National Library of Energy BETA

Sample records for arctic cloud experiment

  1. Cloud water contents and hydrometeor sizes during the FIRE Arctic Clouds Experiment

    E-Print Network [OSTI]

    Shupe, Matthew

    Cloud water contents and hydrometeor sizes during the FIRE Arctic Clouds Experiment Matthew D a 35-GHz cloud radar and the DOE Atmospheric Radiation Measurement Program operated a suite Clouds Experiment took place during April­July 1998, with the primary goal of investigating cloud

  2. ARM - Field Campaign - FIRE-Arctic Cloud Experiment/SHEBA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01)govCampaignsFIRE-Arctic Cloud Experiment/SHEBA ARM Data

  3. Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part I: Single layer cloud

    E-Print Network [OSTI]

    Klein, Stephen A.

    2009-01-01

    humidity above stratiform clouds on indirect aerosol climateOverview of Arctic cloud and radiation characteristics. J.of Arctic low-level clouds observed during the FIRE Arctic

  4. ARM - Field Campaign - Mixed-Phase Arctic Cloud Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design togovCampaignsMASRAD: Pt. Reyes Stratus(MC3E):govCampaignsMixed-Phase Arctic

  5. Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part I: Single layer cloud

    SciTech Connect (OSTI)

    Klein, S A; McCoy, R B; Morrison, H; Ackerman, A; Avramov, A; deBoer, G; Chen, M; Cole, J; DelGenio, A; Golaz, J; Hashino, T; Harrington, J; Hoose, C; Khairoutdinov, M; Larson, V; Liu, X; Luo, Y; McFarquhar, G; Menon, S; Neggers, R; Park, S; Poellot, M; von Salzen, K; Schmidt, J; Sednev, I; Shipway, B; Shupe, M; Spangenberg, D; Sud, Y; Turner, D; Veron, D; Falk, M; Foster, M; Fridlind, A; Walker, G; Wang, Z; Wolf, A; Xie, S; Xu, K; Yang, F; Zhang, G

    2008-02-27

    Results are presented from an intercomparison of single-column and cloud-resolving model simulations of a cold-air outbreak mixed-phase stratocumulus cloud observed during the Atmospheric Radiation Measurement (ARM) program's Mixed-Phase Arctic Cloud Experiment. The observed cloud occurred in a well-mixed boundary layer with a cloud top temperature of -15 C. The observed liquid water path of around 160 g m{sup -2} was about two-thirds of the adiabatic value and much greater than the mass of ice crystal precipitation which when integrated from the surface to cloud top was around 15 g m{sup -2}. The simulations were performed by seventeen single-column models (SCMs) and nine cloud-resolving models (CRMs). While the simulated ice water path is generally consistent with the observed values, the median SCM and CRM liquid water path is a factor of three smaller than observed. Results from a sensitivity study in which models removed ice microphysics indicate that in many models the interaction between liquid and ice-phase microphysics is responsible for the large model underestimate of liquid water path. Despite this general underestimate, the simulated liquid and ice water paths of several models are consistent with the observed values. Furthermore, there is some evidence that models with more sophisticated microphysics simulate liquid and ice water paths that are in better agreement with the observed values, although considerable scatter is also present. Although no single factor guarantees a good simulation, these results emphasize the need for improvement in the model representation of mixed-phase microphysics. This case study, which has been well observed from both aircraft and ground-based remote sensors, could be a benchmark for model simulations of mixed-phase clouds.

  6. Remote Sensing and In-Situ Observations of Arctic Mixed-Phase and Cirrus Clouds Acquired During Mixed-Phase Arctic Cloud Experiment: Atmospheric Radiation Measurement Uninhabited Aerospace Vehicle Participation

    SciTech Connect (OSTI)

    McFarquhar, G.M.; Freer, M.; Um, J.; McCoy, R.; Bolton, W.

    2005-03-18

    The Atmospheric Radiation Monitor (ARM) uninhabited aerospace vehicle (UAV) program aims to develop measurement techniques and instruments suitable for a new class of high altitude, long endurance UAVs while supporting the climate community with valuable data sets. Using the Scaled Composites Proteus aircraft, ARM UAV participated in Mixed-Phase Arctic Cloud Experiment (M-PACE), obtaining unique data to help understand the interaction of clouds with solar and infrared radiation. Many measurements obtained using the Proteus were coincident with in-situ observations made by the UND Citation. Data from M-PACE are needed to understand interactions between clouds, the atmosphere and ocean in the Arctic, critical interactions given large-scale models suggest enhanced warming compared to lower latitudes is occurring.

  7. Evaluation of Mixed-Phase Cloud Parameterizations in Short-Range Weather Forecasts with CAM3 and AM2 for Mixed-Phase Arctic Cloud Experiment

    SciTech Connect (OSTI)

    Xie, S; Boyle, J; Klein, S; Liu, X; Ghan, S

    2007-06-01

    By making use of the in-situ data collected from the recent Atmospheric Radiation Measurement Mixed-Phase Arctic Cloud Experiment, we have tested the mixed-phase cloud parameterizations used in the two major U.S. climate models, the National Center for Atmospheric Research Community Atmosphere Model version 3 (CAM3) and the Geophysical Fluid Dynamics Laboratory climate model (AM2), under both the single-column modeling framework and the U.S. Department of Energy Climate Change Prediction Program-Atmospheric Radiation Measurement Parameterization Testbed. An improved and more physically based cloud microphysical scheme for CAM3 has been also tested. The single-column modeling tests were summarized in the second quarter 2007 Atmospheric Radiation Measurement metric report. In the current report, we document the performance of these microphysical schemes in short-range weather forecasts using the Climate Chagne Prediction Program Atmospheric Radiation Measurement Parameterizaiton Testbest strategy, in which we initialize CAM3 and AM2 with realistic atmospheric states from numerical weather prediction analyses for the period when Mixed-Phase Arctic Cloud Experiment was conducted.

  8. Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment

    E-Print Network [OSTI]

    September 2007; published 20 December 2007. [1] Measurements from the US Department of Energy Atmospheric or activation through cloud-phase chemistry could provide alternative explanations for M-PACE observations in general cir- culation models, the US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM

  9. JP2.3 CLOUD RADIATIVE HEATING RATE FORCING FROM PROFILES OF RETRIEVED ARCTIC CLOUD MICROPHYSICS

    E-Print Network [OSTI]

    Shupe, Matthew

    JP2.3 CLOUD RADIATIVE HEATING RATE FORCING FROM PROFILES OF RETRIEVED ARCTIC CLOUD MICROPHYSICS). This data allows for observationally-based calculations ofradiative heating rate profiles within the Arctic atmosphere. In this paper we define cloud radiative heating rate forcing (CRHF) as the difference between

  10. Microphysical Properties of Single and Mixed-Phase Arctic Clouds Derived from AERI Observations

    SciTech Connect (OSTI)

    Turner, David D.

    2003-06-01

    A novel new approach to retrieve cloud microphysical properties from mixed-phase clouds is presented. This algorithm retrieves cloud optical depth, ice fraction, and the effective size of the water and ice particles from ground-based, high-resolution infrared radiance observations. The theoretical basis is that the absorption coefficient of ice is stronger than that of liquid water from 10-13 mm, whereas liquid water is more absorbing than ice from 16-25 um. However, due to strong absorption in the rotational water vapor absorption band, the 16-25 um spectral region becomes opaque for significant water vapor burdens (i.e., for precipitable water vapor amounts over approximately 1 cm). The Arctic is characterized by its dry and cold atmosphere, as well as a preponderance of mixed-phase clouds, and thus this approach is applicable to Arctic clouds. Since this approach uses infrared observations, cloud properties are retrieved at night and during the long polar wintertime period. The analysis of the cloud properties retrieved during a 7 month period during the Surface Heat Budget of the Arctic (SHEBA) experiment demonstrates many interesting features. These results show a dependence of the optical depth on cloud phase, differences in the mode radius of the water droplets in liquid-only and mid-phase clouds, a lack of temperature dependence in the ice fraction for temperatures above 240 K, seasonal trends in the optical depth with the clouds being thinner in winter and becoming more optically thick in the late spring, and a seasonal trend in the effective size of the water droplets in liquid-only and mixed-phase clouds that is most likely related to aerosol concentration.

  11. Characterizing Arctic Mixed-phase Cloud Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D BGene Network ShapingDate:Characterization ofArctic Mixed-phase

  12. Sensitivity of CAM5-Simulated Arctic Clouds and Radiation to Ice Nucleation Parameterization

    SciTech Connect (OSTI)

    Xie, Shaocheng; Liu, Xiaohong; Zhao, Chuanfeng; Zhang, Yuying

    2013-08-01

    Sensitivity of Arctic clouds and radiation in the Community Atmospheric Model version 5 to the ice nucleation process is examined by testing a new physically based ice nucleation scheme that links the variation of ice nuclei (IN) number concentration to aerosol properties. The default scheme parameterizes the IN concentration simply as a function of ice supersaturation. The new scheme leads to a significant reduction in simulated IN number concentrations at all latitudes while changes in cloud amount and cloud properties are mainly seen in high latitudes and middle latitude storm tracks. In the Arctic, there is a considerable increase in mid-level clouds and a decrease in low clouds, which result from the complex interaction among the cloud macrophysics, microphysics, and the large-scale environment. The smaller IN concentrations result in an increase in liquid water path and a decrease in ice water path due to the slow-down of the Bergeron-Findeisen process in mixed-phase clouds. Overall, there is an increase in the optical depth of Arctic clouds, which leads to a stronger cloud radiative forcing (net cooling) at the top of the atmosphere. The comparison with satellite data shows that the new scheme slightly improves low cloud simulations over most of the Arctic, but produces too many mid-level clouds. Considerable improvements are seen in the simulated low clouds and their properties when compared to Arctic ground-based measurements. Issues with the observations and the model-observation comparison in the Arctic region are discussed.

  13. Parameterizing correlations between hydrometeor species in mixed-phase Arctic clouds

    SciTech Connect (OSTI)

    Larson, Vincent E.; Nielsen, Brandon J.; Fan, Jiwen; Ovchinnikov, Mikhail

    2011-08-16

    Mixed-phase Arctic clouds, like other clouds, contain small-scale variability in hydrometeor fields, such as cloud water or snow mixing ratio. This variability may be worth parameterizing in coarse-resolution numerical models. In particular, for modeling processes such as accretion and aggregation, it would be useful to parameterize subgrid correlations among hydrometeor species. However, one difficulty is that there exist many hydrometeor species and many microphysical processes, leading to complexity and computational expense.Existing lower and upper bounds (inequalities) on linear correlation coefficients provide useful guidance, but these bounds are too loose to serve directly as a method to predict subgrid correlations. Therefore, this paper proposes an alternative method that is based on a blend of theory and empiricism. The method begins with the spherical parameterization framework of Pinheiro and Bates (1996), which expresses the correlation matrix in terms of its Cholesky factorization. The values of the elements of the Cholesky matrix are parameterized here using a cosine row-wise formula that is inspired by the aforementioned bounds on correlations. The method has three advantages: 1) the computational expense is tolerable; 2) the correlations are, by construction, guaranteed to be consistent with each other; and 3) the methodology is fairly general and hence may be applicable to other problems. The method is tested non-interactively using simulations of three Arctic mixed-phase cloud cases from two different field experiments: the Indirect and Semi-Direct Aerosol Campaign (ISDAC) and the Mixed-Phase Arctic Cloud Experiment (M-PACE). Benchmark simulations are performed using a large-eddy simulation (LES) model that includes a bin microphysical scheme. The correlations estimated by the new method satisfactorily approximate the correlations produced by the LES.

  14. Intercomparison of model simulations of mixed-phase clouds observed...

    Office of Scientific and Technical Information (OSTI)

    Title: Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part I: Single layer cloud Results are presented...

  15. Clouds at Arctic Atmospheric Observatories. Part I: Occurrence and Macrophysical Properties

    E-Print Network [OSTI]

    Shupe, Matthew

    distributions, temperature, mi- crophysical properties, thickness, and phase composition. Arctic cloud to derive estimates of cloud occurrence fraction, vertical distribution, persistence in time, diurnal cycle seasons for which the sun is above the horizon for at least part of the day. 1. Introduction Clouds play

  16. THE INFLUENCE OF MIXED-PHASE CLOUDS ON SURFACE SHORTWAVE IRRADIANCE DURING THE ARCTIC SPRING

    E-Print Network [OSTI]

    THE INFLUENCE OF MIXED-PHASE CLOUDS ON SURFACE SHORTWAVE IRRADIANCE DURING THE ARCTIC SPRING Dan-phase stratiform clouds on the surface shortwave irradiance is examined using spectral irradiance measurements from.) spectroradiometer measured downwelling spectral irradiance in the interval 350­2200 nm, in one-minute averages

  17. Process-model Simulations of Cloud Albedo Enhancement by Aerosols in the Arctic

    SciTech Connect (OSTI)

    Kravitz, Benjamin S.; Wang, Hailong; Rasch, Philip J.; Morrison, H.; Solomon, Amy

    2014-11-17

    A cloud-resolving model is used to simulate the effectiveness of Arctic marine cloud brightening via injection of cloud condensation nuclei (CCN). An updated cloud microphysical scheme is employed, with prognostic CCN and cloud particle numbers in both liquid and mixed-phase marine low clouds. Injection of CCN into the marine boundary layer can delay the collapse of the boundary layer and increase low-cloud albedo. Because nearly all of the albedo effects are in the liquid phase due to the removal of ice water by snowfall when ice processes are involved, albedo increases are stronger for pure liquid clouds than mixed-phase clouds. Liquid precipitation can be suppressed by CCN injection, whereas ice precipitation (snow) is affected less; thus the effectiveness of brightening mixed-phase clouds is lower than for liquid-only clouds. CCN injection into a clean regime results in a greater albedo increase than injection into a polluted regime, consistent with current knowledge about aerosol-cloud interactions. Unlike previous studies investigating warm clouds, dynamical changes in circulation due to precipitation changes are small.

  18. The influence of mixedphase clouds on surface shortwave irradiance during the Arctic spring

    E-Print Network [OSTI]

    The influence of mixedphase clouds on surface shortwave irradiance during the Arctic spring Dan irradiance is examined using unique spectral shortwave irradiance measurements made during the Indirect spectral irradiance from 350 to 2200 nm in oneminute averages throughout April­May 2008 from the ARM

  19. Planning the Next Generation of Arctic Ecosystem Experiments

    SciTech Connect (OSTI)

    Hinzman, Larry D [International Arctic Research Center; Wilson, Cathy [Los Alamos National Laboratory (LANL)

    2011-01-01

    Climate Change Experiments in High-Latitude Ecosystems; Fairbanks, Alaska, 13-14 October 2010; A 2-day climate change workshop was held at the International Arctic Research Center, University of Alaska Fairbanks. The workshop, sponsored by Biological and Environmental Research, Office of Science, U.S. Department of Energy (DOE), was attended by 45 subject matter experts from universities, DOE national laboratories, and other federal and nongovernmental organizations. The workshop sought to engage the Arctic science community in planning for a proposed Next-Generation Ecosystem Experiments (NGEE-Arctic) project in Alaska (http:// ngee.ornl.gov/). The goal of this activity is to provide data, theory, and models to improve representations of high-latitude terrestrial processes in Earth system models. In particular, there is a need to better understand the processes by which warming may drive increased plant productivity and atmospheric carbon uptake and storage in biomass and soils, as well as those processes that may drive an increase in the release of methane (CH{sub 4}) and carbon dioxide (CO{sub 2}) through microbial decomposition of soil carbon stored in thawing permafrost. This understanding is required to quantify the important feedback mechanisms that define the role of terrestrial processes in regional and global climate.

  20. The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase stratocumulus

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Solomon, A.; Feingold, G.; Shupe, M. D.

    2015-09-25

    This study investigates the maintenance of cloud ice production in Arctic mixed-phase stratocumulus in large eddy simulations that include a prognostic ice nuclei (IN) formulation and a diurnal cycle. Balances derived from a mixed-layer model and phase analyses are used to provide insight into buffering mechanisms that maintain ice in these cloud systems. We find that, for the case under investigation, IN recycling through subcloud sublimation considerably prolongs ice production over a multi-day integration. This effective source of IN to the cloud dominates over mixing sources from above or below the cloud-driven mixed layer. Competing feedbacks between dynamical mixing andmore »recycling are found to slow the rate of ice lost from the mixed layer when a diurnal cycle is simulated. The results of this study have important implications for maintaining phase partitioning of cloud ice and liquid that determine the radiative forcing of Arctic mixed-phase clouds.« less

  1. The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase stratocumulus

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Solomon, A.; Feingold, G.; Shupe, M. D.

    2015-04-21

    This study investigates the maintenance of cloud ice production in Arctic mixed phase stratocumulus in large-eddy simulations that include a prognostic ice nuclei (IN) formulation and a diurnal cycle. Balances derived from a mixed-layer model and phase analyses are used to provide insight into buffering mechanisms that maintain ice in these cloud systems. We find that for the case under investigation, IN recycling through subcloud sublimation considerably prolongs ice production over a multi-day integration. This effective source of IN to the cloud dominates over mixing sources from above or below the cloud-driven mixed layer. Competing feedbacks between dynamical mixing andmore »recycling are found to slow the rate of ice lost from the mixed layer when a diurnal cycle is simulated. The results of this study have important implications for maintaining phase partitioning of cloud ice and liquid that determine the radiative forcing of Arctic mixed-phase clouds.« less

  2. Next-Generation Ecosystem Experiments NGEE Arctic Quarterly Report

    E-Print Network [OSTI]

    to improve representation of the Arctic in Earth System Models Topography influences snow cover, thermal

  3. Nighttime Cloud Detection Over the Arctic Using AVHRR Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolarNew scholarshipThreeFebruary 2015 ESH&SCSUWayneNicoleCloud

  4. The influence of mixed and phase clouds on surface shortwave irradiance during the Arctic spring

    SciTech Connect (OSTI)

    Lubin D.; Vogelmann A.

    2011-10-13

    The influence of mixed-phase stratiform clouds on the surface shortwave irradiance is examined using unique spectral shortwave irradiance measurements made during the Indirect and Semi-Direct Aerosol Campaign (ISDAC), supported by the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program. An Analytical Spectral Devices (ASD, Inc.) spectroradiometer measured downwelling spectral irradiance from 350 to 2200 nm in one-minute averages throughout April-May 2008 from the ARM Climate Research Facility's North Slope of Alaska (NSA) site at Barrow. This study examines spectral irradiance measurements made under single-layer, overcast cloud decks having geometric thickness < 3000 m. Cloud optical depth is retrieved from irradiance in the interval 1022-1033 nm. The contrasting surface radiative influences of mixed-phase clouds and liquid-water clouds are discerned using irradiances in the 1.6-{micro}m window. Compared with liquid-water clouds, mixed-phase clouds during the Arctic spring cause a greater reduction of shortwave irradiance at the surface. At fixed conservative-scattering optical depth (constant optical depth for wavelengths {lambda} < 1100 nm), the presence of ice water in cloud reduces the near-IR surface irradiance by an additional several watts-per-meter-squared. This additional reduction, or supplemental ice absorption, is typically {approx}5 W m{sup -2} near solar noon over Barrow, and decreases with increasing solar zenith angle. However, for some cloud decks this additional absorption can be as large as 8-10 W m{sup -2}.

  5. The Tropical Warm Pool International Cloud Experiment

    SciTech Connect (OSTI)

    May, Peter T.; Mather, James H.; Vaughan, Geraint; Jakob, Christian; McFarquhar, Greg; Bower, Keith; Mace, Gerald G.

    2008-05-01

    One of the most complete data sets describing tropical convection ever collected will result from the upcoming Tropical Warm Pool International Cloud Experiment (TWP-ICE) in the area around Darwin, Northern Australia in January and February 2006. The aims of the experiment, which will be operated in conjunction with the DOE Atmospheric Radiation Measurement (ARM) site in Darwin, will be to examine convective cloud systems from their initial stages through to the decay of the cirrus generated and to measure their impact on the environment. The experiment will include an unprecedented network of ground-based observations (soundings, active and passive remote sensors) combined with low, mid and high altitude aircraft for in-situ and remote sensing measurements. A crucial outcome of the experiment will be a data set suitable to provide the forcing and evaluation data required by cloud resolving and single column models as well as global climate models (GCMs) with the aim to contribute to parameterization development. This data set will provide the necessary link between the observed cloud properties and the models that are attempting to simulate them. The experiment is a large multi-agency experiment including substantial contributions from the United States DOE ARM program, ARM-UAV program, NASA, the Australian Bureau of Meteorology, CSIRO, EU programs and many universities.

  6. Magellan: experiences from a Science Cloud

    SciTech Connect (OSTI)

    Ramakrishnan, Lavanya; Zbiegel, Piotr; Campbell, Scott; Bradshaw, Rick; Canon, Richard; Coghlan, Susan; Sakrejda, Iwona; Desai, Narayan; Declerck, Tina; Liu, Anping

    2011-02-02

    Cloud resources promise to be an avenue to address new categories of scientific applications including data-intensive science applications, on-demand/surge computing, and applications that require customized software environments. However, there is a limited understanding on how to operate and use clouds for scientific applications. Magellan, a project funded through the Department of Energy?s (DOE) Advanced Scientific Computing Research (ASCR) program, is investigating the use of cloud computing for science at the Argonne Leadership Computing Facility (ALCF) and the National Energy Research Scientific Computing Facility (NERSC). In this paper, we detail the experiences to date at both sites and identify the gaps and open challenges from both a resource provider as well as application perspective.

  7. A 10 Year Climatology of Arctic Cloud Fraction and Radiative Forcing at Barrow, Alaska

    SciTech Connect (OSTI)

    Dong, Xiquan; Xi, Baike; Crosby, Kathryn; Long, Charles N.; Stone, R. S.; Shupe, Matthew D.

    2010-09-15

    A 10-yr record of Arctic cloud fraction and surface radiation budget has been generated using data collected from June 1998 to May 2008 at the Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) site and the nearby NOAA Barrow Observatory (BRW). The record includes the seasonal variations of cloud fraction (CF), cloud liquid water path (LWP), precipitable water vapor (PWV), surface albedo, shortwave (SW) and longwave (LW) fluxes and cloud radative forcings (CRFs), as well as their decadal variations. Values of CF derived from different instruments and methods agree well, having an annual average of ~0.74. Cloudiness increases from March to May, remains high (~0.8-0.9) from May to October, and then decreases over winter. More clouds and higher LWP and PWV occurred during the warm season (May-October) than the cold season (November-April). These results are strongly associated with southerly flow which transports warm, moist air masses to Barrow from the North Pacific and over area of Alaska already free of snow during the warm season and with a dipole pattern of pressure in which a high is centered over the Beaufort Sea and low over the Aleutians during the cold season. The monthly means of estimated clear-sky and measured allsky SW-down and LW-down fluxes at the two facilities are almost identical with the annual mean differences less than 1.6 W m-2. The downwelling and upwelling LW fluxes remain almost constant from January to March, then increase from March and peak during July-August. SW-down fluxes are primarily determined by seasonal changes in the intensity and duration of insolation over Northern Alaska, and are also strongly dependent on cloud fraction and optical depth, and surface albedo. The monthly variations of NET CRF generally follow the cycle of SW CRF, modulated by LW effects. On annual average, the negative SW CRF and positive LW CRF tend to cancel, resulting in annual average NET CRF of 2-4.5 Wm-2. Arctic clouds have a 3 net warming effect on the surface throughout the year, with exception of the snow-free period from middle June to middle September when there tends to be a cooling effect. The daily average surface albedos agree well at the two sites remaining high (>0.8) until late May, dropping below 0.2 after the snow melts around June and increasing during autumn once snow begins to accumulate. On the basis of long-term regression analyses CF has decreased by about 0.048 while temperature has risen by ?1.1 K over the 10-yr period, which can be characterized by tendencies of warming mainly during December and April. With regard to the 2007 record minimum Arctic ice extent, this study provides additional empirical evidence that decreased cloud cover and increased SW-down flux during summer contributed to anomalous ice melt in the region north of Barrow. At Barrow, average June-August CF decreased by 0.062 in 2007 from the 10-yr mean, while SW-down and NET fluxes increased by 28.4 Wm-2 and 11.3 Wm-2, respectively. The increase in the NET radiative flux during summer 2007 most likely contributed to an increase in surface air temperature of 1.6 K.

  8. Experiment to Characterize Tropical Cloud Systems

    SciTech Connect (OSTI)

    May, Peter T.; Mather, Jim H.; Jakob, Christian

    2005-08-02

    A major experiment to study tropical convective cloud systems and their impacts will take place around Darwin, Northern Australia in early 2006. The Tropical Warm Pool International Cloud Experiment (TWP-ICE) is a collaboration including the DOE ARM (Atmospheric Radiation Measurement) and ARM-UAV programs, NASA centers, the Australian Bureau of Meteorology, CSIRO, and universities in the USA, Australia, Japan, the UK, and Canada. TWP-ICE will be preceded in November/December 2004 by a collaborating European aircraft campaign involving the EU SCOUT-O3 and UK NERC ACTIVE projects. Detailed atmospheric measurements will be made in the Darwin area through the whole Austral summer, giving unprecedented coverage through the pre-monsoon and monsoon periods.

  9. THREE-DIMENSIONAL CLOUD STRUCTURE OBSERVED DURING DOE ARM'S 2009 CLOUD TOMOGRAPHY FIELD EXPERIMENT

    E-Print Network [OSTI]

    THREE-DIMENSIONAL CLOUD STRUCTURE OBSERVED DURING DOE ARM'S 2009 CLOUD TOMOGRAPHY FIELD EXPERIMENT on Cloud Physics, Portland, OR June 28-July 2, 2010 Environmental Sciences Department/Atmospheric Sciences Atmospheric Radiation Measurement (ARM)'s cloud tomography Intensive Observation Period (IOP

  10. Magellan: experiences from a Science Cloud

    E-Print Network [OSTI]

    Ramakrishnan, Lavanya

    2013-01-01

    the security implications of user-controlled cloud images?key security practices and policies on private clouds, suchand security poli- cies will remain, and sites moving to cloud

  11. Magellan: experiences from a Science Cloud

    E-Print Network [OSTI]

    Ramakrishnan, Lavanya

    2013-01-01

    2010. From Clusters To Clouds: xCAT 2 Is Out Of The Bag.Cost of Doing Science on the Cloud: The Montage Example. Incost of doing science on the cloud: the montage example. In

  12. Testing cloud microphysics parameterizations in NCAR CAM5 with ISDAC and M-PACE observations

    E-Print Network [OSTI]

    Testing cloud microphysics parameterizations in NCAR CAM5 with ISDAC and M-PACE observations October 2011; accepted 26 October 2011; published 24 December 2011. [1] Arctic clouds simulated-Direct Aerosol Campaign (ISDAC) and Mixed-Phase Arctic Cloud Experiment (M-PACE), which were conducted at its

  13. Intercomparison of Large-eddy Simulations of Arctic Mixed-phase Clouds: Importance of Ice Size Distribution Assumptions

    SciTech Connect (OSTI)

    Ovchinnikov, Mikhail; Ackerman, Andrew; Avramov, Alex; Cheng, Anning; Fan, Jiwen; Fridlind, Ann; Ghan, Steven J.; Harrington, Jerry Y.; Hoose, Corinna; Korolev, Alexei; McFarquhar, Greg; Morrison, H.; Paukert, Marco; Savre, Julien; Shipway, Ben; Shupe, Matthew D.; Solomon, Amy; Sulia, Kara

    2014-03-14

    Large-eddy simulations of mixed-phase Arctic clouds by 11 different models are analyzed with the goal of improving understanding and model representation of processes controlling the evolution of these clouds. In a case based on observations from the Indirect and Semi-Direct Aerosol Campaign (ISDAC), it is found that ice number concentration, Ni, exerts significant influence on the cloud structure. Increasing Ni leads to a substantial reduction in liquid water path (LWP) and potential cloud dissipation, in agreement with earlier studies. By comparing simulations with the same microphysics coupled to different dynamical cores as well as the same dynamics coupled to different microphysics schemes, it is found that the ice water path (IWP) is mainly controlled by ice microphysics, while the inter-model differences in LWP are largely driven by physics and numerics of the dynamical cores. In contrast to previous intercomparisons, all models here use the same ice particle properties (i.e., mass-size, mass-fall speed, and mass-capacitance relationships) and a common radiation parameterization. The constrained setup exposes the importance of ice particle size distributions (PSD) in influencing cloud evolution. A clear separation in LWP and IWP predicted by models with bin and bulk microphysical treatments is documented and attributed primarily to the assumed shape of ice PSD used in bulk schemes. Compared to the bin schemes that explicitly predict the PSD, schemes assuming exponential ice PSD underestimate ice growth by vapor deposition and overestimate mass-weighted fall speed leading to an underprediction of IWP by a factor of two in the considered case.

  14. Daytime Arctic Cloud Detection based on Multi-angle Satellite Data with Case Studies

    E-Print Network [OSTI]

    Yu, Bin

    that the strongest dependences of surface air temperatures on increasing atmospheric carbon dioxide levels will occur of the similar remote sensing characteristics of clouds, ice- and snow-covered surfaces. This paper proposes two

  15. Toward ice formation closure in Arctic mixedphase boundary layer clouds during ISDAC

    E-Print Network [OSTI]

    above water saturation) and another in which initial IN concentrations were vertically uniform. A key aspect of the latter was an IN reservoir under the wellmixed cloud layer: as the simulations progressed, the reservoir IN slowly mixed upward, helping to maintain ice concentrations close to those observed. Given

  16. Midlatitude Continental Convective Clouds Experiment (MC3E)

    SciTech Connect (OSTI)

    Jensen, MP; Petersen, WA; Del Genio, AD; Giangrande, SE; Heymsfield, A; Heymsfield, G; Hou, AY; Kollias, P; Orr, B; Rutledge, SA; Schwaller, MR; Zipser, E

    2010-04-10

    The Midlatitude Continental Convective Clouds Experiment (MC3E) will take place in central Oklahoma during the April–May 2011 period. The experiment is a collaborative effort between the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility and the National Aeronautics and Space Administration’s (NASA) Global Precipitation Measurement (GPM) mission Ground Validation (GV) program. The field campaign leverages the unprecedented observing infrastructure currently available in the central United States, combined with an extensive sounding array, remote sensing and in situ aircraft observations, NASA GPM ground validation remote sensors, and new ARM instrumentation purchased with American Recovery and Reinvestment Act funding. The overarching goal is to provide the most complete characterization of convective cloud systems, precipitation, and the environment that has ever been obtained, providing constraints for model cumulus parameterizations and space-based rainfall retrieval algorithms over land that have never before been available.

  17. Introduction Mixed-phase clouds, such as those found in the Arctic

    E-Print Network [OSTI]

    Eloranta, Edwin W.

    /(m str) 1e-14 1e-13 1e-12 1e-11 1e-10 1e-9 1e-8 1e-7 Time (UT) Altitude(km) Effective Diameter 16 to the modeling com- munity. Without modification,models have struggled to maintain the delicate balance between, as they are observed in the atmo- sphere. In conjunction with the ARM Cloud Modeling working group we are investigating

  18. Using the MicroASAR on the NASA SIERRA UAS in the Characterization of Arctic Sea Ice Experiment

    E-Print Network [OSTI]

    Long, David G.

    Using the MicroASAR on the NASA SIERRA UAS in the Characterization of Arctic Sea Ice Experiment: zaugg@mers.byu.edu ARTEMIS, Inc. - 36 Central Ave Hauppauge, NY 11788 - Email: matt@artemisinc.net NASA Ames Research Center - MS 245-4 Moffett Field, CA 94035 - Email: matthew.fladeland@nasa.gov §University

  19. Development of Cloud Microphysical Property Retrievals Using the University of Wisconsin Arctic High Spectral Resolution Lidar

    E-Print Network [OSTI]

    Eloranta, Edwin W.

    .6 2.8 1/(m str) 1e-14 1e-13 1e-12 1e-11 1e-10 1e-9 1e-8 1e-7 October 9,2004 Time (UT) Altitude:50 21:55 22:00 22:05 22:10 22:15 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 1/(m str) 1e-14 1e-13 1e-12 1e-11 1- eterization and Modeling Workgroup to increase our ability to simu- late mixed-phase boundary layer clouds

  20. Midlatitude Continental Convective Clouds Experiment (MC3E)

    SciTech Connect (OSTI)

    Jensen, MP; Petersen, WA; Del Genio, AD; Giangrande, SE; Heymsfield, A; Heymsfield, G; Hou, AY; Kollias, P; Orr, B; Rutledge, SA; Schwaller, MR; Zipser, E

    2010-04-01

    Convective processes play a critical role in the Earth’s energy balance through the redistribution of heat and moisture in the atmosphere and subsequent impacts on the hydrologic cycle. Global observation and accurate representation of these processes in numerical models is vital to improving our current understanding and future simulations of Earth’s climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales that are associated with convective and stratiform precipitation processes; therefore, they must turn to parameterization schemes to represent these processes. In turn, the physical basis for these parameterization schemes needs to be evaluated for general application under a variety of atmospheric conditions. Analogously, space-based remote sensing algorithms designed to retrieve related cloud and precipitation information for use in hydrological, climate, and numerical weather prediction applications often rely on physical “parameterizations” that reliably translate indirectly related instrument measurements to the physical quantity of interest (e.g., precipitation rate). Importantly, both spaceborne retrieval algorithms and model convective parameterization schemes traditionally rely on field campaign data sets as a basis for evaluating and improving the physics of their respective approaches. The Midlatitude Continental Convective Clouds Experiment (MC3E) will take place in central Oklahoma during the April–May 2011 period. The experiment is a collaborative effort between the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility and the National Aeronautics and Space Administration’s (NASA) Global Precipitation Measurement (GPM) mission Ground Validation (GV) program. The field campaign leverages the unprecedented observing infrastructure currently available in the central United States, combined with an extensive sounding array, remote sensing and in situ aircraft observations, NASA GPM ground validation remote sensors, and new ARM instrumentation purchased with American Recovery and Reinvestment Act funding. The overarching goal is to provide the most complete characterization of convective cloud systems, precipitation, and the environment that has ever been obtained, providing constraints for model cumulus parameterizations and space-based rainfall retrieval algorithms over land that have never before been available. Several different components of convective cloud and precipitation processes tangible to both the convective parameterization and precipitation retrieval algorithm problem are targeted, such as preconvective environment and convective initiation, updraft/downdraft dynamics, condensate transport and detrainment, precipitation and cloud microphysics, spatial and temporal variability of precipitation, influence on the environment and radiation, and a detailed description of the large-scale forcing.

  1. Tropical Warm Pool International Cloud Experiment TWP-ICE Cloud and rain characteristics in the Australian Monsoon

    SciTech Connect (OSTI)

    May, P.T., Jakob, C., and Mather, J.H.

    2004-05-31

    The impact of oceanic convection on its environment and the relationship between the characteristics of the convection and the resulting cirrus characteristics is still not understood. An intense airborne measurement campaign combined with an extensive network of ground-based observations is being planned for the region near Darwin, Northern Australia, during January-February, 2006, to address these questions. The Tropical Warm Pool International Cloud Experiment (TWP-ICE) will be the first field program in the tropics that attempts to describe the evolution of tropical convection, including the large scale heat, moisture, and momentum budgets, while at the same time obtaining detailed observations of cloud properties and the impact of the clouds on the environment. The emphasis will be on cirrus for the cloud properties component of the experiment. Cirrus clouds are ubiquitous in the tropics and have a large impact on their environment but the properties of these clouds are poorly understood. A crucial product from this experiment will be a dataset suitable to provide the forcing and testing required by cloud-resolving models and parameterizations in global climate models. This dataset will provide the necessary link between cloud properties and the models that are attempting to simulate them.

  2. Cloud coverage and height during FIRE ACE derived from Patrick Minnis,1 Venkatesan Chakrapani,2 David R. Doelling,2 Louis Nguyen,1

    E-Print Network [OSTI]

    Shupe, Matthew

    Cloud coverage and height during FIRE ACE derived from AVHRR data Patrick Minnis,1 Venkatesan Robert F. Arduini,4 and Matthew Shupe5 Abstract. Cloud cover and height are derived from NOAA-12 and NOAA excellent temporal coverage during the May­July 1998 First ISCCP Regional Experiment Arctic Clouds

  3. Tropical Warm Pool International Cloud Experiment (TWP-ICE): Cloud and Rain Characteristics in the Australian Monsoon

    SciTech Connect (OSTI)

    PT May; C Jakob; JH Mather

    2004-05-30

    The impact of oceanic convection on its environment and the relationship between the characteristics of the convection and the resulting cirrus characteristics is still not understood. An intense airborne measurement campaign combined with an extensive network of ground-based observations is being planned for the region near Darwin, Northern Australia, during January-February, 2006, to address these questions. The Tropical Warm Pool – International Cloud Experiment (TWP-ICE) will be the first field program in the tropics that attempts to describe the evolution of tropical convection, including the large scale heat, moisture, and momentum budgets, while at the same time obtaining detailed observations of cloud properties and the impact of the clouds on the environment. The emphasis will be on cirrus for the cloud properties component of the experiment. Cirrus clouds are ubiquitous in the tropics and have a large impact on their environment but the properties of these clouds are poorly understood. A crucial product from this experiment will be a dataset suitable to provide the forcing and testing required by cloud-resolving models and parameterizations in global climate models. This dataset will provide the necessary link between cloud properties and the models that are attempting to simulate them. The experiment is a collaboration between the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program, the Bureau of Meteorology (BoM), the National Aeronautics and Space Administration (NASA), the European Commission DG RTD-1.2, and several United States, Australian, Canadian, and European Universities. This experiment will be undertaken over a 4-week period in early 2006. January and February corresponds to the wet phase of the Australia monsoon. This season has been selected because, despite Darwin’s coastal location, the convection that occurs over and near Darwin at this time is largely of maritime origin with a large fetch over water. Based on previous experiments, the convection appears typical of maritime convection with widespread convection that has complex organization, but is not as deep or as intense as continental or coastal convection. Therefore, it is expected that the convection and cloud characteristics will be representative of conditions typical for wide areas of the tropics.

  4. ARM - Field Campaign - Ground-based Cloud Tomography Experiment at SGP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01)govCampaignsFIRE-Arctic CloudShortwave

  5. ARM - Field Campaign - Aerosol and Cloud Experiments in the Eastern...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    horizontal variabilities of aerosol, trace gases, cloud, drizzle, and atmospheric thermodynamics are critically needed for understanding and quantifying the budget of MBL aerosol,...

  6. A transitioning Arctic surface energy budget: the impacts of solar zenith angle, surface albedo and cloud radiative forcing

    E-Print Network [OSTI]

    Shupe, Matthew

    dropped from near zero to -7°C. Subsequently mean energy budget residuals remained small and near zero. Energy budget transitions were dominated by the net radiative fluxes, largely controlledA transitioning Arctic surface energy budget: the impacts of solar zenith angle, surface albedo

  7. A New Chicane Experiment In PEP-II to Test Mitigations of the Electron Cloud Effect for Linear Colliders

    E-Print Network [OSTI]

    Pivi, M T F; Celata, C M; Cooper, F; Furman, M A; Kharakh, D; King, F K; Kirby, R E; Kuekan, B; Lipari, J J; Munro, M; Ng, J S T; Olszewski, J; Raubenheimer, T O; Seeman, J; Smith, B; Spencer, C M; Wang, L; Wittmer, W

    2008-01-01

    A New Chicane Experiment In PEP-II to Test Mitigations of the Electron Cloud Effect for Linear Colliders

  8. Clouds 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    Uncertainties associated with the microphysical and radiative properties of ice clouds remain an active research area because of the importance these clouds have in atmospheric radiative transfer problems and the energy balance of the Earth...

  9. Correlation between present-day model simulation of Arctic cloud radiative forcing and sea ice consistent with positive winter convective cloud feedback

    E-Print Network [OSTI]

    Emanuel, Kerry Andrew

    A positive feedback on winter sea-ice loss, based on warming due to radiative forcing caused by the onset of convective clouds in response to sea-ice loss, has recently been proposed. This feedback has thus far been ...

  10. Parameterization of the Extinction Coefficient in Ice and Mixed-Phase Arctic Clouds during the ISDAC Field Campaign

    SciTech Connect (OSTI)

    Korolev, A; Shashkov, A; Barker, H

    2012-03-06

    This report documents the history of attempts to directly measure cloud extinction, the current measurement device known as the Cloud Extinction Probe (CEP), specific problems with direct measurement of extinction coefficient, and the attempts made here to address these problems. Extinction coefficient is one of the fundamental microphysical parameters characterizing bulk properties of clouds. Knowledge of extinction coefficient is of crucial importance for radiative transfer calculations in weather prediction and climate models given that Earth's radiation budget (ERB) is modulated much by clouds. In order for a large-scale model to properly account for ERB and perturbations to it, it must ultimately be able to simulate cloud extinction coefficient well. In turn this requires adequate and simultaneous simulation of profiles of cloud water content and particle habit and size. Similarly, remote inference of cloud properties requires assumptions to be made about cloud phase and associated single-scattering properties, of which extinction coefficient is crucial. Hence, extinction coefficient plays an important role in both application and validation of methods for remote inference of cloud properties from data obtained from both satellite and surface sensors (e.g., Barker et al. 2008). While estimation of extinction coefficient within large-scale models is relatively straightforward for pure water droplets, thanks to Mie theory, mixed-phase and ice clouds still present problems. This is because of the myriad forms and sizes that crystals can achieve, each having their own unique extinction properties. For the foreseeable future, large-scale models will have to be content with diagnostic parametrization of crystal size and type. However, before they are able to provide satisfactory values needed for calculation of radiative transfer, they require the intermediate step of assigning single-scattering properties to particles. The most basic of these is extinction coefficient, yet it is rarely measured directly, and therefore verification of parametrizations is difficult. The obvious solution is to be able to measure microphysical properties and extinction at the same time and for the same volume. This is best done by in situ sampling by instruments mounted on either balloon or aircraft. The latter is the usual route and the one employed here. Yet the problem of actually measuring extinction coefficient directly for arbitrarily complicated particles still remains unsolved.

  11. Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the radiative influence of mixed-phase clouds. Further, its impact on the development and evaluation of retrieval schemes from ground- and satellite-based remote sensors is...

  12. Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals

    SciTech Connect (OSTI)

    Shupe, Matthew

    2013-05-22

    Time-height fields of retrieved in-cloud vertical wind velocity and turbulent dissipation rate, both retrieved primarily from vertically-pointing, Ka-band cloud radar measurements. Files are available for manually-selected, stratiform, mixed-phase cloud cases observed at the North Slope of Alaska (NSA) site during periods covering the Mixed-Phase Arctic Cloud Experiment (MPACE, late September through early November 2004) and the Indirect and Semi-Direct Aerosol Campaign (ISDAC, April-early May 2008). These time periods will be expanded in a future submission.

  13. Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shupe, Matthew

    Time-height fields of retrieved in-cloud vertical wind velocity and turbulent dissipation rate, both retrieved primarily from vertically-pointing, Ka-band cloud radar measurements. Files are available for manually-selected, stratiform, mixed-phase cloud cases observed at the North Slope of Alaska (NSA) site during periods covering the Mixed-Phase Arctic Cloud Experiment (MPACE, late September through early November 2004) and the Indirect and Semi-Direct Aerosol Campaign (ISDAC, April-early May 2008). These time periods will be expanded in a future submission.

  14. Plant Root Characteristics and Dynamics in Arctic Tundra Ecosystems...

    Office of Scientific and Technical Information (OSTI)

    Language: English Subject: 54 Environmental Sciences arctic; tundra; fine roots; root biomass; root production; root turnover; plant-soil, model Word Cloud More Like This Dataset...

  15. ARM - Field Campaign - Complex Layered Cloud Experiment (CLEX)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22,MicrophysicalgovCampaignsComplex Layered Cloud

  16. ARM - Field Campaign - Macquarie Island Cloud and Radiation Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design togovCampaignsMASRAD: Pt. Reyes Stratus Cloud and(MICRE)

  17. ARM - Field Campaign - ARM Cloud Aerosol Precipitation Experiment (ACAPEX)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? WeDatastreamstps DocumentationAtlanticENA ContactsProductsSACR26, 2015 [FacilityJanuary10,24,Cloud

  18. Testing cloud microphysics parameterizations in NCAR CAM5 with ISDAC and M-PACE observations

    SciTech Connect (OSTI)

    Liu X.; Lin W.; Xie, S.; Boyle, J.; Klein, S. A.; Shi, X.; Wang, Z.; Ghan, S. J.; Earle, M.; Liu, P. S. K.; Zelenyuk, A.

    2011-12-24

    Arctic clouds simulated by the National Center for Atmospheric Research (NCAR) Community Atmospheric Model version 5 (CAM5) are evaluated with observations from the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Indirect and Semi-Direct Aerosol Campaign (ISDAC) and Mixed-Phase Arctic Cloud Experiment (M-PACE), which were conducted at its North Slope of Alaska site in April 2008 and October 2004, respectively. Model forecasts for the Arctic spring and fall seasons performed under the Cloud-Associated Parameterizations Testbed framework generally reproduce the spatial distributions of cloud fraction for single-layer boundary-layer mixed-phase stratocumulus and multilayer or deep frontal clouds. However, for low-level stratocumulus, the model significantly underestimates the observed cloud liquid water content in both seasons. As a result, CAM5 significantly underestimates the surface downward longwave radiative fluxes by 20-40 W m{sup -2}. Introducing a new ice nucleation parameterization slightly improves the model performance for low-level mixed-phase clouds by increasing cloud liquid water content through the reduction of the conversion rate from cloud liquid to ice by the Wegener-Bergeron-Findeisen process. The CAM5 single-column model testing shows that changing the instantaneous freezing temperature of rain to form snow from -5 C to -40 C causes a large increase in modeled cloud liquid water content through the slowing down of cloud liquid and rain-related processes (e.g., autoconversion of cloud liquid to rain). The underestimation of aerosol concentrations in CAM5 in the Arctic also plays an important role in the low bias of cloud liquid water in the single-layer mixed-phase clouds. In addition, numerical issues related to the coupling of model physics and time stepping in CAM5 are responsible for the model biases and will be explored in future studies.

  19. Testing Cloud Microphysics Parameterizations in NCAR CAM5 with ISDAC and M-PACE Observations

    SciTech Connect (OSTI)

    Liu, Xiaohong; Xie, Shaocheng; Boyle, James; Klein, Stephen A.; Shi, Xiangjun; Wang, Zhien; Lin, Wuyin; Ghan, Steven J.; Earle, Michael; Liu, Peter; Zelenyuk, Alla

    2011-12-24

    Arctic clouds simulated by the NCAR Community Atmospheric Model version 5 (CAM5) are evaluated with observations from the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Indirect and Semi-Direct Aerosol Campaign (ISDAC) and Mixed-Phase Arctic Cloud Experiment (M-PACE), which were conducted at its North Slope of Alaska site in April 2008 and October 2004, respectively. Model forecasts for the Arctic Spring and Fall seasons performed under the Cloud- Associated Parameterizations Testbed (CAPT) framework generally reproduce the spatial distributions of cloud fraction for single-layer boundary layer mixed-phase stratocumulus, and multilayer or deep frontal clouds. However, for low-level clouds, the model significantly underestimates the observed cloud liquid water content in both seasons and cloud fraction in the Spring season. As a result, CAM5 significantly underestimates the surface downward longwave (LW) radiative fluxes by 20-40 W m-2. The model with a new ice nucleation parameterization moderately improves the model simulations by increasing cloud liquid water content in mixed-phase clouds through the reduction of the conversion rate from cloud liquid to ice by the Wegener-Bergeron- Findeisen (WBF) process. The CAM5 single column model testing shows that change in the homogeneous freezing temperature of rain to form snow from -5 C to -40 C has a substantial impact on the modeled liquid water content through the slowing-down of liquid and rain-related processes. In contrast, collections of cloud ice by snow and cloud liquid by rain are of minor importance for single-layer boundary layer mixed-phase clouds in the Arctic.

  20. Constructing a Merged Cloud-Precipitation Radar Dataset for Tropical Convective Clouds during the DYNAMO/AMIE Experiment at Addu Atoll

    SciTech Connect (OSTI)

    Feng, Zhe; McFarlane, Sally A.; Schumacher, Courtney; Ellis, Scott; Comstock, Jennifer M.; Bharadwaj, Nitin

    2014-05-16

    To improve understanding of the convective processes key to the Madden-Julian-Oscillation (MJO) initiation, the Dynamics of the MJO (DYNAMO) and Atmospheric Radiation Measurement MJO Investigation Experiment (AMIE) collected four months of observations from three radars, the S-band Polarization Radar (S-Pol), the C-band Shared Mobile Atmospheric Research & Teaching Radar (SMART-R), and Ka-band Zenith Radar (KAZR) on Addu Atoll in the tropical Indian Ocean. This study compares the measurements from the S-Pol and SMART-R to those from the more sensitive KAZR in order to characterize the hydrometeor detection capabilities of the two scanning precipitation radars. Frequency comparisons for precipitating convective clouds and non-precipitating high clouds agree much better than non-precipitating low clouds for both scanning radars due to issues in ground clutter. On average, SMART-R underestimates convective and high cloud tops by 0.3 to 1.1 km, while S-Pol underestimates cloud tops by less than 0.4 km for these cloud types. S-Pol shows excellent dynamic range in detecting various types of clouds and therefore its data are well suited for characterizing the evolution of the 3D cloud structures, complementing the profiling KAZR measurements. For detecting non-precipitating low clouds and thin cirrus clouds, KAZR remains the most reliable instrument. However, KAZR is attenuated in heavy precipitation and underestimates cloud top height due to rainfall attenuation 4.3% of the time during DYNAMO/AMIE. An empirical method to correct the KAZR cloud top heights is described, and a merged radar dataset is produced to provide improved cloud boundary estimates, microphysics and radiative heating retrievals.

  1. STORMVEX: The Storm Peak Lab Cloud Property Validation Experiment Science and Operations Plan

    SciTech Connect (OSTI)

    Mace, J; Matrosov, S; Shupe, M; Lawson, P; Hallar, G; McCubbin, I; Marchand, R; Orr, B; Coulter, R; Sedlacek, A; Avallone, L; Long, C

    2010-09-29

    During the Storm Peak Lab Cloud Property Validation Experiment (STORMVEX), a substantial correlative data set of remote sensing observations and direct in situ measurements from fixed and airborne platforms will be created in a winter season, mountainous environment. This will be accomplished by combining mountaintop observations at Storm Peak Laboratory and the airborne National Science Foundation-supported Colorado Airborne Multi-Phase Cloud Study campaign with collocated measurements from the second ARM Mobile Facility (AMF2). We describe in this document the operational plans and motivating science for this experiment, which includes deployment of AMF2 to Steamboat Springs, Colorado. The intensive STORMVEX field phase will begin nominally on 1 November 2010 and extend to approximately early April 2011.

  2. The Mid-latitude Continental Convective Clouds (MC3E) Experiment Final Campaign Report

    SciTech Connect (OSTI)

    Jensen, Michael [Brookhaven National Lab. (BNL), Upton, NY (United States); Kollias, Pavlos [McGill Univ., Montreal, QC (Canada); Giangrande, Scott [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-04-01

    The Mid-latitude Continental Convective Clouds Experiment (MC3E) took place from April 22 through June 6, 2011, centered at the ARM Southern Great Plains site (http://www.arm.gov/sites/sgp) in northcentral Oklahoma. MC3E was a collaborative effort between the ARM Climate Research Facility and the National Aeronautics and Space Administration’s (NASA’s) Global Precipitation Measurement (GPM) mission Ground Validation (GV) program. The campaign leveraged the largest ground-based observing infrastructure available in the central United States, including recent upgrades through the American Recovery and Reinvestment Act of 2009, combined with an extensive sounding array, remote sensing and in situ aircraft observations, and additional radar and in situ precipitation instrumentation. The overarching goal of the campaign was to provide a three-dimensional characterization of convective clouds and precipitation for the purpose of improving the representation of convective lifecycle in atmospheric models and the reliability of satellite-based retrievals of precipitation.

  3. Arctic house

    E-Print Network [OSTI]

    Turkel, Joel A. (Joel Abram), 1969-

    1999-01-01

    Currently available housing in the Arctic is limited to solutions that have been adapted from designs for less severe climates. This thesis has developed a new manner of residential construction designed specifically for ...

  4. Parameterizing Size Distribution in Ice Clouds

    SciTech Connect (OSTI)

    DeSlover, Daniel; Mitchell, David L.

    2009-09-25

    PARAMETERIZING SIZE DISTRIBUTIONS IN ICE CLOUDS David L. Mitchell and Daniel H. DeSlover ABSTRACT An outstanding problem that contributes considerable uncertainty to Global Climate Model (GCM) predictions of future climate is the characterization of ice particle sizes in cirrus clouds. Recent parameterizations of ice cloud effective diameter differ by a factor of three, which, for overcast conditions, often translate to changes in outgoing longwave radiation (OLR) of 55 W m-2 or more. Much of this uncertainty in cirrus particle sizes is related to the problem of ice particle shattering during in situ sampling of the ice particle size distribution (PSD). Ice particles often shatter into many smaller ice fragments upon collision with the rim of the probe inlet tube. These small ice artifacts are counted as real ice crystals, resulting in anomalously high concentrations of small ice crystals (D < 100 µm) and underestimates of the mean and effective size of the PSD. Half of the cirrus cloud optical depth calculated from these in situ measurements can be due to this shattering phenomenon. Another challenge is the determination of ice and liquid water amounts in mixed phase clouds. Mixed phase clouds in the Arctic contain mostly liquid water, and the presence of ice is important for determining their lifecycle. Colder high clouds between -20 and -36 oC may also be mixed phase but in this case their condensate is mostly ice with low levels of liquid water. Rather than affecting their lifecycle, the presence of liquid dramatically affects the cloud optical properties, which affects cloud-climate feedback processes in GCMs. This project has made advancements in solving both of these problems. Regarding the first problem, PSD in ice clouds are uncertain due to the inability to reliably measure the concentrations of the smallest crystals (D < 100 µm), known as the “small mode”. Rather than using in situ probe measurements aboard aircraft, we employed a treatment of ice cloud optical properties formulated in terms of PSD parameters in combination with remote measurements of thermal radiances to characterize the small mode. This is possible since the absorption efficiency (Qabs) of small mode crystals is larger at 12 µm wavelength relative to 11 µm wavelength due to the process of wave resonance or photon tunneling more active at 12 µm. This makes the 12/11 µm absorption optical depth ratio (or equivalently the 12/11 µm Qabs ratio) a means for detecting the relative concentration of small ice particles in cirrus. Using this principle, this project tested and developed PSD schemes that can help characterize cirrus clouds at each of the three ARM sites: SGP, NSA and TWP. This was the main effort of this project. These PSD schemes and ice sedimentation velocities predicted from them have been used to test the new cirrus microphysics parameterization in the GCM known as the Community Climate Systems Model (CCSM) as part of an ongoing collaboration with NCAR. Regarding the second problem, we developed and did preliminary testing on a passive thermal method for retrieving the total water path (TWP) of Arctic mixed phase clouds where TWPs are often in the range of 20 to 130 g m-2 (difficult for microwave radiometers to accurately measure). We also developed a new radar method for retrieving the cloud ice water content (IWC), which can be vertically integrated to yield the ice water path (IWP). These techniques were combined to determine the IWP and liquid water path (LWP) in Arctic clouds, and hence the fraction of ice and liquid water. We have tested this approach using a case study from the ARM field campaign called M-PACE (Mixed-Phase Arctic Cloud Experiment). This research led to a new satellite remote sensing method that appears promising for detecting low levels of liquid water in high clouds typically between -20 and -36 oC. We hope to develop this method in future research.

  5. Atmospheric Radiation Measurement (ARM) Data from Steamboat Springs, Colorado, for the Storm Peak Laboratory Cloud Property Validation Experiment (STORMVEX)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    In October 2010, the initial deployment of the second ARM Mobile Facility (AMF2) took place at Steamboat Springs, Colorado, for the Storm Peak Laboratory Cloud Property Validation Experiment (STORMVEX). The objective of this field campaign was to obtain data about liquid and mixed-phase clouds using AMF2 instruments in conjunction with Storm Peak Laboratory (located at an elevation of 3220 meters on Mt. Werner), a cloud and aerosol research facility operated by the Desert Research Institute. STORMVEX datasets are freely available for viewing and download. Users are asked to register with the ARM Archive; the user's email address is used from that time forward as the login name.

  6. NGEE Arctic Webcam Photographs, Barrow Environmental Observatory, Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Bob Busey; Larry Hinzman

    The NGEE Arctic Webcam (PTZ Camera) captures two views of seasonal transitions from its generally south-facing position on a tower located at the Barrow Environmental Observatory near Barrow, Alaska. Images are captured every 30 minutes. Historical images are available for download. The camera is operated by the U.S. DOE sponsored Next Generation Ecosystem Experiments - Arctic (NGEE Arctic) project.

  7. NGEE Arctic Webcam Photographs, Barrow Environmental Observatory, Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Bob Busey; Larry Hinzman

    2012-04-01

    The NGEE Arctic Webcam (PTZ Camera) captures two views of seasonal transitions from its generally south-facing position on a tower located at the Barrow Environmental Observatory near Barrow, Alaska. Images are captured every 30 minutes. Historical images are available for download. The camera is operated by the U.S. DOE sponsored Next Generation Ecosystem Experiments - Arctic (NGEE Arctic) project.

  8. ARM - Field Campaign - Fall 1997 Cloud IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01)govCampaignsFIRE-Arctic Cloud Experiment/SHEBAgovCampaignsFall

  9. Eleventh ARM Science Team Meeting Proceedings, Atlanta, Georgia, March 19-23, 2001 Radar-based Retrievals of Cloud Properties in the Arctic

    E-Print Network [OSTI]

    Shupe, Matthew

    Eleventh ARM Science Team Meeting Proceedings, Atlanta, Georgia, March 19-23, 2001 1 Radar Radiation Measurement (ARM) program Cloud and Radiation Testbed (CART) sites, all techniques discussed here can be applied to measurements taken at the different ARM sites. Briefly summarized here

  10. The Midlatitude Continental Convective Clouds Experiment (MC3E) sounding network: operations, processing and analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jensen, M. P.; Toto, T.; Troyan, D.; Ciesielski, P. E.; Holdridge, D.; Kyrouac, J.; Schatz, J.; Zhang, Y.; Xie, S.

    2015-01-27

    The Midlatitude Continental Convective Clouds Experiment (MC3E) took place during the spring of 2011 centered in north-central Oklahoma, USA. The main goal of this field campaign was to capture the dynamical and microphysical characteristics of precipitating convective systems in the US Central Plains. A major component of the campaign was a six-site radiosonde array designed to capture the large-scale variability of the atmospheric state with the intent of deriving model forcing data sets. Over the course of the 46-day MC3E campaign, a total of 1362 radiosondes were launched from the enhanced sonde network. This manuscript provides details on the instrumentationmore »used as part of the sounding array, the data processing activities including quality checks and humidity bias corrections and an analysis of the impacts of bias correction and algorithm assumptions on the determination of convective levels and indices. It is found that corrections for known radiosonde humidity biases and assumptions regarding the characteristics of the surface convective parcel result in significant differences in the derived values of convective levels and indices in many soundings. In addition, the impact of including the humidity corrections and quality controls on the thermodynamic profiles that are used in the derivation of a large-scale model forcing data set are investigated. The results show a significant impact on the derived large-scale vertical velocity field illustrating the importance of addressing these humidity biases.« less

  11. The Midlatitude Continental Convective Clouds Experiment (MC3E) sounding network: operations, processing and analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jensen, M. P.; Toto, T.; Troyan, D.; Ciesielski, P. E.; Holdridge, D.; Kyrouac, J.; Schatz, J.

    2014-09-12

    The Midlatitude Continental Convective Clouds Experiment (MC3E) took place during the spring of 2011 centered in north-central Oklahoma, USA. The main goal of this field campaign was to capture the dynamical and microphysical characteristics of precipitating convective systems in the Central Plains. A major component of the campaign was a 6-site radiosonde array designed to capture the large-scale variability of the atmospheric state with the intent of deriving model forcing datasets. Over the course of the 46 day MC3E campaign, a total of 1362 radiosondes were launched from the enhanced sonde network. This manuscript describes the details of the instrumentationmore »used as part of the sounding array, the data processing activities including quality checks and humidity bias corrections and an analysis of the impacts of bias correction and algorithm assumptions on the determination of convective levels and indices. It is found that corrections for known radiosonde humidity biases and assumptions regarding the characteristics of the surface convective parcel result in significant differences in the derived values of convective levels and indices in many soundings.« less

  12. Sandia Energy - Arctic Climate Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arctic Climate Measurements Home Climate & Earth Systems Climate Measurement & Modeling Arctic Climate Measurements Arctic Climate Measurementscwdd2015-05-08T01:51:20+00:00 A...

  13. The Arctic Lower Troposphere Observed Structure (ALTOS) Campaign

    SciTech Connect (OSTI)

    Verlinde, J

    2010-10-18

    The ALTOS campaign focuses on operating a tethered observing system for routine in situ sampling of low-level (< 2 km) Arctic clouds. It has been a long-term hope to fly tethered systems at Barrow, Alaska, but it is clear that the Federal Aviation Administration (FAA) will not permit in-cloud tether systems at Barrow, even if unmanned aerial vehicle (UAV) operations are allowed in the future. We have provided the scientific rationale for long-term, routine in situ measurements of cloud and aerosol properties in the Arctic. The existing restricted air space at Oliktok offers an opportunity to do so.

  14. The Magellan Final Report on Cloud Computing

    E-Print Network [OSTI]

    Coghlan, Susan

    2013-01-01

    their research efforts in cloud security. Experiences andinvolving cloud resources and security guidance is thedynamic nature of cloud systems, the security controls must

  15. Arctic Energy Summit

    Broader source: Energy.gov [DOE]

    The 2015 Arctic Energy Summit is a multi-disciplinary event expected to draw several hundred industry officials, scientists, academics, policy makers, energy professionals, and community leaders together to collaborate and share leading approaches on Arctic energy issues.

  16. Carbon dynamics in arctic vegetation 

    E-Print Network [OSTI]

    Street, Lorna Elizabeth

    2011-11-24

    Rapid climate change in Arctic regions is of concern due to important feedbacks between the Arctic land surface and the global climate system. A large amount of organic carbon (C) is currently stored in Arctic soils; if ...

  17. Resource Allocation and Scheduling in Heterogeneous Cloud Environments

    E-Print Network [OSTI]

    Lee, Gunho

    2012-01-01

    1] Open Cirrus cloud computing testbed. http://10] Early experiments in cloud computing. http://on Hot topics in cloud computing, pages 12–12, 2009. [29

  18. ARM - Field Campaign - Arctic Cloud Infrared Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012IIIAtlantic (ACE-ENA)Study the

  19. The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx): Goals, platforms, and field operations

    SciTech Connect (OSTI)

    Wood, R.; Springston, S.; Mechoso, C. R.; Bretherton, C. S.; A.Weller, R.; Huebert, B.; Straneo, F.; Albrecht, B. A.; Coe, H.; Allen, G.; Vaughan, G.; Daum, P.; Fairall, C.; Chand, D.; Klenner, L. G.; Garreaud, R.; Grados, C.; Covert, D. S.; Bates, T. S.; Krejci, R.; Russell, L. M.; Szoeke, S. d.; Brewer, A.; Yuter, S. E.; Chaigneau, A.; Toniazzo, T.; Minnis, P.; Palikonda, R.; Abel, S. J.; Brown, W. O. J.; Williams, S.; Fochesatto, J.; Brioude, J.; Bower, K. N

    2011-01-21

    The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) was an international field program designed to make observations of poorly understood but critical components of the coupled climate system of the southeast Pacific. This region is characterized by strong coastal upwelling, the coolest SSTs in the tropical belt, and is home to the largest subtropical stratocumulus deck on Earth. The field intensive phase of VOCALS-REx took place during October and November 2008 and constitutes a critical part of a broader CLIVAR program (VOCALS) designed to develop and promote scientific activities leading to improved understanding, model simulations, and predictions of the southeastern Pacific (SEP) coupled ocean-atmosphere-land system, on diurnal to interannual timescales. The other major components of VOCALS are a modeling program with a model hierarchy ranging from the local to global scales, and a suite of extended observations from regular research cruises, instrumented moorings, and satellites. The two central themes of VOCALS-REx focus upon (a) links between aerosols, clouds and precipitation and their impacts on marine stratocumulus radiative properties, and (b) physical and chemical couplings between the upper ocean and the lower atmosphere, including the role that mesoscale ocean eddies play. A set of hypotheses designed to be tested with the combined field, monitoring and modeling work in VOCALS is presented here. A further goal of VOCALS-REx is to provide datasets for the evaluation and improvement of large-scale numerical models. VOCALS-REx involved five research aircraft, two ships and two surface sites in northern Chile. We describe the instrument payloads and key mission strategies for these platforms and give a summary of the missions conducted.

  20. Constructing a Merged CloudPrecipitation Radar Dataset for Tropical Convective Clouds during the DYNAMO/AMIE Experiment at Addu Atoll

    E-Print Network [OSTI]

    of observations from three radars--the S-band dual-polarization Doppler radar (S-Pol), the C-band Shared Mobile, and radiative heating rate retrievals. With this dataset the full spectrum of tropical convective clouds during, U.S. Department of Energy, Washington, D.C. Corresponding author address: Dr. Zhe Feng, Pacific

  1. Arctic Climate Systems Analysis

    SciTech Connect (OSTI)

    Ivey, Mark D.; Robinson, David G.; Boslough, Mark B.; Backus, George A.; Peterson, Kara J.; van Bloemen Waanders, Bart G.; Swiler, Laura Painton; Desilets, Darin Maurice; Reinert, Rhonda Karen

    2015-03-01

    This study began with a challenge from program area managers at Sandia National Laboratories to technical staff in the energy, climate, and infrastructure security areas: apply a systems-level perspective to existing science and technology program areas in order to determine technology gaps, identify new technical capabilities at Sandia that could be applied to these areas, and identify opportunities for innovation. The Arctic was selected as one of these areas for systems level analyses, and this report documents the results. In this study, an emphasis was placed on the arctic atmosphere since Sandia has been active in atmospheric research in the Arctic since 1997. This study begins with a discussion of the challenges and benefits of analyzing the Arctic as a system. It goes on to discuss current and future needs of the defense, scientific, energy, and intelligence communities for more comprehensive data products related to the Arctic; assess the current state of atmospheric measurement resources available for the Arctic; and explain how the capabilities at Sandia National Laboratories can be used to address the identified technological, data, and modeling needs of the defense, scientific, energy, and intelligence communities for Arctic support.

  2. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Parcivel Disdrometer (williams-disdro)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Williams, Christopher; Jensen, Mike

    2012-11-06

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  3. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Surface Meteorology (williams-surfmet)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Williams, Christopher; Jensen, Mike

    2012-11-06

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  4. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, 449 MHz Profiler(williams-449_prof)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Williams, Christopher; Jensen, Mike

    2012-11-06

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  5. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Vertical Air Motion (williams-vertair)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Williams, Christopher; Jensen, Mike

    2012-11-06

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  6. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Parcivel Disdrometer (williams-disdro)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Williams, Christopher; Jensen, Mike

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  7. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Vertical Air Motion (williams-vertair)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Williams, Christopher; Jensen, Mike

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  8. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Surface Meteorology (williams-surfmet)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Williams, Christopher; Jensen, Mike

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  9. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, 449 MHz Profiler(williams-449_prof)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Williams, Christopher; Jensen, Mike

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  10. Arctic energy resources

    SciTech Connect (OSTI)

    Rey, L.

    1983-01-01

    The Arctic is a vulnerable region with immense resources. These range from the replenishable (tidal energy, hydroelectricity, wood, biomass, fish, game, and geothermal energy) to the non-replenishable (coal, minerals, natural gas, hydrocarbon deposits). But the problems of exploiting such resources without damaging the environment of the Arctic are formidable. In this book all aspects are considered: occurrence of energy resources; the technological and economic aspects of exploration and exploitation; the environmental and social impact of technological development.

  11. The Necklace around the Arctic Arctic indigenous peoples

    E-Print Network [OSTI]

    national choir). #12;The economies of the Arctic settlements invariably involve fish, oil or gas: natural and Wildlife Service ( http://arctic.fws.gov/ ), and other sources. #12;Faroe Islands (~Denmark) Shetland

  12. 6, 96559722, 2006 Arctic smoke

    E-Print Network [OSTI]

    Boyer, Edmond

    Discussions Arctic smoke ­ record high air pollution levels in the European Arctic due to agricultural fires into the European Arctic and caused the most severe air pollution episodes ever recorded there. This paper confirms that biomass burning (BB) was in-5 deed the source of the observed air pollution, studies the transport

  13. Collaborative Research: Towards Advanced Understanding and Predictive Capability of Climate Change in the Arctic using a High-Resolution Regional Arctic Climate System Model

    SciTech Connect (OSTI)

    Lettenmaier, Dennis P

    2013-04-08

    Primary activities are reported in these areas: climate system component studies via one-way coupling experiments; development of the Regional Arctic Climate System Model (RACM); and physical feedback studies focusing on changes in Arctic sea ice using the fully coupled model.

  14. Anvil characteristics as seen by C-POL during the Tropical Warm Pool International Cloud Experiment (TWP-ICE) 

    E-Print Network [OSTI]

    Frederick, Kaycee Loretta

    2007-04-25

    the month-long field campaign. The morphology, evolution, and longevity of the anvil were analyzed as well as the relationship of the anvil to the rest of the precipitating system. In addition, idealized in-cloud radiative heating profiles were created based...

  15. Arctic ice islands

    SciTech Connect (OSTI)

    Sackinger, W.M.; Jeffries, M.O.; Lu, M.C.; Li, F.C.

    1988-01-01

    The development of offshore oil and gas resources in the Arctic waters of Alaska requires offshore structures which successfully resist the lateral forces due to moving, drifting ice. Ice islands are floating, a tabular icebergs, up to 60 meters thick, of solid ice throughout their thickness. The ice islands are thus regarded as the strongest ice features in the Arctic; fixed offshore structures which can directly withstand the impact of ice islands are possible but in some locations may be so expensive as to make oilfield development uneconomic. The resolution of the ice island problem requires two research steps: (1) calculation of the probability of interaction between an ice island and an offshore structure in a given region; and (2) if the probability if sufficiently large, then the study of possible interactions between ice island and structure, to discover mitigative measures to deal with the moving ice island. The ice island research conducted during the 1983-1988 interval, which is summarized in this report, was concerned with the first step. Monte Carlo simulations of ice island generation and movement suggest that ice island lifetimes range from 0 to 70 years, and that 85% of the lifetimes are less then 35 years. The simulation shows a mean value of 18 ice islands present at any time in the Arctic Ocean, with a 90% probability of less than 30 ice islands. At this time, approximately 34 ice islands are known, from observations, to exist in the Arctic Ocean, not including the 10-meter thick class of ice islands. Return interval plots from the simulation show that coastal zones of the Beaufort and Chukchi Seas, already leased for oil development, have ice island recurrences of 10 to 100 years. This implies that the ice island hazard must be considered thoroughly, and appropriate safety measures adopted, when offshore oil production plans are formulated for the Alaskan Arctic offshore. 132 refs., 161 figs., 17 tabs.

  16. Final Technical Report for "Ice nuclei relation to aerosol properties: Data analysis and model parameterization for IN in mixed-phase clouds"Ă?Âť (DOE/SC00002354)

    SciTech Connect (OSTI)

    Paul J. DeMott, Anthony J. Prenni; Sonia M. Kreidenweis

    2012-09-28

    Clouds play an important role in weather and climate. In addition to their key role in the hydrologic cycle, clouds scatter incoming solar radiation and trap infrared radiation from the surface and lower atmosphere. Despite their importance, feedbacks involving clouds remain as one of the largest sources of uncertainty in climate models. To better simulate cloud processes requires better characterization of cloud microphysical processes, which can affect the spatial extent, optical depth and lifetime of clouds. To this end, we developed a new parameterization to be used in numerical models that describes the variation of ice nuclei (IN) number concentrations active to form ice crystals in mixed-phase (water droplets and ice crystals co-existing) cloud conditions as these depend on existing aerosol properties and temperature. The parameterization is based on data collected using the Colorado State University continuous flow diffusion chamber in aircraft and ground-based campaigns over a 14-year period, including data from the DOE-supported Mixed-Phase Arctic Cloud Experiment. The resulting relationship is shown to more accurately represent the variability of ice nuclei distributions in the atmosphere compared to currently used parameterizations based on temperature alone. When implemented in one global climate model, the new parameterization predicted more realistic annually averaged cloud water and ice distributions, and cloud radiative properties, especially for sensitive higher latitude mixed-phase cloud regions. As a test of the new global IN scheme, it was compared to independent data collected during the 2008 DOE-sponsored Indirect and Semi-Direct Aerosol Campaign (ISDAC). Good agreement with this new data set suggests the broad applicability of the new scheme for describing general (non-chemically specific) aerosol influences on IN number concentrations feeding mixed-phase Arctic stratus clouds. Finally, the parameterization was implemented into a regional cloud-resolving model to compare predictions of ice crystal concentrations and other cloud properties to those observed in two intensive case studies of Arctic stratus during ISDAC. Our implementation included development of a prognostic scheme of ice activation using the IN parameterization so that the most realistic treatment of ice nuclei, including their budget (gains and losses), was achieved. Many cloud microphysical properties and cloud persistence were faithfully reproduced, despite a tendency to under-predict (by a few to several times) ice crystal number concentrations and cloud ice mass, in agreement with some other studies. This work serves generally as the basis for improving predictive schemes for cloud ice crystal activation in cloud and climate models, and more specifically as the basis for such a scheme to be used in a Multi-scale Modeling Format (MMF) that utilizes a connected system of cloud-resolving models on a global grid in an effort to better resolve cloud processes and their influence on climate.

  17. Microwave and Millimeter-Wave Radiometric Studies of Temperature, Water Vapor and Clouds

    SciTech Connect (OSTI)

    Westwater, Edgeworth

    2011-05-06

    The importance of accurate measurements of column amounts of water vapor and cloud liquid has been well documented by scientists within the Atmospheric Radiation Measurement (ARM) Program. At the North Slope of Alaska (NSA), both microwave radiometers (MWR) and the MWRProfiler (MWRP), been used operationally by ARM for passive retrievals of the quantities: Precipitable Water Vapor (PWV) and Liquid Water Path (LWP). However, it has been convincingly shown that these instruments are inadequate to measure low amounts of PWV and LWP. In the case of water vapor, this is especially important during the Arctic winter, when PWV is frequently less than 2 mm. For low amounts of LWP (< 50 g/m{sup 2}), the MWR and MWRP retrievals have an accuracy that is also not acceptable. To address some of these needs, in March-April 2004, NOAA and ARM conducted the NSA Arctic Winter Radiometric Experiment - Water Vapor Intensive Operational Period at the ARM NSA/Adjacent Arctic Ocean (NSA/AAO) site. After this experiment, the radiometer group at NOAA moved to the Center for Environmental Technology (CET) of the Department of Electrical and Computer Engineering of the University of Colorado at Boulder. During this 2004 experiment, a total of 220 radiosondes were launched, and radiometric data from 22.235 to 380 GHz were obtained. Primary instruments included the ARM MWR and MWRP, a Global Positioning System (GPS), as well as the CET Ground-based Scanning Radiometer (GSR). We have analyzed data from these instruments to answer several questions of importance to ARM, including: (a) techniques for improved water vapor measurements; (b) improved calibration techniques during cloudy conditions; (c) the spectral response of radiometers to a variety of conditions: clear, liquid, ice, and mixed phase clouds; and (d) forward modeling of microwave and millimeter wave brightness temperatures from 22 to 380 GHz. Many of these results have been published in the open literature. During the third year of this contract, we participated in another ARM-sponsored experiment at the NSA during February-March 2007. This experiment is called the Radiative Heating in Underexplored Bands Campaign (RHUBC) and the GSR was operated successfully for the duration of the campaign. One of the principal goals of the experiment was to provide retrievals of water vapor during PWV amounts less than 2 mm and to compare GSR data with ARM radiometers and radiosondes. A secondary goal was to compare the radiometric response of the microwave and millimeter wavelength radiometers to water and ice clouds. In this final report, we will include the separate progress reports for each of the three years of the project and follow with a section on major accomplishments of the project.

  18. To Cloud or Not to Cloud: Measuring the Performance of Mobile Gaming

    E-Print Network [OSTI]

    Chen, Sheng-Wei

    To Cloud or Not to Cloud: Measuring the Performance of Mobile Gaming Chun-Ying Huang Department Tsing-Hua University Hsinchu, Taiwan chsu@cs.nthu.edu.tw ABSTRACT Mobile cloud gaming allows gamers an open source cloud gaming platform to conduct extensive experiments on real mobile clients. Our

  19. NGEE Arctic Data Catalog

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding accessby aLED Street LightingFromJune 2013TECNGEE Arctic - Data

  20. A new way to study the changing Arctic ecosystem

    ScienceCinema (OSTI)

    Hubbard, Susan

    2013-05-29

    Berkeley Lab scientists Susan Hubbard and Margaret Torn discuss the proposed Next Generation Ecosystem Experiment, which is designed to answer one of the most urgent questions facing researchers today: How will a changing climate impact the Arctic, and how will this in turn impact the planet's climate? More info: http://newscenter.lbl.gov/feature-stories/2011/09/14/alaska-climate-change/

  1. Impacts of ocean albedo alteration on Arctic sea ice restoration and Northern Hemisphere climate

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cvijanovic, Ivana; Caldeira, Ken; MacMartin, Douglas G.

    2015-04-01

    The Arctic Ocean is expected to transition into a seasonally ice-free state by mid-century, enhancing Arctic warming and leading to substantial ecological and socio-economic challenges across the Arctic region. It has been proposed that artificially increasing high latitude ocean albedo could restore sea ice, but the climate impacts of such a strategy have not been previously explored. Motivated by this, we investigate the impacts of idealized high latitude ocean albedo changes on Arctic sea ice restoration and climate. In our simulated 4xCO? climate, imposing surface albedo alterations over the Arctic Ocean leads to partial sea ice recovery and a modestmore »reduction in Arctic warming. With the most extreme ocean albedo changes, imposed over the area 70°–90°N, September sea ice cover stabilizes at ~40% of its preindustrial value (compared to ~3% without imposed albedo modifications). This is accompanied by an annual mean Arctic surface temperature decrease of ~2 °C but no substantial global mean temperature decrease. Imposed albedo changes and sea ice recovery alter climate outside the Arctic region too, affecting precipitation distribution over parts of the continental United States and Northeastern Pacific. For example, following sea ice recovery, wetter and milder winter conditions are present in the Southwest United States while the East Coast experiences cooling. We conclude that although ocean albedo alteration could lead to some sea ice recovery, it does not appear to be an effective way of offsetting the overall effects of CO? induced global warming.« less

  2. PROGRESS REPORT OF FY 2004 ACTIVITIES: IMPROVED WATER VAPOR AND CLOUD RETRIEVALS AT THE NSA/AAO

    SciTech Connect (OSTI)

    E. R. Westwater; V. V. Leuskiy; M. Klein; A. J. Gasiewski; and J. A. Shaw

    2004-11-01

    The basic goals of the research are to develop and test algorithms and deploy instruments that improve measurements of water vapor, cloud liquid, and cloud coverage, with a focus on the Arctic conditions of cold temperatures and low concentrations of water vapor. The importance of accurate measurements of column amounts of water vapor and cloud liquid has been well documented by scientists within the Atmospheric Radiation Measurement Program. Although several technologies have been investigated to measure these column amounts, microwave radiometers (MWR) have been used operationally by the ARM program for passive retrievals of these quantities: precipitable water vapor (PWV) and integrated water liquid (IWL). The technology of PWV and IWL retrievals has advanced steadily since the basic 2-channel MWR was first deployed at ARM CART sites Important advances are the development and refinement of the tipcal calibration method [1,2], and improvement of forward model radiative transfer algorithms [3,4]. However, the concern still remains that current instruments deployed by ARM may be inadequate to measure low amounts of PWV and IWL. In the case of water vapor, this is especially important because of the possibility of scaling and/or quality control of radiosondes by the water amount. Extremely dry conditions, with PWV less than 3 mm, commonly occur in Polar Regions during the winter months. Accurate measurements of the PWV during such dry conditions are needed to improve our understanding of the regional radiation energy budgets. The results of a 1999 experiment conducted at the ARM North Slope of Alaska/Adjacent Arctic Ocean (NSA/AAO) site during March of 1999 [5] have shown that the strength associated with the 183 GHz water vapor absorption line makes radiometry in this frequency regime suitable for measuring low amounts of PWV. As a portion of our research, we conducted another millimeter wave radiometric experiment at the NSA/AAO in March-April 2004. This experiment relied heavily on our experiences of the 1999 experiment. Particular attention was paid to issues of radiometric calibration and radiosonde intercomparisons. Our theoretical and experimental work also supplements efforts by industry (F. Solheim, Private Communication) to develop sub-millimeter radiometers for ARM deployment. In addition to quantitative improvement of water vapor measurements at cold temperature, the impact of adding millimeter-wave window channels to improve the sensitivity to arctic clouds was studied. We also deployed an Infrared Cloud Imager (ICI) during this experiment, both for measuring continuous day-night statistics of the study of cloud coverage and identifying conditions suitable for tipcal analysis. This system provided the first capability of determining spatial cloud statistics continuously in both day and night at the NSA site and has been used to demonstrate that biases exist in inferring cloud statistics from either zenith-pointing active sensors (lidars or radars) or sky imagers that rely on scattered sunlight in daytime and star maps at night [6].

  3. Preface: Crowds and Clouds

    E-Print Network [OSTI]

    2012-01-01

    crowdsourcing, cloud computing, big data, and Internetdata include “cloud computing,” “algorithms,” “filters,” “cloud of claims about cloud computing and big data settle

  4. Arctic Sea ice model sensitivities.

    SciTech Connect (OSTI)

    Peterson, Kara J.; Bochev, Pavel Blagoveston; Paskaleva, Biliana Stefanova

    2010-12-01

    Arctic sea ice is an important component of the global climate system and, due to feedback effects, the Arctic ice cover is changing rapidly. Predictive mathematical models are of paramount importance for accurate estimates of the future ice trajectory. However, the sea ice components of Global Climate Models (GCMs) vary significantly in their prediction of the future state of Arctic sea ice and have generally underestimated the rate of decline in minimum sea ice extent seen over the past thirty years. One of the contributing factors to this variability is the sensitivity of the sea ice state to internal model parameters. A new sea ice model that holds some promise for improving sea ice predictions incorporates an anisotropic elastic-decohesive rheology and dynamics solved using the material-point method (MPM), which combines Lagrangian particles for advection with a background grid for gradient computations. We evaluate the variability of this MPM sea ice code and compare it with the Los Alamos National Laboratory CICE code for a single year simulation of the Arctic basin using consistent ocean and atmospheric forcing. Sensitivities of ice volume, ice area, ice extent, root mean square (RMS) ice speed, central Arctic ice thickness,and central Arctic ice speed with respect to ten different dynamic and thermodynamic parameters are evaluated both individually and in combination using the Design Analysis Kit for Optimization and Terascale Applications (DAKOTA). We find similar responses for the two codes and some interesting seasonal variability in the strength of the parameters on the solution.

  5. Cloud Seeding By: Julie Walter

    E-Print Network [OSTI]

    Toohey, Darin W.

    , smoke, that then are cooled because of the high altitudes. As the water or condensation nuclei cool more titled "Cat's Cradle" a young scientist has in his possession an ice crystal that has the power to freeze of those clouds. Winds can form suddenly and blow clouds away from the targeted area. Some experiments show

  6. Evaluation of Arctic sea ice thickness simulated by Arctic Ocean Model Intercomparison Project models

    E-Print Network [OSTI]

    Zhang, Jinlun

    Evaluation of Arctic sea ice thickness simulated by Arctic Ocean Model Intercomparison Project March 2012. [1] Six Arctic Ocean Model Intercomparison Project model simulations are compared and Assimilation System models. Citation: Johnson, M., et al. (2012), Evaluation of Arctic sea ice thickness

  7. Next-Generation Ecosystem Experiments (NGEE Arctic)

    E-Print Network [OSTI]

    (CLM 4.0) for improved prediction of carbon cycle processes and net energy balance feedbacks on Earth and subsurface systems #12;Properties and Processes are Important #12;Thawing Thermokarst Thermal erosion Surface mechanisms that underlie the processes that control carbon and energy transfer in the biosphere

  8. Time varying arctic climate change amplification

    SciTech Connect (OSTI)

    Chylek, Petr [Los Alamos National Laboratory; Dubey, Manvendra K [Los Alamos National Laboratory; Lesins, Glen [DALLHOUSIE U; Wang, Muyin [NOAA/JISAO

    2009-01-01

    During the past 130 years the global mean surface air temperature has risen by about 0.75 K. Due to feedbacks -- including the snow/ice albedo feedback -- the warming in the Arctic is expected to proceed at a faster rate than the global average. Climate model simulations suggest that this Arctic amplification produces warming that is two to three times larger than the global mean. Understanding the Arctic amplification is essential for projections of future Arctic climate including sea ice extent and melting of the Greenland ice sheet. We use the temperature records from the Arctic stations to show that (a) the Arctic amplification is larger at latitudes above 700 N compared to those within 64-70oN belt, and that, surprisingly; (b) the ratio of the Arctic to global rate of temperature change is not constant but varies on the decadal timescale. This time dependence will affect future projections of climate changes in the Arctic.

  9. Arctic sea ice animation (Tom Agnew, Environment Canada) Lecture 12 HAS222d Intro to energy and environment 2009

    E-Print Network [OSTI]

    Arctic sea ice animation (Tom Agnew, Environment Canada) #12;Lecture 12 HAS222d Intro to energy. moisture streamers: (1 Sverdrup...106 m3/sec tranport of water carries 2.2 x 1015 watt thermal energy and environment 2009 slides on water in the atmosphere P.B. Rhines #12;Satellite image of water vapor (not cloud

  10. The Evolution of Cloud Computing in ATLAS

    E-Print Network [OSTI]

    Taylor, Ryan P.; The ATLAS collaboration; Love, Peter; Leblanc, Matthew Edgar; Di Girolamo, Alessandro; Paterson, Michael; Gable, Ian; Sobie, Randall; Field, Laurence

    2015-01-01

    The ATLAS experiment has successfully incorporated cloud computing technology and cloud resources into its primarily grid-based model of distributed computing. Cloud R&D activities continue to mature and transition into stable production systems, while ongoing evolutionary changes are still needed to adapt and refine the approaches used, in response to changes in prevailing cloud technology. In addition, completely new developments are needed to handle emerging requirements. This work will describe the overall evolution of cloud computing in ATLAS. The current status of the VM management systems used for harnessing IAAS resources will be discussed. Monitoring and accounting systems tailored for clouds are needed to complete the integration of cloud resources within ATLAS' distributed computing framework. We are developing and deploying new solutions to address the challenge of operation in a geographically distributed multi-cloud scenario, including a system for managing VM images across multiple clouds, ...

  11. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, S-band Radar (williams-s_band)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Williams, Christopher

    2012-11-06

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  12. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, S-band Radar (williams-s_band)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Williams, Christopher

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  13. GamingAnywhere: An Open-Source Cloud Gaming Testbed

    E-Print Network [OSTI]

    Chen, Sheng-Wei

    the latest computer games. Cloud gaming is an alternative way to deliver high-quality gaming experience: A cloud gaming service based on GamingAny- where. In a cloud gaming system, computer games run on power to game servers. With cloud gaming, gamers can play the latest computer games anywhere and anytime, while

  14. The NGEE Arctic Data Archive -- Portal for Archiving and Distributing Data and Documentation

    SciTech Connect (OSTI)

    Boden, Thomas A; Palanisamy, Giri; Devarakonda, Ranjeet; Killeffer, Terri S; Krassovski, Misha B; Hook, Leslie A

    2014-01-01

    The Next-Generation Ecosystem Experiments (NGEE Arctic) project is committed to implementing a rigorous and high-quality data management program. The goal is to implement innovative and cost-effective guidelines and tools for collecting, archiving, and sharing data within the project, the larger scientific community, and the public. The NGEE Arctic web site is the framework for implementing these data management and data sharing tools. The open sharing of NGEE Arctic data among project researchers, the broader scientific community, and the public is critical to meeting the scientific goals and objectives of the NGEE Arctic project and critical to advancing the mission of the Department of Energy (DOE), Office of Science, Biological and Environmental (BER) Terrestrial Ecosystem Science (TES) program.

  15. INFLUENCE OF ARCTIC CLOUD THERMODYNAMIC PHASE ON SURFACE SHORTWAVE FLUX

    E-Print Network [OSTI]

    -phase" category, can affect the surface energy balance at the same order of magnitude as greenhouse gas increases Science Associates, LLC under Contract No. DE-AC02- 98CH10886 with the U.S. Department of Energy a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form

  16. Simulating Arctic mixed-phase clouds: Sensitivity to environmental

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541 UnlimitedShift EndShutdownSolar(SLMP®)

  17. Relationship Between Arctic Clouds and Synoptic-Scale Variability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners *Reindustrialization Reindustrialization As EMRelationship Between

  18. Towards a Characterization of Arctic Mixed-Phase Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.Week DayDr.Theories81Towards Heavy FermionsTowards

  19. Liquid Water the Key to Arctic Cloud Radiative Closure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and-E CChina (MillionLiquid Fuels andWater

  20. The Evolution of Cloud Computing in ATLAS

    E-Print Network [OSTI]

    Taylor, Ryan P; The ATLAS collaboration; Brasolin, Franco; Cordeiro, Cristovao; Desmarais, Ron; Field, Laurence; Gable, Ian; Giordano, Domenico; Di Girolamo, Alessandro; Hover, John; Leblanc, Matthew Edgar; Love, Peter; Paterson, Michael; Sobie, Randall; Zaytsev, Alexandr

    2015-01-01

    The ATLAS experiment has successfully incorporated cloud computing technology and cloud resources into its primarily grid-based model of distributed computing. Cloud R&D activities continue to mature and transition into stable production systems, while ongoing evolutionary changes are still needed to adapt and refine the approaches used, in response to changes in prevailing cloud technology. In addition, completely new developments are needed to handle emerging requirements. This paper describes the overall evolution of cloud computing in ATLAS. The current status of the virtual machine (VM) management systems used for harnessing infrastructure as a service (IaaS) resources are discussed. Monitoring and accounting systems tailored for clouds are needed to complete the integration of cloud resources within ATLAS' distributed computing framework. We are developing and deploying new solutions to address the challenge of operation in a geographically distributed multi-cloud scenario, including a system for ma...

  1. ARM Cloud Aerosol Precipitation Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP38 ARM6Aerosol

  2. Latitudinal distribution of the recent Arctic warming

    SciTech Connect (OSTI)

    Chylek, Petr; Lesins, Glen K; Wang, Muyin

    2010-12-08

    Increasing Arctic temperature, disappearance of Arctic sea ice, melting of the Greenland ice sheet, sea level rise, increasing strength of Atlantic hurricanes are these impending climate catastrophes supported by observations? Are the recent data really unprecedented during the observational records? Our analysis of Arctic temperature records shows that the Arctic and temperatures in the 1930s and 1940s were almost as high as they are today. We argue that the current warming of the Arctic region is affected more by the multi-decadal climate variability than by an increasing concentration of carbon dioxide. Unfortunately, none of the existing coupled Atmosphere-Ocean General Circulation Models used in the IPCC 2007 cIimate change assessment is able to reproduce neither the observed 20th century Arctic cIimate variability nor the latitudinal distribution of the warming.

  3. Dispelling Clouds of Uncertainty

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lewis, Ernie; Teixeira, Joăo

    2015-06-15

    How do you build a climate model that accounts for cloud physics and the transitions between cloud regimes? Use MAGIC.

  4. Cloud Computing Adam Barker

    E-Print Network [OSTI]

    St Andrews, University of

    Cloud Computing 1 Adam Barker #12;Overview · Introduction to Cloud computing · Enabling technologies · Di erent types of cloud: IaaS, PaaS and SaaS · Cloud terminology · Interacting with a cloud: management consoles · Launching an instance · Connecting to an instance · Running your application · Clouds

  5. Short-lived pollutants in the Arctic: their climate impact and possible mitigation strategies

    SciTech Connect (OSTI)

    Menon, Surabi; Quinn, P.K.; Bates, T.S.; Baum, E.; Doubleday, N.; Fiore, A.M.; Flanner, M.; Fridlind, A.; Garrett, T.J.; Koch, D.; Menon, S.; Shindell, D.; Stohl, A.; Warren, S.G.

    2007-09-24

    Several short-lived pollutants known to impact Arctic climate may be contributing to the accelerated rates of warming observed in this region relative to the global annually averaged temperature increase. Here, we present a summary of the short-lived pollutants that impact Arctic climate including methane, tropospheric ozone, and tropospheric aerosols. For each pollutant, we provide a description of the major sources and the mechanism of forcing. We also provide the first seasonally averaged forcing and corresponding temperature response estimates focused specifically on the Arctic. The calculations indicate that the forcings due to black carbon, methane, and tropospheric ozone lead to a positive surface temperature response indicating the need to reduce emissions of these species within and outside the Arctic. Additional aerosol species may also lead to surface warming if the aerosol is coincident with thin, low lying clouds. We suggest strategies for reducing the warming based on current knowledge and discuss directions for future research to address the large remaining uncertainties.

  6. Cloud Tracking in Cloud-Resolving Models

    E-Print Network [OSTI]

    Plant, Robert

    Cloud Tracking in Cloud-Resolving Models RMetS Conference 4th September 2007 Bob Plant Department of Meteorology, University of Reading, UK #12;Introduction Obtain life cycle statistics for clouds in CRM simulations What is the distribution of cloud lifetimes? What factors determine the lifetime of an individual

  7. Arctic Oil and Natural Gas Potential

    Reports and Publications (EIA)

    2009-01-01

    This paper examines the discovered and undiscovered Arctic oil and natural gas resource base with respect to their location and concentration. The paper also discusses the cost and impediments to developing Arctic oil and natural gas resources, including those issues associated with environmental habitats and political boundaries.

  8. NOAA's Role in the Arctic Presentation by Kathleen Crane

    E-Print Network [OSTI]

    interact with the rest of the Arctic (marine, ice and terrestrial) system? · Which recent changes Fresh water In the Arctic Ocean The sources and pathways of fresh water into and out of the Arctic Ocean shape of the Beaufort Gyre, Surface Transport Pathways in Response to the Arctic Oscillation. #12

  9. Seasonal dynamics of bacterial biomass and production in a coastal arctic ecosystem: Franklin Bay, western Canadian Arctic

    E-Print Network [OSTI]

    Vincent, Warwick F.

    Seasonal dynamics of bacterial biomass and production in a coastal arctic ecosystem: Franklin Bay 2008. [1] The Canadian Arctic Shelf Exchange Study (CASES) included the overwintering deployment biomass and production in a coastal arctic ecosystem: Franklin Bay, western Canadian Arctic, J. Geophys

  10. Toward Securing Sensor Clouds

    E-Print Network [OSTI]

    Router Cloud Computing Cloud Computing Cloud Computing Tower-mount Antenna Tower-mount Antenna Wireless-Features-1GHz-Tegra-2-HigherRes-Screen/ #12;Router Router Router Router Mini Computer Mini Computer Mini Computer Mini Computer External Storage External Storage Router Router Router Router Cloud Computing Cloud

  11. Ad hoc cloud computing 

    E-Print Network [OSTI]

    McGilvary, Gary Andrew

    2014-11-27

    Commercial and private cloud providers offer virtualized resources via a set of co-located and dedicated hosts that are exclusively reserved for the purpose of offering a cloud service. While both cloud models appeal to ...

  12. Short-Term Arctic Cloud Statistics at NSA from the Infrared Cloud Imager

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541 UnlimitedShift End Shift End A shift endsNovember3 13

  13. Springtime Arctic haze contributions of submicron organic particles from European and Asian combustion sources

    E-Print Network [OSTI]

    Kroll, Jesse

    The composition of Arctic aerosol, especially during the springtime Arctic haze, may play an important role in the radiative balance of the Arctic. The contribution of organic components to Arctic haze has only recently ...

  14. Atmospheric Rivers Coming to a Cloud Near You

    SciTech Connect (OSTI)

    Leung, Ruby

    2014-03-29

    Learn about the ARM Cloud Aerosol Precipitation Experiment (ACAPEX) field campaign in this short video. Ruby Leung, PNNL's lead scientist on this campaign's observational strategy to monitor precipitation.

  15. Atmospheric Rivers Coming to a Cloud Near You

    ScienceCinema (OSTI)

    Leung, Ruby

    2014-06-12

    Learn about the ARM Cloud Aerosol Precipitation Experiment (ACAPEX) field campaign in this short video. Ruby Leung, PNNL's lead scientist on this campaign's observational strategy to monitor precipitation.

  16. Weakening of the Stratospheric Polar Vortex by Arctic Sea-Ice Loss

    SciTech Connect (OSTI)

    Kim, Baek-Min; Son, Seok-Woo; Min, Seung-Ki; Jeong, Jee-Hoon; Kim, Seong-Joong; Zhang, Xiangdong; Shim, Taehyoun; Yoon, Jin-Ho

    2014-09-02

    Successive cold winters of severely low temperatures in recent years have had critical social and economic impacts on the mid-latitude continents in the Northern Hemisphere. Although these cold winters are thought to be partly driven by dramatic losses of Arctic sea ice, the mechanism that links sea ice loss to cold winters remains a subject of debate. Here, by conducting observational analyses and model experiments, we show how Arctic sea ice loss and cold winters in extra-polar regions are dynamically connected through the polar stratosphere. We find that decreased sea ice cover during early winter months (November-December), especially over the Barents-Kara seas, enhance the upward propagation of planetary-scale waves with wavenumbers of 1 and 2, subsequently weakening the stratospheric polar vortex in mid-winter (January- February). The weakened polar vortex preferentially induces a negative phase of Arctic Oscillation at the surface, resulting in low temperatures in mid-latitudes.

  17. CloudTransport: Using Cloud Storage for

    E-Print Network [OSTI]

    Houmansadr, Amir

    users' network traffic by tunneling it through a cloud storage ser- vice such as Amazon S3. The goal the bridge or identify other connections. CloudTransport can be used as a standalone service, a gateway

  18. On Demand Surveillance Service in Vehicular Cloud

    E-Print Network [OSTI]

    Weng, Jui-Ting

    2013-01-01

    Toward Vehicular Service Cloud . . . . . . . . . . . . . . .4.2 Open Mobile Cloud Requirement . . . . .3.1 Mobile Cloud

  19. Application of Stochastic Radiative Transfer Theory to the ARM Cloud-Radiative Parameterization Problem

    SciTech Connect (OSTI)

    Dana E. Veron

    2012-04-09

    This project had two primary goals: (1) development of stochastic radiative transfer as a parameterization that could be employed in an AGCM environment, and (2) exploration of the stochastic approach as a means for representing shortwave radiative transfer through mixed-phase layer clouds. To achieve these goals, climatology of cloud properties was developed at the ARM CART sites, an analysis of the performance of the stochastic approach was performed, a simple stochastic cloud-radiation parameterization for an AGCM was developed and tested, a statistical description of Arctic mixed phase clouds was developed and the appropriateness of stochastic approach for representing radiative transfer through mixed-phase clouds was assessed. Significant progress has been made in all of these areas and is detailed in the final report.

  20. On Demand Surveillance Service in Vehicular Cloud

    E-Print Network [OSTI]

    Weng, Jui-Ting

    2013-01-01

    1.2 Cloud computing to Vehicular CloudM. Gerla. Vehicular Cloud Computing, VCA 2012 Proceedings,single vehicle cannot. Cloud computing to Vehicular Cloud

  1. Cloud Security by Max Garvey

    E-Print Network [OSTI]

    Tolmach, Andrew

    Cloud Security Survey by Max Garvey #12;Cloudy Cloud is Cloudy What is the cloud? On Demand Service, performance SECaaS - Cloud hosted security measures Certifications - measurements for cloud security. #12;Cloud Questions If you have $0 security budget, could cloud be a security improvement? Who owns the data

  2. COLLABORATIVE RESEARCH: TOWARDS ADVANCED UNDERSTANDING AND PREDICTIVE CAPABILITY OF CLIMATE CHANGE IN THE ARCTIC USING A HIGH-RESOLUTION REGIONAL ARCTIC CLIMATE SYSTEM MODEL

    SciTech Connect (OSTI)

    Gutowski, William J.

    2013-02-07

    The motivation for this project was to advance the science of climate change and prediction in the Arctic region. Its primary goals were to (i) develop a state-of-the-art Regional Arctic Climate system Model (RACM) including high-resolution atmosphere, land, ocean, sea ice and land hydrology components and (ii) to perform extended numerical experiments using high performance computers to minimize uncertainties and fundamentally improve current predictions of climate change in the northern polar regions. These goals were realized first through evaluation studies of climate system components via one-way coupling experiments. Simulations were then used to examine the effects of advancements in climate component systems on their representation of main physics, time-mean fields and to understand variability signals at scales over many years. As such this research directly addressed some of the major science objectives of the BER Climate Change Research Division (CCRD) regarding the advancement of long-term climate prediction.

  3. Economic feasibility of shipping containers through the Arctic

    E-Print Network [OSTI]

    Pollock, Russell (Russell Clayton)

    2009-01-01

    As the Arctic ice cover continues to retreat, the possibility of regular transit through the Arctic becomes an increasing reality. Liner companies could take advantage of distance savings (up to 4000 nautical miles less ...

  4. Tuktoyaktuk : responsive strategies for a new Arctic urbanism

    E-Print Network [OSTI]

    Ritchot, Pamela (Pamela Rae)

    2011-01-01

    The Canadian Arctic is facing a set of compounding crises that will drastically impact the future of its coastal frontier. At a time when climate change is having a detrimental impact on the Arctic landscape, Northern ...

  5. The seasonal dynamics of Arctic surface hydrology in permafrost environments

    E-Print Network [OSTI]

    Trofaier, Anna Maria

    2014-11-11

    Climate-induced landscape evolution is resulting in changes to biogeochemical and hydrologi- cal cycling. In the Arctic and sub-Arctic permafrost zones, rising air temperatures are warming, and in some regions even thawing, the frozen ground...

  6. Program Analyses for Cloud Computations

    E-Print Network [OSTI]

    Tetali, Sai Deep

    2015-01-01

    search. ” In CCSW 09: Cloud Computing Security Workshop, pp.ACM workshop on Cloud computing security workshop, CCSW ’11,aspects of cloud computing, including security, performance

  7. Clonal Diversity in an Expanding Community of Arctic Salix spp. and a Model for Recruitment Modes of Arctic Plants

    E-Print Network [OSTI]

    Goldsmith, Greg

    Clonal Diversity in an Expanding Community of Arctic Salix spp. and a Model for Recruitment Modes identity in a population of Salix spp. shrubs at an arctic site with a known history of woody shrub

  8. PC Windows Adobe Creative Cloud PC Windows Adobe Creative Cloud

    E-Print Network [OSTI]

    PC Windows Adobe Creative Cloud 1 PC Windows Adobe Creative Cloud 2015-05-25 1 Web Windows Adobe Creative Cloud PC | Creative Cloud https://helpx.adobe.com/jp/creative-cloud Adobe Creative Cloud 5.1 Web TTInstaller(Windows )() http://www.officesoft.gsic.titech.ac

  9. ESTABLISHMENT OF CLOUD REGIMES FOR SYSTEMATIC EVALUATION OF CLOUD MODELING

    E-Print Network [OSTI]

    ESTABLISHMENT OF CLOUD REGIMES FOR SYSTEMATIC EVALUATION OF CLOUD MODELING Wuyin Lin1 , Yangang Liu Distinct cloud regimes can exist locally and globally. Such cloud regimes usually have close association, the classification of cloud regimes may be based on cloud properties and/or meteorological conditions. This study

  10. Status of Wind-Diesel Applications in Arctic Climates: Preprint

    SciTech Connect (OSTI)

    Baring-Gould, I.; Corbus, D.

    2007-12-01

    The rising cost of diesel fuel and the environmental regulation for its transportation, use, and storage, combined with the clear impacts of increased arctic temperatures, is driving remote communities to examine alternative methods of providing power. Over the past few years, wind energy has been increasingly used to reduce diesel fuel consumption, providing economic, environmental, and security benefits to the energy supply of communities from Alaska to Antarctica. This summary paper describes the current state of wind-diesel systems, reviews the operation of wind-diesel plants in cold climates, discusses current research activities pertaining to these systems, and addresses their technical and commercial challenges. System architectures, dispatch strategies, and operating experience from a variety of wind-diesel systems in Alaska will be reviewed. Specific focus will also be given to the control of power systems with large amounts of wind generation and the complexities of replacing diesel engine waste heat with excess wind energy, a key factor in assessing power plants for retrofit. A brief overview of steps for assessing the viability of retrofitting diesel power systems with wind technologies will also be provided. Because of the large number of isolated diesel minigrids, the market for adding wind to these systems is substantial, specifically in arctic climates and on islands that rely on diesel-only power generation.

  11. ARM - Field Campaign - Holistic Interactions of Shallow Clouds, Aerosols,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01)govCampaignsFIRE-Arctic CloudShortwaveand Land-Ecosystems

  12. ARM - Field Campaign - IR Cloud Camera Feasibility Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01)govCampaignsFIRE-Arctic CloudShortwaveandgovCampaignsIPASRC

  13. ARM - Field Campaign - MASRAD: Cloud Condensate Nuclei Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01)govCampaignsFIRE-Arctic-govCampaignsLowerMeasurements Cloud

  14. Hyperscale Cloud Technical White Paper

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    Hyperscale Cloud Technical White Paper Published: May 2015 Applies to: SQL Server 2016 CTP2, SQL in the cloud with greater scale and flexibility. Microsoft SQL Server is built for cloud integration--your organization can easily deploy SQL Server in a private cloud, hybrid cloud, or public cloud, and can use

  15. XSEDE Cloud Survey Report

    E-Print Network [OSTI]

    Chen, Tsuhan

    XSEDE Cloud Survey Report David Lifka, Cornell Center for Advanced Computing Ian Foster, ANL, ANL and The University of Chicago A National Science Foundation-sponsored cloud user survey was conducted from September 2012 to April 2013 by the XSEDE Cloud Integration Investigation Team to better

  16. Research Cloud Computing Recommendations

    E-Print Network [OSTI]

    Qian, Ning

    Research Cloud Computing Recommendations SRCPAC December 3, 2014 #12;Mandate and Membership SRCPAC convened this committee in Sept 2014 to investigate the role that cloud computing should play in our & Academic Affairs (Social Work) #12;Questions discussed · What cloud resources are available? · Which kinds

  17. Arctic Energy Technology Development Laboratory

    SciTech Connect (OSTI)

    Sukumar Bandopadhyay; Charles Chamberlin; Robert Chaney; Gang Chen; Godwin Chukwu; James Clough; Steve Colt; Anthony Covescek; Robert Crosby; Abhijit Dandekar; Paul Decker; Brandon Galloway; Rajive Ganguli; Catherine Hanks; Rich Haut; Kristie Hilton; Larry Hinzman; Gwen Holdman; Kristie Holland; Robert Hunter; Ron Johnson; Thomas Johnson; Doug Kame; Mikhail Kaneveskly; Tristan Kenny; Santanu Khataniar; Abhijeet Kulkami; Peter Lehman; Mary Beth Leigh; Jenn-Tai Liang; Michael Lilly; Chuen-Sen Lin; Paul Martin; Pete McGrail; Dan Miller; Debasmita Misra; Nagendra Nagabhushana; David Ogbe; Amanda Osborne; Antoinette Owen; Sharish Patil; Rocky Reifenstuhl; Doug Reynolds; Eric Robertson; Todd Schaef; Jack Schmid; Yuri Shur; Arion Tussing; Jack Walker; Katey Walter; Shannon Watson; Daniel White; Gregory White; Mark White; Richard Wies; Tom Williams; Dennis Witmer; Craig Wollard; Tao Zhu

    2008-12-31

    The Arctic Energy Technology Development Laboratory was created by the University of Alaska Fairbanks in response to a congressionally mandated funding opportunity through the U.S. Department of Energy (DOE), specifically to encourage research partnerships between the university, the Alaskan energy industry, and the DOE. The enabling legislation permitted research in a broad variety of topics particularly of interest to Alaska, including providing more efficient and economical electrical power generation in rural villages, as well as research in coal, oil, and gas. The contract was managed as a cooperative research agreement, with active project monitoring and management from the DOE. In the eight years of this partnership, approximately 30 projects were funded and completed. These projects, which were selected using an industry panel of Alaskan energy industry engineers and managers, cover a wide range of topics, such as diesel engine efficiency, fuel cells, coal combustion, methane gas hydrates, heavy oil recovery, and water issues associated with ice road construction in the oil fields of the North Slope. Each project was managed as a separate DOE contract, and the final technical report for each completed project is included with this final report. The intent of this process was to address the energy research needs of Alaska and to develop research capability at the university. As such, the intent from the beginning of this process was to encourage development of partnerships and skills that would permit a transition to direct competitive funding opportunities managed from funding sources. This project has succeeded at both the individual project level and at the institutional development level, as many of the researchers at the university are currently submitting proposals to funding agencies, with some success.

  18. The Arctic as a test case for an assessment of climate impacts on national security.

    SciTech Connect (OSTI)

    Taylor, Mark A.; Zak, Bernard Daniel; Backus, George A.; Ivey, Mark D.; Boslough, Mark Bruce Elrick

    2008-11-01

    The Arctic region is rapidly changing in a way that will affect the rest of the world. Parts of Alaska, western Canada, and Siberia are currently warming at twice the global rate. This warming trend is accelerating permafrost deterioration, coastal erosion, snow and ice loss, and other changes that are a direct consequence of climate change. Climatologists have long understood that changes in the Arctic would be faster and more intense than elsewhere on the planet, but the degree and speed of the changes were underestimated compared to recent observations. Policy makers have not yet had time to examine the latest evidence or appreciate the nature of the consequences. Thus, the abruptness and severity of an unfolding Arctic climate crisis has not been incorporated into long-range planning. The purpose of this report is to briefly review the physical basis for global climate change and Arctic amplification, summarize the ongoing observations, discuss the potential consequences, explain the need for an objective risk assessment, develop scenarios for future change, review existing modeling capabilities and the need for better regional models, and finally to make recommendations for Sandia's future role in preparing our leaders to deal with impacts of Arctic climate change on national security. Accurate and credible regional-scale climate models are still several years in the future, and those models are essential for estimating climate impacts around the globe. This study demonstrates how a scenario-based method may be used to give insights into climate impacts on a regional scale and possible mitigation. Because of our experience in the Arctic and widespread recognition of the Arctic's importance in the Earth climate system we chose the Arctic as a test case for an assessment of climate impacts on national security. Sandia can make a swift and significant contribution by applying modeling and simulation tools with internal collaborations as well as with outside organizations. Because changes in the Arctic environment are happening so rapidly, a successful program will be one that can adapt very quickly to new information as it becomes available, and can provide decision makers with projections on the 1-5 year time scale over which the most disruptive, high-consequence changes are likely to occur. The greatest short-term impact would be to initiate exploratory simulations to discover new emergent and robust phenomena associated with one or more of the following changing systems: Arctic hydrological cycle, sea ice extent, ocean and atmospheric circulation, permafrost deterioration, carbon mobilization, Greenland ice sheet stability, and coastal erosion. Sandia can also contribute to new technology solutions for improved observations in the Arctic, which is currently a data-sparse region. Sensitivity analyses have the potential to identify thresholds which would enable the collaborative development of 'early warning' sensor systems to seek predicted phenomena that might be precursory to major, high-consequence changes. Much of this work will require improved regional climate models and advanced computing capabilities. Socio-economic modeling tools can help define human and national security consequences. Formal uncertainty quantification must be an integral part of any results that emerge from this work.

  19. Acoustic clouds: standing sound waves around a black hole analogue

    E-Print Network [OSTI]

    Carolina L. Benone; Luis C. B. Crispino; Carlos Herdeiro; Eugen Radu

    2015-01-28

    Under certain conditions sound waves in fluids experience an acoustic horizon with analogue properties to those of a black hole event horizon. In particular, a draining bathtub-like model can give rise to a rotating acoustic horizon and hence a rotating black hole (acoustic) analogue. We show that sound waves, when enclosed in a cylindrical cavity, can form stationary waves around such rotating acoustic black holes. These acoustic perturbations display similar properties to the scalar clouds that have been studied around Kerr and Kerr-Newman black holes; thus they are dubbed acoustic clouds. We make the comparison between scalar clouds around Kerr black holes and acoustic clouds around the draining bathtub explicit by studying also the properties of scalar clouds around Kerr black holes enclosed in a cavity. Acoustic clouds suggest the possibility of testing, experimentally, the existence and properties of black hole clouds, using analog models.

  20. Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part I: Cloud Radiative Kernels

    E-Print Network [OSTI]

    Hartmann, Dennis

    Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part I: Cloud Radiative 2011) ABSTRACT This study proposes a novel technique for computing cloud feedbacks using histograms integrated cloud feedbacks computed in this manner agree remarkably well with the adjusted change in cloud

  1. Taiwan UniCloud: A Cloud Testbed with Collaborative Cloud Services Wu-Chun Chung*

    E-Print Network [OSTI]

    Chung, Yeh-Ching

    Taiwan UniCloud: A Cloud Testbed with Collaborative Cloud Services Wu-Chun Chung* , Po-Chi Shih}@cs.nthu.edu.tw Abstract--This paper introduces a prototype of Taiwan UniCloud, a community-driven hybrid cloud platform for academics in Taiwan. The goal is to leverage resources in multiple clouds among different organizations

  2. Extreme seasonality of litter breakdown in an arctic spring-fed stream is driven by shredder phenology, not

    E-Print Network [OSTI]

    Benstead, Jon

    regimes. We used an alternative approach to investigate the importance of temperature by quantifying seasonal patterns in litter breakdown in an arctic spring-fed stream (Ivishak Spring, North Slope, Alaska) that experiences extreme seasonality in light availability and energy inputs while fluctuations in water

  3. Computational Arctic Research at ARSC/UAF

    E-Print Network [OSTI]

    Newby, Gregory B.

    Supercomputing Center ­ Ph.D. Syracuse 1993, "Information Transfer" ­ Research interests in data Climate Change Impacts on Water Resources across Alaska and the Hawaiian Islands" · PI: Buck Sharpton Supercomputing Center University of Alaska Fairbanks U.S. Arctic Research Commission Meeting October 7, 2010 #12

  4. GEOPHYSICAL RESEARCH LETTERS, VOL. 28, NO. 13, PAGES 2609-2612, JULY 1, 2001 The death of an altocumulus cloud

    E-Print Network [OSTI]

    of an altocumulus cloud Vincent E. Larson Atmospheric Science Group, Department of Mathematical Sciences, University altocumulus clouds to decay? To address this question, the authors examine an observational case study of a mid-level cloud that was measured during the Complex Layered Cloud Experiments (CLEX). The budget

  5. Relationship between Cloud Condensation Nuclei and Satellite Retrievals of Cloud Droplet Effective Radius

    E-Print Network [OSTI]

    Delene, David J.

    ` Relationship between Cloud Condensation Nuclei and Satellite Retrievals of Cloud Droplet is the relationship between below cloud base cloud condensation nuclei (CCN) and satellite retrievals of cloud droplet cloud effective radius; however, satellites can not measure cloud condensation nuclei (CCN

  6. Community Cloud Computing

    E-Print Network [OSTI]

    Marinos, Alexandros

    2009-01-01

    Cloud Computing is rising fast, with its data centres growing at an unprecedented rate. However, this has come with concerns over privacy, efficiency at the expense of resilience, and environmental sustainability, because of the dependence on Cloud vendors such as Google, Amazon and Microsoft. Our response is an alternative model for the Cloud conceptualisation, providing a paradigm for Clouds in the community, utilising networked personal computers for liberation from the centralised vendor model. Community Cloud Computing (C3) offers an alternative architecture, created by combing the Cloud with paradigms from Grid Computing, principles from Digital Ecosystems, and sustainability from Green Computing, while remaining true to the original vision of the Internet. It is more technically challenging than Cloud Computing, having to deal with distributed computing issues, including heterogeneous nodes, varying quality of service, and additional security constraints. However, these are not insurmountable challenge...

  7. Water balance of the Arctic drainage system using GRACE gravimetry products

    E-Print Network [OSTI]

    Frappart, F; Ramillien, G; Famiglietti, JS

    2011-01-01

    of the Arctic Ocean freshwater balance and their interannualInteractions, 2, pp. 1–37. Water balance of the Arctic usingEWG climatology. Water balance of the Arctic using GRACE

  8. The Impact of Global Warming on the Carbon Cycle of Arctic Permafrost: An Experimental and Field Based Study

    SciTech Connect (OSTI)

    Onstott, Tullis C; Pffifner, Susan M; Chourey, Karuna

    2014-11-07

    Our results to date indicate that CO2 and CH4 fluxes from organic poor, Arctic cryosols on Axel Heiberg Island are net CH4 sinks and CO2 emitters in contrast to organic-rich peat deposits at sub-Arctic latitudes. This is based upon field observations and a 1.5 year long thawing experiment performed upon one meter long intact cores. The results of the core thawing experiments are in good agreement with field measurements. Metagenomic, metatranscriptomic and metaproteomic analyses indicate that high affinity aerobic methanotrophs belong to the uncultivated USCalpha are present in <1% abundance in these cryosols are are active in the field during the summer and in the core thawing experiments. The methanotrophs are 100 times more abundant than the methanogens. As a result mineral cryosols, which comprise 87% of Arctic tundra, are net methane sinks. Their presence and activity may account for the discrepancies observed between the atmospheric methane concentrations observed in the Arctic predicted by climate models and the observed seasonal fluctuations and decadal trends. This has not been done yet.

  9. Federated Cloud Security Architecture for Secure and Agile Clouds

    E-Print Network [OSTI]

    Xu, Shouhuai

    Federated Cloud Security Architecture for Secure and Agile Clouds Weiliang Luo, Li Xu, Zhenxin Zhan. This chapter introduces the novel federated cloud security architecture that includes proactive cloud defense technologies for secure and agile cloud development. The federated security architecture consists of a set

  10. The proposed connection between clouds and cosmic rays: Cloud

    E-Print Network [OSTI]

    The proposed connection between clouds and cosmic rays: Cloud behaviour during the past 50 of cloud factors using both satellite and ground­based data. In particular, we search for evidence for the low cloud decrease predicted by the rising levels of solar activity and the low cloud­cosmic ray flux

  11. An Autonomous Reliabilit Cloud Comput

    E-Print Network [OSTI]

    Buyya, Rajkumar

    An Autonomous Reliabilit Ami Cloud Comput Department of Computing and Informa Abstract--Cloud computing paradigm allo based access to computing and storages s Internet. Since with advances of Cloud. Keywords- Cloud computing; SLA negotiat I. INTRODUCTION Cloud computing has transferred the services

  12. Fig 2 -Cloud energy collect infrastructure Energy Efficient (Green) Cloud !

    E-Print Network [OSTI]

    Lefčvre, Laurent

    Fig 2 - Cloud energy collect infrastructure Energy Efficient (Green) Cloud ! The Compatible software components Energy Monitoring of physical and virtual resources Energy usage exposing for users and clouds managers Energy monitoring streams for upper layers software Design Energy aware software

  13. Potential Oil Production from the Coastal Plain of the Arctic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment Glossary ANILCA: Alaska National Interest Lands Conservation Act ANS:...

  14. Potential Oil Production from the Coastal Plain of the Arctic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment Executive Summary This Service Report, Potential Oil Production from the...

  15. Potential Oil Production from the Coastal Plain of the Arctic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment 2. Analysis Discussion Resource Assessment The USGS most recent...

  16. Finance Idol Word Cloud

    Broader source: Energy.gov [DOE]

    This word cloud represents the topics discussed during the Big and Small Ideas: How to Lower Solar Financing Costs breakout session at the SunShot Grand Challenge.

  17. Next-Generation Ecosystem Experiments NGEE Arctic Quarterly Report

    E-Print Network [OSTI]

    Fairbanks performed hydrologic analyses using the physically-based model WaSiM-ETH that was forced by data, and processes such as evaporation. Measurement of chemical constituents that vary in concentration according transformations such as mineralization of organic matter to ammonia, nitrate, CO2, and methane. To determ

  18. Next-Generation Ecosystem Experiments NGEE Arctic Quarterly Report

    E-Print Network [OSTI]

    Clips 10 Appendix 11 #12;2 Can Microbial Community Composition be Incorporated into Earth System Models? Accurate projections of greenhouse gas fluxes by Earth System Models require that they contain process and to mechanistically represent the complex plant-microbe-soil system in Earth System Models. Xu et al. (2011) Feedback

  19. Next-Generation Ecosystem Experiments NGEE Arctic Quarterly Report

    E-Print Network [OSTI]

    land model for inclusion in Earth system models. #12;3 Details at a Glance Activities during the April

  20. Next-Generation Ecosystem Experiments NGEE Arctic Quarterly Report

    E-Print Network [OSTI]

    is extremely difficult to obtain using conventional methods (e.g., drilling). The LBNL geophysics team, which

  1. Next-Generation Ecosystem Experiments NGEE Arctic Quarterly Report

    E-Print Network [OSTI]

    . Ecohydrologists at UAF and ORNL set up new water isotope collaboration. Genomic resources for Salix spp. lay

  2. Next-Generation Ecosystem Experiments NGEE Arctic Quarterly Report

    E-Print Network [OSTI]

    System Models and reduce uncertainty and improve prediction of climate impacts and change in high System Models. Details at a Glance Activities during the October 1 to December 31 quarter include: A two, Chonggang Xu, Thomas Rahn, and Claudia Mora Earth and Environmental Sciences Division & Computational Earth

  3. Next-Generation Ecosystem Experiments NGEE Arctic Quarterly Report

    E-Print Network [OSTI]

    in local and regional hydrology. Earth system models must represent the most significant drivers Ridge National Laboratory and Cathy J. Wilson, Rodman R. Linn, and Phillip Cunningham Earth and Environmental Sciences Division & Computational Earth Sciences Division Los Alamos National Laboratory Contents

  4. The 2004 North Slope of Alaska Arctic Winter Radiometric Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S. CoalMexicoConferencePriceshielding evaluation for the2004

  5. Climate-derived tensions in Arctic security.

    SciTech Connect (OSTI)

    Backus, George A.; Strickland, James Hassler

    2008-09-01

    Globally, there is no lack of security threats. Many of them demand priority engagement and there can never be adequate resources to address all threats. In this context, climate is just another aspect of global security and the Arctic just another region. In light of physical and budgetary constraints, new security needs must be integrated and prioritized with existing ones. This discussion approaches the security impacts of climate from that perspective, starting with the broad security picture and establishing how climate may affect it. This method provides a different view from one that starts with climate and projects it, in isolation, as the source of a hypothetical security burden. That said, the Arctic does appear to present high-priority security challenges. Uncertainty in the timing of an ice-free Arctic affects how quickly it will become a security priority. Uncertainty in the emergent extreme and variable weather conditions will determine the difficulty (cost) of maintaining adequate security (order) in the area. The resolution of sovereignty boundaries affects the ability to enforce security measures, and the U.S. will most probably need a military presence to back-up negotiated sovereignty agreements. Without additional global warming, technology already allows the Arctic to become a strategic link in the global supply chain, possibly with northern Russia as its main hub. Additionally, the multinational corporations reaping the economic bounty may affect security tensions more than nation-states themselves. Countries will depend ever more heavily on the global supply chains. China has particular needs to protect its trade flows. In matters of security, nation-state and multinational-corporate interests will become heavily intertwined.

  6. Program Analyses for Cloud Computations

    E-Print Network [OSTI]

    Tetali, Sai Deep

    2015-01-01

    search. ” In CCSW 09: Cloud Computing Security Workshop, pp.and M. Walfish. “Depot: Cloud storage with minimal trust. ”the 3rd ACM workshop on Cloud computing security workshop,

  7. Sandia Energy - Cloud Computing Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Services Home Stationary Power Safety, Security & Resilience of Energy Infrastructure Grid Modernization Cyber Security for Electric Infrastructure Cloud Computing Services Cloud...

  8. CONTRIBUTED Green Cloud Computing

    E-Print Network [OSTI]

    Tucker, Rod

    as well as data processing and data storage. We show that energy consumption in transport and switching | Cloud computing; core networks; data centers; energy consumption I. INTRODUCTION The increasing to energy consumption and cloud computing seems to be an alternative to office-based computing. By Jayant

  9. RELATIONSHIP BETWEEN CLOUD FRACTION AND CLOUD ALBEDO: COMBINED OBSERVATIONAL-MODELING-THEORETICAL INVESTIGATION

    E-Print Network [OSTI]

    RELATIONSHIP BETWEEN CLOUD FRACTION AND CLOUD ALBEDO: COMBINED OBSERVATIONAL of Energy Office of Science ABSTRACT Cloud fraction and cloud albedo have long occupied the central stage as key cloud quantities in studying cloud-climate interaction; however their quantitative relationship

  10. Magellan: experiences from a Science Cloud

    E-Print Network [OSTI]

    Ramakrishnan, Lavanya

    2013-01-01

    model and tools such as Eucalyptus and Hadoop, require us tovirtualization software such as Eucalyptus, Open- Stack, anda Service” or HaaS) and Eucalyptus, enabling users to port

  11. Midlatitude Continental Convective Clouds Experiment Science Objective

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGE OFDetection ofOctober10MidSchoolMath

  12. Cloud computing security.

    SciTech Connect (OSTI)

    Shin, Dongwan; Claycomb, William R.; Urias, Vincent E.

    2010-10-01

    Cloud computing is a paradigm rapidly being embraced by government and industry as a solution for cost-savings, scalability, and collaboration. While a multitude of applications and services are available commercially for cloud-based solutions, research in this area has yet to fully embrace the full spectrum of potential challenges facing cloud computing. This tutorial aims to provide researchers with a fundamental understanding of cloud computing, with the goals of identifying a broad range of potential research topics, and inspiring a new surge in research to address current issues. We will also discuss real implementations of research-oriented cloud computing systems for both academia and government, including configuration options, hardware issues, challenges, and solutions.

  13. New Trans-Arctic shipping routes navigable by midcentury

    E-Print Network [OSTI]

    of additional ice reductions in the future, have fueled speculations of potential new trans-Arctic shippingNew Trans-Arctic shipping routes navigable by midcentury Laurence C. Smith1 and Scott R. Stephenson changes in sea ice will realistically impact ship navigation are lacking. To address this deficiency, we

  14. An Arctic Terrestrial Food-Chain Bioaccumulation Model for

    E-Print Network [OSTI]

    Gobas, Frank

    An Arctic Terrestrial Food-Chain Bioaccumulation Model for Persistent Organic Pollutants B A R R Y tarandus), and wolf (Canis lupus) food-chains of Canada's central and western arctic region from measured concentrations of 25 organic chemicals forecasted for caribou and wolves from Cambridge Bay (69°07 N 105°03 W

  15. National Strategy for the Arctic Region Stakeholder Outreach Meeting: Nome

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) is announcing the second round of tribal consultations and stakeholder outreach meetings on the National Strategy for the Arctic Region (NSAR), 10-Year Plan to accelerate renewable energy deployment in the Arctic Region.

  16. National Strategy for the Arctic Region Tribal Consultation Session: Barrow

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) is announcing the second round of tribal consultations and stakeholder outreach meetings on the National Strategy for the Arctic Region (NSAR), 10-Year Plan to accelerate renewable energy deployment in the Arctic Region.

  17. National Strategy for the Arctic Region Stakeholder Outreach Meeting: Barrow

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) is announcing the second round of tribal consultations and stakeholder outreach meetings on the National Strategy for the Arctic Region (NSAR), 10-Year Plan to accelerate renewable energy deployment in the Arctic Region.

  18. National Strategy for the Arctic Region Tribal Consultation Session: Nome

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) is announcing the second round of tribal consultations and stakeholder outreach meetings on the National Strategy for the Arctic Region (NSAR), 10-Year Plan to accelerate renewable energy deployment in the Arctic Region.

  19. National Strategy for the Arctic Region Stakeholder Outreach Meeting: Bethel

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) is announcing the second round of tribal consultations and stakeholder outreach meetings on the National Strategy for the Arctic Region (NSAR), 10-Year Plan to accelerate renewable energy deployment in the Arctic Region.

  20. National Strategy for the Arctic Region Tribal Consultation Session: Bethel

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) is announcing the second round of tribal consultations and stakeholder outreach meetings on the National Strategy for the Arctic Region (NSAR), 10-Year Plan to accelerate renewable energy deployment in the Arctic Region.

  1. National Strategy for the Arctic Tribal Consultation Session: Fairbanks

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) is announcing the second round of tribal consultations and stakeholder outreach meetings on the National Strategy for the Arctic Region (NSAR), 10-Year Plan to accelerate renewable energy deployment in the Arctic Region.

  2. National Strategy for the Arctic Region Stakeholder Outreach Meeting: Fairbanks

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) is announcing the second round of tribal consultations and stakeholder outreach meetings on the National Strategy for the Arctic Region (NSAR), 10-Year Plan to accelerate renewable energy deployment in the Arctic Region.

  3. National Strategy for the Arctic Region Stakeholder Outreach Meeting: Anchorage

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) is announcing the second round of tribal consultations and stakeholder outreach meetings on the National Strategy for the Arctic Region (NSAR), 10-Year Plan to accelerate renewable energy deployment in the Arctic Region. The purpose of this round is to give feedback on the elements of the draft plan.

  4. December 2013 www.arctic.noaa.gov/reportcard

    E-Print Network [OSTI]

    of Oslo, Department of Geosciences, 0316 Oslo, Norway Y. Cao, Ocean University of China, Qingdao, China J Centre in Svalbard, UNIS, Norway Institute of Geography and Geology, University of Copenhagen, Denmark J.S. Christiansen, Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsř, Norway B

  5. Critical Mechanisms for the Formation of Extreme Arctic Sea-Ice Extent in the Summers of 2007 and 1996

    SciTech Connect (OSTI)

    Dong, Xiquan; Zib, Benjamin J.; Xi, Baike; Stanfield, Ryan; Deng, Yi; Zhang, Xiangdong; Lin, B.; Long, Charles N.

    2014-07-29

    A warming Arctic climate is undergoing significant e 21 nvironmental change, most evidenced by the reduction of Arctic sea-ice extent during the summer. In this study, we examine two extreme anomalies of September sea-ice extent in 2007 and 1996, and investigate the impacts of cloud fraction (CF), atmospheric precipitable water vapor (PWV), downwelling longwave flux (DLF), surface air temperature (SAT), pressure and winds on the sea-ice variation in 2007 and 1996 using both satellite-derived sea-ice products and MERRA reanalysis. The area of the Laptev, East Siberian and West Chukchi seas (70-90oN, 90-180oE) has experienced the largest variation in sea-ice extent from year-to-year and defined here as the Area Of Focus (AOF). The record low September sea-ice extent in 2007 was associated with positive anomalies 30 of CF, PWV, DLF, and SAT over the AOF. Persistent anti-cyclone positioned over the Beaufort Sea coupled with low pressure over Eurasia induced easterly zonal and southerly meridional winds. In contrast, negative CF, PWV, DLF and SAT anomalies, as well as opposite wind patterns to those in 2007, characterized the 1996 high September sea-ice extent. Through this study, we hypothesize the following positive feedbacks of clouds, water vapor, radiation and atmospheric variables on the sea-ice retreat during the summer 2007. The record low sea-ice extent during the summer 2007 is initially triggered by the atmospheric circulation anomaly. The southerly winds across the Chukchi and East Siberian seas transport warm, moist air from the north Pacific, which is not only enhancing sea-ice melt across the AOF, but also increasing clouds. The positive cloud feedback results in higher SAT and more sea-ice melt. Therefore, 40 more water vapor could be evaporated from open seas and higher SAT to form more clouds, which will enhance positive cloud feedback. This enhanced positive cloud feedback will then further increase SAT and accelerate the sea-ice retreat during the summer 2007.

  6. Convective Cloud Lifecycles Lunchtime seminar

    E-Print Network [OSTI]

    Plant, Robert

    Convective Cloud Lifecycles Lunchtime seminar 19th May 2009 Bob Plant Department of Meteorology, University of Reading, UK #12;Introduction Obtain life cycle statistics for clouds in CRM simulations Why Conclusions Convective Cloud Lifecycles ­ p.1/3 #12;Why bother? Convective Cloud Lifecycles ­ p.2/3 #12;Some

  7. BLM Arctic Field Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYork Jump|LineMaine:Ayuda:NavegacionBARC09-167Arctic Field

  8. First observations of tracking clouds using scanning ARM cloud radars

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Borque, Paloma; Giangrande, Scott; Kollias, Pavlos

    2014-12-01

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (‘‘first echo’’). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud fieldmore »and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.« less

  9. First observations of tracking clouds using scanning ARM cloud radars

    SciTech Connect (OSTI)

    Borque, Paloma; Giangrande, Scott; Kollias, Pavlos

    2014-12-01

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (‘‘first echo’’). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud field and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.

  10. A developer's survey on different cloud platforms

    E-Print Network [OSTI]

    Doan, Dzung

    2009-01-01

    1 Introduction Cloud computing is a computing paradigm inFor this reason, cloud computing has also been describedparallel processing. Cloud computing can be contrasted with

  11. Migrating enterprise storage applications to the cloud

    E-Print Network [OSTI]

    Vrable, Michael Daniel

    2011-01-01

    outsourcing to the cloud and data security. Depending onconcerned about data security in the cloud. Data stored inrun in the cloud, while protecting data security guarantees.

  12. Migrating enterprise storage applications to the cloud

    E-Print Network [OSTI]

    Vrable, Michael Daniel

    2011-01-01

    2.1 Cloud Providers . . . . . . . . . . . .2.1.1 Cloud Storage . . . . . . . . .2.1.2 Cloud Computation . . . . . . 2.2 Enterprise Storage

  13. CloudSafe: Securing Data Processing within Vulnerable Virtualization Environments in the Cloud

    E-Print Network [OSTI]

    Ryder, Barbara G.

    CloudSafe: Securing Data Processing within Vulnerable Virtualization Environments in the Cloud large-scale cloud applications. Index Terms--cloud security, outsourced computation, side- channel, newly discovered vulnerabilities in cloud virtualization envi- ronment have threatened the security

  14. Potential Oil Production from the Coastal Plain of the Arctic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment 3. Summary The 1.5 million-acre coastal plain of the 19 million-acre...

  15. National Strategy for the Arctic Tribal Consultation Session...

    Energy Savers [EERE]

    Tribal Consultation Session: Fairbanks National Strategy for the Arctic Tribal Consultation Session: Fairbanks February 19, 2015 9:30AM to 10:30AM AKST Fairbanks, Alaska BLM...

  16. National Strategy for the Arctic Region Tribal Consultation Session...

    Energy Savers [EERE]

    Arctic Region Tribal Consultation Session: Dutch HarborUnalaska February 27, 2015 10:00AM to 12:00PM EST Unalaska, Alaska Unalaska Public Library 64 Eleanor Dr. Unalaska, AK 99685...

  17. National Strategy for the Arctic Region Stakeholder Outreach...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arctic Region Stakeholder Outreach Meeting: Dutch HarborUnalaska February 27, 2015 1:30PM to 3:30PM EST Unalaska, Alaska Unalaska Public Library 64 Eleanor Dr. Unalaska, AK 99685...

  18. National Strategy for the Arctic Region Tribal Consultation and...

    Office of Environmental Management (EM)

    Consultation and Stakeholder Outreach Session: Kotzebue February 23, 2015 10:00AM to 12:00PM AKST Kotzebue, Alaska Northwest Arctic Heritage Center 171 3rd Ave. Kotzebue, AK 9975...

  19. National Strategy for the Arctic Region Stakeholder Outreach...

    Office of Environmental Management (EM)

    for the Arctic Region Stakeholder Outreach Meeting: Bethel February 25, 2015 1:30PM to 3:30PM AKST Bethel, Alaska AVCP Regional Housing Authority 411 Ptarmigan St. Bethel, AK 99559...

  20. Cloud Based Applications and Platforms (Presentation)

    SciTech Connect (OSTI)

    Brodt-Giles, D.

    2014-05-15

    Presentation to the Cloud Computing East 2014 Conference, where we are highlighting our cloud computing strategy, describing the platforms on the cloud (including Smartgrid.gov), and defining our process for implementing cloud based applications.

  1. CloudMan: A Platform for Portable Cloud Manufacturing Services

    E-Print Network [OSTI]

    Dustdar, Schahram

    CloudMan: A Platform for Portable Cloud Manufacturing Services Soheil Qanbari, Samira Mahdi Zadeh Education (BIHE), Iran soroush.vedaeei@bihe.org Abstract--Cloud manufacturing refers to "as a Service" pro- duction model that exploits an on-demand access to a distributed pool of diversified manufacturing

  2. Attribution Analysis of Cloud Feedback 

    E-Print Network [OSTI]

    Zhou, Chen

    2014-07-15

    Uncertainty on cloud feedback is the primary contributor to the large spread of equilibrium climate sensitivity (ECS) in climate models. In this study, we compare the short-term cloud feedback in climate models with observations, and evaluate...

  3. Software-Defined Mobile Cloud

    E-Print Network [OSTI]

    Ku, Ian

    2014-01-01

    M. Gerla. “Towards Software- Defined VANETs: ArchitectureI. Ku, Y. Lu, and M. Gerla. “Software-Defined Mobile Cloud:C. Peylo, “CloudMAC: towards software defined WLANs,” ACM

  4. Opaque cloud detection

    DOE Patents [OSTI]

    Roskovensky, John K. (Albuquerque, NM)

    2009-01-20

    A method of detecting clouds in a digital image comprising, for an area of the digital image, determining a reflectance value in at least three discrete electromagnetic spectrum bands, computing a first ratio of one reflectance value minus another reflectance value and the same two values added together, computing a second ratio of one reflectance value and another reflectance value, choosing one of the reflectance values, and concluding that an opaque cloud exists in the area if the results of each of the two computing steps and the choosing step fall within three corresponding predetermined ranges.

  5. CLOUD CHEMISTRY STEPHEN E. SCHWARTZ

    E-Print Network [OSTI]

    Schwartz, Stephen E.

    is considered bere to comprise both cloud composition and reactions that take place in clouds. Clouds are a very special subset of tbe atmosphere because they present substantial amounts of condensed-phase water (liquid, the examples developed bere focus on these chemical systems. However, much of the resulting undetstanding

  6. Cloud Formation, Evolution and Destruction

    E-Print Network [OSTI]

    Estalella, Robert

    Chapter 4 Cloud Formation, Evolution and Destruction We now begin to trace the journey towards a star. How long does this take? The answer is surprisingly short: a good many clouds already contain new stars and these stars tend to be young. The typical cloud cannot spend long, if any time at all

  7. Impact of cloud radiative heating on East Asian summer monsoon circulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Guo, Zhun; Zhou, Tianjun; Wang, Minghuai; Qian, Yun

    2015-07-17

    The impacts of cloud radiative heating on East Asian Summer Monsoon (EASM) over the southeastern China (105°-125°E, 20°-35°N) are explained by using the Community Atmosphere Model version 5 (CAM5). Sensitivity experiments demonstrate that the radiative heating of clouds leads to a positive effect on the local EASM circulation over southeastern China. Without the radiative heating of cloud, the EASM circulation and precipitation would be much weaker than that in the normal condition. The longwave heating of clouds dominates the changes of EASM circulation. The positive effect of clouds on EASM circulation is explained by the thermodynamic energy equation, i.e. themore »different heating rate between cloud base and cloud top enhances the convective instability over southeastern China, which enhances updraft consequently. The strong updraft would further result in a southward meridional wind above the center of the updraft through Sverdrup vorticity balance.« less

  8. The Magellan Final Report on Cloud Computing

    SciTech Connect (OSTI)

    ,; Coghlan, Susan; Yelick, Katherine

    2011-12-21

    The goal of Magellan, a project funded through the U.S. Department of Energy (DOE) Office of Advanced Scientific Computing Research (ASCR), was to investigate the potential role of cloud computing in addressing the computing needs for the DOE Office of Science (SC), particularly related to serving the needs of mid- range computing and future data-intensive computing workloads. A set of research questions was formed to probe various aspects of cloud computing from performance, usability, and cost. To address these questions, a distributed testbed infrastructure was deployed at the Argonne Leadership Computing Facility (ALCF) and the National Energy Research Scientific Computing Center (NERSC). The testbed was designed to be flexible and capable enough to explore a variety of computing models and hardware design points in order to understand the impact for various scientific applications. During the project, the testbed also served as a valuable resource to application scientists. Applications from a diverse set of projects such as MG-RAST (a metagenomics analysis server), the Joint Genome Institute, the STAR experiment at the Relativistic Heavy Ion Collider, and the Laser Interferometer Gravitational Wave Observatory (LIGO), were used by the Magellan project for benchmarking within the cloud, but the project teams were also able to accomplish important production science utilizing the Magellan cloud resources.

  9. RISK ASSESSMENT CLOUD COMPUTING

    E-Print Network [OSTI]

    Columbia University

    SECURITY RESEARCH PRIVACY RISK ASSESSMENT AMC DATA FISMA CLOUD COMPUTING MOBILE DEVICES OPERATIONS PRACTICES TRENDS AUDITS policies #12;2 Privacy & Information Security Annual Update Thursday, June 20, 2013 of Breach statistics Plan to comply with requirements · Training and Education Information Security · Risk

  10. Fine-scale Horizontal Structure of Arctic Mixed-Phase Clouds M. Rambukkange1

    E-Print Network [OSTI]

    Brookhaven National Laboratory, 4 CIRES and NOAA-ETL (Corresponding author: J. Verlinde, 502 Walker Building. Above this layer, separated by a strong inversion, was the remnant of a small decaying lee-side low. Figure 1 shows the dry and dew point temperatures and horizontal wind component profiles through

  11. Session Papers North Slope of Alaska and Adjacent Arctic Ocean Cloud

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541 Unlimited Release4: "Short-Term Energy PricesSession

  12. Using A-Train Arctic cloud observations to constrain and improve climate models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With WIPPfinalUnexpectedofWykoW03:Connect Uses of antimicrobial

  13. Microphysical Properties of Single and Mixed-Phase Arctic Clouds Derived from AERI Observations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on darkMicroorganisms to Speed Production of Biofuels Oak

  14. An analysis of the carbon balance of the Arctic Basin from 1997 to 2006

    E-Print Network [OSTI]

    McGuire, A. D.

    This study used several model-based tools to analyse the dynamics of the Arctic Basin between 1997 and 2006 as a linked system of land-ocean-atmosphere C exchange. The analysis estimates that terrestrial areas of the Arctic ...

  15. Distribution and drivers of ectomycorrhizal fungal communities across the North American Arctic

    E-Print Network [OSTI]

    Taylor, Lee

    of the North American Arctic. We collected roots from two principal arctic ectomycorrhizal host plants, Salix, and Pyronemataceae. Both host plants showed similar species richness, with 176 OTUs on Salix arctica and 154 OTUs

  16. A Climatology of the Arctic on Mid-Tropospheric Temperature Regulation 

    E-Print Network [OSTI]

    Anthony, Jeremy Patrick

    2014-06-24

    The Arctic is a unique and complex environment. Many factors play a role in determining the long-term climate of the Arctic, including mesoscale weather systems and many complex ice-albedo feedback mechanisms. Previous studies determined using real...

  17. Cluster analysis of cloud properties : a method for diagnosing cloud-climate feedbacks

    E-Print Network [OSTI]

    Gordon, Neil D.

    2008-01-01

    Zhang (2004), Comparing clouds and their seasonal variationstropical greenhouse effect and cloud radiative forcing. J.thermodynamic components of cloud changes. Clim. Dyn. , 22,

  18. Review of technology for Arctic offshore oil and gas recovery. Appendices

    SciTech Connect (OSTI)

    Sackinger, W. M.

    1980-06-06

    This volume contains appendices of the following: US Geological Survey Arctic operating orders, 1979; Det Noske Vertas', rules for the design, construction and inspection of offshore technology, 1977; Alaska Oil and Gas Association, industry research projects, March 1980; Arctic Petroleum Operator's Association, industry research projects, January 1980; selected additional Arctic offshore bibliography on sea ice, icebreakers, Arctic seafloor conditions, ice-structures, frost heave and structure icing.

  19. Energy Design Guidelines for High Performance Schools: Arctic and Subarctic Climates

    SciTech Connect (OSTI)

    2004-11-01

    Energy Design Guidelines for High Performance Schools book detailing DOE's EnergySmart Schools Program for Arctic Climates.

  20. The impact of Arctic warming on the midlatitude jet-stream: Can it?

    E-Print Network [OSTI]

    Barnes, Elizabeth A.

    Opinion The impact of Arctic warming on the midlatitude jet-stream: Can it? Has it? Will it. An open question, however, is whether these Arctic changes have an effect on the jet-stream and thereby inquiries around three distinct questions: Can Arctic warming influence the midlatitude jet-stream? Has

  1. Impact of sudden Arctic sea-ice loss on stratospheric polar ozone recovery

    E-Print Network [OSTI]

    Wirosoetisno, Djoko

    Impact of sudden Arctic sea-ice loss on stratospheric polar ozone recovery Article Published.G. and Ravishankara, A.R. (2009) Impact of sudden Arctic sea-ice loss on stratospheric polar ozone recovery's research outputs online #12;Impact of sudden Arctic sea-ice loss on stratospheric polar ozone recovery J. F

  2. Observational determination of albedo decrease caused by vanishing Arctic sea ice

    E-Print Network [OSTI]

    Eisenman, Ian

    ) The decline of Arctic sea ice has been documented in over 30 y of satellite passive microwave observations- ments along with satellite microwave sea ice data to document the Arctic-wide decrease in planetary to an additional 6.4 ± 0.9 W/m2 of solar energy input into the Arctic Ocean region since 1979. Averaged over

  3. 2012 Changing Arctic Ocean 506E/497E -Lecture 7 -Woodgate Schematic Surface and Atlantic Circulation

    E-Print Network [OSTI]

    Washington at Seattle, University of

    LHW ­ Lower Halocline Water AW ­ Atlantic Water DW ­ Deep Water WESTERN ARCTIC (PACIFIC) HALOCLINE Halocline Water LHW ­ Lower Halocline Water AW ­ Atlantic Water DW ­ Deep Water European Speak: e.g. Manley Circulation Jones, 2001 Typical Arctic profiles Bottom Water "the rest" Western Arctic warmer ATLANTIC WATER T

  4. Preliminary Geospatial Analysis of Arctic Ocean Hydrocarbon Resources

    SciTech Connect (OSTI)

    Long, Philip E.; Wurstner, Signe K.; Sullivan, E. C.; Schaef, Herbert T.; Bradley, Donald J.

    2008-10-01

    Ice coverage of the Arctic Ocean is predicted to become thinner and to cover less area with time. The combination of more ice-free waters for exploration and navigation, along with increasing demand for hydrocarbons and improvements in technologies for the discovery and exploitation of new hydrocarbon resources have focused attention on the hydrocarbon potential of the Arctic Basin and its margins. The purpose of this document is to 1) summarize results of a review of published hydrocarbon resources in the Arctic, including both conventional oil and gas and methane hydrates and 2) develop a set of digital maps of the hydrocarbon potential of the Arctic Ocean. These maps can be combined with predictions of ice-free areas to enable estimates of the likely regions and sequence of hydrocarbon production development in the Arctic. In this report, conventional oil and gas resources are explicitly linked with potential gas hydrate resources. This has not been attempted previously and is particularly powerful as the likelihood of gas production from marine gas hydrates increases. Available or planned infrastructure, such as pipelines, combined with the geospatial distribution of hydrocarbons is a very strong determinant of the temporal-spatial development of Arctic hydrocarbon resources. Significant unknowns decrease the certainty of predictions for development of hydrocarbon resources. These include: 1) Areas in the Russian Arctic that are poorly mapped, 2) Disputed ownership: primarily the Lomonosov Ridge, 3) Lack of detailed information on gas hydrate distribution, and 4) Technical risk associated with the ability to extract methane gas from gas hydrates. Logistics may control areas of exploration more than hydrocarbon potential. Accessibility, established ownership, and leasing of exploration blocks may trump quality of source rock, reservoir, and size of target. With this in mind, the main areas that are likely to be explored first are the Bering Strait and Chukchi Sea, in spite of the fact that these areas do not have highest potential for future hydrocarbon reserves. Opportunities for improving the mapping and assessment of Arctic hydrocarbon resources include: 1) Refining hydrocarbon potential on a basin-by-basin basis, 2) Developing more realistic and detailed distribution of gas hydrate, and 3) Assessing the likely future scenarios for development of infrastructure and their interaction with hydrocarbon potential. It would also be useful to develop a more sophisticated approach to merging conventional and gas hydrate resource potential that considers the technical uncertainty associated with exploitation of gas hydrate resources. Taken together, additional work in these areas could significantly improve our understanding of the exploitation of Arctic hydrocarbons as ice-free areas increase in the future.

  5. A Study of Cloud Processing of Organic Aerosols Using Models and CHAPS Data

    SciTech Connect (OSTI)

    Ervens, Barbara

    2012-01-17

    The main theme of our work has been the identification of parameters that mostly affect the formation and modification of aerosol particles and their interaction with water vapor. Our detailed process model studies led to simplifications/parameterizations of these effects that bridge detailed aerosol information from laboratory and field studies and the need for computationally efficient expressions in complex atmospheric models. One focus of our studies has been organic aerosol mass that is formed in the atmosphere by physical and/or chemical processes (secondary organic aerosol, SOA) and represents a large fraction of atmospheric particulate matter. Most current models only describe SOA formation by condensation of low volatility (or semivolatile) gas phase products and neglect processes in the aqueous phase of particles or cloud droplets that differently affect aerosol size and vertical distribution and chemical composition (hygroscopicity). We developed and applied models of aqueous phase SOA formation in cloud droplets and aerosol particles (aqSOA). Placing our model results into the context of laboratory, model and field studies suggests a potentially significant contribution of aqSOA to the global organic mass loading. The second focus of our work has been the analysis of ambient data of particles that might act as cloud condensation nuclei (CCN) at different locations and emission scenarios. Our model studies showed that the description of particle chemical composition and mixing state can often be greatly simplified, in particular in aged aerosol. While over the past years many CCN studies have been successful performed by using such simplified composition/mixing state assumptions, much more uncertainty exists in aerosol-cloud interactions in cold clouds (ice or mixed-phase). Therefore we extended our parcel model that describes warm cloud formation by ice microphysics and explored microphysical parameters that determine the phase state and lifetime of Arctic mixed-phase clouds.

  6. Predicting and validating the tracking of a Volcanic Ash Cloud during the 2006 Eruption of Mt. Augustine Volcano

    SciTech Connect (OSTI)

    Webley, Peter W.; Atkinson, D.; Collins, Richard L.; Dean, K.; Fochesatto, J.; Sassen, Kenneth; Cahill, Catherine F.; Prata, A.; Flynn, Connor J.; Mizutani, K.

    2008-11-01

    On 11 January 2006, Mount Augustine volcano in southern Alaska began erupting after 20-year repose. The Anchorage Forecast Office of the National Weather Service (NWS) issued an advisory on 28 January for Kodiak City. On 31 January, Alaska Airlines cancelled all flights to and from Anchorage after multiple advisories from the NWS for Anchorage and the surrounding region. The Alaska Volcano Observatory (AVO) had reported the onset of the continuous eruption. AVO monitors the approximately 100 active volcanoes in the Northern Pacific. Ash clouds from these volcanoes can cause serious damage to an aircraft and pose a serious threat to the local communities, and to transcontinental air traffic throughout the Arctic and sub-Arctic region. Within AVO, a dispersion model has been developed to track the dispersion of volcanic ash clouds. The model, Puff, was used operational by AVO during the Augustine eruptive period. Here, we examine the dispersion of a volcanic ash cloud from Mount Augustine across Alaska from 29 January through the 2 February 2006. We present the synoptic meteorology, the Puff predictions, and measurements from aerosol samplers, laser radar (or lidar) systems, and satellites. UAF aerosol samplers revealed the presence of volcanic aerosols at the surface at sites where Puff predicted the ash clouds movement. Remote sensing satellite data showed the development of the ash cloud in close proximity to the volcano and a sulfur-dioxide cloud further from the volcano consistent with the Puff predictions. Lidars showed the presence of volcanic aerosol with consistent characteristics aloft over Alaska and were capable of detecting the aerosol, even in the presence of scattered clouds and where the cloud is too thin/disperse to be detected by remote sensing satellite data. The lidar measurements revealed the different trajectories of ash consistent with the Puff predictions. Dispersion models provide a forecast of volcanic ash cloud movement that might be undetectable by any other means but are still a significant hazard. Validation is the key to assessing the accuracy of any future predictions. The study highlights the use of multiple and complementary observations used in detecting the trajectory ash cloud, both at the surface and aloft within the atmosphere.

  7. Evaluation of Arctic Broadband Surface Radiation Measurements

    SciTech Connect (OSTI)

    Matsui, N.; Long, Charles N.; Augustine, J. A.; Halliwell, D.; Uttal, Taneil; Longenecker, D.; Niebergale, J.; Wendell, J.; Albee, R.

    2012-02-24

    The Arctic is a challenging environment for making in-situ radiation measurements. A standard suite of radiation sensors is typically designed to measure the total, direct and diffuse components of incoming and outgoing broadband shortwave (SW) and broadband thermal infrared, or longwave (LW) radiation. Enhancements can include various sensors for measuring irradiance in various narrower bandwidths. Many solar radiation/thermal infrared flux sensors utilize protective glass domes and some are mounted on complex mechanical platforms (solar trackers) that rotate sensors and shading devices that track the sun. High quality measurements require striking a balance between locating sensors in a pristine undisturbed location free of artificial blockage (such as buildings and towers) and providing accessibility to allow operators to clean and maintain the instruments. Three significant sources of erroneous data include solar tracker malfunctions, rime/frost/snow deposition on the instruments and operational problems due to limited operator access in extreme weather conditions. In this study, a comparison is made between the global and component sum (direct [vertical component] + diffuse) shortwave measurements. The difference between these two quantities (that theoretically should be zero) is used to illustrate the magnitude and seasonality of radiation flux measurement problems. The problem of rime/frost/snow deposition is investigated in more detail for one case study utilizing both shortwave and longwave measurements. Solutions to these operational problems are proposed that utilize measurement redundancy, more sophisticated heating and ventilation strategies and a more systematic program of operational support and subsequent data quality protocols.

  8. CloudAnalyst: A CloudSim-based Visual Modeller for Analysing Cloud Computing Environments and Applications

    E-Print Network [OSTI]

    Buyya, Rajkumar

    CloudAnalyst: A CloudSim-based Visual Modeller for Analysing Cloud Computing Environments and Applications Bhathiya Wickremasinghe1 , Rodrigo N. Calheiros2 , and Rajkumar Buyya1 1 The Cloud Computing and Distributed Systems (CLOUDS) Laboratory Department of Computer Science and Software Engineering The University

  9. Cloud in a Bottle Demonstrate how pressure relates to cloud formation by making a cloud in a soda bottle.

    E-Print Network [OSTI]

    Johnson, Cari

    Cloud in a Bottle Demonstrate how pressure relates to cloud formation by making a cloud in a soda doesn't escape. 5. Squeeze the soda bottle and release, repeating several times. Eventually, a cloud construction paper (or anything dark) on half of the bottle may make the cloud easier to see. What Happened

  10. Retrievals of cloud optical depth and effective radius from Thin-Cloud Rotating Shadowband Radiometer measurements

    E-Print Network [OSTI]

    Retrievals of cloud optical depth and effective radius from Thin-Cloud Rotating Shadowband December 2011. [1] A Thin-Cloud Rotating Shadowband Radiometer (TCRSR) was developed and deployed) through an optically thin cloud (optical depth

  11. An active atmospheric methane sink in high Arctic mineral cryosols

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lau, Maggie C.Y.; Stackhouse, B.; Layton, Alice C.; Chauhan, Archana; Vishnivetskaya, T. A.; Chourey, Karuna; Mykytczuk, N. C.S.; Bennett, Phil C.; Lamarche-Gagnon, G.; Burton, N.; et al

    2015-04-14

    The transition of Arctic carbon-rich cryosols into methane (CH?)-emitting wetlands due to global warming is a rising concern. However, the spatially predominant mineral cryosols and their CH? emission potential are poorly understood. Fluxes measured in situ and estimated under laboratory conditions coupled with -omics analysis indicate (1) mineral cryosols in the Canadian high Arctic contain atmospheric CH?-oxidizing bacteria; (2) the atmospheric CH? uptake flux increases with ground temperature; and, as a result, (3) the atmospheric CH? sink strength will increase by a factor of 5-30 as the Arctic warms by 5-15 °C over a century. We demonstrated that acidic mineralmore »cryosols have previously unrecognized potential of negative CH? feedback.« less

  12. Outsourcing Resource-Intensive Tasks from Mobile Apps to Clouds: Android and Aneka Integration

    E-Print Network [OSTI]

    Buyya, Rajkumar

    the reduction of application execution time and extension of mobile device battery life. Keywords--Mobile Cloud, resulting in an enhanced user experience. However, the development of a mobile cloud application-intensive mobile tasks in order to alleviate the mobile device load and, consequently, extend the battery life. We

  13. Model-Driven Integration for a Service Placement Optimizer in a Sustainable Cloud of Clouds

    E-Print Network [OSTI]

    Suzuki, Jun

    --"Cloud of clouds" (or federated cloud) is an emerg- ing style of software deployment and execution to interoperate, federated clouds, model-driven system integration and sustainable clouds I. INTRODUCTION Cloud computing, cost effective (e.g., energy effi- cient) service/data placement and avoidance of "lock

  14. CLOUD CLASSIFICATION AND CLOUD PROPERTY RETRIEVAL FROM MODIS , W. Paul Menzel

    E-Print Network [OSTI]

    Li, Jun

    6.4 CLOUD CLASSIFICATION AND CLOUD PROPERTY RETRIEVAL FROM MODIS AND AIRS Jun Li * , W. Paul Menzel Observing System's (EOS) Aqua satellite enable global monitoring of the distribution of clouds. The MODIS is able to provide at high spatial resolution (1 ~ 5km) a cloud mask, surface and cloud types, cloud phase

  15. PC Mac OS Adobe Creative Cloud PC Mac OS Adobe Creative Cloud

    E-Print Network [OSTI]

    PC Mac OS Adobe Creative Cloud 1 PC Mac OS Adobe Creative Cloud 2015-05-25 1 Web Mac OS Adobe Creative Cloud PC | Creative Cloud https://helpx.adobe.com/jp/creative-cloud Adobe Creative Cloud 5.1 Web TTInstaller (Mac OS X )() http://www.officesoft.gsic.titech.ac.jp/pdf

  16. Migrating enterprise storage applications to the cloud

    E-Print Network [OSTI]

    Vrable, Michael Daniel

    2011-01-01

    1.1 Cloud Computing Applications 1.2Zaharia. A view of cloud computing. Communications of theM. Voelker, Co-Chair Cloud computing has emerged as a model

  17. The Magellan Final Report on Cloud Computing

    E-Print Network [OSTI]

    Coghlan, Susan

    2013-01-01

    4.3.1 Cloud Computing Attractive Features . 4.3.2A berkeley view of cloud computing. Technical Report UCB/matching computations on cloud computing platforms and hpc

  18. The Cloud Computing and Other Variables

    E-Print Network [OSTI]

    Borjon-Kubota, Martha Estela

    2011-01-01

    12. Fragments in Six 13. Cloud Computing 14. Phase 15.Note 48. Devoured vi Cloud Computing and other Variables I.CALIFORNIA RIVERSIDE Cloud Computing and Other Variables A

  19. Trusted Cloud: Microsoft Azure Security, Privacy,

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    Trusted Cloud: Microsoft Azure Security, Privacy, and Compliance April 2015 #12;Trusted Cloud................................................................. 18 #12;Trusted Cloud: Microsoft Azure Security, Privacy, and Compliance | April, 2015 Introduction: Microsoft Azure Security, Privacy, and Compliance | April, 2015 #12;3 Contents Introduction

  20. Cicada: Predictive Guarantees for Cloud Network Bandwidth

    E-Print Network [OSTI]

    LaCurts, Katrina

    2014-03-24

    In cloud-computing systems, network-bandwidth guarantees have been shown to improve predictability of application performance and cost. Most previous work on cloud-bandwidth guarantees has assumed that cloud tenants know ...

  1. Electron-Cloud Build-Up: Summary

    E-Print Network [OSTI]

    Furman, M.A.

    2007-01-01

    Properties In?uencing Electron Cloud Phenomena,” Appl. Surf.Dissipation of the Electron Cloud,” Proc. PAC03 (Portland,is no signi?cant electron-cloud under nominal operating

  2. Bringing Clouds into Focus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L OBransen Plasma Asher An O2 RFand1120019Bringing Clouds into

  3. Digital Ecosystems in the Clouds: Towards Community Cloud Computing

    E-Print Network [OSTI]

    Briscoe, Gerard

    2009-01-01

    Cloud Computing is rising fast, with its data centres growing at an unprecedented rate. However, this has come with concerns of privacy, efficiency at the expense of resilience, and environmental sustainability, because of the dependence on Cloud vendors such as Google, Amazon, and Microsoft. Community Cloud Computing makes use of the principles of Digital Ecosystems to provide a paradigm for Clouds in the community, offering an alternative architecture for the use cases of Cloud Computing. Its more technically challenging, dealing with issues of distributed computing, such as latency, differential resource management, and additional security requirements. However, these are not insurmountable challenges, and with the need to retain control over our digital lives and the potential environmental consequences, its one we must pursue.

  4. Study of Mechanisms of Aerosol Indirect Effects on Glaciated Clouds: Progress during the Project Final Technical Report

    SciTech Connect (OSTI)

    2013-10-18

    This 3-year project has studied how aerosol pollution influences glaciated clouds. The tool applied has been an 'aerosol-cloud model'. It is a type of Cloud-System Resolving Model (CSRM) modified to include 2-moment bulk microphysics and 7 aerosol species, as described by Phillips et al. (2009, 2013). The study has been done by, first, improving the model and then performing sensitivity studies with validated simulations of a couple of observed cases from ARM. These are namely the Tropical Warm Pool International Cloud Experiment (TWP-ICE) over the tropical west Pacific and the Cloud and Land Surface Interaction Campaign (CLASIC) over Oklahoma. During the project, sensitivity tests with the model showed that in continental clouds, extra liquid aerosols (soluble aerosol material) from pollution inhibited warm rain processes for precipitation production. This promoted homogeneous freezing of cloud droplets and aerosols. Mass and number concentrations of cloud-ice particles were boosted. The mean sizes of cloud-ice particles were reduced by the pollution. Hence, the lifetime of glaciated clouds, especially ice-only clouds, was augmented due to inhibition of sedimentation and ice-ice aggregation. Latent heat released from extra homogeneous freezing invigorated convective updrafts, and raised their maximum cloud-tops, when aerosol pollution was included. In the particular cases simulated in the project, the aerosol indirect effect of glaciated clouds was twice than of (warm) water clouds. This was because glaciated clouds are higher in the troposphere than water clouds and have the first interaction with incoming solar radiation. Ice-only clouds caused solar cooling by becoming more extensive as a result of aerosol pollution. This 'lifetime indirect effect' of ice-only clouds was due to higher numbers of homogeneously nucleated ice crystals causing a reduction in their mean size, slowing the ice-crystal process of snow production and slowing sedimentation. In addition to the known indirect effects (glaciation, riming and thermodynamic), new indirect effects were discovered and quantified due to responses of sedimentation, aggregation and coalescence in glaciated clouds to changing aerosol conditions. In summary, the change in horizontal extent of the glaciated clouds ('lifetime indirect effects'), especially of ice-only clouds, was seen to be of higher importance in regulating aerosol indirect effects than changes in cloud properties ('cloud albedo indirect effects').

  5. Cloud Computing and Validation of Expandable In Silico Livers

    E-Print Network [OSTI]

    Ropella, Glen EP; Hunt, C Anthony

    2010-01-01

    with access to computer clusters. Cloud technology coupledto computer clusters. The availability of cloud technology

  6. Analysis of global radiation budgets and cloud forcing using three-dimensional cloud nephanalysis data base. Master's thesis

    SciTech Connect (OSTI)

    Mitchell, B.

    1990-12-01

    A one-dimensional radiative transfer model was used to compute the global radiative budget at the top of the atmosphere (TOA) and the surface for January and July. 1979. The model was also used to determine the global cloud radiative forcing for all clouds and for high and low cloud layers. In the computations. the authors used the monthly cloud data derived from the Air Force Three-Dimensional Cloud Nephanalysis (3DNEPH). These data were used in conjunction with conventional temperature and humidity profiles analyzed during the 1979 First GARP (Global Atmospheric Research Program) Global Experiment (FGGE) year. Global surface albedos were computed from available data and were included in the radiative transfer analysis. Comparisons of the model-produced outgoing solar and infrared fluxes with those derived from Nimbus 7 Earth Radiation Budget (ERS) data were made to validate the radiative model and cloud cover. For reflected solar and emitted infrared (IR) flux, differences within 20 w/sq m meters were shown.

  7. The Magellan Final Report on Cloud Computing

    E-Print Network [OSTI]

    Coghlan, Susan

    2013-01-01

    of computer security are evolving for cloud computingcomputer forensic space a way to integrate their tools with the cloudthe cloud business model. In addition to answering computer

  8. WEATHER MODIFICATION BY AIRCRAFT CLOUD SEEDING

    E-Print Network [OSTI]

    Vali, Gabor

    WEATHER MODIFICATION BY AIRCRAFT CLOUD SEEDING BERYULEV G.P. Head, Department of Cloud Physics and Weather Modification Central Aerological Observatory Rosgidromet, Russian Federation #12

  9. Sampling Strategy for Enumerating the Western Arctic Population

    E-Print Network [OSTI]

    of the bowhead whale and discusses methods 20· 40· 80· N 60· 70· 30· 120· NORTH AMERICA ARCTIC OCEAN 150· W which scientific means of assessing the number of whales which can be safely removed from the bowhead stock stress relating to ac- tivities of offshore oil development, subsistence harvest, or natural fluctua

  10. Mass wasting on the submarine Lomonosov Ridge, central Arctic Ocean

    E-Print Network [OSTI]

    Kristoffersen, Yngve

    ) made from nuclear submarine Hawkbill (SCICEX). Bathymetry is derived from multi-beam measurements madeMass wasting on the submarine Lomonosov Ridge, central Arctic Ocean Yngve Kristoffersen a,, Bernard particulate matter in the water column accumulate as a uniform drape on submarine plateaus and ridges

  11. Source Attribution of Light Absorbing Aerosol in Arctic Snow

    E-Print Network [OSTI]

    Source Attribution of Light Absorbing Aerosol in Arctic Snow (Preliminary analysis of 2008 Biomass/poll. Factor: all data Pollution factor: depth data #12;2009 Data set for receptor modeling with limited analytes Factor 1: biomass Factor 2: pollution Factor 3: marine Factor 4: biomass #12;Factor

  12. Network Modeling of Arctic Melt Ponds Meenakshi Barjatiaa

    E-Print Network [OSTI]

    Golden, Kenneth M.

    Network Modeling of Arctic Melt Ponds Meenakshi Barjatiaa , Tolga Tasdizena,b, , Boya Songc. In late spring and summer, the albedo of the ice pack is determined primarily by melt ponds that form on the sea ice surface. The transition of pond configurations from isolated structures to interconnected

  13. Arctic ozone loss and climate sensitivity: Updated threedimensional model study

    E-Print Network [OSTI]

    Feng, Wuhu

    Arctic ozone loss and climate sensitivity: Updated three­dimensional model study Chipperfield winter­spring chemical ozone loss from 1991 2003, its observed correlation with low temperatures. CTM throughout studied. The model reproduces large column winters also captures shape of ozone loss profile

  14. Monday, March 23, 2009 PHOENIX: EXPLORATION OF THE MARTIAN ARCTIC

    E-Print Network [OSTI]

    Rathbun, Julie A.

    Monday, March 23, 2009 PHOENIX: EXPLORATION OF THE MARTIAN ARCTIC 8:30 a.m. Waterway Ballroom 1 Chairs: Raymond Arvidson Peter Smith 8:30 a.m. Smith P. H. * Water at the Phoenix Landing Site [#1329] The Phoenix mission found a water ice layer 5 cm beneath a dry soil overburden. The presence of Ca

  15. A Community Atmosphere Model with Superparameterized Clouds

    SciTech Connect (OSTI)

    Randall, David; Branson, Mark; Wang, Minghuai; Ghan, Steven J.; Craig, Cheryl; Gettelman, A.; Edwards, Jim

    2013-06-18

    In 1999, National Center for Atmospheric Research (NCAR) scientists Wojciech Grabowski and Piotr Smolarkiewicz created a "multiscale" atmospheric model in which the physical processes associated with clouds were represented by running a simple high-resolution model within each grid column of a lowresolution global model. In idealized experiments, they found that the multiscale model produced promising simulations of organized tropical convection, which other models had struggled to produce. Inspired by their results, Colorado State University (CSU) scientists Marat Khairoutdinov and David Randall created a multiscale version of the Community Atmosphere Model (CAM). They removed the cloud parameterizations of the CAM, and replaced them with Khairoutdinov's high-resolution cloud model. They dubbed the embedded cloud model a "super-parameterization," and the modified CAM is now called the "SP-CAM." Over the next several years, many scientists, from many institutions, have explored the ability of the SP-CAM to simulate tropical weather systems, the day-night changes of precipitation, the Asian and African monsoons, and a number of other climate processes. Cristiana Stan of the Center for Ocean-Land-Atmosphere Interactions found that the SP-CAM gives improved results when coupled to an ocean model, and follow-on studies have explored the SP-CAM's utility when used as the atmospheric component of the Community Earth System Model. Much of this research has been performed under the auspices of the Center for Multiscale Modeling of Atmospheric Processes, a National Science Foundation (NSF) Science and Technology Center for which the lead institution is CSU.

  16. Review of technology for Arctic offshore oil and gas recovery

    SciTech Connect (OSTI)

    Sackinger, W. M.

    1980-08-01

    The technical background briefing report is the first step in the preparation of a plan for engineering research oriented toward Arctic offshore oil and gas recovery. A five-year leasing schedule for the ice-prone waters of the Arctic offshore is presented, which also shows the projected dates of the lease sale for each area. The estimated peak production rates for these areas are given. There is considerable uncertainty for all these production estimates, since no exploratory drilling has yet taken place. A flow chart is presented which relates the special Arctic factors, such as ice and permafrost, to the normal petroleum production sequence. Some highlights from the chart and from the technical review are: (1) in many Arctic offshore locations the movement of sea ice causes major lateral forces on offshore structures, which are much greater than wave forces; (2) spray ice buildup on structures, ships and aircraft will be considerable, and must be prevented or accommodated with special designs; (3) the time available for summer exploratory drilling, and for deployment of permanent production structures, is limited by the return of the pack ice. This time may be extended by ice-breaking vessels in some cases; (4) during production, icebreaking workboats will service the offshore platforms in most areas throughout the year; (5) transportation of petroleum by icebreaking tankers from offshore tanker loading points is a highly probable situation, except in the Alaskan Beaufort; and (6) Arctic pipelines must contend with permafrost, making instrumentation necessary to detect subtle changes of the pipe before rupture occurs.

  17. Evaluation of tecniques for controlling UF/sub 6/ release clouds in the GAT environmental chamber

    SciTech Connect (OSTI)

    Lux, C.J.

    1982-01-01

    Studies designed to characterize the reaction between UF/sub 6/ and atmospheric moisture, evaluate environmental variables of UF/sub 6/ cloud formation and ultimate cloud fate, and UF/sub 6/ release cloud control procedure have been conducted in the 1200 cu. ft. GAT environmental chamber. In earlier chamber experiments, 30 separate UF/sub 6/ release tests indicated that variations of atmospheric conditions and sample sizes had no significant effect on UO/sub 2/F/sub 2/ particle size distribution, release cloud formation, or cloud settling rates. During the past year, numerous procedures have been evaluated for accelerating UF/sub 6/ cloud knockdown in a series of 37 environmental chamber releases. Knockdown procedures included: coarse water spray; air jet; steam spray (electrostatically charged and uncharged); carbon dioxide; Freon-12; fine water mist (uncharged); boric acid mist (charged and uncharged); and an ionized dry air stream. UF/sub 6/ hydrolysis cloud settling rates monitored by a laser/powermeter densitometer, indicated the relative effectiveness of various cloud knockdown techniques. Electrostatically charged boric acid/water mist, and electrostatically ionized dry air were both found to be very effective, knocking down the UO/sub 2/F/sub 2/ release cloud particles in two to five minutes. Work to adapt these knockdown techniques for use under field conditions is continuing, taking into account recovery of the released uranium as well as nuclear criticality constraints.

  18. What Goes Up Must Come Down: The Lifecycle of Convective Clouds (492nd Brookhaven Lecture)

    SciTech Connect (OSTI)

    Jensen, Michael [BNL Environmental Sciences

    2014-02-19

    Some clouds look like cotton balls and others like anvils. Some bring rain, some snow and sleet, and others, just shade. But, whether big and billowy or dark and stormy, clouds affect far more than the weather each day. Armed with measurements of clouds’ updrafts and downdrafts—which resemble airflow in a convection oven—and many other atmospheric interactions, scientists from Brookhaven Lab and other institutions around the world are developing models that are crucial for understanding Earth’s climate and forecasting future climate change. During his lecture, Dr. Jensen provides an overview of the importance of clouds in the Earth’s climate system before explaining how convective clouds form, grow, and dissipate. His discussion includes findings from the Midlatitude Continental Convective Clouds Experiment (MC3E), a major collaborative experiment between U.S. Department of Energy (DOE) and NASA scientists to document precipitation, clouds, winds, and moisture in 3-D for a holistic view of convective clouds and their environment.

  19. Draft NISTIR 80061 NIST Cloud Computing2

    E-Print Network [OSTI]

    Draft NISTIR 80061 NIST Cloud Computing2 Forensic Science Challenges NIST Cloud Computing Forensic Computing11 Forensic Science Challenges 12 NIST Cloud Computing Forensic Science Working Group13 Information challenges77 faced by experts when responding to incidents that have occurred in a cloud-computing ecosystem

  20. Secure Cloud Computing With Brokered Trusted

    E-Print Network [OSTI]

    Secure Cloud Computing With Brokered Trusted Sensor Networks Profs. Steven Myers,Apu Kapadia, Xiao-mount Antenna Tower-mount Antenna Wireless Bridge Security Threats 1. Cloud or Grid 2. Communication Channels 3 Computing Cloud Computing Cloud Computing Tower-mount Antenna Tower-mount Antenna Wireless Bridge Security

  1. An Architecture for Trusted Clouds Mike Burmester

    E-Print Network [OSTI]

    Burmester, Mike

    reasoning will play a major role. In this paper we analyze the cloud paradigm from a security point of view, but it is also technically easier to secure. Finally, the Cloud has a dark side, at least from a security point regulatory and security policies; and hybrid clouds. Services. There are three basic cloud on demand

  2. Why the network matters in cloud computing

    E-Print Network [OSTI]

    Greenberg, Albert

    this promise, and security concerns still loom AT&T NetBond AT&T network enabled cloud computing provides highly-secure access, with the cloud functioning just like another MPLS VPN site. It also allowsWhy the network matters in cloud computing The promise of cloud hinges on flexibility, agility

  3. NIST Cloud Computing Forum and Workshop VIII

    E-Print Network [OSTI]

    NIST Cloud Computing Forum and Workshop VIII Kevin Mills, NIST July 9, 2015 #12;NIST Cloud Project Research Goals Kevin Mills, NIST #12;NIST Cloud Computing Forum and Workshop VIII July 2 015 failure scenarios in a cloud system · Ongoing work on run-time methods · Where to find more information 3

  4. ARM - Field Campaign - Ganges Valley Aerosol Experiment (GVAX)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01)govCampaignsFIRE-Arctic CloudShortwave IOP

  5. EWI PDS A.Iosup Research Cloud Computing Cloud Computing Research, PDS Group, TU Delft

    E-Print Network [OSTI]

    Iosup, Alexandru

    EWI PDS A.Iosup Research Cloud Computing Cloud Computing Research, PDS Group, TU Delft Cloud Computing Research http://www.pds.ewi.tudelft.nl/~iosup/research_cloud.html Rationale why and how is this work relevant? Cloud computing is an emerging commercial infrastructure paradigm that promises

  6. Storm Clouds Rising: Security Challenges for IaaS Cloud Computing

    E-Print Network [OSTI]

    Bishop, Matt

    Storm Clouds Rising: Security Challenges for IaaS Cloud Computing Brian Hay Kara Nance Matt Bishop on security concerns for computational cloud computing from the perspectives of cloud service users, cloud.hay@alaska.edu klnance@alaska.edu bishop@cs.ucdavis.edu Abstract Securing our digital assets has become increasingly

  7. Vision: Cloud-Powered Sight for All Showing the Cloud What You See

    E-Print Network [OSTI]

    Zhong, Lin

    General Terms Algorithms, Design, Human Factors, Languages, Performance, Security Keywords Camera, cloudVision: Cloud-Powered Sight for All Showing the Cloud What You See Paramvir Bahl Matthai Philipose argue that for computers to do more for us, we need to show the cloud what we see and embrace cloud

  8. EVALUATION OF INTERNATIONAL SATELLITE CLOUD CLIMATOLOGY PROJECT (ISCCP) D2 CLOUD AMOUNT CHANGES AND THEIR CONNECTIONS

    E-Print Network [OSTI]

    Schubert, Wayne H.

    EVALUATION OF INTERNATIONAL SATELLITE CLOUD CLIMATOLOGY PROJECT (ISCCP) D2 CLOUD AMOUNT CHANGES #12;ii #12;iii ABSTRACT EVALUATION OF INTERNATIONAL SATELLITE CLOUD CLIMATOLOGY PROJECT (ISCCP) D2 Climatology Project (ISCCP) D2 dataset exhibits a 2.6% per decade decrease in the global all-cloud cloud

  9. Decomposing aerosol cloud radiative effects into cloud cover, liquid water path and Twomey components

    E-Print Network [OSTI]

    Daniel, Rosenfeld

    Decomposing aerosol cloud radiative effects into cloud cover, liquid water path and Twomey December 2013 A method for separating the three components of the marine stratocumulus (MSC) aerosol cloud interactions radiative effects, i.e., the cloud cover, liquid water path (LWP) and cloud drop radius (Twomey

  10. Cloud Futures Workshop 2010 Cloud Computing Support for Massively Social Gaming Alexandru Iosup

    E-Print Network [OSTI]

    Iosup, Alexandru

    1 Cloud Futures Workshop 2010 ­ Cloud Computing Support for Massively Social Gaming Alexandru Iosup Pierre (Vrije U.). Cloud Computing Support for Massively Social Gaming (Rain for the Thirsty) #12;Cloud Futures Workshop 2010 ­ Cloud Computing Support for Massively Social Gaming 2 Intermezzo: Tips on how

  11. Cloud radar Doppler spectra in drizzling stratiform clouds: 2. Observations and microphysical modeling of drizzle evolution

    E-Print Network [OSTI]

    Cloud radar Doppler spectra in drizzling stratiform clouds: 2. Observations and microphysical I, the influence of cloud microphysics and dynamics on the shape of cloud radar Doppler spectra in warm stratiform clouds was discussed. The traditional analysis of radar Doppler moments was extended

  12. A CloudSat cloud object partitioning technique and assessment and integration of deep

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    A CloudSat cloud object partitioning technique and assessment and integration of deep convective, USA Abstract A cloud object partitioning algorithm is developed to provide a widely useful database of deep convective clouds. It takes contiguous CloudSat cloudy regions and identifies various length

  13. Clouds, aerosol, and precipitation in the Marine Boundary Layer: An ARM mobile facility deployment

    SciTech Connect (OSTI)

    Wood, Robert; Luke, Ed; Wyant, Matthew; Bretherton, Christopher S.; Remillard, Jasmine; Kollias, Pavlos; Fletcher, Jennifer; Stemmler, Jayson; deSzoeke, S.; Yuter, Sandra; Miller, Matthew; Mechem, David; Tselioudis, George; Chiu, Christine; Mann, Julia; O Connor, Ewan; Hogan, Robin; Dong, Xiquan; Miller, Mark; Ghate, Virendra; Jefferson, Anne; Min, Qilong; Minnis, Patrick; Palinkonda, Rabindra; Albrecht, Bruce; Hannay, Cecile; Lin, Yanluan

    2014-04-27

    The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) deployment at Graciosa Island in the Azores generated a 21-month (April 2009-December 2010) comprehensive dataset documenting clouds, aerosols, and precipitation using the Atmospheric Radiation Measurement Program (ARM) Mobile Facility (AMF). The scientific aim of the deployment is to gain improved understanding of the interactions of clouds, aerosols, and precipitation in the marine boundary layer. Graciosa Island straddles the boundary between the subtropics and midlatitudes in the Northeast Atlantic Ocean and consequently experiences a great diversity of meteorological and cloudiness conditions. Low clouds are the dominant cloud type, with stratocumulus and cumulus occurring regularly. Approximately half of all clouds contained precipitation detectable as radar echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1-11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide range of aerosol conditions was sampled during the deployment consistent with the diversity of sources as indicated by back-trajectory analysis. Preliminary findings suggest important two-way interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation and cloud radiative properties while being controlled in part by precipitation scavenging.The data from Graciosa are being compared with short-range forecasts made with a variety of models. A pilot analysis with two climate and two weather forecast models shows that they reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to be a permanent fixed ARM site that became operational in October 2013.

  14. Clouds, aerosol, and precipitation in the Marine Boundary Layer: An ARM mobile facility deployment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wood, Robert; Luke, Ed; Wyant, Matthew; Bretherton, Christopher S.; Remillard, Jasmine; Kollias, Pavlos; Fletcher, Jennifer; Stemmler, Jayson; deSzoeke, S.; Yuter, Sandra; et al

    2014-04-27

    The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) deployment at Graciosa Island in the Azores generated a 21-month (April 2009-December 2010) comprehensive dataset documenting clouds, aerosols, and precipitation using the Atmospheric Radiation Measurement Program (ARM) Mobile Facility (AMF). The scientific aim of the deployment is to gain improved understanding of the interactions of clouds, aerosols, and precipitation in the marine boundary layer. Graciosa Island straddles the boundary between the subtropics and midlatitudes in the Northeast Atlantic Ocean and consequently experiences a great diversity of meteorological and cloudiness conditions. Low clouds are the dominant cloud type, with stratocumulusmore »and cumulus occurring regularly. Approximately half of all clouds contained precipitation detectable as radar echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1-11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide range of aerosol conditions was sampled during the deployment consistent with the diversity of sources as indicated by back-trajectory analysis. Preliminary findings suggest important two-way interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation and cloud radiative properties while being controlled in part by precipitation scavenging.The data from Graciosa are being compared with short-range forecasts made with a variety of models. A pilot analysis with two climate and two weather forecast models shows that they reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to be a permanent fixed ARM site that became operational in October 2013.« less

  15. Plant Root Characteristics and Dynamics in Arctic Tundra Ecosystems, 1960-2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, Paddy; Sloan, Victoria; Warren, Jeff; McGuire, Dave; Euskirchen, Eugenie; Norby, Richard; Iversen, Colleen; Walker, Anthony; Wullschleger, Stan

    A synthesis of the available literature on tundra root distribution and dynamics, and their role in key ecosystem processes in the Arctic.

  16. Plant Root Characteristics and Dynamics in Arctic Tundra Ecosystems, 1960-2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, Paddy; Sloan, Victoria; Warren, Jeff; McGuire, Dave; Euskirchen, Eugenie; Norby, Richard; Iversen, Colleen; Walker, Anthony; Wullschleger, Stan

    2014-01-13

    A synthesis of the available literature on tundra root distribution and dynamics, and their role in key ecosystem processes in the Arctic.

  17. A study of the link between cosmic rays and clouds with a cloud chamber at the CERN PS

    E-Print Network [OSTI]

    The Cloud Collaboration

    2001-04-16

    Recent satellite data have revealed a surprising correlation between galactic cosmic ray (GCR) intensity and the fraction of the Earth covered by clouds. If this correlation were to be established by a causal mechanism, it could provide a crucial step in understanding the long-sought mechanism connecting solar and climate variability. The Earth's climate seems to be remarkably sensitive to solar activity, but variations of the Sun's electromagnetic radiation appear to be too small to account for the observed climate variability. However, since the GCR intensity is strongly modulated by the solar wind, a GCR-cloud link may provide a sufficient amplifying mechanism. Moreover if this connection were to be confirmed, it could have profound consequences for our understanding of the solar contributions to the current global warming. The CLOUD (Cosmics Leaving OUtdoor Droplets) project proposes to test experimentally the existence a link between cosmic rays and cloud formation, and to understand the microphysical mechanism. CLOUD plans to perform detailed laboratory measurements in a particle beam at CERN, where all the parameters can be precisely controlled and measured. The beam will pass through an expansion cloud chamber and a reactor chamber where the atmosphere is to be duplicated by moist air charged with selected aerosols and trace condensable vapours. An array of external detectors and mass spectrometers is used to analyse the physical and chemical characteristics of the aerosols and trace gases during beam exposure. Where beam effects are found, the experiment will seek to evaluate their significance in the atmosphere by incorporating them into aerosol and cloud models.

  18. Genome Sequence of the Arctic Methanotroph Methylobacter tundripaludum SV96

    SciTech Connect (OSTI)

    Svenning, Mette M [University of Tromso, Norway; Hestnes, Anne Grethe [University of Tromso, Norway; Wartiainen, Ingvild [University of Tromso, Norway; Stein, Lisa Y. [University of Alberta, Edmondton, Canada; Klotz, Martin G [University of Louisville, Louisville; Kalyuzhnaya, Marina G. [University of Washington, Seattle; Spang, Anja [University of Vienna, Austria; Bringel, Francoise O. [University of Strasbourg; Vuilleumier, Stephane [University of Strasbourg; Lajus, Aurelie [Genoscope/Centre National de la Recherche Scientifique-Unite Mixte de Recherche; Medigue, Claudine [Genoscope/Centre National de la Recherche Scientifique-Unite Mixte de Recherche; Bruce, David [Los Alamos National Laboratory (LANL); Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Han, James [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Hauser, Loren John [ORNL; Held, Brittany [Los Alamos National Laboratory (LANL); Land, Miriam L [ORNL; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute

    2011-01-01

    Methylobacter tundripaludum SV96(T) (ATCC BAA-1195) is a psychrotolerant aerobic methane-oxidizing gammaproteobacterium (Methylococcales, Methylococcaceae) living in High Arctic wetland soil. The strain was isolated from soil harvested in July 1996 close to the settlement Ny-Alesund, Svalbard, Norway (78 degrees 56'N, 11 degrees 53'E), and described as a novel species in 2006. The genome includes pmo and pxm operons encoding copper membrane monooxygenases (Cu-MMOs), genes required for nitrogen fixation, and the nirS gene implicated in dissimilatory nitrite reduction to NO but no identifiable inventory for further processing of nitrogen oxides. These genome data provide the basis to investigate M. tundripaludum SV96, identified as a major player in the biogeochemistry of Arctic environments.

  19. Analysis of gas chilling alternatives for Arctic pipelines

    SciTech Connect (OSTI)

    Dvoiris, A.; McMillan, D.K.; Taksa, B.

    1994-12-31

    The operation of buried natural gas pipelines in Arctic regions requires installation of gas chilling facilities at compressor stations. These facilities are required in order to cool compressed pipeline gases to temperatures below that of permanently frozen surrounding soil. If these pipeline gas temperatures are too high, the frozen ground around the pipelines will eventually thaw. This is undesirable for many reasons amongst which are ground settlement and possible catastrophic failure of the pipeline. This paper presents the results of a study which compared several alternative methods of gas chilling for possible application at one of the compressor stations on the proposed new Yamal-Center gas pipeline system in the Russian Arctic. This technical and economic study was performed by Gulf Interstate Engineering (GIE) for GAZPROM, the gas company in Russia that will own and operate this new pipeline system. Geotechnical, climatical and other information provided by GAZPROM, coupled with information developed by GIE, formed the basis for this study.

  20. Photolysis rates in correlated overlapping cloud fields: Cloud-J 7.3c

    E-Print Network [OSTI]

    Prather, MJ

    2015-01-01

    Collins, W. : Effect of clouds on photolysis and oxidants insimulation of in- and below-cloud photolysis in troposphericS. , and Liu, X. : Effects of cloud overlap in photochemical

  1. Estimating Migration Resistance: a Case Study of Greenlandic Arctic Terns

    E-Print Network [OSTI]

    Hensz, Christopher

    2013-01-15

    Chris Hensz University of Kansas Department of Ecology and Evolutionary Biology Biodiversity Institute Estimating Migration Resistance: a Case Study of Greenlandic Arctic Terns The Problem 1: How do migratory animals choose... d ay °C m /s Models ? Implemented in R ? Models: ? Linear exploration Southern Migration, 9 birds, n=929 Northern Migration, 9 birds, n=629 Future Directions 1: Finish non-linear model 2: Generalize procedure and include...

  2. Polar Gas to pick route for Arctic Y Line

    SciTech Connect (OSTI)

    Not Available

    1980-05-26

    Polar Gas Project is considering four possible Y line routes to move gas reserves from the Arctic Islands and the MacKenzie Delta/Beaufort Sea areas to southern Canada. All four routes are west of the single line route proposed by Polar Gas Ltd. in 1977 to run from the Arctic Islands to Longlac, Ontario, and would connect with existing pipelines at either Longlac, Winnipeg, Calgary, or Edmonton. Marketable reserves in the High Arctic Islands are estimated at 12.7 trillion cubic feet, not counting 3-6 trillion cubic feet probably contained in recent discoveries; the MacKenzie Delta reserves are estimated at 5.8 trillion cubic feet. The gas will be chilled to 0C for passage through permafrost regions, to prevent thawing of the soil, but the gas will be at higher temperatures in other areas, with various construction techniques used to protect the area of discontinuous permafrost from thawing. More than $70 million has been spent on project studies. An application will be filed in 1981, and the pipeline could be completed in 7-10 years.

  3. Structural monitoring helps assess deformations in Arctic pipelines

    SciTech Connect (OSTI)

    Nyman, K.J.; Lara, P.F.

    1986-11-10

    Advanced structural monitoring systems can play an important role in the evaluation of arctic pipeline distortions along the alignment. These systems can influence pipeline design requirements, reduce capital costs, and improve operating reliability. Differential soil movements resulting from terrain instabilities are the main features which threaten a pipeline's structural integrity and affect the design of buried pipeline systems in the Arctic. Economic, aesthetic, and safety concerns make conventional buried construction an optimum design choice for an arctic crude-oil or gas-pipeline transportation system. However, variable frozen and thawed soil conditions underlying the pipeline along a discontinuous permafrost corridor pose a challenge to the design and operation of such systems. Crude-oil pipelines which must operate at elevated temperatures can be installed in unfrozen soils or in permafrost soils where initially frozen segments will exhibit limited settlement under the thawed conditions imposed by pipeline construction and operation. Ice-rich portions of the frozen alignment may have an unacceptable settlement potential for a warm buried pipeline. In contrast, natural-gas pipelines can be operated cold to increase throughput capability and to prevent the problems associated with thawing permafrost.

  4. The unseen iceberg: Plant roots in arctic tundra

    SciTech Connect (OSTI)

    Iversen, Colleen M; Sloan, Victoria L; Sullivan, Patrick F.; Euskirchen, Eugenie S; McGuire, A. David; Norby, Richard J; Walker, Anthony P; Warren, Jeffrey; Wullschleger, Stan D

    2015-01-01

    Arctic tundra is characterized by short-statured plant communities underlain by carbon (C)-rich soils and permafrost. Ecosystem C and nutrient cycles in tundra are driven by complex interactions between plants and their environment. However, root dynamics are one of the least understood aspects of plant growth in the Arctic. We synthesized available literature on tundra roots and discussed their representation in terrestrial biosphere models. Belowground biomass in tundra ecosystems can be an order of magnitude larger than aboveground biomass. Data on root production and turnover in tundra is sparse, limiting our understanding of the controls over root dynamics in these systems. Roots are shallowly distributed in the thin layer of soil that thaws each year, and are often found in the organic horizon at the soil surface. Species-specific differences in root distribution, mycorrhizal colonization, and resource partitioning may affect plant species competition under changing climatic conditions. Model representation of belowground processes has increased in complexity over recent years, but data are desperately needed to fill the gaps in model treatment of tundra roots. Future research should focus on estimates of root production and lifespan, and interactions between roots and the surrounding soil across the diversity of tundra ecosystems in the Arctic.

  5. A SYNERGY OF MICROWAVE CLOUD TOMOGRAPHY AND SCANNING RADAR: MOVING TOWARD A 3D VIEW OF CLOUDS

    E-Print Network [OSTI]

    A SYNERGY OF MICROWAVE CLOUD TOMOGRAPHY AND SCANNING RADAR: MOVING TOWARD A 3D VIEW OF CLOUDS D complementary techniques, i.e., cloud microwave tomography and scanning radar, to retrieve 3D cloud properties the sixth moment of cloud droplets, while cloud tomography, by remotely probing cloud microwave emission

  6. Redefining the Cloud based on Beneficial Service Characteristics A New Cloud Taxonomy Leads to Economically Reasonable Semi-cloudification

    E-Print Network [OSTI]

    Redefining the Cloud based on Beneficial Service Characteristics A New Cloud Taxonomy Leads, Germany kemmler@lrz.de Keywords: Cloud, Semi-cloud, Service, Cloud Service, Semi-cloud Service, Service Management. Abstract: Cloud services promise benefits for customers and providers such as scalability

  7. Cloud Computing and Validation of Expandable In Silico Livers

    E-Print Network [OSTI]

    Ropella, Glen EP; Hunt, C Anthony

    2010-01-01

    benefit analysis of cloud computing versus desktop grids.as: Ropella and Hunt: Cloud computing and validation ofCloud computing and validation of expandable in silico

  8. RFID Asset Management Solution with Cloud Computation Service

    E-Print Network [OSTI]

    Chattopadhyay, Arunabh

    2012-01-01

    A berkeley view of cloud computing”, EECS Department,and S. Sarma, “Cloud computing, rest and mashups to simplifyand/or frameworks. Cloud computing can be defined as

  9. Simulations of Midlatitude Frontal Clouds by Single-Column and...

    Office of Scientific and Technical Information (OSTI)

    and 4 cloud resolving models (CRMs) in simulating a strong midlatitude frontal cloud system taken from the Spring 2000 Cloud Intensive Observational Period at the ARM Southern...

  10. Study of Multi-Scale Cloud Processes Over the Tropical Western Pacific Using Cloud-Resolving Models Constrained by Satellite Data

    SciTech Connect (OSTI)

    Dudhia, Jimy

    2013-03-12

    Clouds in the tropical western Pacific are an integral part of the large scale environment. An improved understanding of the multi-scale structure of clouds and their interactions with the environment is critical to the ARM (Atmospheric Radiation Measurement) program for developing and evaluating cloud parameterizations, understanding the consequences of model biases, and providing a context for interpreting the observational data collected over the ARM Tropical Western Pacific (TWP) sites. Three-dimensional cloud resolving models (CRMs) are powerful tools for developing and evaluating cloud parameterizations. However, a significant challenge in using CRMs in the TWP is that the region lacks conventional data, so large uncertainty exists in defining the large-scale environment for clouds. This project links several aspects of the ARM program, from measurements to providing improved analyses, and from cloud-resolving modeling to climate-scale modeling and parameterization development, with the overall objective to improve the representations of clouds in climate models and to simulate and quantify resolved cloud effects on the large-scale environment. Our objectives will be achieved through a series of tasks focusing on the use of the Weather Research and Forecasting (WRF) model and ARM data. Our approach includes: -- Perform assimilation of COSMIC GPS radio occultation and other satellites products using the WRF Ensemble Kalman Filter assimilation system to represent the tropical large-scale environment at 36 km grid resolution. This high-resolution analysis can be used by the community to derive forcing products for single-column models or cloud-resolving models. -- Perform cloud-resolving simulations using WRF and its nesting capabilities, driven by the improved regional analysis and evaluate the simulations against ARM datasets such as from TWP-ICE to optimize the microphysics parameters for this region. A cirrus study (Mace and co-authors) already exists for TWP-ICE using satellite and ground-based observations. -- Perform numerical experiments using WRF to investigate how convection over tropical islands in the Maritime Continent interacts with large-scale circulation and affects convection in nearby regions. -- Evaluate and apply WRF as a testbed for GCM cloud parameterizations, utilizing the ability of WRF to run on multiple scales (from cloud resolving to global) to isolate resolution and physics issues from dynamical and model framework issues. Key products will be disseminated to the ARM and larger community through distribution of data archives, including model outputs from the data assimilation products and cloud resolving simulations, and publications.

  11. Methane transport from the active layer to lakes in the Arctic using Toolik Lake, Alaska, as a case study

    E-Print Network [OSTI]

    Paytan, Adina

    Methane transport from the active layer to lakes in the Arctic using Toolik Lake, Alaska, as a case, and approved February 13, 2015 (received for review September 8, 2014) Methane emissions in the Arctic are important, and may be contributing to global warming. While methane emission rates from Arctic lakes

  12. Directional change in upland tundra plant communities 20-30 years after seismic exploration in the Canadian low-arctic

    E-Print Network [OSTI]

    Macdonald, Ellen

    in the Canadian low-arctic Kemper, J. Todd1,2 & Macdonald, S. Ellen1Ă 1 Department of Renewable Resources Energy Board of Canada. Introduction Arctic tundra plant communities are subject to both natural of low-arctic plant communities two to three decades after seismic ex- ploration. Location: Mackenzie

  13. Multiple Effects of Changes in Arctic Snow Cover Terry V. Callaghan, Margareta Johansson, Ross D. Brown, Pavel Ya. Groisman,

    E-Print Network [OSTI]

    Bradley, Raymond S.

    , there are likely to be some benefits from a changing Arctic snow regime such as more even run-off from melting snow that favours hydropower operations. Keywords Snow Á Arctic Á Climate Á Albedo Á Hydrology Á Ecology Á and river ice surfaces for 8­10 months each year. Arctic climate has entered a unique period relative

  14. The impact of precession changes on the Arctic climate during the last interglacialglacial transition

    E-Print Network [OSTI]

    Born, Andreas

    The impact of precession changes on the Arctic climate during the last interglacial­glacial temperature to the summer Arctic melt process are evaluated. Timing of the perihelion is varied in each melting of snow is found primarily as a result of feedbacks from the delayed seasonal cycle of hydrologic

  15. Ascorbate dynamics and oxygen consumption during arousal from hibernation in Arctic ground squirrels

    E-Print Network [OSTI]

    Drew, Kelly L.

    at the time of peak O2 consumption and peak plasma urate production. The ascor- bate decrease didAscorbate dynamics and oxygen consumption during arousal from hibernation in Arctic ground and oxygen consumption during arousal from hibernation in Arctic ground squirrels. Am J Physiol Regulatory

  16. Potential DOC production from size-fractionated Arctic tundra soils Chunhao Xu a,b

    E-Print Network [OSTI]

    Guo, Laodong

    and available for biogeochemical cycling through coastal erosion (Rachold et al., 2000; Guo et al., 2004 of Alaska Fairbanks, Fairbanks, AK 99775, USA b International Arctic Research Center, University of Alaska Permafrost Alaska Soil organic carbon (SOC) accumulated inthe Arctic regions has beensubject to impacts

  17. SIMULATION OF BLOWING SNOW IN THE CANADIAN ARCTIC USING A DOUBLE-MOMENT MODEL

    E-Print Network [OSTI]

    Dery, Stephen

    SIMULATION OF BLOWING SNOW IN THE CANADIAN ARCTIC USING A DOUBLE-MOMENT MODEL STEPHEN J. DÉRY and M the development of a double-moment model of blowing snow and its application to the Canadian Arctic. We first snow mixing ratio and total particle num- bers, both moments of particles that are gamma

  18. Vegetation characteristics and primary productivity along an arctic transect: implications for scaling-up

    E-Print Network [OSTI]

    , and changes in the region's energy balance. Arctic terrestrial ecosystems are important com- ponents of the global C cycle. They cover an area of more than 7 Â 106 km2 and contain over 11% of the world's organic matter pool (Callaghan & Maxwell 1995). Studies of the C balance of speci®c arctic tun- dra ecosystems

  19. National Strategy for the Arctic Region Tribal Consultation and Stakeholder Outreach Session: Kotzebue

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) is announcing the second round of tribal consultations and stakeholder outreach meetings on the National Strategy for the Arctic Region (NSAR), 10-Year Plan to accelerate renewable energy deployment in the Arctic Region.

  20. National Strategy for the Arctic Region Stakeholder Outreach Meeting: Dutch Harbor/Unalaska

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) is announcing the second round of tribal consultations and stakeholder outreach meetings on the National Strategy for the Arctic Region (NSAR), 10-Year Plan to accelerate renewable energy deployment in the Arctic Region.

  1. National Strategy for the Arctic Region Tribal Consultation Session: Dutch Harbor/Unalaska

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) is announcing the second round of tribal consultations and stakeholder outreach meetings on the National Strategy for the Arctic Region (NSAR), 10-Year Plan to accelerate renewable energy deployment in the Arctic Region.

  2. The Arctic Ocean carbon sink G.A. MacGilchrist a,n

    E-Print Network [OSTI]

    Naveira Garabato, Alberto

    Carbon sequestration Biological pump a b s t r a c t We present observation based estimatesThe Arctic Ocean carbon sink G.A. MacGilchrist a,n , A.C. Naveira Garabato a , T. Tsubouchi b , S January 2014 Keywords: Arctic Ocean Dissolved inorganic carbon Carbon budget Air­sea carbon dioxide flux

  3. A model of the threedimensional evolution of Arctic melt ponds on firstyear and multiyear sea ice

    E-Print Network [OSTI]

    Feltham, Daniel

    A model of the threedimensional evolution of Arctic melt ponds on firstyear and multiyear sea ice F in Arctic melt ponds on the surface of sea ice. An accurate estimate of the fraction of the sea ice surface covered in melt ponds is essential for a realistic estimate of the albedo for global climate models. We

  4. Mobilization pathways of organic carbon from permafrost to arctic rivers in a changing climate

    E-Print Network [OSTI]

    Guo, Laodong

    Mobilization pathways of organic carbon from permafrost to arctic rivers in a changing climate rivers and Arctic coastal regions. To elucidate the transport pathways of SOC, radiocarbon composition is more readily influenced by modern terrestrial biomass, especially in large river basins which also

  5. Arctic ice export events and their potential impact on global climate during the late Pleistocene

    E-Print Network [OSTI]

    Darby, Dennis

    Arctic ice export events and their potential impact on global climate during the late Pleistocene export events are identified from the Laurentide and the Innuitian ice sheets, between 14 and 34 ka, the Arctic export events appear to occur prior to Heinrich events. INDEX TERMS: 4207 Oceanography: General

  6. ORIGINAL PAPER Sedimentary pellets as an ice-cover proxy in a High Arctic

    E-Print Network [OSTI]

    Vincent, Warwick F.

    ORIGINAL PAPER Sedimentary pellets as an ice-cover proxy in a High Arctic ice-covered lake Jessica-cover extent and dynamics on this perennially ice-covered, High Arctic lake. These pellets are interpreted growth. The pellets remain frozen in the ice until a summer or series of summers with reduced ice cover

  7. Sources and Fate of Chromophoric Dissolved Organic Matter in the Arctic Ocean and Surrounding Watersheds 

    E-Print Network [OSTI]

    Walker, Sally Annette

    2012-10-19

    of the Canadian Archipelago, 17 % of the DOM pool is of terrestrial origin, even though waters are diluted with sea ice melt, suggesting the likelihood of a subsurface plume of tDOM entrained within river runoff from Arctic Rivers. In the interior Arctic...

  8. Growing season methyl bromide and methyl chloride fluxes at a sub-arctic wetland in Sweden 

    E-Print Network [OSTI]

    Hardacre, Catherine J.; Blei, Emanuel; Heal, Mathew R

    2009-01-01

    Methyl bromide and methyl chloride fluxes were measured at several sites in a sub-arctic wetland near Abisko, Sweden (68°28?N 18°49?E) throughout the 2008 growing season. Averaged over 92 flux measurements the sub-arctic ...

  9. Latitudinal gradients in sea ice and primary production determine Arctic seabird colony

    E-Print Network [OSTI]

    Laidre, Kristin L.

    -scale control on energy flux and primary and secondary production, ultimately reaching the top of the food chainLatitudinal gradients in sea ice and primary production determine Arctic seabird colony size Naturama, Dronningemaen 30, 5700 Svendborg, Denmark 4 Department of Arctic Environment, National

  10. Be production-rate calibration for the Arctic NICOLA S E. YOUNG,1,2

    E-Print Network [OSTI]

    Briner, Jason P.

    A 10 Be production-rate calibration for the Arctic NICOLA´ S E. YOUNG,1,2 * JOERG M. SCHAEFER,1 2013; Accepted 18 April 2013 ABSTRACT: We present a Baffin Bay 10 Be production-rate calibration published 10 Be calibration datasets to develop an Arctic 10 Be production rate. Our calibration comprises

  11. An Inter-Cloud Architecture for Future Internet Infrastructures

    E-Print Network [OSTI]

    Petrakis, Euripides G.M.

    An Inter-Cloud Architecture for Future Internet Infrastructures STELIOS SOTIRIADIS, Technical, Technical University of Crete, Greece Iaan latest years, the concept of interconnecting clouds to allow of cloud resources from Internet users. An efficient common management between different clouds

  12. Maximizing Cloud Providers Revenues via Energy Aware Allocation Policies

    E-Print Network [OSTI]

    Mazzucco, Michele; Deters, Ralph

    2011-01-01

    Cloud providers, like Amazon, offer their data centers' computational and storage capacities for lease to paying customers. High electricity consumption, associated with running a data center, not only reflects on its carbon footprint, but also increases the costs of running the data center itself. This paper addresses the problem of maximizing the revenues of Cloud providers by trimming down their electricity costs. As a solution allocation policies which are based on the dynamic powering servers on and off are introduced and evaluated. The policies aim at satisfying the conflicting goals of maximizing the users' experience while minimizing the amount of consumed electricity. The results of numerical experiments and simulations are described, showing that the proposed scheme performs well under different traffic conditions.

  13. Fast and efficient transport of large ion clouds

    E-Print Network [OSTI]

    Kamsap, Marius Romuald; Champenois, Caroline; Guyomarc'H, Didier; Houssin, Marie; Knoop, Martina

    2015-01-01

    The manipulation of trapped charged particles by electric fields is an accurate, robust and reliable technique for many applications or experiments in high-precision spectroscopy. The transfer of the ion sample between multiple traps allows the use of a tailored environment in quantum information, cold chemistry, or frequency metrology experiments. In this article, we experimentally study the transport of ion clouds of up to 50 000 ions. The design of the trap makes ions very sensitive to any mismatch between the assumed electric potential and the actual local one. Nevertheless, we show that being fast (100 $\\mu$s to transfer over more than 20 mm) increases the transport efficiency to values higher than 90 %, even with a large number of ions. For clouds of less than 2000 ions, a 100 % transfer efficiency is observed.

  14. Cloud hole-boring with long pulse CO sub 2 lasers

    SciTech Connect (OSTI)

    Quigley, G.P.; Webster, R.B.; York, G.W.

    1990-01-01

    Chemically generated CO{sub 2} laser pulses at 10.6 {mu}m have been used to clear a 5 cm diameter hole through a stratus-like cloud in a laboratory cloud chamber. The results show that 100% clearing can be achieved. The mechanism is shown to be droplet shattering followed by evaporation. Under the conditions of the experiment, the channel closure is dominated by turbulent mixing and not droplet recondensation. 14 refs., 9 figs.

  15. Disruptive technology business models in cloud computing

    E-Print Network [OSTI]

    Krikos, Alexis Christopher

    2010-01-01

    Cloud computing, a term whose origins have been in existence for more than a decade, has come into fruition due to technological capabilities and marketplace demands. Cloud computing can be defined as a scalable and flexible ...

  16. VOLUMETRIC SNAPPING: WATERTIGHT TRIANGULATION OF POINT CLOUDS

    E-Print Network [OSTI]

    Floater, Michael S.

    VOLUMETRIC SNAPPING: WATERTIGHT TRIANGULATION OF POINT CLOUDS Tim Volodine KULeuven, Department: meshing, surface reconstruction, volumetric grid, contouring, point clouds. Abstract: We propose, a volumetric method that does not rely on a signed distance function was proposed recently by Hornung

  17. Changes in high cloud conditions 

    E-Print Network [OSTI]

    Himebrook, Richard Frank

    1974-01-01

    of contrails, while in a more humid environment contrails wi. ll form. ilovis et al. (1970) showed that, over the 0. 68-2. 4p wavelength interval, "naturally" formed ice clouds and a fresh contrail show different signatures (which could be observed... prime cause for a change in the amount of high clouds, the Location of stations with respect to the jet routes was also reviewed. Atlanta, Ceorgia, was selected because it is a ma ~or air Lr r- minal and its upper-air liow advects jet...

  18. AnonymousCloud: A Data Ownership Privacy Provider Framework in Cloud Computing

    E-Print Network [OSTI]

    Hamlen, Kevin W.

    AnonymousCloud: A Data Ownership Privacy Provider Framework in Cloud Computing Safwan Mahmud Khan their computation results are ultimately delivered. To provide this data ownership privacy, the cloud's distributed-anonymity; authentication; cloud computing; in- formation security; privacy; Tor I. INTRODUCTION Revolutionary advances

  19. CloudHKA: A Cryptographic Approach for Hierarchical Access Control in Cloud Computing

    E-Print Network [OSTI]

    International Association for Cryptologic Research (IACR)

    CloudHKA: A Cryptographic Approach for Hierarchical Access Control in Cloud Computing Yi-Ruei Chen1, cloud computing, proxy re-encryption 1 Introduction Outsourcing data to cloud server (CS) becomes , Cheng-Kang Chu2 , Wen-Guey Tzeng3 , and Jianying Zhou4 1,3 Department of Computer Science, National

  20. CLOUD COMPUTING AND INFORMATION POLICY 1 Cloud Computing and Information Policy

    E-Print Network [OSTI]

    Daume III, Hal

    . Keywords: cloud computing, information policy, rechnology policy, grid computing, security, privacyCLOUD COMPUTING AND INFORMATION POLICY 1 Cloud Computing and Information Policy: Computing in a Policy Cloud? Forthcoming in the Journal of Information Technology and Politics, 5(3). Paul T. Jaeger

  1. IsYour Network Cloud Ready? Network EnableYour Cloud With MPLSVPNs

    E-Print Network [OSTI]

    Greenberg, Albert

    -enabled cloud that is highly-secure and reliable. It is critical for enterprises to evaluate a network, but the high level of shared infrastructure creates concerns about security risks.As a result, the public cloudIsYour Network Cloud Ready? Network EnableYour Cloud With MPLSVPNs A FROST & SULLIVAN EXECUTIVE

  2. Home is Safer than the Cloud! Privacy Concerns for Consumer Cloud Storage

    E-Print Network [OSTI]

    for sensitive data over cloud storage. However, users desire better security and are ready to pay for services storage systems. General Terms Human Factors, Security, Privacy. Keywords Cloud Storage, Social FactorsHome is Safer than the Cloud! Privacy Concerns for Consumer Cloud Storage Iulia Ion , Niharika

  3. CloudWatcher: Network Security Monitoring Using OpenFlow in Dynamic Cloud Networks

    E-Print Network [OSTI]

    Gu, Guofei

    CloudWatcher: Network Security Monitoring Using OpenFlow in Dynamic Cloud Networks (or: How to Provide Security Monitoring as a Service in Clouds?) Seungwon Shin SUCCESS Lab Texas A&M University Email, basically, we can employ existing network security devices, but applying them to a cloud network requires

  4. StressCloud: A Tool for Analysing Performance and Energy Consumption of Cloud Applications

    E-Print Network [OSTI]

    Yang, Yun

    StressCloud: A Tool for Analysing Performance and Energy Consumption of Cloud Applications Feifei. It requires the evaluation of system performance and energy consumption under a wide variety of realistic and energy consumption analysis tool for cloud applications in real-world cloud environments. Stress

  5. Cloud radar Doppler spectra in drizzling stratiform clouds: 1. Forward modeling and remote sensing applications

    E-Print Network [OSTI]

    Cloud radar Doppler spectra in drizzling stratiform clouds: 1. Forward modeling and remote sensing broadening and drizzle growth in shallow liquid clouds remain not well understood. Detailed, cloudscale. Profiling, millimeterwavelength (cloud) radars can provide such observations. In particular, the first three

  6. Cloud seeding as a technique for studying aerosol-cloud interactions in marine stratocumulus

    E-Print Network [OSTI]

    Miami, University of

    Cloud seeding as a technique for studying aerosol-cloud interactions in marine stratocumulus hygroscopic aerosols were introduced into a solid marine stratocumulus cloud (200 m thick) by burning hygroscopic flares mounted on an aircraft. The cloud microphysical response in two parallel seeding plumes

  7. Cloud Verifier: Verifiable Auditing Service for IaaS Clouds Joshua Schiffman

    E-Print Network [OSTI]

    Jaeger, Trent

    Cloud Verifier: Verifiable Auditing Service for IaaS Clouds Joshua Schiffman Security Architecture University Park, PA, USA yus138,hvijay,tjaeger@cse.psu.edu Abstract--Cloud computing has commoditized compute paradigm, its adoption has been stymied by cloud platform's lack of trans- parency, which leaves customers

  8. Cloud Tracking in Cloud-Resolving Models R. S. Plant1

    E-Print Network [OSTI]

    Plant, Robert

    Cloud Tracking in Cloud-Resolving Models R. S. Plant1 1 Department of Meteorology, University. INTRODUCTION In recent years Cloud Resolving Models (CRMs) have become an increasingly important tool for CRM data, which allows one to investigate statistical prop- erties of the lifecycles of the "clouds

  9. The Cloud Adoption Toolkit: Supporting Cloud Adoption Decisions in the Enterprise

    E-Print Network [OSTI]

    Sommerville, Ian

    1 The Cloud Adoption Toolkit: Supporting Cloud Adoption Decisions in the Enterprise Ali Khajeh-Hosseini, David Greenwood, James W. Smith, Ian Sommerville Cloud Computing Co-laboratory, School of Computer Science University of St Andrews, UK {akh, dsg22, jws7, ifs}@cs.st-andrews.ac.uk Abstract Cloud computing

  10. Comparison of MISR and MODIS cloud-top heights in the presence of cloud overlap

    E-Print Network [OSTI]

    Baum, Bryan A.

    Comparison of MISR and MODIS cloud-top heights in the presence of cloud overlap C.M. Naud a, , B July 2006; accepted 3 September 2006 Abstract Coincident MISR and MODIS cloud-top heights retrieved March 2000 and October 2003. The difference between MODIS and MISR cloud-top heights is assessed

  11. Ralf Klessen: PPV, Oct. 24, 2005 Molecular CloudMolecular Cloud

    E-Print Network [OSTI]

    Klessen,Ralf

    Ralf Klessen: PPV, Oct. 24, 2005 Molecular CloudMolecular Cloud Turbulence and Star formation three ,,steps" of star formation: 1.1. formation of molecular clouds in the disk of ourformation of molecular clouds in the disk of our galaxygalaxy 2.2. formation of protostellar coresformation

  12. Moving magnetic cloud -1Moving magnetic cloud -1 "Double change of frame" calculation...

    E-Print Network [OSTI]

    Hörandel, Jörg R.

    #12;19 Moving magnetic cloud - 1Moving magnetic cloud - 1 "Double change of frame" calculation... #12;eb. 2005 -- Cosmic-rays & Particle Acceleration -- E. Parizot (IPN Orsay) 21 Moving magnetic cloud - 2Moving magnetic cloud - 2 #12;Karlsruhe, 23-25 Feb. 2005 -- Cosmic-rays & Particle Acceleration

  13. Determination of cloud liquid water distribution using 3D cloud tomography

    E-Print Network [OSTI]

    Determination of cloud liquid water distribution using 3D cloud tomography Dong Huang,1 Yangang Liu; published 2 July 2008. [1] The cloud microwave tomography method for remotely retrieving 3D distributions of cloud Liquid Water Content (LWC) was originally proposed by Warner et al. in the 1980s but has lain

  14. CloudTracker: Using Execution Provenance to Optimize the Cost of Cloud Use

    E-Print Network [OSTI]

    Bigelow, Stephen

    CloudTracker: Using Execution Provenance to Optimize the Cost of Cloud Use Geoffrey Douglas, Brian simulations using commercial clouds. We present a framework, called CLOUDTRACKER, that transparently records information from a simula- tion that is executed in a commercial cloud so that it may be "replayed" exactly

  15. The Open Cloud Testbed: A Wide Area Testbed for Cloud Computing Utilizing

    E-Print Network [OSTI]

    Grossman, Robert

    The Open Cloud Testbed: A Wide Area Testbed for Cloud Computing Utilizing High Performance Network of cloud platforms and services have been developed for data intensive computing, including Hadoop, Sector, CloudStore (formerly KFS), HBase, and Thrift. In order to benchmark the performance of these systems

  16. The Cloud Computing and Other Variables

    E-Print Network [OSTI]

    Borjon-Kubota, Martha Estela

    2011-01-01

    bodies. Saturated. We watch clouds simmer over the stillnessnoise like a fountain spring simmers between your thighs. A

  17. Auditing the Structural Reliability of the Clouds

    E-Print Network [OSTI]

    Haller, Gary L.

    . Icebergs in the Clouds: the Other Risks of Cloud Computing. In HotCloud, 2012. #12;Correlated Failures of occurrences. #12;Talk Outline Challenges Our approach Evaluation #12;Talk Outline Challenges Our approach Evaluation #12;Challenges 1. How to acquire dependency information automatically? 2. How to organize

  18. Towards a Ubiquitous Cloud Computing Infrastructure

    E-Print Network [OSTI]

    van der Merwe, Kobus

    Towards a Ubiquitous Cloud Computing Infrastructure Jacobus Van der Merwe, K.K. Ramakrishnan of a number of cloud computing use cases. We specifically consider cloudbursting and follow-the-sun and focus that are also network service providers. I. INTRODUCTION Cloud computing is rapidly gaining acceptance

  19. Cloud Security: Issues and Concerns Pierangela Samarati*

    E-Print Network [OSTI]

    Samarati, Pierangela

    1 Cloud Security: Issues and Concerns Authors Pierangela Samarati* Universitŕ degli Studi di Milano, Italy sabrina.decapitani@unimi.it Keywords cloud security confidentiality integrity availability secure data storage and processing Summary The cloud has emerged as a successful computing paradigm

  20. Security Architecture for Federated Mobile Cloud Computing

    E-Print Network [OSTI]

    Xu, Shouhuai

    Security Architecture for Federated Mobile Cloud Computing Shouhuai Xu and E. Paul Ratazzi, federated mobile cloud computing imposes a diverse set of new chal- lenges, especially from a security clouds for security purposes? How should we deal with the tar- geted attackers that attempt to launch

  1. VULCAN: Vulnerability Assessment Framework for Cloud Computing

    E-Print Network [OSTI]

    Kavi, Krishna

    services on Cloud is complex because the security depends on the vulnerability of infrastructure, platform services on Cloud is complex because the security depends on the vulnerability of infrastruc- ture?". Or "I want to host this software application in this cloud environment, what security vulnerabilities I

  2. Cloud Enterprise Storage and Data Migration

    E-Print Network [OSTI]

    Christensen, Henrik Bćrbak

    Cloud Enterprise Storage and Data Migration 20097733 Bobby Nielsen, 20003686 Frederik Kierbye}@cs.au.dk 20130324 Abstract This document presents a research in Enterprise Cloud Storage and Data Migration. The hypothesis is that, it is easy to migrate data between cloud platforms, including changing api

  3. MEBSURIXG CLOUD MOVEMENTS A Science Service Feature

    E-Print Network [OSTI]

    -.- - MEBSURIXG CLOUD MOVEMENTS I A Science Service Feature Released upon receist but intended on Meteorology Vatching the clouds drift by, a traditional pastime of idle people, i s part Of the professional his head. He makes his cloud observations w i t h the aid of an instrument known as a nei

  4. Arctic melt ponds and bifurcations in the climate system

    E-Print Network [OSTI]

    Sudakov, Ivan; Golden, Kenneth M

    2014-01-01

    Understanding how sea ice melts is critical to climate projections. In the Arctic, melt ponds that develop on the surface of sea ice floes during the late spring and summer largely determine their albedo $-$ a key parameter in climate modeling. Here we explore the possibility of a simple sea ice climate model passing through a bifurcation point $-$ an irreversible critical threshold as the system warms, by incorporating geometric information about melt pond evolution. This study is based on a nonlinear phase transition model for melt ponds, and bifurcation analysis of a simple climate model with ice - albedo feedback as the key mechanism driving the system to a potential bifurcation point.

  5. Method for preventing thaw settlement along offshore arctic pipelines

    SciTech Connect (OSTI)

    Duthweiler, F.C.

    1987-06-30

    A method is described for installing a warm fluid-bearing pipeline across an arctic seafloor, the method comprising: (1) drilling a series of boreholes along the seafloor through a thawed zone of subsea soil to penetrate a distance into a zone of permafrost; (2) circulating a warm circulation fluid through the boreholes to create a slump trough on the surface of the seafloor by creating a prethawing zone in the permafrost zone; and (3) installing a pipeline bearing a warm fluid along the bottom of the slump trough without causing further substantial slumping along the seafloor.

  6. ARM - Field Campaign - Arctic Winter Water Vapor IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012IIIAtlantic (ACE-ENA)StudygovCampaignsArctic

  7. Unlocking the Secrets of Clouds

    Broader source: Energy.gov [DOE]

    Clouds may look soft, fluffy and harmless to the untrained eye, but to an expert climate model scientist they represent great challenges. Fortunately the Atmospheric Radiation Measurement (ARM) Climate and Research Facility is kicking off a five-month study which should significantly clear the air.

  8. POTENTIAL OF CLOUD-BASED

    E-Print Network [OSTI]

    Lee, Jason R.

    .!! Cover!photos!courtesy!of!the!National!Energy!Research!Scientific!Computing!Center!and!Google.! #12;! ! ! The Energy Efficiency Potential of Cloud-Based Software: A U.S. Case Study ! Lawrence Berkeley National Laboratory June, 2013 Research Team Eric!Masanet! Arman!Shehabi! Jiaqi!Liang! Lavanya!Ramakrishnan! Xiao

  9. ARM Data for Cloud Parameterization

    SciTech Connect (OSTI)

    Xu, Kuan-Man

    2006-10-02

    The PI's ARM investigation (DE-IA02-02ER633 18) developed a physically-based subgrid-scale saturation representation that fully considers the direct interactions of the parameterized subgrid-scale motions with subgrid-scale cloud microphysical and radiative processes. Major accomplishments under the support of that interagency agreement are summarized in this paper.

  10. How Long Can Tiny HI Clouds Survive?

    E-Print Network [OSTI]

    Masahiro Nagashima; Shu-ichiro Inutsuka; Hiroshi Koyama

    2006-03-10

    We estimate the evaporation timescale for spherical HI clouds consisting of the cold neutral medium surrounded by the warm neutral medium. We focus on clouds smaller than 1pc, which corresponds to tiny HI clouds recently discovered by Braun & Kanekar and Stanimirovi{\\'c} & Heiles. By performing one-dimensional spherically symmetric numerical simulations of the two-phase interstellar medium (ISM), we derive the timescales as a function of the cloud size and of pressure of the ambient warm medium. We find that the evaporation timescale of the clouds of 0.01 pc is about 1Myr with standard ISM pressure, $p/k_{B}\\sim 10^{3.5}$ K cm$^{-3}$, and for clouds larger than about 0.1 pc it depends strongly on the pressure. In high pressure cases, there exists a critical radius for clouds growing as a function of pressure, but the minimum critical size is $\\sim$ 0.03 pc for a standard environment. If tiny HI clouds exist ubiquitously, our analysis suggests two implications: tiny HI clouds are formed continuously with the timescale of 1Myr, or the ambient pressure around the clouds is much higher than the standard ISM pressure. We also find that the results agree well with those obtained by assuming quasi-steady state evolution. The cloud-size dependence of the timescale is well explained by an analytic approximate formula derived by Nagashima, Koyama & Inutsuka. We also compare it with the evaporation rate given by McKee & Cowie.

  11. Fault Tolerance and Scaling in e-Science Cloud Applications: Observations from the Continuing Development of MODISAzure

    SciTech Connect (OSTI)

    Li, Jie; Humphrey, Marty; Cheah, You-Wei; Ryu, Youngryel; Agarwal, Deb; Jackson, Keith; van Ingen, Catharine

    2010-04-01

    It can be natural to believe that many of the traditional issues of scale have been eliminated or at least greatly reduced via cloud computing. That is, if one can create a seemingly wellfunctioning cloud application that operates correctly on small or moderate-sized problems, then the very nature of cloud programming abstractions means that the same application will run as well on potentially significantly larger problems. In this paper, we present our experiences taking MODISAzure, our satellite data processing system built on the Windows Azure cloud computing platform, from the proof-of-concept stage to a point of being able to run on significantly larger problem sizes (e.g., from national-scale data sizes to global-scale data sizes). To our knowledge, this is the longest-running eScience application on the nascent Windows Azure platform. We found that while many infrastructure-level issues were thankfully masked from us by the cloud infrastructure, it was valuable to design additional redundancy and fault-tolerance capabilities such as transparent idempotent task retry and logging to support debugging of user code encountering unanticipated data issues. Further, we found that using a commercial cloud means anticipating inconsistent performance and black-box behavior of virtualized compute instances, as well as leveraging changing platform capabilities over time. We believe that the experiences presented in this paper can help future eScience cloud application developers on Windows Azure and other commercial cloud providers.

  12. Atmospheric Radiation Measurement Tropical Warm Pool International Cloud Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O DBiomass and BiofuelsPhysicist47July 1999

  13. ARM - Field Campaign - ARM Cloud Aerosol Precipitation Experiment (ACAPEX):

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012III ARM Data DiscoveryIV (ARM-ACME IV) ARM

  14. ARM - Field Campaign - ARM Cloud Aerosol Precipitation Experiment (ACAPEX):

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012III ARM Data DiscoveryIV (ARM-ACME IV) ARMAerosols

  15. ARM - Field Campaign - ARM Cloud Aerosol Precipitation Experiment (ACAPEX):

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012III ARM Data DiscoveryIV (ARM-ACME IV)

  16. ARM - Field Campaign - Midlatitude Continental Convective Clouds Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design togovCampaignsMASRAD: Pt. Reyes Stratus

  17. ARM - Field Campaign - Midlatitude Continental Convective Clouds Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design togovCampaignsMASRAD: Pt. Reyes Stratus(MC3E): Multi-Frequency Profilers

  18. ARM - Field Campaign - Tropical Warm Pool - International Cloud Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode DesigngovCampaignsSpring Single Column Model IOP(PROBE)(TWP-ICE)

  19. ARM - Tropical Warm Pool - International Cloud Experiment (TWP-ICE)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, AlaskaManus Site-Inactive TWP Related LinksgovDataTime in ARMPastTree Rings

  20. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska Outreach HomepolarizationMeasurementsWarmingMethane BackgroundMethane

  1. The Tropical Warm Pool International Cloud Experiment: Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.Week DayDr. Jeffrey GriffinHydratesTri-Party Agencies wantThe

  2. Macquarie Island Cloud and Radiation Experiment (MICRE) Science Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion toMSDS on the internet The Office

  3. DEVELOPMENT OF IMPROVED TECHNIQUES FOR SATELLITE REMOTE SENSING OF CLOUDS AND RADIATION USING ARM DATA, FINAL REPORT

    SciTech Connect (OSTI)

    Minnis, Patrick

    2013-06-28

    During the period, March 1997 – February 2006, the Principal Investigator and his research team co-authored 47 peer-reviewed papers and presented, at least, 138 papers at conferences, meetings, and workshops that were supported either in whole or in part by this agreement. We developed a state-of-the-art satellite cloud processing system that generates cloud properties over the Atmospheric Radiation (ARM) surface sites and surrounding domains in near-real time and outputs the results on the world wide web in image and digital formats. When the products are quality controlled, they are sent to the ARM archive for further dissemination. These products and raw satellite images can be accessed at http://cloudsgate2.larc.nasa.gov/cgi-bin/site/showdoc?docid=4&cmd=field-experiment-homepage&exp=ARM and are used by many in the ARM science community. The algorithms used in this system to generate cloud properties were validated and improved by the research conducted under this agreement. The team supported, at least, 11 ARM-related or supported field experiments by providing near-real time satellite imagery, cloud products, model results, and interactive analyses for mission planning, execution, and post-experiment scientific analyses. Comparisons of cloud properties derived from satellite, aircraft, and surface measurements were used to evaluate uncertainties in the cloud properties. Multiple-angle satellite retrievals were used to determine the influence of cloud structural and microphysical properties on the exiting radiation field.

  4. Cloud speed impact on solar variability scaling â?? Application to the wavelet variability model

    E-Print Network [OSTI]

    Lave, Matthew; Kleissl, Jan

    2013-01-01

    Kleissl, J. , 2013. Deriving cloud velocity from an array ofCloud Speed Impact on Solar Variability Scaling -this work, we determine from cloud speeds. Cloud simulator

  5. Average Interpolating Wavelets on Point Clouds and Graphs

    E-Print Network [OSTI]

    Rustamov, Raif M

    2011-01-01

    We introduce a new wavelet transform suitable for analyzing functions on point clouds and graphs. Our construction is based on a generalization of the average interpolating refinement scheme of Donoho. The most important ingredient of the original scheme that needs to be altered is the choice of the interpolant. Here, we define the interpolant as the minimizer of a smoothness functional, namely a generalization of the Laplacian energy, subject to the averaging constraints. In the continuous setting, we derive a formula for the optimal solution in terms of the poly-harmonic Green's function. The form of this solution is used to motivate our construction in the setting of graphs and point clouds. We highlight the empirical convergence of our refinement scheme and the potential applications of the resulting wavelet transform through experiments on a number of data stets.

  6. Evaluation and Intercomparison of Cloud Fraction and Radiative Fluxes in Recent Reanalyses over the Arctic Using BSRN Surface Observations

    E-Print Network [OSTI]

    Dong, Xiquan

    Reanalysis Project (20CR), (iv) ECMWF's Interim Reanalysis (ERA-I), and (v) NCEP­Department of Energy (DOE of renewable energy resources, investigation of extreme weather and climatic events, and health risk conditions. Reanalyses are used for a variety of applications, including as a source for the development

  7. Distribution and Validation of Cloud Cover Derived from AVHRR Data Over the Arctic Ocean During the SHEBA Year

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sector Full report (1.6 mb) Appendix2863[pic]

  8. Analysis of Crude Oil Production in the Arctic National Wildlife Refuge

    Reports and Publications (EIA)

    2008-01-01

    This report responds to a request from Senator Ted Stevens that the Energy Information Administration provide an assessment of federal oil and natural gas leasing in the coastal plain of the Arctic National Wildlife Refuge (ANWR) in Alaska.

  9. The Impact of Global Warming on the Carbon Cycle of Arctic Permafrost...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: The Impact of Global Warming on the Carbon Cycle of Arctic Permafrost: An Experimental and Field Based Study Citation Details In-Document Search Title: The Impact...

  10. Source attributions of pollution to the Western Arctic during the NASA ARCTAS field campaign

    E-Print Network [OSTI]

    2013-01-01

    plumes intercepted by the NASA DC-8 aircraft during theand Woollen, J. : MERRA: NASA’s Modern-Era RetrospectiveWestern Arctic during the NASA ARCTAS field campaign H. P.

  11. Satellite Retrievals of Arctic and Equatorial Rain and Snowfall Rates Using Millimeter Wavelengths

    E-Print Network [OSTI]

    Surussavadee, Chinnawat

    A new global precipitation retrieval algorithm for the millimeter-wave Advanced Microwave Sounding Unit is presented that also retrieves Arctic precipitation rates over surface snow and ice. This algorithm improves upon ...

  12. Building skills : a construction trades training facility for the eastern Canadian Arctic

    E-Print Network [OSTI]

    Roszler, Sarah Katherine, 1977-

    2005-01-01

    On April 1, 1999, the Inuit of the Eastern Canadian Arctic achieved sovereignty over a new territory, Nunavut, envisioning economic self-reliance, political self-determination, and renewal of confidence in Inuit community. ...

  13. Impacts of Climate Change on Human Access and Resource Development in the Arctic

    E-Print Network [OSTI]

    Stephenson, Scott Ryan

    2014-01-01

    C. (2014). Russian Arctic LNG project to name shippers,tax breaks to benefit Yamal LNG project (21 October). Globalthe first- ever transit by an LNG carrier in November 2012 (

  14. bowhead whales. The Naval Arctic Re-search Laboratory at Barrow, Alaska,

    E-Print Network [OSTI]

    , Greenland whale, or bowhead. Unpubl. manuscr. [Vol. 15, Encyclopedia Arctica], 71 p. Avail. Dartmouth. Biology of the bowhead whale (Sa/aena mysticetus) in the western Arctic. Unpubl. manuscr., 93 p. Dep. Bio

  15. Assessing the Predictability of the Beaufort Sea Minimum Ice Extent in a Changing Arctic Climate Regime 

    E-Print Network [OSTI]

    Quirk, Laura Marie

    2014-04-25

    Understanding the climatic drivers of changes in sea ice extent in the Arctic has become increasingly important as record minima in the September sea ice extent continue to be reached. This research therefore addresses the question of which synoptic...

  16. Simulated Response of the Arctic Freshwater Budget to Extreme NAO Wind Forcing

    E-Print Network [OSTI]

    Condron, Alan

    The authors investigate the response of the Arctic Ocean freshwater budget to changes in the North Atlantic Oscillation (NAO) using a regional-ocean configuration of the Massachusetts Institute of Technology GCM (MITgcm) ...

  17. Patterns of shrub expansion in Alaskan arctic river corridors suggest phase transition 

    E-Print Network [OSTI]

    Naito, Adam T; Cairns, David M

    2015-01-01

    of tall shrubs. Given current understanding of the local-scale implications for hydrol- ogy, surface energy balances, and carbon and nutrient cycling as a result of enhanced shrub cover, the comple- tion of this phase transition will alter tundra ecosystem... in Alaskan arctic river corridors suggest phase transition Adam T. Naito & David M. Cairns Department of Geography, Texas A&M University, 810 Eller O&M Building, Mailstop 3147 TAMU, College Station, Texas 77843-3147 Keywords Alaska, Arctic, landscape analysis...

  18. Secure Cloud Computing with a Virtualized Network Infrastructure

    E-Print Network [OSTI]

    Akella, Aditya

    Secure Cloud Computing with a Virtualized Network Infrastructure Fang Hao, T.V. Lakshman, Sarit the rapid development in the field of cloud com- puting, security is still one of the major hurdles to cloud to users. At the other end of the spectrum, highly secured cloud services (e.g. Google "government cloud

  19. Fog Computing: Mitigating Insider Data Theft Attacks in the Cloud

    E-Print Network [OSTI]

    Keromytis, Angelos D.

    approach for securing data in the cloud using offensive decoy technology. We monitor data access security in a Cloud environment. I. INTRODUCTION Businesses, especially startups, small and medium busi. This is considered as one of the top threats to cloud computing by the Cloud Security Alliance [1]. While most Cloud

  20. Page 1Securing the Microsoft Cloud Securing the

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    Page 1Securing the Microsoft Cloud Securing the Microsoft Cloud #12;Page 2Securing the Microsoft to have confidence in Microsoft as their preferred cloud provider. Our security policies and practices their security and compliance related needs. Securing the Microsoft Cloud #12;Page 3Securing the Microsoft Cloud

  1. Organizational challenges in cloud adoption and enablers of cloud transition program

    E-Print Network [OSTI]

    Rajendran, Sneha

    2013-01-01

    With the proliferation of cloud computing, organizations have been able to get access to never seen before computing power and resources. Cloud computing has revolutionized the utilization of computing resources through ...

  2. Aircraft Observations of Sub-cloud Aerosol and Convective Cloud Physical Properties 

    E-Print Network [OSTI]

    Axisa, Duncan

    2011-02-22

    This research focuses on aircraft observational studies of aerosol-cloud interactions in cumulus clouds. The data were collected in the summer of 2004, the spring of 2007 and the mid-winter and spring of 2008 in Texas, ...

  3. Ising model for melt ponds on Arctic sea ice

    E-Print Network [OSTI]

    Ma, Y -P; Golden, K M

    2014-01-01

    The albedo of melting Arctic sea ice, a key parameter in climate modeling, is determined by pools of water on the ice surface. Recent observations show an onset of pond complexity at a critical area of about 100 square meters, attended by a transition in pond fractal dimension. To explain this behavior and provide a statistical physics approach to sea ice modeling, we introduce a two dimensional Ising model for pond evolution which incorporates ice-albedo feedback and the underlying thermodynamics. The binary magnetic spin variables in the Ising model correspond to the presence of melt water or ice on the sea ice surface. The model exhibits a second-order phase transition from isolated to clustered melt ponds, with the evolution of pond complexity in the clustered phase consistent with the observations.

  4. Active layer dynamics and arctic hydrology and meteorology. Final report

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    Man`s impact on the environment is increasing with time. To be able to evaluate anthropogenic impacts on an ecosystems, it is necessary first to understand all facets of how the ecosystems works: what the main processes (physical, biological, chemical) are, at what rates they proceed, and how they can be manipulated. Arctic ecosystems are dominated by physical processes of energy exchange. This project has concentrated on a strong program of hydrologic and meteorologic data collection, to better understand dominant physical processes. Field research focused on determining the natural annual and diurnal variability of meteorologic and hydrologic variables, especially those which may indicate trends in climatic change. Comprehensive compute models are being developed to simulate physical processes occurring under the present conditions and to simulate processes under the influence of climatic change.

  5. A Climatology of Fair-Weather Cloud Statistics at the Atmospheric Radiation Measurement Program Southern Great Plains Site: Temporal and Spatial Variability

    SciTech Connect (OSTI)

    Berg, Larry K.; Kassianov, Evgueni I.; Long, Charles N.; Gustafson, William I.

    2006-03-30

    In previous work, Berg and Stull (2005) developed a new parameterization for Fair-Weather Cumuli (FWC). Preliminary testing of the new scheme used data collected during a field experiment conducted during the summer of 1996. This campaign included a few research flights conducted over three locations within the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) Southern Great Plains (SGP) site. A more comprehensive verification of the new scheme requires a detailed climatology of FWC. Several cloud climatologies have been completed for the ACRF SGP, but these efforts have focused on either broad categories of clouds grouped by height and season (e.g., Lazarus et al. 1999) or height and time of day (e.g., Dong et al. 2005). In these two examples, the low clouds were not separated by the type of cloud, either stratiform or cumuliform, nor were the horizontal chord length (the length of the cloud slice that passed directly overhead) or cloud aspect ratio (defined as the ratio of the cloud thickness to the cloud chord length) reported. Lane et al. (2002) presented distributions of cloud chord length, but only for one year. The work presented here addresses these shortcomings by looking explicitly at cases with FWC over five summers. Specifically, we will address the following questions: •Does the cloud fraction (CF), cloud-base height (CBH), and cloud-top height (CTH) of FWC change with the time of day or the year? •What is the distribution of FWC chord lengths? •Is there a relationship between the cloud chord length and the cloud thickness?

  6. Development, sensitivity analysis, and uncertainty quantification of high-fidelity arctic sea ice models.

    SciTech Connect (OSTI)

    Peterson, Kara J.; Bochev, Pavel Blagoveston; Paskaleva, Biliana S.

    2010-09-01

    Arctic sea ice is an important component of the global climate system and due to feedback effects the Arctic ice cover is changing rapidly. Predictive mathematical models are of paramount importance for accurate estimates of the future ice trajectory. However, the sea ice components of Global Climate Models (GCMs) vary significantly in their prediction of the future state of Arctic sea ice and have generally underestimated the rate of decline in minimum sea ice extent seen over the past thirty years. One of the contributing factors to this variability is the sensitivity of the sea ice to model physical parameters. A new sea ice model that has the potential to improve sea ice predictions incorporates an anisotropic elastic-decohesive rheology and dynamics solved using the material-point method (MPM), which combines Lagrangian particles for advection with a background grid for gradient computations. We evaluate the variability of the Los Alamos National Laboratory CICE code and the MPM sea ice code for a single year simulation of the Arctic basin using consistent ocean and atmospheric forcing. Sensitivities of ice volume, ice area, ice extent, root mean square (RMS) ice speed, central Arctic ice thickness, and central Arctic ice speed with respect to ten different dynamic and thermodynamic parameters are evaluated both individually and in combination using the Design Analysis Kit for Optimization and Terascale Applications (DAKOTA). We find similar responses for the two codes and some interesting seasonal variability in the strength of the parameters on the solution.

  7. Assessing Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O DBiomass and Biofuels BiomassAssembly of aCloud Spatial and

  8. An AeroCom Assessment of Black Carbon in Arctic Snow and Sea Ice

    SciTech Connect (OSTI)

    Jiao, C.; Flanner, M. G.; Balkanski, Y.; Bauer, S.; Bellouin, N.; Berntsen, T.; Bian, Huisheng; Carslaw, K. S.; Chin, Mian; De Luca, N.; Diehl, Thomas; Ghan, Steven J.; Iversen, T.; Kirkevag, A.; Koch, Dorothy; Liu, Xiaohong; Mann, G. W.; Penner, Joyce E.; Pitari, G.; Schulz, M.; Seland, O.; Skeie, R. B.; Steenrod, Stephen D.; Stier, P.; Takemura, T.; Tsigaridis, Kostas; van Noije, T.; Yun, Yuxing; Zhang, Kai

    2014-03-07

    Though many global aerosols models prognose surface deposition, only a few models have been used to directly simulate the radiative effect from black carbon (BC) deposition to snow and sea-ice. Here, we apply aerosol deposition fields from 25 models contributing to two phases of the Aerosol Comparisons between Observations and Models (AeroCom) project to simulate and evaluate within snow BC concentrations and radiative effect in the Arctic. We accomplish this by driving the offline land and sea-ice components of the Community Earth System Model with different deposition fields and meteorological conditions from 2004-2009, during which an extensive field campaign of BC measurements in Arctic snow occurred. We find that models generally underestimate BC concentrations in snow in northern Russia and Norway, while overestimating BC amounts elsewhere in the Arctic. Although simulated BC distributions in snow are poorly correlated with measurements, mean values are reasonable. The multi-model mean (range) bias in BC concentrations, sampled over the same grid cells, snow depths, and months of measurements, are -4.4 (-13.2 to +10.7) ng g?1 for an earlier Phase of AeroCom models (Phase I), and +4.1 (-13.0 to +21.4) ng g?1 for a more recent Phase of AeroCom models (Phase II), compared to the observational mean of 19.2 ng g?1. Factors determining model BC concentrations in Arctic snow include Arctic BC emissions, transport of extra-Arctic aerosols, precipitation, deposition efficiency of aerosols within the Arctic, and meltwater removal of particles in snow. Sensitivity studies show that the model–measurement evaluation is only weakly affected by meltwater scavenging efficiency because most measurements were conducted in non-melting snow. The Arctic (60-90?N) atmospheric residence time for BC in Phase II models ranges from 3.7 to 23.2 days, implying large inter-model variation in local BC deposition efficiency. Combined with the fact that most Arctic BC deposition originates from extra-Arctic emissions, these results suggest that aerosol removal processes are a leading source of variation in model performance. The multi-model mean (full range) of Arctic radiative effect from BC in snow is 0.15 (0.07-0.25) W m?2 and 0.18 (0.06-0.28) W m?2 in Phase I and Phase II models, respectively. After correcting for model biases relative to observed BC concentrations in different regions of the Arctic, we obtain a multi-model mean Arctic radiative effect of 0.17 W m?2 for the combined AeroCom ensembles. Finally, there is a high correlation between modeled BC concentrations sampled over the observational sites and the Arctic as a whole, indicating that the field campaign provided a reasonable sample of the Arctic.

  9. Fragmentation in rotating isothermal protostellar clouds

    SciTech Connect (OSTI)

    Bodenheimer, P.; Tohline, J.E.; Black, D.C.

    1980-01-01

    Results of an extensive set of 3-D hydrodynamic calculations that have been performed to investigate the susceptibility of rotating clouds to gravitational fragmentation are presented. (GHT)

  10. Interstellar Turbulence, Cloud Formation and Pressure Balance

    E-Print Network [OSTI]

    Enrique Vazquez-Semadeni

    1998-10-23

    We discuss HD and MHD compressible turbulence as a cloud-forming and cloud-structuring mechanism in the ISM. Results from a numerical model of the turbulent ISM at large scales suggest that the phase-like appearance of the medium, the typical values of the densities and magnetic field strengths in the intercloud medium, as well as Larson's velocity dispersion-size scaling relation in clouds may be understood as consequences of the interstellar turbulence. However, the density-size relation appears to only hold for the densest simulated clouds, there existing a large population of small, low-density clouds, which, on the other hand, are hardest to observe. We then discuss several tests and implications of a fully dynamical picture of interstellar clouds. The results imply that clouds are transient, constantly being formed, distorted and disrupted by the turbulent velocity field, with a fraction of these fluctuations undergoing gravitational collapse. Simulated line profiles and estimated cloud lifetimes are consistent with observational data. In this scenario, we suggest it is quite unlikely that quasi-hydrostatic structures on any scale can form, and that the near pressure balance between clouds and the intercloud medium is an incidental consequence of the density field driven by the turbulence and in the presence of appropriate cooling, rather than a driving or confining mechanism.

  11. CHARACTERIZATION OF CLOUDS IN TITAN'S TROPICAL ATMOSPHERE

    SciTech Connect (OSTI)

    Griffith, Caitlin A.; Penteado, Paulo; Rodriguez, Sebastien; Baines, Kevin H.; Buratti, Bonnie; Sotin, Christophe; Clark, Roger; Nicholson, Phil; Jaumann, Ralf

    2009-09-10

    Images of Titan's clouds, possible over the past 10 years, indicate primarily discrete convective methane clouds near the south and north poles and an immense stratiform cloud, likely composed of ethane, around the north pole. Here we present spectral images from Cassini's Visual Mapping Infrared Spectrometer that reveal the increasing presence of clouds in Titan's tropical atmosphere. Radiative transfer analyses indicate similarities between summer polar and tropical methane clouds. Like their southern counterparts, tropical clouds consist of particles exceeding 5 {mu}m. They display discrete structures suggestive of convective cumuli. They prevail at a specific latitude band between 8 deg. - 20 deg. S, indicative of a circulation origin and the beginning of a circulation turnover. Yet, unlike the high latitude clouds that often reach 45 km altitude, these discrete tropical clouds, so far, remain capped to altitudes below 26 km. Such low convective clouds are consistent with the highly stable atmospheric conditions measured at the Huygens landing site. Their characteristics suggest that Titan's tropical atmosphere has a dry climate unlike the south polar atmosphere, and despite the numerous washes that carve the tropical landscape.

  12. Modeling microwave/electron-cloud interaction

    E-Print Network [OSTI]

    Mattes, M; Zimmermann, F

    2013-01-01

    Starting from the separate codes BI-RME and ECLOUD or PyECLOUD, we are developing a novel joint simulation tool, which models the combined effect of a charged particle beam and of microwaves on an electron cloud. Possible applications include the degradation of microwave transmission in tele-communication satellites by electron clouds; the microwave-transmission tecchniques being used in particle accelerators for the purpose of electroncloud diagnostics; the microwave emission by the electron cloud itself in the presence of a magnetic field; and the possible suppression of electron-cloud formation in an accelerator by injecting microwaves of suitable amplitude and frequency. A few early simulation results are presented.

  13. April 12, 2014: The Era of Cloud Computing is coming Headline: The Era of Cloud Computing is coming

    E-Print Network [OSTI]

    Buyya, Rajkumar

    April 12, 2014: The Era of Cloud Computing is coming #12;Headline: The Era of Cloud Computing of Cloud Computing at a seminar in MANIT and RGPV on Saturday. Inset headline: This is the right time to build a career in Cloud Computing Article: Prof. Rajkumar Buyya gave guidance to students about Cloud

  14. IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 1 Cloud Federations in the Sky: Formation Game

    E-Print Network [OSTI]

    Grosu, Daniel

    IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 1 Cloud Federations in the Sky for cloud resources. The cloud providers' available resources may not be sufficient enough to cope with such demands. Therefore, the cloud providers need to reshape their business structures and seek to improve

  15. RETRIEVALS OF CLOUD OPTICAL DEPTH AND EFFECTIVE RADIUS FROM A THIN-CLOUD ROTATING SHADOWBAND RADIOMETER (TC-RSR)

    E-Print Network [OSTI]

    RETRIEVALS OF CLOUD OPTICAL DEPTH AND EFFECTIVE RADIUS FROM A THIN-CLOUD ROTATING SHADOWBAND Division Brookhaven National Laboratory U.S. Department of Energy Office of Science ABSTRACT A thin cloud cloud. We applied Min and Duan's retrieval algorithm to the field measurements of TC-RSR to derive cloud

  16. Aircraft Microphysical Documentation from Cloud Base to Anvils of Hailstorm Feeder Clouds in Argentina

    E-Print Network [OSTI]

    Daniel, Rosenfeld

    in Argentina DANIEL ROSENFELD The Hebrew University of Jerusalem, Jerusalem, Israel WILLIAM L. WOODLEY Woodley, Argentina, with a cloud-physics jet aircraft penetrating the major feeder clouds from cloud base to the 45°C. Introduction The province of Mendoza in western Argentina (32°S, 68°W), which is known worldwide for its wine

  17. CloudBridge: A Cloud-Powered System Enabling Mobile Devices to Control Peripherals Without Drivers

    E-Print Network [OSTI]

    Young, R. Michael

    , CloudBridge. CloudBridge user ap- plication running on a smart device works as a TCP bridge relaying on the other. Through the bridge, it is possible to issue operations from a smart device without having network Figure 1: The smart device in the middle works as a bridge connecting a cloud server

  18. Cloud K-SVD: Computing data-adaptive representations in the cloud

    E-Print Network [OSTI]

    Bajwa, Waheed U.

    Cloud K-SVD: Computing data-adaptive representations in the cloud Haroon Raja and Waheed U. Bajwa Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ 08854 Emails: haroon a distributed algorithm, termed as cloud K-SVD, for learning a UoS structure underlying distributed data

  19. A Study of Entropy Sources in Cloud Random Number Generation on Cloud Hosts

    E-Print Network [OSTI]

    Chen, Yu

    A Study of Entropy Sources in Cloud Computers: Random Number Generation on Cloud Hosts Brendan Kerrigan and Yu Chen Dept. of Electrical and Computer Engineering, SUNY - Binghamton Abstract. Cloud security practices are based on assumptions that hold true for physical machines, but don't translate

  20. ENTRAINMENT AND MIXING AND THEIR EFFECTS ON CLOUD DROPLET SIZE DISTRIBUTIONS OF THE STRATOCUMULUS CLOUDS OBSERVED

    E-Print Network [OSTI]

    ENTRAINMENT AND MIXING AND THEIR EFFECTS ON CLOUD DROPLET SIZE DISTRIBUTIONS OF THE STRATOCUMULUS clouds due to entrainment and mixing of the clear air, which then affect the cloud droplet size distribution. How the entrained clear air mixes with cloudy air has been of great interest for the last several

  1. A 3D STOCHASTIC CLOUD MODEL FOR INVESTIGATING THE RADIATIVE PROPERTIES OF INHOMOGENEOUS CIRRUS CLOUDS

    E-Print Network [OSTI]

    Hogan, Robin

    A 3D STOCHASTIC CLOUD MODEL FOR INVESTIGATING THE RADIATIVE PROPERTIES OF INHOMOGENEOUS CIRRUS CLOUDS Robin J. Hogan and Sarah F. Kew ˇ Department of Meteorology, University of Reading, Reading, Berkshire, United Kingdom 1 INTRODUCTION The importance of ice clouds on the earth's radiation budget

  2. Reactive nitrogen, ozone and ozone production in the Arctic troposphere and the impact of stratosphere-troposphere exchange

    E-Print Network [OSTI]

    2011-01-01

    and Logan, J. A. : Atmospheric chemistry in the Arctic andIntroduction to Atmospheric Chemistry, Princeton University3.0 License. Atmospheric Chemistry and Physics Reactive

  3. Dynamics of Arctic and Sub-Arctic Climate and Atmospheric Circulation: Diagnosis of Mechanisms and Biases Using Data Assimilation

    SciTech Connect (OSTI)

    Eric T. DeWeaver

    2010-02-17

    The overall goal of work performed under this grant is to enhance understanding of simulations of present-day climate and greenhouse gas-induced climate change. The examination of present-day climate also includes diagnostic intercomparison of model simulations and observed mean climate and climate variability using reanalysis and satellite datasets. Enhanced understanding is desirable 1) as a prerequisite for improving simulations; 2) for assessing the credibility of model simulations and their usefulness as tools for decision support; and 3) as a means to identify robust behaviors which commonly occur over a wide range of models, and may yield insights regarding the dominant physical mechanisms which determine mean climate and produce climate change. A further objective is to investigate the use of data assimilation as a means for examining and correcting model biases. Our primary focus is on the Arctic, but the scope of the work was expanded to include the global climate system.

  4. Dynamics of Arctic and Sub-Arctic Climate and Atmospheric Circulation: Diagnosis of Mechanisms and Biases Using Data Assimilation

    SciTech Connect (OSTI)

    Eric T. DeWeaver

    2010-01-19

    This is the final report for DOE grant DE-FG02-07ER64434 to Eric DeWeaver at the University of Wisconsin-Madison. The overall goal of work performed under this grant is to enhance understanding of simulations of present-day climate and greenhouse gas-induced climate change. Enhanced understanding is desirable 1) as a prerequisite for improving simulations; 2) for assessing the credibility of model simulations and their usefulness as tools for decision support; and 3) as a means to identify robust behaviors which commonly occur over a wide range of models, and may yield insights regarding the dominant physical mechanisms which determine mean climate and produce climate change. A furthe objective is to investigate the use of data assimilation as a means for examining and correcting model biases. Our primary focus is on the Arctic, but the scope of the work was expanded to include the global climate system to the extent that research targets of opportunity present themselves. Research performed under the grant falls into five main research areas: 1) a study of data assimilation using an ensemble filter with the atmospheric circulation model of the National Center for Atmospheric Research, in which both conventional observations and observations of the refraction of radio waves from GPS satellites were used to constrain the atmospheric state of the model; 2) research on the likely future status of polar bears, in which climate model simluations were used to assess the effectiveness of climate change mitigation efforts in preserving the habitat of polar bears, now considered a threatened species under global warming; 3) as assessment of the credibility of Arctic sea ice thickness simulations from climate models; 4) An examination of the persistence and reemergence of Northern Hemisphere sea ice area anomalies in climate model simulations and in observations; 5) An examination of the roles played by changes in net radiation and surface relative humidity in determine the response of the hydrological cycle to global warming.

  5. Next-Generation Ecosystem Experiments-Arctic (NGEE) PRINCIPAL INVESTIGATOR: Stan D. Wullschleger

    E-Print Network [OSTI]

    . Fundamental knowledge will reduce uncertainty and improve representation of processes in Earth System Models

  6. Distant origins of Arctic black carbon: A Goddard Institute for Space Studies ModelE experiment

    E-Print Network [OSTI]

    %) and from biomass (28%) (with slightly more than half of biomass coming from north of 40°N); North America ``soot,'' is derived from the incomplete combustion of fossil fuels (primarily coal and diesel) and from

  7. Data from CREL, from the SHEBA experiment, western Arctic How to define it?

    E-Print Network [OSTI]

    Washington at Seattle, University of

    - summer 2005, no replenishment of MY ice - Fram Strait export 40% of MY ice loss (rest = melting) #12;But in the game? ASSUME 1m thick ~ 2 x 1012 m3 (extra volume lost) (i.e. 2 x 103 km3) Energy needed for melt 106 km2 2006 ~ 0.16 x 106 km2 2007 ~ 0.28 x 106 km2 Ice export only ~ 15% of sea ice retreat Extra

  8. Consistent cloud computing storage as the basis for distributed applications

    E-Print Network [OSTI]

    Anderson, James William

    2011-01-01

    Messaging in Cloud Computing . . . . . . . . . .7 1.4Eucalyptus Open—Source Cloud—Computing System. In C'C&#http://www.eweek.com/c/a/Cloud-Computing/Amazons—Head—Start—

  9. A Framework for Secure Cloud-Empowered Mobile Biometrics

    E-Print Network [OSTI]

    Valenti, Matthew C.

    1 A Framework for Secure Cloud-Empowered Mobile Biometrics A. A framework for secure cloud biometrics 4. System analysis 5. Conclusion #12;3 3 for secure cloud biometrics 4. System analysis 5. Conclusion #12;4 4 Introduc

  10. ISMS for Microsoft's Cloud Infrastructure 1 Information Security Management System

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    ISMS for Microsoft's Cloud Infrastructure 1 Information Security Management System for Microsoft's Cloud Infrastructure Online Services Security and Compliance Executive summary This paper describes the Microsoft Cloud Infrastructure and Operations (MCIO) Information Security Management System (ISMS) program

  11. E-Cloud Build-up in Grooved Chambers

    E-Print Network [OSTI]

    Venturini, Marco

    2007-01-01

    and F. Zimmermann, ”LC e-Cloud Activities at CERN”, talkal. , Simulations of the Electron Cloud for Vari- ous Con?E-CLOUD BUILD-UP IN GROOVED CHAMBERS ? M. Venturini † LBNL,

  12. Deriving cloud velocity from an array of solar radiation measurements

    E-Print Network [OSTI]

    Bosch, J.L.; Zheng, Y.; Kleissl, J.

    2013-01-01

    K. , 2011. US20110060475. Cloud tracking. U.S. Patent Bedka,technique for obtaining cloud motion from geosynchronouson advection of a frozen cloud field (Chow et al. (2011);

  13. A cloud-assisted design for autonomous driving

    E-Print Network [OSTI]

    Suresh Kumar, Swarun

    This paper presents Carcel, a cloud-assisted system for autonomous driving. Carcel enables the cloud to have access to sensor data from autonomous vehicles as well as the roadside infrastructure. The cloud assists autonomous ...

  14. Scheduling Multilevel Deadline-Constrained Scientific Workflows on Clouds Based on Cost Optimization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Malawski, Maciej; Figiela, Kamil; Bubak, Marian; Deelman, Ewa; Nabrzyski, Jarek

    2015-01-01

    This paper presents a cost optimization model for scheduling scientific workflows on IaaS clouds such as Amazon EC2 or RackSpace. We assume multiple IaaS clouds with heterogeneous virtual machine instances, with limited number of instances per cloud and hourly billing. Input and output data are stored on a cloud object store such as Amazon S3. Applications are scientific workflows modeled as DAGs as in the Pegasus Workflow Management System. We assume that tasks in the workflows are grouped into levels of identical tasks. Our model is specified using mathematical programming languages (AMPL and CMPL) and allows us to minimize themore »cost of workflow execution under deadline constraints. We present results obtained using our model and the benchmark workflows representing real scientific applications in a variety of domains. The data used for evaluation come from the synthetic workflows and from general purpose cloud benchmarks, as well as from the data measured in our own experiments with Montage, an astronomical application, executed on Amazon EC2 cloud. We indicate how this model can be used for scenarios that require resource planning for scientific workflows and their ensembles.« less

  15. Electron Cloud Effects in Accelerators

    SciTech Connect (OSTI)

    Furman, M.A.

    2012-11-30

    Abstract We present a brief summary of various aspects of the electron-cloud effect (ECE) in accelerators. For further details, the reader is encouraged to refer to the proceedings of many prior workshops, either dedicated to EC or with significant EC contents, including the entire ?ECLOUD? series [1?22]. In addition, the proceedings of the various flavors of Particle Accelerator Conferences [23] contain a large number of EC-related publications. The ICFA Beam Dynamics Newsletter series [24] contains one dedicated issue, and several occasional articles, on EC. An extensive reference database is the LHC website on EC [25].

  16. Clouds, Aerosols and Precipitation in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D BGene NetworkNuclearDNP 20082 P r o j eCommitteeCloud-Resolving3

  17. ARM - Lesson Plans: Making Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska Outreach Home Room News PublicationsClimate inMaking Clouds Outreach

  18. Sandia Energy - Cloud Computing Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumniProjects Caterpillar, Sandia CRADAChemistryCloud

  19. Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part II: Attribution to Changes in Cloud Amount, Altitude, and Optical Depth

    E-Print Network [OSTI]

    Hartmann, Dennis

    Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part II: Attribution to Changes in Cloud Amount, Altitude, and Optical Depth MARK D. ZELINKA Department of Atmospheric Sciences received 12 May 2011, in final form 15 November 2011) ABSTRACT Cloud radiative kernels and histograms

  20. Clock-Based Proxy Re-encryption Scheme inClock-Based Proxy Re-encryption Scheme inClock-Based Proxy Re-encryption Scheme inClock-Based Proxy Re-encryption Scheme in Unreliable CloudsUnreliable CloudsUnreliable CloudsUnreliable Clouds

    E-Print Network [OSTI]

    Wu, Jie

    International Workshop on Security in Cloud Computing (CloudSecInternational Workshop on Security in Cloud Computing (CloudSecInternational Workshop on Security in Cloud Computing (CloudSecInternational Workshop on Security in Cloud Computing (CloudSec 2012)2012)2012)2012) [1] Central South University, China [2] Temple

  1. Master thesis Solar Energy Meteorology Comparison of different methods to estimate cloud height for solar

    E-Print Network [OSTI]

    Peinke, Joachim

    Master thesis ­ Solar Energy Meteorology Comparison of different methods to estimate cloud height: · Interest in meteorology and solar energy · Experiences with data handling and analysis · Good programming for solar irradiance calculations In order to derive incoming solar irradiance at the earths surface

  2. Challenge the future 1 Observations of aerosol-cloud-radiation

    E-Print Network [OSTI]

    Graaf, Martin de

    -road Industrial coal Residential solid fuel Biofuel cooking Biofuel heating Coal Open Burning Agricultural fields causes Differences in: · cloud properties · cloud fraction and location · aerosol properties · smoke

  3. RFID Asset Management Solution with Cloud Computation Service

    E-Print Network [OSTI]

    Chattopadhyay, Arunabh

    2012-01-01

    Gadh, “Web based RFID asset management solution establishedLos Angeles RFID Asset Management Solution with CloudTHE DISSERTATION RFID Asset Management Solution with Cloud

  4. Testing Cloud Microphysics Parameterizations in NCAR CAM5 with...

    Office of Scientific and Technical Information (OSTI)

    fraction for single-layer boundary layer mixed-phase stratocumulus, and multilayer or deep frontal clouds. However, for low-level clouds, the model significantly underestimates...

  5. Direct Numerical Simulations and Robust Predictions of Cloud...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cloud. Credit: Computational Science and Engineering Laboratory, ETH Zurich, Switzerland Direct Numerical Simulations and Robust Predictions of Cloud Cavitation Collapse PI Name:...

  6. Compression of Antiproton Clouds for Antihydrogen Trapping

    E-Print Network [OSTI]

    G. B. Andresen; W. Bertsche; P. D. Bowe; C. C. Bray; E. Butler; C. L. Cesar; S. Chapman; M. Charlton; J. Fajans; M. C. Fujiwara; R. Funakoshi; D. R. Gill; J. S. Hangst; W. N. Hardy; R. S. Hayano; M. E. Hayden; R. Hydomako; M. J. Jenkins; L. V. Jorgensen; L. Kurchaninov; R. Lambo; N. Madsen; P. Nolan; K. Olchanski; A. Olin; A. Povilus; P. Pusa; F. Robicheaux; E. Sarid; S. Seif El Nasr; D. M. Silveira; J. W. Storey; R. I. Thompson; D. P. van der Werf; J. S. Wurtele; Y. Yamazaki

    2008-06-30

    Control of the radial profile of trapped antiproton clouds is critical to trapping antihydrogen. We report the first detailed measurements of the radial manipulation of antiproton clouds, including areal density compressions by factors as large as ten, by manipulating spatially overlapped electron plasmas. We show detailed measurements of the near-axis antiproton radial profile and its relation to that of the electron plasma.

  7. The CloudNets Network Virtualization Architecture

    E-Print Network [OSTI]

    Schmid, Stefan

    Nets Network Virtualization Architecture Johannes Grassler jgrassler@inet.tu-berlin.de 05. Februar, 2014 Johannes Grassler jgrassler@inet.tu-berlin.de The CloudNets Network Virtualization Architecture #12;..... . .... . .... . ..... . .... . .... . .... . ..... . .... . .... . .... . ..... . .... . .... . .... . ..... . .... . ..... . .... . .... . Johannes Grassler jgrassler@inet.tu-berlin.de The CloudNets Network Virtualization Architecture #12

  8. Pricing Cloud Bandwidth Reservations under Demand Uncertainty

    E-Print Network [OSTI]

    Li, Baochun

    Pricing Cloud Bandwidth Reservations under Demand Uncertainty Di Niu, Chen Feng, Baochun Li's utility depends not only on its bandwidth usage, but more importantly on the portion of its demand that can be made by all tenants and the cloud provider, even with the presence of demand uncertainty

  9. Secure Storage in Cloud Computing Abbas Amini

    E-Print Network [OSTI]

    i Secure Storage in Cloud Computing Abbas Amini Kongens Lyngby 2012 IMM-M.Sc.-2012-39 #12;ii In this Master's thesis a security solution for data storage in cloud computing is examined. The solution encompasses confidentiality and integrity of the stored data, as well as a secure data sharing mechanism

  10. Dynamics of Clouds Fall Semester 2012

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    -2pm Course Description: This class focuses on the general dynamics of cloud systems. Models of fog, vertical velocities, and liquid water contents 1 1 Fogs and Stratocumulus Clouds · Types of fog and formation mechanisms · Radiation fog and physics and dynamics · Valley fog · Marine fog · Stratocumulus

  11. Public Cloud B CarbonEmission

    E-Print Network [OSTI]

    Buyya, Rajkumar

    Programming Environment and Tools: Green Profiler, Power Capping, Green Compiler, Workflow Cloud Hosting Sensors, Demand Prediction Power Capping, Green Software Services such as energy-efficient scientific information Green Offer Directory 2) Request any `Green Offer' Routers Internet Green Broker #12;Cloud

  12. Deuteration in infrared dark clouds

    E-Print Network [OSTI]

    Lackington, Matias; Pineda, Jaime E; Garay, Guido; Peretto, Nicolas; Traficante, Alessio

    2015-01-01

    Much of the dense gas in molecular clouds has a filamentary structure but the detailed structure and evolution of this gas is poorly known. We have observed 54 cores in infrared dark clouds (IRDCs) using N$_2$H$^+$ (1-0) and (3-2) to determine the kinematics of the densest material, where stars will form. We also observed N$_2$D$^+$ (3-2) towards 29 of the brightest peaks to analyse the level of deuteration which is an excellent probe of the quiescent of the early stages of star formation. There were 13 detections of N$_2$D$^+$ (3-2). This is one of the largest samples of IRDCs yet observed in these species. The deuteration ratio in these sources ranges between 0.003 and 0.14. For most of the sources the material traced by N$_2$D$^+$ and N$_2$H$^+$ (3-2) still has significant turbulent motions, however three objects show subthermal N$_2$D$^+$ velocity dispersion. Surprisingly the presence or absence of an embedded 70 $\\mu$m source shows no correlation with the detection of N$_2$D$^+$ (3-2), nor does it correl...

  13. Evaluation of Cloud-Resolving Model Intercomparison Simulations Using TWP-ICE Observations: Precipitation and Cloud Structure

    SciTech Connect (OSTI)

    Varble, Adam; Fridlind, Ann; Zipser, Edward J.; Ackerman, Andrew; Chaboureau, Jean-Pierre; Fan, Jiwen; Hill, Adrian; McFarlane, Sally A.; Pinty, Jean-Pierre; Shipway, Ben

    2011-10-04

    The Tropical Warm Pool – International Cloud Experiment (TWP-ICE) provided high quality model forcing and observational datasets through which detailed model and observational intercomparisons could be performed. In this first of a two part study, precipitation and cloud structures within nine cloud-resolving model simulations are compared with scanning radar reflectivity and satellite infrared brightness temperature observations during an active monsoon period from 19 to 25 January 2006. Most simulations slightly overestimate volumetric convective rainfall. Overestimation of simulated convective area by 50% or more in several simulations is somewhat offset by underestimation of mean convective rain rates. Stratiform volumetric rainfall is underestimated by 13% to 53% despite overestimation of stratiform area by up to 65% because stratiform rain rates in every simulation are much lower than observed. Although simulations match the peaked convective radar reflectivity distribution at low levels, they do not reproduce the peaked distributions observed above the melting level. Simulated radar reflectivity aloft in convective regions is too high in most simulations. In stratiform regions, there is a large spread in model results with none resembling observed distributions. Above the melting level, observed radar reflectivity decreases more gradually with height than simulated radar reflectivity. A few simulations produce unrealistically uniform and cold 10.8-?m infrared brightness temperatures, but several simulations produce distributions close to observed. Assumed ice particle size distributions appear to play a larger role than ice water contents in producing incorrect simulated radar reflectivity distributions aloft despite substantial differences in mean graupel and snow water contents across models.

  14. The Magellanic Stream and debris clouds

    SciTech Connect (OSTI)

    For, B.-Q.; Staveley-Smith, L. [International Centre for Radio Astronomy Research, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009 (Australia); Matthews, D. [Centre for Materials and Surface Science, La Trobe University, Melbourne, VIC 3086 (Australia); McClure-Griffiths, N. M., E-mail: biqing.for@icrar.org [CSIRO Astronomy and Space Science, Epping, NSW 1710 (Australia)

    2014-09-01

    We present a study of the discrete clouds and filaments in the Magellanic Stream using a new high-resolution survey of neutral hydrogen (H I) conducted with the H75 array of the Australia Telescope Compact Array, complemented by single-dish data from the Parkes Galactic All-Sky Survey. From the individual and combined data sets, we have compiled a catalog of 251 clouds and listed their basic parameters, including a morphological description useful for identifying cloud interactions. We find an unexpectedly large number of head-tail clouds in the region. The implication for the formation mechanism and evolution is discussed. The filaments appear to originate entirely from the Small Magellanic Cloud and extend into the northern end of the Magellanic Bridge.

  15. Cloud Computing Security in Business Information Systems

    E-Print Network [OSTI]

    Ristov, Sasko; Kostoska, Magdalena

    2012-01-01

    Cloud computing providers' and customers' services are not only exposed to existing security risks, but, due to multi-tenancy, outsourcing the application and data, and virtualization, they are exposed to the emergent, as well. Therefore, both the cloud providers and customers must establish information security system and trustworthiness each other, as well as end users. In this paper we analyze main international and industrial standards targeting information security and their conformity with cloud computing security challenges. We evaluate that almost all main cloud service providers (CSPs) are ISO 27001:2005 certified, at minimum. As a result, we propose an extension to the ISO 27001:2005 standard with new control objective about virtualization, to retain generic, regardless of company's type, size and nature, that is, to be applicable for cloud systems, as well, where virtualization is its baseline. We also define a quantitative metric and evaluate the importance factor of ISO 27001:2005 control objecti...

  16. Concept Study: Exploration and Production in Environmentally Sensitive Arctic Areas

    SciTech Connect (OSTI)

    Shirish Patil; Rich Haut; Tom Williams; Yuri Shur; Mikhail Kanevskiy; Cathy Hanks; Michael Lilly

    2008-12-31

    The Alaska North Slope offers one of the best prospects for increasing U.S. domestic oil and gas production. However, this region faces some of the greatest environmental and logistical challenges to oil and gas production in the world. A number of studies have shown that weather patterns in this region are warming, and the number of days the tundra surface is adequately frozen for tundra travel each year has declined. Operators are not allowed to explore in undeveloped areas until the tundra is sufficiently frozen and adequate snow cover is present. Spring breakup then forces rapid evacuation of the area prior to snowmelt. Using the best available methods, exploration in remote arctic areas can take up to three years to identify a commercial discovery, and then years to build the infrastructure to develop and produce. This makes new exploration costly. It also increases the costs of maintaining field infrastructure, pipeline inspections, and environmental restoration efforts. New technologies are needed, or oil and gas resources may never be developed outside limited exploration stepouts from existing infrastructure. Industry has identified certain low-impact technologies suitable for operations, and has made improvements to reduce the footprint and impact on the environment. Additional improvements are needed for exploration and economic field development and end-of-field restoration. One operator-Anadarko Petroleum Corporation-built a prototype platform for drilling wells in the Arctic that is elevated, modular, and mobile. The system was tested while drilling one of the first hydrate exploration wells in Alaska during 2003-2004. This technology was identified as a potentially enabling technology by the ongoing Joint Industry Program (JIP) Environmentally Friendly Drilling (EFD) program. The EFD is headed by Texas A&M University and the Houston Advanced Research Center (HARC), and is co-funded by the National Energy Technology Laboratory (NETL). The EFD participants believe that the platform concept could have far-reaching applications in the Arctic as a drilling and production platform, as originally intended, and as a possible staging area. The overall objective of this project was to document various potential applications, locations, and conceptual designs for the inland platform serving oil and gas operations on the Alaska North Slope. The University of Alaska Fairbanks assisted the HARC/TerraPlatforms team with the characterization of potential resource areas, geotechnical conditions associated with continuous permafrost terrain, and the potential end-user evaluation process. The team discussed the various potential applications with industry, governmental agencies, and environmental organizations. The benefits and concerns associated with industry's use of the technology were identified. In this discussion process, meetings were held with five operating companies (22 people), including asset team leaders, drilling managers, HSE managers, and production and completion managers. Three other operating companies and two service companies were contacted by phone to discuss the project. A questionnaire was distributed and responses were provided, which will be included in the report. Meetings were also held with State of Alaska Department of Natural Resources officials and U.S. Bureau of Land Management regulators. The companies met with included ConcoPhillips, Chevron, Pioneer Natural Resources, Fairweather E&P, BP America, and the Alaska Oil and Gas Association.

  17. The frequency of tropical precipitating clouds as observed by the TRMM PR and ICESat/GLAS 

    E-Print Network [OSTI]

    Casey, Sean Patrick

    2009-06-02

    Convective clouds in the tropics can be grouped into three categories: shallow clouds with cloud-top heights near 2 km above the surface, mid-level congestus clouds with tops near the 0°C level, and deep convective clouds ...

  18. Global and regional modeling of clouds and aerosols in the marine boundary layer during VOCALS: the VOCA intercomparison

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wyant, M. C.; Bretherton, Christopher S.; Wood, Robert; Carmichael, Gregory; Clarke, A. D.; Fast, Jerome D.; George, R.; Gustafson, William I.; Hannay, Cecile; Lauer, Axel; et al

    2015-01-09

    A diverse collection of models are used to simulate the marine boundary layer in the southeast Pacific region during the period of the October–November 2008 VOCALS REx (VAMOS Ocean Cloud Atmosphere Land Study Regional Experiment) field campaign. Regional models simulate the period continuously in boundary-forced free-running mode, while global forecast models and GCMs (general circulation models) are run in forecast mode. The models are compared to extensive observations along a line at 20° S extending westward from the South American coast. Most of the models simulate cloud and aerosol characteristics and gradients across the region that are recognizably similar tomore »observations, despite the complex interaction of processes involved in the problem, many of which are parameterized or poorly resolved. Some models simulate the regional low cloud cover well, though many models underestimate MBL (marine boundary layer) depth near the coast. Most models qualitatively simulate the observed offshore gradients of SO2, sulfate aerosol, CCN (cloud condensation nuclei) concentration in the MBL as well as differences in concentration between the MBL and the free troposphere. Most models also qualitatively capture the decrease in cloud droplet number away from the coast. However, there are large quantitative intermodel differences in both means and gradients of these quantities. Many models are able to represent episodic offshore increases in cloud droplet number and aerosol concentrations associated with periods of offshore flow. Most models underestimate CCN (at 0.1% supersaturation) in the MBL and free troposphere. The GCMs also have difficulty simulating coastal gradients in CCN and cloud droplet number concentration near the coast. The overall performance of the models demonstrates their potential utility in simulating aerosol–cloud interactions in the MBL, though quantitative estimation of aerosol–cloud interactions and aerosol indirect effects of MBL clouds with these models remains uncertain.« less

  19. Global and regional modeling of clouds and aerosols in the marine boundary layer during VOCALS: the VOCA intercomparison

    SciTech Connect (OSTI)

    Wyant, M. C.; Bretherton, Christopher S.; Wood, Robert; Carmichael, Gregory; Clarke, A. D.; Fast, Jerome D.; George, R.; Gustafson, William I.; Hannay, Cecile; Lauer, Axel; Lin, Yanluan; Morcrette, J. -J.; Mulcahay, Jane; Saide, Pablo; Spak, S. N.; Yang, Qing

    2015-01-01

    A diverse collection of models are used to simulate the marine boundary layer in the southeast Pacific region during the period of the October–November 2008 VOCALS REx (VAMOS Ocean Cloud Atmosphere Land Study Regional Experiment) field campaign. Regional models simulate the period continuously in boundary-forced free-running mode, while global forecast models and GCMs (general circulation models) are run in forecast mode. The models are compared to extensive observations along a line at 20° S extending westward from the South American coast. Most of the models simulate cloud and aerosol characteristics and gradients across the region that are recognizably similar to observations, despite the complex interaction of processes involved in the problem, many of which are parameterized or poorly resolved. Some models simulate the regional low cloud cover well, though many models underestimate MBL (marine boundary layer) depth near the coast. Most models qualitatively simulate the observed offshore gradients of SO2, sulfate aerosol, CCN (cloud condensation nuclei) concentration in the MBL as well as differences in concentration between the MBL and the free troposphere. Most models also qualitatively capture the decrease in cloud droplet number away from the coast. However, there are large quantitative intermodel differences in both means and gradients of these quantities. Many models are able to represent episodic offshore increases in cloud droplet number and aerosol concentrations associated with periods of offshore flow. Most models underestimate CCN (at 0.1% supersaturation) in the MBL and free troposphere. The GCMs also have difficulty simulating coastal gradients in CCN and cloud droplet number concentration near the coast. The overall performance of the models demonstrates their potential utility in simulating aerosol–cloud interactions in the MBL, though quantitative estimation of aerosol–cloud interactions and aerosol indirect effects of MBL clouds with these models remains uncertain.

  20. Inverse modelling of cloud-aerosol interactions - Part 2: Sensitivity tests on liquid phase clouds using a Markov chain Monte Carlo based simulation approach

    E-Print Network [OSTI]

    Partridge, D. G; Vrugt, J. A; Tunved, P.; Ekman, A. M. L; Struthers, H.; Sorooshian, A.

    2012-01-01

    Seinfeld, J. H. : Aerosol, cloud drop concentration closureof aerosol composition on cloud droplet size distribution –aerosol properties on warm cloud droplet activation, At-

  1. Warming of the arctic ice-ocean system is faster than the global average since the 1960s

    E-Print Network [OSTI]

    Zhang, Jinlun

    Warming of the arctic ice-ocean system is faster than the global average since the 1960s Jinlun.203°C. The warming of the world ocean is associated with an increase in global surface air temperature heat flux. Citation: Zhang, J. (2005), Warming of the arctic ice-ocean system is faster than the global

  2. Arctic melt ponds and bifurcations in the climate system I. Sudakova,, S. A. Vakulenkob,c, K. M. Goldena

    E-Print Network [OSTI]

    Golden, Kenneth M.

    Arctic melt ponds and bifurcations in the climate system I. Sudakova,, S. A. Vakulenkob,c, K. M Abstract Understanding how sea ice melts is critical to climate projections. In the Arctic, melt ponds, by incorporating geometric information about melt pond evolution. This study is based on a bifurcation analysis

  3. "Just to orient us," Dr. Eric Steig be-gan, "Arctic means bear. It is the place

    E-Print Network [OSTI]

    Hart, Gus

    packed the auditorium to capacity to hear Steig discuss his re- search on climate change and Steig, raising waves across the scien- tific community. He is the director of the Quaternary Research Center is ocean and the other is land. The Arctic is covered in sea ice." Data measuring levels of Arctic sea ice

  4. Photolysis rates in correlated overlapping cloud fields: Cloud-J 7.3c

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Prather, M. J.

    2015-08-14

    A new approach for modeling photolysis rates (J values) in atmospheres with fractional cloud cover has been developed and is implemented as Cloud-J – a multi-scattering eight-stream radiative transfer model for solar radiation based on Fast-J. Using observations of the vertical correlation of cloud layers, Cloud-J 7.3c provides a practical and accurate method for modeling atmospheric chemistry. The combination of the new maximum-correlated cloud groups with the integration over all cloud combinations by four quadrature atmospheres produces mean J values in an atmospheric column with root mean square (rms) errors of 4 % or less compared with 10–20 % errorsmore »using simpler approximations. Cloud-J is practical for chemistry–climate models, requiring only an average of 2.8 Fast-J calls per atmosphere vs. hundreds of calls with the correlated cloud groups, or 1 call with the simplest cloud approximations. Another improvement in modeling J values, the treatment of volatile organic compounds with pressure-dependent cross sections, is also incorporated into Cloud-J.« less

  5. Photolysis rates in correlated overlapping cloud fields: Cloud-J 7.3

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Prather, M. J.

    2015-05-27

    A new approach for modeling photolysis rates (J values) in atmospheres with fractional cloud cover has been developed and implemented as Cloud-J – a multi-scattering eight-stream radiative transfer model for solar radiation based on Fast-J. Using observed statistics for the vertical correlation of cloud layers, Cloud-J 7.3 provides a practical and accurate method for modeling atmospheric chemistry. The combination of the new maximum-correlated cloud groups with the integration over all cloud combinations represented by four quadrature atmospheres produces mean J values in an atmospheric column with root-mean-square errors of 4% or less compared with 10–20% errors using simpler approximations. Cloud-Jmore »is practical for chemistry-climate models, requiring only an average of 2.8 Fast-J calls per atmosphere, vs. hundreds of calls with the correlated cloud groups, or 1 call with the simplest cloud approximations. Another improvement in modeling J values, the treatment of volatile organic compounds with pressure-dependent cross sections is also incorporated into Cloud-J.« less

  6. Modeling Incoherent Electron Cloud Effects

    SciTech Connect (OSTI)

    Vay, Jean-Luc; Benedetto, E.; Fischer, W.; Franchetti, G.; Ohmi, K.; Schulte, D.; Sonnad, K.; Tomas, R.; Vay, J.-L.; Zimmermann, F.; Rumolo, G.; Pivi, M.; Raubenheimer, T.

    2007-06-18

    Incoherent electron effects could seriously limit the beam lifetime in proton or ion storage rings, such as LHC, SPS, or RHIC, or blow up the vertical emittance of positron beams, e.g., at the B factories or in linear-collider damping rings. Different approaches to modeling these effects each have their own merits and drawbacks. We describe several simulation codes which simplify the descriptions of the beam-electron interaction and of the accelerator structure in various different ways, and present results for a toy model of the SPS. In addition, we present evidence that for positron beams the interplay of incoherent electron-cloud effects and synchrotron radiation can lead to a significant increase in vertical equilibrium emittance. The magnitude of a few incoherent e+e- scattering processes is also estimated. Options for future code development are reviewed.

  7. Scanning ARM Cloud Radar Handbook

    SciTech Connect (OSTI)

    Widener, K; Bharadwaj, N; Johnson, K

    2012-06-18

    The scanning ARM cloud radar (SACR) is a polarimetric Doppler radar consisting of three different radar designs based on operating frequency. These are designated as follows: (1) X-band SACR (X-SACR); (2) Ka-band SACR (Ka-SACR); and (3) W-band SACR (W-SACR). There are two SACRs on a single pedestal at each site where SACRs are deployed. The selection of the operating frequencies at each deployed site is predominantly determined by atmospheric attenuation at the site. Because RF attenuation increases with atmospheric water vapor content, ARM's Tropical Western Pacific (TWP) sites use the X-/Ka-band frequency pair. The Southern Great Plains (SGP) and North Slope of Alaska (NSA) sites field the Ka-/W-band frequency pair. One ARM Mobile Facility (AMF1) has a Ka/W-SACR and the other (AMF2) has a X/Ka-SACR.

  8. ARM - Midlatitude Continental Convective Clouds

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Mike; Bartholomew, Mary Jane; Genio, Anthony Del; Giangrande, Scott; Kollias, Pavlos

    2012-01-19

    Convective processes play a critical role in the Earth's energy balance through the redistribution of heat and moisture in the atmosphere and their link to the hydrological cycle. Accurate representation of convective processes in numerical models is vital towards improving current and future simulations of Earths climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales important to convective processes and therefore must turn to parameterization schemes to represent these processes. In turn, parameterization schemes in cloud-resolving models need to be evaluated for their generality and application to a variety of atmospheric conditions. Data from field campaigns with appropriate forcing descriptors have been traditionally used by modelers for evaluating and improving parameterization schemes.

  9. ARM - Midlatitude Continental Convective Clouds

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Mike; Bartholomew, Mary Jane; Genio, Anthony Del; Giangrande, Scott; Kollias, Pavlos

    Convective processes play a critical role in the Earth's energy balance through the redistribution of heat and moisture in the atmosphere and their link to the hydrological cycle. Accurate representation of convective processes in numerical models is vital towards improving current and future simulations of Earths climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales important to convective processes and therefore must turn to parameterization schemes to represent these processes. In turn, parameterization schemes in cloud-resolving models need to be evaluated for their generality and application to a variety of atmospheric conditions. Data from field campaigns with appropriate forcing descriptors have been traditionally used by modelers for evaluating and improving parameterization schemes.

  10. Stochastic dynamics of Arctic sea ice Part II: Multiplicative noise

    E-Print Network [OSTI]

    Moon, Woosok

    2015-01-01

    We analyze the numerical solutions of a stochastic Arctic sea ice model with multiplicative noise over a wide range of external heat-fluxes, $\\Delta F_0$, which correspond to greenhouse gas forcing. When the noise is multiplicative, the noise-magnitude depends on the state-variable, and this will influence the statistical moments in a manner that differs from the additive case, which we analyzed in Part I of this study. The state variable describing the deterministic backbone of our model is the energy, $E(t)$, contained in the ice or the ocean and for a thorough comparison and contrast we choose the simplest form of multiplicative noise $\\sigma E(t) \\xi(t)$, where $\\sigma$ is the noise amplitude and $\\xi(t)$ is the noise process. The case of constant additive noise (CA) we write as $\\sigma\\overline{E_S}\\xi(t)$, in which $\\overline{E_S}$ is the seasonally averaged value of the periodic deterministic steady-state solution $E_S(t)$, or the deterministic seasonal cycle. We then treat the case of seasonally-varyi...

  11. Comparing VM-Placement Algorithms for On-Demand Clouds

    E-Print Network [OSTI]

    Comparing VM-Placement Algorithms for On-Demand Clouds Feb. 14, 2012 NIST Presentation to LSN Kevin. Dabrowski, "Comparing VM-Placement Algorithms for On-Demand Clouds", Proceedings of IEEE CloudCom 2011, Nov VM- placement algorithms through simulation of large, on-demand infrastructure clouds. Demonstrate

  12. Fault-Tolerant and Reliable Computation in Cloud Computing

    E-Print Network [OSTI]

    Deng, Jing

    Fault-Tolerant and Reliable Computation in Cloud Computing Jing Deng Scott C.-H. Huang Yunghsiang S, Taipei, 106 Taiwan. § Intelligent Automation, Inc., Rockville, MD, USA. Abstract-- Cloud computing of scientific computation in cloud computing. We investigate a cloud selection strategy to decompose the matrix

  13. Compute and Storage Clouds Using Wide Area High Performance Networks

    E-Print Network [OSTI]

    Grossman, Robert

    Compute and Storage Clouds Using Wide Area High Performance Networks Robert L. Grossman Yunhong Gu. The infrastructure consists of a storage cloud called Sector and a compute cloud called Sphere. We describe two (record- based, column-based or object-based services); and a compute cloud provides computational

  14. Designing SCIT Architecture Pattern in a Cloud-based Environment

    E-Print Network [OSTI]

    Sood, Arun K.

    and storage size. However, Cloud security is a challenge. In this paper, we leverage Cloud services to designDesigning SCIT Architecture Pattern in a Cloud-based Environment Quyen L. Nguyen and Arun Sood {qnguyeng@gmu.edu, asood@gmu.edu} Abstract--Cloud Computing has gained momentum in the IT world, due to its

  15. Accountability in Cloud Computing and Distributed Computer Systems Hongda Xiao

    E-Print Network [OSTI]

    Feigenbaum, Joan

    a mechanism for holding cloud-service providers accountable but also an interesting application of secure be applicable to other aspects of data- center and cloud security. #12;Accountability in Cloud ComputingAbstract Accountability in Cloud Computing and Distributed Computer Systems Hongda Xiao 2014

  16. Information Flow Auditing In the Cloud Angeliki Zavou

    E-Print Network [OSTI]

    Keromytis, Angelos D.

    towards cloud computing. The many examples of security breaches in major cloud services, that reach to address security issues and concerns that affect cloud-hosted web services, whose providers do not have and accidental data leaks. My approach was inspired by the observation that cloud users' security concerns could

  17. HI CLOUDS BEYOND THE GALACTIC DISK Felix J. Lockman

    E-Print Network [OSTI]

    Groppi, Christopher

    HI CLOUDS BEYOND THE GALACTIC DISK Felix J. Lockman National Radio Astronomy Observatory, Green parts of the Milky Way the disk­halo interface is composed of many discrete HI clouds. The clouds lie: the structure of the ISM at the disk­halo interface, and a high­velocity HI cloud which appears

  18. ARM - Publications: Science Team Meeting Documents: An Arctic Springtime

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better AnodeThe Influence of Clouds, Aerosols,Comparison ofTropicalState BestDecomposition

  19. A multi-model assessment of pollution transport to the Arctic

    SciTech Connect (OSTI)

    Shindell, D T; Chin, M; Dentener, F; Doherty, R M; Faluvegi, G; Fiore, A M; Hess, P; Koch, D M; MacKenzie, I A; Sanderson, M G; Schultz, M G; Schulz, M; Stevenson, D S; Teich, H; Textor, C; Wild, O; Bergmann, D J; Bey, I; Bian, H; Cuvelier, C; Duncan, B N; Folberth, G; Horowitz, L W; Jonson, J; Kaminski, J W; Marmer, E; Park, R; Pringle, K J; Schroeder, S; Szopa, S; Takemura, T; Zeng, G; Keating, T J; Zuber, A

    2008-03-13

    We examine the response of Arctic gas and aerosol concentrations to perturbations in pollutant emissions from Europe, East and South Asia, and North America using results from a coordinated model intercomparison. These sensitivities to regional emissions (mixing ratio change per unit emission) vary widely across models and species. Intermodel differences are systematic, however, so that the relative importance of different regions is robust. North America contributes the most to Arctic ozone pollution. For aerosols and CO, European emissions dominate at the Arctic surface but East Asian emissions become progressively more important with altitude, and are dominant in the upper troposphere. Sensitivities show strong seasonality: surface sensitivities typically maximize during boreal winter for European and during spring for East Asian and North American emissions. Mid-tropospheric sensitivities, however, nearly always maximize during spring or summer for all regions. Deposition of black carbon (BC) onto Greenland is most sensitive to North American emissions. North America and Europe each contribute {approx}40% of total BC deposition to Greenland, with {approx}20% from East Asia. Elsewhere in the Arctic, both sensitivity and total BC deposition are dominated by European emissions. Model diversity for aerosols is especially large, resulting primarily from differences in aerosol physical and chemical processing (including removal). Comparison of modeled aerosol concentrations with observations indicates problems in the models, and perhaps, interpretation of the measurements. For gas phase pollutants such as CO and O{sub 3}, which are relatively well-simulated, the processes contributing most to uncertainties depend on the source region and altitude examined. Uncertainties in the Arctic surface CO response to emissions perturbations are dominated by emissions for East Asian sources, while uncertainties in transport, emissions, and oxidation are comparable for European and North American sources. At higher levels, model-to-model variations in transport and oxidation are most important. Differences in photochemistry appear to play the largest role in the intermodel variations in Arctic ozone sensitivity, though transport also contributes substantially in the mid-troposphere.

  20. Thin Cloud Length Scales Using CALIPSO and CloudSat Data 

    E-Print Network [OSTI]

    Solbrig, Jeremy E.

    2010-10-12

    of the requirements for the degree of MASTER OF SCIENCE Approved by: Co-Chairs of Committee, Andrew Dessler Shaima Nasiri Committee Members, Ping Chang R. Saravanan Head of Department Kenneth Bowman August 2009 Major Subject: Atmospheric Sciences... iii ABSTRACT Thin Cloud Length Scales Using CALIPSO and CloudSat Data. (August 2009) Jeremy Edward Solbrig, B.S., University of Northern Colorado Co-Chairs of Advisory Committee, Dr. Andrew Dessler Dr. Shaima Nasiri Thin clouds...

  1. THE LOCAL LEO COLD CLOUD AND NEW LIMITS ON A LOCAL HOT BUBBLE

    SciTech Connect (OSTI)

    Peek, J. E. G.; Heiles, Carl; Peek, Kathryn M. G.; Meyer, David M.; Lauroesch, J. T.

    2011-07-10

    We present a multi-wavelength study of the local Leo cold cloud (LLCC), a very nearby, very cold cloud in the interstellar medium (ISM). Through stellar absorption studies we find that the LLCC is between 11.3 pc and 24.3 pc away, making it the closest known cold neutral medium cloud and well within the boundaries of the local cavity. Observations of the cloud in the 21 cm H I line reveal that the LLCC is very cold, with temperatures ranging from 15 K to 30 K, and is best fit with a model composed of two colliding components. The cloud has associated 100 {mu}m thermal dust emission, pointing to a somewhat low dust-to-gas ratio of 48 x10{sup -22} MJy sr{sup -1} cm{sup 2}. We find that the LLCC is too far away to be generated by the collision among the nearby complex of local interstellar clouds but that the small relative velocities indicate that the LLCC is somehow related to these clouds. We use the LLCC to conduct a shadowing experiment in 1/4 keV X-rays, allowing us to differentiate between different possible origins for the observed soft X-ray background (SXRB). We find that a local hot bubble model alone cannot account for the low-latitude SXRB, but that isotropic emission from solar wind charge exchange (SWCX) does reproduce our data. In a combined local hot bubble and SWCX scenario, we rule out emission from a local hot bubble with an 1/4 keV emissivity greater than 1.1 Snowdens pc{sup -1} at 3{sigma}, four times lower than previous estimates. This result dramatically changes our perspective on our local ISM.

  2. Evaluation of ECMWF cloud type simulations at the ARM Southern Great Plains site using a new cloud type climatology

    E-Print Network [OSTI]

    Evaluation of ECMWF cloud type simulations at the ARM Southern Great Plains site using a new cloud; accepted 13 December 2006; published 3 February 2007. [1] A new method to derive a cloud type climatology is applied to cloud observations over the Southern Great Plains (SGP) Atmospheric Radiation Measurement (ARM

  3. Star Formation triggered by cloud-cloud collisions

    E-Print Network [OSTI]

    Balfour, S K; Hubber, D A; Jaffa, S E

    2015-01-01

    We present the results of SPH simulations in which two clouds, each having mass $M_{_{\\rm{o}}}\\!=\\!500\\,{\\rm M}_{_\\odot}$ and radius $R_{_{\\rm{o}}}\\!=\\!2\\,{\\rm pc}$, collide head-on at relative velocities of $\\Delta v_{_{\\rm{o}}} =2.4,\\;2.8,\\;3.2,\\;3.6\\;{\\rm and}\\;4.0\\,{\\rm km}\\,{\\rm s}^{-1}$. There is a clear trend with increasing $\\Delta v_{_{\\rm{o}}}$. At low $\\Delta v_{_{\\rm{o}}}$, star formation starts later, and the shock-compressed layer breaks up into an array of predominantly radial filaments; stars condense out of these filaments and fall, together with residual gas, towards the centre of the layer, to form a single large-$N$ cluster, which then evolves by competitive accretion, producing one or two very massive protostars and a diaspora of ejected (mainly low-mass) protostars; the pattern of filaments is reminiscent of the hub and spokes systems identified recently by observers. At high $\\Delta v_{_{\\rm{o}}}$, star formation occurs sooner and the shock-compressed layer breaks up into a network of f...

  4. Pre-Cloud Aerosol, Cloud Droplet Concentration, and Cloud Condensation Nuclei from the VAMOS Ocean-Cloud-Atmosphere Land Study (VOCALS) Field Campaign First Quarter 2010 ASR Program Metric Report

    SciTech Connect (OSTI)

    Kleinman, LI; Springston, SR; Daum, PH; Lee, Y-N; Sedlacek, AJ; Senum, G; Wang, J

    2011-08-31

    In this, the first of a series of Program Metric Reports, we (1) describe archived data from the DOE G-1 aircraft, (2) illustrate several relations between sub-cloud aerosol, CCN, and cloud droplets pertinent to determining the effects of pollutant sources on cloud properties, and (3) post to the data archive an Excel spreadsheet that contains cloud and corresponding sub-cloud data.

  5. ARM Cloud Retrieval Ensemble Data Set (ACRED)

    SciTech Connect (OSTI)

    Zhao, C; Xie, S; Klein, SA; McCoy, R; Comstock, JM; Delanoë, J; Deng, M; Dunn, M; Hogan, RJ; Jensen, MP; Mace, GG; McFarlane, SA; O’Connor, EJ; Protat, A; Shupe, MD; Turner, D; Wang, Z

    2011-09-12

    This document describes a new Atmospheric Radiation Measurement (ARM) data set, the ARM Cloud Retrieval Ensemble Data Set (ACRED), which is created by assembling nine existing ground-based cloud retrievals of ARM measurements from different cloud retrieval algorithms. The current version of ACRED includes an hourly average of nine ground-based retrievals with vertical resolution of 45 m for 512 layers. The techniques used for the nine cloud retrievals are briefly described in this document. This document also outlines the ACRED data availability, variables, and the nine retrieval products. Technical details about the generation of ACRED, such as the methods used for time average and vertical re-grid, are also provided.

  6. EVENT CLOUDS : lighter than air architectural structures

    E-Print Network [OSTI]

    Peydro Duclos, Ignacio

    2014-01-01

    EVENT CLOUD is a versatile covering system that allows events to happen independently to weather conditions. It consists of a lighter than air pneumatic structure, filled either with helium or hot air, that covers spaces ...

  7. QER- Comment of Cloud Peak Energy Inc

    Office of Energy Efficiency and Renewable Energy (EERE)

    Dear Ms Pickett Please find attached comments from Cloud Peak Energy as input to the Department of Energy’s Quadrennial Energy Review. If possible I would appreciate a confirmation that this email has been received Thank you.

  8. HPC CLOUD APPLIED TO LATTICE OPTIMIZATION

    SciTech Connect (OSTI)

    Sun, Changchun; Nishimura, Hiroshi; James, Susan; Song, Kai; Muriki, Krishna; Qin, Yong

    2011-03-18

    As Cloud services gain in popularity for enterprise use, vendors are now turning their focus towards providing cloud services suitable for scientific computing. Recently, Amazon Elastic Compute Cloud (EC2) introduced the new Cluster Compute Instances (CCI), a new instance type specifically designed for High Performance Computing (HPC) applications. At Berkeley Lab, the physicists at the Advanced Light Source (ALS) have been running Lattice Optimization on a local cluster, but the queue wait time and the flexibility to request compute resources when needed are not ideal for rapid development work. To explore alternatives, for the first time we investigate running the Lattice Optimization application on Amazon's new CCI to demonstrate the feasibility and trade-offs of using public cloud services for science.

  9. Carbon monoxide in collapsing interstellar clouds

    E-Print Network [OSTI]

    De Jong, T.; Chu, Shih-I; Dalgarno, A.

    1975-07-01

    Calculations are made for the energy loss rates, brightness temperatures, and line profiles of carbon monoxide in collapsing interstellar clouds. The most recent data for the H2-CO collision rates have been used in the calculations; a useful...

  10. Uranus at equinox: Cloud morphology and dynamics

    E-Print Network [OSTI]

    Sromovsky, Lawrence; Hammel, Heidi; Ahue, William; de Pater, Imke; Rages, Kathy; Showalter, Mark; van Dam, Marcos

    2015-01-01

    As the 7 December 2007 equinox of Uranus approached, ring and atmosphere observers produced a substantial collection of observations using the 10-m Keck telescope and the Hubble Space Telescope. Those spanning the period from 7 June 2007 through 9 September 2007 we used to identify and track cloud features, determine atmospheric motions, characterize cloud morphology and dynamics, and define changes in atmospheric band structure. We confirmed the existence of the suspected northern hemisphere prograde jet, locating its peak near 58 N, and extended wind speed measurements to 73 N. For 28 cloud features we obtained extremely high wind-speed accuracy through extended tracking times. The new results confirm a small N-S asymmetry in the zonal wind profile, and the lack of any change in the southern hemisphere between 1986 (near solstice) and 2007 (near equinox) suggests that the asymmetry may be permanent rather than seasonally reversing. In the 2007 images we found two prominent groups of discrete cloud features ...

  11. Factors shaping the future of Cloud Computing

    E-Print Network [OSTI]

    Francis, Steven (Steven Douglas)

    2011-01-01

    Many different forces are currently shaping the future of the Cloud Computing Market. End user demand and end user investment in existing technology are important drivers. Vendor innovation and competitive strategy are ...

  12. What Makes Clouds Grow and Die?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fairly well." Based on these results, Hagos and his collaborators will next focus on cold pools and their role in growing small shallow clouds into large, deep ones. The team...

  13. A developer's survey on different cloud platforms

    E-Print Network [OSTI]

    Doan, Dzung

    2009-01-01

    5.5 SQL Services . . . . . . . . . . 5.6 Developerare made at the block level. SQL Services Besides storagethat lives in the cloud, called SQL Services. It’s based on

  14. On Demand Surveillance Service in Vehicular Cloud

    E-Print Network [OSTI]

    Weng, Jui-Ting

    2013-01-01

    as the combination of cloud com- puting and mobile devices.optimal bit rates for mobile devices to save energy. [48]The mobile devices are considered as clients and sensors,

  15. Exploiting weather forecast data for cloud detection 

    E-Print Network [OSTI]

    Mackie, Shona

    2009-01-01

    Accurate, fast detection of clouds in satellite imagery has many applications, for example Numerical Weather Prediction (NWP) and climate studies of both the atmosphere and of the Earth’s surface temperature. Most ...

  16. Using Snow Fences to Augument Fresh Water Supplies in Shallow Arctic Lakes

    SciTech Connect (OSTI)

    Stuefer, Svetlana

    2013-03-31

    This project was funded by the U.S. Department of Energy, National Energy Technology Laboratory (NETL) to address environmental research questions specifically related to Alaska?s oil and gas natural resources development. The focus of this project was on the environmental issues associated with allocation of water resources for construction of ice roads and ice pads. Earlier NETL projects showed that oil and gas exploration activities in the U.S. Arctic require large amounts of water for ice road and ice pad construction. Traditionally, lakes have been the source of freshwater for this purpose. The distinctive hydrological regime of northern lakes, caused by the presence of ice cover and permafrost, exerts influence on lake water availability in winter. Lakes are covered with ice from October to June, and there is often no water recharge of lakes until snowmelt in early June. After snowmelt, water volumes in the lakes decrease throughout the summer, when water loss due to evaporation is considerably greater than water gained from rainfall. This balance switches in August, when air temperature drops, evaporation decreases, and rain (or snow) is more likely to occur. Some of the summer surface storage deficit in the active layer and surface water bodies (lakes, ponds, wetlands) is recharged during this time. However, if the surface storage deficit is not replenished (for example, precipitation in the fall is low and near?surface soils are dry), lake recharge is directly affected, and water availability for the following winter is reduced. In this study, we used snow fences to augment fresh water supplies in shallow arctic lakes despite unfavorable natural conditions. We implemented snow?control practices to enhance snowdrift accumulation (greater snow water equivalent), which led to increased meltwater production and an extended melting season that resulted in lake recharge despite low precipitation during the years of the experiment. For three years (2009, 2010, and 2011), we selected and monitored two lakes with similar hydrological regimes. Both lakes are located 30 miles south of Prudhoe Bay, Alaska, near Franklin Bluffs. One is an experimental lake, where we installed a snow fence; the other is a control lake, where the natural regime was preserved. The general approach was to compare the hydrologic response of the lake to the snowdrift during the summers of 2010 and 2011 against the ?baseline? conditions in 2009. Highlights of the project included new data on snow transport rates on the Alaska North Slope, an evaluation of the experimental lake?s hydrological response to snowdrift melt, and cost assessment of snowdrift?generated water. High snow transport rates (0.49 kg/s/m) ensured that the snowdrift reached its equilibrium profile by winter's end. Generally, natural snowpack disappeared by the beginning of June in this area. In contrast, snow in the drift lasted through early July, supplying the experimental lake with snowmelt when water in other tundra lakes was decreasing. The experimental lake retained elevated water levels during the entire open?water season. Comparison of lake water volumes during the experiment against the baseline year showed that, by the end of summer, the drift generated by the snow fence had increased lake water volume by at least 21?29%. We estimated water cost at 1.9 cents per gallon during the first year and 0.8 cents per gallon during the second year. This estimate depends on the cost of snow fence construction in remote arctic locations, which we assumed to be at $7.66 per square foot of snow fence frontal area. The snow fence technique was effective in augmenting the supply of lake water during summers 2010 and 2011 despite low rainfall during both summers. Snow fences are a simple, yet an effective, way to replenish tundra lakes with freshwater and increase water availability in winter. This research project was synergetic with the NETL project, "North Slope Decision Support System (NSDSS) for Water Resources Planning and Management." The results

  17. The clouds of physics and Einstein's last query: Can quantum mechanics be derived from general relativity?

    E-Print Network [OSTI]

    Friedwardt Winterberg

    2008-05-20

    Towards the end of the 19th century, Kelvin pronounced as the "clouds of physics" 1) the failure of the Michelson-Morely experiment to detect an ether wind, 2) the violation of the classical mechanical equipartition theorem in statistical thermodynamics. And he believed that the removal of these clouds would bring physics to an end. But as we know, the removal of these clouds led to the two great breakthoughts of modern physics: 1) The theory of relativity, and 2) to quantum mechanics. Towards the end of the 20th century more clouds of physics became apparent. They are 1) the riddle of quantum gravity, 2) the superluminal quantum correlations, 3) the small cosmological constant. Furthermore, there is the riddle of dark energy making up 70% of the physical universe, the non-baryonic cold dark matter making up 26% and the very small initial entropy of the universe. An attempt is made to explain the importance of these clouds for the future of physics. Conjectures for a possible solution are presented. they have to do with Einstein's last query: "Can quantum mechanics be derived general relativity", and with the question is there an ether?

  18. Atmospheric State, Cloud Microphysics and Radiative Flux

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mace, Gerald

    2008-01-15

    Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

  19. Electron-Cloud Build-Up: Summary

    SciTech Connect (OSTI)

    Furman, M.A.

    2007-06-18

    I present a summary of topics relevant to the electron-cloud build-up and dissipation that were presented at the International Workshop on Electron-Cloud Effects 'ECLOUD 07' (Daegu, S. Korea, April 9-12, 2007). This summary is not meant to be a comprehensive review of the talks. Rather, I focus on those developments that I found, in my personal opinion, especially interesting. The contributions, all excellent, are posted in http://chep.knu.ac.kr/ecloud07/.

  20. Adenine Abundance in a Collapsing Molecular Cloud

    E-Print Network [OSTI]

    Sandip K. Chakrabarti; Sonali Chakrabarti

    2000-03-18

    A vital ingredient of DNA molecule named adenine may be produced by successive addition of HCN during molecular cloud collapse and star formation. We compute its abundance in a collapsing cloud as a function of the reaction rate and show that in much of the circumstances the resulting amount may be sufficient to contaminate planets, comets and meteorites. We introduce a $f$-parameter which may be used to study the abundance where radiative association takes place.