational performance metrics. DePaul University

  9. Privacy in the Cloud Computing Era

    E-Print Network [OSTI]

    Narasayya, Vivek

    Privacy in the Cloud Computing Era A Microsoft Perspective November 2009 #12;The information information presented after the date of publication. This white paper is for informational purposes only. Microsoft Corp. · One Microsoft Way · Redmond, WA 98052-6399 · USA #12;Contents Cloud Computing and Privacy

  10. Cloud-integrated Storage What & Why 2StoreSimple White Pages: Shoring Up Infrastructure Weaknesses with Cloud Storage

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    Cloud-integrated Storage ­ What & Why #12;2StoreSimple White Pages: Shoring Up Infrastructure Weaknesses with Cloud Storage Overview..........................................................................................................3 Enterprise-class storage platform

  11. Published by the Arctic Research Consortium of the United States 3535 College Road Suite 101 Fairbanks, AK 99709 Arctic Research at the University of Northern British Columbia

    E-Print Network [OSTI]

    Dery, Stephen

    · Fairbanks, AK 99709 Arctic Research at the University of Northern British Columbia Establishedin1994 Columbia Prince George Campus 3333 University Way Prince George, BC V2N 4Z9 Canada 250-960-5555 sderywithconsiderablepublicendorsementandenthusiasm,theUniver- sity of Northern British Columbia (UNBC) has grown into one of Canada's premier

  12. Published in: Annals of Glaciology, vol. 33, pp. 194-200, 2001 Indirect measurements of the mass balance of summer Arctic sea

    E-Print Network [OSTI]

    Eicken, Hajo

    of summer ablation are of great importance in determining the overall mass balance of the Arctic ice pack in determining the state of the Arctic ice pack. Measurements of annual loss and gain of ice mass are required balance of summer Arctic sea ice with an electromagnetic induction technique H. EICKEN Geophysical

  13. Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t zManufacturing:DOE NationalCommitteeof3

  14. Critical mechanisms for the formation of extreme arctic sea-ice extent in the summers of 2007 and 1996

    E-Print Network [OSTI]

    Dong, Xiquan

    deformation on top of the long-term thinning of an Arctic ice pack that had become more dominated by seasonalCritical mechanisms for the formation of extreme arctic sea-ice extent in the summers of 2007 system, the largest year-to-year variation in sea-ice extent (SIE) has occurred in the Laptev, East

  15. The 2007 Bering Strait Oceanic Heat Flux and anomalous Arctic Sea-ice Retreat Rebecca A. Woodgate*, Tom Weingartner

    E-Print Network [OSTI]

    where heat carried by northward flowing PW weakens the ice-pack thereby promoting more sea-ice motionThe 2007 Bering Strait Oceanic Heat Flux and anomalous Arctic Sea-ice Retreat Rebecca A. Woodgate Abstract: To illuminate the role of Pacific Waters in the 2007 Arctic sea-ice retreat, we use observational

  16. The Thinning of Arctic Sea Ice, 19882003: Have We Passed a Tipping Point? R. W. LINDSAY AND J. ZHANG

    E-Print Network [OSTI]

    Zhang, Jinlun

    ­05. To determine the physical processes contributing to these changes in the Arctic pack ice, model results from ice pack is a key component of the Arctic Ocean physical and biological systems. It controls in the central pack is also thinning. Based on submarine measurements, the ice draft is reported by Rothrock et

  17. UiT The Arctic University of Norway Fakultet for biovitenskap, fiskeri og konomi -Inst. for arktisk og marin biologi

    E-Print Network [OSTI]

    Uppsala Universitet

    UiT The Arctic University of Norway Fakultet for biovitenskap, fiskeri og økonomi - Inst/616 The Faculty of Biosciences, Fishery and Economics, UiT The Arctic University of Norway has a PhD position and participate in field work in Norway and Russia. The candidate must have a god command of written and spoken

  18. Modelling the impact of superimposed ice on the mass balance of an Arctic glacier under scenarios of future climate change

    E-Print Network [OSTI]

    ). A consequence of climatic warming in the high Arctic will be an increase in surface melting of glaciers and ice component of the mass accumulation of many glaciers and ice caps in thModelling the impact of superimposed ice on the mass balance of an Arctic glacier under scenarios

  19. Friction Stir Welding Download the files fswss.txt and fswdyn.txt from the course website. These files contain

    E-Print Network [OSTI]

    Landers, Robert G.

    Friction Stir Welding QUESTION 1 Download the files fswss.txt and fswdyn.txt from the course website. These files contain experimental data from a friction stir welding process of 6061 aluminum 0 2 1 0 F z b z b d z z a z a + = + + (3) #12;Friction Stir Welding QUESTION 2 Download the files

  20. Magnetic Fields in Molecular Cloud Cores

    E-Print Network [OSTI]

    Shantanu Basu

    2004-10-22T23:59:59.000Z

    Observations of magnetic field strengths imply that molecular cloud fragments are individually close to being in a magnetically critical state, even though both magnetic field and column density measurements range over two orders of magnitude. The turbulent pressure also approximately balances the self-gravitational pressure. These results together mean that the one-dimensional velocity dispersion $\\sigv$ is proportional to the mean \\Alf speed of a cloud $\\va$. Global models of MHD turbulence in a molecular cloud show that this correlation is naturally satisfied for a range of different driving strengths of the turbulence. For example, an increase of turbulent driving causes a cloud expansion which also increases $\\va$. Clouds are in a time averaged balance but exhibit large oscillatory motions, particularly in their outer rarefied regions. We also discuss models of gravitational fragmentation in a sheet-like region in which turbulence has already dissipated, including the effects of magnetic fields and ion-neutral friction. Clouds with near-critical mass-to-flux ratios lead to subsonic infall within cores, consistent with some recent observations of motions in starless cores. Conversely, significantly supercritical clouds are expected to produce extended supersonic infall.

  1. Clouds and the Faint Young Sun Paradox

    E-Print Network [OSTI]

    Goldblatt, Colin

    2011-01-01T23:59:59.000Z

    We investigate the role which clouds could play in resolving the Faint Young Sun Paradox (FYSP). Lower solar luminosity in the past means that less energy was absorbed on Earth (a forcing of -50 Wm-2 during the late Archean), but geological evidence points to the Earth being at least as warm as it is today, with only very occasional glaciations. We perform radiative calculations on a single global mean atmospheric column. We select a nominal set of three layered, randomly overlapping clouds, which are both consistent with observed cloud climatologies and reproduce the observed global mean energy budget of Earth. By varying the fraction, thickness, height and particle size of these clouds we conduct a wide exploration of how changed clouds could affect climate, thus constraining how clouds could contribute to resolving the FYSP. Low clouds reflect sunlight but have little greenhouse effect. Removing them entirely gives a~forcing of +25 Wm-2 whilst more modest reduction in their efficacy gives a forcing of +10 ...

  2. ARM - Midlatitude Continental Convective Clouds

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Mike; Bartholomew, Mary Jane; Genio, Anthony Del; Giangrande, Scott; Kollias, Pavlos

    Convective processes play a critical role in the Earth's energy balance through the redistribution of heat and moisture in the atmosphere and their link to the hydrological cycle. Accurate representation of convective processes in numerical models is vital towards improving current and future simulations of Earths climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales important to convective processes and therefore must turn to parameterization schemes to represent these processes. In turn, parameterization schemes in cloud-resolving models need to be evaluated for their generality and application to a variety of atmospheric conditions. Data from field campaigns with appropriate forcing descriptors have been traditionally used by modelers for evaluating and improving parameterization schemes.

  3. Securely Managing Cryptographic Keys used within a Cloud Environment

    E-Print Network [OSTI]

    , Co-tenancy, Distributed Management Cryptography essential to secure cloud operations Use of sound;Page 3 Cloud Service Provider (CSP) - Models Cloud Service Models Software as a Service (Saa CSP know who I am? How is my connection to cloud components protected? Administration Who

  4. Proximity Graphs for Defining Surfaces over Point Clouds

    E-Print Network [OSTI]

    Behnke, Sven

    over Point Clouds Gabriel Zachmann University of Bonn Germany Jan Klein University of Paderborn Germany

  5. The aerosol direct radiative effect (DRE) over clouds is quantified using measured reflectance spectra of UV-absorbing aerosol polluted cloud scenes and modeled reflectance spectra of unpolluted cloud scenes. The cloud reflectance spectra are read from

    E-Print Network [OSTI]

    Graaf, Martin de

    distribution of clouds and aerosols along the white CALIPSO track in Fig.1b is shown in Fig. 2. The distanceThe aerosol direct radiative effect (DRE) over clouds is quantified using measured reflectance spectra of UV-absorbing aerosol polluted cloud scenes and modeled reflectance spectra of unpolluted cloud

  6. CLOUD PHYSICS From aerosol-limited to invigoration

    E-Print Network [OSTI]

    Napp, Nils

    CLOUD PHYSICS From aerosol-limited to invigoration of warm convective clouds Ilan Koren,1 * Guy Dagan,1 Orit Altaratz1 Among all cloud-aerosol interactions, the invigoration effect is the most elusive. Most of the studies that do suggest this effect link it to deep convective clouds with a warm base

  7. Fault-Tolerant and Reliable Computation in Cloud Computing

    E-Print Network [OSTI]

    Deng, Jing

    Fault-Tolerant and Reliable Computation in Cloud Computing Jing Deng Scott C.-H. Huang Yunghsiang S, Taipei, 106 Taiwan. § Intelligent Automation, Inc., Rockville, MD, USA. Abstract-- Cloud computing of scientific computation in cloud computing. We investigate a cloud selection strategy to decompose the matrix

  8. How Mobility Increases Mobile Cloud Computing Processing Capacity

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    How Mobility Increases Mobile Cloud Computing Processing Capacity Anh-Dung Nguyen, Patrick S--In this paper, we address a important and still unanswered question in mobile cloud computing "how mobility the resilience of mobile cloud computing services. Keywords--Mobile cloud computing, mobility, quality of service

  9. IBM Tivoli Cloud Computing: Technical Enablement for IBM Business Partners

    E-Print Network [OSTI]

    IBM Tivoli Cloud Computing: Technical Enablement for IBM Business Partners Cloud computing is a key part of driving greater alignment between business and IT. IBM Service Management and Cloud Computing to the IBM technical community. IBM Cloud Computing Business Partner Technical Enablement Offering

  10. Cloud Condensation Nuclei (CCN) Analysis of Biogenic Secondary Organic Aerosol

    E-Print Network [OSTI]

    Collins, Gary S.

    Cloud Condensation Nuclei (CCN) Analysis of Biogenic Secondary Organic Aerosol Rachel L. Atlas1' gas-phase emissions and the aerosols they form (figure 6), including a cloud condensation nuclei Cloud condensation nuclei (CCN) are particles which water vapor condenses onto to form cloud droplets

  11. The New England Journal of Medicine Downloaded from nejm.org at Harvard Library on October 16, 2014. For personal use only. No other uses without permission.

    E-Print Network [OSTI]

    Alper, Chester A.

    The New England Journal of Medicine Downloaded from nejm.org at Harvard Library on October 16, 2014 Medical Society. All rights reserved. #12;The New England Journal of Medicine Downloaded from nejm Journal of Medicine Downloaded from nejm.org at Harvard Library on October 16, 2014. For personal use only

  12. The New England Journal of Medicine Downloaded from nejm.org at HARVARD UNIVERSITY on October 28, 2013. For personal use only. No other uses without permission.

    E-Print Network [OSTI]

    Alper, Chester A.

    The New England Journal of Medicine Downloaded from nejm.org at HARVARD UNIVERSITY on October 28 Massachusetts Medical Society. All rights reserved. #12;The New England Journal of Medicine Downloaded from nejm Journal of Medicine Downloaded from nejm.org at HARVARD UNIVERSITY on October 28, 2013. For personal use

  13. Non-nuclear submarine tankers could cost-effectively move Arctic oil and gas

    SciTech Connect (OSTI)

    Kumm, W.H.

    1984-03-05T23:59:59.000Z

    Before the advent of nuclear propulsion for U.S. Navy submarines, fuel cells were considered to be the next logical step forward from battery powered submarines which required recharging. But with the launching of the USS Nautilus (SSN-571) in 1954, the development of fuel-cell propulsion was sidelined by the naval community. Nearly 30 years later fuel-cell propulsion on board submarines is actually more cost-effective than the use of nuclear propulsion. In the Artic Ocean, the use of the submarine tanker has long been considered commercially appropriate because of the presence of the polar ice cap, which inhibits surface ship transport. The technical difficulty and high operating cost of Arctic icebreaking tankers are strong arguments in favor of the cheaper, more efficient submarine tanker. Transiting under the polar ice cap, the submarine tanker is not an ''Arctic'' system, but merely a submerged system. It is a system usable in any ocean around the globe where sufficient depth exists (about 65% of the global surface). Ice breakers are another story; their design only makes them useful for transit through heavy sea ice in coastal environments. Used anywhere else, such as in the open ocean or at the Arctic ice cap, they are not a cost-effective means of transport. Arctic sea ice conditions require the Arctic peculiar icebreaking tanker system to do the job the hard way-on the surface. But on the other hand, Arctic sea ice conditions are neatly set aside by the submarine tanker, which does it the energy-efficient, elegant way submerged. The submarine tanker is less expensive to build, far less expensive to operate, and does not need to be nuclear propelled.

  14. A multi-model assessment of pollution transport to the Arctic

    SciTech Connect (OSTI)

    Shindell, D T; Chin, M; Dentener, F; Doherty, R M; Faluvegi, G; Fiore, A M; Hess, P; Koch, D M; MacKenzie, I A; Sanderson, M G; Schultz, M G; Schulz, M; Stevenson, D S; Teich, H; Textor, C; Wild, O; Bergmann, D J; Bey, I; Bian, H; Cuvelier, C; Duncan, B N; Folberth, G; Horowitz, L W; Jonson, J; Kaminski, J W; Marmer, E; Park, R; Pringle, K J; Schroeder, S; Szopa, S; Takemura, T; Zeng, G; Keating, T J; Zuber, A

    2008-03-13T23:59:59.000Z

    We examine the response of Arctic gas and aerosol concentrations to perturbations in pollutant emissions from Europe, East and South Asia, and North America using results from a coordinated model intercomparison. These sensitivities to regional emissions (mixing ratio change per unit emission) vary widely across models and species. Intermodel differences are systematic, however, so that the relative importance of different regions is robust. North America contributes the most to Arctic ozone pollution. For aerosols and CO, European emissions dominate at the Arctic surface but East Asian emissions become progressively more important with altitude, and are dominant in the upper troposphere. Sensitivities show strong seasonality: surface sensitivities typically maximize during boreal winter for European and during spring for East Asian and North American emissions. Mid-tropospheric sensitivities, however, nearly always maximize during spring or summer for all regions. Deposition of black carbon (BC) onto Greenland is most sensitive to North American emissions. North America and Europe each contribute {approx}40% of total BC deposition to Greenland, with {approx}20% from East Asia. Elsewhere in the Arctic, both sensitivity and total BC deposition are dominated by European emissions. Model diversity for aerosols is especially large, resulting primarily from differences in aerosol physical and chemical processing (including removal). Comparison of modeled aerosol concentrations with observations indicates problems in the models, and perhaps, interpretation of the measurements. For gas phase pollutants such as CO and O{sub 3}, which are relatively well-simulated, the processes contributing most to uncertainties depend on the source region and altitude examined. Uncertainties in the Arctic surface CO response to emissions perturbations are dominated by emissions for East Asian sources, while uncertainties in transport, emissions, and oxidation are comparable for European and North American sources. At higher levels, model-to-model variations in transport and oxidation are most important. Differences in photochemistry appear to play the largest role in the intermodel variations in Arctic ozone sensitivity, though transport also contributes substantially in the mid-troposphere.

  15. The Experimental Cloud Lidar Pilot Study (ECLIPS) for cloud-radiation research

    SciTech Connect (OSTI)

    Platt, C.M.; Young, S.A. [Division of Atmospheric Research, Victoria (Australia)] [Division of Atmospheric Research, Victoria (Australia); Carswell, A.I.; Pal, S.R. [York Univ., North York, Ontario (Canada)] [York Univ., North York, Ontario (Canada); McCormick, M.P.; Winker, D.M. [NASA Langley Research Center, Hampton, VA (United States)] [NASA Langley Research Center, Hampton, VA (United States); DelGuasta, M.; Stefanutti, L. [Institute Ricerca Onde Elettromagnetiche, Florence (Italy)] [Institute Ricerca Onde Elettromagnetiche, Florence (Italy); Eberhard, W.L.; Hardesty, M. [NOAA Environmental Technology Lab., Boulder, CO (United States)] [and others] [NOAA Environmental Technology Lab., Boulder, CO (United States); and others

    1994-09-01T23:59:59.000Z

    The Experimental Cloud Lidar Pilot Study (ECLIPS) was initiated to obtain statistics on cloud-base height, extinction, optical depth, cloud brokenness, and surface fluxes. Two observational phases have taken place, in October-December 1989 and April-July 1991, with intensive 30-day periods selected within the two time intervals. Data are being archived at NASA Langley Research Center, and, once there, are readily available to the international scientific community. 43 refs., 13 figs., 4 tabs.

  16. NIST Cloud Computing Strategy working paper, April 2011 1 of 25 NIST Strategy to build a USG Cloud Computing

    E-Print Network [OSTI]

    NIST Cloud Computing Strategy working paper, April 2011 1 of 25 NIST Strategy to build a USG Cloud of United States Government (USG) secure and effective adoption of the Cloud Computing2 model to reduce costs and improve services. The working document describes the NIST Cloud Computing program efforts

  17. Generated using version 3.0 of the official AMS LATEX template Computing and Partitioning Cloud Feedbacks using Cloud1

    E-Print Network [OSTI]

    Hartmann, Dennis

    Generated using version 3.0 of the official AMS LATEX template Computing and Partitioning Cloud Feedbacks using Cloud1 Property Histograms.2 Part II: Attribution to the Nature of Cloud Changes3 Mark D-103 Livermore, CA 94551 E-mail: zelinka1@llnl.gov 1 #12;ABSTRACT7 Cloud radiative kernels

  18. IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 1 Cloud Federations in the Sky: Formation Game

    E-Print Network [OSTI]

    Grosu, Daniel

    IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 1 Cloud Federations in the Sky federation, virtual machine, game theory. 1 INTRODUCTION CLOUDS are large-scale distributed computing sys (VM) instances. Cloud computing systems' ability to provide on de- mand access to always-on computing

  19. Retrievals of Cloud Fraction and Cloud Albedo from Surface-based Shortwave Radiation Measurements: A Comparison of 16 Year Measurements

    SciTech Connect (OSTI)

    Xie, Yu; Liu, Yangang; Long, Charles N.; Min, Qilong

    2014-07-27T23:59:59.000Z

    Ground-based radiation measurements have been widely conducted to gain information on clouds and the surface radiation budget; here several different techniques for retrieving cloud fraction (Long2006, Min2008 and XL2013) and cloud albedo (Min2008, Liu2011 and XL2013) from ground-based shortwave broadband and spectral radiation measurements are examined, and sixteen years of retrievals collected at the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site are compared. The comparison shows overall good agreement between the retrievals of both cloud fraction and cloud albedo, with noted differences however. The Long2006 and Min2008 cloud fractions are greater on average than the XL2013 values. Compared to Min2008 and Liu2011, the XL2013 retrieval of cloud albedo tends to be greater for thin clouds but smaller for thick clouds, with the differences decreasing with increasing cloud fraction. Further analysis reveals that the approaches that retrieve cloud fraction and cloud albedo separately may suffer from mutual contamination of errors in retrieved cloud fraction and cloud albedo. Potential influences of cloud absorption, land-surface albedo, cloud structure, and measurement instruments are explored.

  20. Development of advanced cloud parameterizations to examine air quality, cloud properties, and cloud-radiation feedback in mesoscale models

    SciTech Connect (OSTI)

    Lee, In Young

    1993-09-01T23:59:59.000Z

    The distribution of atmospheric pollutants is governed by dynamic processes that create the general conditions for transport and mixing, by microphysical processes that control the evolution of aerosol and cloud particles, and by chemical processes that transform chemical species and form aerosols. Pollutants emitted into the air can undergo homogeneous gas reactions to create a suitable environment for the production by heterogeneous nucleation of embryos composed of a few molecules. The physicochemical properties of preexisting aerosols interact with newly produced embryos to evolve by heteromolecular diffusion and coagulation. Hygroscopic particles wig serve as effective cloud condensation nuclei (CCN), while hydrophobic particles will serve as effective ice-forming nuclei. Clouds form initially by condensation of water vapor on CCN and evolve in a vapor-liquid-solid system by deposition, sublimation, freezing, melting, coagulation, and breakup. Gases and aerosols that enter the clouds undergo aqueous chemical processes and may acidity hydrometer particles. Calculations for solar and longwave radiation fluxes depend on how the respective spectra are modified by absorbers such as H{sub 2}O, CO{sub 2}, O{sub 3}, CH{sub 4}, N{sub 2}O, chlorofruorocarbons, and aerosols. However, the flux calculations are more complicated for cloudy skies, because the cloud optical properties are not well defined. In this paper, key processes such as tropospheric chemistry, cloud microphysics parameterizations, and radiation schemes are reviewed in terms of physicochemical processes occurring, and recommendations are made for the development of advanced modules applicable to mesoscale models.

  1. Pre-Cloud Aerosol, Cloud Droplet Concentration, and Cloud Condensation Nuclei from the VAMOS Ocean-Cloud-Atmosphere Land Study (VOCALS) Field Campaign First Quarter 2010 ASR Program Metric Report

    SciTech Connect (OSTI)

    Kleinman, LI; Springston, SR; Daum, PH; Lee, Y-N; Sedlacek, AJ; Senum, G; Wang, J

    2011-08-31T23:59:59.000Z

    In this, the first of a series of Program Metric Reports, we (1) describe archived data from the DOE G-1 aircraft, (2) illustrate several relations between sub-cloud aerosol, CCN, and cloud droplets pertinent to determining the effects of pollutant sources on cloud properties, and (3) post to the data archive an Excel spreadsheet that contains cloud and corresponding sub-cloud data.

  2. Fundamental problems of modeling the dynamics of internal gravity waves with applications to the Arctic Basin

    E-Print Network [OSTI]

    Vitaly V. Bulatov; Yuriy V. Vladimirov

    2012-06-26T23:59:59.000Z

    In this paper, we consider fundamental problems of the dynamics of internal gravity waves. We present analytical and numerical algorithms for calculating the wave fields for a set of values of the parameters, as observed in the ocean. We show that our mathematical models can describe the wave dynamics of the Arctic Basin, taking into account the actual physical characteristics of sea water, topography of its floor, etc. The numerical and analytical results show that the internal gravity waves have a significant effect on underwater sea objects in the Arctic Basin.

  3. Annotated bibliography of the Northwest Territories action on water component of the Arctic environmental strategy

    SciTech Connect (OSTI)

    Goodwin, R.

    1998-01-01T23:59:59.000Z

    Water-related research conducted under the 1991--97 Arctic Environmental Strategy resulted in the production of 215 publications listed in this bibliography. The main section sorts citations by author and then by title. All citations are annotated and are keyed to the database of the Arctic Science and Technology Information System (ASTIS). The bibliography has three indexes that refer back to the main section: Subject, geographic area, and title. Topics covered include Northwest Territories hydrology, environmental fate of contaminants, water quality, snow, the water cycle, modelling, and limnology.

  4. This article was downloaded by: [University Library Utrecht] On: 01 August 2013, At: 01:03

    E-Print Network [OSTI]

    Veltkamp, Remco

    This article was downloaded by: [University Library Utrecht] On: 01 August 2013, At: 01 Anja Volk a & Aline Honingh b a Department of Information and Computing Sciences, Utrecht University, P.O. Box 80089, 3508, TB, Utrecht, the Netherlands b Institute for Logic, Language and Computation

  5. PLEASE SCROLL DOWN FOR ARTICLE This article was downloaded by: [Sommers, Samuel

    E-Print Network [OSTI]

    Patel, Aniruddh D.

    PLEASE SCROLL DOWN FOR ARTICLE This article was downloaded by: [Sommers, Samuel] On: 11 June 2010 this Article Sommers, Samuel R. and Babbitt, Laura G.(2010) 'On the Perils of Misplaced Assumptions for Diversity Science Samuel R. Sommers and Laura G. Babbitt Department of Psychology, Tufts University, Medford

  6. This article was downloaded by: [INASP -Pakistan (PERI)] On: 20 November 2014, At: 22:26

    E-Print Network [OSTI]

    This article was downloaded by: [INASP - Pakistan (PERI)] On: 20 November 2014, At: 22:26 Publisher Genetics, University of the Punjab, Quaid-e- Azam Campus, Lahore, Pakistan b Department of Biology of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan Published online: 19 Nov 2014. To cite this article

  7. This article was downloaded by: [West Virginia University] On: 06 November 2014, At: 08:01

    E-Print Network [OSTI]

    Lai, Hong-jian

    This article was downloaded by: [West Virginia University] On: 06 November 2014, At: 08 Department of Mathematics, West Virginia University, Morgantown, WV, USA. Published online: 14 Feb 2014 of access and use can be found at http://www.tandfonline.com/page/terms- and-conditions Downloadedby[WestVirginia

  8. This article was downloaded by: [West Virginia University] On: 05 November 2012, At: 08:20

    E-Print Network [OSTI]

    McNeil, Brenden

    This article was downloaded by: [West Virginia University] On: 05 November 2012, At: 08 a , Jamison F. Conley a & Brenden E. McNeil a a Department of Geology and Geography, West Virginia University of Geology and Geography, West Virginia University, Morgantown, WV 26506-6300, USA (Received 25 May 2012

  9. This article was downloaded by: [West Virginia University] On: 22 August 2011, At: 09:38

    E-Print Network [OSTI]

    McNeil, Brenden

    This article was downloaded by: [West Virginia University] On: 22 August 2011, At: 09:38 Publisher. Read, and Charles T. Driscoll Department of Geology and Geography, West Virginia University Brenden E. McNeil a , Jane M. Read b & Charles T. Driscoll c a Department of Geology and Geography, West

  10. PLEASE SCROLL DOWN FOR ARTICLE This article was downloaded by: [West Virginia University

    E-Print Network [OSTI]

    Lai, Hong-jian

    PLEASE SCROLL DOWN FOR ARTICLE This article was downloaded by: [West Virginia University] On: 2 b ; Hong-Jian Lai a a Department of Mathematics, West Virginia University, Morgantown, WV, USA b of Mathematics, West Virginia University, Morgantown, WV, USA; b Department of Mathematics, South China Normal

  11. This article was downloaded by: [University of Pennsylvania] On: 21 December 2012, At: 15:40

    E-Print Network [OSTI]

    Sharp, Kim

    , University of Oviedo, Oviedo, Spain c Department of Management, Wharton University, Philadelphia, PA, USA´n de Empresas, University of Oviedo, Oviedo, Spain; c Department of Management, Wharton UniversityThis article was downloaded by: [University of Pennsylvania] On: 21 December 2012, At: 15

  12. PLEASE SCROLL DOWN FOR ARTICLE This article was downloaded by: [Columbia University HHMI

    E-Print Network [OSTI]

    PLEASE SCROLL DOWN FOR ARTICLE This article was downloaded by: [Columbia University HHMI] On: 19, Rehovot, Israel c Dept. of Radiation Medicine, Loma Linda University Medical Center, Loma Linda, USA d Dept. of Radiology, University of California at San Diego, La Jolla, USA e Physikalisch Technische

  13. PLEASE SCROLL DOWN FOR ARTICLE This article was downloaded by: [University of Texas Austin

    E-Print Network [OSTI]

    Morton, David

    Research Institute, West Chester, Pennsylvania, USA c South Texas Project Nuclear Operating Company The University of Texas at Austin, Austin, Texas, USA 2 Electric Power Research Institute, West ChesterPLEASE SCROLL DOWN FOR ARTICLE This article was downloaded by: [University of Texas Austin] On: 10

  14. PLEASE SCROLL DOWN FOR ARTICLE This article was downloaded by: [Thangapandian, Sundarapandian

    E-Print Network [OSTI]

    Lee, Keun Woo

    ), Environmental Biotechnology National Core Research Center (EB-NCRC), Gyeongsang National University (GNU), Jinju), Environmental Biotechnology National Core Research Center (EB-NCRC), Gyeongsang National University (GNU), 900PLEASE SCROLL DOWN FOR ARTICLE This article was downloaded by: [Thangapandian, Sundarapandian] On

  15. This article was downloaded by: [Indiana University Libraries] On: 01 July 2014, At: 06:53

    E-Print Network [OSTI]

    Attari, Shahzeen Z.

    This article was downloaded by: [Indiana University Libraries] On: 01 July 2014, At: 06 for Sustainable Development Publication details, including instructions for authors and subscription information, Environment: Science and Policy for Sustainable Development, 56:4, 4-15, DOI: 10

  16. This article was downloaded by: [Virginia Tech Libraries] On: 06 February 2013, At: 05:36

    E-Print Network [OSTI]

    Rakha, Hesham A.

    This article was downloaded by: [Virginia Tech Libraries] On: 06 February 2013, At: 05:36 Publisher Leuven, Herverlee, Belgium b Center for Sustainable Mobility, Virginia Tech Transportation Institute Engineering, Katholieke Universiteit Leuven, Herverlee, Belgium b Center for Sustainable Mobility, Virginia

  17. UNL College of Architecture 2012 -2013 Autodesk Software Download: Help Sheet

    E-Print Network [OSTI]

    Farritor, Shane

    your serial numbers and product keys, it is a good practice to make a copy of that information and save: 1) To have completed registration for classes with UNL or UNO as a student in a program that is part (Ecotect, Map 3d). Additional titles can be downloaded for use as well, but are not required. Fourth

  18. This article was downloaded by: [University of Michigan] On: 01 May 2013, At: 07:20

    E-Print Network [OSTI]

    Brown, Daniel G.

    This article was downloaded by: [University of Michigan] On: 01 May 2013, At: 07:20 Publisher, University of Michigan, Ann Arbor, Michigan, USA c Institute for Social Research, Taubman College of Architecture and Urban Planning, University of Michigan, Ann Arbor, Michigan, USA Published online: 16 Aug 2011

  19. This article was downloaded by:[University of Michigan] On: 25 February 2008

    E-Print Network [OSTI]

    Rosenberg, Noah

    This article was downloaded by:[University of Michigan] On: 25 February 2008 Access Details. Rosenberg abc ; Randa Tao b a Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA b Center for Computational Medicine and Biology, University of Michigan, Ann Arbor, Michigan, USA c

  20. PLEASE SCROLL DOWN FOR ARTICLE This article was downloaded by: [University of Michigan

    E-Print Network [OSTI]

    PLEASE SCROLL DOWN FOR ARTICLE This article was downloaded by: [University of Michigan] On: 12 May Greifswald, Greifswald, Germany e Department of Geological Sciences, University of Michigan, Ann Arbor, US Department of Geological Sciences, University of Michigan, Ann Arbor, US (Received 23 June 2009; final