SCALING RANDOM WALKS ON ARBITRARY SETS Simon C. Harris
Harris, Simon Colin
SCALING RANDOM WALKS ON ARBITRARY SETS by Simon C. Harris , Robin Sibson and David Williams School deterministic sets I. In the 1-dimensional case discussed here and in the following paper by Harris, much
Multiprocessor Speed Scaling for Jobs with Arbitrary Sizes and Deadlines
Wong, Prudence W.H.
or laptops with multi-core processors. A popular technology to reduce energy usage is dynamic speed scaling.H. Wong 1 Introduction Energy consumption has become an important concern in the design of modern energy, yet it takes longer to finish the job. The study of speed scaling was initiated by Yao et al. [6
Sean P. Robinson
2006-09-17T23:59:59.000Z
We calculate, in d spacetime dimensions, the relationship between the coefficient 1/K^2 of the Einstein-Hilbert term in the action of general relativity and the coefficient G_N of the force law that results from the Newtonian limit of general relativity. The result is K^2=2[(d-2)/(d-3)]Vol(S^[d-2])G_N, where Vol(S^n) is the volume of the unit n-sphere. While the d=4 case is an elementary calculation in any general relativity text, the arbitrary case presented here is slightly less well known. We discuss the relevance of this result for the definition of the so-called "reduced Planck mass" and comment very briefly on the implications for brane world models. [abstract abridged
Data mining techniques for large-scale gene expression analysis
Palmer, Nathan Patrick
2011-01-01T23:59:59.000Z
Modern computational biology is awash in large-scale data mining problems. Several high-throughput technologies have been developed that enable us, with relative ease and little expense, to evaluate the coordinated expression ...
Arbitrary Function Generator LSN-
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmesApplication2 (CRAC 2 period)Office2Arbitrary Function
Multiple phase estimation for arbitrary pure states under white noise
Yao Yao; Li Ge; Xing Xiao; Xiaoguang Wang; C. P. Sun
2014-09-08T23:59:59.000Z
In any realistic quantum metrology scenarios, the ultimate precision in the estimation of parameters is limited not only by the so-called Heisenberg scaling, but also the environmental noise encountered by the underlying system. In the context of quantum estimation theory, it is of great significance to carefully evaluate the impact of a specific type of noise on the corresponding quantum Fisher information (QFI) or quantum Fisher information matrix (QFIM). Here we investigate the multiple phase estimation problem for a natural parametrization of arbitrary pure states under white noise. We obtain the explicit expression of the symmetric logarithmic derivative (SLD) and hence the analytical formula of QFIM. Moreover, the attainability of the quantum Cram\\'{e}r-Rao bound (QCRB) is confirmed by the commutability of SLDs and the optimal estimators are elucidated for the experimental purpose. These findings generalize previously known partial results and highlight the role of white noise in quantum metrology.
Komives, Elizabeth A.
Protein Engineering vol.8 no. 11 pp.1177-1187, 1995 Large-scale expression, purification and characterization of small fragments of thrombomodulin: the roles of the sixth domain and of methionine 388
Perturbative Gadgets at Arbitrary Orders
Stephen P. Jordan; Edward Farhi
2012-01-31T23:59:59.000Z
Adiabatic quantum algorithms are often most easily formulated using many-body interactions. However, experimentally available interactions are generally two-body. In 2004, Kempe, Kitaev, and Regev introduced perturbative gadgets, by which arbitrary three-body effective interactions can be obtained using Hamiltonians consisting only of two-body interactions. These three-body effective interactions arise from the third order in perturbation theory. Since their introduction, perturbative gadgets have become a standard tool in the theory of quantum computation. Here we construct generalized gadgets so that one can directly obtain arbitrary k-body effective interactions from two-body Hamiltonians. These effective interactions arise from the kth order in perturbation theory.
U-074: Microsoft .NET Bugs Let Remote Users Execute Arbitrary...
Broader source: Energy.gov (indexed) [DOE]
4: Microsoft .NET Bugs Let Remote Users Execute Arbitrary Commands, Access User Accounts, and Redirect Users U-074: Microsoft .NET Bugs Let Remote Users Execute Arbitrary Commands,...
Multiprocessor Speed Scaling for Jobs with Arbitrary Sizes and Deadlines
Wong, Prudence W.H.
for server farms or laptops with multi-core processors. A popular technology to reduce energy usage study energy efficient deadline scheduling on multiprocessors in which the processors consumes power the minimum energy. The problem has been well studied for the single processor case. For the multiprocessor
Arbitrary amplitude double layers in warm dust kinetic Alfven wave plasmas
Gogoi, Runmoni; Devi, Nirupama [Department of Mathematics, Cotton College, Guwahati-781001, Assam (India)
2008-07-15T23:59:59.000Z
Large amplitude electrostatic structures associated with low-frequency dust kinetic Alfvenic waves are investigated under the pressure (temperature) gradient indicative of dust dynamics. The set of equations governing the dust dynamics, Boltzmann electrons, ions and Maxwell's equation have been reduced to a single equation known as the Sagdeev potential equation. Parameter ranges for the existence of arbitrary amplitude double layers are observed. Exact analytical expressions for the energy integral is obtained and computed numerically through which sub-Alfvenic arbitrary amplitude rarefactive double layers are found to exist.
Efficient quantum circuits for arbitrary sparse unitaries
Jordan, Stephen P. [Institute for Quantum Information, Caltech, Pasadena, California 91125 (United States); Wocjan, Pawel [School of Electrical Engineering and Computer Science, University of Central Florida, Orlando, Florida 32816 (United States)
2009-12-15T23:59:59.000Z
Arbitrary exponentially large unitaries cannot be implemented efficiently by quantum circuits. However, we show that quantum circuits can efficiently implement any unitary provided it has at most polynomially many nonzero entries in any row or column, and these entries are efficiently computable. One can formulate a model of computation based on the composition of sparse unitaries which includes the quantum Turing machine model, the quantum circuit model, anyonic models, permutational quantum computation, and discrete time quantum walks as special cases. Thus, we obtain a simple unified proof that these models are all contained in BQP. Furthermore, our general method for implementing sparse unitaries simplifies several existing quantum algorithms.
ASTROMETRY.NET: BLIND ASTROMETRIC CALIBRATION OF ARBITRARY ASTRONOMICAL IMAGES
Lang, Dustin; Mierle, Keir; Roweis, Sam [Department of Computer Science, University of Toronto, 6 King's College Road, Toronto, Ontario M5S 3G4 (Canada); Hogg, David W.; Blanton, Michael [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States)], E-mail: dstn@astro.princeton.edu
2010-05-15T23:59:59.000Z
We have built a reliable and robust system that takes as input an astronomical image, and returns as output the pointing, scale, and orientation of that image (the astrometric calibration or World Coordinate System information). The system requires no first guess, and works with the information in the image pixels alone; that is, the problem is a generalization of the 'lost in space' problem in which nothing-not even the image scale-is known. After robust source detection is performed in the input image, asterisms (sets of four or five stars) are geometrically hashed and compared to pre-indexed hashes to generate hypotheses about the astrometric calibration. A hypothesis is only accepted as true if it passes a Bayesian decision theory test against a null hypothesis. With indices built from the USNO-B catalog and designed for uniformity of coverage and redundancy, the success rate is >99.9% for contemporary near-ultraviolet and visual imaging survey data, with no false positives. The failure rate is consistent with the incompleteness of the USNO-B catalog; augmentation with indices built from the Two Micron All Sky Survey catalog brings the completeness to 100% with no false positives. We are using this system to generate consistent and standards-compliant meta-data for digital and digitized imaging from plate repositories, automated observatories, individual scientific investigators, and hobbyists. This is the first step in a program of making it possible to trust calibration meta-data for astronomical data of arbitrary provenance.
Arbitrary manipulation of nonlinear optical processes
Jian Zheng; Masayuki Katsuragawa
2014-06-16T23:59:59.000Z
Nonlinear optical processes are governed by the relative-phase relationships among the relevant electromagnetic fields in these processes. In this Letter, we describe the physics of arbitrary manipulation of nonlinear optical processes (AMNOP) by artificial control of relative phases. As a typical example, we show freely designable optical-frequency conversions to extreme spectral regions, mid-infrared and vacuum-ultraviolet, with near-unity quantum efficiencies. Furthermore, we show that such optical-frequency conversions can be realized by using a surprisingly simple technology where transparent plates are placed in a nonlinear optical medium and their positions and thicknesses are adjusted precisely. In a numerical experiment assuming practically applicable parameters in detail, we demonstrate a single-frequency tunable laser that covers the whole vacuum-ultraviolet spectral range of 120 to 200 nm.
V-170: Apache Subversion Hook Scripts Arbitrary Command Injection...
Broader source: Energy.gov (indexed) [DOE]
script while processing filenames and can be exploited to inject and execute arbitrary shell commands via a specially crafted request. Successful exploitation requires that...
Is It Possible To Clone Using An Arbitrary Blank State?
Anirban Roy; Aditi Sen; Ujjwal Sen
2001-11-29T23:59:59.000Z
We show that in a cloning process, whether deterministic inexact or probabilistic exact, one can take an arbitrary blank state while still using a fixed cloning machine.
arbitrary optical trapping: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
passing through Schieber, Jay D. 238 Synthesising arbitrary quantum states in a superconduct-ing resonator Computer Technologies and Information Sciences Websites Summary:...
arbitrary apertures ii: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Washington at Seattle, University of 385 Synthesising arbitrary quantum states in a superconduct-ing resonator Computer Technologies and Information Sciences Websites Summary:...
arbitrary quantum system: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
theory. Sergio Giardino 2013-09-10 30 Synthesising arbitrary quantum states in a superconduct-ing resonator Computer Technologies and Information Sciences Websites Summary:...
arbitrary ionic strength: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Washington at Seattle, University of 327 Synthesising arbitrary quantum states in a superconduct-ing resonator Computer Technologies and Information Sciences Websites Summary:...
arbitrary degree sequence: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Washington at Seattle, University of 412 Synthesising arbitrary quantum states in a superconduct-ing resonator Computer Technologies and Information Sciences Websites Summary:...
arbitrary hard ellipses: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Washington at Seattle, University of 342 Synthesising arbitrary quantum states in a superconduct-ing resonator Computer Technologies and Information Sciences Websites Summary:...
arbitrary control loop: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Washington at Seattle, University of 330 Synthesising arbitrary quantum states in a superconduct-ing resonator Computer Technologies and Information Sciences Websites Summary:...
Mercury/Waterfilling: Optimum Power Allocation with Arbitrary Input Constellations
VerdÃº, Sergio
Mercury/Waterfilling: Optimum Power Allocation with Arbitrary Input Constellations Angel Lozano gives the power allocation policy, referred to as mercury/waterfilling, that maximizes the sum mutual
Reduced Space-Time and Time Costs Using Dislocation Codes and Arbitrary Ancillas
M. B. Hastings; A. Geller
2014-08-14T23:59:59.000Z
We propose two distinct methods of improving quantum computing protocols based on surface codes. First, we analyze the use of dislocations instead of holes to produce logical qubits, potentially reducing spacetime volume required. Dislocations induce defects which, in many respects, behave like Majorana quasi-particles. We construct circuits to implement these codes and present fault-tolerant measurement methods for these and other defects which may reduce spatial overhead. One advantage of these codes is that Hadamard gates take exactly $0$ time to implement. We numerically study the performance of these codes using a minimum weight and a greedy decoder using finite-size scaling. Second, we consider state injection of arbitrary ancillas to produce arbitrary rotations. This avoids the logarithmic (in precision) overhead in online cost required if $T$ gates are used to synthesize arbitrary rotations. While this has been considered before, we consider also the parallel performance of this protocol. Arbitrary ancilla injection leads to a probabilistic protocol in which there is a constant chance of success on each round; we use an amortized analysis to show that even in a parallel setting this leads to only a constant factor slowdown as opposed to the logarithmic slowdown that might be expected naively.
Optimal control theory with arbitrary superpositions of waveforms
Selina Meister; Jürgen T. Stockburger; Rebecca Schmidt; Joachim Ankerhold
2014-11-20T23:59:59.000Z
Standard optimal control methods perform optimization in the time domain. However, many experimental settings demand the expression of the control signal as a superposition of given waveforms, a case that cannot easily be accommodated using time-local constraints. Previous approaches [1,2] have circumvented this difficulty by performing optimization in a parameter space, using the chain rule to make a connection to the time domain. In this paper, we present an extension to Optimal Control Theory which allows gradient-based optimization for superpositions of arbitrary waveforms directly in a time-domain subspace. Its key is the use of the Moore-Penrose pseudoinverse as an efficient means of transforming between a time-local and waveform-based descriptions. To illustrate this optimization technique, we study the parametrically driven harmonic oscillator as model system and reduce its energy, considering both Hamiltonian dynamics and stochastic dynamics under the influence of a thermal reservoir. We demonstrate the viability and efficiency of the method for these test cases and find significant advantages in the case of waveforms which do not form an orthogonal basis.
ASTROMETRY.NET: BLIND ASTROMETRIC CALIBRATION OF ARBITRARY ASTRONOMICAL IMAGES
Masci, Frank
ASTROMETRY.NET: BLIND ASTROMETRIC CALIBRATION OF ARBITRARY ASTRONOMICAL IMAGES This article has CALIBRATION OF ARBITRARY ASTRONOMICAL IMAGES Dustin Lang1,2,7 , David W. Hogg3,4 , Keir Mierle1,5 , Michael Blanton3 , and Sam Roweis1,5,6 1 Department of Computer Science, University of Toronto, 6 King's College
Complete hierarchies of SIR models on arbitrary networks with exact and approximate moment closure
Sharkey, Kieran J
2015-01-01T23:59:59.000Z
We first generalise ideas discussed by Kiss et al. (2015) to prove a theorem for generating exact closures (here expressing joint probabilities in terms of their constituent marginal probabilities) for susceptible-infectious-removed (SIR) dynamics on arbitrary graphs (networks). For Poisson transmission and removal processes, this enables us to obtain a systematic reduction in the number of differential equations needed for an exact `moment closure' representation of the underlying stochastic model. We define `transmission blocks' as a possible extension of the block concept in graph theory and show that the order at which the exact moment closure representation is curtailed is the size of the largest transmission block. More generally, approximate closures of the hierarchy of moment equations for these dynamics are typically defined for the first and second order yielding mean-field and pairwise models respectively. It is frequently implied that, in principle, closed models can be written down at arbitrary o...
Quantum Szilard engines with arbitrary spin
Zekun Zhuang; Shi-Dong Liang
2015-02-02T23:59:59.000Z
The quantum Szilard engine (QSZE) is a conceptual quantum engine for understanding the fundamental physics of quantum thermodynamics and information physics. We generalize the QSZE to an arbitrary spin case, i.e., a spin QSZE (SQSZE), and we systematically study the basic physical properties of both fermion and boson SQSZEs in a low-temperature approximation. We give the analytic formulation of the total work. For the fermion SQSZE, the work might be absorbed from the environment, and the change rate of the work with temperature exhibits periodicity and even-odd oscillation, which is a generalization of a spinless QSZE. It is interesting that the average absorbed work oscillates regularly and periodically in a large-number limit, which implies that the average absorbed work in a fermion SQSZE is neither an intensive quantity nor an extensive quantity. The phase diagrams of both fermion and boson SQSZEs give the SQSZE doing positive or negative work in the parameter space of the temperature and the particle number of the system, but they have different behaviors because the spin degrees of the fermion and the boson play different roles in their configuration states and corresponding statistical properties. The critical temperature of phase transition depends sensitively on the particle number. By using Landauer's erasure principle, we give the erasure work in a thermodynamic cycle, and we define an efficiency (we refer to it as information-work efficiency) to measure the engine's ability of utilizing information to extract work. We also give the conditions under which the maximum extracted work and highest information-work efficiencies for fermion and boson SQSZEs can be achieved.
Quantum Coding Theorems for Arbitrary Sources, Channels and Entanglement Resources
Garry Bowen; Nilanjana Datta
2006-09-30T23:59:59.000Z
The information spectrum approach gives general formulae for optimal rates of various information theoretic protocols, under minimal assumptions on the nature of the sources, channels and entanglement resources involved. This paper culminates in the derivation of the dense coding capacity for a noiseless quantum channel, assisted by arbitrary shared entanglement, using this approach. We also review the currently known coding theorems, and their converses, for protocols such as data compression for arbitrary quantum sources and transmission of classical information through arbitrary quantum channels. In addition, we derive the optimal rate of data compression for a mixed source
Gouranga C Nayak
2009-10-02T23:59:59.000Z
We study non-perturbative gluon pair production from arbitrary time dependent chromo-electric field E^a(t) with arbitrary color index a =1,2,...8 via Schwinger mechanism in arbitrary covariant background gauge \\alpha. We show that the probability of non-perturbative gluon pair production per unit time per unit volume per unit transverse momentum \\frac{dW}{d^4xd^2p_T} is independent of gauge fixing parameter \\alpha. Hence the result obtained in the Fynman-'t Hooft gauge, \\alpha=1, is the correct gauge invariant and gauge parameter \\alpha independent result.
Simplification of Arbitrary Polyhedral Meshes Shaun D. Ramsey
Hering-Bertram, Martin
email: bertram@informatik.uni-kl.de Charles Hansen University of Utah Salt Lake City, UT, USA emailSimplification of Arbitrary Polyhedral Meshes Shaun D. Ramsey University of Utah Salt Lake City, UT
Skin effect with arbitrary specularity in Maxwellian plasma
Anatoly V. Latyshev; Alexander A. Yushkanov
2009-12-10T23:59:59.000Z
The problem of skin effect with arbitrary specularity in maxwellian plasma with specular--diffuse boundary conditions is solved. A new analytical method is developed that makes it possible to to obtain a solution up to an arbitrary degree of accuracy. The method is based on the idea of symmetric continuation not only the electric field, but also electron distribution function. The solution is obtained in a form of von Neumann series.
Quantum gravitational corrections to propagator in arbitrary spacetimes
T. Padmanabhan
1997-03-18T23:59:59.000Z
The action for a relativistic free particle of mass m receives a contribution $-m R(x,y)$ from a path of length R(x,y) connecting the events $x^i$ and $y^i$. Using this action in a path integral, one can obtain the Feynman propagator for a spinless particle of mass m in any background spacetime. If one of the effects of quantizing gravity is to introduce a minimum length scale $L_P$ in the spacetime, then one would expect the segments of paths with lengths less than $L_P$ to be suppressed in the path integral. Assuming that the path integral amplitude is invariant under the `duality' transformation ${\\cal R}\\to L_P^2/R$, one can calculate the modified Feynman propagator in an arbitrary background spacetime. It turns out that the key feature of this modification is the following: The proper distance $(\\Delta x)^2$ between two events, which are infinitesimally separated, is replaced by $\\Delta x^2 + L_P^2$; that is the spacetime behaves as though it has a `zero-point length' of $L_P$. This equivalence suggests a deep relationship between introducing a `zero-point-length' to the spacetime and postulating invariance of path integral amplitudes under duality transformations. In the Schwinger's proper time description of the propagator, the weightage for a path with proper time s becomes $m(s+L_P^2/s)$ rather than as ms. As to be expected, the ultraviolet behavior of the theory is improved significantly and divergences will disappear if this modification is taken into account. Implications of this result are discussed.
A. V. Latyshev; A. A. Yushkanov
2010-03-04T23:59:59.000Z
Electric conductivity and dielectric permeability of the non-degenerate electronic gas for the collisional plasmas under arbitrary degree of degeneration of electron gas is found. The kinetic equation of Wigner - Vlasov - Boltzmann with collision integral in relaxation form BGK (Bhatnagar, Gross and Krook) in coordinate space is used. Dielectric permeability with using of the relaxation equation in the momentum space has been received by Mermin. Comparison with Mermin's formula has been realized. It is shown, that in the limit when Planck's constant tends to zero expression for dielectric permeability passes in the classical.
V-052: Drupal Core Access Bypass and Arbitrary PHP Code Execution...
Broader source: Energy.gov (indexed) [DOE]
2: Drupal Core Access Bypass and Arbitrary PHP Code Execution Vulnerabilities V-052: Drupal Core Access Bypass and Arbitrary PHP Code Execution Vulnerabilities December 21, 2012 -...
T-673: Apple Safari Multiple Flaws Let Remote Users Execute Arbitrary...
Broader source: Energy.gov (indexed) [DOE]
3: Apple Safari Multiple Flaws Let Remote Users Execute Arbitrary Code, Conduct Cross-Site Scripting Attacks T-673: Apple Safari Multiple Flaws Let Remote Users Execute Arbitrary...
Hypersonic Arbitrary-Body Aerodynamics (HABA) for conceptual design
Salguero, D.E.
1990-03-15T23:59:59.000Z
The Hypersonic Arbitrary-Body Aerodynamics (HABA) computer program predicts static and dynamic aerodynamic derivatives at hypersonic speeds for any vehicle geometry. It is intended to be used during conceptual design studies where fast computational speed is required. It uses the same geometry and hypersonic aerodynamic methods as the Mark IV Supersonic/Hypersonic Arbitrary-Body Program (SHABP) developed under sponsorship of the Air Force Flight Dynamics Laboratory; however, the input and output formats have been improved to make it easier to use. This program is available as part of the Department 9140 CAE software.
Generalizing entanglement via informational invariance for arbitrary statistical theories
F. Holik; C. Massri; A. Plastino
2014-06-04T23:59:59.000Z
Given an arbitrary statistical theory, di?erent from quantum mechanics, how to decide which are the nonclassical correlations? We present a formal framework which allows for a definition of nonclassical correlations in such theories, alternative to the current one. This enables one to formulate extrapolations of some important quantum mechanical features via adequate extensions of reciprocal maps relating states of a system with states of its subsystems. These extended maps permit one to generalize i) separability measures to any arbitrary statistical model as well as ii) previous entanglement criteria. The standard definition of entanglement becomes just a particular case of the ensuing, more general notion.
Quantum Mechanics of Successive Measurements with Arbitrary Meter Coupling
Lars M. Johansen; Pier A. Mello
2009-01-21T23:59:59.000Z
We study successive measurements of two observables using von Neumann's measurement model. The two-pointer correlation for arbitrary coupling strength allows retrieving the initial system state. We recover Luders rule, the Wigner formula and the Kirkwood-Dirac distribution in the appropriate limits of the coupling strength.
Computationally Efficient Winding Loss Calculation with Multiple Windings, Arbitrary
windings occurs at the level of individual turns, the method could be applied, but its advantages are lessComputationally Efficient Winding Loss Calculation with Multiple Windings, Arbitrary Waveforms and Two- or Three-Dimensional Field Geometry C. R. Sullivan From IEEE Transactions on Power Electronics
Nested Lattice Codes for Arbitrary Continuous Sources and Channels
Pradhan, Sandeep
Nested Lattice Codes for Arbitrary Continuous Sources and Channels Aria G. Sahebi and S. Sandeep 48109, USA. Email: ariaghs@umich.edu, pradhanv@umich.edu Abstract--In this paper, we show that nested information at the transmitter. We also show that nested lattice codes are optimal for source coding
Matthias Krüger; Giuseppe Bimonte; Thorsten Emig; Mehran Kardar
2012-07-16T23:59:59.000Z
We present a detailed derivation of heat radiation, heat transfer and (Casimir) interactions for N arbitrary objects in the framework of fluctuational electrodynamics in thermal non-equilibrium. The results can be expressed as basis-independent trace formulae in terms of the scattering operators of the individual objects. We prove that heat radiation of a single object is positive, and that heat transfer (for two arbitrary passive objects) is from the hotter to a colder body. The heat transferred is also symmetric, exactly reversed if the two temperatures are exchanged. Introducing partial wave-expansions, we transform the results for radiation, transfer and forces into traces of matrices that can be evaluated in any basis, analogous to the equilibrium Casimir force. The method is illustrated by (re)deriving the heat radiation of a plate, a sphere and a cylinder. We analyze the radiation of a sphere for different materials, emphasizing that a simplification often employed for metallic nano-spheres is typically invalid. We derive asymptotic formulae for heat transfer and non-equilibrium interactions for the cases of a sphere in front a plate and for two spheres, extending previous results. As an example, we show that a hot nano-sphere can levitate above a plate with the repulsive non-equilibrium force overcoming gravity -- an effect that is not due to radiation pressure.
Detecting arbitrary quantum errors via stabilizer measurements on a sublattice of the surface code
A. D. Córcoles; Easwar Magesan; Srikanth J. Srinivasan; Andrew W. Cross; M. Steffen; Jay M. Gambetta; Jerry M. Chow
2014-10-23T23:59:59.000Z
To build a fault-tolerant quantum computer, it is necessary to implement a quantum error correcting code. Such codes rely on the ability to extract information about the quantum error syndrome while not destroying the quantum information encoded in the system. Stabilizer codes are attractive solutions to this problem, as they are analogous to classical linear codes, have simple and easily computed encoding networks, and allow efficient syndrome extraction. In these codes, syndrome extraction is performed via multi-qubit stabilizer measurements, which are bit and phase parity checks up to local operations. Previously, stabilizer codes have been realized in nuclei, trapped-ions, and superconducting qubits. However these implementations lack the ability to perform fault-tolerant syndrome extraction which continues to be a challenge for all physical quantum computing systems. Here we experimentally demonstrate a key step towards this problem by using a two-by-two lattice of superconducting qubits to perform syndrome extraction and arbitrary error detection via simultaneous quantum non-demolition stabilizer measurements. This lattice represents a primitive tile for the surface code, which is a promising stabilizer code for scalable quantum computing. Furthermore, we successfully show the preservation of an entangled state in the presence of an arbitrary applied error through high-fidelity syndrome measurement. Our results bolster the promise of employing lattices of superconducting qubits for larger-scale fault-tolerant quantum computing.
Analytically solvable geometric network growth model with arbitrary degree distribution
Dianati, Navid
2015-01-01T23:59:59.000Z
We construct a class of network growth models capable of producing arbitrary degree distributions. The conditions necessary for generating the desired degree distribution can be derived analytically. In this model, a network is generated as a result of local interactions among agents residing on a metric space. Specifically, we study the case of random-walking agents who form bonds when they meet at designated locations we refer to as "rendezvous points." The spatial distribution of the rendezvous points determines key characteristics of the network such as the degree distribution. For any arbitrary (monotonic) degree distribution, we are able to analytically solve for the required rendezvous point distribution. Certain features of the model including high clustering coefficients suggest that it may be a suitable candidate for modeling biological and urban networks.
Arbitrary mass Majorana neutrinos in neutrinoless double beta decay
Amand Faessler; Marcela Gonzalez; Sergey Kovalenko; Fedor Simkovic
2014-08-26T23:59:59.000Z
We revisit the mechanism of neutrinoless double beta (NLDBD) decay mediated by the exchange with the heavy Majorana neutrino N of arbitrary mass mN, slightly mixed with the electron neutrino. By assuming the dominance of this mechanism, we update the well-known NLDBD-decay exclusion plot in the mass-mixing angle plane taking into account recent progress in the calculation of nuclear matrix elements within quasiparticle random phase approximation and improved experimental bounds on the NLDBD-decay half-life of Ge-76 and Xe-136. We also consider the known formula approximating the mN dependence of the NLDBD-decay nuclear matrix element in a simple explicit form. We analyze its accuracy and specify the corresponding parameters, allowing one to easily calculate the NLDBD-decay half-life for arbitrary mN for all the experimentally interesting isotopes without resorting to real nuclear structure calculations.
Dynamical density functional theory for colloidal particles with arbitrary shape
Raphael Wittkowski; Hartmut Löwen
2011-06-12T23:59:59.000Z
Starting from the many-particle Smoluchowski equation, we derive dynamical density functional theory for Brownian particles with an arbitrary shape. Both passive and active (self-propelled) particles are considered. The resulting theory constitutes a microscopic framework to explore the collective dynamical behavior of biaxial particles in nonequilibrium. For spherical and uniaxial particles, earlier derived dynamical density functional theories are recovered as special cases. Our study is motivated by recent experimental progress in preparing colloidal particles with many different biaxial shapes.
A compact, multichannel, and low noise arbitrary waveform generator
Govorkov, S. [Sema Systems, 302-5553 16th ave., Delta, British Columbia V4M 2H7 (Canada)] [Sema Systems, 302-5553 16th ave., Delta, British Columbia V4M 2H7 (Canada); Ivanov, B. I. [Leibniz-Institute of Photonic Technology, PO Box 100239, D-07702 Jena (Germany) [Leibniz-Institute of Photonic Technology, PO Box 100239, D-07702 Jena (Germany); Novosibirsk State Technical University, K.Marx-Ave. 20, Novosibirsk 630092 (Russian Federation); Il'ichev, E.; Meyer, H.-G. [Leibniz-Institute of Photonic Technology, PO Box 100239, D-07702 Jena (Germany)] [Leibniz-Institute of Photonic Technology, PO Box 100239, D-07702 Jena (Germany)
2014-05-15T23:59:59.000Z
A new type of high functionality, fast, compact, and easy programmable arbitrary waveform generator for low noise physical measurements is presented. The generator provides 7 fast differential waveform channels with a maximum bandwidth up to 200 MHz frequency. There are 6 fast pulse generators on the generator board with 78 ps time resolution in both duration and delay, 3 of them with amplitude control. The arbitrary waveform generator is additionally equipped with two auxiliary slow 16 bit analog-to-digital converters and four 16 bit digital-to-analog converters for low frequency applications. Electromagnetic shields are introduced to the power supply, digital, and analog compartments and with a proper filter design perform more than 110 dB digital noise isolation to the output signals. All the output channels of the board have 50 ? SubMiniature version A termination. The generator board is suitable for use as a part of a high sensitive physical equipment, e.g., fast read out and manipulation of nuclear magnetic resonance or superconducting quantum systems and any other application, which requires electromagnetic interference free fast pulse and arbitrary waveform generation.
Scott Hottovy; Austin McDaniel; Giovanni Volpe; Jan Wehr
2014-04-08T23:59:59.000Z
We study a class of systems of stochastic differential equations describing diffusive phenomena. The Smoluchowski-Kramers approximation is used to describe their dynamics in the small mass limit. Our systems have arbitrary state-dependent friction and noise coefficients. We identify the limiting equation and, in particular, the additional drift term that appears in the limit is expressed in terms of the solution to a Lyapunov matrix equation. The proof uses a theory of convergence of stochastic integrals developed by Kurtz and Protter. The result is sufficiently general to include systems driven by both white and Ornstein-Uhlenbeck colored noises. We discuss applications of the main theorem to several physical phenomena, including the experimental study of Brownian motion in a diffusion gradient.
Epstein, Ariel
2014-01-01T23:59:59.000Z
We present a semi-analytical formulation of the interaction between a given source field and a scalar Huygens metasurface (HMS), a recently introduced promising concept for wavefront manipulation based on a sheet of orthogonal electric and magnetic dipoles. Utilizing the equivalent surface impedance representation of these metasurfaces, we establish that an arbitrary source field can be converted into directive radiation via a passive lossless HMS if two physical conditions are met: local power conservation and local impedance equalization. Expressing the fields via their plane-wave spectrum and harnessing the slowly-varying envelope approximation we obtain semi-analytical formulae for the scattered fields, and prescribe the surface reactance required for the metasurface implementation. The resultant design procedure indicates that the local impedance equalization induces a Fresnel-like reflection, while local power conservation forms a radiating virtual aperture which follows the total excitation field magni...
V-006: CA ARCserve Backup Flaws Let Remote Users Execute Arbitrary...
Broader source: Energy.gov (indexed) [DOE]
6: CA ARCserve Backup Flaws Let Remote Users Execute Arbitrary Code and Deny Service V-006: CA ARCserve Backup Flaws Let Remote Users Execute Arbitrary Code and Deny Service...
V-054: IBM WebSphere Application Server for z/OS Arbitrary Command...
Broader source: Energy.gov (indexed) [DOE]
4: IBM WebSphere Application Server for zOS Arbitrary Command Execution Vulnerability V-054: IBM WebSphere Application Server for zOS Arbitrary Command Execution Vulnerability...
V-104: Oracle Java Flaw Lets Remote Users Execute Arbitrary Code...
Broader source: Energy.gov (indexed) [DOE]
Code V-104: Oracle Java Flaw Lets Remote Users Execute Arbitrary Code March 5, 2013 - 12:53am Addthis PROBLEM: Oracle Java Flaw Lets Remote Users Execute Arbitrary Code...
V-171: Apple Safari Bugs Let Remote Users Execute Arbitrary Code...
Broader source: Energy.gov (indexed) [DOE]
1: Apple Safari Bugs Let Remote Users Execute Arbitrary Code and Conduct Cross-Site Scripting Attacks V-171: Apple Safari Bugs Let Remote Users Execute Arbitrary Code and Conduct...
U-165: Apple iOS Bugs Let Remote Users Execute Arbitrary Code...
Office of Environmental Management (EM)
165: Apple iOS Bugs Let Remote Users Execute Arbitrary Code and Spoof Address Bar URLs U-165: Apple iOS Bugs Let Remote Users Execute Arbitrary Code and Spoof Address Bar URLs May...
U-036: Apple iOS Bugs Let Remote Users Execute Arbitrary Code...
Broader source: Energy.gov (indexed) [DOE]
6: Apple iOS Bugs Let Remote Users Execute Arbitrary Code U-036: Apple iOS Bugs Let Remote Users Execute Arbitrary Code November 15, 2011 - 8:00am Addthis PROBLEM: Apple iOS Bugs...
U-264: Apple OS X Lets Remote Users Execute Arbitrary Code and...
Broader source: Energy.gov (indexed) [DOE]
4: Apple OS X Lets Remote Users Execute Arbitrary Code and Local Users Gain Elevated Privileges U-264: Apple OS X Lets Remote Users Execute Arbitrary Code and Local Users Gain...
Nonlinear oscillations and waves in an arbitrary mass ratio cold plasma
Verma, Prabal Singh [Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India)
2011-12-15T23:59:59.000Z
It is well known that nonlinear standing oscillations in an arbitrary mass ratio cold plasma always phase mix away. However, there exist nonlinear electron-ion traveling wave solutions, which do not exhibit phase mixing because they have zero ponderomotive force. The existence of these waves has been demonstrated using a perturbation method. Moreover, it is shown that cold plasma BGK waves [Albritton et al., Nucl. Fusion 15, 1199 (1975)] phase mix away if ions are allowed to move and the scaling of phase mixing is found to be different from earlier work [Sengupta et al., Phys. Rev. Lett. 82, 1867 (1999)]. Phase mixing of these waves has been further verified in 1-D particle in cell simulation.
L. H. Li; P. Ventura; S. Basu; S. Sofia; P. Demarque
2006-01-27T23:59:59.000Z
A high-precision two-dimensional stellar evolution code has been developed for studying solar variability due to structural changes produced by varying internal magnetic fields of arbitrary configurations. Specifically, we are interested in modeling the effects of a dynamo-type field on the detailed internal structure and on the global parameters of the Sun. The high precision is required both to model very small solar changes (of order of $10^{-4}$) and short time scales (or order of one year). It is accomplished by using the mass coordinate to replace the radial coordinate, by using fixed and adjustable time steps, a realistic stellar atmosphere, elements diffusion, and by adjusting the grid points. We have also built into the code the potential to subsequently include rotation and turbulence. The current code has been tested for several cases, including its ability to reproduce the 1-D results.
U-208: HP Operations Agent Bugs Let Remote Users Execute Arbitrary Code
Broader source: Energy.gov [DOE]
Two vulnerabilities were reported in HP Operations Agent. A remote user can execute arbitrary code on the target system
Arbitrary Nesting of Spatial Computations Antoine Spicher, Olivier Michel, Jean-Louis Giavitto
Paris-Sud XI, UniversitÃ© de
Arbitrary Nesting of Spatial Computations Antoine Spicher, Olivier Michel, Jean-Louis Giavitto LACL-louis.giavitto@ircam.fr Abstract--Modern programming languages allow the definition and the use of arbitrary nested data structures but this is not generally considered in unconventional programming models. In this paper, we present arbitrary nesting
Van Eester, D.; Lerche, E. [LPP-ERM/KMS, Association Euratom-Belgian State, TEC Partner, Brussels (Belgium)
2014-02-12T23:59:59.000Z
Both at low and higher cyclotron harmonics, properly accounting for finite Larmor radius effects is crucial in many ion cyclotron resonance frequency heating scenarios creating high energy tails. The present paper discusses ongoing work to extend the 1D TOMCAT wave equation solver [D. Van Eester and R. Koch, Plasma Phys. Contr. Fusion 40 (1998) 1949] to arbitrary harmonics and arbitrary wavelengths. Rather than adopting the particle position, the guiding center position is used as the independent variable when writing down an expression for the dielectric response. Adopting a philosophy originally due to Kaufman [A.N. Kaufman, Phys. Fluids 15 (1972) 1063], the relevant dielectric response in the Galerkin formalism is written in a form where the electric field and the test function vector appear symmetrically, which yields a power balance equation that guarantees non-negative absorption for any wave type for Maxwellian plasmas. Moreover, this choice of independent variable yields intuitive expressions that can directly be linked to the corresponding expressions in the RF diffusion operator. It also guarantees that a positive definite power transfer from waves to particles is ensured for any of the wave modes in a plasma in which all populations have a Maxwellian distribution, as is expected from first principles. Rather than relying on a truncated Taylor series expansion of the dielectric response, an integro-differential approach that retains all finite Larmor radius effects [D. Van Eester and E. Lerche, Plasma Phys. Control. Fusion 55 (2013) 055008] is proposed.
Consistent interaction vertices in arbitrary topological BF theories
Bizdadea, C.; Cioroianu, E. M.; Saliu, S. O.; Sararu, S. C.; Stanciu-Oprean, L. [Department of Physics, University of Craiova, 13 Al. I. Cuza Street, Craiova 200585 (Romania)
2013-11-13T23:59:59.000Z
Here we extend the previous results from [12] to the computation of all consistent self-interactions for topological BF theories with maximal field spectra in D =5,6,7,8 and present some partial results on possible generalizations on a space-time of arbitrary dimension D. For convenience, the deformation of the solution to the master equation in the context of the BRST-antifield formalism is used as a general method of constructing consistent interacting gauge field theories together with most of the standard hypotheses on quantum field theories on Minkowski space-times.
Quantum teleportation of an arbitrary superposition of atomic Dicke states
Di, TG; Muthukrishnan, A.; Scully, Marlan O.; Zubairy, M. Suhail
2005-01-01T23:59:59.000Z
, USA 2Departments of Chemistry and Aerospace & Mechanical Engineering, Princeton University, New Jersey 08544, USA sReceived 20 December 2004; revised manuscript received 18 February 2005; published 9 June 2005d We propose a scheme for teleporting... insetd. States uccl and ubbl represent both atoms in the same state, and subcl+ ucbld /?2 is a state with one atom in state ubl and one in state ucl. The coeffi- cients C0 I , C1 I , and C2I are arbitrary and satisfy uC0I u2+ uC1I u2 + uC 2I u2...
Towards radio astronomical imaging using an arbitrary basis
Petschow, Matthias
2015-01-01T23:59:59.000Z
The new generation of radio telescopes, such as the Square Kilometer Array (SKA), requires dramatic advances in computer hardware and software, in order to process the large amounts of produced data efficiently. In this document, we explore a new approach to wide-field imaging. By generalizing the image reconstruction, which is performed by an inverse Fourier transform, to arbitrary transformations, we gain enormous new possibilities. In particular, we outline an approach that might allow to obtain a sky image of size P times Q in (optimal) O(PQ) time. This could be a step in the direction of real-time, wide-field sky imaging for future telescopes.
ETFOD: a point model physics code with arbitrary input
Rothe, K.E.; Attenberger, S.E.
1980-06-01T23:59:59.000Z
ETFOD is a zero-dimensional code which solves a set of physics equations by minimization. The technique used is different than normally used, in that the input is arbitrary. The user is supplied with a set of variables from which he specifies which variables are input (unchanging). The remaining variables become the output. Presently the code is being used for ETF reactor design studies. The code was written in a manner to allow easy modificaton of equations, variables, and physics calculations. The solution technique is presented along with hints for using the code.
Quantum lithography with classical light: Generation of arbitrary patterns
Sun, Qingqing; Hemmer, Philip R.; Zubairy, M. Suhail
2007-01-01T23:59:59.000Z
Quantum lithography with classical light: Generation of arbitrary patterns Qingqing Sun,1,2 Philip R. Hemmer,3 and M. Suhail Zubairy1,2 1Department of Physics and Institute of Quantum Studies, Texas A&M University, College Station, Texas 77843..., Phys. Rev. Lett. 85, 2733 #1;2000#2;. #3;7#4; S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, Nature #1;Lon- don#2; 412, 697 #1;2001#2;. #3;8#4; M. D?Angelo, M. V. Chekhova, and Y. Shih, Phys. Rev. Lett. 87, 013602 #1;2001#2;. #3;9#4; A. Pe?er, B...
Fitzpatrick, Richard
. Â© 2004 American Institute of Physics. DOI: 10.1063/1.1768956 I. INTRODUCTION Magnetic reconnection experiments,1 the solar corona,2 and the Earth's magnetotail.3 The reconnection process gives rise to a change equilibrium with a central magnetic-field resonance is subject to a sud- denly imposed, small amplitude
Falcon: automated optimization method for arbitrary assessment criteria
Yang, Tser-Yuan (Livermore, CA); Moses, Edward I. (Livermore, CA); Hartmann-Siantar, Christine (Livermore, CA)
2001-01-01T23:59:59.000Z
FALCON is a method for automatic multivariable optimization for arbitrary assessment criteria that can be applied to numerous fields where outcome simulation is combined with optimization and assessment criteria. A specific implementation of FALCON is for automatic radiation therapy treatment planning. In this application, FALCON implements dose calculations into the planning process and optimizes available beam delivery modifier parameters to determine the treatment plan that best meets clinical decision-making criteria. FALCON is described in the context of the optimization of external-beam radiation therapy and intensity modulated radiation therapy (IMRT), but the concepts could also be applied to internal (brachytherapy) radiotherapy. The radiation beams could consist of photons or any charged or uncharged particles. The concept of optimizing source distributions can be applied to complex radiography (e.g. flash x-ray or proton) to improve the imaging capabilities of facilities proposed for science-based stockpile stewardship.
Method of preparing mercury with an arbitrary isotopic distribution
Grossman, M.W.; George, W.A.
1986-12-16T23:59:59.000Z
This invention provides for a process for preparing mercury with a predetermined, arbitrary, isotopic distribution. In one embodiment, different isotopic types of Hg[sub 2]Cl[sub 2], corresponding to the predetermined isotopic distribution of Hg desired, are placed in an electrolyte solution of HCl and H[sub 2]O. The resulting mercurous ions are then electrolytically plated onto a cathode wire producing mercury containing the predetermined isotopic distribution. In a similar fashion, Hg with a predetermined isotopic distribution is obtained from different isotopic types of HgO. In this embodiment, the HgO is dissolved in an electrolytic solution of glacial acetic acid and H[sub 2]O. The isotopic specific Hg is then electrolytically plated onto a cathode and then recovered. 1 fig.
Method of preparing mercury with an arbitrary isotopic distribution
Grossman, Mark W. (Belmont, MA); George, William A. (Rockport, MA)
1986-01-01T23:59:59.000Z
This invention provides for a process for preparing mercury with a predetermined, arbitrary, isotopic distribution. In one embodiment, different isotopic types of Hg.sub.2 Cl.sub.2, corresponding to the predetermined isotopic distribution of Hg desired, are placed in an electrolyte solution of HCl and H.sub.2 O. The resulting mercurous ions are then electrolytically plated onto a cathode wire producing mercury containing the predetermined isotopic distribution. In a similar fashion, Hg with a predetermined isotopic distribution is obtained from different isotopic types of HgO. In this embodiment, the HgO is dissolved in an electrolytic solution of glacial acetic acid and H.sub.2 O. The isotopic specific Hg is then electrolytically plated onto a cathode and then recovered.
Arbitrary two-qubit computation in 23 elementary gates
Bullock, Stephen S.; Markov, Igor L. [Department of Mathematics, The University of Michigan, Ann Arbor, Michigan 48109-2122, USA (United States); Mathematical and Computational Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8910, USA (United States); Department of Electrical Engineering and Computer Science, The University of Michigan, 1301 Beal Avenue-EECS, Ann Arbor, Michigan 48109-2122, USA (United States)
2003-07-01T23:59:59.000Z
We address the problem of constructing quantum circuits to implement an arbitrary two-qubit quantum computation. We pursue circuits without ancilla qubits and as small a number of elementary quantum gates as possible. Our lower bound for worst-case optimal two-qubit circuits calls for at least 17 gates: 15 one-qubit rotations and 2 controlled-NOT (CNOT) gates. We also constructively prove a worst-case upper bound of 23 elementary gates, of which at most four (CNOT gates) entail multiqubit interactions. Our analysis shows that synthesis algorithms suggested in previous work, although more general, entail larger quantum circuits than ours in the special case of two qubits. One such algorithm has a worst case of 61 gates, of which 18 may be CNOT gates.
U-133: Google Chrome Multiple Flaws Let Remote Users Execute Arbitrary Code
Broader source: Energy.gov [DOE]
Multiple vulnerabilities were reported in Google Chrome. A remote user can cause arbitrary code to be executed on the target user's system.
T-573: Windows Remote Desktop Client DLL Loading Error Lets Remote Users Execute Arbitrary Code
Broader source: Energy.gov [DOE]
A vulnerability was reported in Windows Remote Desktop Client. A remote user can cause arbitrary code to be executed on the target user's system.
T-718:Adobe Acrobat/Reader Multiple Bugs Let Remote Users Execute Arbitrary Code
Broader source: Energy.gov [DOE]
A remote user can create a file that, when loaded by the target user, will execute arbitrary code on the target user's system.
V-006: CA ARCserve Backup Flaws Let Remote Users Execute Arbitrary Code and Deny Service
Broader source: Energy.gov [DOE]
Two vulnerabilities were reported in CA ARCserve Backup. A remote user can execute arbitrary code on the target system. A remote user can cause denial of service conditions.
U-222: Apple Safari Bugs Let Remote Users Execute Arbitrary Code...
Broader source: Energy.gov (indexed) [DOE]
2: Apple Safari Bugs Let Remote Users Execute Arbitrary Code, Spoof the URL Address Bar, Conduct Cross-Site Scripting Attacks, and Obtain Potentially Sensitive Information U-222:...
arbitrary grey-level optical: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Pijush K. Ghosh 1996-07-02 71 Synthesising arbitrary quantum states in a superconduct-ing resonator Computer Technologies and Information Sciences Websites Summary:...
arbitrary sub-diffraction-limit pattern: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Washington at Seattle, University of 243 Synthesising arbitrary quantum states in a superconduct-ing resonator Computer Technologies and Information Sciences Websites Summary:...
adaptive arbitrary lagrangian-eulerian: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Washington at Seattle, University of 282 Synthesising arbitrary quantum states in a superconduct-ing resonator Computer Technologies and Information Sciences Websites Summary:...
arbitrary particle-channel interaction: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Washington at Seattle, University of 315 Synthesising arbitrary quantum states in a superconduct-ing resonator Computer Technologies and Information Sciences Websites Summary:...
E-Print Network 3.0 - arbitrary time dependent Sample Search...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Technical Report CS96466, CSE Dept., UCSD, January 1996 Determining Asynchronous Acyclic Pipeline Execution Times Summary: units. For an arbitrary graph G, G:time 1 can be...
E-Print Network 3.0 - arbitrary input distributions Sample Search...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
results for: arbitrary input distributions Page: << < 1 2 3 4 5 > >> 1 Generalized MercuryWaterfilling for Multiple-Input Multiple-Output Channels Summary: -interacting...
E-Print Network 3.0 - arbitrary waveform generation Sample Search...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
arbitrary waveform synthesizer with output voltage three times higher... of 4096 Josephson junctions. With this circuit it is now possible to synthesize ... Source: Benz,...
U-004:Google Chrome Multiple Flaws Let Remote Users Execute Arbitrary Code
Broader source: Energy.gov [DOE]
A remote user can create HTML that, when loaded by the target user, will execute arbitrary code on the target user's system.
Model Checking MANETs with Arbitrary Mobility Fatemeh Ghassemi1
Fokkink, Wan
with an unless operator, are parameterized by multi- hop constraints over topologies, to express conditions on successful scenarios of a MANET protocol. We moreover provide a bisimilarity relation with the same
Arbitrary spin conformal fields in (A)dS
R. R. Metsaev
2014-07-02T23:59:59.000Z
Totally symmetric arbitrary spin conformal fields in (A)dS space of even dimension greater than or equal to four are studied. Ordinary-derivative and gauge invariant Lagrangian formulation for such fields is obtained. Gauge symmetries are realized by using auxiliary fields and Stueckelberg fields. We demonstrate that Lagrangian of conformal field is decomposed into a sum of gauge invariant Lagrangians for massless, partial-massless, and massive fields. We obtain a mass spectrum of the partial-massless and massive fields and confirm the conjecture about the mass spectrum made in the earlier literature. In contrast to conformal fields in flat space, the kinetic terms of conformal fields in (A)dS space turn out to be diagonal with respect to fields entering the Lagrangian. Explicit form of conformal transformation which maps conformal field in flat space to conformal field in (A)dS space is obtained. Covariant Lorentz-like and de-Donder like gauge conditions leading to simple gauge-fixed Lagrangian of conformal fields are proposed. Using such gauge-fixed Lagrangian, which is invariant under global BRST transformations, we explain how the partition function of conformal field is obtained in the framework of our approach.
Green's Conjecture for curves on arbitrary K3 Marian Aprodu and Gavril Farkas
Farkas, Gavril
Green's Conjecture for curves on arbitrary K3 surfaces Marian Aprodu and Gavril Farkas Abstract Green's Conjecture predicts than one can read off special linear series on an algebraic curve-Ramanan, provides a complete solution to Green's Conjecture for smooth curves on arbitrary K3 surfaces. 1
Optical Arbitrary Waveform Generation Based Optical-Label Switching Transmitter with
Kolner, Brian H.
Optical Arbitrary Waveform Generation Based Optical-Label Switching Transmitter with All-Optical, 95616 Email: sbyoo@ucdavis.edu Abstract: This paper introduces a modulation-format transparent optical-label switching transmitter based on optical arbitrary waveform generation. Packets consisting of 100 Gb
Electric field in hard superconductors with arbitrary cross section and general critical current law
Majós, Antonio Badía
Electric field in hard superconductors with arbitrary cross section and general critical current-28871 Alcala´ de Henares, Spain Received 18 February 2004; accepted 11 March 2004 The induced electric field E x during magnetic flux entry in superconductors with arbitrary cross section and general
Nonlinear dynamics of magnetohydrodynamic flows of heavy fluid over an arbitrary surface
equations system for heavy fluid over an arbitrary surface in shallow water approximation is studied to the study of nonlinear flows of heavy fluid described by the shallow water magnetohydrodynamic equations1 Nonlinear dynamics of magnetohydrodynamic flows of heavy fluid over an arbitrary surface
Closed Form of the Biphoton K-Vector Spectrum for Arbitrary Spatio-Temporal Pump Modes
Jeffrey Perkins
2011-09-02T23:59:59.000Z
A closed form solution is derived for the biphoton k-vector spectrum for an arbitrary pump spatial mode. The resulting mode coefficients for the pump input that maximize the probability of biphoton detection in the far field are found. It is thus possible to include the effect of arbitrary crystal poling strucures, and optimize the resulting biphoton flux.
MULTICHANNEL BLIND DECONVOLUTION OF ARBITRARY SIGNALS: ADAPTIVE ALGORITHMS AND STABILITY ANALYSIES
Douglas, Scott C.
MULTICHANNEL BLIND DECONVOLUTION OF ARBITRARY SIGNALS: ADAPTIVE ALGORITHMS AND STABILITY ANALYSIES for the multichannel blind deconvolution of arbitrary non-Gaussian source mixtures. Two of the algorithms are spa- tia-temporal extensions of recently-derived blind signal separation algorithms that combine kurta- sis-based contrast
Localized Magnetic Fields in Arbitrary Directions Using Patterned Nanomagnets
Dunin-Borkowski, Rafal E.
with the option of applying electric fields, for example, to move a quantum dot between regions where the magnetic magnetic films have a long history, for example, in bubble memory,6 but on scales required for spintronic electric fields, for example, to move a quantum dot between regions where the magnetic-field direction
Holographic Superconductors with Lifshitz Scaling
E. J. Brynjolfsson; U. H. Danielsson; L. Thorlacius; T. Zingg
2010-03-27T23:59:59.000Z
Black holes in asymptotically Lifshitz spacetime provide a window onto finite temperature effects in strongly coupled Lifshitz models. We add a Maxwell gauge field and charged matter to a recently proposed gravity dual of 2+1 dimensional Lifshitz theory. This gives rise to charged black holes with scalar hair, which correspond to the superconducting phase of holographic superconductors with z > 1 Lifshitz scaling. Along the way we analyze the global geometry of static, asymptotically Lifshitz black holes at arbitrary critical exponent z > 1. In all known exact solutions there is a null curvature singularity in the black hole region, and, by a general argument, the same applies to generic Lifshitz black holes.
Broader source: Energy.gov [DOE]
A remote user can cause the target application to execute arbitrary code on the target user's system.
E-Print Network 3.0 - arbitrary microvascular geometries Sample...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
on the cell free layer and Summary: -759. Udaykumar, H.S., Kan, H.C., Shyy, W., Tran-Son-Tay, R., 1997. Multiphase dynamics in arbitrary geometries... and cow- orkers (Pozrikidis,...
E-Print Network 3.0 - arbitrary spins non-linearly Sample Search...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Sciences 86 Origin and Control of Spin Currents in a Magnetic Triplet Josephson Junction Philip M. R. BRYDON Summary: a spin-filter for arbitrary . As displayed in Fig....
E-Print Network 3.0 - arbitrary-profile slow-wave structure Sample...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
1607-7962graEGU2007-A-00262 Summary: to examine flows with arbitrary profiles of zonal wind and vertical stratification. We apply the techniques... structure. What is the role...
V-015: Apple iOS Bugs Let Remote Users Execute Arbitrary Code...
Broader source: Energy.gov (indexed) [DOE]
5: Apple iOS Bugs Let Remote Users Execute Arbitrary Code, Local Users Bypass the Screen Lock, and Applications Obtain Kernel Address Information V-015: Apple iOS Bugs Let Remote...
U-121: Apple iOS Bugs Let Remote Users Execute Arbitrary Code...
Broader source: Energy.gov (indexed) [DOE]
21: Apple iOS Bugs Let Remote Users Execute Arbitrary Code, Conduct Cross-Site Scripting Attacks, and Obtain Potentially Sensitive Information U-121: Apple iOS Bugs Let Remote...
U-184: Mozilla Firefox Multiple Bugs Let Remote Users Execute Arbitrary Code
Broader source: Energy.gov [DOE]
A remote user can cause arbitrary code to be executed on the target user's system. A remote user can conduct cross-site scripting attacks. A remote user can obtain potentially sensitive information.
CIP/multi-moment finite volume method with arbitrary order of accuracy
Xiao, Feng
2012-01-01T23:59:59.000Z
This paper presents a general formulation of the CIP/multi-moment finite volume method (CIP/MM FVM) for arbitrary order of accuracy. Reconstruction up to arbitrary order can be built on single cell by adding extra derivative moments at the cell boundary. The volume integrated average (VIA) is updated via a flux-form finite volume formulation, whereas the point-based derivative moments are computed as local derivative Riemann problems by either direct interpolation or approximate Riemann solvers.
EXPLORING EFFICIENT CODING SCHEMES FOR STORING ARBITRARY TREE DATA STRUCTURES IN FLASH MEMORIES
Falck, Justin
2009-06-09T23:59:59.000Z
fulfillment of the requirements for the designation as UNDERGRADUATE RESEARCH SCHOLAR A Senior Scholars Thesis by JUSTIN ALLEN FALCK EXPLORING EFFICIENT CODING SCHEMES FOR STORING ARBITRARY TREE DATA STRUCTURES IN FLASH MEMORIES Approved by... for the designation as UNDERGRADUATE RESEARCH SCHOLAR A Senior Scholars Thesis by JUSTIN ALLEN FALCK iii ABSTRACT Exploring Efficient Coding Schemes for Storing Arbitrary Tree Data Structures in Flash Memories. (April 2009) Justin Allen Falck...
Two canonical forms for matrices over an arbitrary field
Perkins, Herbert Albert
2012-06-07T23:59:59.000Z
) - (1- v5) 2""- + (1+ ~5) (1 - &5) + (1 - ~5) (1+ ~5) Since 5 2 ~k 3 (1+ J5) (1- J5) $ 0, 22)+k-3 we may neglect this factor. Factoring the remaining expression, (I +v 5) f ? 1 ? R5 + 1 - /5 ] + (1 - ~5) [ 1 + v 5 - 1 + D5 ] (1 + +5) {- 2 +5] + (1... ? ~5) [2 +5] [( 1 ? ~5) ? ( 1 + ~5) ] (1 ? v 5) ? (1 + R5) = 0 implies k = 0, k = 0 in turn k k implies R = J. This contradicts the fact that J g R, therefore k k (1 ? ~5) ? (1 + D5) g 0. This establishes u and u as R linearly independent for J g...
are greatly simplified. Small scale expression and purification of 12 positive clones identified by POET from as much protein as 12 negative clones. Larger scale expression and purification of six of the positive attempted (4). In the standard approach to high throughput protein ex- pression and purification used
All solutions of arbitrary first order autonomous partial differential equations in any dimensions
Sen-Yue Lou; Ruo-Xia Yao
2014-06-06T23:59:59.000Z
All solutions of $F(u,\\ u_t,\\ u_{x_1},\\ \\ldots,\\ u_{x_n})=0$ with arbitrary function $F$ can be completely determined by its symmetries $\\sigma=G(\\tau_1,\\ \\ldots,\\ \\tau_n)u_t$, where $G$ is an arbitrary function of $\\tau_i\\equiv u_{x_i}/u_t$, if one can find a special non-degenerate solution $u_s$ such that $\\{\\tau_{s,i}\\equiv u_{s,x_i}/u_{s,t},\\ i=1,\\ 2,\\ \\ldots\\ n\\}$ are functional independent. Especially, the Lax pair, recursion operator and infinitely many high order symmetries are also explicitly given for arbitrary (1+1)-dimensional first order autonomous partial differential equations.
Exact non-Born-Oppenheimer wave functions for three-particle Hookean systems with arbitrary masses
Lopez, Xabier; Ugalde, Jesus M.; Echevarria, Lorenzo; Ludena, Eduardo V. [Kimika Fakultatea, Euskal Herriko Unibertsitatea and Donostia International Physics Center (DIPC), P.K. 1072, 20080 Donostia, Euskadi (Spain) (Spain); Departamento de Quimica, Universidad Simon Bolivar, USB, Sartenejas (Venezuela); Kimika Fakultatea, Euskal Herriko Unibertsitatea and Donostia International Physics Center (DIPC), P.K. 1072, 20080 Donostia, Euskadi (Spain) and Centro de Quimica, Instituto Venezolano de Investigaciones Cientificas, IVIC, Apartado 21827, Caracas 1020-A (Venezuela)
2006-10-15T23:59:59.000Z
A Hookean model of a three-body problem for particles with arbitrary masses and charges where two of them interact with each other through a Coulomb potential and with the third through a harmonic potential is presented. It is shown that a condition relating the masses to the harmonic coupling constants must be satisfied in order to render this problem separable. A general exact analytic solution written in terms of the relative interparticle coordinates is given as well as general expressions for the total and binding energies of this three-body system. We apply these results to examine electronic, muonic, antiprotonic, and pionic families of non-Born-Oppenheimer Hookean systems. The first contains the atoms or atomic ions: Ps{sup -}(e{sup +}e{sup -}e{sup -}), H{sup -}(p{sup +}e{sup -}e{sup -}), D{sup -}(d{sup +}e{sup -}e{sup -}), T{sup -}(p{sup +}e{sup -}e{sup -}), {sup 4}He(he{sup +2}e{sup -}e{sup -}), and the following molecular ions: Ps{sub 2}{sup +}(e{sup -}e{sup +}e{sup +}), H{sub 2}{sup +}(e{sup -}p{sup +}p{sup +}), HD{sup +}(e{sup -}d{sup +}p{sup +}), HT{sup +}(e{sup -}t{sup +}p{sup +}), DT{sup +}(e{sup -}d{sup +}t{sup +}), D{sub 2}{sup +}(e{sup -}d{sup +}d{sup +}), T{sub 2}{sup +}(e{sup -}t{sup +}t{sup +}). The muonic and antiprotonic families are similar to the electronic ones except that the species are formed replacing e{sup -} by {mu}{sup -} or p{sup -}. The pionic family comprises exotic atoms containing at least one pion. We also apply these results to two-electron three-dimensional spherical quantum dots and for these systems we examine the effect of electronic correlation, particularly on the singlet-triplet transitions and on the collective motion of the electrons and center of mass leading to ''floppy''dynamics.
Broader source: Energy.gov [DOE]
A vulnerability was reported in PHP. A remote user can obtain potentially sensitive information. A remote user can execute arbitrary code on the target system.
U-007: IBM Rational AppScan Import/Load Function Flaws Let Remote Users Execute Arbitrary Code
Broader source: Energy.gov [DOE]
Two vulnerabilities were reported in IBM Rational AppScan. A remote user can cause arbitrary code to be executed on the target user's system.
Broader source: Energy.gov [DOE]
Two vulnerabilities were reported in WebCalendar. A remote user may be able to execute arbitrary PHP code on the target system.
Broader source: Energy.gov [DOE]
Race condition in Google Chrome before 9.0.597.84 allows remote attackers to execute arbitrary code via vectors related to audio.
Broader source: Energy.gov [DOE]
A vulnerability was reported in Lotus Quickr for Domino. A remote user can cause arbitrary code to be executed on the target user's system.
Random Walk on an Arbitrary Set By Simon C. Harris, Robin Sibson, and
Harris, Simon Colin
Random Walk on an Arbitrary Set By Simon C. Harris, Robin Sibson, and David Williams School be a countably infinite set of points in R, and suppose that I has no points of accumulation and that its convex hull is the whole of R. It will be convenient to index I as {ui : i Z}, with ui
Mass and spin content of a free relativistic particle of arbitrary spins and the group
Nikitin, Anatoly
of particles with several spins and masses which can exist in positive as well as negative energy states Postal 20-364, 01000 Mexico D. F., Mexico 2 Instituto de Ciencias Nucleares, UNAM, Apdo. Postal 70 approach to the free parti- cle of arbitrary spins whose relativistic equation can be obtained from
Fast Detection and Processing of Arbitrary Contrast Agent Injections in Coronary
LÃ¼beck, UniversitÃ¤t zu
: condura@isip.uni-luebeck.de Abstract. Percutaneous transluminal coronary angioplasty (PTCA) re- quires pre-interventional and inter- ventional X-ray images. In the pre-interventional coronary angiogramsFast Detection and Processing of Arbitrary Contrast Agent Injections in Coronary Angiography
A Closed-Form Solution to the Arbitrary Order Cauchy Problem with Propagators
Henrik Stenlund
2014-11-24T23:59:59.000Z
The general abstract arbitrary order (N) Cauchy problem was solved in a closed form as a sum of exponential propagator functions. The infinite sparse exponential series was solved with the aid of a homogeneous differential equation. It generated a linear combination of exponential functions. The Cauchy problem solution was formed with N linear combinations of N exponential propagators.
U-199: Drupal Drag & Drop Gallery Module Arbitrary File Upload Vulnerability
Broader source: Energy.gov [DOE]
The vulnerability is caused due to the sites/all/modules/dragdrop_gallery/upload.php script improperly validating uploaded files, which can be exploited to execute arbitrary PHP code by uploading a PHP file with e.g. an appended ".gif" file extension.
Reversing the weak measurement of an arbitrary field with finite photon number
Sun, Qingqing; Al-Amri, M.; Zubairy, M. Suhail.
2009-01-01T23:59:59.000Z
For an arbitrary field with finite photon number inside a leaky cavity, we show that the null-result measurement can be conditionally reversed, using either multiple atoms or a multilevel atom. Even with photons detected, a certain class of fields...
SPAIN: COTS Data-Center Ethernet for Multipathing over Arbitrary Topologies
SPAIN: COTS Data-Center Ethernet for Multipathing over Arbitrary Topologies Jayaram Mudigonda switches, which could obviate the commodity pricing of these parts. In this paper, we describe SPAIN ("Smart Path Assign- ment In Networks"). SPAIN provides multipath forward- ing using inexpensive
Fast and accurate direct MDCT to DFT conversion with arbitrary window functions
Paris-Sud XI, UniversitÃ© de
1 Fast and accurate direct MDCT to DFT conversion with arbitrary window functions Shuhua Zhang* and Laurent Girin Abstract--In this paper, we propose a method for direct con- version of MDCT coefficients of the MDCT-to- DFT conversion matrices into a Toeplitz part plus a Hankel part. The latter is split
Self-Assembly of Arbitrary Shapes Using RNAse Enzymes: Meeting the Kolmogorov Bound with
Paris-Sud XI, UniversitÃ© de
Self-Assembly of Arbitrary Shapes Using RNAse Enzymes: Meeting the Kolmogorov Bound with Small@uwplatt.edu Abstract We consider a model of algorithmic self-assembly of geometric shapes out of square Wang tiles Biomolecular computation, RNAse enzyme self-assembly, algorithmic self-assembly, Komogorov complexity Digital
Self-Assembly of Arbitrary Shapes Using RNAse Enzymes: Meeting the Kolmogorov Bound with
Demaine, Erik
Self-Assembly of Arbitrary Shapes Using RNAse Enzymes: Meeting the Kolmogorov Bound with Small@uwplatt.edu This research was supported in part by NSF grant CDI-0941538 Abstract We consider a model of algorithmic self-assembly Biomolecular computation, RNAse enzyme self-assembly, algorithmic self-assembly, Komogorov complexity Digital
Staged Self-Assembly: Nanomanufacture of Arbitrary Shapes with O(1) Glues
Demaine, Erik
Staged Self-Assembly: Nanomanufacture of Arbitrary Shapes with O(1) Glues Erik D. Demaine Martin L We introduce staged self-assembly of Wang tiles, where tiles can be added dynamically in sequence- neering. Staging allows us to break through the traditional lower bounds in tile self-assembly by encoding
Staged Self-Assembly: Nanomanufacture of Arbitrary Shapes with O(1) Glues
Demaine, Erik
Staged Self-Assembly: Nanomanufacture of Arbitrary Shapes with O(1) Glues Erik D. Demaine Martin L We introduce staged self-assembly of Wang tiles, where tiles can be added dynamically in sequence-based bioengineering. Staging allows us to break through the traditional lower bounds in tile self-assembly by encoding
Spectroscopic Raman Nanometrology of Graphene and Graphene Multilayers on Arbitrary Substrates
Spectroscopic Raman Nanometrology of Graphene and Graphene Multilayers on Arbitrary Substrates I to be an effective tool for characterization of graphene and graphene multilayers on the standard Si/SiO2 (300 nm) substrates, which allows one to determine non-destructively the number of the graphene layers and assess
Single crystal growth and heteroepitaxy of polyacene thin films on arbitrary substrates
Headrick, Randall L.
in a number of low-cost, large area electronic applications such as flat panel displays. Organic thin film as other substrates.6-12 Recently, significant progress has been made towards fabricating high quality is to prepare single crystal films on arbitrary substrates. Here we describe two significant advances towards
Trigger-Wave Propagation in Arbitrary Metrics in Asynchronous Cellular Logic Arrays
Dudek, Piotr
Trigger-Wave Propagation in Arbitrary Metrics in Asynchronous Cellular Logic Arrays Przemyslaw image processing tasks using trigger-wave propagation in a medium with a hardware-controlled metric. The principles of wave propagation in cellular four-connected logic arrays emulating different distance measure
Multiuser Mercury/waterfilling for Downlink OFDM with Arbitrary Signal Constellations
Lozano, Angel
Multiuser Mercury/waterfilling for Downlink OFDM with Arbitrary Signal Constellations Angel Lozano tracked by the base station, adopts the form of a multiuser mercury/waterfilling procedure that generalizes the single-user mercury/waterfilling introduced in [1]. I. INTRODUCTION There is, of late, great
The Arbitrariness of the Sign: Learning Advantages From the Structure of the Vocabulary
the simulations and the behavioral studies, we found that the optimal structure of the vocabulary for learningThe Arbitrariness of the Sign: Learning Advantages From the Structure of the Vocabulary Padraic and their meanings can facilitate language learning (e.g., in the form of sound symbolism or cues to grammatical
Conditional generation of arbitrary multimode entangled states of light with linear optics
J. Fiurasek; S. Massar; N. J. Cerf
2003-04-01T23:59:59.000Z
We propose a universal scheme for the probabilistic generation of an arbitrary multimode entangled state of light with finite expansion in Fock basis. The suggested setup involves passive linear optics, single photon sources, strong coherent laser beams, and photodetectors with single-photon resolution. The efficiency of this setup may be greatly enhanced if, in addition, a quantum memory is available.
Factorization of Darboux transformations of arbitrary order for 2D Schroedinger operators
Ekaterina Shemyakova
2014-02-24T23:59:59.000Z
We give a proof of Darboux's conjecture that every Darboux transformation of arbitrary order of a 2D Schroedinger type operator can be factorized into Darboux transformations of order one. The proof is constructive. The result was achieved in the framework of an algebraic approach to Darboux transformations which is put forward in this paper.
Comment on the shape of Hydrogen equation in spaces of arbitrary dimension
M. Ya. Amusia
2015-02-20T23:59:59.000Z
We note that presenting Hydrogen atom Schrodinger equation in the case of arbitrary dimensions require simultaneous modification of the Coulomb potential that only in three dimensions has the form Z/r . This was not done in a number of relatively recent papers [1-5]. Therefore some results obtained there seem to be doubtful. Some required considerations in the area are mentioned.
Minkovskii-type inequality for arbitrary density matrix of composite and noncomposite systems
V. N. Chernega; O. V. Manko; V. I. Manko
2014-05-20T23:59:59.000Z
New kind of matrix inequality known for bipartite system density matrix is obtained for arbitrary density matrix of composite or noncomposite qudit systems including the single qudit state. The examples of two qubit system and qudit with j=3/2 are discussed.
Demaine, Erik D.
We consider a model of algorithmic self-assembly of geometric shapes out of square Wang tiles studied in SODA 2010, in which there are two types of tiles (e.g., constructed out of DNA and RNA material) and one operation ...
A. M. Selvam
2014-08-14T23:59:59.000Z
Atmospheric flows exhibit fractal fluctuations and inverse power law form for power spectra indicating an eddy continuum structure for the selfsimilar fluctuations. A general systems theory for fractal fluctuations developed by the author is based on the simple visualisation that large eddies form by space-time integration of enclosed turbulent eddies, a concept analogous to Kinetic Theory of Gases in Classical Statistical Physics. The ordered growth of atmospheric eddy continuum is in dynamical equilibrium and is associated with Maximum Entropy Production. The model predicts universal (scale-free) inverse power law form for fractal fluctuations expressed in terms of the golden mean. Atmospheric particulates are held in suspension in the fractal fluctuations of vertical wind velocity. The mass or radius (size) distribution for homogeneous suspended atmospheric particulates is expressed as a universal scale-independent function of the golden mean, the total number concentration and the mean volume radius. Model predicted spectrum is in agreement (within two standard deviations on either side of the mean) with total averaged radius size spectra for the AERONET (aerosol inversions) stations Davos and Mauna Loa for the year 2010 and Izana for the year 2009 daily averages. The general systems theory model for aerosol size distribution is scale free and is derived directly from atmospheric eddy dynamical concepts. At present empirical models such as the log normal distribution with arbitrary constants for the size distribution of atmospheric suspended particulates are used for quantitative estimation of earth-atmosphere radiation budget related to climate warming/cooling trends. The universal aerosol size spectrum will have applications in computations of radiation balance of earth-atmosphere system in climate models.
Omerbashich, M
2008-01-01T23:59:59.000Z
I recently demonstrated that the Earth is a forced mechanical oscillator in which springtide induced magnification of all-masses resonance causes tectonics. I here generalize this georesonator concept so to make it apply to any body, anywhere in all the universes and at all times. It turns out that there is no distinction between physics at intergalactic, mechanist, quantum, and smaller scales. Instead of being a constant (of proportionality of physics at all scales), G is a parameter of most general form: G = s e^2, nonlinearly varying amongst different scales s. The so called scale variability of physics but not of G, imagined as such by Planck and Einstein, is due to springtide-induced extreme resonance of Earth masses, critically impeding terrestrial experiments for estimating G, while providing artificial settings for quantum experiments to all trivially "work". I propose that reality is a system of near infinitely many magnifying oscillators where permanent energy decay of all oscillation naturally forb...
Geddes, Cameron Guy Robinson
Warm wave breaking of nonlinear plasma waves with arbitrary phase velocities C. B. Schroeder, E, collisionless plasma is developed to analyze nonlinear plasma waves excited by intense drive beams. The maximum amplitude and wavelength are calculated for nonrelativistic plasma temperatures and arbitrary plasma wave
A. N. Leznov
2008-01-16T23:59:59.000Z
Two Poisson structures invariant with respect to discrete transformation of the Maximal root in the case of arbitrary semi-simple algebras are presented in explicit form. Thus the problem of construction of equations of n-wave hierarchy in the case of arbitrary semi simple algebra is solved finally.
X-Band EPR Spectrometer with Customizable Arbitrary Waveform Generator based on a 1 GHz DAC Board
Martinis, John M.
X-Band EPR Spectrometer with Customizable Arbitrary Waveform Generator based on a 1 GHz DAC Board-4120 , Email: songi@chem.ucsb.edu Abstract We present an EPR spectrometer featuring an arbitrary waveform of pulsed electron paramagnetic resonance (EPR) and enable new experiments. It generates shaped X
Towards the Scale Invariant Cosmology
M. M. Verma
2005-11-29T23:59:59.000Z
An argument is made to show that the singularity in the General Theory of Relativity (GTR) is the expression of a non-Machian feature. It can be avoided with a scale-invariant dynamical theory, a property lacking in GTR. It is further argued that the global non-conservation of energy in GTR also results from the lack of scale-invariance and the field formulation presented by several authors can only resolve the problem in part. A truly scale-invariant theory is required to avoid these two problems in a more consistent approach
Fred Cooper; Gouranga C. Nayak
2006-12-29T23:59:59.000Z
We study the Schwinger mechanism for the pair production of fermions in the presence of an arbitrary time-dependent background electric field E(t) by directly evaluating the path integral. We obtain an exact non-perturbative result for the probability of fermion-antifermion pair production per unit time per unit volume per unit transverse momentum (of the fermion or antifermion) from the arbitrary time dependent electric field E(t) via Schwinger mechanism. We find that the exact non-perturbative result is independent of all the time derivatives d^nE(t)/dt^n, where n=1,2,....\\infty. This result has the same functional dependence on E as the Schwinger's constant electric field E result with the replacement: E -> E(t).
Random Walk on an Arbitrary Set By Simon C. Harris, Robin Sibson, and
Harris, Simon Colin
j 6=i q i;j (u j u i ) = 0 for every i: (1:1) Write ` i and r i for the gaps to the leftRandom Walk on an Arbitrary Set By Simon C. Harris, Robin Sibson, and David Williams School be a countably in#12;nite set of points in R, and suppose that I has no points of accumulation and that its
Practical Formula for Bunch Power Loss in Resonators of Almost Arbitrary Quality Factor
Furman, Miguel
SSC-N-142 Practical Formula for Bunch Power Loss in Resonators of Almost Arbitrary Quality Factor a resonant structure with impedance Z() = RS 1 + iQ r - r (1) then the power loss is [1] P = (cf0)2 m in the summation in Eq. (2) yield an accurate estimate for the power loss. If, on the other hand, ~() is very broad
Jeremiah W. Murphy; Adam Burrows
2008-07-09T23:59:59.000Z
In this paper, we describe a new hydrodynamics code for 1D and 2D astrophysical simulations, BETHE-hydro, that uses time-dependent, arbitrary, unstructured grids. The core of the hydrodynamics algorithm is an arbitrary Lagrangian-Eulerian (ALE) approach, in which the gradient and divergence operators are made compatible using the support-operator method. We present 1D and 2D gravity solvers that are finite differenced using the support-operator technique, and the resulting system of linear equations are solved using the tridiagonal method for 1D simulations and an iterative multigrid-preconditioned conjugate-gradient method for 2D simulations. Rotational terms are included for 2D calculations using cylindrical coordinates. We document an incompatibility between a subcell pressure algorithm to suppress hourglass motions and the subcell remapping algorithm and present a modified subcell pressure scheme that avoids this problem. Strengths of this code include a straightforward structure, enabling simple inclusion of additional physics packages, the ability to use a general equation of state, and most importantly, the ability to solve self-gravitating hydrodynamic flows on time-dependent, arbitrary grids. In what follows, we describe in detail the numerical techniques employed and, with a large suite of tests, demonstrate that BETHE-hydro finds accurate solutions with 2$^{nd}$-order convergence.
Hong Luo; Luqing Luo; Robert Nourgaliev; Vincent A. Mousseau
2010-09-01T23:59:59.000Z
A reconstruction-based discontinuous Galerkin (RDG) method is presented for the solution of the compressible Navier–Stokes equations on arbitrary grids. The RDG method, originally developed for the compressible Euler equations, is extended to discretize viscous and heat fluxes in the Navier–Stokes equations using a so-called inter-cell reconstruction, where a smooth solution is locally reconstructed using a least-squares method from the underlying discontinuous DG solution. Similar to the recovery-based DG (rDG) methods, this reconstructed DG method eliminates the introduction of ad hoc penalty or coupling terms commonly found in traditional DG methods. Unlike rDG methods, this RDG method does not need to judiciously choose a proper form of a recovered polynomial, thus is simple, flexible, and robust, and can be used on arbitrary grids. The developed RDG method is used to compute a variety of flow problems on arbitrary meshes to demonstrate its accuracy, efficiency, robustness, and versatility. The numerical results indicate that this RDG method is able to deliver the same accuracy as the well-known Bassi–Rebay II scheme, at a half of its computing costs for the discretization of the viscous fluxes in the Navier–Stokes equations, clearly demonstrating its superior performance over the existing DG methods for solving the compressible Navier–Stokes equations.
Hong Luo; Luqing Luo; Robert Nourgaliev; Vincent A. Mousseau
2010-01-01T23:59:59.000Z
A reconstruction-based discontinuous Galerkin (RDG) method is presented for the solution of the compressible Navier-Stokes equations on arbitrary grids. The RDG method, originally developed for the compressible Euler equations, is extended to discretize viscous and heat fluxes in the Navier-Stokes equations using a so-called inter-cell reconstruction, where a smooth solution is locally reconstructed using a least-squares method from the underlying discontinuous DG solution. Similar to the recovery-based DG (rDG) methods, this reconstructed DG method eliminates the introduction of ad hoc penalty or coupling terms commonly found in traditional DG methods. Unlike rDG methods, this RDG method does not need to judiciously choose a proper form of a recovered polynomial, thus is simple, flexible, and robust, and can be used on arbitrary grids. The developed RDG method is used to compute a variety of flow problems on arbitrary meshes to demonstrate its accuracy, efficiency, robustness, and versatility. The numerical results indicate that this RDG method is able to deliver the same accuracy as the well-known Bassi-Rebay II scheme, at a half of its computing costs for the discretization of the viscous fluxes in the Navier-Stokes equations, clearly demonstrating its superior performance over the existing DG methods for solving the compressible Navier-Stokes equations.
TroubleshootingGuide A. Protein Expression
Lebendiker, Mario
binding b) Dilute an aliquot of lysate (1:10), or sonicate, and check binding on a small scale. c) Try. Apparent low Â· Insoluble Use denaturing extraction expression over-expressed and purification conditions sample for purification after proper buffering B. Loading/Washing Problem Possible Cause Solution 1
Gabbouj, Moncef
-27 November 2007, Dubai, United Arab Emirates EFFECTS OF ARBITRARY-SHAPED REGIONS ON TEXTURE RETRIEVAL Serkan
Friar, J.L.
1998-12-01T23:59:59.000Z
Nuclear scales are discussed from the nuclear physics viewpoint. The conventional nuclear potential is characterized as a black box that interpolates nucleon-nucleon (NN) data, while being constrained by the best possible theoretical input. The latter consists of the longer-range parts of the NN force (e.g., OPEP, TPEP, the {pi}-{gamma} force), which can be calculated using chiral perturbation theory and gauged using modern phase-shift analyses. The shorter-range parts of the force are effectively parameterized by moments of the interaction that are independent of the details of the force model, in analogy to chiral perturbation theory. Results of GFMC calculations in light nuclei are interpreted in terms of fundamental scales, which are in good agreement with expectations from chiral effective field theories. Problems with spin-orbit-type observables are noted.
M. Omerbashich
2010-02-09T23:59:59.000Z
I recently demonstrated that the Earth is a mechanical oscillator in which springtide induced magnification of all-masses resonance forces tectonics. I here generalize this georesonator concept so to make it apply to any body, anywhere in all the universes, and at all times. It turns out that there is no distinction between physics at intergalactic, mechanist, quantum, and smaller scales. Instead of being a constant (of proportionality of physics at all scales), G is a parameter of most general form: G = s e^2, nonlinearly varying amongst different scales s. The so called scale variability of physics but not of G, imagined as such by Planck and Einstein, is due to springtide-induced extreme resonance of Earth masses critically impeding terrestrial experiments for estimating G, while providing artificial settings for quantum experiments to all trivially "work". Thus the derived equation is that of levitation. Reality is a system of near infinitely many magnifying oscillators, where permanent energy decay of all oscillation forbids constancy of known "physical constants". This hyperresonator concept explains the magnetism (as every forced oscillator feature), as well as the gravitation (as forward propagation of mechanical vibrations along the aether i.e. throughout the vacuum structure). To test my claim I propose a Space mission to collect on site measurements of eigenperiods of the Sun, its planets, and their satellites. The levitation equitation enables propulsionless Space travel via gravity sailing: Space vehicle hull ought to be engineered so as to automatically adjust its grave mode, to the vehicle instant gravitational surroundings, akin to trout up swimming.
Brown, Matthew Alan
2013-12-31T23:59:59.000Z
The methods presented in this work are intended to provided an easy to understand and easy to apply method for determining the distributed aerodynamic loads and aerodynamic characteristics of planforms of nearly arbitrary shape. Through application...
deForm: An interactive malleable surface for capturing 2.5D arbitrary objects, tools and touch
Ishii, Hiroshi
We introduce a novel input device, deForm, that supports 2.5D touch gestures, tangible tools, and arbitrary objects through real-time structured light scanning of a malleable surface of interaction. DeForm captures ...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN7 Roadmap forDKT.Awards and IncentivesSHARPofofSMART Scale
Study of stopping power for a proton moving in a plasma with arbitrary degeneracy
Zhang, Ya; Song, Yuan-Hong; Wang, You-Nian [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)] [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)
2013-10-15T23:59:59.000Z
Excitation of bulk solid electrons with arbitrary degeneracy, by external charged particles, is investigated by a two-dimensional nonlinear quantum hydrodynamic (QHD) model. The nonlinear stopping power and wake potential are calculated by solving the nonlinear QHD equations with the flux corrected transport numerical method. Two cases of fully degenerated and partially degenerated electrons are compared and discussed in the same self-consistent QHD model. Our results are consistent with the well known dielectric calculation of the stopping power at higher velocity, but include the nonlinear terms of the interactions and give larger stopping power at smaller velocity.
Predictive wavefront control for Adaptive Optics with arbitrary control loop delays
Poyneer, L A; Veran, J
2007-10-30T23:59:59.000Z
We present a modification of the closed-loop state space model for AO control which allows delays that are a non-integer multiple of the system frame rate. We derive the new forms of the Predictive Fourier Control Kalman filters for arbitrary delays and show that they are linear combinations of the whole-frame delay terms. This structure of the controller is independent of the delay. System stability margins and residual error variance both transition gracefully between integer-frame delays.
Arbitrary-level hanging nodes for adaptive hphp-FEM approximations in 3D
Pavel Kus; Pavel Solin; David Andrs
2014-11-01T23:59:59.000Z
In this paper we discuss constrained approximation with arbitrary-level hanging nodes in adaptive higher-order finite element methods (hphp-FEM) for three-dimensional problems. This technique enables using highly irregular meshes, and it greatly simplifies the design of adaptive algorithms as it prevents refinements from propagating recursively through the finite element mesh. The technique makes it possible to design efficient adaptive algorithms for purely hexahedral meshes. We present a detailed mathematical description of the method and illustrate it with numerical examples.
Effect of a polynomial arbitrary dust size distribution on dust acoustic solitons
Ishak-Boushaki, M.; Djellout, D.; Annou, R. [Faculty of Physics, USTHB, P.B. 32 El Alia, Bab-ezzouar, Algiers (Algeria)
2012-07-15T23:59:59.000Z
The investigation of dust-acoustic solitons when dust grains are size-distributed and ions adiabatically heated is conducted. The influence of an arbitrary dust size-distribution described by a polynomial function on the properties of dust acoustic waves is investigated. An energy-like integral equation involving Sagdeev potential is derived. The solitary solutions are shown to undergo a transformation into cnoidal ones under some physical conditions. The dust size-distribution can significantly affect both lower and upper critical Mach numbers for both solitons and cnoidal solutions.
Corrected Analytical Solution of the Generalized Woods-Saxon Potential for Arbitrary $\\ell$ States
Bayrak, O
2015-01-01T23:59:59.000Z
The bound state solution of the radial Schr\\"{o}dinger equation with the generalized Woods-Saxon potential is carefully examined by using the Pekeris approximation for arbitrary $\\ell$ states. The energy eigenvalues and the corresponding eigenfunctions are analytically obtained for different $n$ and $\\ell$ quantum numbers. The obtained closed forms are applied to calculate the single particle energy levels of neutron orbiting around $^{56}$Fe nucleus in order to check consistency between the analytical and Gamow code results. The analytical results are in good agreement with the results obtained by Gamow code for $\\ell=0$.
U-110: Samba Bug Lets Remote Users Execute Arbitrary Code | Department of
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage Â»of EnergyTheTwo New Energy Storage6 (07/03)Arbitrary Code| Department
Expressive Language Profiles of Verbally Expressive Adolescents
Nguyen, Danh
Expressive Language Profiles of Verbally Expressive Adolescents and Young Adults With Down Syndrome of a subset of highly verbally expressive adolescents and young adults with Down syndrome (DS) and those differences in their expressive language profiles. KEY WORDS: Down syndrome, fragile X syndrome, narrative
Light-cone gauge approach to arbitrary spin fields, currents, and shadows
R. R. Metsaev
2014-09-01T23:59:59.000Z
Totally symmetric arbitrary spin fields in AdS space, conformal fields, conformal currents, and shadow fields in flat space are studied. Light-cone formulation for such fields, currents, and shadows is obtained. Use of the Poincare parametrization of AdS space allows us to treat fields in flat and AdS spaces on equal footing. Light-cone gauge realization of relativistic symmetries for fields, currents, and shadows is also obtained. The light-cone formulation for fields is obtained by using the gauge invariant Lagrangian which is presented in terms of the modified de Donder divergence, while the light-cone formulation for currents and shadows is obtained by using gauge invariant approach to currents and shadows. This allows us to demonstrate explicitly how ladder operators entering the gauge invariant formulation of fields, currents, and shadows manifest themselves in the light-cone formulation for fields, currents, and shadows.
Z. L. Li; D. Lu; B. F. Shen; L. B. Fu; J. Liu; B. S. Xie
2014-10-23T23:59:59.000Z
The mass shift effects in multiphoton pair production of a nonperturbative nature for arbitrary polarized electric fields are investigated numerically by employing the real-time Dirac-Heisenberg-Wigner formalism, and theoretically by proposing an effective energy concept. It is found that the theoretical results are agreement with the numerical ones very well. It is the first time to consider the roles of the momenta of created particles and the polarizations of external fields played in the mass shift effects. These results can deepen the understanding of pair production in the nonperturbative threshold regime. Moreover, the distinct mass shift effects are observable in the forthcoming experiments and can be used as a probe to distinguish the electron-positron pair production from other background events.
Two-particle multichannel systems in a finite volume with arbitrary spin
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Briceno, Raul A. [JLAB
2014-04-01T23:59:59.000Z
The quantization condition for two-particle systems with arbitrary number of two-body open coupled channels, spin and masses in a finite cubic volume with either periodic or twisted boundary conditions is presented. The condition presented is in agreement with all previous studies of two-body systems in a finite volume. The result is relativistic, holds for all momenta below the three- and four-particle thresholds, and is exact up to exponential volume corrections that are governed by L/r, where L is the spatial extent of the volume and r is the range of the interactions between the particles. For hadronic systems the range of the interaction is set by the inverse of the pion mass, m?, and as a result the formalism presented is suitable for m?L>>1. Implications of the formalism for the studies of multichannel baryon-baryon systems are discussed.
Ab-initio multimode linewidth theory for arbitrary inhomogeneous laser cavities
Pick, A; Liu, D; Rodriguez, A W; Stone, A D; Chong, Y D; Johnson, S G
2015-01-01T23:59:59.000Z
We present a multimode laser-linewidth theory for arbitrary cavity structures and geometries that contains nearly all previously known effects and also finds new nonlinear and multimode corrections, e.g. a bad-cavity correction to the Henry $\\alpha$ factor and a multimode Schawlow--Townes relation (each linewidth is proportional to a sum of inverse powers of all lasing modes). Our theory produces a quantitatively accurate formula for the linewidth, with no free parameters, including the full spatial degrees of freedom of the system. Starting with the Maxwell--Bloch equations, we handle quantum and thermal noise by introducing random currents whose correlations are given by the fluctuation--dissipation theorem. We derive coupled-mode equations for the lasing-mode amplitudes and obtain a formula for the linewidths in terms of simple integrals over the steady-state lasing modes.
Morrow, Thomas B. (San Antonio, TX); Behring, II, Kendricks A. (Gilbert, AZ)
2005-02-01T23:59:59.000Z
A computer product for determining thermodynamic properties of a natural gas hydrocarbon, when the speed of sound in the gas is known at an arbitrary temperature and pressure. Thus, the known parameters are the sound speed, temperature, pressure, and concentrations of any dilute components of the gas. The method uses a set of reference gases and their calculated density and speed of sound values to estimate the density of the subject gas. Additional calculations can be made to estimate the molecular weight of the subject gas, which can then be used as the basis for mass flow calculations, to determine the speed of sound at standard pressure and temperature, and to determine various thermophysical characteristics of the gas.
A unified physical boundary condition for massless fields of arbitrary spin
Adam Stokes; Robert Bennett
2014-11-04T23:59:59.000Z
Boundary conditions for the Maxwell and Dirac fields at material surfaces are widely-used and physically well-motivated, but do not appear to have been generalised to deal with higher spin fields. A consequence of this is that calculations of, for example, Casimir forces associated with higher spin fields always select some arbitrary mathematical boundary conditions, rather than those which are physically motivated. Here, we use the two-spinor calculus formalism to present a unified treatment of the boundary conditions routinely employed in the treatment of spin-1/2 and spin-1 fields. We then use this unification to obtain a completely new boundary condition that can be applied to massless fields of any spin, including the spin-2 graviton, and its supersymmetric partner the spin-3/2 gravitino. We demonstrate one important consequence of our generalisation, which is that periodic boundary conditions cannot be applied to any physically-confined fermionic field.
Measurement of arbitrary two-photon entanglement state with the photonic Faraday rotation
Lan Zhou
2014-02-05T23:59:59.000Z
We propose an efficient protocol for measuring the concurrence of arbitrary two-photon pure entangled state with the help of the photonic Faraday rotation. In the protocol, the concurrence of the photonic entangled state can be conversed into the total success probability for picking up the odd-parity photonic state. For completing the measurement task, we require some auxiliary three-level atoms, which are trapped in the low-quality cavities. Our protocol can be well realized under current experimental conditions. Moreover, under practical imperfect atom state detection and photonic Faraday rotation conditions, our protocol can also work well. Based on these features, our protocol may be useful in current quantum information processing.
Two-particle multichannel systems in a finite volume with arbitrary spin
Briceno, Raul A. [JLAB
2014-04-01T23:59:59.000Z
The quantization condition for two-particle systems with arbitrary number of two-body open coupled channels, spin and masses in a finite cubic volume with either periodic or twisted boundary conditions is presented. The condition presented is in agreement with all previous studies of two-body systems in a finite volume. The result is relativistic, holds for all momenta below the three- and four-particle thresholds, and is exact up to exponential volume corrections that are governed by L/r, where L is the spatial extent of the volume and r is the range of the interactions between the particles. For hadronic systems the range of the interaction is set by the inverse of the pion mass, m_{?}, and as a result the formalism presented is suitable for m_{?}L>>1. Implications of the formalism for the studies of multichannel baryon-baryon systems are discussed.
Cédric Lorcé
2009-01-27T23:59:59.000Z
In a set of two papers, we propose to study an old-standing problem, namely the electromagnetic interaction for particles of arbitrary spin. Based on the assumption that light-cone helicity at tree level and $Q^2=0$ should be conserved non-trivially by the electromagnetic interaction, we are able to derive \\emph{all} the natural electromagnetic moments for a pointlike particle of \\emph{any} spin. In this first paper, we propose a transparent decomposition of the electromagnetic current in terms of covariant vertex functions. We also define in a general way the electromagnetic multipole form factors, and show their relation with the electromagnetic moments. Finally, by considering the Breit frame, we relate the covariant vertex functions to multipole form factors.
On the potential energy in a gravitationally bound two-body system with arbitrary mass distribution
Wilhelm, K
2015-01-01T23:59:59.000Z
The potential energy problem in a gravitationally bound two-body system has recently been studied in the framework of a proposed impact model of gravitation (Wilhelm and Dwivedi 2015). The result was applied to the free fall of the so-called Mintrop--Ball in G\\"ottingen with the implicit assumption that the mass distribution of the system is extremely unbalanced. An attempt to generalize the study to arbitrary mass distributions indicated a conflict with the energy conservation law in a closed system. This necessitated us to reconsider an earlier assumption made in selecting a specific process out of two options (Wilhelm et al. 2013). With the result obtained here we can now make an educated selection and reverse our choice. The consequences are presented and discussed in detail for several processes. Energy and momentum conservation could now be demonstrated in all cases.
(Super)^n-Energy for arbitrary fields and its interchange: Conserved quantities
J. M. M. Senovilla
1999-05-17T23:59:59.000Z
Inspired by classical work of Bel and Robinson, a natural purely algebraic construction of super-energy tensors for arbitrary fields is presented, having good mathematical and physical properties. Remarkably, there appear quantities with mathematical characteristics of energy densities satisfying the dominant property, which provides super-energy estimates useful for global results and helpful in other matters. For physical fields, higher order (super)^n-energy tensors involving the field and its derivatives arise. In Special Relativity, they provide infinitely many conserved quantities. The interchange of super-energy between different fields is shown. The discontinuity propagation law in Einstein-Maxwell fields is related to super-energy tensors, providing quantities conserved along null hypersurfaces. Finally, conserved super-energy currents are found for any minimally coupled scalar field whenever there is a Killing vector.
Gouranga C. Nayak
2011-05-23T23:59:59.000Z
We study the Schwinger mechanism in QCD in the presence of an arbitrary time-dependent chromo-electric background field $E^a(t)$ with arbitrary color index $a$=1,2,...8 in SU(3). We obtain an exact result for the non-perturbative quark (antiquark) production from an arbitrary $E^a(t)$ by directly evaluating the path integral. We find that the exact result is independent of all the time derivatives $\\frac{d^nE^a(t)}{dt^n}$ where $n=1,2,...\\infty$. This result has the same functional dependence on two Casimir invariants $[E^a(t)E^a(t)]$ and $[d_{abc}E^a(t)E^b(t)E^c(t)]^2$ as the constant chromo-electric field $E^a$ result with the replacement: $E^a \\rightarrow E^a(t)$. This result relies crucially on the validity of the shift conjecture, which has not yet been established.
Moshe Elitzur
1995-08-01T23:59:59.000Z
General solutions of the maser polarization problem are presented for arbitrary absorption coefficients. The results are used to calculate polarization for masers permeated by magnetic fields with arbitrary values of \\xB, the ratio of Zeeman splitting to Doppler linewidth, and for anisotropic pumping. The $\\xb \\to 0$ limit of the magnetic solution reproduces the linear polarization derived in previous studies, which were always conducted at this unphysical limit. While terms of higher order in \\xb\\ have a negligible effect on the magnitude of $q$, they produce some major new results. In particular, the linear polarization is accompanied by circular polarization, proportional to \\xb. Because \\xb\\ is proportional to the transition wavelength, the circular polarization of SiO masers should decrease with rotation quantum number, as observed. In the absence of theory for $\\xb < 1$, previous estimates of magnetic fields from detected maser circular polarization had to rely on conjectures in this case and generally need to be revised downward. The fields in SiO masers are \\about\\ 2--10 G and were overestimated by a factor of 8. The OH maser regions around supergiants have fields of \\about\\ 0.1--0.5 mG, which were overestimated by factors of 10--100. The fields were properly estimated for OH/IR masers ($\\la$ 0.1 mG) and \\H2O masers in star-forming regions (\\about\\ 15--50 mG). Spurious solutions that required stability analysis for their removal in all previous studies are never reproduced here; in particular, there are no stationary physical solutions for propagation at $\\sin^2\\theta < \\third$, where $\\theta$ is the angle from the direction of the magnetic field, so such radiation is unpolarized. These spurious solutions can be identified as the \\xb\\ = 0 limits of non-physical solutions and they never arise at finite
An Efficient Resistance Sensitivity Extraction Algorithm for Conductors of Arbitrary Shapes
Elfadel, Ibrahim M.
Due to technology scaling, integrated circuit manufacturing techniques are producing structures with large variabilities in their dimensions. To guarantee high yield, the manufactured structures must have the proper ...
Fred Cooper; Gouranga C. Nayak
2006-02-21T23:59:59.000Z
We study the non-perturbative production of gluon pairs from a constant SU(3) chromo-electric background field via the Schwinger mechanism. We fix the covariant background gauge with an arbitrary gauge parameter \\alpha. We determine the transverse momentum distribution of the gluons, as well as the total probability of creating pairs per unit space time volume. We find that the result is independent of the covariant gauge parameter \\alpha used to define arbitrary covariant background gauges. We find that our non-perturbative result is both gauge invariant and gauge parameter \\alpha independent.
Broader source: Energy.gov [DOE]
PROBLEM: Mozilla Firefox 'window.location' Bugs Permit Cross-Site Scripting Attacks and May Let Remote Users Execute Arbitrary Code
Broader source: Energy.gov [DOE]
A remote user can create a specially crafted PDF file that, when loaded by the target user, will trigger a memory corruption error in the CoolType library and execute arbitrary code on the target system. The code will run with the privileges of the target user.
Vinet, Jean-Yves [Dpt. ARTEMIS, Universite de Nice-Sophia Antipolis, C.N.R.S. and Observatoire de la Cote d'Azur, 06304 Nice (France)
2010-08-15T23:59:59.000Z
We study the thermal noise caused by mechanical or thermomechanical dissipation in mirrors of interferometric gravitational wave antennas. We give relative figures of merit for arbitrary Hermite-Gauss or Laguerre-Gauss optical beams regarding the Brownian and thermoelastic noises (substrate and coating) in the infinite mirror approximation.
Kong Qian [Laser Physics Center, Research School of Physics and Engineering, Australian National University, Canberra, Australian Capital Territory 0200 (Australia); Department of Physics, Shanghai University, Shanghai 200444 (China); Wang, Q. [Department of Physics, Shanghai University, Shanghai 200444 (China); Bang, O. [DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Krolikowski, W. [Laser Physics Center, Research School of Physics and Engineering, Australian National University, Canberra, Australian Capital Territory 0200 (Australia)
2010-07-15T23:59:59.000Z
We investigate theoretically the interaction of dark solitons in materials with a spatially nonlocal nonlinearity. In particular we do this analytically and for arbitrary degree of nonlocality. We employ the variational technique to show that nonlocality induces an attractive force in the otherwise repulsive soliton interaction.
V. M. Villalba; R. Pino
2001-01-23T23:59:59.000Z
We compute, via a variational mixed-base method, the energy spectrum of a two dimensional relativistic atom in the presence of a constant magnetic field of arbitrary strength. The results are compared to those obtained in the non-relativistic and spinless case. We find that the relativistic spectrum does not present $s$ states.
E-Print Network 3.0 - arbitrary higgs sectors Sample Search Results
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
at the TeV scale has... complex Higgs doublets. The MSSM Higgs sector has a rich phenomenology which has been explored... to keep an open mind also with regards to further...
A 6 kV arbitrary waveform generator for the Tevatron Electron Lens
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Pfeffer, H; Saewert, G
2011-11-01T23:59:59.000Z
This paper reports on a 6 kV modulator built and installed at Fermilab to drive the electron gun anode for the Tevatron Electron Lens (TEL). The TEL was built with the intention of shifting the individual (anti)proton bunch tunes to even out the tune spread among all 36 bunches with the desire of improving Tevatron integrated luminosity. This modulator is essentially a 6 kV arbitrary waveform generator that enables the TEL to define the electron beam intensity on a bunch-by-bunch basis. A voltage waveform is constructed having a 7 {micro}s duration that corresponds to the tune shift requirements of a 12-bunch (anti)proton beam pulse train. This waveform is played out for any one or all three bunch trains in the Tevatron. The programmed waveform voltages transition to different levels at time intervals corresponding to the 395 ns bunch spacing. Thus, complex voltage waveforms can be played out at a sustained rate of 143 kHz over the full 6 kV output range. This paper describes the novel design of the inductive adder topology employing five transformers. It describes the design aspects that minimize switching losses for this multi-kilovolt, high repetition rate and high duty factor application.
From the Micro-scale to Collective Crowd Dynamics
Nicola Bellomo; Abdelghani Bellouquid; Damian Knopoff
2013-01-23T23:59:59.000Z
This paper deals with the kinetic theory modeling of crowd dynamics with the aim of showing how the dynamics at the micro-scale is transferred to the dynamics of collective behaviors. The derivation of a new model is followed by a qualitative analysis of the initial value problem. Existence of solutions is proved for arbitrary large times, while simulations are developed by computational schemes based on splitting methods, where the transport equations treated by finite difference methods for hyperbolic equations. Some preliminary reasonings toward the modeling of panic conditions are proposed.
Scaling the Web Scaling Web Sites
MenascÃ©, Daniel A.
Scaling the Web Scaling Web Sites Through Caching A large jump in a Web site's traffic may indi, pushing the site's through- put to its maximum point. When a Web site becomes overloaded, cus- tomers grow-generated revenue and may even tarnish the reputation of organizations relying on Web sites to support mission
High expression Zymomonas promoters
Viitanen, Paul V. (West Chester, PA); Tao, Luan (Havertown, PA); Zhang, Yuying (New Hope, PA); Caimi, Perry G. (Kennett Square, PA); McCole, Laura (East Fallowfield, PA): Zhang, Min (Lakewood, CO); Chou, Yat-Chen (Lakewood, CO); McCutchen, Carol M. (Wilmington, DE); Franden, Mary Ann (Centennial, CO)
2011-08-02T23:59:59.000Z
Identified are mutants of the promoter of the Z. mobilis glyceraldehyde-3-phosphate dehydrogenase gene, which direct improved expression levels of operably linked heterologous nucleic acids. These are high expression promoters useful for expression of chimeric genes in Zymomonas, Zymobacter, and other related bacteria.
Martinis, John M.
DAC-board based X-band EPR Spectrometer with Arbitrary Waveform Control Thomas Kaufmann1, Timothy J; EPR; X-band; arbitrary waveform generation; transfer function; excitation profile Abstract We present resonance (EPR) spectrometer operating at 8Â10 GHz (X-band) and controlled by a 1 GHz arbitrary waveform
V-020: Apple QuickTime Multiple Flaws Let Remote Users Execute Arbitrary
Broader source: Energy.gov (indexed) [DOE]
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment of EnergyProgram2-26TheUtility-Scale Wind & Solar Power in the|
V-095: Oracle Java Flaws Let Remote Users Execute Arbitrary Code |
Broader source: Energy.gov (indexed) [DOE]
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment of EnergyProgram2-26TheUtility-Scale Wind &Apple iOSEnergy IBM
V-110: Adobe Flash Player Bugs Let Remote Users Execute Arbitrary Code |
Broader source: Energy.gov (indexed) [DOE]
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment of EnergyProgram2-26TheUtility-Scale Wind &AppleDepartment ofDepartment of
V-113: Apple Safari Bugs Let Remote Users Execute Arbitrary Code |
Broader source: Energy.gov (indexed) [DOE]
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment of EnergyProgram2-26TheUtility-Scale Wind &AppleDepartment
V-142: Oracle Java Reflection API Flaw Lets Remote Users Execute Arbitrary
Broader source: Energy.gov (indexed) [DOE]
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment of EnergyProgram2-26TheUtility-Scale WindDepartmentApple Mac OS XCode |
WKB-expansion of the HarishChandra-Itzykson-Zuber integral for arbitrary beta
S. Hikami; E. Brezin
2006-04-18T23:59:59.000Z
This article is devoted to the asymptotic expansion of the generalized Harish Chandra-Itzykson-Zuber matrix integral for non-unitary symmetries characterized by a parameter beta(as usual beta =1,2 and 4 correspond to the orthogonal, unitary and symplectic group integrals). A WKB-expansion for f is derived from the heat kernel differential equation, for general values of k and beta. From an expansion in terms of zonal polynomials, one obtain an expansion in powers of the tau's for beta=1, and generalizations are considered for general beta. A duality relation, and a transformation of products of pairs of symmetric functions into tau polynomials, is used to obtain the expression for f(tau ij) for general beta.
Identifying Product Scaling Principles
Perez, Angel 1986-
2011-06-02T23:59:59.000Z
shows how laws of similarity were determined for wind turbine rotors in order for ease of optimization when scaling to the desired level (Peterson, 1984). The study depicts how certain scaling laws for varying changes such as rotational speed, radius... and scale the physical shape and features of the fin in order to produce wind turbine blades for producing electricity. A similar study takes the fins propulsion motion and converts it into a mechanical system for swimming robots and submarines...
Thermodynamics and scale relativity
Robert Carroll
2011-10-13T23:59:59.000Z
It is shown how the fractal paths of scale relativity (following Nottale) can be introduced into a thermodynamical context (following Asadov-Kechkin).
Silica Scaling Removal Process
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
systems Water treatment systems Water evaporation systems Potential mining applications (produced water) Industry applications for which silica scaling must be prevented Benefits:...
ENTROPY PRODUCTION IN COLLISIONLESS SYSTEMS. II. ARBITRARY PHASE-SPACE OCCUPATION NUMBERS
Barnes, Eric I. [Department of Physics, University of Wisconsin-La Crosse, La Crosse, WI 54601 (United States); Williams, Liliya L. R., E-mail: barnes.eric@uwlax.edu, E-mail: llrw@astro.umn.edu [Minnesota Institue for Astrophysics, University of Minnesota, Minneapolis, MN 55455 (United States)
2012-04-01T23:59:59.000Z
We present an analysis of two thermodynamic techniques for determining equilibria of self-gravitating systems. One is the Lynden-Bell (LB) entropy maximization analysis that introduced violent relaxation. Since we do not use the Stirling approximation, which is invalid at small occupation numbers, our systems have finite mass, unlike LB's isothermal spheres. (Instead of Stirling, we utilize a very accurate smooth approximation for ln x{exclamation_point}.) The second analysis extends entropy production extremization to self-gravitating systems, also without the use of the Stirling approximation. In addition to the LB statistical family characterized by the exclusion principle in phase space, and designed to treat collisionless systems, we also apply the two approaches to the Maxwell-Boltzmann (MB) families, which have no exclusion principle and hence represent collisional systems. We implicitly assume that all of the phase space is equally accessible. We derive entropy production expressions for both families and give the extremum conditions for entropy production. Surprisingly, our analysis indicates that extremizing entropy production rate results in systems that have maximum entropy, in both LB and MB statistics. In other words, both thermodynamic approaches lead to the same equilibrium structures.
Rajan, V S P
2006-01-01T23:59:59.000Z
The Scaled Boundary Finite Element Method is a novel semi-analytical method jointly developed by Chongmin Song and John P Wolf to solve problems in elastodynamics and allied problems in civil engineering. This novel method has been recently reformulated for the following categories of problems in electromagnetics: (1) Determination of Eigen values of metallic cavity structures, 2) Full wave analysis of Shielded micro-strip transmission line structures, and Very Large Scale Integrated Circuit (VLSI) interconnects, and 3) Full wave analysis of periodic structures. In this paper, a novel Scaled Boundary Finite Element formulation is developed for the numerical simulation of the time harmonic electromagnetic radiation in free space from metallic structures of arbitrary shape. The development of the novel formulation necessitates the generalization of the familiar Atkinson-Wilcox radiation series expansion so as to be applicable for arbitrary boundary circumscribing the source of radiation.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
License? PATENTS Non-Exclusive License Issue Fee 7,500 Annual License Fee 500 Earned Royalty on Sales 2% The fees associated with each patent offered through the Express...
S. Lievens; N. I. Stoilova; J. Van der Jeugt
2007-01-05T23:59:59.000Z
In a Wigner quantum mechanical model, with a solution in terms of the Lie superalgebra gl(1|n), one is faced with determining the eigenvalues and eigenvectors for an arbitrary self-adjoint odd element of gl(1|n) in any unitary irreducible representation W. We show that the eigenvalue problem can be solved by the decomposition of W with respect to the branching gl(1|n) --> gl(1|1) + gl(n-1). The eigenvector problem is much harder, since the Gel'fand-Zetlin basis of W is involved, and the explicit actions of gl(1|n) generators on this basis are fairly complicated. Using properties of the Gel'fand-Zetlin basis, we manage to present a solution for this problem as well. Our solution is illustrated for two special classes of unitary gl(1|n) representations: the so-called Fock representations and the ladder representations.
Morrow, Thomas E. (San Antonio, TX); Behring, II, Kendricks A. (Gilbert, AZ)
2004-03-09T23:59:59.000Z
A method to determine thermodynamic properties of a natural gas hydrocarbon, when the speed of sound in the gas is known at an arbitrary temperature and pressure. Thus, the known parameters are the sound speed, temperature, pressure, and concentrations of any dilute components of the gas. The method uses a set of reference gases and their calculated density and speed of sound values to estimate the density of the subject gas. Additional calculations can be made to estimate the molecular weight of the subject gas, which can then be used as the basis for mass flow calculations, to determine the speed of sound at standard pressure and temperature, and to determine various thermophysical characteristics of the gas.
Chitra Shukla; Anirban Pathak; R. Srikanth
2012-10-09T23:59:59.000Z
It is shown that maximally efficient protocols for secure direct quantum communications can be constructed using any arbitrary orthogonal basis. This establishes that no set of quantum states (e.g. GHZ states, W states, Brown states or Cluster states) has an advantage over the others, barring the relative difficulty in physical implementation. The work provides a wide choice of states for experimental realization of direct secure quantum communication protocols. We have also shown that this protocol can be generalized to a completely orthogonal state based protocol of Goldenberg-Vaidman (GV) type. The security of these protocols essentially arises from duality and monogamy of entanglement. This stands in contrast to protocols that employ non-orthogonal states, like Bennett-Brassard 1984 (BB84), where the security essentially comes from non-commutativity in the observable algebra.
A quantum Otto engine with a spin-$1/2$ and an arbitrary spin coupled by Heisenberg exchange
Ferdi Altintas; Özgür E. Müstecapl?o?lu
2015-02-26T23:59:59.000Z
We investigate a quantum heat engine with a working substance of two particles, one with a spin-$1/2$ and the other with an arbitrary spin (spin-$s$), coupled by Heisenberg exchange interaction, and subject to an external magnetic field. The engine operates in a quantum Otto cycle. Work harvested in the cycle and its efficiency are calculated using quantum thermodynamical definitions. It is found that the engine has higher efficiencies at higher spin values and can harvest work at higher exchange interaction strengths.The role of exchange coupling and spin-$s$ on the work output and the thermal efficiency is studied in detail. In addition, the engine operation is analyzed from the perspective of local work and efficiency. The local work definition is generalized for the global changes and the conditions when the global work can be equal or more than the sum of the local works are determined.
Scaling of the magnetic reconnection rate with symmetric shear flow
Cassak, P. A. [Department of Physics, West Virginia University, Morgantown, West Virginia 26506 (United States); Otto, A. [Geophysical Institute, University of Alaska-Fairbanks, Fairbanks, Alaska 99775 (United States)
2011-07-15T23:59:59.000Z
The scaling of the reconnection rate during (fast) Hall magnetic reconnection in the presence of an oppositely directed bulk shear flow parallel to the reconnecting magnetic field is studied using two-dimensional numerical simulations of Hall reconnection with two different codes. Previous studies noted that the reconnection rate falls with increasing flow speed and shuts off entirely for super-Alfvenic flow, but no quantitative expression for the reconnection rate in sub-Alfvenic shear flows is known. An expression for the scaling of the reconnection rate is presented.
Ritchie, David J.; /Fermilab
2005-03-01T23:59:59.000Z
The Improbability Scale (IS) is proposed as a way of communicating to the general public the improbability (and by implication, the probability) of events predicted as the result of scientific research. Through the use of the Improbability Scale, the public will be able to evaluate more easily the relative risks of predicted events and draw proper conclusions when asked to support governmental and public policy decisions arising from that research.
Accelerated Least Squares Multidimensional Scaling
Leeuw, Jan de
2006-01-01T23:59:59.000Z
x(make_x(36,2)) xACCELERATED SCALING R EFERENCES I.ACCELERATED LEAST SQUARES MULTIDIMENSIONAL SCALING JAN DEare simpler to write. ACCELERATED SCALING It is shown in De
Accelerated Least Squares Multidimensional Scaling
Jan de Leeuw
2011-01-01T23:59:59.000Z
x(make_x(36,2)) xACCELERATED SCALING R EFERENCES I.ACCELERATED LEAST SQUARES MULTIDIMENSIONAL SCALING JAN DEare simpler to write. ACCELERATED SCALING It is shown in De
Farias, J.R.
1980-08-01T23:59:59.000Z
A simple exact solution of a one-dimensional Schroedinger equation which describes the motion of a particle in a continuous potential V(x) and scattering from a finite set of delta-function potentials of arbitrary positions and strengths is found.
Jayaram, Bhyravabotla
J. Phys. Chem. 1994, 98, 5113-5111 5773 Free Energy of Solvation, Interaction, and Binding in a continuum solvent. Background Attempts seeking analytical solutions to the hydration free energies solvation free energies of arbitrary charge distributions with an overall spherical symmetry. This theory
Physical meaning of one-machine and multimachine tokamak scalings
Dnestrovskij, Yu. N., E-mail: dnyn@nfi.kiae.ru; Danilov, A. V.; Dnestrovskij, A. Yu.; Lysenko, S. E. [National Research Centre Kurchatov Institute, Institute of Tokamak Physics (Russian Federation)] [National Research Centre Kurchatov Institute, Institute of Tokamak Physics (Russian Federation); Ongena, J. [Euratom-Belgium State Association, Laboratory for Plasma Physics (Belgium)] [Euratom-Belgium State Association, Laboratory for Plasma Physics (Belgium)
2013-04-15T23:59:59.000Z
Specific features of energy confinement scalings constructed using different experimental databases for tokamak plasmas are considered. In the multimachine database, some pairs of engineering variables are collinear; e.g., the current I and the input power P both increase with increasing minor radius a. As a result, scalings derived from this database are reliable only for discharges in which such ratios as I/a{sup 2} or P/a{sup 2} are close to their values averaged over the database. The collinearity of variables allows one to exclude the normalized Debye radius d* from the scaling expressed in a nondimensional form. In one-machine databases, the dimensionless variables are functionally dependent, which allow one to cast a scaling without d*. In a database combined from two devices, the collinearity may be absent, so the Debye radius cannot generally be excluded from the scaling. It is shown that the experiments performed in support of the absence of d* in the two-machine scaling are unconvincing. Transformation expressions are given that allow one to compare experiments for the determination of scaling in any set of independent variables.
Jankowiak, Martin; Larkoski, Andrew J.; /SLAC
2012-02-17T23:59:59.000Z
We introduce a jet shape observable defined for an ensemble of jets in terms of two-particle angular correlations and a resolution parameter R. This quantity is infrared and collinear safe and can be interpreted as a scaling exponent for the angular distribution of mass inside the jet. For small R it is close to the value 2 as a consequence of the approximately scale invariant QCD dynamics. For large R it is sensitive to non-perturbative effects. We describe the use of this correlation function for tests of QCD, for studying underlying event and pile-up effects, and for tuning Monte Carlo event generators.
Bar-Joseph, Ziv, 1971-
2003-01-01T23:59:59.000Z
(cont.) For the networks level I present an algorithm that efficiently combines complementary large-scale expression and protein-DNA binding data to discover co-regulated modules of genes. This algorithm is extended so ...
Dynamic Hyperparameter Scaling Method for LVQ Algorithms Sambu Seo and Klaus Obermayer
Wichmann, Felix
Dynamic Hyperparameter Scaling Method for LVQ Algorithms Sambu Seo and Klaus Obermayer Abstract gene expression profiling [7]. Sambu Seo and Klaus Obermayer are with the Department of Electri- cal
Thermodynamics and Finite size scaling in Scalar Field Theory
Thermodynamics and Finite size scaling in Scalar Field Theory A thesis submitted to the Tata Research, Mumbai December 2008 #12;ii #12;Synopsis In this work we study the thermodynamics of an interacting 4 theory in 4 space- time dimensions. The expressions for the thermodynamic quantities are worked
Nuclear halo and its scaling laws
Z. H. Liu; X. Z. Zhang; H. Q. Zhang
2004-02-06T23:59:59.000Z
We have proposed a procedure to extract the probability for valence particle being out of the binding potential from the measured nuclear asymptotic normalization coefficients. With this procedure, available data regarding the nuclear halo candidates are systematically analyzed and a number of halo nuclei are confirmed. Based on these results we have got a much relaxed condition for nuclear halo occurrence. Furthermore, we have presented the scaling laws for the dimensionless quantity $/R^{2}$ of nuclear halo in terms of the analytical expressions of the expectation value for the operator $r^{2}$ in a finite square-well potential.
Mastrano, Alpha; Melatos, Andrew
2015-01-01T23:59:59.000Z
A recipe is presented to construct an analytic, self-consistent model of a non-barotropic neutron star with a poloidal-toroidal field of arbitrary multipole order, whose toroidal component is confined in a torus around the neutral curve inside the star, as in numerical simulations of twisted tori. The recipe takes advantage of magnetic-field-aligned coordinates to ensure continuity of the mass density at the surface of the torus. The density perturbation and ellipticity of such a star are calculated in general and for the special case of a mixed dipole-quadrupole field as a worked example. The calculation generalises previous work restricted to dipolar, poloidal-toroidal and multipolar, poloidal-only configurations. The results are applied, as an example, to magnetars whose observations (e.g., spectral features and pulse modulation) indicate that the internal magnetic fields may be at least one order of magnitude stronger than the external fields, as inferred from their spin downs, and are not purely dipolar.
Liu, Hao; Zhu, Lili; Bai, Shuming; Shi, Qiang, E-mail: qshi@iccas.ac.cn [Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190 (China)] [Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190 (China)
2014-04-07T23:59:59.000Z
We investigated applications of the hierarchical equation of motion (HEOM) method to perform high order perturbation calculations of reduced quantum dynamics for a harmonic bath with arbitrary spectral densities. Three different schemes are used to decompose the bath spectral density into analytical forms that are suitable to the HEOM treatment: (1) The multiple Lorentzian mode model that can be obtained by numerically fitting the model spectral density. (2) The combined Debye and oscillatory Debye modes model that can be constructed by fitting the corresponding classical bath correlation function. (3) A new method that uses undamped harmonic oscillator modes explicitly in the HEOM formalism. Methods to extract system-bath correlations were investigated for the above bath decomposition schemes. We also show that HEOM in the undamped harmonic oscillator modes can give detailed information on the partial Wigner transform of the total density operator. Theoretical analysis and numerical simulations of the spin-Boson dynamics and the absorption line shape of molecular dimers show that the HEOM formalism for high order perturbations can serve as an important tool in studying the quantum dissipative dynamics in the intermediate coupling regime.
Canavan, G.H.
1996-07-01T23:59:59.000Z
A model for IR sensor performance is used to compare estimates of sensor cost effectiveness. Although data from aircraft sensors indicate a weaker scaling, their agreement is adequate to support the assessment of the benefits of operating up to the maximum altitude of most current UAVs.
Oliver, Douglas L.
TOTAL SCORE: ADD INDIVIDUAL ASSESSMENT SCORES TO DETERMINE THE TOTAL PAIN SCORE. TOTAL THE 5 CATEGORIES FOR TOTAL PAIN SCORE. MAXIMUM SCORE = 10/10. Reference: Merkel SJ, et al. The FLACC: A Behavioral Pain Scale or groan. Low level speech with a negative or disapproving quality. Repeated troubled calling out. Loud
Mathematics Achievement Scale Score
Huang, Jianyu
Croatia 490 New Zealand 486 Spain 482 Romania 482 Poland 481 Turkey 469 Azerbaijan 463 Chile 462 Thailand Romania 505 Spain 505 Poland 505 TIMSS Scale Centerpoint 500 New Zealand 497 Kazakhstan 495 Norway 494 Kazakhstan 487 Sweden 484 Ukraine 479 Norway 475 Armenia 467 Romania 458 United Arab Emirates 456 Turkey 452
Robot calibration without scaling
Ives, Thomas W.
1995-01-01T23:59:59.000Z
) Je rinkle (Member) arry Hogan (Member) eorge P. Peterson (Head of Department) May 1995 Major Subject: Mechanical Engineering 111 ABSTRACT Robot Calibration without Scaling. (May 1995) Thomas W. Ives, B. S. , The University of Texas... robot. Researchers at Texas A6tM University found that convergence can be achieved simply by converting the original translational parameters fiom millimeters to inches. While this is nice and convenient for this particular case, it does not prove...
Extreme Scale Visual Analytics
Steed, Chad A [ORNL] [ORNL; Potok, Thomas E [ORNL] [ORNL; Pullum, Laura L [ORNL] [ORNL; Ramanathan, Arvind [ORNL] [ORNL; Shipman, Galen M [ORNL] [ORNL; Thornton, Peter E [ORNL] [ORNL
2013-01-01T23:59:59.000Z
Given the scale and complexity of today s data, visual analytics is rapidly becoming a necessity rather than an option for comprehensive exploratory analysis. In this paper, we provide an overview of three applications of visual analytics for addressing the challenges of analyzing climate, text streams, and biosurveilance data. These systems feature varying levels of interaction and high performance computing technology integration to permit exploratory analysis of large and complex data of global significance.
Holt, J. Birch (San Jose, CA); Kelly, Michael D. (West Alexandria, OH)
1990-01-01T23:59:59.000Z
Plasma spraying methods of forming exoergic structures and coatings, as well as exoergic structures produced by such methods, are provided. The methods include the plasma spraying of reactive exoergic materials that are capable of sustaining a combustion synthesis reaction onto a flat substrate or into molds of arbitrary shape and igniting said plasma sprayed materials, either under an inert gas pressure or not, to form refractory materials of varying densities and of varying shapes.
Cloud-Scale Datacenters Page 1 Cloud-Scale
Chaudhuri, Surajit
Cloud-Scale Datacenters Page 1 Cloud-Scale Datacenters #12;Cloud-Scale Datacenters Page 2, and operating datacenters. When software applications are built as distributed systems, every aspect brief will explore how cloud workloads have changed the way datacenters are designed and operated
Conradi, Albert F.
1906-01-01T23:59:59.000Z
for controlling the scale. The most important spray mixtures in use are lime-sulphur salt, lime-sulphur, whale oil soap, kero? sene, crude petroleum, Kero-water, and kerosene or crude oil emulsions. All these preparations are mainly winter sprays, being applied... applied while cold, however, it clogs the apparatus and causes considerable inconven? ience in getting it on the tree. It is more expensive than the Lime- Sulphur wash. i I o . B I 3 I 2 In some States coal oil or kerosene has been experimented...
D. Schouten; A. Tanasijczuk; M. Vetterli; for the ATLAS Collaboration
2012-01-11T23:59:59.000Z
Jets originating from the fragmentation of quarks and gluons are the most common, and complicated, final state objects produced at hadron colliders. A precise knowledge of their energy calibration is therefore of great importance at experiments at the Large Hadron Collider at CERN, while is very difficult to ascertain. We present in-situ techniques and results for the jet energy scale at ATLAS using recent collision data. ATLAS has demonstrated an understanding of the necessary jet energy corrections to within \\approx 4% in the central region of the calorimeter.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home Design Passive SolarCenterYou areConstructionAPore Scale
Silica Scaling Removal Process
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2)Sharing Smart GridShift EndSidneyChemistry Â» Silica Scaling
Nonlinear closures for scale separation in supersonic magnetohydrodynamic turbulence
Grete, Philipp; Schmidt, Wolfram; Schleicher, Dominik R G; Federrath, Christoph
2015-01-01T23:59:59.000Z
Turbulence in compressible plasma plays a key role in many areas of astrophysics and engineering. The extreme plasma parameters in these environments, e.g. high Reynolds numbers, supersonic and super-Alfvenic flows, however, make direct numerical simulations computationally intractable even for the simplest treatment -- magnetohydrodynamics (MHD). To overcome this problem one can use subgrid-scale (SGS) closures -- models for the influence of unresolved, subgrid-scales on the resolved ones. In this work we propose and validate a set of constant coefficient closures for the resolved, compressible, ideal MHD equations. The subgrid-scale energies are modeled by Smagorinsky-like equilibrium closures. The turbulent stresses and the electromotive force (EMF) are described by expressions that are nonlinear in terms of large scale velocity and magnetic field gradients. To verify the closures we conduct a priori tests over 137 simulation snapshots from two different codes with varying ratios of thermal to magnetic pre...
Reading, John F.; SIGEL, JL.
1972-01-01T23:59:59.000Z
case. What we are interested in is the eigen- vector (in the finite case) with the smallest eigen- value. This presumably is what we call the local- ized state even in the finite case. Let us, then, consider the eigenvalue equation Z M&, ,v, = Xvz..., respectively, a sum over even values of m and a sum over odd values of m. The proof of this assertion is by induction. Expressions (2. 13), of course, conform to the prescriptions (2. 14) and (2. 15), so let us assume that (2. 14) and (2. 15) are correct...
Converting Nested Algebra Expressions into Flat Algebra Expressions
Van Gucht, Dirk
Converting Nested Algebra Expressions into Flat Algebra Expressions JAN PAREDAENS University of Antwerp and DIRK VAN GUCHT Indiana University Nested relations generalize ordinary flat relations by allowing tuple values to be either atomic or set valued. The nested algebra is a generalization of the flat
Transition from Large-Scale to Small-Scale Dynamo
Ponty, Y. [Universite de Nice Sophia-Antipolis, CNRS, Observatoire de la Cote d'Azur, B.P. 4229, Nice cedex 04 (France); Plunian, F. [Institut des Sciences de la Terre, CNRS, Universite Joseph Fourier, B.P. 53, 38041 Grenoble cedex 09 (France)
2011-04-15T23:59:59.000Z
The dynamo equations are solved numerically with a helical forcing corresponding to the Roberts flow. In the fully turbulent regime the flow behaves as a Roberts flow on long time scales, plus turbulent fluctuations at short time scales. The dynamo onset is controlled by the long time scales of the flow, in agreement with the former Karlsruhe experimental results. The is governed by a generalized {alpha} effect, which includes both the usual {alpha} effect and turbulent diffusion, plus all higher order effects. Beyond the onset we find that this generalized {alpha} effect scales as O(Rm{sup -1}), suggesting the takeover of small-scale dynamo action. This is confirmed by simulations in which dynamo occurs even if the large-scale field is artificially suppressed.
Scaling laws for near barrier Coulomb and Nuclear Breakup
M. S. Hussein; P. R. S. Gomes; J. Lubian; D. R. Otomar; L. F. Canto
2013-09-05T23:59:59.000Z
We investigate the nuclear and the Coulomb contributions to the breakup cross sections of $^6$Li in collisions with targets in different mass ranges. Comparing cross sections for different targets at collision energies corresponding to the same $E/V_{\\mathrm{\\scriptscriptstyle B}}$, we obtain interesting scaling laws. First, we derive an approximate linear expression for the nuclear breakup cross section as a function of $A_{\\mathrm{% \\scriptscriptstyle T}}^{1/3}$. We then confirm the validity of this expression performing CDCC calculations. Scaling laws for the Coulomb breakup cross section are also investigated. In this case, our CDCC calculations indicate that this cross section has a linear dependence on the atomic number of the target. This behavior is explained by qualitative arguments. Our findings, which are consistent with previously obtained results for higher energies, are important when planning for experiments involving exotic weakly bound nuclei.
Development of a Database to Support a Multi-Scale Analysis of the Distribution of Westslope ....................................................................................................................................5 Database Development expression of life history, and no hybridization) comprise only 22% of this total (Thurow et al. 1997
Large scale tracking algorithms.
Hansen, Ross L.; Love, Joshua Alan; Melgaard, David Kennett; Karelitz, David B.; Pitts, Todd Alan; Zollweg, Joshua David; Anderson, Dylan Z.; Nandy, Prabal; Whitlow, Gary L.; Bender, Daniel A.; Byrne, Raymond Harry
2015-01-01T23:59:59.000Z
Low signal-to-noise data processing algorithms for improved detection, tracking, discrimination and situational threat assessment are a key research challenge. As sensor technologies progress, the number of pixels will increase signi cantly. This will result in increased resolution, which could improve object discrimination, but unfortunately, will also result in a significant increase in the number of potential targets to track. Many tracking techniques, like multi-hypothesis trackers, suffer from a combinatorial explosion as the number of potential targets increase. As the resolution increases, the phenomenology applied towards detection algorithms also changes. For low resolution sensors, "blob" tracking is the norm. For higher resolution data, additional information may be employed in the detection and classfication steps. The most challenging scenarios are those where the targets cannot be fully resolved, yet must be tracked and distinguished for neighboring closely spaced objects. Tracking vehicles in an urban environment is an example of such a challenging scenario. This report evaluates several potential tracking algorithms for large-scale tracking in an urban environment.
Bazant, Z.P. [Northwestern Univ., Evanston, IL (United States); Chen, Er-Ping [Sandia National Lab., Albuquerque, NM (United States)
1997-01-01T23:59:59.000Z
This article attempts to review the progress achieved in the understanding of scaling and size effect in the failure of structures. Particular emphasis is placed on quasibrittle materials for which the size effect is complicated. Attention is focused on three main types of size effects, namely the statistical size effect due to randomness of strength, the energy release size effect, and the possible size effect due to fractality of fracture or microcracks. Definitive conclusions on the applicability of these theories are drawn. Subsequently, the article discusses the application of the known size effect law for the measurement of material fracture properties, and the modeling of the size effect by the cohesive crack model, nonlocal finite element models and discrete element models. Extensions to compression failure and to the rate-dependent material behavior are also outlined. The damage constitutive law needed for describing a microcracked material in the fracture process zone is discussed. Various applications to quasibrittle materials, including concrete, sea ice, fiber composites, rocks and ceramics are presented.
J Podolsky; J B Griffiths
1997-10-08T23:59:59.000Z
We describe a class of impulsive gravitational waves which propagate either in a de Sitter or an anti-de Sitter background. They are conformal to impulsive waves of Kundt's class. In a background with positive cosmological constant they are spherical (but non-expanding) waves generated by pairs of particles with arbitrary multipole structure propagating in opposite directions. When the cosmological constant is negative, they are hyperboloidal waves generated by a null particle of the same type. In this case, they are included in the impulsive limit of a class of solutions described by Siklos that are conformal to pp-waves.
Nagy, A. [Department of Theoretical Physics, University of Debrecen, H-4010 Debrecen (Hungary)
2011-09-15T23:59:59.000Z
A link between density and pair density functional theories is presented. Density and pair density scaling are used to derive the Euler equation in both theories. Density scaling provides a constructive way of obtaining approximations for the Pauli potential. The Pauli potential (energy) of the density functional theory is expressed as the difference of the scaled and original exchange-correlation potentials (energies).
Industrial Scale Demonstration of Smart Manufacturing Achieving...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Scale Demonstration of Smart Manufacturing Achieving Transformational Energy Productivity Gains Industrial Scale Demonstration of Smart Manufacturing Achieving...
Paris-Sud XI, UniversitÃ© de
polymorphismes) pour tester les liens entre patrimoine gÃ©nÃ©tique et les diffÃ©rences phÃ©notypiques Ã l expression level to make the search for large scale genotypic effect easier. The proposed method relies on the unsupervised extraction of relevant patterns using independent component analysis and the search for expression
Implicit Scaling in Ecological Research
Tullos, Desiree
- sion, and abstruse structures, such as communities and ecosystems. The diversity of organisms and eco. It was our supposition that the often unrecognized relation- ship between organism/concept and scale should- ination, we hope to raise ecologists' awareness of scale-dependent rela- tionships among organisms and eco
N. V. Antonov; N. M. Gulitskiy
2015-01-21T23:59:59.000Z
Inertial-range asymptotic behavior of a vector (e.g., magnetic) field, passively advected by a strongly anisotropic turbulent flow, is studied by means of the field theoretic renormalization group and the operator product expansion. The advecting velocity field is Gaussian, not correlated in time, with the pair correlation function of the form $\\propto \\delta(t-t') / k_{\\bot}^{d-1+\\xi}$, where $k_{\\bot}=|{\\bf k}_{\\bot}|$ and ${\\bf k}_{\\bot}$ is the component of the wave vector, perpendicular to the distinguished direction (`direction of the flow') -- the $d$-dimensional generalization of the ensemble introduced by Avellaneda and Majda [{\\it Commun. Math. Phys.} {\\bf 131}: 381 (1990)]. The stochastic advection-diffusion equation for the transverse (divergence-free) vector field includes, as special cases, the kinematic dynamo model for magnetohydrodynamic turbulence and the linearized Navier--Stokes equation. In contrast to the well known isotropic Kraichnan's model, where various correlation functions exhibit anomalous scaling behavior with infinite sets of anomalous exponents, here the dependence on the integral turbulence scale $L$ has a logarithmic behavior: instead of power-like corrections to ordinary scaling, determined by naive (canonical) dimensions, the anomalies manifest themselves as polynomials of logarithms of $L$. The key point is that the matrices of scaling dimensions of the relevant families of composite operators appear nilpotent and cannot be diagonalized. The detailed proof of this fact is given for correlation functions of arbitrary order.
Collective systems for creative expression
Ar?kan, Harun Burak
2006-01-01T23:59:59.000Z
This thesis defines collective systems as a unique category of creative expression through the procedures of micro and macro cycles that address the transition from connectivity to collectivity. This thesis discusses the ...
Brodsky, Stanley J.; /SLAC; Wu, Xing-Gang; /Chongqing U.
2012-04-02T23:59:59.000Z
The uncertainty in setting the renormalization scale in finite-order perturbative QCD predictions using standard methods substantially reduces the precision of tests of the Standard Model in collider experiments. It is conventional to choose a typical momentum transfer of the process as the renormalization scale and take an arbitrary range to estimate the uncertainty in the QCD prediction. However, predictions using this procedure depend on the choice of renormalization scheme, leave a non-convergent renormalon perturbative series, and moreover, one obtains incorrect results when applied to QED processes. In contrast, if one fixes the renormalization scale using the Principle of Maximum Conformality (PMC), all non-conformal {l_brace}{beta}{sub i}{r_brace}-terms in the perturbative expansion series are summed into the running coupling, and one obtains a unique, scale-fixed, scheme-independent prediction at any finite order. The PMC renormalization scale {mu}{sub R}{sup PMC} and the resulting finite-order PMC prediction are both to high accuracy independent of choice of the initial renormalization scale {mu}{sub R}{sup init}, consistent with renormalization group invariance. Moreover, after PMC scale-setting, the n!-growth of the pQCD expansion is eliminated. Even the residual scale-dependence at fixed order due to unknown higher-order {l_brace}{beta}{sub i}{r_brace}-terms is substantially suppressed. As an application, we apply the PMC procedure to obtain NNLO predictions for the t{bar t}-pair hadroproduction cross-section at the Tevatron and LHC colliders. There are no renormalization scale or scheme uncertainties, thus greatly improving the precision of the QCD prediction. The PMC prediction for {sigma}{sub t{bar t}} is larger in magnitude in comparison with the conventional scale-setting method, and it agrees well with the present Tevatron and LHC data. We also verify that the initial scale-independence of the PMC prediction is satisfied to high accuracy at the NNLO level: the total cross-section remains almost unchanged even when taking very disparate initial scales {mu}{sub R}{sup init} equal to m{sub t}, 20 m{sub t}, {radical}s.
Hydranet: network support for scaling of large scale servic es
Chawla, Hamesh
1998-01-01T23:59:59.000Z
With the explosive growth of demand for services on the Internet, the networking infrastructure (routers 7 protocols, servers) is under considerable stress. Mechanisms are needed for current and future IP services to scale in a client transparent...
Scale Effects in Crystal Plasticity
Padubidri Janardhanachar, Guruprasad
2010-07-14T23:59:59.000Z
The goal of this research work is to further the understanding of crystal plasticity, particularly at reduced structural and material length scales. Fundamental understanding of plasticity is central to various challenges facing design...
Commercial Scale Wind Incentive Program
Broader source: Energy.gov [DOE]
Energy Trust of Oregon’s Commercial Scale Wind offering provides resources and cash incentives to help communities, businesses land owners, and government entities install wind turbine systems up...
Andrea Bedini; Jesper Lykke Jacobsen
2010-08-06T23:59:59.000Z
Combining tree decomposition and transfer matrix techniques provides a very general algorithm for computing exact partition functions of statistical models defined on arbitrary graphs. The algorithm is particularly efficient in the case of planar graphs. We illustrate it by computing the Potts model partition functions and chromatic polynomials (the number of proper vertex colourings using Q colours) for large samples of random planar graphs with up to N=100 vertices. In the latter case, our algorithm yields a sub-exponential average running time of ~ exp(1.516 sqrt(N)), a substantial improvement over the exponential running time ~ exp(0.245 N) provided by the hitherto best known algorithm. We study the statistics of chromatic roots of random planar graphs in some detail, comparing the findings with results for finite pieces of a regular lattice.
Vossoughi, S.
1981-01-01T23:59:59.000Z
The Tertiary Oil Recovery Project stream tube model was developed as a tool to help oil operators in Kansas evaluate and understand their waterflood projects in a more systematic approach. The model utilizes the stream tube concept and Buckley-Leverett theory and can be applied to any homogeneous reservoir with arbitrary well patterns and regular or irregular boundaries. It also can be applied to tracer projects to estimate tracer breakthrough time if the tracer is injected during the stage of high water-oil ratio. The computer package has been prepared in a fashion such that minimum effort and interaction are required for the user to obtain the final results from specified input data. The model was applied to an example problem consisting of a 5-spot pattern. 19 references.
Turbulence Effects at Small Scales
A. Beresnyak; A. Lazarian
2006-10-26T23:59:59.000Z
It is most natural to assume that mysterious Small Ionized and Neutral Structures (SINS) indiffuse ISM arise from turbulence. There are two obvious problem with such an explanation, however. First of all, it is generally believed that at the small scales turbulence should be damped. Second, turbulence with Kolmogorov spectrum cannot be the responsible for the SINS. We consider, however, effects, that provide spectral index flatter than the Kolmogorov one and allow action at very small scales. These are the shocks that arise in high Mach number turbulence and transfer of energy to small scales by instabilities in cosmic rays. Our examples indicate that the origin of SINS may be discovered through systematic studies of astrophysical turbulence.
A Tree Swaying in a Turbulent Wind: A Scaling Analysis
Theo Odijk
2014-07-10T23:59:59.000Z
A tentative scaling theory is presented of a tree swaying in a turbulent wind. It is argued that the turbulence of the air within the crown is in the inertial regime. An eddy causes a dynamic bending response of the branches according to a time criterion. The resulting expression for the penetration depth of the wind yields an exponent which appears to be consistent with that pertaining to the morphology of the tree branches. An energy criterion shows that the dynamics of the branches is basically passive. The possibility of hydrodynamic screening by the leaves is discussed.
Non-Stationary Random Process for Large-Scale Failure and Recovery of Power Distributions
Wei, Yun; Galvan, Floyd; Couvillon, Stephen; Orellana, George; Momoh, James
2012-01-01T23:59:59.000Z
A key objective of the smart grid is to improve reliability of utility services to end users. This requires strengthening resilience of distribution networks that lie at the edge of the grid. However, distribution networks are exposed to external disturbances such as hurricanes and snow storms where electricity service to customers is disrupted repeatedly. External disturbances cause large-scale power failures that are neither well-understood, nor formulated rigorously, nor studied systematically. This work studies resilience of power distribution networks to large-scale disturbances in three aspects. First, a non-stationary random process is derived to characterize an entire life cycle of large-scale failure and recovery. Second, resilience is defined based on the non-stationary random process. Close form analytical expressions are derived under specific large-scale failure scenarios. Third, the non-stationary model and the resilience metric are applied to a real life example of large-scale disruptions due t...
Unscaled Scaled (% / km) Geographic Area /
226 Unscaled Scaled (% / km) Geographic Area / Assessment Unit DI Prod. N(eq) Sum Total Cumu subbasin, Washington. Geographic Area / Assessment Unit IntegratedPriorityRestoration Category Habitat% (unscaled results) of the combined protection benefit for summer steelhead within the Methow basin, and 51
MenascÃ©, Daniel A.
Scaling the Web Composing Web Services:A QoS View A n Internet application can invoke several ser- vices -- a stock-trading Web service, for example, could invoke a payment service, which could then invoke an authentication service. Such a scenario is called a composite Web service, and it can
Visualization of Large-Scale Distributed Data
Johnson, Andrew
that are now considered the "lenses" for examining large-scale data. THE LARGE-SCALE DATA VISUALIZATIONVisualization of Large-Scale Distributed Data Jason Leigh1 , Andrew Johnson1 , Luc Renambot1 representation of data and the interactive manipulation and querying of the visualization. Large-scale data
Brane World Models Need Low String Scale
Antoniadis, Ignatios; Calmet, Xavier
2011-01-01T23:59:59.000Z
Models with large extra dimensions offer the possibility of the Planck scale being of order the electroweak scale, thus alleviating the gauge hierarchy problem. We show that these models suffer from a breakdown of unitarity at around three quarters of the low effective Planck scale. An obvious candidate to fix the unitarity problem is string theory. We therefore argue that it is necessary for the string scale to appear below the effective Planck scale and that the first signature of such models would be string resonances. We further translate experimental bounds on the string scale into bounds on the effective Planck scale.
Emerging universe from scale invariance
Del Campo, Sergio; Herrera, Ramón [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2950, Casilla 4059, Valparaíso (Chile); Guendelman, Eduardo I. [Physics Department, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel); Labraña, Pedro, E-mail: sdelcamp@ucv.cl, E-mail: guendel@bgu.ac.il, E-mail: ramon.herrera@ucv.cl, E-mail: plabrana@ubiobio.cl [Departamento de Física, Universidad del Bío Bío, Avenida Collao 1202, Casilla 5-C, Concepción (Chile)
2010-06-01T23:59:59.000Z
We consider a scale invariant model which includes a R{sup 2} term in action and show that a stable ''emerging universe'' scenario is possible. The model belongs to the general class of theories, where an integration measure independent of the metric is introduced. To implement scale invariance (S.I.), a dilaton field is introduced. The integration of the equations of motion associated with the new measure gives rise to the spontaneous symmetry breaking (S.S.B) of S.I. After S.S.B. of S.I. in the model with the R{sup 2} term (and first order formalism applied), it is found that a non trivial potential for the dilaton is generated. The dynamics of the scalar field becomes non linear and these non linearities are instrumental in the stability of some of the emerging universe solutions, which exists for a parameter range of the theory.
Marinoni, C.; Bel, J.; Buzzi, A., E-mail: christian.marinoni@cpt.univ-mrs.fr, E-mail: Julien.Bel@cpt.univ-mrs.fr, E-mail: Adeline.Buzzi@cpt.univ-mrs.fr [Centre de Physique Théorique, Aix-Marseille Université, CNRS UMR 7332, case 907, F-13288 Marseille (France)
2012-10-01T23:59:59.000Z
The most fundamental premise to the standard model of the universe states that the large-scale properties of the universe are the same in all directions and at all comoving positions. Demonstrating this hypothesis has proven to be a formidable challenge. The cross-over scale R{sub iso} above which the galaxy distribution becomes statistically isotropic is vaguely defined and poorly (if not at all) quantified. Here we report on a formalism that allows us to provide an unambiguous operational definition and an estimate of R{sub iso}. We apply the method to galaxies in the Sloan Digital Sky Survey (SDSS) Data Release 7, finding that R{sub iso} ? 150h{sup ?1}Mpc. Besides providing a consistency test of the Copernican principle, this result is in agreement with predictions based on numerical simulations of the spatial distribution of galaxies in cold dark matter dominated cosmological models.
Transition physics and scaling overview
Carlstrom, T.N.
1995-12-01T23:59:59.000Z
This paper presents an overview of recent experimental progress towards understanding H-mode transition physics and scaling. Terminology and techniques for studying H-mode are reviewed and discussed. The model of shear E x B flow stabilization of edge fluctuations at the L-H transition is gaining wide acceptance and is further supported by observations of edge rotation on a number of new devices. Observations of poloidal asymmetries of edge fluctuations and dephasing of density and potential fluctuations after the transition pose interesting challenges for understanding H-mode physics. Dedicated scans to determine the scaling of the power threshold have now been performed on many machines. A dear B{sub t} dependence is universally observed but dependence on the line averaged density is complicated. Other dependencies are also reported. Studies of the effect of neutrals and error fields on the power threshold are under investigation. The ITER threshold database has matured and offers guidance to the power threshold scaling issues relevant to next-step devices.
Regular-expression derivatives reexamined SCOTT OWENS
Strickland, Stevie
. For regular sets of strings, i.e., sets defined by regular expressions (REs), the derivative is also a regular is elegant and easily supports extended regular expressions; i.e., REs extended with Boolean operations expressions, but since the extensions are conservative (i.e., regular languages are closed under Boolean
Federal Express | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSan Leandro,LawFEMAProjectExpress Jump to: navigation,
Distilling entanglement from arbitrary resources
Francesco Buscemi; Nilanjana Datta
2010-10-15T23:59:59.000Z
We obtain the general formula for the optimal rate at which singlets can be distilled from any given noisy and arbitrarily correlated entanglement resource, by means of local operations and classical communication (LOCC). Our formula, obtained by employing the quantum information spectrum method, reduces to that derived by Devetak and Winter, in the special case of an i.i.d. resource. The proofs rely on a one-shot version of the so-called "hashing bound," which in turn provides bounds on the one-shot distillable entanglement under general LOCC.
Making Diagnostic Thresholds Less Arbitrary
Unger, Alexis Ariana
2012-07-16T23:59:59.000Z
UNGER Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved by: Chair of Committee, Steve Balsis Committee Members, Aaron Taylor Rick.... Steve Balsis, and my committee members, Dr. Aaron Taylor, and Dr. Rick Peterson, for their guidance and support throughout the course of this research. In addition, I would like to lend my thanks to my friends and colleagues, as well...
Radiation-Induced Micro-RNA Expression Changes in Peripheral Blood Cells of Radiotherapy Patients
Templin, Thomas; Paul, Sunirmal; Amundson, Sally A.; Young, Erik F. [Center for Radiological Research, Department of Radiation Oncology, Columbia University Medical Center, New York, NY (United States); Barker, Christopher A.; Wolden, Suzanne L. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Smilenov, Lubomir B., E-mail: lbs5@columbia.ed [Center for Radiological Research, Department of Radiation Oncology, Columbia University Medical Center, New York, NY (United States)
2011-06-01T23:59:59.000Z
Purpose: MicroRNAs (miRNAs), a class of noncoding small RNAs that regulate gene expression, are involved in numerous physiologic processes in normal and malignant cells. Our in vivo study measured miRNA and gene expression changes in human blood cells in response to ionizing radiation, to develop miRNA signatures that can be used as biomarkers for radiation exposure. Methods and Materials: Blood from 8 radiotherapy patients in complete remission 1 or 2 was collected immediately before and 4 hours after total body irradiation with 1.25 Gy x-rays. Both miRNA and gene expression changes were measured by means of quantitative polymerase chain reaction and microarray hybridization, respectively. Hierarchic clustering, multidimensional scaling, class prediction, and gene ontology analysis were performed to investigate the potential of miRNAs to serve as radiation biomarkers and to elucidate their likely physiologic roles in the radiation response. Results: The expression levels of 45 miRNAs were statistically significantly upregulated 4 hours after irradiation with 1.25 Gy x-rays, 27 of them in every patient. Nonirradiated and irradiated samples form separate clusters in hierarchic clustering and multidimensional scaling. Out of 223 differentially expressed genes, 37 were both downregulated and predicted targets of the upregulated miRNAs. Paired and unpaired miRNA-based classifiers that we developed can predict the class membership of a sample with unknown irradiation status, with accuracies of 100% when all 45 upregulated miRNAs are included. Both miRNA control of and gene involvement in biologic processes such as hemopoiesis and the immune response are increased after irradiation, whereas metabolic processes are underrepresented among all differentially expressed genes and the genes controlled by miRNAs. Conclusions: Exposure to ionizing radiation leads to the upregulation of the expression of a considerable proportion of the human miRNAome of peripheral blood cells. These miRNA expression signatures can be used as biomarkers of radiation exposure.
Scaling Dark Energy in a Five-Dimensional Bouncing Cosmological Model
Lixin Xu; Hongya Liu
2005-12-31T23:59:59.000Z
We consider a 5-dimensional Ricci flat bouncing cosmological model in which the 4-dimensional induced matter contains two components at late times - the cold dark matter (CDM)+baryons and dark energy. We find that the arbitrary function $f(z)$ contained in the solution plays a similar role as the potential $V(\\phi)$ in quintessence and phantom dark energy models. To resolve the coincidence problem, it is generally believed that there is a scaling stage in the evolution of the universe. We analyze the condition for this stage and show that a hyperbolic form of the function $f(z)$ can work well in this property. We find that during the scaling stage (before $z\\approx 2$), the dark energy behaves like (but not identical to) a cold dark matter with an adiabatic sound speed $c_{s}^{2}\\approx 0$ and $p_{x}\\approx 0$. After $z\\approx 2$, the pressure of dark energy becomes negative. The transition from deceleration to acceleration happens at $z_{T}\\approx 0.8$ which, as well as other predictions of the $5D$ model, agree with current observations.
Preliminary Scaling Estimate for Select Small Scale Mixing Demonstration Tests
Wells, Beric E.; Fort, James A.; Gauglitz, Phillip A.; Rector, David R.; Schonewill, Philip P.
2013-09-12T23:59:59.000Z
The Hanford Site double-shell tank (DST) system provides the staging location for waste that will be transferred to the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Specific WTP acceptance criteria for waste feed delivery describe the physical and chemical characteristics of the waste that must be met before the waste is transferred from the DSTs to the WTP. One of the more challenging requirements relates to the sampling and characterization of the undissolved solids (UDS) in a waste feed DST because the waste contains solid particles that settle and their concentration and relative proportion can change during the transfer of the waste in individual batches. A key uncertainty in the waste feed delivery system is the potential variation in UDS transferred in individual batches in comparison to an initial sample used for evaluating the acceptance criteria. To address this uncertainty, a number of small-scale mixing tests have been conducted as part of Washington River Protection Solutions’ Small Scale Mixing Demonstration (SSMD) project to determine the performance of the DST mixing and sampling systems.
The Use of EST Expression Matrixes for the Quality Control of Gene Expression Data
Sheldon, Nathan D.
for tissue typing and quality control of libraries as small as just a few hundred total ESTs. Furthermore, weThe Use of EST Expression Matrixes for the Quality Control of Gene Expression Data Andrew T Expression Matrixes for the Quality Control of Gene Expression Data. PLoS ONE 7(3): e32966. doi:10
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN7 RoadmapProgram| Department ofat ThisasScale Models and
Introduction to the time scale problem
Voter, A. F.
2002-01-01T23:59:59.000Z
As motivation for the symposium on extended-scale atomistic methods, I briefly discuss the time scale problem that plagues molecular dynamics simulations, some promising recent developments for circumventing the problem, and some remaining challenges.
Small-Scale Energy Loan Program
Broader source: Energy.gov [DOE]
The Oregon Small-Scale Energy Loan Program (SELP) - created in 1981 after voters approved a constitutional amendment authorizing the sale of bonds to finance small-scale, local energy projects - is...
Industrial Scale Demonstration of Smart Manufacturing Achieving...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Scale Demonstration of Smart Manufacturing Achieving Transformational Energy Productivity Gains Development of an Open Architecture, Widely Applicable Smart Manufacturing...
Range Fuels Commercial-Scale Biorefinery
Broader source: Energy.gov [DOE]
The Range Fuels commercial-scale biorefinery will use a variety of feedstocks to create cellulosic ethanol, methanol, and power.
Brodsky, Stanley J.; /SLAC; Wu, Xing-Gang; /SLAC /Chongqing U.
2012-02-16T23:59:59.000Z
A key problem in making precise perturbative QCD predictions is to set the proper renormalization scale of the running coupling. The extended renormalization group equations, which express the invariance of physical observables under both the renormalization scale- and scheme-parameter transformations, provide a convenient way for estimating the scale- and scheme-dependence of the physical process. In this paper, we present a solution for the scale-equation of the extended renormalization group equations at the four-loop level. Using the principle of maximum conformality (PMC)/Brodsky-Lepage-Mackenzie (BLM) scale-setting method, all non-conformal {beta}{sub i} terms in the perturbative expansion series can be summed into the running coupling, and the resulting scale-fixed predictions are independent of the renormalization scheme. Different schemes lead to different effective PMC/BLM scales, but the final results are scheme independent. Conversely, from the requirement of scheme independence, one not only can obtain scheme-independent commensurate scale relations among different observables, but also determine the scale displacements among the PMC/BLM scales which are derived under different schemes. In principle, the PMC/BLM scales can be fixed order-by-order, and as a useful reference, we present a systematic and scheme-independent procedure for setting PMC/BLM scales up to NNLO. An explicit application for determining the scale setting of R{sub e{sup +}e{sup -}}(Q) up to four loops is presented. By using the world average {alpha}{sub s}{sup {ovr MS}}(MZ) = 0.1184 {+-} 0.0007, we obtain the asymptotic scale for the 't Hooft associated with the {ovr MS} scheme, {Lambda}{sub {ovr MS}}{sup 'tH} = 245{sub -10}{sup +9} MeV, and the asymptotic scale for the conventional {ovr MS} scheme, {Lambda}{sub {ovr MS}} = 213{sub -8}{sup +19} MeV.
Goethite Bench-scale and Large-scale Preparation Tests
Josephson, Gary B.; Westsik, Joseph H.
2011-10-23T23:59:59.000Z
The Hanford Waste Treatment and Immobilization Plant (WTP) is the keystone for cleanup of high-level radioactive waste from our nation's nuclear defense program. The WTP will process high-level waste from the Hanford tanks and produce immobilized high-level waste glass for disposal at a national repository, low activity waste (LAW) glass, and liquid effluent from the vitrification off-gas scrubbers. The liquid effluent will be stabilized into a secondary waste form (e.g. grout-like material) and disposed on the Hanford site in the Integrated Disposal Facility (IDF) along with the low-activity waste glass. The major long-term environmental impact at Hanford results from technetium that volatilizes from the WTP melters and finally resides in the secondary waste. Laboratory studies have indicated that pertechnetate ({sup 99}TcO{sub 4}{sup -}) can be reduced and captured into a solid solution of {alpha}-FeOOH, goethite (Um 2010). Goethite is a stable mineral and can significantly retard the release of technetium to the environment from the IDF. The laboratory studies were conducted using reaction times of many days, which is typical of environmental subsurface reactions that were the genesis of this new process. This study was the first step in considering adaptation of the slow laboratory steps to a larger-scale and faster process that could be conducted either within the WTP or within the effluent treatment facility (ETF). Two levels of scale-up tests were conducted (25x and 400x). The largest scale-up produced slurries of Fe-rich precipitates that contained rhenium as a nonradioactive surrogate for {sup 99}Tc. The slurries were used in melter tests at Vitreous State Laboratory (VSL) to determine whether captured rhenium was less volatile in the vitrification process than rhenium in an unmodified feed. A critical step in the technetium immobilization process is to chemically reduce Tc(VII) in the pertechnetate (TcO{sub 4}{sup -}) to Tc(Iv)by reaction with the ferrous ion, Fe{sup 2+}-Fe{sup 2+} is oxidized to Fe{sup 3+} - in the presence of goethite seed particles. Rhenium does not mimic that process; it is not a strong enough reducing agent to duplicate the TcO{sub 4}{sup -}/Fe{sup 2+} redox reactions. Laboratory tests conducted in parallel with these scaled tests identified modifications to the liquid chemistry necessary to reduce ReO{sub 4}{sup -} and capture rhenium in the solids at levels similar to those achieved by Um (2010) for inclusion of Tc into goethite. By implementing these changes, Re was incorporated into Fe-rich solids for testing at VSL. The changes also changed the phase of iron that was in the slurry product: rather than forming goethite ({alpha}-FeOOH), the process produced magnetite (Fe{sub 3}O{sub 4}). Magnetite was considered by Pacific Northwest National Laboratory (PNNL) and VSL to probably be a better product to improve Re retention in the melter because it decomposes at a higher temperature than goethite (1538 C vs. 136 C). The feasibility tests at VSL were conducted using Re-rich magnetite. The tests did not indicate an improved retention of Re in the glass during vitrification, but they did indicate an improved melting rate (+60%), which could have significant impact on HLW processing. It is still to be shown whether the Re is a solid solution in the magnetite as {sup 99}Tc was determined to be in goethite.
A parallel scaled conjugate-gradient
Aykanat, Cevdet
. The scaled conjugate- gradient method is a powerful technique for solving large sparse linear systems for form-factor computation. Key words: Gathering radiosity -- Scaled conjugate-gradient method -- Parallel, the Gauss--Jacobi (GJ) method is used in the solution phase. The scaled conjugate-gradient (SCG) method
Large-Scale Renewable Energy Guide Webinar
Broader source: Energy.gov [DOE]
Webinar introduces the “Large Scale Renewable Energy Guide." The webinar will provide an overview of this important FEMP guide, which describes FEMP's approach to large-scale renewable energy projects and provides guidance to Federal agencies and the private sector on how to develop a common process for large-scale renewable projects.
Nuclear Reactions & Scaling Arguments 11 October 2011
Militzer, Burkhard
Nuclear Reactions & Scaling Arguments 11 October 2011 Goals Â· Review nuclear reaction rates Â· Practice using scaling arguments Nuclear Reactions 1. Consider the simple reaction A k1 ---- B k2 ---- C = 3. #12;nuclear reactions & scaling arguments 2 3. Frequently, we approximate nuclear reaction rates
Nuclear Reactions & Scaling Arguments 11 October 2011
Militzer, Burkhard
Nuclear Reactions & Scaling Arguments 11 October 2011 Goals Â· Review nuclear reaction rates Â· Practice using scaling arguments Nuclear Reactions 1. Consider the simple reaction A k1 ---- B k2 ---- C rate for something like p + p D scales like n2 p. Think in microscopic terms. #12;nuclear reactions
6, 1092910958, 2006 Regional scale CO2
Paris-Sud XI, UniversitÃ© de
ACPD 6, 10929Â10958, 2006 Regional scale CO2 flux estimation using radon A. I. Hirsch Title Page Chemistry and Physics Discussions On using radon-222 and CO2 to calculate regional-scale CO2 fluxes A. I (Adam.Hirsch@noaa.gov) 10929 #12;ACPD 6, 10929Â10958, 2006 Regional scale CO2 flux estimation using
Conundrum of the Large Scale Streaming
T. M. Malm
1999-09-12T23:59:59.000Z
The etiology of the large scale peculiar velocity (large scale streaming motion) of clusters would increasingly seem more tenuous, within the context of the gravitational instability hypothesis. Are there any alternative testable models possibly accounting for such large scale streaming of clusters?
Analytically expressed constraint on two Majorana phases in neutrinoless double beta decay
Maedan, Shinji
2014-01-01T23:59:59.000Z
We assume that neutrinoless double beta decay is caused by the exchange of three light Majorana neutrinos. Under this assumption, we obtain, by the method of perturbation, the equation representing the isocontour of effective Majorana mass which is the function of two CP-violating Majorana phases. The equation representing the isocontour (constraint equation between two Majorana phases) is expressed analytically by six parameters: two lepton mixing angles, two kinds of neutrino mass squared differences, lightest neutrino mass scale, and the effective Majorana mass. We discuss how the constraint equation between two Majorana phases changes when the lightest neutrino mass scale is varied.
Methods for monitoring multiple gene expression
Berka, Randy; Bachkirova, Elena; Rey, Michael
2013-10-01T23:59:59.000Z
The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.
Methods for monitoring multiple gene expression
Berka, Randy (Davis, CA); Bachkirova, Elena (Davis, CA); Rey, Michael (Davis, CA)
2012-05-01T23:59:59.000Z
The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.
Sitti, Metin
Advanced Robotics Journal, Vol. X, No. Y, 2002 (to appear) SCALED TELEOPERATION SYSTEM FOR NANO for teleoperated nano scale object interaction and manipulation. Design specifications for a bilateral scaled system, initial experiments are realized for interacting with nano scale surfaces. It is shown that fine
Rocky Mountain Power- FinAnswer Express
Broader source: Energy.gov [DOE]
Rocky Mountain Power's FinAnswer Express Program provides extensive incentives and for lighting, HVAC, food service, agricultural, and compressed air equipment. Retrofits of facilities and upgrades...
Pacific Power- FinAnswer Express
Broader source: Energy.gov [DOE]
Pacific Power's FinAnswer Express Program includes incentives and technical assistance for lighting, HVAC and other equipment upgrades that increase energy efficiency and exceed code requirements...
Meso-scale machining capabilities and issues
BENAVIDES,GILBERT L.; ADAMS,DAVID P.; YANG,PIN
2000-05-15T23:59:59.000Z
Meso-scale manufacturing processes are bridging the gap between silicon-based MEMS processes and conventional miniature machining. These processes can fabricate two and three-dimensional parts having micron size features in traditional materials such as stainless steels, rare earth magnets, ceramics, and glass. Meso-scale processes that are currently available include, focused ion beam sputtering, micro-milling, micro-turning, excimer laser ablation, femto-second laser ablation, and micro electro discharge machining. These meso-scale processes employ subtractive machining technologies (i.e., material removal), unlike LIGA, which is an additive meso-scale process. Meso-scale processes have different material capabilities and machining performance specifications. Machining performance specifications of interest include minimum feature size, feature tolerance, feature location accuracy, surface finish, and material removal rate. Sandia National Laboratories is developing meso-scale electro-mechanical components, which require meso-scale parts that move relative to one another. The meso-scale parts fabricated by subtractive meso-scale manufacturing processes have unique tribology issues because of the variety of materials and the surface conditions produced by the different meso-scale manufacturing processes.
Reliable High Performance Peta- and Exa-Scale Computing
Bronevetsky, G
2012-04-02T23:59:59.000Z
As supercomputers become larger and more powerful, they are growing increasingly complex. This is reflected both in the exponentially increasing numbers of components in HPC systems (LLNL is currently installing the 1.6 million core Sequoia system) as well as the wide variety of software and hardware components that a typical system includes. At this scale it becomes infeasible to make each component sufficiently reliable to prevent regular faults somewhere in the system or to account for all possible cross-component interactions. The resulting faults and instability cause HPC applications to crash, perform sub-optimally or even produce erroneous results. As supercomputers continue to approach Exascale performance and full system reliability becomes prohibitively expensive, we will require novel techniques to bridge the gap between the lower reliability provided by hardware systems and users unchanging need for consistent performance and reliable results. Previous research on HPC system reliability has developed various techniques for tolerating and detecting various types of faults. However, these techniques have seen very limited real applicability because of our poor understanding of how real systems are affected by complex faults such as soft fault-induced bit flips or performance degradations. Prior work on such techniques has had very limited practical utility because it has generally focused on analyzing the behavior of entire software/hardware systems both during normal operation and in the face of faults. Because such behaviors are extremely complex, such studies have only produced coarse behavioral models of limited sets of software/hardware system stacks. Since this provides little insight into the many different system stacks and applications used in practice, this work has had little real-world impact. My project addresses this problem by developing a modular methodology to analyze the behavior of applications and systems during both normal and faulty operation. By synthesizing models of individual components into a whole-system behavior models my work is making it possible to automatically understand the behavior of arbitrary real-world systems to enable them to tolerate a wide range of system faults. My project is following a multi-pronged research strategy. Section II discusses my work on modeling the behavior of existing applications and systems. Section II.A discusses resilience in the face of soft faults and Section II.B looks at techniques to tolerate performance faults. Finally Section III presents an alternative approach that studies how a system should be designed from the ground up to make resilience natural and easy.
Percival, Don
with a spectral density function (SDF) that is the product of the SDF for a (not necessarily stationary) FD process multiplied by any bounded function that can serve as an SDF on its own. We demonstrate). In particular he obtained expressions for the spectral density function (SDF) of within-scale wavelet
Advanced, High Power, Next Scale, Wave Energy Conversion Device...
Broader source: Energy.gov (indexed) [DOE]
Advanced, High Power, Next Scale, Wave Energy Conversion Device Advanced, High Power, Next Scale, Wave Energy Conversion Device Advanced, High Power, Next Scale, Wave Energy...
DLFM library tools for large scale dynamic applications.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
DLFM library tools for large scale dynamic applications DLFM library tools for large scale dynamic applications Large scale Python and other dynamic applications may spend huge...
EXPRESSIVE ROBOTICS SCHOLARSHIPS SUMMER 2014 Scholarship Guidelines
Loudon, Catherine
EXPRESSIVE ROBOTICS SCHOLARSHIPS SUMMER 2014 Scholarship Guidelines PURPOSE To provide access to the Beall Center's Expressive Robotics summer intensive offered at the UC Irvine Claire Robotics is a twoweek middle/high school aged summer program focused on the development of robotic
Supervised Harvesting of Expression Trees Trevor Hastie
Hastie, Trevor
Supervised Harvesting of Expression Trees Trevor Hastie #3; , Robert Tibshirani y , David Botstein learning from gene ex- pression data. We call it \\Tree Harvesting". This technique starts between genes. Conclusions Tree Harvesting is a potentially useful tool for exploration of gene expression
Oct-4 expression in equine embryonic cells
Harding, Heather Darby
2007-04-25T23:59:59.000Z
(ES) cells for this reason. Until 1999, Oct-4 studies were limited to in vivo-produced embryos; equine embryos have not been studied for their Oct-4 expression patterns. In addition, equine stem-like cells (defined by marker expression, induced...
How to calibrate the jet energy scale?
Hatakeyama, K.; /Rockefeller U.
2006-01-01T23:59:59.000Z
Top quarks dominantly decay into b-quark jets and W bosons, and the W bosons often decay into jets, thus the precise determination of the jet energy scale is crucial in measurements of many top quark properties. I present the strategies used by the CDF and D0 collaborations to determine the jet energy scale. The various cross checks performed to verify the determined jet energy scale and evaluate its systematic uncertainty are also discussed.
Scaling Rules for Pre-Injector Design
Tom Schwarz; Dan Amidei
2003-07-13T23:59:59.000Z
Proposed designs of the prebunching system of the NLC and TESLA are based on the assumption that scaling the SLC design to NLC/TESLA requirements should provide the desired performance. A simple equation is developed to suggest a scaling rule in terms of bunch charge and duration. Detailed simulations of prebunching systems scaled from a single design have been run to investigate these issues.
Scaling in the Lattice Gas Model
F. Gulminelli; Ph. Chomaz; M. Bruno; M. D'Agostino
2002-01-18T23:59:59.000Z
A good quality scaling of the cluster size distributions is obtained for the Lattice Gas Model using the Fisher's ansatz for the scaling function. This scaling identifies a pseudo-critical line in the phase diagram of the model that spans the whole (subcritical to supercritical) density range. The independent cluster hypothesis of the Fisher approach is shown to describe correctly the thermodynamics of the lattice only far away from the critical point.
Sapphire Energy, Inc. Demonstration-Scale Project
Broader source: Energy.gov (indexed) [DOE]
and run the facility. The success of this project will demonstrate the technical and economic feasibility of the algae-to- fuels process for commercial-scale biorefineries....
Commonwealth Wind Community-Scale Initiative
Broader source: Energy.gov [DOE]
Through the Commonwealth Wind Incentive Program – Community-Scale Wind Initiative the Massachusetts Clean Energy Center (MassCEC) offers site assessment grants of services, feasibility study grants...
Advanced radioisotope power source options for Pluto Express
Underwood, M.L. [California Inst. of Technology, Pasadena, CA (United States). Jet Propulsion Lab.
1995-12-31T23:59:59.000Z
In the drive to reduce mass and cost, Pluto Express is investigating using an advanced power conversion technology in a small Radioisotope Power Source (RPS) to deliver the required mission power of 74 W(electric) at end of mission. Until this year the baseline power source under consideration has been a Radioisotope Thermoelectric Generator (RTG). This RTG would be a scaled down GPHS RTG with an inventory of 6 General Purpose Heat Sources (GPHS) and a mass of 17.8 kg. High efficiency, advanced technology conversion options are being examined to lower the power source mass and to reduce the amount of radioisotope needed. Three technologies are being considered as the advanced converter technology: the Alkali Metal Thermal-to-Electric Converter (AMTEC), Thermophotovoltaic (TPV) converters, and Stirling Engines. Conceptual designs for each of these options have been prepared. Each converter would require only 2 GPHSs to provide the mission power and would have a mass of 6.1, 7.2, and 12.4 kg for AMTEC, TPV, and Stirling Engines respectively. This paper reviews the status of each technology and the projected performance of an advanced RPS based on each technology. Based on the projected performance and spacecraft integration issues, Pluto Express would prefer to use the AMTEC based RPS. However, in addition to technical performance, selection of a power technology will be based on many other factors.
Theory and simulations of the scaling of magnetic reconnection with symmetric shear flow
Cassak, P. A. [Department of Physics, West Virginia University, Morgantown, West Virginia 26506 (United States)
2011-07-15T23:59:59.000Z
The scaling of magnetic reconnection in the presence of an oppositely directed sub-Alfvenic shear flow parallel to the reconnecting magnetic field is studied using analytical scaling arguments and two-dimensional two-fluid numerical simulations of collisionless (Hall) reconnection. Previous studies noted that the reconnection rate falls and the current sheet tilts with increasing flow speed, but no quantitative theory was presented. This study presents a physical model of the effect of shear flow on reconnection, resulting in expressions for the scaling of properties such as the reconnection rate, outflow speed, and thickness and length of the dissipation region, which are verified numerically. Differences between Hall and Sweet-Parker reconnection are pointed out. The tilting of the current sheet is explained physically and a quantitative prediction is presented and verified.
Magnetic reconnection on the ion-skin-depth scale in the dusty magnetotail of a comet
Jovanovic, D.; Shukla, P.K.; Morfill, G. [Institute of Physics, P.O. Box 57, 11001 Belgrade (Serbia and Montenegro); Institut fuer Theoretische Physik IV, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany); Max-Planck-Institut fuer extraterrestrische Physik, D-85740 Garching (Germany)
2005-04-15T23:59:59.000Z
Resistive magnetic reconnection is studied in a dusty plasma configuration without a guide magnetic field, typical for cometary tails. For a high-{beta} plasma ({beta}{approx}1) consisting of electrons, ions, and immobile dust grains that constitute a neutralizing background, a two-fluid description is used to study electromagnetic perturbations with the frequency below the ion gyrofrequency, propagating at an arbitrary angle relative to the background magnetic field and including the effects of the Hall current. The perturbations consist of both the compressional and torsional components of the magnetic field, as well as of the acoustic perturbations and the electrostatic potential. The symmetry breaking between electrons and ions, introduced by the presence of dust grains, gives rise to an E-vectorxB-vector current in the unperturbed state which can support an antiparallel magnetic field configuration even in a cold plasma. In the perturbed state, the emergence of a new electromagnetic mode in a dusty plasma, which is evanescent below the Rao cutoff frequency and has the characteristic wavelength comparable to the ion skin depth, enables the reconnection at short spatial scales. The growth rate of the tearing instability is evaluated analytically.
Dynamic method to measure calcium carbonate scaling
Zidovec, D. [Ashland Chemical, Boonton, NJ (United States)
1999-11-01T23:59:59.000Z
A method to measure scaling rate and the effect of scale control agents are discussed. It is based on calcium carbonate growth under controlled conditions in a capillary stainless steel column. The efficacy of blended compositions can be predicted when the response of individual components is known.
Rearden, Bradley T [ORNL] [ORNL; Dunn, Michael E [ORNL] [ORNL; Wiarda, Dorothea [ORNL] [ORNL; Celik, Cihangir [ORNL] [ORNL; Bekar, Kursat B [ORNL] [ORNL; Williams, Mark L [ORNL] [ORNL; Peplow, Douglas E. [ORNL] [ORNL; Perfetti, Christopher M [ORNL] [ORNL; Gauld, Ian C [ORNL] [ORNL; Wieselquist, William A [ORNL] [ORNL; Lefebvre, Jordan P [ORNL] [ORNL; Lefebvre, Robert A [ORNL] [ORNL; Havluj, Frantisek [Nuclear Research Institute, Rez, Czech Republic] [Nuclear Research Institute, Rez, Czech Republic; Skutnik, Steven [The University of Tennessee] [The University of Tennessee; Dugan, Kevin [Texas A& M University] [Texas A& M University
2013-01-01T23:59:59.000Z
SCALE is an industry-leading suite of tools for nuclear systems modeling and simulation that provides comprehensive, verified and validated, user-friendly capabilities for criticality safety, reactor physics, radiation shielding, and sensitivity and uncertainty analysis. For more than 30 years, regulators, licensees, and research institutions around the world have used SCALE for nuclear safety analysis and design. SCALE provides a plug-and-play framework that includes three deterministic and three Monte Carlo radiation transport solvers that are selected based on the desired solution. SCALE includes the latest nuclear data libraries for continuous-energy and multigroup radiation transport as well as activation, depletion, and decay calculations. SCALE s graphical user interfaces assist with accurate system modeling, visualization, and convenient access to desired results. SCALE 6.2 provides several new capabilities and significant improvements in many existing features, especially with expanded CE Monte Carlo capabilities for criticality safety, shielding, depletion, and sensitivity and uncertainty analysis. A brief overview of SCALE capabilities is provided with emphasis on new features for SCALE 6.2.
Scale invariance, unimodular gravity and dark energy
Mikhail Shaposhnikov; Daniel Zenhausern
2008-12-16T23:59:59.000Z
We demonstrate that the combination of the ideas of unimodular gravity, scale invariance, and the existence of an exactly massless dilaton leads to the evolution of the universe supported by present observations: inflation in the past, followed by the radiation and matter dominated stages and accelerated expansion at present. All mass scales in this type of theories come from one and the same source.
Fermilab Energy Scaling Workshop April 27, 2009
Field, Richard
Fermilab Energy Scaling Workshop April 27, 2009 Rick Field Â Florida/CDF/CMS Page 1 11stst Workshop-bias" collisions and the "underlying event" in Run 1 at CDF. Rick's View of Hadron Collisions Fermilab 2009 Studying the "associated" charged particle densities in "min-bias" collisions. #12;Fermilab Energy Scaling
Microfluidic Large-Scale Integration: The Evolution
Quake, Stephen R.
Microfluidic Large-Scale Integration: The Evolution of Design Rules for Biological Automation, polydimethylsiloxane Abstract Microfluidic large-scale integration (mLSI) refers to the develop- ment of microfluidic, are discussed. Several microfluidic components used as building blocks to create effective, complex, and highly
February 2002 Grid Scale Oscillations in MICOM
Nadiga, Balasubramanya T. "Balu"
are the implications of the grid scale oscillation on Â Surface Fluxes that drive THC Â Heat transport Â MeridionalFebruary 2002 Grid Scale Oscillations in MICOM Balasubramanya T. Nadiga Los Alamos National Model Â· 3o displaced pole grid. 16 layers Â· Kraus-Turner Bulk Mixed Layer Â· Explicit diapycnal
USING ECOLOGICALLY SCALED LANDSCAPE INDICES TO ASSESS
Swihart, Robert K. "Rob"
81 6 USING ECOLOGICALLY SCALED LANDSCAPE INDICES TO ASSESS BIODIVERSITY CONSEQUENCES OF LAND-USE DECISIONS Robert K. Swihart and Jana Verboom CHAPTER OVERVIEW If maintenance of biological diversity the utility of ecologically scaled landscape indices (ESLIs) as measures of relative suitability of proposed
4, 40694124, 2007 Global-scale
Boyer, Edmond
into evapotranspiration and total runoff. We estimate that global groundwater recharge was 12 666 km3 /yr for the climateHESSD 4, 4069Â4124, 2007 Global-scale modeling of groundwater recharge P. DÂ¨oll and K. Fiedler System Sciences Global-scale modeling of groundwater recharge P. DÂ¨oll and K. Fiedler Institute
Large-Scale Offshore Wind Power in the United States ASSESSMENT OF OPPORTUNITIES AND BARRIERS, including 10% post consumer waste. #12;Large-Scale Offshore Wind Power in the United States ASSESSMENT Energy, Office of Wind and Water Power Technologies for their financial and technical support
Expression of eukaryotic polypeptides in chloroplasts
Mayfield, Stephen P
2013-06-04T23:59:59.000Z
The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.
Modeling and application of soil moisture at varying spatial scales with parameter scaling
Das, Narendra Narayan
2009-05-15T23:59:59.000Z
The dissertation focuses on characterization of subpixel variability within a satellite-based remotely sensed coarse-scale soil moisture footprint. The underlying heterogeneity of coarse-scale soil moisture footprint is masked by the area...
Bare Higgs mass at Planck scale
Yuta Hamada; Hikaru Kawai; Kin-ya Oda
2015-01-19T23:59:59.000Z
We compute one- and two-loop quadratic divergent contributions to the bare Higgs mass in terms of the bare couplings in the Standard Model. We approximate the bare couplings, defined at the ultraviolet cutoff scale, by the MS-bar ones at the same scale, which are evaluated by the two-loop renormalization group equations for the Higgs mass around 126GeV in the Standard Model. We obtain the cutoff scale dependence of the bare Higgs mass, and examine where it becomes zero. We find that when we take the current central value for the top quark pole mass, 173GeV, the bare Higgs mass vanishes if the cutoff is about 10^{23}GeV. With a 1.3 sigma smaller mass, 170GeV, the scale can be of the order of the Planck scale.
Impact of Friction and Scale-Dependent Initial Stress on Radiated Energy-Moment Scaling
Shaw, Bruce E.
. Shaw LamontÂDoherty Earth Observatory, Columbia University, New York, USA The radiated energy coming271 Impact of Friction and Scale-Dependent Initial Stress on Radiated Energy-Moment Scaling Bruce E of elucidat- ing their radiated energy-moment scaling. We find, contrary to expectations, that apparent stress
Small Business Express Program (EXP) (Connecticut)
Broader source: Energy.gov [DOE]
The Small Business Express Program (EXP) provides loans and grants to small businesses (not more than 100 employees) to spur job creation and growth. The Program provides access to capital through...
An expectation model of referring expressions
Kræmer, John, Ph. D. Massachusetts Institute of Technology
2010-01-01T23:59:59.000Z
This thesis introduces EMRE, an expectation-based model of referring expressions. EMRE is proposed as a model of non-syntactic dependencies - in particular, discourse-level semantic dependencies that bridge sentence gaps. ...
On expressive punishment and holisitic desert
Greenblum, Jake
2009-05-15T23:59:59.000Z
are cleared up and made consistent through employing a holistic notion of punitive desert. Holism is the view that accurate desert judgments must reference an actually obtaining just distribution of punishment. In my view, the expressive function is feasible...
Generating and interpreting referring expressions in context
Smith, Dustin Arthur
2013-01-01T23:59:59.000Z
Referring expressions with vague and ambiguous modifiers, such as "a quick visit" and "the big meeting," are difficult for computers to interpret because their meanings are defined in part by context. For the hearer to ...
The developmental expression dynamics of Drosophila melanogaster transcription factors
Adryan, Boris; Teichmann, Sarah A
2010-04-12T23:59:59.000Z
-specific activation and repression of genes. The expression of TFs should therefore reflect the core expression program of each cell. Results We studied the expression dynamics of about 750 TFs using the available genomics resources in Drosophila melanogaster. We find...
DOMESTIC SERVICES FEDERAL EXPRESS UPS US POSTAL SERVICE OTHER
Holliday, Vance T.
SERVICES FEDERAL EXPRESS UPS US POSTAL SERVICE OTHER ___ First Overnight ___ Air ___ Regular Post _____________________________________ ___ Express Saver ___ Ground FEDERAL EXPRESS UPS US POSTAL SERVICE OTHER ___ Int. First ___ Air ___ Air Mail. Economy _____________________________________ Fill in complete mailing address. FedEx and UPS
Westerly, David C. [Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado 80045 (United States); Mo Xiaohu; DeLuca, Paul M. Jr. [Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53705 (United States); Tome, Wolfgang A. [Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53705 and Institute of Onco-Physics, Albert Einstein College of Medicine and Division of Medical Physics, Department of Radiation Oncology, Montefiore Medical Center, Bronx, New York 10461 (United States); Mackie, Thomas R. [Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53705 and Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53792 (United States)
2013-06-15T23:59:59.000Z
Purpose: Pencil beam algorithms are commonly used for proton therapy dose calculations. Szymanowski and Oelfke ['Two-dimensional pencil beam scaling: An improved proton dose algorithm for heterogeneous media,' Phys. Med. Biol. 47, 3313-3330 (2002)] developed a two-dimensional (2D) scaling algorithm which accurately models the radial pencil beam width as a function of depth in heterogeneous slab geometries using a scaled expression for the radial kernel width in water as a function of depth and kinetic energy. However, an assumption made in the derivation of the technique limits its range of validity to cases where the input expression for the radial kernel width in water is derived from a local scattering power model. The goal of this work is to derive a generalized form of 2D pencil beam scaling that is independent of the scattering power model and appropriate for use with any expression for the radial kernel width in water as a function of depth. Methods: Using Fermi-Eyges transport theory, the authors derive an expression for the radial pencil beam width in heterogeneous slab geometries which is independent of the proton scattering power and related quantities. The authors then perform test calculations in homogeneous and heterogeneous slab phantoms using both the original 2D scaling model and the new model with expressions for the radial kernel width in water computed from both local and nonlocal scattering power models, as well as a nonlocal parameterization of Moliere scattering theory. In addition to kernel width calculations, dose calculations are also performed for a narrow Gaussian proton beam. Results: Pencil beam width calculations indicate that both 2D scaling formalisms perform well when the radial kernel width in water is derived from a local scattering power model. Computing the radial kernel width from a nonlocal scattering model results in the local 2D scaling formula under-predicting the pencil beam width by as much as 1.4 mm (21%) at the depth of the Bragg peak for a 220 MeV proton beam in homogeneous water. This translates into a 32% dose discrepancy for a 5 mm Gaussian proton beam. Similar trends were observed for calculations made in heterogeneous slab phantoms where it was also noted that errors tend to increase with greater beam penetration. The generalized 2D scaling model performs well in all situations, with a maximum dose error of 0.3% at the Bragg peak in a heterogeneous phantom containing 3 cm of hard bone. Conclusions: The authors have derived a generalized form of 2D pencil beam scaling which is independent of the proton scattering power model and robust to the functional form of the radial kernel width in water used for the calculations. Sample calculations made with this model show excellent agreement with expected values in both homogeneous water and heterogeneous phantoms.
Method and system for small scale pumping
Insepov, Zeke (Darien, IL); Hassanein, Ahmed (Bolingbrook, IL)
2010-01-26T23:59:59.000Z
The present invention relates generally to the field of small scale pumping and, more specifically, to a method and system for very small scale pumping media through microtubes. One preferred embodiment of the invention generally comprises: method for small scale pumping, comprising the following steps: providing one or more media; providing one or more microtubes, the one or more tubes having a first end and a second end, wherein said first end of one or more tubes is in contact with the media; and creating surface waves on the tubes, wherein at least a portion of the media is pumped through the tube.
Nuclear Scaling and the EMC Effect
D. W. Higinbotham; J. Gomez; E. Piasetzky
2010-09-20T23:59:59.000Z
Results of recent EMC effect measurements and nuclear scaling measurements have both been attributed to local nuclear density effects and not properties of the bulk nuclear system. This lead us to the phenomenological observation that the ratio of the slopes in the 0.3 EMC data scale as the ratio of the x_B > 1 nuclear scaling plateaus. Using this correlation, we developed a phenomenological relation which reproduces the general trends and features of the EMC effect for nuclei from 3He to 56Fe.
Hub Synchronization in Scale-Free Networks
Tiago Pereira
2010-10-07T23:59:59.000Z
Heterogeneity in the degree distribution is known to suppress global synchronization in complex networks of symmetrically coupled oscillators. Scale-free networks display a great deal of heterogeneity, containing a few nodes, termed hubs, that are highly connected, while most nodes receive only a few connections. Here, we show that a group of synchronized nodes may appear in scale-free networks: hubs undergo a transition to synchronization while the other nodes remain unsynchronized. This general phenomenon can occur even in the absence of global synchronization. Our results suggest that scale-free networks may have evolved to complement various levels of synchronization.
EIS-0447: Champlain Hudson Power Express Transmission Line Project...
Broader source: Energy.gov (indexed) [DOE]
7: Champlain Hudson Power Express Transmission Line Project, New York EIS-0447: Champlain Hudson Power Express Transmission Line Project, New York Summary This EIS evaluates the...
albumin gene expression: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
biology, and multiple orthogonal gene switches are needed Zhao, Huimin 223 Metabolic load and heterologous gene expression CiteSeer Summary: The expression of a foreign...
abnormal phenotypic expression: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
D.R. and Linkenauger, S.A. (in press). Perception viewed as a phenotypic expression: Perception Viewed as a Phenotypic Expression Correspondence: Dennis Proffitt Department of...
A Hybrid Approach to Protein Differential Expression in Mass...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Hybrid Approach to Protein Differential Expression in Mass Spectrometry-Based Proteomics. A Hybrid Approach to Protein Differential Expression in Mass Spectrometry-Based...
External Surveillance of Geothermal Scale Deposits Employing...
can detect scale buildup in pipes to 1-2 m accuracy. Radiography has also detected corrosion in piping. Development of this technique is shown to be useful of monitoring...
Small-Scale Renewable Energy Incentive Program
Broader source: Energy.gov [DOE]
Note: On July 10, 2013, the Clean Energy Development Fund Board approved changes to the Small Scale Renewable Energy Incentive Program, effective October 1, 2013. Beginning in October, wind...
Planet-scale Human Mobility Measurement
Pan Hui; Richard Mortier; Tristan Henderson; Jon Crowcroft
2009-09-18T23:59:59.000Z
Research into, and design and construction of mobile systems and algorithms requires access to large-scale mobility data. Unfortunately, the wireless and mobile research community lacks such data. For instance, the largest available human contact traces contain only 100 nodes with very sparse connectivity, limited by experimental logistics. In this paper we pose a challenge to the community: how can we collect mobility data from billions of human participants? We re-assert the importance of large-scale datasets in communication network design, and claim that this could impact fundamental studies in other academic disciplines. In effect, we argue that planet-scale mobility measurements can help to save the world. For example, through understanding large-scale human mobility, we can track and model and contain the spread of epidemics of various kinds.
Extragalactic jets on subpc and large scales
F. Tavecchio
2007-08-20T23:59:59.000Z
Jets can be probed in their innermost regions (d~0.1 pc) through the study of the relativistically-boosted emission of blazars. On the other extreme of spatial scales, the study of structure and dynamics of extragalactic relativistic jets received renewed impulse after the discovery, made by Chandra, of bright X-ray emission from regions at distances larger than hundreds of kpc from the central engine. At both scales it is thus possible to infer some of the basic parameters of the flow (speed, density, magnetic field intensity, power). After a brief review of the available observational evidence, I discuss how the comparison between the physical quantities independently derived at the two scales can be used to shed light on the global dynamics of the jet, from the innermost regions to the hundreds of kpc scale.
Program Management for Large Scale Engineering Programs
Oehmen, Josef
The goal of this whitepaper is to summarize the LAI research that applies to program management. The context of most of the research discussed in this whitepaper are large-scale engineering programs, particularly in the ...
Predictions From High Scale Mixing Unification Hypothesis
Srivastava, Rahul
2015-01-01T23:59:59.000Z
Starting with 'High Scale Mixing Unification' hypothesis, we investigate the renormalization group evolution of mixing parameters and masses for both Dirac and Majorana type neutrinos. Following this hypothesis, the PMNS mixing parameters are taken to be identical to the CKM ones at a unifying high scale. Then, they are evolved to a low scale using MSSM renormalization-group equations. For both type of neutrinos, the renormalization group evolution 'naturally' results in a non-zero and small value of leptonic mixing angle $\\theta_{13}$. One of the important predictions of this analysis is that, in both cases, the mixing angle $\\theta_{23}$ turns out to be non-maximal for most of the parameter range. We also elaborate on the important differences between Dirac and Majorana neutrinos within our framework and how to experimentally distinguish between the two scenarios. Furthermore, for both cases, we also derive constraints on the allowed parameter range for the SUSY breaking and unification scales, for which th...
Large scale prediction models and algorithms
Monsch, Matthieu (Matthieu Frederic)
2013-01-01T23:59:59.000Z
Over 90% of the data available across the world has been produced over the last two years, and the trend is increasing. It has therefore become paramount to develop algorithms which are able to scale to very high dimensions. ...
Integrating Fermentation and Transesterification Industrial Scale Processes
Pike, Ralph W.
Integrating Fermentation and Transesterification Industrial Scale Processes in the Lower l d CO2 hanol, acetic acid etc. from CO2 Algae growth for use as biomass M lti it i O ti i ti P bl
Community-Scale Anaerobic Digesters Webinar
Broader source: Energy.gov [DOE]
This free webinar will be held on April 16, 2013, from 1-2:15 p.m. Mountain Daylight Time. It will provide information on San Jose, California's, commercial-scale, high solids dry fermentation...
Large-scale simulations of reionization
Kohler, Katharina; /JILA, Boulder /Fermilab; Gnedin, Nickolay Y.; /Fermilab; Hamilton, Andrew J.S.; /JILA, Boulder
2005-11-01T23:59:59.000Z
We use cosmological simulations to explore the large-scale effects of reionization. Since reionization is a process that involves a large dynamic range--from galaxies to rare bright quasars--we need to be able to cover a significant volume of the universe in our simulation without losing the important small scale effects from galaxies. Here we have taken an approach that uses clumping factors derived from small scale simulations to approximate the radiative transfer on the sub-cell scales. Using this technique, we can cover a simulation size up to 1280h{sup -1} Mpc with 10h{sup -1} Mpc cells. This allows us to construct synthetic spectra of quasars similar to observed spectra of SDSS quasars at high redshifts and compare them to the observational data. These spectra can then be analyzed for HII region sizes, the presence of the Gunn-Peterson trough, and the Lyman-{alpha} forest.
Scaling the Incompressible Richtmyer-Meshkov Instability
Cotrell, D; Cook, A
2007-01-09T23:59:59.000Z
We derive a scaling relation for Richtmyer-Meshkov instability of incompressible fluids. The relation is tested using both numerical simulations and experimental data. We obtain collapse of growth rates for a wide range of initial conditions by using vorticity and velocity scales associated with the interfacial perturbations and the acceleration impulse. A curve fit to the collapsed growth rates yields a fairly universal model for the mixing layer thickness versus time.
Phenomenology of SUSY with intermediate scale physics
C. Biggio
2012-06-01T23:59:59.000Z
The presence of fields at an intermediate scale between the Electroweak and the Grand Unification scale modifies the evolution of the gauge couplings and consequently the running of other parameters of the Minimal Supersymmetric Standard Model, such as gauginos and scalar masses. The net effect is a modification of the low energy spectrum which affects both the collider phenomenology and the dark matter relic density.
Preferred hierarchy scales from the product landscape
Songlin Lv; Zheng Sun; Lina Wu
2014-09-19T23:59:59.000Z
The product landscape method has been recently proposed to solve hierarchy problems such as the cosmological constant problem. We suggest that the parameter distribution on logarithmic scales should be used as a benchmark for hierarchy, and the preferred hierarchy scales can be obtained from the distribution peak. It is shown that generating hierarchy from purely product distribution is very inefficient. To achieve a reasonably acceptable efficiency, other effects such as accumulation of weak hierarchy in the effective theory should be incorporated.
Acoustofluidics 10: Scaling laws in acoustophoresis
of sound c0 in a liquid scales like the density r0 of the liquid to the power minus one-half, written as c0 in a microfluidic system scales like the pressure drop Dp to the power one, written as Q f Dp, and the speed), as well as density r0 and viscosity h of the liquid. We know the full answer to be1 Q Â¼ pa4 8hL Dp
Standard Model scales from warped extra dimensions
Bernard Riley
2008-08-31T23:59:59.000Z
If in the Randall and Sundrum RS1 model the inverse of the compactification radius, the AdS curvature scale, and the five and four-dimensional Planck scales are equal in size, as is natural, then the warp factor at the location of the low energy brane is of value 1/pi. So that all scales derive from locations in the space, we identify the extra dimension with the infinite covering space of the S1/Z2 orbifold. The extra dimension is then essentially a series of connected line intervals, punctuated by branes. Scales on successive branes in the extra dimension descend from Planck scale in a geometric sequence of common ratio 1/pi. Evidence is provided for such a sequence within the spectrum of particle masses, and of a second geometric sequence, of common ratio 2/pi, which suggests that the AdS spacetime is six-dimensional and doubly warped. The scales of the Standard Model lie at coincident levels within the two sequences. A third sequence, of common ratio 1/e, provides a symmetrical framework for the Standard Model and points to a warped product spacetime.
Classifying forest productivity at different scales
Graham, R.L.
1991-01-01T23:59:59.000Z
Spatial scale is an important consideration when evaluating, using, or constructing forest productivity classifications. First, the factors which dominate spatial variability in forest productivity are scale dependent. For example, within a stand, spatial variability in productivity is dominated by microsite differences; within a national forest such as the Cherokee National Forest, spatial variability is dominated by topography and land-use history (e.g., years since harvest); within a large region such as the southeast, spatial variability is dominated by climatic patterns. Second, classifications developed at different spatial scales are often used for different purposes. For example, stand-level classifications are often keys or rules used in the field to judge the quality or potential of a site. National-forest classifications are often presented as maps or tables and may be used in forest land planning. Regional classifications may be maps or tables and may be used to quantify or predict resource availability. These scale-related differences in controlling factors and purposes will affect both the methods and the data used to develop classifications. In this paper, I will illustrate these points by describing and comparing three forest productivity classifications, each developed for a specific purpose at a specific scale. My objective is not to argue for or against any of these particular classifications but rather to heighten awareness of the critical role that spatial scale plays in the use and development of forest productivity classifications. 8 refs., 2 figs., 1 tab.
Mohammad Soltani; Pavol Bokes; Zachary Fox; Abhyudai Singh
2015-04-14T23:59:59.000Z
Transcription factors (TFs) interact with a multitude of binding sites on DNA and partner proteins inside cells. We investigate how nonspecific binding/unbinding to such decoy binding sites affects the magnitude and time-scale of random fluctuations in TF copy numbers arising from stochastic gene expression. A stochastic model of TF gene expression, together with decoy site interactions is formulated. Distributions for the total (bound and unbound) and free (unbound) TF levels are derived by analytically solving the chemical master equation under physiologically relevant assumptions. Our results show that increasing the number of decoy binding sides considerably reduces stochasticity in free TF copy numbers. The TF autocorrelation function reveals that decoy sites can either enhance or shorten the time-scale of TF fluctuations depending on model parameters. To understand how noise in TF abundances propagates downstream, a TF target gene is included in the model. Intriguingly, we find that noise in the expression of the target gene decreases with increasing decoy sites for linear TF-target protein dose-responses, even in regimes where decoy sites enhance TF autocorrelation times. Moreover, counterintuitive noise transmissions arise for nonlinear dose-responses. In summary, our study highlights the critical role of molecular sequestration by decoy binding sites in regulating the stochastic dynamics of TFs and target proteins at the single-cell level.
BENCH SCALE SALTSTONE PROCESS DEVELOPMENT MIXING STUDY
Cozzi, A.; Hansen, E.
2011-08-03T23:59:59.000Z
The Savannah River National Laboratory (SRNL) was requested to develop a bench scale test facility, using a mixer, transfer pump, and transfer line to determine the impact of conveying the grout through the transfer lines to the vault on grout properties. Bench scale testing focused on the effect the transfer line has on the rheological property of the grout as it was processed through the transfer line. Rheological and other physical properties of grout samples were obtained prior to and after pumping through a transfer line. The Bench Scale Mixing Rig (BSMR) consisted of two mixing tanks, grout feed tank, transfer pump and transfer hose. The mixing tanks were used to batch the grout which was then transferred into the grout feed tank. The contents of the feed tank were then pumped through the transfer line (hose) using a progressive cavity pump. The grout flow rate and pump discharge pressure were monitored. Four sampling stations were located along the length of the transfer line at the 5, 105 and 205 feet past the transfer pump and at 305 feet, the discharge of the hose. Scaling between the full scale piping at Saltstone to bench scale testing at SRNL was performed by maintaining the same shear rate and total shear at the wall of the transfer line. The results of scaling down resulted in a shorter transfer line, a lower average velocity, the same transfer time and similar pressure drops. The condition of flow in the bench scale transfer line is laminar. The flow in the full scale pipe is in the transition region, but is more laminar than turbulent. The resulting plug in laminar flow in the bench scale results in a region of no-mixing. Hence mixing, or shearing, at the bench scale should be less than that observed in the full scale, where this plug is non existent due to the turbulent flow. The bench scale tests should be considered to be conservative due to the highly laminar condition of flow that exists. Two BSMR runs were performed. In both cases, wall shearing was shown to reduce the rheological properties of the grout as it was processed through the transfer line. Samples taken at the static feed tank showed that gelling impacted the rheological properties of the grout before it was fed into the pump and transfer line. A comparison of the rheological properties of samples taken at the feed tank and transfer line discharge indicated shearing of the grout was occurring in the transfer line. Bench scale testing of different mixing methods with three different salt solutions showed that method of mixing influences the rheological properties of the grouts. The paddle blade mixing method of the salt solution used for the BMSR testing provided comparable rheological properties of the grout prepared in the BMSR after 14 minutes of processing, B3. The paddle blade mixing method can be used to represent BMSR results and mixing time can be adjusted to represent larger scale mixing.
Alistar Ottochian; Dino Leporini
2011-01-14T23:59:59.000Z
The scaling of the slow structural relaxation with the fast caged dynamics is evidenced in the molten salt Ca_{0.4}K_{0.6}(NO_{3}$)_{1.4} (CKN) over about thirteen decades of the structural relaxation time. Glycerol caling was analyzed in detail. In glycerol, the short-time mean-square displacement , a measure of the caged dynamics, is contributed by free-volume. It is seen that, in order to evidence the scaling, the observation time of the fast dynamics must be shorter than the time scales of the relaxation processes. Systems with both negligible (like CKN, glycerol and network glassformers) and high (like van der Waals liquids and polymers) pressure-energy correlations exhibit the scaling between the slow relaxation and the fast caged dynamics. According to the available experiments, an isomorph-invariant expression of the master curve of the scaled data is not distinguishable from a simpler not-invariant expression. Instead, the latter grees better with the simulations on a wide class of model polymers.
Effect of wettability on scale-up of multiphase flow from core-scale to reservoir fine-grid-scale
Chang, Y.C.; Mani, V.; Mohanty, K.K. [Univ. of Houston, TX (United States)
1997-08-01T23:59:59.000Z
Typical field simulation grid-blocks are internally heterogeneous. The objective of this work is to study how the wettability of the rock affects its scale-up of multiphase flow properties from core-scale to fine-grid reservoir simulation scale ({approximately} 10{prime} x 10{prime} x 5{prime}). Reservoir models need another level of upscaling to coarse-grid simulation scale, which is not addressed here. Heterogeneity is modeled here as a correlated random field parameterized in terms of its variance and two-point variogram. Variogram models of both finite (spherical) and infinite (fractal) correlation length are included as special cases. Local core-scale porosity, permeability, capillary pressure function, relative permeability functions, and initial water saturation are assumed to be correlated. Water injection is simulated and effective flow properties and flow equations are calculated. For strongly water-wet media, capillarity has a stabilizing/homogenizing effect on multiphase flow. For small variance in permeability, and for small correlation length, effective relative permeability can be described by capillary equilibrium models. At higher variance and moderate correlation length, the average flow can be described by a dynamic relative permeability. As the oil wettability increases, the capillary stabilizing effect decreases and the deviation from this average flow increases. For fractal fields with large variance in permeability, effective relative permeability is not adequate in describing the flow.
Citizen implementation of sustainability measures at the neighborhood scale
Heilke, Ingrid (Ingrid Elizabeth)
2010-01-01T23:59:59.000Z
There is the potential for citizens to make a profound impact on the sustainability of cities at the neighborhood scale. This is the scale that people relate to spatially, economically, and socially. It is also a scale ...
Updated Capital Cost Estimates for Utility Scale Electricity
Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants April 2013 Information Administration | Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants ii for Utility Scale Electricity Generating Plants ii Contents Introduction
Quantum Coherence Arguments for Cosmological Scale
Lindesay, James; /SLAC
2005-05-27T23:59:59.000Z
Homogeneity and correlations in the observed CMB are indicative of some form of cosmological coherence in early times. Quantum coherence in the early universe would be expected to give space-like phase coherence to any effects sourced to those times. If dark energy de-coherence is assumed to occur when the rate of expansion of the relevant cosmological scale parameter in the Friedmann-Lemaitre equations is no longer supra-luminal, a critical energy density is immediately defined. It is shown that the general class of dynamical models so defined necessarily requires a spatially flat cosmology in order to be consistent with observed structure formation. The basic assumption is that the dark energy density which is fixed during de-coherence is to be identified with the cosmological constant. It is shown for the entire class of models that the expected amplitude of fluctuations driven by the dark energy de-coherence process is of the order needed to evolve into the fluctuations observed in cosmic microwave background radiation and galactic clustering. The densities involved during de-coherence which correspond to the measured dark energy density turn out to be of the electroweak symmetry restoration scale. In an inflationary cosmology, this choice of the scale parameter in the FL equations directly relates the scale of dark energy decoherence to the De Sitter scales (associated with the positive cosmological constants) at both early and late times.
Rogers, Simon; Girolami, Mark; Kolch, Walter; Waters, Katrina M.; Liu, Tao; Thrall, Brian D.; Wiley, H. S.
2008-12-01T23:59:59.000Z
Modern transcriptomics and proteomics enable us to survey the expression of RNAs and proteins at large scales. While these data are usually generated and analysed separately, there is an increasing interest in comparing and co-analysing transcriptome and proteome expression data. A major open question is whether transcriptome and proteome expression is linked and how it is coordinated. Results: Here we have developed a probabilistic clustering model that permits analysis of the links between transcriptomic and proteomic profiles in a sensible and flexible manner. Our coupled mixture model defines a prior probability distribution over the component to which a protein profile should be assigned conditioned on which component the associated mRNA profile belongs to. By providing probabilistic assignments this approach sits between the two extremes of concatenating the data on the assumption that mRNA and protein clusters would have a one-to-one relationship, and independent clustering where the mRNA profile provides no information on the protein profile and vice-versa. We apply this approach to a large dataset of quantitative transcriptomic and proteomic expression data obtained from a human breast epithelial cell line (HMEC) stimulated by epidermal growth factor (EGF) over a series of timepoints corresponding to one cell cycle. The results reveal a complex relationship between transcriptome and proteome with most mRNA clusters linked to at least two protein clusters, and vice versa. A more detailed analysis incorporating information on gene function from the gene ontology database shows that a high correlation of mRNA and protein expression is limited to the components of some molecular machines, such as the ribosome, cell adhesion complexes and the TCP-1 chaperonin involved in protein folding. Conclusions: The dynamic regulation of the transcriptome and proteome in mammalian cells in response to an acute mitogenic stimulus appears largely independent with very little correspondence between mRNA and protein expression. The exceptions involve a few selected multi-protein complexes that require the stoichiometric expression of components for correct function. This finding has wide ramifications regarding the understanding of gene and protein expression including its control and evolution. It also shows that transcriptomic and proteomic expression analysis are complementary and non-redundant.
Expressive Re-Performance Laurel S. Pardue
. There are two major components to perfor- mance: the technical requirement of correctly playing the notes, and the emotional content conveyed through expressivity. While technical details like pitch and note order instrument with which the user steps-through a recording. Data generated from the users actions is parsed
Ace Cash Express Advantage Sales and Marketing
O'Toole, Alice J.
Ace Cash Express Advantage Sales and Marketing AppFolio AT&T Atmos Energy, MDTX Div Automatic Data Processing AXA Advisors BDO USA Blue Cross & Blue Shield of Texas Care Providers Insurance Services CDW Corp State Farm Insurance Companies Tekzenit Texas Comptroller of Public Accounts Texas Department of Family
Materials and Methods Protein expression and purification
Joshua-Tor, Leemor
Materials and Methods Protein expression and purification The Full length Argonaute gene from protease system was a generous gift from Dr. Chris Lima. PfAgo was further purified with a heating step with #12;the program CNS (S7) against the SHARP amplitudes. Water molecules were added conservatively (for
The Research Express Volume 2, Issue 6
Hutcheon, James M.
The Research Express Volume 2, Issue 6 TOP September 2 0 1 3 Image + NIH Requiring Tracking + Helpful Hints for Submitting a Successful NIH Proposal In the News... NIH to Require Tracking of Graduate and Undergraduate Students The National Institute of Health (NIH), in a move to improve data on NIH
Tribal Renewable Energy Advanced Course: Commercial Scale Project...
Broader source: Energy.gov (indexed) [DOE]
Commercial Scale Project Development Tribal Renewable Energy Advanced Course: Commercial Scale Project Development Watch the DOE Office of Indian Energy advanced course...
Tribal Renewable Energy Advanced Course: Community Scale Project...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Community Scale Project Development Tribal Renewable Energy Advanced Course: Community Scale Project Development Watch the DOE Office of Indian Energy renewable energy course...
2013 Community- and Facility-Scale Tribal Renewable Energy Project...
Office of Environmental Management (EM)
2013 Community- and Facility-Scale Tribal Renewable Energy Project Development and Finance Workshop Presentations and Agenda 2013 Community- and Facility-Scale Tribal Renewable...
Utility Scale Renewable Energy Development Near DOD Installations...
Broader source: Energy.gov (indexed) [DOE]
Utility Scale Renewable Energy Development Near DOD Installations: Making the Case for Land Use Compatitbility Utility Scale Renewable Energy Development Near DOD Installations:...
Tribal Renewable Energy Advanced Course: Facility Scale Project...
Broader source: Energy.gov (indexed) [DOE]
Facility Scale Project Development Tribal Renewable Energy Advanced Course: Facility Scale Project Development Watch the DOE Office of Indian Energy renewable energy course...
Enabling Small-Scale Biomass Gasification for Liquid Fuel Production...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Enabling Small-Scale Biomass Gasification for Liquid Fuel Production Enabling Small-Scale Biomass Gasification for Liquid Fuel Production Breakout Session 2A-Conversion...
EBRD-Sustainable Energy Initiative: Scaling Up Finance for Climate...
Scaling Up Finance for Climate Change Mitigation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: EBRD-Sustainable Energy Initiative: Scaling Up Finance for Climate...
Sustainable Manufacturing via Multi-Scale, Physics-Based Process...
Broader source: Energy.gov (indexed) [DOE]
Manufacturing via Multi-Scale, Physics-Based Process Modeling and Manufacturing-Informed Design, April 2013 Sustainable Manufacturing via Multi-Scale, Physics-Based Process...
Atomic-Scale Simulations of Cascade Overlap and Damage Evolution...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Atomic-Scale Simulations of Cascade Overlap and Damage Evolution in Silicon Carbide. Atomic-Scale Simulations of Cascade Overlap and Damage Evolution in Silicon Carbide. Abstract:...
Solid Oxide Membrane (SOM) Electrolysis of Magnesium: Scale-Up...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Oxide Membrane (SOM) Electrolysis of Magnesium: Scale-Up Research and Engineering for Light-Weight Vehicles Solid Oxide Membrane (SOM) Electrolysis of Magnesium: Scale-Up Research...
Scale-Up of Magnesium Production by Fully Stabilized Zirconia...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Scale-Up of Magnesium Production by Fully Stabilized Zirconia Electrolysis Scale-Up of Magnesium Production by Fully Stabilized Zirconia Electrolysis 2012 DOE Hydrogen and Fuel...
Large Scale GSHP as Alternative Energy for American Farmers Geothermal...
Scale GSHP as Alternative Energy for American Farmers Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Large Scale GSHP as Alternative...
Materials Science and Materials Chemistry for Large Scale Electrochemi...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid Materials Science and Materials Chemistry for Large Scale...
Algenol Biofuels Inc., Integrated Pilot-Scale Biorefinery
Broader source: Energy.gov (indexed) [DOE]
Integrated Pilot- Scale Biorefinery for Producing Ethanol from Hybrid Algae Algenol Biofuels Inc., together with its partners, will construct an integrated pilot-scale...
Hybrid Parallelism for Volume Rendering at Large Scale at NERSC
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Volume Rendering at Large Scale Hybrid Parallelism for Volume Rendering at Large Scale volrend-swes.png We studied the performance and scalability characteristics of hybrid''...
Community- and Facility-Scale Tribal Renewable Energy Project...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Community- and Facility-Scale Tribal Renewable Energy Project Development and Finance Workshop Community- and Facility-Scale Tribal Renewable Energy Project Development and Finance...
Process Development and Scale up of Advanced Electrolyte Materials...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Scale up of Advanced Electrolyte Materials Process Development and Scale up of Advanced Electrolyte Materials 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies...
Power-law scaling in protein synthesis of a stochastic regulon
Emily Chapman-McQuiston; Chuck Yeung; X. L. Wu
2008-08-07T23:59:59.000Z
We investigate the protein expression pattern of the lamB gene in Escherichia coli LE392. The gene product LamB is an important membrane protein for maltose transport into cells but it is also exploited by bacteriophage lambda for infection. Although our bacterial population is clonal, stochastic gene expression leads to a majority population with a large receptor number and a minority population with a small receptor number. We find that the LamB receptor distribution p(n) of the small-n population is scale invariant with the exponent depending on growth conditions. A heuristic model is proposed that relates the observed exponent to the protein production rate.
Acid treatment removes zinc sulfide scale restriction
Biggs, K. (Kerr McGee Corp., Lafayette, LA (US)); Allison, D. (Otis Engineering Corp., Lafayette, LA (US)); Ford, W.G.F. (Halliburton Co., Duncan, OK (United States))
1992-08-31T23:59:59.000Z
This paper reports that removal of zinc sulfide (ZnS) scale with acid restored an offshore Louisiana well's production to original rates. The zinc sulfide scale was determined to be in the near well bore area. The selected acid had been proven to control iron sulfide (FeS) scales in sour wells without causing harm to surface production equipment, tubing, and other downhole hardware. The successful removal of the blockage re-established previous production rates with a 105% increase in flowing tubing pressure. On production for a number of months, a high rate, high-pressure offshore well was experiencing unusually rapid pressure and rate declines. A small sample of the restrictive material was obtained during the wire line operations. The well was subsequently shut in while a laboratory analysis determined that zinc sulfide was the major component of the obstruction.
Large-Scale PV Integration Study
Lu, Shuai; Etingov, Pavel V.; Diao, Ruisheng; Ma, Jian; Samaan, Nader A.; Makarov, Yuri V.; Guo, Xinxin; Hafen, Ryan P.; Jin, Chunlian; Kirkham, Harold; Shlatz, Eugene; Frantzis, Lisa; McClive, Timothy; Karlson, Gregory; Acharya, Dhruv; Ellis, Abraham; Stein, Joshua; Hansen, Clifford; Chadliev, Vladimir; Smart, Michael; Salgo, Richard; Sorensen, Rahn; Allen, Barbara; Idelchik, Boris
2011-07-29T23:59:59.000Z
This research effort evaluates the impact of large-scale photovoltaic (PV) and distributed generation (DG) output on NV Energy’s electric grid system in southern Nevada. It analyzes the ability of NV Energy’s generation to accommodate increasing amounts of utility-scale PV and DG, and the resulting cost of integrating variable renewable resources. The study was jointly funded by the United States Department of Energy and NV Energy, and conducted by a project team comprised of industry experts and research scientists from Navigant Consulting Inc., Sandia National Laboratories, Pacific Northwest National Laboratory and NV Energy.
Characteristic Spatial Scales in Earthquake Data
G. Zoeller; R. Engbert; S. Hainzl; J. Kurths
1997-01-30T23:59:59.000Z
We present a new technique in order to quantify the dynamics of spatially extended systems. Using a test on the existence of unstable periodic orbits, we identify intermediate spatial scales, wherein the dynamics is characterized by maximum nontrivial determinism. This method is applied to earthquake catalogues containing time, coordinates and magnitude. As a result we extract a set of areas with significant deterministic and low-dimensional dynamics from the data. Finally, a simple model is used to show that these scales can be interpreted as local spatial coupling strengths.
The Intermediate Scale Branch of the Landscape
Michael Dine
2005-12-04T23:59:59.000Z
Three branches of the string theory landscape have plausibly been identified. One of these branches is expected to exhibit a roughly logarithmic distribution of supersymmetry breaking scales. The original KKLT models are in this class. We argue that certain features of the KKLT model are generic to this branch, and that the resulting phenomenology depends on a small set of discrete choices. As in the MSSM, the weak scale in these theories is tuned; a possible explanation is selection for the dark matter density.
Peristaltic pumps work in nano scales
Farnoush Farahpour; Mohammad Reza Ejtehadi
2013-08-05T23:59:59.000Z
A design for a pump is suggested which is based on well-known peristaltic pumps. In order to simply describe the operation of the proposed pump, an innovative interpretation of low Reynolds number swimmers is presented and thereafter a similar theoretical model would be suggested to quantify the behavior of the pumps. A coarse-grained molecular dynamic simulation is used to examine the theoretical predictions and measure the efficiency of the pump in nano scales. It is shown that this pump with a modest design is capable of being a good option for transport processes in nano scale.
Scaling Relationships Based on Scaled Tank Mixing and Transfer Test Results
Piepel, Gregory F.; Holmes, Aimee E.; Heredia-Langner, Alejandro
2013-09-18T23:59:59.000Z
This report documents the statistical analyses performed (by Pacific Northwest National Laboratory for Washington River Protection Solutions) on data from 26 tests conducted using two scaled tanks (43 and 120 inches) in the Small Scale Mixing Demonstration platform. The 26 tests varied several test parameters, including mixer-jet nozzle velocity, base simulant, supernatant viscosity, and capture velocity. For each test, samples were taken pre-transfer and during five batch transfers. The samples were analyzed for the concentrations (lbs/gal slurry) of four primary components in the base simulants (gibbsite, stainless steel, sand, and ZrO2). The statistical analyses including modeling the component concentrations as functions of test parameters using stepwise regression with two different model forms. The resulting models were used in an equivalent performance approach to calculate values of scaling exponents (for a simple geometric scaling relationship) as functions of the parameters in the component concentration models. The resulting models and scaling exponents are displayed in tables and graphically. The sensitivities of component concentrations and scaling exponents to the test parameters are presented graphically. These results will serve as inputs to subsequent work by other researchers to develop scaling relationships that are applicable to full-scale tanks.
Scaling Relationships Based on Scaled Tank Mixing and Transfer Test Results
Piepel, Gregory F.; Holmes, Aimee E.; Heredia-Langner, Alejandro; Lee, Kearn P.; Kelly, Steven E.
2014-01-01T23:59:59.000Z
This report documents the statistical analyses performed (by Pacific Northwest National Laboratory for Washington River Protection Solutions) on data from 26 tests conducted using two scaled tanks (43 and 120 inches) in the Small Scale Mixing Demonstration platform. The 26 tests varied several test parameters, including mixer-jet nozzle velocity, base simulant, supernatant viscosity, and capture velocity. For each test, samples were taken pre-transfer and during five batch transfers. The samples were analyzed for the concentrations (lbs/gal slurry) of four primary components in the base simulants (gibbsite, stainless steel, sand, and ZrO2). The statistical analyses including modeling the component concentrations as functions of test parameters using stepwise regression with two different model forms. The resulting models were used in an equivalent performance approach to calculate values of scaling exponents (for a simple geometric scaling relationship) as functions of the parameters in the component concentration models. The resulting models and scaling exponents are displayed in tables and graphically. The sensitivities of component concentrations and scaling exponents to the test parameters are presented graphically. These results will serve as inputs to subsequent work by other researchers to develop scaling relationships that are applicable to full-scale tanks.
Protein Expression and Purification 23, 311Â318 (2001) doi:10.1006/prep.2001.1508, available online aggregation but is not pyranoside. Insertion of a small oligopeptide (13 amino required for biological. the highest levels (20Â22% of total proteins) with the E. coli has been the workhorse for the large-scale
Fulcher, L.P. (Department of Physics and Astronomy, Bowling Green State University, Bowling Green, Ohio (USA))
1991-10-01T23:59:59.000Z
A modified version of Richardson's potential is used to calculate the energies, fine-structure splittings, leptonic widths, and dipole transition rates of charmonium and the {Upsilon} system. The effects of the perturbative color-magnetic (spin-dependent) potentials are included to the full radiative one-loop level. The question of the consistency of the data with a universal QCD scale and its expression in the central and spin-dependent potentials is addressed.
Notes on the delta-expansion approach to the 2D Ising susceptibility scaling
Hirofumi Yamada
2014-09-10T23:59:59.000Z
We study the scaling of the magnetic susceptibility in the square Ising model based upon the delta-expansion in the high temperature phase. The susceptibility chi is expressed in terms of the mass M and expanded in powers of 1/M. The dilation around M=0 by the delta expansion and the parametric extension of the ratio of derivatives of chi, chi^{(ell+1)}/chi^{(ell)} is used as a test function for the estimation of the critical exponent gamma with no bias from information of the critical temperature. Estimation is done with the help of the principle of minimum sensitivity and detailed analysis revealed that ell=0,1 cases provide us accurate estimation results. Critical exponent of the sub-leading scaling term is also estimated.
Decoherence Rates in Large Scale Quantum Computers and Macroscopic Systems
B J Dalton
2005-07-25T23:59:59.000Z
Markovian regime decoherence effects in quantum computers are studied in terms of the fidelity for the situation where the number of qubits N becomes large. A general expression giving the decoherence time scale in terms of Markovian relaxation elements and expectation values of products of system fluctuation operators is obtained, which could also be applied to study decoherence in other macroscopic systems such as Bose condensates and superconductors. A standard circuit model quantum computer involving three-state lambda system ionic qubits is considered, with qubits localised around well-separated positions via trapping potentials. The centre of mass vibrations of the qubits act as a reservoir. Coherent one and two qubit gating processes are controlled by time dependent localised classical electromagnetic fields that address specific qubits, the two qubit gating processes being facilitated by a cavity mode ancilla, which permits state interchange between qubits. With a suitable choice of parameters, it is found that the decoherence time can be made essentially independent of N.
Mineral dissolution kinetics at the pore scale
Li, L.; Steefel, C.I.; Yang, L.
2007-05-24T23:59:59.000Z
Mineral dissolution rates in the field have been reported to be orders of magnitude slower than those measured in the laboratory, an unresolved discrepancy that severely limits our ability to develop scientifically defensible predictive or even interpretive models for many geochemical processes in the earth and environmental sciences. One suggestion links this discrepancy to the role of physical and chemical heterogeneities typically found in subsurface soils and aquifers in producing scale-dependent rates where concentration gradients develop. In this paper, we examine the possibility that scale-dependent mineral dissolution rates can develop even at the single pore and fracture scale, the smallest and most fundamental building block of porous media. To do so, we develop two models to analyze mineral dissolution kinetics at the single pore scale: (1) a Poiseuille Flow model that applies laboratory-measured dissolution kinetics at the pore or fracture wall and couples this to a rigorous treatment of both advective and diffusive transport, and (2) a Well-Mixed Reactor model that assumes complete mixing within the pore, while maintaining the same reactive surface area, average flow rate, and geometry as the Poiseuille Flow model. For a fracture, a 1D Plug Flow Reactor model is considered in addition to quantify the effects of longitudinal versus transverse mixing. The comparison of averaged dissolution rates under various conditions of flow, pore size, and fracture length from the three models is used as a means to quantify the extent to which concentration gradients at the single pore and fracture scale can develop and render rates scale-dependent. Three important minerals that dissolve at widely different rates, calcite, plagioclase, and iron hydroxide, are considered. The modeling indicates that rate discrepancies arise primarily where concentration gradients develop due to comparable rates of reaction and advective transport, and incomplete mixing via molecular diffusion. The magnitude of the reaction rate is important, since it is found that scaling effects (and thus rate discrepancies) are negligible at the single pore and fracture scale for plagioclase and iron hydroxide because of the slow rate at which they dissolve. In the case of calcite, where dissolution rates are rapid, scaling effects can develop at high flow rates from 0.1 cm/s to 1000 cm/s and for fracture lengths less than 1 cm. At more normal flow rates, however, mixing via molecular diffusion is effective in homogenizing the concentration field, thus eliminating any discrepancies between the Poiseuille Flow and the Well-Mixed Reactor model. This suggests that a scale dependence to mineral dissolution rates is unlikely at the single pore or fracture scale under normal geological/hydrologic conditions, implying that the discrepancy between laboratory and field rates must be attributed to other factors.
Characterization of Filtration Scale-Up Performance
Daniel, Richard C.; Billing, Justin M.; Luna, Maria L.; Cantrell, Kirk J.; Peterson, Reid A.; Bonebrake, Michael L.; Shimskey, Rick W.; Jagoda, Lynette K.
2009-03-09T23:59:59.000Z
The scale-up performance of sintered stainless steel crossflow filter elements planned for use at the Pretreatment Engineering Platform (PEP) and at the Waste Treatment and Immobilization Plant (WTP) were characterized in partial fulfillment (see Table S.1) of the requirements of Test Plan TP RPP WTP 509. This test report details the results of experimental activities related only to filter scale-up characterization. These tests were performed under the Simulant Testing Program supporting Phase 1 of the demonstration of the pretreatment leaching processes at PEP. Pacific Northwest National Laboratory (PNNL) conducted the tests discussed herein for Bechtel National, Inc. (BNI) to address the data needs of Test Specification 24590-WTP-TSP-RT-07-004. Scale-up characterization tests employ high-level waste (HLW) simulants developed under the Test Plan TP-RPP-WTP-469. The experimental activities outlined in TP-RPP-WTP-509 examined specific processes from two broad areas of simulant behavior: 1) leaching performance of the boehmite simulant as a function of suspending phase chemistry and 2) filtration performance of the blended simulant with respect to filter scale-up and fouling. With regard to leaching behavior, the effect of anions on the kinetics of boehmite leaching was examined. Two experiments were conducted: 1) one examined the effect of the aluminate anion on the rate of boehmite dissolution and 2) another determined the effect of secondary anions typical of Hanford tank wastes on the rate of boehmite dissolution. Both experiments provide insight into how compositional variations in the suspending phase impact the effectiveness of the leaching processes. In addition, the aluminate anion studies provide information on the consequences of gibbsite in waste. The latter derives from the expected fast dissolution of gibbsite relative to boehmite. This test report concerns only results of the filtration performance with respect to scale-up. Test results for boehmite dissolution kinetics and filter fouling are reported elsewhere (see Table S.1). The primary goal of scale-up testing was to examine how filter length influenced permeate flux rates. To accomplish this, the existing cells unit filter system, which employs a 2-ft-long, 0.5-in. (inner) diameter sintered stainless steel filter element, was redesigned to accommodate an 8-ft. sintered stainless steel filter element of the same diameter. Testing was then performed to evaluate the filtration performance of waste simulant slurries. Scale-up testing consisted of two separate series of filtration tests: 1) scale-up axial velocity (AV)/transmembrane pressure (TMP) matrix tests and 2) scale-up temperature tests. The AV/TMP matrix tests examined filtration performance of two different waste simulant slurries in the 8-ft. cells unit filter system. Waste simulant slurry formulations for the 8-ft. scale-up test was selected to match simulant slurries for which filtration performance had been characterized on the 2-ft CUF. For the scale-up temperature tests, the filtration performance at three test temperatures (i.e., 25°C, 40°C, and 60°C) was determined to evaluate if filter flux versus temperature correlations developed using the 2-ft filters were also valid for the 8-ft filters.
Exercise -> Interpret algebraic expression of Earth process
West, Michael
-of-envelope calculations Work in scientific notation conceptualize/work in orders of magnitude describe potential sources recognize +/- feedback, equilibrium draw or use flow charts find frequencies of discrete events understand plot data on a map measure distances and direction on a chart/map conceptualize spatial scales visually
Generalized z-scaling in proton-proton collisions at high energies
Zborovský, I
2006-01-01T23:59:59.000Z
New generalization of z-scaling in inclusive particle production is proposed. The scaling variable z is fractal measure which depends on kinematical characteristics of the underlying sub-process expressed in terms of the momentum fractions x1 and x2 of the incoming protons. In the generalized approach, the x1 and x2 are functions of the momentum fractions ya and yb of the scattered and recoil constituents carried out by the inclusive particle and recoil object, respectively. The scaling function psi(z) for charged and identified hadrons produced in proton-proton collisions is constructed. The fractal dimensions and heat capacity of the produced medium entering definition of the z are established to obtain energy, angular and multiplicity independence of the psi(z). The scheme allows unique description of data on inclusive cross sections of charged particles, pions, kaons, antiprotons and lambdas at high energies. The obtained results are of interest to use z-scaling as a tool for searching for new physics phe...
Scaling behavior of the adiabatic Dicke model
Liberti, Giuseppe; Plastina, Francesco [Dipartimento di Fisica, Universita della Calabria, 87036 Arcavacata di Rende (Serbia and Montenegro) (Italy); INFN-Gruppo collegato di Cosenza, 87036 Arcavacata di Rende (Serbia and Montenegro) (Italy); Piperno, Franco [Dipartimento di Fisica, Universita della Calabria, 87036 Arcavacata di Rende (Serbia and Montenegro) (Italy)
2006-08-15T23:59:59.000Z
We analyze the quantum phase transition for a set of N two-level systems interacting with a bosonic mode in the adiabatic regime. Through the Born-Oppenheimer approximation, we obtain the finite-size scaling expansion for many physical observables and, in particular, for the entanglement content of the system.
Progress in Grid Scale Flow Batteries
Progress in Grid Scale Flow Batteries IMRE GYUK, PROGRAM MANAGER ENERGY STORAGE RESEARCH, DOE Flow;LogMW Renewables (not capacity factor adjusted) 9 8 7 6 5 4 3 Wind Wind (proj) Solar PV Solar PV 2011Year #12;Flow Battery Research at PNNL and Sandia #12
Large scale structure of the Universe: Introduction
J. Einasto
1997-11-26T23:59:59.000Z
The changes of main paradigms on the structure and evolution of the Universe are reviewed. Two puzzles of the modern cosmology, the mean density of matter and the regularity of the Universe on large scales, as well as the possibility to solve these puzzles by the introduction of more complicated form of inflation, are discussed.
Dark Matter and Large Scale Structure
J. Einasto
2000-12-07T23:59:59.000Z
A review of the study of dark matter and large scale structure of the Universe at Tartu Observatory is given. Tartu astronomers have participated in this development, starting from Ernst "Opik and Grigori Kuzmin, and continuing with the present generation of astronomers. Our goal was to understand better the structure, origin and evolution of the Universe.
Acceleration radiation and the Planck scale
I. Agullo; J. Navarro-Salas; G. J. Olmo; L. Parker
2008-02-27T23:59:59.000Z
A uniformly accelerating observer perceives the Minkowski vacuum state as a thermal bath of radiation. We point out that this field-theory effect can be derived, for any dimension higher than two, without actually invoking very high energy physics. This supports the view that this phenomenon is robust against Planck-scale physics and, therefore, should be compatible with any underlying microscopic theory.
utility functions scaling profiles utility-fair
Chang, Shih-Fu
bandwidth utility functions scaling profiles utility-fair I. INTRODUCTION The emerging MPEG-4 video. This can result in a significant increase in the utilization of network capacity [1]. These techniques. Bandwidth utility functions [9] can be used to characterize an application's capability to adapt over
DUSEL Facility Cooling Water Scaling Issues
Daily, W D
2011-04-05T23:59:59.000Z
Precipitation (crystal growth) in supersaturated solutions is governed by both kenetic and thermodynamic processes. This is an important and evolving field of research, especially for the petroleum industry. There are several types of precipitates including sulfate compounds (ie. barium sulfate) and calcium compounds (ie. calcium carbonate). The chemical makeup of the mine water has relatively large concentrations of sulfate as compared to calcium, so we may expect that sulfate type reactions. The kinetics of calcium sulfate dihydrate (CaSO4 {center_dot} 2H20, gypsum) scale formation on heat exchanger surfaces from aqueous solutions has been studied by a highly reproducible technique. It has been found that gypsum scale formation takes place directly on the surface of the heat exchanger without any bulk or spontaneous precipitation in the reaction cell. The kinetic data also indicate that the rate of scale formation is a function of surface area and the metallurgy of the heat exchanger. As we don't have detailed information about the heat exchanger, we can only infer that this will be an issue for us. Supersaturations of various compounds are affected differently by temperature, pressure and pH. Pressure has only a slight affect on the solubility, whereas temperature is a much more sensitive parameter (Figure 1). The affect of temperature is reversed for calcium carbonate and barium sulfate solubilities. As temperature increases, barium sulfate solubility concentrations increase and scaling decreases. For calcium carbonate, the scaling tendencies increase with increasing temperature. This is all relative, as the temperatures and pressures of the referenced experiments range from 122 to 356 F. Their pressures range from 200 to 4000 psi. Because the cooling water system isn't likely to see pressures above 200 psi, it's unclear if this pressure/scaling relationship will be significant or even apparent. The most common scale minerals found in the oilfield include calcium carbonates (CaCO3, mainly calcite) and alkaline-earth metal sulfates (barite BaSO4, celestite SrSO4, anhydrite CaSO4, hemihydrate CaSO4 1/2H2O, and gypsum CaSO4 2H2O or calcium sulfate). The cause of scaling can be difficult to identify in real oil and gas wells. However, pressure and temperature changes during the flow of fluids are primary reasons for the formation of carbonate scales, because the escape of CO2 and/or H2S gases out of the brine solution, as pressure is lowered, tends to elevate the pH of the brine and result in super-saturation with respect to carbonates. Concerning sulfate scales, the common cause is commingling of different sources of brines either due to breakthrough of injected incompatible waters or mixing of two different brines from different zones of the reservoir formation. A decrease in temperature tends to cause barite to precipitate, opposite of calcite. In addition, pressure drops tend to cause all scale minerals to precipitate due to the pressure dependence of the solubility product. And we can expect that there will be a pressure drop across the heat exchanger. Weather or not this will be offset by the rise in pressure remains to be seen. It's typically left to field testing to prove out. Progress has been made toward the control and treatment of the scale deposits, although most of the reaction mechanisms are still not well understood. Often the most efficient and economic treatment for scale formation is to apply threshold chemical inhibitors. Threshold scale inhibitors are like catalysts and have inhibition efficiency at very low concentrations (commonly less than a few mg/L), far below the stoichiometric concentrations of the crystal lattice ions in solution. There are many chemical classes of inhibitors and even more brands on the market. Based on the water chemistry it is anticipated that there is a high likelihood for sulfate compound precipitation and scaling. This may be dependent on the temperature and pressure, which vary throughout the system. Therefore, various types and amounts of scaling may occur at different
Psychotherapy Computational Psychotherapy Research: Scaling up the
Steyvers, Mark
research. New methods are required to "scale up" to larger evaluation tasks and "drill down" into the rawÂprovider interaction contains the treatment's active ingredients. However, the technology for analyzing the content researchable because the intermediate technology required . . . does not exist. I mean auxiliaries and methods
Electromagnetic Composites at the Compton Scale
Frederick J. Mayer; John R. Reitz
2011-09-10T23:59:59.000Z
A new class of electromagnetic composite particles is proposed. The composites are very small (the Compton scale), potentially long-lived, would have unique interactions with atomic and nuclear systems, and, if they exist, could explain a number of otherwise anomalous and conflicting observations in diverse research areas.
INVESTIGATION Construction of Reference Chromosome-Scale
Douches, David S.
INVESTIGATION Construction of Reference Chromosome-Scale Pseudomolecules for Potato: Integrating was genotyped with several types of molecular genetic markers to construct a new ~936 cM linkage map comprising and orientation within the pseudo- molecules are closely collinear with independently constructed high density
Service Science: Design for Scaling and Transformation
Hsu, Cheng
-led revolution which is not just post-Industrial Revolution, but also poising Knowledge Economy for furtherService Science: Design for Scaling and Transformation Cheng K. Hsu Professor of Industrial? Is a service-led revolution reality or gimmick? Each question and answer becomes a chapter of the book, which
Defect Characterization for Scaling of QCA Devices
operation and ultra low power dissipation [8]. Among these new devices, quantum dot cellular automata (QCA promising new computing scheme in the nano-scale regimes. As an emerging technology, QCA relies on radically voter, the inverter and the binary wire, are provided to show that defects have definitive trends
Planck Scale Cosmology in Resummed Quantum Gravity
B. F. L. Ward
2008-08-23T23:59:59.000Z
We show that, by using resummation techniques based on the extension of the methods of Yennie, Frautschi and Suura to Feynman's formulation of Einstein's theory, we get quantum field theoretic predictions for the UV fixed-point values of the dimensionless gravitational and cosmological constants. Connections to the phenomenological asymptotic safety analysis of Planck scale cosmology by Bonanno and Reuter are discussed.
Planck Scale Cosmology and Resummed Quantum Gravity
B. F. L. Ward
2009-10-13T23:59:59.000Z
We show that, by using amplitude-based resummation techniques for Feynman's formulation of Einstein's theory, we get quantum field theoretic 'first principles' predictions for the UV fixed-point values of the dimensionless gravitational and cosmological constants. Connections to the phenomenological asymptotic safety analysis of Planck scale cosmology by Bonanno and Reuter are discussed.
Fire Behavior at the Landscape Scale
Stephens, Scott L.
Fire Behavior at the Landscape Scale Scott Stephens, ESPMScott Stephens, ESPM DepartmentStrategies for Landscape Fuel TreatmentsLandscape Fuel Treatments Fire Containment Â· Fuelbreaks Fire Modification Â· Area (WUI) Â·Â· Maintenance? Must maintain into futureMaintenance? Must maintain into future #12;Tyee Fire
THE EXTRAGALACTIC DISTANCE SCALE WITHOUT CEPHEIDS. IV
Hislop, Lachlan; Mould, Jeremy [School of Physics, University of Melbourne, Vic 3010 (Australia); Schmidt, Brian; Bessell, Michael S.; Da Costa, Gary; Francis, Paul; Keller, Stefan; Tisserand, Patrick; Rapoport, Sharon; Casey, Andy, E-mail: jmould@unimelb.edu.au, E-mail: brian@mso.anu.edu.au [Research School of Astronomy and Astrophysics, Australian National University, Canberra (Australia)
2011-06-01T23:59:59.000Z
The Cepheid period-luminosity relation is the primary distance indicator used in most determinations of the Hubble constant. The tip of the red giant branch (TRGB) is an alternative basis. Using the new Australian National University (ANU) SkyMapper Telescope, we calibrate the Tully-Fisher relation in the I band. We find that the TRGB and Cepheid distance scales are consistent.
Small Scale Poultry Production Breed Selection
Jawitz, James W.
Small Scale Poultry Production Breed Selection Cindy Sanders, Ph.D. Â UF/IFAS Alachua County Extension #12;`Alternative' Poultry Production Â· Pastured Poultry Â Access to pasture daily Â Options include: open-bottomed pen moved daily, day-range, chicken tractor. Â· Free Range Poultry Â Demonstrated
Gowdy phenomenology in scale-invariant variables
Lars Andersson; Henk van Elst; Claes Uggla
2003-10-30T23:59:59.000Z
The dynamics of Gowdy vacuum spacetimes is considered in terms of Hubble-normalized scale-invariant variables, using the timelike area temporal gauge. The resulting state space formulation provides for a simple mechanism for the formation of ``false'' and ``true spikes'' in the approach to the singularity, and a geometrical formulation for the local attractor.
7, 1553315563, 2007 Large-scale
Paris-Sud XI, UniversitÃ© de
the Pacific, correlations with CO, CO2, CH4, and C2Cl4 were dif- fuse overall, but recognizable on flights out Chemistry and Physics Discussions Factors influencing the large-scale distribution of Hg in the Mexico City the Intercontinental Chemical Transport Experiment Phase B (INTEX-B) cam- paign in spring 2006. Flights were conducted
Micrometer-Scale Physical Structure and Microbial Composition of Soil Macroaggregates
Bailey, Vanessa L.; McCue, Lee Ann; Fansler, Sarah J.; Boyanov, Maxim I.; DeCarlo, F.; Kemner, Kenneth M.; Konopka, Allan
2013-10-01T23:59:59.000Z
Soil macroaggregates are discrete, separable units of soil that we hypothesize contain smaller assemblages of microorganisms than bulk soil, and represent a scale potentially consistent with naturally occurring microbial communities. We posed two questions to explore microbial community composition in the context of the macroaggregate: 1) Is there a relationship between macroaggregate physical structure and microbial community composition in individual macroaggregates? And, 2) How similar are the bacterial communities in individual sub-millimeter soil macroaggregates sampled from the same 5-cm core? To address these questions, individual macroaggregates of three arbitrary size classes (250–425, 425–841, and 841–1000 ?m) were sampled from a grassland field. The physical structures of 14 individual macroaggregates were characterized using synchrotron-radiation based transmission X-ray tomography, revealing that a greater proportion of the pore space in the small- and medium-sized macroaggregates is as relatively smaller pores, resulting in greater overall porosity and pore–mineral interface area in these smaller macroaggregates. Microbial community composition was characterized using 16S rRNA pyrosequencing data. Rarefaction analyses indicated that the membership of each macroaggregate was sufficiently sampled with only a few thousand sequences; in addition, the community membership varied widely between macroaggregates and the structure varied from those communities strongly dominated by a few phylotypes to communities that were evenly distributed among several phylotypes. We found no strong relationship of physical structure with community membership; this may be due to the low number of aggregates (10) for which we have both physical and biological data. Our results do support our initial expectation that individual macroaggregate communities were significantly less diverse than bulk soil from the same grassland field site.
Jounghun Lee; Cheng Li
2008-03-12T23:59:59.000Z
We have examined the correlations between the large-scale environment of galaxies and their physical properties, using a sample of 28,354 nearby galaxies drawn from the Sloan Digital Sky Survey, and the large-scale tidal field reconstructed in real space from the 2Mass Redshift Survey and smoothed over a radius of $\\sim 6 h^{-1}$Mpc. The large-scale environment is expressed in terms of the overdensity, the ellipticity of the shear and the type of the large-scale structure. The physical properties analyzed include $r$-band absolute magnitude $M_{^{0.1}r}$, stellar mass $M_\\ast$, $g-r$ colour, concentration parameter $R_{90}/R_{50}$ and surface stellar mass density $\\mu_\\ast$. Both luminosity and stellar mass are found to be statistically linked to the large-scale environment, regardless of how the environment is quantified. More luminous (massive) galaxies reside preferentially in the regions with higher densities, lower ellipticities and halo-like structures. At fixed luminosity, the large-scale overdensity depends strongly on parameters related to the recent star formation history, that is colour and D(4000), but is almost independent of the structural parameters $R_{90}/R_{50}$ and $\\mu_\\ast$. All the physical properties are statistically linked to the shear of the large-scale environment even when the large-scale density is constrained to a narrow range. This statistical link has been found to be most significant in the quasi-linear regions where the large-scale density approximates to an order of unity, but no longer significant in highly nonlinear regimes with $\\delta_{\\rm LS}\\gg 1$.
Upscaling geochemical reaction rates using pore-scale network modeling
Peters, Catherine A.
. To examine the scaling behavior of reaction kinetics, these continuum-scale rates from the network model as a valuable research tool for examining upscaling of geochemical kinetics. The pore-scale model allowsUpscaling geochemical reaction rates using pore-scale network modeling Li Li, Catherine A. Peters
Neurokinin Receptor Expression in the Lymphatic System
Khade, Parth
2011-01-11T23:59:59.000Z
for the designation as UNDERGRADUATE RESEARCH SCHOLAR A Senior Scholars Thesis by PARTH VIJAY KHADE A Senior Scholars Thesis by Parth Vijay Khade Approved by: Research Advisor: Dave C. Zawieja Associate Dean for Undergraduate... for the designation as UNDERGRADUATE RESEARCH SCHOLAR iii ABSTRACT Neurokinin Receptor Expression in the Lymphatic System. (April 2009) Parth Vijay Khade Department of Biomedical Engineering Texas A&M University Research Advisor: Dr. Dave C...
Kinetic decoupling of WIMPs: analytic expressions
Visinelli, Luca
2015-01-01T23:59:59.000Z
We present a general expression for the values of the average kinetic energy and of the temperature of kinetic decoupling of a WIMP, valid for any cosmological model. We show an example of the usage of our solution when the Hubble rate has a power-law dependence on temperature, and we show results for the specific cases of kination cosmology and low- temperature reheating cosmology.
Conjecture on the physical implications of the scale anomaly
Hill, Christopher T.; /Fermilab
2005-10-01T23:59:59.000Z
Murray Gell-Mann, after co-inventing QCD, recognized the interplay of the scale anomaly, the renormalization group, and the origin of the strong scale, {Lambda}{sub QCD}. I tell a story, then elaborate this concept, and for the sake of discussion, propose a conjecture that the physical world is scale invariant in the classical, {h_bar}, limit. This principle has implications for the dimensionality of space-time, the cosmological constant, the weak scale, and Planck scale.
Horn, David
#12;1 National Roadmap Committee for Large-Scale Research Facilities the netherlands' roadmap for large-scale research facilities #12;2 National Roadmap Committee for Large-Scale Research Facilities1 by Roselinde Supheert) #12;3 National Roadmap Committee for Large-Scale Research Facilities The Netherlands
Szilagyi, Jozsef
-scale dynamics'' by C. J. Harman, M. Sivapalan, and P. Kumar Jozsef Szilagyi1,2 Received 23 June 2009; revised 9 September 2009; accepted 20 October 2009; published 11 December 2009. Citation: Szilagyi, J. (2009), Comment
Fractal large-scale structure from a stochastic scaling law model
S. Capozziello; S. Funkhouser
2009-03-27T23:59:59.000Z
A stochastic model relating the parameters of astrophysical structures to the parameters of their granular components is applied to the formation of hierarchical, large-scale structures from galaxies assumed as point-like objects. If the density profile of galaxies on a given scale is described by a power law then the stochastic model leads naturally to a mass function that is proportional to the square of the distance from an occupied point, which corresponds to a two-point correlation function that is inversely proportional to the distance. This result is consistent with observations indicating that galaxies are, on the largest scales, characterized by a fractal distribution with a dimension of order 2 and well-fit with transition to homogeneity at cosmological scales.
Economic Investigation of Community-Scale Versus Building Scale Net-Zero Energy
Fernandez, Nicholas; Katipamula, Srinivas; Brambley, Michael R.; Reddy, T. A.
2009-12-31T23:59:59.000Z
The study presented in this report examines issues concerning whether achieving net-zero energy performance at the community scale provides economic and potentially overall efficiency advantages over strategies focused on individual buildings.
Five-Dimensional Cosmological Scaling Solution
Baorong Chang; Hongya Liu; Huanying Liu; Lixin Xu
2005-05-08T23:59:59.000Z
A five-dimensional Ricci-flat cosmological solution is studied by assuming that the induced 4D matter contains two components: the usual fluid for dark matter as well as baryons and a scalar field with an exponential potential for dark energy. With use of the phase-plane analysis it is shown that there exist two late-time attractors one of which corresponds to a universe dominated by the scalar field alone and the other is a scaling solution in which the energy density of the scalar field remains proportional to that of the dark matter. It is furthermore shown that for this 5D scaling solution the universe expands with the same rate as in the 4D FRW models and not relies on which 4D hypersurface the universe is located in the 5D manifold.
Scaling Turbo Boost to a 1000 cores
S, Ananth Narayan; Fedorova, Alexandra
2010-01-01T23:59:59.000Z
The Intel Core i7 processor code named Nehalem provides a feature named Turbo Boost which opportunistically varies the frequencies of the processor's cores. The frequency of a core is determined by core temperature, the number of active cores, the estimated power consumption, the estimated current consumption, and operating system frequency scaling requests. For a chip multi-processor(CMP) that has a small number of physical cores and a small set of performance states, deciding the Turbo Boost frequency to use on a given core might not be difficult. However, we do not know the complexity of this decision making process in the context of a large number of cores, scaling to the 100s, as predicted by researchers in the field.
Scaling of chaos in strongly nonlinear lattices
Mulansky, Mario, E-mail: mulansky@pks.mpg.de [Department of Physics and Astronomy, Potsdam University, Karl-Liebknecht-Str. 24, D-14476 Potsdam-Golm (Germany) [Department of Physics and Astronomy, Potsdam University, Karl-Liebknecht-Str. 24, D-14476 Potsdam-Golm (Germany); Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Str. 38, D-01187 Dresden (Germany); Institut für Theoretische Physik, TU Dresden, Zellescher Weg 17, D-01069 Dresden (Germany)
2014-06-15T23:59:59.000Z
Although it is now understood that chaos in complex classical systems is the foundation of thermodynamic behavior, the detailed relations between the microscopic properties of the chaotic dynamics and the macroscopic thermodynamic observations still remain mostly in the dark. In this work, we numerically analyze the probability of chaos in strongly nonlinear Hamiltonian systems and find different scaling properties depending on the nonlinear structure of the model. We argue that these different scaling laws of chaos have definite consequences for the macroscopic diffusive behavior, as chaos is the microscopic mechanism of diffusion. This is compared with previous results on chaotic diffusion [M. Mulansky and A. Pikovsky, New J. Phys. 15, 053015 (2013)], and a relation between microscopic chaos and macroscopic diffusion is established.
Scaling of Decoherence Effects in Quantum Computers
B. J. Dalton
2003-01-17T23:59:59.000Z
The scaling of decoherence rates with the number of q-bits is studied for a simple quantum computer model. Two state q-bits are localised around well-separated positions via trapping potentials, but vibrational motion of q-bits centre of mass motion occurs. Coherent one and two q-bit gating processes are controlled by external classical fields and facilitated by a high Q cavity mode. Decoherence due to q-bit and cavity mode coupling to a bath of spontaneous emission modes, cavity decay modes and to the vibrational modes is treated. A non-Markovian treatment of the short time behaviour of the fidelity is presented, enabling time scales for decoherence to be determined, together with their dependence on q-bit number for the case where the q-bit/cavity mode system is in a pure state and the baths are in thermal states.
Cheminformatics for genome-scale metabolic reconstructions
May, John W.
2015-01-06T23:59:59.000Z
.15 Problematic tetrahedral stereocentres . . . . . . . . . . . . . . . . . . . . . 190 6.16 Corrupting stereochemistry depiction . . . . . . . . . . . . . . . . . . . . 192 6.17 Variable CIP descriptors of myo-inositol using JChem . . . . . . . . . . . 193 6... of Biological Interest CIP Cahn-Ingold-Prelog EC Enzyme Commission GEM Genome-scale metabolic model GPR Gene-Protein-Reaction InChI IUPAC International Chemical Identifier KEGG Kyoto Encyclopedia of Genes and Genomes MIRIAM Minimum Information Required...
Property:Scale Test | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: EnergyPotentialUrbanUtilityScalePVCapacity Jump to: navigation,WebsiteRenewableBiofuel Jump to:customers.Test
Sontag, Ryan L.; Weber, Thomas J.
2012-05-04T23:59:59.000Z
In some model systems constitutive extracellular signal regulated kinase (ERK) activation is sufficient to promote an oncogenic phenotype. Here we investigate whether constitutive ERK expression influences phenotypic conversion in murine C10 type II alveolar epithelial cells. C10 cells were stably transduced with an ERK1-green fluorescent protein (ERK1-GFP) chimera or empty vector and ectopic ERK expression was associated with the acquisition of soft agar focus-forming potential in late passage, but not early passage cells. Late passage ERK1-GFP cells exhibited a significant increase in the expression of DNA methyl transferases (DNMT1 and 3b) and a marked increase in sensitivity to 5-azacytidine (5-azaC)-mediated toxicity, relative to early passage ERK1-GFP cells and vector controls. The expression of xeroderma pigmentosum complementation group A (XPA) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) were significantly increased in late passage cells, suggesting enhanced DNA damage recognition and repair activity which we interpret as a reflection of genomic instability. Phospho-ERK levels were dramatically decreased in late passage ERK1-GFP cells, relative to early passage and vector controls, and phospho-ERK levels were restored by treatment with sodium orthovanadate, indicating a role for phosphatase activity in this response. Collectively these observations suggest that ectopic ERK expression promotes phenotypic conversion of C10 cells that is associated with latent effects on epigenetic programming and phosphatase activities.
Generating and Interpreting Referring Expressions in Dustin Arthur Smith
Generating and Interpreting Referring Expressions in Context by Dustin Arthur Smith B.S., Wake Referring Expressions in Context by Dustin Arthur Smith Submitted to the Program of Media Arts and Sciences, MIT Media Lab #12;Generating and Interpreting Referring Expressions in Context by Dustin Arthur Smith
CSP is expressive enough for A.W. Roscoe
Oxford, University of
CSP is expressive enough for A.W. Roscoe Oxford University Computing Laboratory {Bill.Roscoe@comlab.ox.ac.uk} Abstract. Recent results show that Hoare's CSP, augmented by one additional operator, can express every operator whose operational semantics are expressible in a new notation and are therefore "CSP
Site-Scale Saturated Zone Flow Model
G. Zyvoloski
2003-12-17T23:59:59.000Z
The purpose of this model report is to document the components of the site-scale saturated-zone flow model at Yucca Mountain, Nevada, in accordance with administrative procedure (AP)-SIII.lOQ, ''Models''. This report provides validation and confidence in the flow model that was developed for site recommendation (SR) and will be used to provide flow fields in support of the Total Systems Performance Assessment (TSPA) for the License Application. The output from this report provides the flow model used in the ''Site-Scale Saturated Zone Transport'', MDL-NBS-HS-000010 Rev 01 (BSC 2003 [162419]). The Site-Scale Saturated Zone Transport model then provides output to the SZ Transport Abstraction Model (BSC 2003 [164870]). In particular, the output from the SZ site-scale flow model is used to simulate the groundwater flow pathways and radionuclide transport to the accessible environment for use in the TSPA calculations. Since the development and calibration of the saturated-zone flow model, more data have been gathered for use in model validation and confidence building, including new water-level data from Nye County wells, single- and multiple-well hydraulic testing data, and new hydrochemistry data. In addition, a new hydrogeologic framework model (HFM), which incorporates Nye County wells lithology, also provides geologic data for corroboration and confidence in the flow model. The intended use of this work is to provide a flow model that generates flow fields to simulate radionuclide transport in saturated porous rock and alluvium under natural or forced gradient flow conditions. The flow model simulations are completed using the three-dimensional (3-D), finite-element, flow, heat, and transport computer code, FEHM Version (V) 2.20 (software tracking number (STN): 10086-2.20-00; LANL 2003 [161725]). Concurrently, process-level transport model and methodology for calculating radionuclide transport in the saturated zone at Yucca Mountain using FEHM V 2.20 are being carried out in the model report, ''Site-Scale Saturated Zone Transport'', MDL-NBS-HS-000010 Rev 01 (BSC 2003 [162419]). The velocity fields are calculated by the flow model, described herein, independent of the transport processes, and are then used as inputs to the transport model. Justification for this abstraction is presented in the model report, ''Saturated Zone Flow and Transport Model Abstraction'', MDL-NBS-HS-000021 (BSC 2003 [164870]).
Scaling relations and parameters for 1 Angstrom FEL. [Free Electron Laser
Yu, L.H.
1990-01-01T23:59:59.000Z
The Free Electron Laser (FEL) holds great promise as a tunable source of coherent radiation. At the present, the shortest wavelength achieved by an FEL is 2500 {Angstrom}. However, as recent progress in the development of laser driven photocathode electron guns has provided electron beams with lower and lower emittance and higher and higher current, it has become clear that FEL's with much shorter wavelength can be achieved. An FEL operating below 1000 {Angstrom} will yield important advances in fields such as photochemistry, atomic and molecular physics. An FEL with wavelength of 30 {Angstrom} will bring new era to the development of holography of living cells. And, if an FEL with 1 {Angstrom} wavelength can be developed, its impact on solid physics, molecular biology, and many other fields can hardly be exaggerated. We first describe our electron distribution model: a waterbag transverse phase space distribution and a Gaussian energy distribution. This model is widely used in simulations, and is rather close to reality. Then we describe the dispersion relation derived from the Vlasov-Maxwell equations, and its solution, expressed in scaled form. We compare the variational approximation with several simulation codes. Then we compare with exact results which we have derived for a parallel electron beam with finite beam size and energy spread. We explain the scaling relations, and give examples to show how system parameters scale when the FEL wavelength is reduced. Then, applying these scaling relations, we derive a list of preliminary system parameters for a 1 {Angstrom} FEL. As an example, we apply our analytical calculation to optimize one set of parameters derived from the scaling relations. Finally, as a conclusion we discuss the implication of the list of parameters for a 1{Angstrom} FEL. 20 refs., 4 figs.
Salem, Tamer Z. [Department of Entomology, Michigan State University, East Lansing, MI 48824 (United States) [Department of Entomology, Michigan State University, East Lansing, MI 48824 (United States); Department of Microbial Molecular Biology, AGERI, Agricultural Research Center, Giza 12619 (Egypt); Division of Biomedical Sciences, Zewail University, Zewail City of Science and Technology, Giza 12588 (Egypt); Zhang, Fengrui [Department of Entomology, Michigan State University, East Lansing, MI 48824 (United States)] [Department of Entomology, Michigan State University, East Lansing, MI 48824 (United States); Thiem, Suzanne M., E-mail: smthiem@msu.edu [Department of Entomology, Michigan State University, East Lansing, MI 48824 (United States); Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824 (United States)
2013-01-20T23:59:59.000Z
Autographa californica multiple nucleopolyhedrovirus ORF34 is part of a transcriptional unit that includes ORF32, encoding a viral fibroblast growth factor (FGF) and ORF33. We identified ORF34 as a candidate for deletion to improve protein expression in the baculovirus expression system based on enhanced reporter gene expression in an RNAi screen of virus genes. However, ORF34 was shown to be an essential gene. To explore ORF34 function, deletion (KO34) and rescue bacmids were constructed and characterized. Infection did not spread from primary KO34 transfected cells and supernatants from KO34 transfected cells could not infect fresh Sf21 cells whereas the supernatant from the rescue bacmids transfection could recover the infection. In addition, budded viruses were not observed in KO34 transfected cells by electron microscopy, nor were viral proteins detected from the transfection supernatants by western blots. These demonstrate that ORF34 is an essential gene with a possible role in infectious virus production.
MICRORNA EXPRESSION WITHIN PERIOVULATORY MURAL GRANULOSA CELLS
Fiedler, Stephanie Deanne
2008-01-01T23:59:59.000Z
gene ................................................................ 89 Figure 4-2 Pri-miR 132/212 primer design ......................................... 91 Figure 4-3 qRT-PCR analysis of pri-miR-132/212 expression ........... 94 Figure 4-4 q...]. For example, the protein AUF1 mediates mRNA destabilization when bound to the ARE. In contrast, ARE-binding of He1-N1, HuC, HuD and HuR proteins has been associated with mRNA 5 stabilization [26] indicating a complex regulatory network for ARE containing...
Expression of multiple proteins in transgenic plants
Vierstra, Richard D. (Madison, WI); Walker, Joseph M. (Madison, WI)
2002-01-01T23:59:59.000Z
A method is disclosed for the production of multiple proteins in transgenic plants. A DNA construct for introduction into plants includes a provision to express a fusion protein of two proteins of interest joined by a linking domain including plant ubiquitin. When the fusion protein is produced in the cells of a transgenic plant transformed with the DNA construction, native enzymes present in plant cells cleave the fusion protein to release both proteins of interest into the cells of the transgenic plant. Since the proteins are produced from the same fusion protein, the initial quantities of the proteins in the cells of the plant are approximately equal.
Express Package Shipping Services | The Ames Laboratory
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy and Assistance100JeffersonMarkExploratorysurfaceExposureExpress
Gene expression profiling--Opening the black box of plant ecosystem responses to global change
Leakey, A.D.B.; Ainsworth, E.A.; Bernard, S.M.; Markelz, R.J.C.; Ort, D.R.; Placella, S.A.P.; Rogers, A.; Smith, M.D.; Sudderth, E.A.; Weston, D.J.; Wullschleger, S.D.; Yuan, S.
2009-11-01T23:59:59.000Z
The use of genomic techniques to address ecological questions is emerging as the field of genomic ecology. Experimentation under environmentally realistic conditions to investigate the molecular response of plants to meaningful changes in growth conditions and ecological interactions is the defining feature of genomic ecology. Since the impact of global change factors on plant performance are mediated by direct effects at the molecular, biochemical and physiological scales, gene expression analysis promises important advances in understanding factors that have previously been consigned to the 'black box' of unknown mechanism. Various tools and approaches are available for assessing gene expression in model and non-model species as part of global change biology studies. Each approach has its own unique advantages and constraints. A first generation of genomic ecology studies in managed ecosystems and mesocosms have provided a testbed for the approach and have begun to reveal how the experimental design and data analysis of gene expression studies can be tailored for use in an ecological context.
A Unifying Theory for Scaling Laws of Human Populations
Lin, Henry W
2015-01-01T23:59:59.000Z
The spatial distribution of people exhibits clustering across a wide range of scales, from household (~$10^{-2}$ km) to continental (~$10^4$ km) scales. Empirical data indicates simple power-law scalings for the size distribution of cities (known as Zipf's law), the geographic distribution of friends, and the population density fluctuations as a function of scale. We derive a simple statistical model that explains all of these scaling laws based on a single unifying principle involving the random spatial growth of clusters of people on all scales. The model makes important new predictions for the spread of diseases and other social phenomena.
Peroxidase gene expression during tomato fruit ripening
Biggs, M.S.; Flurkey, W.H.; Handa, A.K.
1987-04-01T23:59:59.000Z
Auxin oxidation has been reported to play a critical role in the initiation of pear fruit ripening and a tomato fruit peroxidase (POD) has been shown to have IAA-oxidase activity. However, little is known about changes in the expression of POD mRNA in tomato fruit development. They are investigating the expression of POD mRNA during tomato fruit maturation. Fruit pericarp tissues from six stages of fruit development and ripening (immature green, mature green, breaker, turning, ripe, and red ripe fruits) were used to extract poly (A)/sup +/ RNAs. These RNAs were translated in vitro in a rabbit reticulocyte lysate system using L-/sup 35/S-methionine. The /sup 35/S-labeled products were immunoprecipitated with POD antibodies to determine the relative proportions of POD mRNA. High levels of POD mRNA were present in immature green and mature green pericarp, but declined greatly by the turning stage of fruit ripening. In addition, the distribution of POD mRNA on free vs bound polyribosomes will be presented, as well as the presence or absence of POD mRNA in other tomato tissues.
Scaling properties of light-cluster production
Z. Chajecki; M. Youngs; D. D. S. Coupland; W. G. Lynch; M. B. Tsang; D. Brown; A. Chbihi; P. Danielewicz; R. T. deSouza; M. A. Famiano; T. K. Ghosh; B. Giacherio; V. Henzl; D. Henzlova; C. Herlitzius; S. Hudan; M. A. Kilburn; Jenny Lee; F. Lu; S. Lukyanov; A. M. Rogers; P. Russotto; A. Sanetullaev; R. H. Showalter; L. G. Sobotka; Z. Y. Sun; A. M. Vander Molen; G. Verde; M. S. Wallace; J. Winkelbauer
2014-02-21T23:59:59.000Z
We show that ratios of light-particle energy spectra display scaling properties that can be accu- rately described by effective local chemical potentials. This demonstrates the equivalence of t/3He and n/p spectral ratios and provides an essential test of theoretical predictions of isotopically resolved light-particle spectra. In addition, this approach allows direct comparisons of many theoretical n/p spectral ratios to experiments where charged-particle spectra but not neutron spectra are accurately measured. Such experiments may provide much more quantitative constraints on the density and momentum dependence of the symmetry energy.
Scaling properties of light-cluster production
Chajecki, Z; Coupland, D D S; Lynch, W G; Tsang, M B; Brown, D; Chbihi, A; Danielewicz, P; deSouza, R T; Famiano, M A; Ghosh, T K; Giacherio, B; Henzl, V; Henzlova, D; Herlitzius, C; Hudan, S; Kilburn, M A; Lee, Jenny; Lu, F; Lukyanov, S; Rogers, A M; Russotto, P; Sanetullaev, A; Showalter, R H; Sobotka, L G; Sun, Z Y; Molen, A M Vander; Verde, G; Wallace, M S; Winkelbauer, J
2014-01-01T23:59:59.000Z
We show that ratios of light-particle energy spectra display scaling properties that can be accu- rately described by effective local chemical potentials. This demonstrates the equivalence of t/3He and n/p spectral ratios and provides an essential test of theoretical predictions of isotopically resolved light-particle spectra. In addition, this approach allows direct comparisons of many theoretical n/p spectral ratios to experiments where charged-particle spectra but not neutron spectra are accurately measured. Such experiments may provide much more quantitative constraints on the density and momentum dependence of the symmetry energy.
Utility Scale Solar Inc | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City, Utah Zip:Scale Solar Inc Place: Palo Alto,
Extreme Scale Computing, Co-design
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolution Enhanced OilExtracting theExtreme Scale Computing,
Sandia National Laboratories: utility-scale power
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-activeNationalhydrogen componentsutility-scale power Sandia
bench scale dev | netl.doe.gov
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste andAnniversary, partReview64,783ENCOALÂ®EvaluationBench-Scale
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home Design Passive Solar Home Design June 24, 2013 -Past PathScale UPC
Accounting for Scale in Catalysis | EMSL
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the Building Technologies OfficeAccounting for Scale in Catalysis
Sandia National Laboratories: Module-Scale Conversion
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS ExhibitIowaLosSandia ParticipatedBuildingSandiaScale
Surface modification to prevent oxide scale spallation
Stephens, Elizabeth V; Sun, Xin; Liu, Wenning; Stevenson, Jeffry W; Surdoval, Wayne; Khaleel, Mohammad A
2013-07-16T23:59:59.000Z
A surface modification to prevent oxide scale spallation is disclosed. The surface modification includes a ferritic stainless steel substrate having a modified surface. A cross-section of the modified surface exhibits a periodic morphology. The periodic morphology does not exceed a critical buckling length, which is equivalent to the length of a wave attribute observed in the cross section periodic morphology. The modified surface can be created using at least one of the following processes: shot peening, surface blasting and surface grinding. A coating can be applied to the modified surface.
Soler, Roberto
2015-01-01T23:59:59.000Z
Magnetohydrodynamic (MHD) kink waves are ubiquitously observed in the solar atmosphere. The propagation and damping of these waves may play relevant roles for the transport and dissipation of energy in the solar atmospheric medium. However, in the atmospheric plasma dissipation of transverse MHD wave energy by viscosity or resistivity needs very small spatial scales to be efficient. Here, we theoretically investigate the generation of small scales in nonuniform solar magnetic flux tubes due to phase mixing of MHD kink waves. We go beyond the usual approach based on the existence of a global quasi-mode that is damped in time due to resonant absorption. Instead, we use a modal expansion to express the MHD kink wave as a superposition of Alfv\\'en continuum modes that are phase mixed as time evolves. The comparison of the two techniques evidences that the modal analysis is more physically transparent and describes both the damping of global kink motions and the building up of small scales due to phase mixing. In ...
Laboratory-Scale Melter for Determination of Melting Rate of Waste Glass Feeds
Kim, Dong-Sang; Schweiger, Michael J.; Buchmiller, William C.; Matyas, Josef
2012-01-09T23:59:59.000Z
The purpose of this study was to develop the laboratory-scale melter (LSM) as a quick and inexpensive method to determine the processing rate of various waste glass slurry feeds. The LSM uses a 3 or 4 in. diameter-fused quartz crucible with feed and off-gas ports on top. This LSM setup allows cold-cap formation above the molten glass to be directly monitored to obtain a steady-state melting rate of the waste glass feeds. The melting rate data from extensive scaled-melter tests with Hanford Site high-level wastes performed for the Hanford Tank Waste Treatment and Immobilization Plant have been compiled. Preliminary empirical model that expresses the melting rate as a function of bubbling rate and glass yield were developed from the compiled database. The two waste glass feeds with most melter run data were selected for detailed evaluation and model development and for the LSM tests so the melting rates obtained from LSM tests can be compared with those from scaled-melter tests. The present LSM results suggest the LSM setup can be used to determine the glass production rates for the development of new glass compositions or feed makeups that are designed to increase the processing rate of the slurry feeds.
FEMP Helps Federal Facilities Develop Large-Scale Renewable Energy...
FEMP Helps Federal Facilities Develop Large-Scale Renewable Energy Projects FEMP Helps Federal Facilities Develop Large-Scale Renewable Energy Projects August 21, 2013 - 12:00am...
Commercial-Scale Renewable Energy Project Development and Finance...
Broader source: Energy.gov (indexed) [DOE]
Commercial-Scale Renewable Energy Project Development and Finance Workshop Commercial-Scale Renewable Energy Project Development and Finance Workshop July 29, 2014 1:00PM MDT to...
Community- and Facility-Scale Tribal Renewable Energy Project...
Community- and Facility-Scale Tribal Renewable Energy Project Workshop to be Held in September Community- and Facility-Scale Tribal Renewable Energy Project Workshop to be Held in...
The Molecular Ingenuity of a Unique Fish Scale
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
The Molecular Ingenuity of a Unique Fish Scale The Molecular Ingenuity of a Unique Fish Scale Print Monday, 25 November 2013 12:06 Arapaima gigas, a freshwater fish found in the...
Nano-scale scratching in chemical-mechanical polishing
Eusner, Thor
2008-01-01T23:59:59.000Z
During the chemical-mechanical polishing (CMP) process, a critical step in the manufacture of ultra-large-scale integrated (ULSI) semiconductor devices, undesirable nano-scale scratches are formed on the surfaces being ...
Chip-Scale Quadrupole Mass Filters for Portable Mass Spectrometry
Cheung, Kerry
We report the design, fabrication, and characterization of a new class of chip-scale quadrupole mass filter (QMF). The devices are completely batch fabricated using a wafer-scale process that integrates the quadrupole ...
Tartakovsky, Guzel D.; Tartakovsky, Alexandre M.; Scheibe, Timothy D.; Fang, Yilin; Mahadevan, Radhakrishnan; Lovley, Derek R.
2013-09-07T23:59:59.000Z
Recent advances in microbiology have enabled the quantitative simulation of microbial metabolism and growth based on genome-scale characterization of metabolic pathways and fluxes. We have incorporated a genome-scale metabolic model of the iron-reducing bacteria Geobacter sulfurreducens into a pore-scale simulation of microbial growth based on coupling of iron reduction to oxidation of a soluble electron donor (acetate). In our model, fluid flow and solute transport is governed by a combination of the Navier-Stokes and advection-diffusion-reaction equations. Microbial growth occurs only on the surface of soil grains where solid-phase mineral iron oxides are available. Mass fluxes of chemical species associated with microbial growth are described by the genome-scale microbial model, implemented using a constraint-based metabolic model, and provide the Robin-type boundary condition for the advection-diffusion equation at soil grain surfaces. Conventional models of microbially-mediated subsurface reactions use a lumped reaction model that does not consider individual microbial reaction pathways, and describe reactions rates using empirically-derived rate formulations such as the Monod-type kinetics. We have used our pore-scale model to explore the relationship between genome-scale metabolic models and Monod-type formulations, and to assess the manifestation of pore-scale variability (microenvironments) in terms of apparent Darcy-scale microbial reaction rates. The genome-scale model predicted lower biomass yield, and different stoichiometry for iron consumption, in comparisonto prior Monod formulations based on energetics considerations. We were able to fit an equivalent Monod model, by modifying the reaction stoichiometry and biomass yield coefficient, that could effectively match results of the genome-scale simulation of microbial behaviors under excess nutrient conditions, but predictions of the fitted Monod model deviated from those of the genome-scale model under conditions in which one or more nutrients were limiting. The fitted Monod kinetic model was also applied at the Darcy scale; that is, to simulate average reaction processes at the scale of the entire pore-scale model domain. As we expected, even under excess nutrient conditions for which the Monod and genome-scale models predicted equal reaction rates at the pore scale, the Monod model over-predicted the rates of biomass growth and iron and acetate utilization when applied at the Darcy scale. This discrepancy is caused by an inherent assumption of perfect mixing over the Darcy-scale domain, which is clearly violated in the pore-scale models. These results help to explain the need to modify the flux constraint parameters in order to match observations in previous applications of the genome-scale model at larger scales. These results also motivate further investigation of quantitative multi-scale relationships between fundamental behavior at the pore scale (where genome-scale models are appropriately applied) and observed behavior at larger scales (where predictions of reactive transport phenomena are needed).
Florida Wax Scales: Control Measures in Texas for Hollies
Drees, Bastiaan M.; Reinert, James; Williams, Michael L.
2006-11-30T23:59:59.000Z
This publication explains how to control Florida wax scales, which have begun attacking hollies in Texas. 6 pp., 4 photos...
Anomalous scalings in differential models of turbulence
Thalabard, Simon; Galtier, Sebastien; Sergey, Medvedev
2015-01-01T23:59:59.000Z
Differential models for hydrodynamic, passive-scalar and wave turbulence given by nonlinear first- and second-order evolution equations for the energy spectrum in the $k$-space were analysed. Both types of models predict formation an anomalous transient power-law spectra. The second-order models were analysed in terms of self-similar solutions of the second kind, and a phenomenological formula for the anomalous spectrum exponent was constructed using numerics for a broad range of parameters covering all known physical examples. The first-order models were examined analytically, including finding an analytical prediction for the anomalous exponent of the transient spectrum and description of formation of the Kolmogorov-type spectrum as a reflection wave from the dissipative scale back into the inertial range. The latter behaviour was linked to pre-shock/shock singularities similar to the ones arising in the Burgers equation. Existence of the transient anomalous scaling and the reflection-wave scenario are argu...
Anomalous scalings in differential models of turbulence
Simon Thalabard; Sergey Nazarenko; Sebastien Galtier; Medvedev Sergey
2015-02-24T23:59:59.000Z
Differential models for hydrodynamic, passive-scalar and wave turbulence given by nonlinear first- and second-order evolution equations for the energy spectrum in the $k$-space were analysed. Both types of models predict formation an anomalous transient power-law spectra. The second-order models were analysed in terms of self-similar solutions of the second kind, and a phenomenological formula for the anomalous spectrum exponent was constructed using numerics for a broad range of parameters covering all known physical examples. The first-order models were examined analytically, including finding an analytical prediction for the anomalous exponent of the transient spectrum and description of formation of the Kolmogorov-type spectrum as a reflection wave from the dissipative scale back into the inertial range. The latter behaviour was linked to pre-shock/shock singularities similar to the ones arising in the Burgers equation. Existence of the transient anomalous scaling and the reflection-wave scenario are argued to be a robust feature common to the finite-capacity turbulence systems. The anomalous exponent is independent of the initial conditions but varies for for different models of the same physical system.
Weak Lensing Predictions at Intermediate Scales
Van Waerbeke, L; Scoccimarro, R; Colombi, S; Bernardeau, F
2000-01-01T23:59:59.000Z
As pointed out in previous studies, the measurement of the skewness of the convergence field $\\kappa$ will be useful in breaking the degeneracy among the cosmological parameters constrained from weak lensing observations. The combination of shot noise and finite survey volume implies that such a measurement is likely to be done in a range of intermediate scales ($0.5'$ to 20') where neither perturbation theory nor the hierarchical ansatz apply. Here we explore the behavior of the skewness of $\\kappa$ at these intermediate scales, based on results for the non-linear evolution of the mass bispectrum. We combined different ray-tracing simulations to test our predictions, and we find that our calculations describe accurately the transition from the weakly non-linear to the strongly non-linear regime. We show that the single lens-plane approximation remains accurate even in the non-linear regime, and we explicitly calculate the corrections to this approximation. We also discuss the prospects of measuring the skewn...
Bioenergy Sustainability at the Regional Scale
Kline, Keith L [ORNL; Dale, Virginia H [ORNL; Mulholland, Patrick J [ORNL; Lowrance, Richard [USDA-ARS Southeast Watershed Research Laboratory, Tifton, Georgia; Robertson, G. Phillip [W.K. Kellogg Biological Station and Great Lakes Bioenergy Research
2010-11-01T23:59:59.000Z
To meet national goals for biofuels production, there are going to be large increases in acreage planted to dedicated biofuels crops. These acreages may be in perennial grasses, annual crops, short rotation woody crops, or other types of vegetation and may involve use of existing cropland, marginal lands, abandoned lands or conversion of forest land. The establishment of bioenergy crops will affect ecological processes and their interactions and thus have an influence on ecosystem services provided by the lands on which these crops are grown. The regional-scale effects of bioenergy choices on ecosystem services need special attention because they often have been neglected yet can affect the ecological, social and economic aspects of sustainability. A regional-scale perspective provides the opportunity to make more informed choices about crop selection and management, particularly with regard to water quality and quantity issues, and also about other aspects of ecological, social, and economic sustainability. We give special attention to cellulosic feedstocks because of the opportunities they provide. Adopting an adaptive management approach for biofuels feedstock production planning will be possible to a certain extent if there is adequate monitoring data on the effects of changes in land use. Effects on water resources are used as an example and existing understanding of water resource effects are analyzed in detail. Current results indicate that there may be water quality improvements coupled with some decreases in available water for downstream uses.
Structural materials: understanding atomic scale microstructures
Marquis, E A [University of Oxford; Miller, Michael K [ORNL; Blavette, D [Universite de Rouen, France; Ringer, S. P. [University of Sydney, Australia; Sudbrack, C [Northwestern University, Evanston; Smith, G.D.W. [University of Oxford
2009-01-01T23:59:59.000Z
With the ability to locate and identify atoms in three dimensions, atom-probe tomography (APT) has revolutionized our understanding of structure-property relationships in materials used for structural applications. The atomic-scale details of clusters, second phases, and microstructural defects that control alloy properties have been investigated, providing an unprecedented level of detail on the origins of aging behavior, strength, creep, fracture toughness, corrosion, and irradiation resistance. Moreover, atomic-scale microscopy combined with atomistic simulation and theoretical modeling of material behavior can guide new alloy design. In this article, selected examples highlight how APT has led to a deeper understanding of materials structures and therefore properties, starting with the phase transformations controlling the aging and strengthening behavior of complex Al-, Fe-, and Ni-based alloys systems. The chemistry of interfaces and structural defects that play a crucial role in high-temperature strengthening, fracture, and corrosion resistance are also discussed, with particular reference to Zr- and Al-alloys and FeAl intermetallics.
Theoretical Tools for Large Scale Structure
J. R. Bond; L. Kofman; D. Pogosyan; J. Wadsley
1998-10-06T23:59:59.000Z
We review the main theoretical aspects of the structure formation paradigm which impinge upon wide angle surveys: the early universe generation of gravitational metric fluctuations from quantum noise in scalar inflaton fields; the well understood and computed linear regime of CMB anisotropy and large scale structure (LSS) generation; the weakly nonlinear regime, where higher order perturbation theory works well, and where the cosmic web picture operates, describing an interconnected LSS of clusters bridged by filaments, with membranes as the intrafilament webbing. Current CMB+LSS data favour the simplest inflation-based $\\Lambda$CDM models, with a primordial spectral index within about 5% of scale invariant and $\\Omega_\\Lambda \\approx 2/3$, similar to that inferred from SNIa observations, and with open CDM models strongly disfavoured. The attack on the nonlinear regime with a variety of N-body and gas codes is described, as are the excursion set and peak-patch semianalytic approaches to object collapse. The ingredients are mixed together in an illustrative gasdynamical simulation of dense supercluster formation.
Large-scale Intelligent Transporation Systems simulation
Ewing, T.; Canfield, T.; Hannebutte, U.; Levine, D.; Tentner, A.
1995-06-01T23:59:59.000Z
A prototype computer system has been developed which defines a high-level architecture for a large-scale, comprehensive, scalable simulation of an Intelligent Transportation System (ITS) capable of running on massively parallel computers and distributed (networked) computer systems. The prototype includes the modelling of instrumented ``smart`` vehicles with in-vehicle navigation units capable of optimal route planning and Traffic Management Centers (TMC). The TMC has probe vehicle tracking capabilities (display position and attributes of instrumented vehicles), and can provide 2-way interaction with traffic to provide advisories and link times. Both the in-vehicle navigation module and the TMC feature detailed graphical user interfaces to support human-factors studies. The prototype has been developed on a distributed system of networked UNIX computers but is designed to run on ANL`s IBM SP-X parallel computer system for large scale problems. A novel feature of our design is that vehicles will be represented by autonomus computer processes, each with a behavior model which performs independent route selection and reacts to external traffic events much like real vehicles. With this approach, one will be able to take advantage of emerging massively parallel processor (MPP) systems.
Weak Scale From the Maximum Entropy Principle
Yuta Hamada; Hikaru Kawai; Kiyoharu Kawana
2014-09-23T23:59:59.000Z
The theory of multiverse and wormholes suggests that the parameters of the Standard Model are fixed in such a way that the radiation of the $S^{3}$ universe at the final stage $S_{rad}$ becomes maximum, which we call the maximum entropy principle. Although it is difficult to confirm this principle generally, for a few parameters of the Standard Model, we can check whether $S_{rad}$ actually becomes maximum at the observed values. In this paper, we regard $S_{rad}$ at the final stage as a function of the weak scale ( the Higgs expectation value ) $v_{h}$, and show that it becomes maximum around $v_{h}={\\cal{O}}(300\\text{GeV})$ when the dimensionless couplings in the Standard Model, that is, the Higgs self coupling, the gauge couplings, and the Yukawa couplings are fixed. Roughly speaking, we find that the weak scale is given by \\begin{equation} v_{h}\\sim\\frac{T_{BBN}^{2}}{M_{pl}y_{e}^{5}},\
Weak Scale From the Maximum Entropy Principle
Hamada, Yuta; Kawana, Kiyoharu
2014-01-01T23:59:59.000Z
The theory of multiverse and wormholes suggests that the parameters of the Standard Model are fixed in such a way that the radiation of the $S^{3}$ universe at the final stage $S_{rad}$ becomes maximum, which we call the maximum entropy principle. Although it is difficult to confirm this principle generally, for a few parameters of the Standard Model, we can check whether $S_{rad}$ actually becomes maximum at the observed values. In this paper, we regard $S_{rad}$ at the final stage as a function of the weak scale ( the Higgs expectation value ) $v_{h}$, and show that it becomes maximum around $v_{h}={\\cal{O}}(300\\text{GeV})$ when the dimensionless couplings in the Standard Model, that is, the Higgs self coupling, the gauge couplings, and the Yukawa couplings are fixed. Roughly speaking, we find that the weak scale is given by \\begin{equation} v_{h}\\sim\\frac{T_{BBN}^{2}}{M_{pl}y_{e}^{5}},\
Exponential scaling limit of the single-particle Anderson model via adaptive feedback scaling
Victor Chulaevsky
2015-03-09T23:59:59.000Z
We propose a reformulation of the bootstrap version of the Multi-Scale Analysis (BMSA), developed by Germinet and Klein, to make explicit the fact that BMSA implies asymptotically exponential decay of eigenfunctions (EFs) and of EF correlators (EFCs), in the lattice Anderson models with diagonal disorder, viz. with an IID random potential. We also show that the exponential scaling limit of EFs and EFCs holds true for a class of marginal distributions of the random potential with regularity lower than H\\"older continuity of any positive order.
SITE-SCALE SATURATED ZONE TRANSPORT
S. KELLER
2004-11-03T23:59:59.000Z
This work provides a site-scale transport model for calculating radionuclide transport in the saturated zone (SZ) at Yucca Mountain, for use in the abstractions model in support of ''Total System Performance Assessment for License Application'' (TSPA-LA). The purpose of this model report is to provide documentation for the components of the site-scale SZ transport model in accordance with administrative procedure AP-SIII.10Q, Models. The initial documentation of this model report was conducted under the ''Technical Work Plan For: Saturated Zone Flow and Transport Modeling and Testing'' (BSC 2003 [DIRS 163965]). The model report has been revised in accordance with the ''Technical Work Plan For: Natural System--Saturated Zone Analysis and Model Report Integration'', Section 2.1.1.4 (BSC 2004 [DIRS 171421]) to incorporate Regulatory Integration Team comments. All activities listed in the technical work plan that are appropriate to the transport model are documented in this report and are described in Section 2.1.1.4 (BSC 2004 [DIRS 171421]). This report documents: (1) the advection-dispersion transport model including matrix diffusion (Sections 6.3 and 6.4); (2) a description and validation of the transport model (Sections 6.3 and 7); (3) the numerical methods for simulating radionuclide transport (Section 6.4); (4) the parameters (sorption coefficient, Kd ) and their uncertainty distributions used for modeling radionuclide sorption (Appendices A and C); (5) the parameters used for modeling colloid-facilitated radionuclide transport (Table 4-1, Section 6.4.2.6, and Appendix B); and (6) alternative conceptual models and their dispositions (Section 6.6). The intended use of this model is to simulate transport in saturated fractured porous rock (double porosity) and alluvium. The particle-tracking method of simulating radionuclide transport is incorporated in the finite-volume heat and mass transfer numerical analysis (FEHM) computer code, (FEHM V2.20, STN: 10086-2.20-00) (LANL 2003 [DIRS 161725]) and is described in Section 6.4 of this report. FEHM is a three-dimensional (3-D), finite-volume, finite-element, heat and mass flow-and-transport code. This report documents the features and capabilities of the site-scale transport model for calculating radionuclide transport in the SZ at Yucca Mountain in support of the TSPA-LA. Correlative flow-model calculations using FEHM are carried out and documented in the model report ''Saturated Zone Site-Scale Flow Model'' (BSC 2004 [DIRS 170037]). The velocity fields are calculated by the flow model independent of the transport processes and supplied as a part of the output package from the flow model, which is then used as inputs to the transport model. Several SZ analysis model reports provide information and data needed as feed-ins for this report, and this report in turn provides technical product outputs that feed into other SZ reports. The details of inputs to the site-scale transport model are provided in Section 4.
Quantum superintegrable system for arbitrary spin
G. Pronko
2007-09-20T23:59:59.000Z
In [1] was considered the superintegrable system which describes the magnetic dipole with spin 1/2 (neutron) in the field of linear current. Here we present its generalization for any spin which preserves superintegrability. The dynamical symmetry stays the same as it is for spin 1/2.
Symmetric Informationally Complete Measurements of Arbitrary Rank
D. M. Appleby
2006-11-27T23:59:59.000Z
There has been much interest in so-called SIC-POVMs: rank 1 symmetric informationally complete positive operator valued measures. In this paper we discuss the larger class of POVMs which are symmetric and informationally complete but not necessarily rank 1. This class of POVMs is of some independent interest. In particular it includes a POVM which is closely related to the discrete Wigner function. However, it is interesting mainly because of the light it casts on the problem of constructing rank 1 symmetric informationally complete POVMs. In this connection we derive an extremal condition alternative to the one derived by Renes et al.
On c-theorems in arbitrary dimensions
Arpan Bhattacharyya; Ling-Yan Hung; Kallol Sen; Aninda Sinha
2012-11-20T23:59:59.000Z
The dilaton action in 3+1 dimensions plays a crucial role in the proof of the a-theorem. This action arises using Wess-Zumino consistency conditions and crucially relies on the existence of the trace anomaly. Since there are no anomalies in odd dimensions, it is interesting to ask how such an action could arise otherwise. Motivated by this we use the AdS/CFT correspondence to examine both even and odd dimensional CFTs. We find that in even dimensions, by promoting the cut-off to a field, one can get an action for this field which coincides with the WZ action in flat space. In three dimensions, we observe that by finding an exact Hamilton-Jacobi counterterm, one can find a non-polynomial action which is invariant under global Weyl rescalings. We comment on how this finding is tied up with the F-theorem conjectures.
Holographic c-theorems in arbitrary dimensions
Robert C. Myers; Aninda Sinha
2011-02-20T23:59:59.000Z
We re-examine holographic versions of the c-theorem and entanglement entropy in the context of higher curvature gravity and the AdS/CFT correspondence. We select the gravity theories by tuning the gravitational couplings to eliminate non-unitary operators in the boundary theory and demonstrate that all of these theories obey a holographic c-theorem. In cases where the dual CFT is even-dimensional, we show that the quantity that flows is the central charge associated with the A-type trace anomaly. Here, unlike in conventional holographic constructions with Einstein gravity, we are able to distinguish this quantity from other central charges or the leading coefficient in the entropy density of a thermal bath. In general, we are also able to identify this quantity with the coefficient of a universal contribution to the entanglement entropy in a particular construction. Our results suggest that these coefficients appearing in entanglement entropy play the role of central charges in odd-dimensional CFT's. We conjecture a new c-theorem on the space of odd-dimensional field theories, which extends Cardy's proposal for even dimensions. Beyond holography, we were able to show that for any even-dimensional CFT, the universal coefficient appearing the entanglement entropy which we calculate is precisely the A-type central charge.
Coating thermal noise for arbitrary shaped beams
Richard O'Shaughnessy
2006-10-13T23:59:59.000Z
Advanced LIGO's sensitivity will be limited by coating noise. Though this noise depends on beam shape, and though nongaussian beams are being seriously considered for advanced LIGO, no published analysis exists to compare the quantitative thermal noise improvement alternate beams offer. In this paper, we derive and discuss a simple integral which completely characterizes the dependence of coating thermal noise on shape. The derivation used applies equally well, with minor modifications, to all other forms of thermal noise in the low-frequency limit.
Correlated-Intensity velocimeter for Arbitrary Reflector
Wang, Zhehui (Los Alamos, NM); Luo, Shengnian (Los Alamos, NM); Barnes, Cris W. (Arlington, VA); Paul, Stephen F. (West Orange, NJ)
2008-11-11T23:59:59.000Z
A velocimetry apparatus and method comprising splitting incoming reflected laser light and directing the laser light into first and second arms, filtering the laser light with passband filters in the first and second arms, one having a positive passband slope and the other having a negative passband slope, and detecting the filtered laser light via light intensity detectors following the passband filters in the first and second arms
The BCS - BEC Crossover In Arbitrary Dimensions
Zohar Nussinov; Shmuel Nussinov
2005-10-11T23:59:59.000Z
Cold atom traps and certain neutron star layers may contain fermions with separation much larger than the range of pair-wise potentials yet much shorter than the scattering length. Such systems can display {\\em universal} characteristics independent of the details of the short range interactions. In particular, the energy per particle is a fraction $\\xi$ of the Fermi energy of the free Fermion system. Our main result is that for space dimensions D smaller than two and larger than four a specific extension of this problem readily yields $\\xi=1$ for all $D \\le 2$ whereas $\\xi$ is rigorously non-positive (and potentially vanishing) for all $ D \\ge 4$. We discuss the D=3 case. A particular unjustified recipe suggests $\\xi=1/2$ in D=3.
Arbitrary Transform Telescopes: The Generalization of Interferometry
Lacki, Brian C
2015-01-01T23:59:59.000Z
The basic principle of astronomical interferometry is to derive the angular distribution of radiation in the sky from the Fourier transform of the electric field on the ground. What is so special about the Fourier transform? Nothing, it turns out. I consider the possibility of performing other transforms on the electric field with digital technology. The Fractional Fourier Transform (FrFT) is useful for interpreting observations of sources that are close to the interferometer (in the atmosphere for radio interferometers). Essentially, applying the FrFT focuses the array somewhere nearer than infinity. Combined with the other Linear Canonical Transforms, any homogeneous linear optical system with thin elements can be instantiated. The time variation of the electric field can also be decomposed into other bases besides the Fourier modes, which is especially useful for dispersed transients or quick pulses. I discuss why the Fourier basis is so commonly used, and suggest it is partly because most astrophysical so...
Modeling emergent large-scale structures of barchan dune fields
Claudin, Philippe
that cannot be readily explained by examining the dynamics at the scale of single dunes, or by appealingModeling emergent large-scale structures of barchan dune fields S. Worman , A.B. Murray , R for a range of field-scale phenomena including isolated patches of dunes and heterogeneous arrangements
Synchronization of coupled large-scale Boolean networks
Li, Fangfei, E-mail: li-fangfei@163.com [Department of Mathematics, East China University of Science and Technology, No. 130, Meilong Road, Shanghai, Shanghai 200237 (China)] [Department of Mathematics, East China University of Science and Technology, No. 130, Meilong Road, Shanghai, Shanghai 200237 (China)
2014-03-15T23:59:59.000Z
This paper investigates the complete synchronization and partial synchronization of two large-scale Boolean networks. First, the aggregation algorithm towards large-scale Boolean network is reviewed. Second, the aggregation algorithm is applied to study the complete synchronization and partial synchronization of large-scale Boolean networks. Finally, an illustrative example is presented to show the efficiency of the proposed results.
Determination of petroleum pipe scale solubility in simulated lung fluid
Cezeaux, Jason Roderick
2005-08-29T23:59:59.000Z
??????. 18 13 Teflon? filter holder (unassembled and assembled)????????.... 21 14 Dissolution experiment setup?????????????????.... 22 15 Curve showing the dissolution profile of barium released from scale... done to determine the solubility of pipe scale in human gastrointestinal fluid (Raabe 1996). Through this work and others, it has been shown that barium sulfate scale is extremely insoluble, even in harsh acidic environments. Based on these results...
UTILITY-SCALE SOLAR LOAD CONTROL Richard Perez, ASRC
Perez, Richard R.
UPEX-02 UTILITY-SCALE SOLAR LOAD CONTROL Richard Perez, ASRC Christy Herig, NREL Ruth Mac Dougall output signals. Utility-scale SLC: when considering an entire utility or a distribution system be impractical to implement. There exists, however, an effective utility- scale SLC implementation via direct
Scaling laws for immiscible displacements with capillary and viscous fingering
Lenormand, R.
1986-01-01T23:59:59.000Z
Multiphase reservoir properties are generally extrapolated from laboratory measurements, and scaling laws are based on dimensionless numbers obtained from macroscopic flow equations. This approach is not valid when fingering occurs on the macroscopic scale because of an unfavorable viscosity ratio or capillary effects. The authors describe a more general scaling technique taking this fingering into account.
Using FPGAs to Simulate Novel Datacenter Network Architectures At Scale
Asanovic, Krste
Using FPGAs to Simulate Novel Datacenter Network Architectures At Scale Zhangxi Tan Electrical permission. #12;Using FPGAs to Simulate Novel Datacenter Network Architectures At Scale by Zhangxi Tan #12;Using FPGAs to Simulate Novel Datacenter Network Architectures At Scale Copyright c 2013
Resource Efficient Computing for Warehouse-scale Datacenters
Kozyrakis, Christos
Resource Efficient Computing for Warehouse-scale Datacenters Christos Kozyrakis Computer Systems the end-users and the operators of the warehouse-scale datacenters (DCs) that host cloud services. Hence for resource efficient computing in large- scale datacenters and reviews the major challenges and research
Nano-scale Sensor Networks for Chemical Eisa Zarepour1
New South Wales, University of
Nano-scale Sensor Networks for Chemical Catalysis Eisa Zarepour1 Mahbub Hassan1 Chun Tung Chou1- searchers are now investigating the viability of nano-scale sensor networks (NSNs), which are formed natural gas to liquid fuel. Given that reliable wireless communi- cation at nano-scale is at very early
Exploring Small-Scale Meat Processing Expansions in Iowa
Debinski, Diane M.
Exploring Small-Scale Meat Processing Expansions in Iowa A Technical Report Submitted@iastate.edu #12;2Exploring Small-Scale Meat Processing Expansions in Iowa April 2011 Overview of Findings Iowa;3Exploring Small-Scale Meat Processing Expansions in Iowa April 2011 Introduction Iowa is a national leader
Algorithms for the scaling toward nanometer VLSI physical synthesis
Sze, Chin Ngai
2007-04-25T23:59:59.000Z
Along the history of Very Large Scale Integration (VLSI), we have successfully scaled down the size of transistors, scaled up the speed of integrated circuits (IC) and the number of transistors in a chip - these are just a few examples of our...
THE SCALE PROBLEM FOR OLD MAPS (and mental maps)
Tobler, Waldo
THE SCALE PROBLEM FOR OLD MAPS (and mental maps) Waldo Tobler From the theory of cartography we know that the instantaneous scale at a point on any map is always represented by the equation: dS2 /ds2 = g cos2 + 2g cos sin + g sin2 . This shows that the scale on a map is generally different in all
Scaling Up Primary Education Services in Rural India
Scaling Up Primary Education Services in Rural India Nirupam Bajpai, Ravindra H. Dholakia and Sustainable Development The Earth Institute at Columbia University www.earth.columbia.edu #12;Scaling up attempt to address two key questions in this paper: 1) In terms of state-wide scaling up of rural services
Scaling Up Primary Health Services in Rural India
Scaling Up Primary Health Services in Rural India Nirupam Bajpai, Ravindra H. Dholakia and Jeffrey and Sustainable Development The Earth Institute at Columbia University www.earth.columbia.edu #12;Scaling up Abstract We attempt to address two key questions in this paper: 1) In terms of state-wide scaling up
Engineering-Scale Liquid Cadmium Cathode Experiments
D Vaden; B. R. Westphal; S. X. Li; T. A. Johnson; K. B. Davies; D. M. Pace
2006-08-01T23:59:59.000Z
Recovery of transuranic actinides (TRU) using electrorefining is a process being investigated as part of the Department of Energy (DOE) Advanced Fuel Cycle Initiative (AFCI). TRU recovery via electrorefining onto a solid cathode is very difficult as the thermodynamic properties of transuranics are not favourable for them to remain in the metal phase while significant quantities of uranium trichloride exist in the electrolyte. Theoretically, the concentration of transuranics in the electrolyte must be approximately 106 greater than the uranium concentration in the electrolyte to produce a transuranic deposit on a solid cathode. Using liquid cadmium as a cathode contained within a LiCl-KCl eutectic salt, the co-deposition of uranium and transuranics is feasible because the activity of the transuranics in liquid cadmium is very small. Depositing transuranics and uranium in a liquid cadmium cathode (LCC) theoretically requires the concentration of transuranics to be two to three times the uranium concentration in the electrolyte. Three LCC experiments were performed in an Engineering scale elecdtrorefiner, which is located in the argon hot cell of the Fuel Conditioning Facility at the Materials and Fuels Complex on the Idaho National Laboratory. Figure 1 contains photographs of the LCC assembly in the hot cell prior to the experiment and a cadmium ingot produced after the first LCC test. Figure 1. Liquid Cadmium Cathode (left) and Cadmium Ingot (right) The primary goal of the engineering-scale liquid cadmium cathode experiments was to electrochemically collect kilogram quantities of uranium and plutonium via a LCC. The secondary goal was to examine fission product contaminations in the materials collected by the LCC. Each LCC experiment used chopped spent nuclear fuel from the blanket region of the Experimental Breeder Reactor II loaded into steel baskets as the anode with the LCC containing 26 kg of cadmium metal. In each experiment, between one and two kilograms of heavy metal was collected in the LCC after passing an integrated current over 500 amp hours. Analysis of samples from the liquid cadmium cathode ingots showed detectable amounts of transuranics and rare-earth elements. Acknowledgements K. B. Davies and D. M. Pace for the mechanical and electrical engineering needed to prepare the equipment for the engineering-scale liquid cadmium cathode experiments.
Lindeberg, Tony
Classification of Carbide Distributions using ScaleÂSpace Methods #12; Classification of CarbideÂstructure of the steel, which in turn influences the mechanical properties. SpecifiÂ cally, the distribution of carbide is essential, since cracks propagate within the carbide agglomerations. In current quality control
Large-scale biomass plantings in Minnesota: Scale-up and demonstration projects in perspective
Kroll, T. [Minnesota Univ., St. Paul, MN (United States). Forestry Div.; Downing, M. [Oak Ridge National Lab., TN (United States)
1995-09-01T23:59:59.000Z
Scale-up projects are an important step toward demonstration and commercialization of woody biomass because simply planting extensive acreage of hybrid poplar will not develop markets. Project objectives are to document the cost to plant and establish, and effort needed to monitor and maintain woody biomass on agricultural land. Conversion technologies and alternative end-uses are examined in a larger framework in order to afford researchers and industrial partners information necessary to develop supply and demand on a local or regional scale. Likely to be determined are risk factors of crop failure and differences between establishment of research plots and agricultural scale field work. Production economics are only one consideration in understanding demonstration and scale-up. Others are environmental, marketing, industrial, and agricultural in nature. Markets for energy crops are only beginning to develop. Although information collected as a result of planting up to 5000 acres of hybrid poplar in central Minnesota will not necessarily be transferable to other areas of the country, a national perspective will come from development of regional markets for woody and herbaceous crops. Several feedstocks, with alternative markets in different regions will eventually comprise the entire picture of biofuels feedstock market development. Current projects offer opportunities to learn about the complexity and requirements that will move biomass from research and development to actual market development. These markets may include energy and other end-uses such as fiber.
Kemner, Ken
generation: VisIt, CUBIT-MOAB & Gambit. High order spectral element method (locally structured, globally unstructured) Highly scalable variant of Nekton ( first commercial distributed memory computer code marketed/O Parallel Scaling #12;Most Efficient Problem Size ? Increase core utility by threading. Minimize resource
Linearly Scaling 3D Fragment Method for Large-Scale Electronic Structure Calculations
Wang, Lin-Wang; Lee, Byounghak; Shan, Hongzhang; Zhao, Zhengji; Meza, Juan; Strohmaier, Erich; Bailey, David H.
2008-07-01T23:59:59.000Z
We present a new linearly scaling three-dimensional fragment (LS3DF) method for large scale ab initio electronic structure calculations. LS3DF is based on a divide-and-conquer approach, which incorporates a novel patching scheme that effectively cancels out the artificial boundary effects due to the subdivision of the system. As a consequence, the LS3DF program yields essentially the same results as direct density functional theory (DFT) calculations. The fragments of the LS3DF algorithm can be calculated separately with different groups of processors. This leads to almost perfect parallelization on tens of thousands of processors. After code optimization, we were able to achieve 35.1 Tflop/s, which is 39percent of the theoretical speed on 17,280 Cray XT4 processor cores. Our 13,824-atom ZnTeO alloy calculation runs 400 times faster than a direct DFTcalculation, even presuming that the direct DFT calculation can scale well up to 17,280 processor cores. These results demonstrate the applicability of the LS3DF method to material simulations, the advantage of using linearly scaling algorithms over conventional O(N3) methods, and the potential for petascale computation using the LS3DF method.
O'Brien, Travis A.; Li, Fuyu; Collins, William D.; Rauscher, Sara; Ringler, Todd; Taylor, Mark; Hagos, Samson M.; Leung, Lai-Yung R.
2013-12-01T23:59:59.000Z
We use observations of robust scaling behavior in clouds and precipitation to derive constraints on how partitioning of precipitation should change with model resolution. Our analysis indicates that 90-99% of stratiform precipitation should occur in clouds that are resolvable by contemporary climate models (e.g., with 200 km or finer grid spacing). Furthermore, this resolved fraction of stratiform precipitation should increase sharply with resolution, such that effectively all stratiform precipitation should be resolvable above scales of ~50 km. We show that the Community Atmosphere Model (CAM) and the Weather Research and Forecasting (WRF) model also exhibit the robust cloud and precipitation scaling behavior that is present in observations, yet the resolved fraction of stratiform precipitation actually decreases with increasing model resolution. A suite of experiments with multiple dynamical cores provides strong evidence that this `scale-incognizant' behavior originates in one of the CAM4 parameterizations. An additional set of sensitivity experiments rules out both convection parameterizations, and by a process of elimination these results implicate the stratiform cloud and precipitation parameterization. Tests with the CAM5 physics package show improvements in the resolution-dependence of resolved cloud fraction and resolved stratiform precipitation fraction.
The case against scaling defect models of cosmic structure formation
Andreas Albrecht; Richard A. Battye; James Robinson
1997-07-11T23:59:59.000Z
We calculate predictions from defect models of structure formation for both the matter and Cosmic Microwave Background (CMB) over all observable scales. Our results point to a serious problem reconciling the observed large-scale galaxy distribution with the COBE normalization, a result which is robust for a wide range of defect parameters. We conclude that standard scaling defect models are in conflict with the data, and show how attempts to resolve the problem by considering non-scaling defects would require radical departures from the standard scaling picture.
Scattering and; Delay, Scale, and Sum Migration
Lehman, S K
2011-07-06T23:59:59.000Z
How do we see? What is the mechanism? Consider standing in an open field on a clear sunny day. In the field are a yellow dog and a blue ball. From a wave-based remote sensing point of view the sun is a source of radiation. It is a broadband electromagnetic source which, for the purposes of this introduction, only the visible spectrum is considered (approximately 390 to 750 nanometers or 400 to 769 TeraHertz). The source emits an incident field into the known background environment which, for this example, is free space. The incident field propagates until it strikes an object or target, either the yellow dog or the blue ball. The interaction of the incident field with an object results in a scattered field. The scattered field arises from a mis-match between the background refractive index, considered to be unity, and the scattering object refractive index ('yellow' for the case of the dog, and 'blue' for the ball). This is also known as an impedance mis-match. The scattering objects are referred to as secondary sources of radiation, that radiation being the scattered field which propagates until it is measured by the two receivers known as 'eyes'. The eyes focus the measured scattered field to form images which are processed by the 'wetware' of the brain for detection, identification, and localization. When time series representations of the measured scattered field are available, the image forming focusing process can be mathematically modeled by delayed, scaled, and summed migration. This concept of optical propagation, scattering, and focusing have one-to-one equivalents in the acoustic realm. This document is intended to present the basic concepts of scalar scattering and migration used in wide band wave-based remote sensing and imaging. The terms beamforming and (delayed, scaled, and summed) migration are used interchangeably but are to be distinguished from the narrow band (frequency domain) beamforming to determine the direction of arrival of a signal, and seismic migration in which wide band time series are shifted but not to form images per se. Section 3 presents a mostly graphically-based motivation and summary of delay, scale, and sum beamforming. The model for incident field propagation in free space is derived in Section 4 under specific assumptions. General object scattering is derived in Section 5 and simplified under the Born approximation in Section 6. The model of this section serves as the basis in the derivation of time-domain migration. The Foldy-Lax, full point scatterer scattering, method is derived in Section 7. With the previous forward models in hand, delay, scale, and sum beamforming is derived in Section 8. Finally, proof-of-principle experiments are present in Section 9.
Time-scale for accretion of matter
F. Combes
1998-11-09T23:59:59.000Z
Mass accretion is the key factor for evolution of galaxies. It can occur through secular evolution, when gas in the outer parts is driven inwards by dynamical instabilities, such as spirals or bars. This secular evolution proceeds very slowly when spontaneous, and can be accelerated when triggered by companions. Accretion can also occur directly through merging of small companions, or more violent interaction and coalescence. We discuss the relative importance of both processes, their time-scale and frequency along a Hubble time. Signatures of both processes can be found in the Milky Way. It is however likely that our Galaxy had already gathered the bulk of its mass about 8-10 Gyr ago, as is expected in hierarchical galaxy formation scenarios.
Filament velocity scaling laws for warm ions
Manz, P. [Physik-Department E28, Technische Universität München, James-Franck-Str. 1, 85748 Garching (Germany) [Physik-Department E28, Technische Universität München, James-Franck-Str. 1, 85748 Garching (Germany); Max-Planck-Institut für Plasmaphysik, EURATOM Assoziation, Boltzmannstr. 2, 85748 Garching (Germany); Carralero, D.; Birkenmeier, G.; Müller, H. W.; Scott, B. D. [Max-Planck-Institut für Plasmaphysik, EURATOM Assoziation, Boltzmannstr. 2, 85748 Garching (Germany)] [Max-Planck-Institut für Plasmaphysik, EURATOM Assoziation, Boltzmannstr. 2, 85748 Garching (Germany); Müller, S. H. [Center for Momentum Transport and Flow Organization, University of California at San Diego, San Diego 92093 (United States)] [Center for Momentum Transport and Flow Organization, University of California at San Diego, San Diego 92093 (United States); Fuchert, G. [Insitut für Grenzflächenverfahrenstechnik und Plasmatechnologie, Universität Stuttgart, 70569 Stuttgart (Germany)] [Insitut für Grenzflächenverfahrenstechnik und Plasmatechnologie, Universität Stuttgart, 70569 Stuttgart (Germany); Stroth, U. [Max-Planck-Institut für Plasmaphysik, EURATOM Assoziation, Boltzmannstr. 2, 85748 Garching (Germany) [Max-Planck-Institut für Plasmaphysik, EURATOM Assoziation, Boltzmannstr. 2, 85748 Garching (Germany); Physik-Department E28, Technische Universität München, James-Franck-Str. 1, 85748 Garching (Germany)
2013-10-15T23:59:59.000Z
The dynamics of filaments or blobs in the scrape-off layer of magnetic fusion devices are studied by magnitude estimates of a comprehensive drift-interchange-Alfvén fluid model. The standard blob models are reproduced in the cold ion case. Even though usually neglected, in the scrape-off layer, the ion temperature can exceed the electron temperature by an order of magnitude. The ion pressure affects the dynamics of filaments amongst others by adding up to the interchange drive and the polarisation current. It is shown how both effects modify the scaling laws for filament velocity in dependence of its size. Simplifications for experimentally relevant limit regimes are given. These are the sheath dissipation, collisional, and electromagnetic regime.
Control of scale in flue gas scrubbers
Thomas, P.A.; Dewitt-Dick, D.B.
1987-06-02T23:59:59.000Z
This patent describes a flue gas desulfurization system in which sulfur dioxide-containing flue gas is passed in countercurrent flow with an aqueous calcium-bearing scrubbing liquor whereby the sulfur dioxide is removed from the flue gas by being absorbed by the scrubbing liquor and converted to calcium sulfite and/or calcium sulfate. The improvement of minimizing the formation of calcium scale on the surfaces of the system comprises maintaining in the scrubbing liquor about 0.1-25 ppm of a 1:1 diisobutylene-maleic anhydride copolymer having an average molecular weight of 11000. The copolymer is incorporated in the scrubbing liquor as a 10-15% aqueous dispersion.