Powered by Deep Web Technologies
Note: This page contains sample records for the topic "aquifer storage field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network (OSTI)

using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"ings of Aquifer Thermal Energy Storage Workshop, Lawrence

Tsang, C.-F.

2011-01-01T23:59:59.000Z

2

AQUIFER THERMAL ENERGY STORAGE. A NUMERICAL SIMULATION OF AUBURN UNIVERSITY FIELD EXPERIMENTS  

E-Print Network (OSTI)

Auburn University Thermal Energy Storage , LBL No. 10194.Mathematical modeling of thermal energy storage in aquifers,of Current Aquifer Thermal Energy Storage Programs (in

Tsang, Chin Fu

2013-01-01T23:59:59.000Z

3

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network (OSTI)

and Zakhidov, 1971. "Storage of Solar Energy in a Sandy-Aquifer Storage of Hot Water from Solar Energy Collectors,"with solar energy systems, aquifer energy storage provides a

Tsang, C.-F.

2011-01-01T23:59:59.000Z

4

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network (OSTI)

Zakhidov, 1971. "Storage of Solar Energy in a Sandy-Gravelwith solar energy systems, aquifer energy storage provides aAquifer Storage of Hot Water from Solar Energy Collectors,"

Tsang, C.-F.

2011-01-01T23:59:59.000Z

5

Feasibility of Aquifer Storage Recovery for the Mustang, Oklahoma Well Field.  

E-Print Network (OSTI)

??The purpose of this study was to determine the economic and geochemical feasibility of utilizing aquifer storage recovery (ASR) technology to store water in the… (more)

Wright, Krishna E.

2007-01-01T23:59:59.000Z

6

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

Survey of Thermal Energy Storage in Aquifers Coupled withconcept of thermal energy storage in aquifers was suggestedAnnual Thermal Energy Storage Contractors' Information

Authors, Various

2011-01-01T23:59:59.000Z

7

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

and J. Schwarz, Survey of Thermal Energy Storage in AquifersLow Temperature Thermal Energy Storage Program of Oak RidgeAquifers for Seasonal Thermal Energy Storage: An Overview of

Authors, Various

2011-01-01T23:59:59.000Z

8

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

Survey of Thermal Energy Storage in Aquifers Coupled withLow Temperature Thermal Energy Storage Program of Oak Ridgefor Seasonal Thermal Energy Storage: An Overview of the DOE-

Authors, Various

2011-01-01T23:59:59.000Z

9

ENERGY STORAGE IN AQUIFERS - - A SURVEY OF RECENT THEORETICAL STUDIES  

E-Print Network (OSTI)

temperature underground thermal energy storage. In Proc. Th~al modeling of thermal energy storage in aquifers. In ~~-Mathematical modeling; thermal energy storage; aquifers;

Tsang, Chin Fu

2013-01-01T23:59:59.000Z

10

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network (OSTI)

Zakhidov, R. A. 8 1971, Storage of solar energy in a sandy-aquifers for heat storage, solar captors for heat productionthermal energy storage for cogeneration and solar systems,

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

11

EXPERIMENTAL AND THEORETICAL STUDIES OF THERMAL ENERGY STORAGE IN AQUIFERS  

E-Print Network (OSTI)

In Proceed- ings of Thermal Energy Storage in Aquifers Work-Mathematical Modeling of Thermal Energy storage in Aquifers.In Proceed- ings of Thermal Energy Storage in Aquifers Work-

Tsang, Chin Fu

2011-01-01T23:59:59.000Z

12

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

HAUSZ, W. , 1977. "Seasonal Storage in District Heating,"District Heating, July-August-September, 1977, pp. 5-11.aquifer storage for district heating and cooling. C. W.

Authors, Various

2011-01-01T23:59:59.000Z

13

THEORETICAL STUDIES IN LONG-TERM THERMAL ENERGY STORAGE IN AQUIFERS  

E-Print Network (OSTI)

Mathematical Modeling of Thermal Energy Storage in Aquifers.of Aquifer Thermal Energy Storage Workshop, LawrenceF.P. "Thermal Energy Storage in a Confined Aquifer- Second

Tsang, C.F.

2013-01-01T23:59:59.000Z

14

SEASONAL THERMAL ENERGY STORAGE IN AQUIFERS-MATHEMATICAL MODELING STUDIES IN 1979  

E-Print Network (OSTI)

of Aquifer Thermal Energy Storage." Lawrence BerkeleyP, Andersen, "'rhermal Energy Storage in a Confined Aquifer~University Thermal Energy Storage Experiment." Lawrence

Tsang, Chin Fu

2013-01-01T23:59:59.000Z

15

THEORETICAL STUDIES IN LONG-TERM THERMAL ENERGY STORAGE IN AQUIFERS  

E-Print Network (OSTI)

Mathematical Modeling of Thermal Energy Storage in Aquifers.of Aquifer Thermal Energy Storage Workshop, Lawrencewithin the Seasonal Thermal Energy Storage program managed

Tsang, C.F.

2013-01-01T23:59:59.000Z

16

SEASONAL THERMAL ENERGY STORAGE IN AQUIFERS-MATHEMATICAL MODELING STUDIES IN 1979  

E-Print Network (OSTI)

of Aquifer Thermal Energy Storage." Lawrence Berkeleythe Auburn University Thermal Energy Storage Experiment."LBL~l0208 SEASONAL THERMAL ENERGY STORAGE IN AQUIFERS~

Tsang, Chin Fu

2013-01-01T23:59:59.000Z

17

Groundwater contaminant interaction with aquifer thermal energy storage systems on the scale of a large urban area.  

E-Print Network (OSTI)

??This research thesis attempts to answer the question if a pathline analysis can be applied to a transient flow field where aquifer thermal energy storage… (more)

Lieshout, R. van

2013-01-01T23:59:59.000Z

18

Environmental risk assessment for aquifer thermal energy storage  

SciTech Connect

This report has been prepared by Pacific Northwest Laboratory at the request of the International Energy Agency (IEA). The US Department of Energy represents the United States in the IEA for Annex IV, the IEA task for research and development in aquifer thermal energy storage (ATES). Installation and operation of an ATES system is necessarily intrusive to ground-water resources. Therefore, governmental authorities usually require an environmental risk assessment to be performed before permission to construct an ATES system is granted. Writing an accurate statement of risk presupposes a knowledge of aquifer and ground-water characteristics and that an engineering feasibility study has taken place. Effective and logical presentation of the results of the risk assessment can expedite the grant of approval. Introductory remarks should address questions regarding why the ATES project has been proposed, what it is expected to accomplish, and what the expected benefits are. Next, the system configuration, including the aquifer, ATES plant, and well field, should be described in terms of size and location, design components, and thermal and hydraulic capacity. The final element of system design, the predicted annual operating cycle, needs to be described in sufficient detail to allow the reviewer to appreciate the net hydraulic, thermal, and hydrochemical effects imposed on the aquifer. Risks may be environmental or legal. Only after a reviewer has been introduced to the proposed system's design, operation, and scale can risk issues can be identified and weighed against the benefits of the proposed ATES system.

Hall, S.H.

1993-01-01T23:59:59.000Z

19

Environmental risk assessment for aquifer thermal energy storage  

SciTech Connect

This report has been prepared by Pacific Northwest Laboratory at the request of the International Energy Agency (IEA). The US Department of Energy represents the United States in the IEA for Annex IV, the IEA task for research and development in aquifer thermal energy storage (ATES). Installation and operation of an ATES system is necessarily intrusive to ground-water resources. Therefore, governmental authorities usually require an environmental risk assessment to be performed before permission to construct an ATES system is granted. Writing an accurate statement of risk presupposes a knowledge of aquifer and ground-water characteristics and that an engineering feasibility study has taken place. Effective and logical presentation of the results of the risk assessment can expedite the grant of approval. Introductory remarks should address questions regarding why the ATES project has been proposed, what it is expected to accomplish, and what the expected benefits are. Next, the system configuration, including the aquifer, ATES plant, and well field, should be described in terms of size and location, design components, and thermal and hydraulic capacity. The final element of system design, the predicted annual operating cycle, needs to be described in sufficient detail to allow the reviewer to appreciate the net hydraulic, thermal, and hydrochemical effects imposed on the aquifer. Risks may be environmental or legal. Only after a reviewer has been introduced to the proposed system`s design, operation, and scale can risk issues can be identified and weighed against the benefits of the proposed ATES system.

Hall, S.H.

1993-01-01T23:59:59.000Z

20

Modeling of thermal energy storage in groundwater aquifers  

E-Print Network (OSTI)

MODELING OF THERMAL ENERGY STORAGE IN GROUNDWATER AQUIFERS A Thesis by DAVID BRYAN REED Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1979... ABSTRACT Modeling of Thermal Energy Storage in Groundwater Aquifers. (December 1979) David Bryan Reed, B. S. , Texas A&M University Chairman of Advisory Committee: Dr. Donald L. Reddell Solar energy is a promising alternate energy source for space heat...

Reed, David Bryan

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "aquifer storage field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

1974. Geothermal Storage of Solar Energy, in "Governors1976. "Geothermal Storage of Solar Energy for Electric PowerUnderground Longterm Storage of Solar Energy - An Overview,"

Authors, Various

2011-01-01T23:59:59.000Z

22

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

and R.A. Zakhidov, "Storage of Solar Energy in a Sandy-Heat as Related to the Storage of Solar Energy. Sharing the1974. Geothermal Storage of Solar Energy, in "Governors

Authors, Various

2011-01-01T23:59:59.000Z

23

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network (OSTI)

R. A. 8 1971, Storage of solar energy in a sandy-gravelthermal energy storage for cogeneration and solar systems,storage, solar captors for heat production 9 and heat pumps for energy

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

24

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

Scale Thermal Energy Storage for Cogeneration and Solarsolar captors, thermal effluents, low cost energy duringSeale Thermal Energy Storage for Cogeneration and Solar

Authors, Various

2011-01-01T23:59:59.000Z

25

Saving for dry days: Aquifer storage and recovery may help  

E-Print Network (OSTI)

tx H2O | pg. 2 Saving for dry days Story by Kathy Wythe tx H2O | pg. 3 Aquifer storage and recovery may help With reoccurring droughts and growing population, Texas will always be looking for better ways to save or use water. Some water... suppliers in Texas are turning to aquifer storage and recovery. During the dry summer of 2008, the San Antonio Water System (SAWS) had enough assets in its ?bank? (of water) to make with- drawals to meet the needs of its customers. The water bank...

Wythe, Kathy

2008-01-01T23:59:59.000Z

26

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

FUTURE CONSIDERATIONS FOR CAVERN STORAGE Some of the topicsgravel or sand into the cavern in order to reduce the volumeAbove ground equipment for cavern storage opera- tions.

Authors, Various

2011-01-01T23:59:59.000Z

27

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

seasonal storage in phase change material, by collecting andof incorporating phase-change materials (PCM) in con- crete

Authors, Various

2011-01-01T23:59:59.000Z

28

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

F. J. Molz. Subsurface Waste Heat Storage, Experimentalfor land disposal of waste heat and waste water. Inst. forfor land disposal of waste heat and waste water. Inst. for

Authors, Various

2011-01-01T23:59:59.000Z

29

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

III, "Man-made Geothermal Energy," presented at MiamiA.C.Meyers III; "Manmade Geothermal Energy", Proc. of Miamiin soils extraction of geothermal energy heat storage in the

Authors, Various

2011-01-01T23:59:59.000Z

30

Aquifer thermal energy storage reference manual: seasonal thermal energy storage program  

SciTech Connect

This is the reference manual of the Seasonal Thermal Energy Storage (STES) Program, and is the primary document for the transfer of technical information of the STES Program. It has been issued in preliminary form and will be updated periodically to include more technical data and results of research. As the program progresses and new technical data become available, sections of the manual will be revised to incorporate these data. This primary document contains summaries of: the TRW, incorporated demonstration project at Behtel, Alaska, Dames and Moore demonstration project at Stony Brook, New York, and the University of Minnesota demonstration project at Minneapolis-St. Paul, Minnesota; the technical support programs including legal/institutional assessment; economic assessment; environmental assessment; field test facilities; a compendia of existing information; numerical simulation; and non-aquifer STES concepts. (LCL)

Prater, L.S.

1980-01-01T23:59:59.000Z

31

Designing an Optimal Urban Community Mix for an Aquifer Thermal Energy Storage System.  

E-Print Network (OSTI)

??This research examined what mix of building types result in the most efficient use of a technology known as Aquifer Thermal Energy Storage (ATES). Hourly… (more)

Zizzo, Ryan

2010-01-01T23:59:59.000Z

32

Estimating Plume Volume for Geologic Storage of CO2 in Saline Aquifers  

SciTech Connect

Typically, when a new subsurface flow and transport problem is first being considered, very simple models with a minimal number of parameters are used to get a rough idea of how the system will evolve. For a hydrogeologist considering the spreading of a contaminant plume in an aquifer, the aquifer thickness, porosity, and permeability might be enough to get started. If the plume is buoyant, aquifer dip comes into play. If regional groundwater flow is significant or there are nearby wells pumping, these features need to be included. Generally, the required parameters tend to be known from pre-existing studies, are parameters that people working in the field are familiar with, and represent features that are easy to explain to potential funding agencies, regulators, stakeholders, and the public. The situation for geologic storage of carbon dioxide (CO{sub 2}) in saline aquifers is quite different. It is certainly desirable to do preliminary modeling in advance of any field work since geologic storage of CO{sub 2} is a novel concept that few people have much experience with or intuition about. But the parameters that control CO{sub 2} plume behavior are a little more daunting to assemble and explain than those for a groundwater flow problem. Even the most basic question of how much volume a given mass of injected CO{sub 2} will occupy in the subsurface is non-trivial. However, with a number of simplifying assumptions, some preliminary estimates can be made, as described below. To make efficient use of the subsurface storage volume available, CO{sub 2} density should be large, which means choosing a storage formation at depths below about 800 m, where pressure and temperature conditions are above the critical point of CO{sub 2} (P = 73.8 bars, T = 31 C). Then CO{sub 2} will exist primarily as a free-phase supercritical fluid, while some CO{sub 2} will dissolve into the aqueous phase.

Doughty, Christine

2008-07-11T23:59:59.000Z

33

Relationship of regional water quality to aquifer thermal energy storage  

SciTech Connect

Ground-water quality and associated geologic characteristics may affect the feasibility of aquifer thermal energy storage (ATES) system development in any hydrologic region. This study sought to determine the relationship between ground-water quality parameters and the regional potential for ATES system development. Information was collected from available literature to identify chemical and physical mechanisms that could adversely affect an ATES system. Appropriate beneficiation techniques to counter these potential geochemical and lithologic problems were also identified through the literature search. Regional hydrology summaries and other sources were used in reviewing aquifers of 19 drainage regions in the US to determine generic geochemical characteristics for analysis. Numerical modeling techniques were used to perform geochemical analyses of water quality from 67 selected aquifers. Candidate water resources regions were then identified for exploration and development of ATES. This study identified six principal mechanisms by which ATES reservoir permeability may be impaired: (1) particulate plugging, (2) chemical precipitation, (3) liquid-solid reactions, (4) formation disaggregation, (5) oxidation reactions, and (6) biological activity. Specific proven countermeasures to reduce or eliminate these effects were found. Of the hydrologic regions reviewed, 10 were identified as having the characteristics necessary for ATES development: (1) Mid-Atlantic, (2) South-Atlantic Gulf, (3) Ohio, (4) Upper Mississippi, (5) Lower Mississippi, (6) Souris-Red-Rainy, (7) Missouri Basin, (8) Arkansas-White-Red, (9) Texas-Gulf, and (10) California.

Allen, R.D.

1983-11-01T23:59:59.000Z

34

Aquifer thermal energy storage costs with a seasonal heat source.  

SciTech Connect

The cost of energy supplied by an aquifer thermal energy storage (ATES) system from a seasonal heat source was investigated. This investigation considers only the storage of energy from a seasonal heat source. Cost estimates are based upon the assumption that all of the energy is stored in the aquifer before delivery to the end user. Costs were estimated for point demand, residential development, and multidistrict city ATES systems using the computer code AQUASTOR which was developed specifically for the economic analysis of ATES systems. In this analysis the cost effect of varying a wide range of technical and economic parameters was examined. Those parameters exhibiting a substantial influence on ATES costs were: cost of purchased thermal energy; cost of capital; source temperature; system size; transmission distance; and aquifer efficiency. ATES-delivered energy costs are compared with the costs of hot water heated by using electric power or fuel-oils. ATES costs are shown as a function of purchased thermal energy. Both the potentially low delivered energy costs available from an ATES system and its strong cost dependence on the cost of purchased thermal energy are shown. Cost components for point demand and multi-district city ATES systems are shown. Capital and thermal energy costs dominate. Capital costs, as a percentage of total costs, increase for the multi-district city due to the addition of a large distribution system. The proportion of total cost attributable to thermal energy would change dramatically if the cost of purchased thermal energy were varied. It is concluded that ATES-delivered energy can be cost competitive with conventional energy sources under a number of economic and technical conditions. This investigation reports the cost of ATES under a wide range of assumptions concerning parameters important to ATES economics. (LCL)

Reilly, R.W.; Brown, D.R.; Huber, H.D.

1981-12-01T23:59:59.000Z

35

MULTIPLE WELL VARIABLE RATE WELL TEST ANALYSIS OF DATA FROM THE AUBURN UNIVERSITY THERMAL ENERGY STORAGE PROGRAM  

E-Print Network (OSTI)

experimental Thermal energy storage in confined aquifers. ©lAUBURN UNIVERSITY THERMAL ENERGY STORAGE PROGRM1 Christineseries of aquifer thermal energy storage field experiments.

Doughty, Christine

2012-01-01T23:59:59.000Z

36

Regional assessment of aquifers for thermal energy storage. Volume 1. Regions 1 through 6  

SciTech Connect

This volume contains information on the geologic and hydrologic framework, major aquifers, aquifers which are suitable and unsuitable for annual thermal energy storage (ATES) and the ATES potential of the following regions of the US: the Western Mountains; Alluvial Basins; Columbia LAVA Plateau; Colorado Plateau; High Plains; and Glaciated Central Region. (LCL)

Not Available

1981-06-01T23:59:59.000Z

37

Regional assessment of aquifers for thermal-energy storage. Volume 2. Regions 7 through 12  

SciTech Connect

This volume contains information on the geologic and hydrologic framework, major aquifers, aquifers which are suitable and unsuitable for annual thermal energy storage (ATES) and the ATES potential of the following regions of the US: Unglaciated Central Region; Glaciated Appalachians, Unglaciated Appalachians; Coastal Plain; Hawaii; and Alaska. (LCL)

Not Available

1981-06-01T23:59:59.000Z

38

A parametric and economic investigation of an energy system utilizing aquifer storage  

E-Print Network (OSTI)

-Chairman of Committee) (Co-Chairman of Committee) (He d. of Department (Member) e ber) December 1980 ABSTRACT A Parametric and Economic Investigation of an Energy System Utilizing Aquifer Storage. (Dec. 1980) Stephen Gilbert Tostengard B. S. , Texas Lutheran... College Co-Chairmen of Advisory Committee: Or. Richard R. Davison Dr. William B. Harris Aquifers may be used as long-term storage facilities i'or heated or chilled water. Computer models were used to simulate the thermal response of an aquafer...

Tostengard, Stephen Gilbert

1980-01-01T23:59:59.000Z

39

Critical analysis of plume containment modeling in a thin heterogeneous unconfined aquifer: application to a bulk fuel storage terminal  

E-Print Network (OSTI)

The reported hydrocarbon contamination and subsequent consultant work at a bulk fuel storage terminal has instigated the need to critically analyze modeling techniques in thin, heterogeneous, unconfined aquifers. This study provides an aquifer...

Mejia, Karl Edward

1997-01-01T23:59:59.000Z

40

Enhanced CO2 Storage and Sequestration in Deep Saline Aquifers by Nanoparticles: Commingled Disposal of Depleted Uranium and CO2  

Science Journals Connector (OSTI)

Geological storage of anthropogenic CO2 emissions in deep saline aquifers has recently received tremendous attention in the scientific literature. Injected buoyant CO2 accumulates at the top part of the aquifer u...

Farzam Javadpour; Jean-Philippe Nicot

2011-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "aquifer storage field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

University of Minnesota aquifer thermal energy storage (ATES) project report on the second long-term cycle  

SciTech Connect

The technical feasibility of high-temperature [>100{degrees}C (>212{degrees}F)] aquifer thermal energy storage (ATES) in a deep, confined aquifer was tested in a series of experimental cycles at the University of Minnesota`s St. Paul field test facility (FTF). This report describes the second long-term cycle (LT2), which was conducted from October 1986 through April 1987. Heat recovery; operational experience; and thermal, chemical, hydrologic, and geologic effects are reported. Approximately 61% of the 9.21 GWh of energy added to the 9.38 {times} 10{sup 4} m{sup 3} of ground water stored during LT2 was recovered. Temperatures of the water stored and recovered averaged 118{degrees}C (244{degrees}F) and 85{degrees}C (185{degrees}F), respectively. Results agreed with previous cycles conducted at the FTF. System operation during LT2 was nearly as planned. Operational experience from previous cycles at the FTF was extremely helpful. Ion-exchange softening of the heated and stored aquifer water prevented scaling in the system heat exchangers and the storage well, and changed the major-ion chemistry of the stored water. Sodium bicarbonate replaced magnesium and calcium bicarbonate as primary ions in the softened water. Water recovered form storage was approximately at equilibrium with respect to dissolved ions. Silica, calcium, and magnesium were significantly higher in recovered water than in injected water. Sodium was significantly lower in water recovered than in water stored.

Hoyer, M.C.; Hallgren, J.P.; Lauer, J.L.; Walton, M.; Eisenreich, S.J.; Howe, J.T.; Splettstoesser, J.F. [Minnesota Geological Survey, St. Paul, MN (United States)

1991-12-01T23:59:59.000Z

42

University of Minnesota aquifer thermal energy storage (ATES) project report on the second long-term cycle  

SciTech Connect

The technical feasibility of high-temperature (>100{degrees}C (>212{degrees}F)) aquifer thermal energy storage (ATES) in a deep, confined aquifer was tested in a series of experimental cycles at the University of Minnesota's St. Paul field test facility (FTF). This report describes the second long-term cycle (LT2), which was conducted from October 1986 through April 1987. Heat recovery; operational experience; and thermal, chemical, hydrologic, and geologic effects are reported. Approximately 61% of the 9.21 GWh of energy added to the 9.38 {times} 10{sup 4} m{sup 3} of ground water stored during LT2 was recovered. Temperatures of the water stored and recovered averaged 118{degrees}C (244{degrees}F) and 85{degrees}C (185{degrees}F), respectively. Results agreed with previous cycles conducted at the FTF. System operation during LT2 was nearly as planned. Operational experience from previous cycles at the FTF was extremely helpful. Ion-exchange softening of the heated and stored aquifer water prevented scaling in the system heat exchangers and the storage well, and changed the major-ion chemistry of the stored water. Sodium bicarbonate replaced magnesium and calcium bicarbonate as primary ions in the softened water. Water recovered form storage was approximately at equilibrium with respect to dissolved ions. Silica, calcium, and magnesium were significantly higher in recovered water than in injected water. Sodium was significantly lower in water recovered than in water stored.

Hoyer, M.C.; Hallgren, J.P.; Lauer, J.L.; Walton, M.; Eisenreich, S.J.; Howe, J.T.; Splettstoesser, J.F. (Minnesota Geological Survey, St. Paul, MN (United States))

1991-12-01T23:59:59.000Z

43

,"Underground Natural Gas Storage - Storage Fields Other than...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Underground Natural Gas Storage - Storage Fields Other than Salt Caverns",8,"Monthly","102014","115...

44

Hydrogeophysical methods for analyzing aquifer storage and recovery systems  

E-Print Network (OSTI)

1995. Hydrogeology of the Dammam formation in Umm GudairGeology and hydrogeology of the Dammam formation in Kuwait.freshwater storage in the Dammam formation, Kuwait. Arabian

Minsley, B.J.

2010-01-01T23:59:59.000Z

45

Physical and Economic Potential of Geological CO2 Storage in Saline Aquifers  

Science Journals Connector (OSTI)

Physical and Economic Potential of Geological CO2 Storage in Saline Aquifers ... To put this result in context, a minimum of approximately 0.7 km3 of reservoir volume at the optimal depth would be required to store the emissions from a typical 500 MW coal plant capturing 7389 tons of CO2 per day for 20 years with an 80% capacity factor (2). ... Since our analysis is performed on a single-well basis, though, we do not account for possible economies of scale in a multiwell system. ...

Jordan K. Eccles; Lincoln Pratson; Richard G. Newell; Robert B. Jackson

2009-02-06T23:59:59.000Z

46

Optimizing energy storage and reproduction for Aquifer Thermal Energy Storage. A scientific approach in enhancing ATES system performance at Achmea Apeldoorn through application of smart extraction and infiltration strategies.  

E-Print Network (OSTI)

??In the subsurface beneath the campus of Apeldoorn Achmea, the groundwater flow velocity is high. This causes a problem for its Aquifer Thermal Energy Storage… (more)

Groot, J.H.

2014-01-01T23:59:59.000Z

47

Sensitivity study of CO2 storage capacity in brine aquifers withclosed boundaries: Dependence on hydrogeologic properties  

SciTech Connect

In large-scale geologic storage projects, the injected volumes of CO{sub 2} will displace huge volumes of native brine. If the designated storage formation is a closed system, e.g., a geologic unit that is compartmentalized by (almost) impermeable sealing units and/or sealing faults, the native brine cannot (easily) escape from the target reservoir. Thus the amount of supercritical CO{sub 2} that can be stored in such a system depends ultimately on how much pore space can be made available for the added fluid owing to the compressibility of the pore structure and the fluids. To evaluate storage capacity in such closed systems, we have conducted a modeling study simulating CO{sub 2} injection into idealized deep saline aquifers that have no (or limited) interaction with overlying, underlying, and/or adjacent units. Our focus is to evaluate the storage capacity of closed systems as a function of various reservoir parameters, hydraulic properties, compressibilities, depth, boundaries, etc. Accounting for multi-phase flow effects including dissolution of CO{sub 2} in numerical simulations, the goal is to develop simple analytical expressions that provide estimates for storage capacity and pressure buildup in such closed systems.

Zhou, Q.; Birkholzer, J.; Rutqvist, J.; Tsang, C-F.

2007-02-07T23:59:59.000Z

48

The hydrogeochemistry of pond and rice field recharge : implications for the arsenic contaminated aquifers in Bangladesh  

E-Print Network (OSTI)

The shallow aquifers in Bangladesh, which provide drinking water for millions and irrigation water for innumerable rice fields, are severely contaminated with geogenic arsenic. Water mass balance calculations show that ...

Neumann, Rebecca B

2010-01-01T23:59:59.000Z

49

Geochemical modeling of an aquifer storage and recovery project in Union County, Arkansas  

E-Print Network (OSTI)

The Sparta aquifer in Union County, Arkansas has served as an important potable water supply to the public and industrial sectors in the area. However, increasing water demand and sustained heavy pumping from the aquifer ...

Zhu, Ni, M. Eng. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

50

Simulation of Coupled Processes of Flow, Transport, and Storage of CO2 in Saline Aquifers  

SciTech Connect

This report is the final scientific one for the award DE- FE0000988 entitled “Simulation of Coupled Processes of Flow, Transport, and Storage of CO2 in Saline Aquifers.” The work has been divided into six tasks. In task, “Development of a Three-Phase Non-Isothermal CO2 Flow Module,” we developed a fluid property module for brine-CO2 mixtures designed to handle all possible phase combinations of aqueous phase, sub-critical liquid and gaseous CO2, supercritical CO2, and solid salt. The thermodynamic and thermophysical properties of brine-CO2 mixtures (density, viscosity, and specific enthalpy of fluid phases; partitioning of mass components among the different phases) use the same correlations as an earlier fluid property module that does not distinguish between gaseous and liquid CO2-rich phases. We verified the fluid property module using two leakage scenarios, one that involves CO2 migration up a blind fault and subsequent accumulation in a secondary “parasitic” reservoir at shallower depth, and another investigating leakage of CO2 from a deep storage reservoir along a vertical fault zone. In task, “Development of a Rock Mechanical Module,” we developed a massively parallel reservoir simulator for modeling THM processes in porous media brine aquifers. We derived, from the fundamental equations describing deformation of porous elastic media, a momentum conservation equation relating mean stress, pressure, and temperature, and incorporated it alongside the mass and energy conservation equations from the TOUGH2 formulation, the starting point for the simulator. In addition, rock properties, namely permeability and porosity, are functions of effective stress and other variables that are obtained from the literature. We verified the simulator formulation and numerical implementation using analytical solutions and example problems from the literature. For the former, we matched a one-dimensional consolidation problem and a two-dimensional simulation of the Mandel-Cryer effect. For the latter, we obtained a good match of temperature and gas saturation profiles, and surface uplift, after injection of hot fluid into a model of a caldera structure. In task, “Incorporation of Geochemical Reactions of Selected Important Species,” we developed a novel mathematical model of THMC processes in porous and fractured saline aquifers, simulating geo-chemical reactions associated with CO2 sequestration in saline aquifers. Two computational frameworks, sequentially coupled and fully coupled, were used to simulate the reactions and transport. We verified capabilities of the THMC model to treat complex THMC processes during CO2 sequestration by analytical solutions and we constructed reactive transport models to analyze the THMC process quantitatively. Three of these are 1D reactive transport under chemical equilibrium, a batch reaction model with equilibrium chemical reactions, and a THMC model with CO2 dissolution. In task “Study of Instability in CO2 Dissolution-Diffusion-Convection Processes,” We reviewed literature related to the study of density driven convective flows and on the instability of CO2 dissolution-diffusion-convection processes. We ran simulations that model the density-driven flow instability that would occur during CO2 sequestration. CO2 diffused through the top of the system and dissolved in the aqueous phase there, increasing its density. Density fingers formed along the top boundary, and coalesced into a few prominent ones, causing convective flow that forced the fluid to the system bottom. These simulations were in two and three dimensions. We ran additional simulations of convective mixing with density contrast caused by variable dissolved CO2 concentration in saline water, modeled after laboratory experiments in which supercritical CO2 was circulated in the headspace above a brine saturated packed sand in a pressure vessel. As CO2 dissolved into the upper part of the saturated sand, liquid phase density increases causing instability and setting off convective mixing. We obtained good agreement

Wu, Yu-Shu; Chen, Zizhong; Kazemi, Hossein; Yin, Xiaolong; Pruess, Karsten; Oldenburg, Curt; Winterfeld, Philip; Zhang, Ronglei

2014-09-30T23:59:59.000Z

51

A preliminary sub-basin scale evaluation framework of site suitability for onshore aquifer-based CO{sub 2} storage in China  

SciTech Connect

Development of a reliable, broadly applicable framework for the identification and suitability evaluation of potential CO{sub 2} storage sites is essential before large-scale deployment of carbon dioxide capture and geological storage (CCS) can commence. In this study, a sub-basin scale evaluation framework was developed to assess the suitability of potential onshore deep saline aquifers for CO{sub 2} storage in China. The methodology, developed in consultation with experts from the academia and the petroleum industry in China, is based on a multi-criteria analysis (MCA) framework that considers four objectives: (1) storage optimization, in terms of storage capacity and injectivity; (2) risk minimization and storage security; (3) environmental restrictions regarding surface and subsurface use; and (4) economic considerations. The framework is designed to provide insights into both the suitability of potential aquifer storage sites as well as the priority for early deployment of CCS with existing CO{sub 2} sources. Preliminary application of the framework, conducted using GIS-based evaluation tools revealed that 18% of onshore aquifer sites with a combined CO{sub 2} storage capacity of 746 gigatons are considered to exhibit very high suitability, and 11% of onshore aquifer sites with a total capacity of 290 gigatons exhibit very high priority opportunities for implementation. These onshore aquifer sites may provide promising opportunities for early large-scale CCS deployment and contribute to CO{sub 2} mitigation in China for many decades.

Wei, Ning; Li, Xiaochun; Wang, Ying; Dahowski, Robert T.; Davidson, Casie L.; Bromhal Grant S.

2013-01-01T23:59:59.000Z

52

Using tracer experiments to determine deep saline aquifers caprocks transport characteristics for carbon dioxide storage  

E-Print Network (OSTI)

procedure in high permeability rocks such as hydrocarbon reservoirs or aquifers. However, the permeability to the determination of transport characteristics of tight rock formations. Main obtained parameters are intrinsic permeability and the Klinkenberg coefficient; permeability as low as 10-21 m2 is easily attainable. Some

Boyer, Edmond

53

Field Demonstration of CO2 Leakage Detection in Potable Aquifers with a Pulselike CO2-Release Test  

Science Journals Connector (OSTI)

Field Demonstration of CO2 Leakage Detection in Potable Aquifers with a Pulselike CO2-Release Test ... This study presents two field pulselike CO2-release tests to demonstrate CO2 leakage detection in a shallow aquifer by monitoring groundwater pH, alkalinity, and dissolved inorganic carbon (DIC) using the periodic groundwater sampling method and a fiber-optic CO2 sensor for real-time in situ monitoring of dissolved CO2 in groundwater. ...

Changbing Yang; Susan D. Hovorka; Jesus Delgado-Alonso; Patrick J. Mickler; Ramón H. Treviño; Straun Phillips

2014-11-10T23:59:59.000Z

54

Porous media experience applicable to field evaluation for compressed air energy storage  

SciTech Connect

A survey is presented of porous media field experience that may aid in the development of a compressed air energy storage field demonstration. Work done at PNL and experience of other groups and related industries is reviewed. An overall view of porous media experience in the underground storage of fluids is presented. CAES experience consists of site evaluation and selection processes used by groups in California, Kansas, and Indiana. Reservoir design and field evaluation of example sites are reported. The studies raised questions about compatibility with depleted oil and gas reservoirs, storage space rights, and compressed air regulations. Related experience embraces technologies of natural gas, thermal energy, and geothermal and hydrogen storage. Natural gas storage technology lends the most toward compressed air storage development, keeping in mind the respective differences between stored fluids, physical conditions, and cycling frequencies. Both fluids are injected under pressure into an aquifer to form a storage bubble confined between a suitable caprock structure and partially displaced ground water. State-of-the-art information is summarized as the necessary foundation material for field planning. Preliminary design criteria are given as recommendations for basic reservoir characteristics. These include geometric dimensions and storage matrix properties such as permeability. Suggested ranges are given for injection air temperature and reservoir pressure. The second step in developmental research is numerical modeling. Results have aided preliminary design by analyzing injection effects upon reservoir pressure, temperature and humidity profiles. Results are reported from laboratory experiments on candidate sandstones and caprocks. Conclusions are drawn, but further verification must be done in the field.

Allen, R.D.; Gutknecht, P.J.

1980-06-01T23:59:59.000Z

55

Field studies of virus transport in a heterogeneous sandy aquifer  

E-Print Network (OSTI)

for unsaturated- snd saturated-zone modeling, respectively. Each module contains ground water flow and viral transport models. The steady ground water flow fields in both zones are determined semi- analytically. Following the ground water flow computation... utilizes tubing attached to a submersible pump which fits inside the monitoring well. The pump is lowered to the desired depth and the satnple retrieved. These pumps can be dedicated to the well and are available for AC or DC power sources. A portable...

Vogel, Jason Robert

2012-06-07T23:59:59.000Z

56

Modeling of Field Distribution and Energy Storage in Diphasic Dielectrics  

E-Print Network (OSTI)

Modeling of Field Distribution and Energy Storage in Diphasic Dielectrics S. K. Patil, M. Y, USA Modeling of electrostatic field distribution and energy storage in diphasic dielectrics containing to the increased energy storage density. For composites with lower volume fractions of high-permittivity inclusions

Koledintseva, Marina Y.

57

,"Underground Natural Gas Storage - Salt Cavern Storage Fields"  

U.S. Energy Information Administration (EIA) Indexed Site

Salt Cavern Storage Fields" Salt Cavern Storage Fields" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Underground Natural Gas Storage - Salt Cavern Storage Fields",8,"Monthly","9/2013","1/15/1994" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ngm10vmall.xls" ,"Available from Web Page:","http://www.eia.gov/oil_gas/natural_gas/data_publications/natural_gas_monthly/ngm.html" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

58

ECO2N - A New TOUGH2 Fluid Property Module for Studies of CO2Storage in Saline Aquifers  

SciTech Connect

ECO2N is a fluid property module for the TOUGH2 simulator (Version 2.0) that was designed for applications to geologic storage of CO{sub 2} in saline aquifers. It includes a comprehensive description of the thermodynamics and thermophysical properties of H{sub 2}O-NaCl-CO{sub 2} mixtures, that reproduces fluid properties largely within experimental error for the temperature, pressure and salinity conditions of interest(10 C {le} T {le} 110 C; P {le} 600 bar; salinity up to full halite saturation). Flow processes can be modeled isothermally or non-isothermally, and phase conditions represented may include a single (aqueous or CO{sub 2}-rich) phase, as well as two-phase mixtures. Fluid phases may appear or disappear in the course of a simulation, and solid salt may precipitate or dissolve. ECO2N can model super- as well as sub-critical conditions, but it does not make a distinction between liquid and gaseous CO{sub 2}. This paper highlights significant features of ECO2N, and presents illustrative applications.

Pruess, Karsten; Spycher, Nicholas

2006-04-17T23:59:59.000Z

59

Integrated investigation of seawater intrusion around oil storage caverns in a coastal fractured aquifer using hydrogeochemical and isotopic data  

Science Journals Connector (OSTI)

Summary Seawater intrusion can be activated by the construction of underground caverns which act as groundwater sinks near a coastal area. In an environment complicated with such artificial structures, seawater intrusion is not simple and thus needs to be evaluated by means of multiple analytical approaches. This study uses geochemical and isotopic indicators to assess the characteristics of salinized seepage into an underground oil storage cavern in Yeosu, Korea. Cl?/Br? ratios, principal component analysis (PCA) of chemical data, and stable isotope data were used to determine the origin and the extent of salinization. Indications of seawater intrusion into the cavern through fractured bedrocks were observed; however, it was highly probable that another source may have contributed to the observed salinity. The PCA results revealed that the seepage water chemistry was predominantly affected both by seawater mixing and cement material dissolution. The maximum seawater mixing ratio in the seepage water was estimated on the basis of the Cl?–Br? mixing ratio and the Cl?–?18O relation, with the results showing considerable variation ranging from less than 1% to as high as 14%, depending on the cavern location. The spatial variations in the chemical characteristics and in mixing ratios are believed to have resulted from the hydrogeological heterogeneity of the study site, as caused by both fractured aquifer and the cavern facilities.

Jeong-Won Lim; Eunhee Lee; Hee Sun Moon; Kang-Kun Lee

2013-01-01T23:59:59.000Z

60

EIA - Natural Gas Storage Data & Analysis  

Gasoline and Diesel Fuel Update (EIA)

Storage Storage Weekly Working Gas in Underground Storage U.S. Natural gas inventories held in underground storage facilities by East, West, and Producing regions (weekly). Underground Storage - All Operators Total storage by base gas and working gas, and storage activity by State (monthly, annual). Underground Storage by Type U.S. storage and storage activity by all operators, salt cavern fields and nonsalt cavern (monthly, annual). Underground Storage Capacity Storage capacity, working gas capacity, and number of active fields for salt caverns, aquifers, and depleted fields by State (monthly, annual). Liquefied Natural Gas Additions to and Withdrawals from Storage By State (annual). Weekly Natural Gas Storage Report Estimates of natural gas in underground storage for the U.S. and three regions of the U.S.

Note: This page contains sample records for the topic "aquifer storage field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

NETL: Carbon Storage - Small-Scale Field Tests  

NLE Websites -- All DOE Office Websites (Extended Search)

Small-Scale Field Tests Small-Scale Field Tests Carbon Storage Small-Scale Field Tests The U.S. Department of Energy (DOE) is supporting a number of small-scale field tests (injection of less than 500,000 million metric tons of CO2 per year) to explore various geologic CO2 storage opportunities within the United States and portions of Canada. DOE's small-scale field test efforts are designed to demonstrate that regional reservoirs have the capability to store thousands of years of CO2 emissions and provide the basis for larger volume, commercial-scale CO2 tests. The field studies are focused on developing better understanding 11 major types of geologic storage reservoir classes, each having their own unique opportunities and challenges. Understanding these different storage classes provides insight into how the systems influence fluids flow within these systems today, and how CO2 in geologic storage would be anticipated to flow in the future. The different storage formation classes include: deltaic, coal/shale, fluvial, alluvial, strandplain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef. Basaltic interflow zones are also being considered as potential reservoirs. These storage reservoirs contain fluids that may include natural gas, oil, or saline water; any of which may impact CO2 storage differently. The data gathered during these small-scale tests provides valuable information regarding specific formations that have historically not been evaluated for the purpose of CO2 storage. The Carbon Storage Program strategy includes an established set of field test objectives applicable to the small-scale projects:

62

Hydraulic characterization of aquifers by thermal response testing: Validation by large-scale tank and field experiments  

E-Print Network (OSTI)

Hydraulic characterization of aquifers by thermal response testing: Validation by large-scale tank by application to a well-controlled, large-scale tank experiment with 9 m length, 6 m width, and 4.5 m depth, and by data interpretation from a field-scale test. The tank experiment imitates an advection-influenced TRT

Cirpka, Olaf Arie

63

Geologic Carbon Dioxide Storage Field Projects Supported by DOE's  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geologic Carbon Dioxide Storage Field Projects Supported by DOE's Geologic Carbon Dioxide Storage Field Projects Supported by DOE's Sequestration Program Geologic Carbon Dioxide Storage Field Projects Supported by DOE's Sequestration Program Background: The U.S. DOE's Sequestration Program began with a small appropriation of $1M in 1997 and has grown to be the largest most comprehensive CCS R&D program in the world. The U.S. DOE's sequestration program has supported a number of projects implementing CO2 injection in the United States and other countries including, Canada, Algeria, Norway, Australia, and Germany. The program has also been supporting a number of complementary R&D projects investigating the science of storage, simulation, risk assessment, and monitoring the fate of the injected CO2 in the subsurface.

64

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network (OSTI)

American Institute of Physics Handbook, 1972. Gray, D.E. ,and American Institute of Physics Handbook (1972). The meshAmerican Institute of Physics Handbook design for simulation

Tsang, C.-F.

2011-01-01T23:59:59.000Z

65

E-Print Network 3.0 - aquifer paris basin Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

on which potential site(s) in deep saline aquifers are investigated. KKeeyywwoorrddss:: CO2... geological storage; Site selection; Saline aquifer; Paris Basin; PICOREF I....

66

Uncertainty analysis of capacity estimates and leakage potential for geologic storage of carbon dioxide in saline aquifers  

E-Print Network (OSTI)

The need to address climate change has gained political momentum, and Carbon Capture and Storage (CCS) is a technology that is seen as being feasible for the mitigation of carbon dioxide emissions. However, there is ...

Raza, Yamama

2009-01-01T23:59:59.000Z

67

Seasonal thermal energy storage  

SciTech Connect

This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

1984-05-01T23:59:59.000Z

68

High Resolution Simulation and Characterization of Density-Driven Flow in CO2 Storage in Saline Aquifers  

E-Print Network (OSTI)

at which CO2 gas dissolves into a negatively buoyant aqueous phase, will reach a stabilized state the immiscible CO2 gas that forms on top of the brine from leaking to the surface. However, on geological timeHigh Resolution Simulation and Characterization of Density-Driven Flow in CO2 Storage in Saline

69

Small Scale Field Test Demonstrating CO2 sequestration in Arbuckle Saline Aquifer and by CO2-EOR at Wellington field, Sumner County, Kansas  

NLE Websites -- All DOE Office Websites (Extended Search)

Scale Field Test Demonstrating CO Scale Field Test Demonstrating CO 2 sequestration in Arbuckle Saline Aquifer and by CO 2 -EOR at Wellington field, Sumner County, Kansas -- W. Lynn Watney and Jason Rush Kansas Geological Survey Lawrence, KS 66047 Regional Carbon Sequestration Partnerships Annual Review Meeting October 15-17, 2011 Pittsburgh, PA Funding Opportunity Number: DE-FOA-0000441 Contract #FE0006821 $11,484,499 DOE $3.236 million cost share KANSAS STATE UNIVERSITY 12/2/2011 1 Outline * Background * The Participants * The Plan * Leveraging Current Research at Wellington Field * Inject, Monitor, Verification, and Accounting of CO 2 2 ORGANIZATION CHART Kansas Geological Survey Name Project Job Title Primary Responsibility Lynn Watney Project Leader, Joint Principal Investigator

70

User manual for AQUASTOR: a computer model for cost analysis of aquifer thermal energy storage coupled with district heating or cooling systems. Volume I. Main text  

SciTech Connect

A computer model called AQUASTOR was developed for calculating the cost of district heating (cooling) using thermal energy supplied by an aquifer thermal energy storage (ATES) system. The AQUASTOR model can simulate ATES district heating systems using stored hot water or ATES district cooling systems using stored chilled water. AQUASTOR simulates the complete ATES district heating (cooling) system, which consists of two principal parts: the ATES supply system and the district heating (cooling) distribution system. The supply system submodel calculates the life-cycle cost of thermal energy supplied to the distribution system by simulating the technical design and cash flows for the exploration, development, and operation of the ATES supply system. The distribution system submodel calculates the life-cycle cost of heat (chill) delivered by the distribution system to the end-users by simulating the technical design and cash flows for the construction and operation of the distribution system. The model combines the technical characteristics of the supply system and the technical characteristics of the distribution system with financial and tax conditions for the entities operating the two systems into one techno-economic model. This provides the flexibility to individually or collectively evaluate the impact of different economic and technical parameters, assumptions, and uncertainties on the cost of providing district heating (cooling) with an ATES system. This volume contains the main text, including introduction, program description, input data instruction, a description of the output, and Appendix H, which contains the indices for supply input parameters, distribution input parameters, and AQUASTOR subroutines.

Huber, H.D.; Brown, D.R.; Reilly, R.W.

1982-04-01T23:59:59.000Z

71

Numerical Modeling Studies of The Dissolution-Diffusion-Convection ProcessDuring CO2 Storage in Saline Aquifers  

SciTech Connect

For purposes of geologic storage, CO2 would be injected into saline formations at supercritical temperature and pressure conditions, and would form a separate phase that is immiscible with the aqueous phase (brine). At typical subsurface temperature and pressure conditions, supercritical CO2 (scCO2) has lower density than the aqueous phase and would experience an upward buoyancy force. Accordingly, the CO2 is expected to accumulate beneath the caprock at the top of the permeable interval, and could escape from the storage formation wherever (sub-)vertical pathways are available, such as fractures or faults through the caprock, or improperly abandoned wells. Over time, an increasing fraction of CO2 may dissolve in the aqueous phase, and eventually some of the aqueous CO2 may react with rock minerals to form poorly soluble carbonates. Dissolution into the aqueous phase and eventual sequestration as carbonates are highly desirable processes as they would increase permanence and security of storage. Dissolution of CO2 will establish phase equilibrium locally between the overlying CO2 plume and the aqueous phase beneath. If the aqueous phase were immobile, CO2 dissolution would be limited by the rate at which molecular diffusion can remove dissolved CO2 from the interface between CO2-rich and aqueous phases. This is a slow process. However, dissolution of CO2 is accompanied by a small increase in the density of the aqueous phase, creating a negative buoyancy force that can give rise to downward convection of CO2-rich brine, which in turn can greatly accelerate CO2 dissolution. This study explores the process of dissolution-diffusion-convection (DDC), using high-resolution numerical simulation. We find that geometric features of convection patterns are very sensitive to small changes in problem specifications, reflecting self-enhancing feedbacks and the chaotic nature of the process. Total CO2 dissolution rates on the other hand are found to be quite robust against modest changes in problem parameters, and are essentially constant as long as no dissolved CO2 reaches the lower boundary of the system.

Pruess, Karsten; Zhang, Keni

2008-11-17T23:59:59.000Z

72

Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Storage DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Storage A discussion of depleted UF6 cylinder storage activities and associated risks. Management Activities for Cylinders in Storage The long-term management of the existing DUF6 storage cylinders and the continual effort to remediate and maintain the safe condition of the DUF6 storage cylinders will remain a Departmental responsibility for many years into the future. The day to day management of the DUF6 cylinders includes actions designed to cost effectively maintain and improve their storage conditions, such as: General storage cylinder and storage yard maintenance; Performing regular inspections of cylinders; Restacking and respacing the cylinders to improve drainage and to

73

Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Risks » Storage Environmental Risks » Storage Depleted UF6 Environmental Risks line line Storage Conversion Manufacturing Disposal Environmental Risks of Depleted UF6 Storage Discussion of the potential environmental impacts from storage of depleted UF6 at the three current storage sites, as well as potential impacts from the storage of depleted uranium after conversion to an oxide form. Impacts Analyzed in the PEIS The PEIS included an analysis of the potential environmental impacts from continuing to store depleted UF6 cylinders at the three current storage sites, as well as potential impacts from the storage of depleted uranium after conversion to an oxide form. Impacts from Continued Storage of UF6 Cylinders Continued storage of the UF6 cylinders would require extending the use of a

74

Molecular Analysis of Microbial Community Structures in Pristine and Contaminated Aquifers: Field and Laboratory Microcosm Experiments  

Science Journals Connector (OSTI)

...Phylogeny Toluene metabolism Water Microbiology Water Pollutants, Chemical metabolism...studies field studies geochemistry ground water hydrocarbons hydrochemistry...compounds pollutants pollution remediation spatial distribution toluene...

Y. Shi; M. D. Zwolinski; M. E. Schreiber; J. M. Bahr; G. W. Sewell; W. J. Hickey

1999-05-01T23:59:59.000Z

75

Modeling of Hydrogen Storage Materials: A Reactive Force Field for NaH  

E-Print Network (OSTI)

Modeling of Hydrogen Storage Materials: A Reactive Force Field for NaH Ojwang' J.G.O.*, Rutger van is the fall in potential energy surface during heating. Keywords: hydrogen storage, reactive force field governing hydrogen desorption in NaH. During the abstraction process of surface molecular hydrogen charge

Goddard III, William A.

76

DOE Targets Rural Indiana Geologic Formation for CO2 Storage Field Test |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Targets Rural Indiana Geologic Formation for CO2 Storage Field DOE Targets Rural Indiana Geologic Formation for CO2 Storage Field Test DOE Targets Rural Indiana Geologic Formation for CO2 Storage Field Test November 12, 2009 - 12:00pm Addthis Washington, DC - A U.S. Department of Energy (DOE) team of regional partners has begun injecting 8,000 tons of carbon dioxide (CO2) to evaluate the carbon storage potential and test the enhanced oil recovery (EOR) potential of the Mississippian-aged Clore Formation in Posey County, Ind. Carbon capture and storage (CCS) is seen as a key technology for reducing greenhouse gas emissions and helping to mitigate climate change. The injection, which is expected to last 6-8 months, is an integral step in DOE's Regional Carbon Sequestration Partnership program. The Midwest Geological Sequestration Consortium (MGSC) is conducting the field test to

77

Natural Gas Aquifers Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

1,347,516 1,351,832 1,340,633 1,233,017 1,231,897 1,237,269 1,347,516 1,351,832 1,340,633 1,233,017 1,231,897 1,237,269 1999-2012 Alabama 0 1999-2012 Arkansas 0 1999-2012 California 0 0 1999-2012 Colorado 0 1999-2012 Illinois 876,960 874,384 885,848 772,381 777,294 779,862 1999-2012 Indiana 81,490 81,991 81,328 81,268 81,310 80,746 1999-2012 Iowa 278,238 284,747 284,811 288,010 288,210 288,210 1999-2012 Kansas 0 1999-2012 Kentucky 9,567 9,567 9,567 9,567 9,567 9,567 1999-2012 Louisiana 0 1999-2012 Michigan 0 1999-2012 Minnesota 7,000 7,000 7,000 7,000 7,000 7,000 1999-2012 Mississippi 0 1999-2012 Missouri 32,940 32,876 10,889 11,502 13,845 13,845 1999-2012 Montana 0 1999-2012 New Mexico 0 1999-2012 New York 0 1999-2012 Ohio 0 1999-2012 Oklahoma 170 1999-2012 Oregon 0 1999-2012 Pennsylvania

78

DOE-Sponsored Field Test Finds Potential for Permanent Storage of CO2 in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Test Finds Potential for Permanent Storage of Field Test Finds Potential for Permanent Storage of CO2 in Lignite Seams DOE-Sponsored Field Test Finds Potential for Permanent Storage of CO2 in Lignite Seams November 4, 2010 - 1:00pm Addthis Washington, DC - A field test sponsored by the U.S. Department of Energy (DOE) has demonstrated that opportunities to permanently store carbon in unmineable seams of lignite may be more widespread than previously documented. This finding supports national efforts to address climate change through long-term storage of CO2 in underground geologic reservoirs. Lowering the core barrel at the PCOR Partnership lignite site.The PCOR Partnership, one of seven partnerships in DOE's Regional Carbon Sequestration Partnership Program, collaborated with Eagle Operating Inc. (Kenmare, N.D.) to complete the field test in Burke County, N.D. In March

79

Gravity effect of water storage changes in a weathered hard-rock aquifer in West Africa: results from joint absolute gravity, hydrological monitoring and geophysical prospection  

Science Journals Connector (OSTI)

......and deformation responses on a spherical non-rotating...continental water storage within a range of...the lack of higher frequency gravity data sampling...specific yield and storage change in an unconfined...Combined analysis of energy and water balances...al. Land water storage changes from ground......

Basile Hector; Luc Séguis; Jacques Hinderer; Marc Descloitres; Jean-Michel Vouillamoz; Maxime Wubda; Jean-Paul Boy; Bernard Luck; Nicolas Le Moigne

2013-01-01T23:59:59.000Z

80

Aquifer Management for CO2 Sequestration  

E-Print Network (OSTI)

Storage of carbon dioxide is being actively considered for the reduction of green house gases. To make an impact on the environment CO2 should be put away on the scale of gigatonnes per annum. The storage capacity of deep saline aquifers...

Anchliya, Abhishek

2010-07-14T23:59:59.000Z

Note: This page contains sample records for the topic "aquifer storage field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

EIA - Natural Gas Pipeline Network - Underground Natural Gas Storage  

U.S. Energy Information Administration (EIA) Indexed Site

Storage Storage About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Underground Natural Gas Storage Overview | Regional Breakdowns Overview Underground natural gas storage provides pipelines, local distribution companies, producers, and pipeline shippers with an inventory management tool, seasonal supply backup, and access to natural gas needed to avoid imbalances between receipts and deliveries on a pipeline network. There are three principal types of underground storage sites used in the United States today. They are: · depleted natural gas or oil fields (326), · aquifers (43), or · salt caverns (31). In a few cases mine caverns have been used. Most underground storage facilities, 82 percent at the beginning of 2008, were created from reservoirs located in depleted natural gas production fields that were relatively easy to convert to storage service, and that were often close to consumption centers and existing natural gas pipeline systems.

82

Thermal energy storage  

Science Journals Connector (OSTI)

Various types of thermal stares for solar systems are surveyed which include: long-term water stores for solar systems; ground storage using soil as an interseasonal energy store; ground-water aquifers; pebble or rock bed storage; phase change storage; solar ponds; high temperature storage; and cold stores for solar air conditioning system. The use of mathematical models for analysis of the storage systems is considered

W.E.J. Neal

1981-01-01T23:59:59.000Z

83

Porous media compressed air energy storage (PM-CAES): Theory and simulation of the coupled wellbore-reservoir system  

E-Print Network (OSTI)

of selected compressed air energy storage studes, Pacificaspects of compressed-air energy storage in aquifers, J. ofresources and compressed air energy storage (CAES), Energy,

Oldenburg, C.M.

2014-01-01T23:59:59.000Z

84

DOE-Sponsored Field Test Demonstrates Viability of Simultaneous CO2 Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Test Demonstrates Viability of Simultaneous CO2 Field Test Demonstrates Viability of Simultaneous CO2 Storage and Enhanced Oil Recovery in Carbonate Reservoirs DOE-Sponsored Field Test Demonstrates Viability of Simultaneous CO2 Storage and Enhanced Oil Recovery in Carbonate Reservoirs June 28, 2010 - 1:00pm Addthis Washington, DC - A field test conducted by a U.S. Department of Energy (DOE) team of regional partners has demonstrated that using carbon dioxide (CO2) in an enhanced oil recovery method dubbed "huff-and-puff" can help assess the carbon sequestration potential of geologic formations while tapping America's valuable oil resources. The Plains CO2 Reduction (PCOR) Partnership, one of seven in DOE's Regional Carbon Sequestration Partnership program, collaborated with Eagle Operating Inc. to complete the test in the Northwest McGregor Oil Field in Williams

85

Gas storage and separation by electric field swing adsorption  

DOE Patents (OSTI)

Gases are stored, separated, and/or concentrated. An electric field is applied across a porous dielectric adsorbent material. A gas component from a gas mixture may be selectively separated inside the energized dielectric. Gas is stored in the energized dielectric for as long as the dielectric is energized. The energized dielectric selectively separates, or concentrates, a gas component of the gas mixture. When the potential is removed, gas from inside the dielectric is released.

Currier, Robert P; Obrey, Stephen J; Devlin, David J; Sansinena, Jose Maria

2013-05-28T23:59:59.000Z

86

PLANT RESISTANCE Field and Storage Testing Bt Potatoes for Resistance to Potato  

E-Print Network (OSTI)

PLANT RESISTANCE Field and Storage Testing Bt Potatoes for Resistance to Potato Tuberworm Lansing, MI 48824 J. Econ. Entomol. 97(4): 1425Ð1431 (2004) ABSTRACT Potato tuberworm, Phthorimaea operculella (Zeller), is the most serious insect pest of potatoes worldwide. The introduction of the Bacillus

Douches, David S.

87

Energy management in solar thermal power plants with double thermal storage system and subdivided solar field  

Science Journals Connector (OSTI)

In the paper, two systems for solar thermal power plants (STPPs) are devised for improving the overall performance of the plant. Each one attempts to reduce losses coming from two respective sources. The systems are simulated and compared to a reference STPP. They consists on: (a) a double thermal energy storage (DTS) with different functionalities for each storage and (b) the subdivision of the solar collector field (SSF) into specialised sectors, so that each sector is designed to meet a thermal requirement, usually through an intermediate heat exchanger. This subdivision reduces the losses in the solar field by means of a decrease of the temperature of the heat transfer fluid (HTF). Double thermal energy storage is intended for keeping the plant working at nominal level for many hours a day, including post-sunset hours. One of the storages gathers a fluid which is heated up to temperatures above the nominal one. In order to make it work, the solar field must be able to overheat the fluid at peak hours. The second storage is the classical one. The combination of both allows the manager of the plant to keep the nominal of the plant for longer periods than in the case of classical thermal energy storage. To the authors’ knowledge, it is the first time that both configurations are presented and simulated for the case of parabolic through STPP with HTF technology. The results show that, if compared to the reference STPP, both configurations may raise the annual electricity generation (up to 1.7% for the DTS case and 3.9% for the SSF case).

Antonio Rovira; María José Montes; Manuel Valdes; José María Martínez-Val

2011-01-01T23:59:59.000Z

88

,"U.S. Working Natural Gas Underground Storage Depleted Fields Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Fields Capacity (MMcf)" Depleted Fields Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Working Natural Gas Underground Storage Depleted Fields Capacity (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","nga_epg0_sacwd_nus_mmcfa.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/nga_epg0_sacwd_nus_mmcfa.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

89

Electric field detection of coherent synchrotron radiation in a storage ring generated using laser bunch slicing  

SciTech Connect

The electric field of coherent synchrotron radiation (CSR) generated by laser bunch slicing in a storage ring has been detected by an electro-optic sampling method. The gate pulses for sampling are sent through a large-mode-area photonic-crystal fiber. The observed electric field profile of the CSR is in good agreement with the spectrum of the CSR observed using Fourier transform far-infrared spectrometry, indicating good phase stability in the CSR. The longitudinal density profiles of electrons modulated by laser pulses were evaluated from the electric field profile.

Katayama, I. [Interdisciplinary Research Center, Yokohama National University, Yokohama 240-8501 (Japan); Shimosato, H.; Bito, M.; Furusawa, K. [Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531 (Japan); Adachi, M.; Zen, H.; Kimura, S.; Katoh, M. [UVSOR, Institute of Molecular Science, Okazaki 444-8585 (Japan); School of Physical Sciences, Graduate Universities for Advanced Studies (SOKENDAI), Okazaki 444-8585 (Japan); Shimada, M. [High Energy Accelerator Research Organization, KEK, Tsukuba 305-0801 (Japan); Yamamoto, N.; Hosaka, M. [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Ashida, M. [Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531 (Japan); PRESTO, JST (Japan)

2012-03-12T23:59:59.000Z

90

Geochemical and Microbiological Characterization of the Arbuckle Saline Aquifer, a Potential CO2 Storage Reservoir; Implications for Hydraulic Separation and Caprock Integrity  

E-Print Network (OSTI)

oil field in Sumner County, Kansas. Results from field characterization present strong evidence of hydraulic separation of the Upper and Lower Arbuckle and the likelihood of an extensive fracture network evidenced by essentially homogeneous brines...

Scheffer, Aimee

2012-12-31T23:59:59.000Z

91

Permanent scatterer InSAR reveals seasonal and long-term aquifer-system response to groundwater pumping and artificial  

E-Print Network (OSTI)

and precisely measuring long-term and seasonal aquifer-system response to pumping and recharge. In contrast this methodology can be utilized in heavily pumped groundwater basins to analyze aquifer-system response to long characterize the storage properties of an aquifer system with a high degree of spatial resolution. Citation

Amelung, Falk

92

,"U.S. Natural Gas Number of Underground Storage Depleted Fields Capacity (Count)"  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Fields Capacity (Count)" Depleted Fields Capacity (Count)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Number of Underground Storage Depleted Fields Capacity (Count)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1391_nus_8a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1391_nus_8a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:43:06 PM"

93

,"U.S. Natural Gas Underground Storage Depleted Fields Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Fields Capacity (MMcf)" Depleted Fields Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Underground Storage Depleted Fields Capacity (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1391_nus_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1391_nus_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:43:05 PM"

94

Sensitivity of storage field performance to geologic and cavern design parameters in salt domes.  

SciTech Connect

A sensitivity study was performed utilizing a three dimensional finite element model to assess allowable cavern field sizes for strategic petroleum reserve salt domes. A potential exists for tensile fracturing and dilatancy damage to salt that can compromise the integrity of a cavern field in situations where high extraction ratios exist. The effects of salt creep rate, depth of salt dome top, dome size, caprock thickness, elastic moduli of caprock and surrounding rock, lateral stress ratio of surrounding rock, cavern size, depth of cavern, and number of caverns are examined numerically. As a result, a correlation table between the parameters and the impact on the performance of storage field was established. In general, slower salt creep rates, deeper depth of salt dome top, larger elastic moduli of caprock and surrounding rock, and a smaller radius of cavern are better for structural performance of the salt dome.

Ehgartner, Brian L. (Sandia National Laboratories, Albuquerque, NM); Park, Byoung Yoon

2009-03-01T23:59:59.000Z

95

Sensitivity of storage field performance to geologic and cavern design parameters in salt domes.  

SciTech Connect

A sensitivity study was performed utilizing a three dimensional finite element model to assess allowable cavern field sizes in strategic petroleum reserve salt domes. A potential exists for tensile fracturing and dilatancy damage to salt that can compromise the integrity of a cavern field in situations where high extraction ratios exist. The effects of salt creep rate, depth of salt dome top, dome size, caprock thickness, elastic moduli of caprock and surrounding rock, lateral stress ratio of surrounding rock, cavern size, depth of cavern, and number of caverns are examined numerically. As a result, a correlation table between the parameters and the impact on the performance of a storage field was established. In general, slower salt creep rates, deeper depth of salt dome top, larger elastic moduli of caprock and surrounding rock, and a smaller radius of cavern are better for structural performance of the salt dome.

Ehgartner, Brian L.; Park, Byoung Yoon; Herrick, Courtney Grant

2010-06-01T23:59:59.000Z

96

Accurate correction of magnetic field instabilities for high-resolution isochronous mass measurements in storage rings  

E-Print Network (OSTI)

Isochronous mass spectrometry (IMS) in storage rings is a successful technique for accurate mass measurements of short-lived nuclides with relative precision of about $10^{-5}-10^{-7}$. Instabilities of the magnetic fields in storage rings are one of the major contributions limiting the achievable mass resolving power, which is directly related to the precision of the obtained mass values. A new data analysis method is proposed allowing one to minimise the effect of such instabilities. The masses of the previously measured at the CSRe $^{41}$Ti, $^{43}$V, $^{47}$Mn, $^{49}$Fe, $^{53}$Ni and $^{55}$Cu nuclides were re-determined with this method. An improvement of the mass precision by a factor of $\\sim 1.7$ has been achieved for $^{41}$Ti and $^{43}$V. The method can be applied to any isochronous mass experiment irrespective of the accelerator facility. Furthermore, the method can be used as an on-line tool for checking the isochronous conditions of the storage ring.

P. Shuai; H. S. Xu; Y. H. Zhang; Yu. A. Litvinov; M. Wang; X. L. Tu; K. Blaum; X. H. Zhou; Y. J. Yuan; G. Audi; X. L. Yan; X. C. Chen; X. Xu; W. Zhang; B. H. Sun; T. Yamaguchi; R. J. Chen; C. Y. Fu; Z. Ge; W. J. Huang; D. W. Liu; Y. M. Xing; Q. Zeng

2014-07-13T23:59:59.000Z

97

Interpretation of earth tide response of three deep, confined aquifers |  

Open Energy Info (EERE)

Interpretation of earth tide response of three deep, confined aquifers Interpretation of earth tide response of three deep, confined aquifers Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Interpretation of earth tide response of three deep, confined aquifers Details Activities (3) Areas (3) Regions (0) Abstract: The response of a confined, areally infinite aquifer to external loads imposed by earth tides is examined. Because the gravitational influence of celestial objects occurs over large areas of the earth, the confined aquifer is assumed to respond in an undrained fashion. Since undrained response is controlled by water compressibility, earth tide response can be directly used only to evaluate porous medium compressibility if porosity is known. Moreover, since specific storage S/sub s/ quantifies a drained behavior of the porous medium, one cannot

98

Interpretation of earth tide response of three deep, confined aquifers  

SciTech Connect

The response of a confined, areally infinite aquifer to external loads imposed by earth tides is examined. Because the gravitational influence of celestial objects occurs over large areas of the earth, the confined aquifer is assumed to respond in an undrained fashion. Since undrained response is controlled by water compressibility, earth tide response can be directly used only to evaluate porous medium compressibility if porosity is known. Moreover, since specific storage S/sub s/ quantifies a drained behavior of the porous medium, one cannot directly estimate S/sub s/from earth tide response. Except for the fact that barometric changes act both on the water surface in the well and on the aquifer as a whole while stress changes associated with earth tides act only in the aquifer, the two phenomena influence the confined aquifer in much the same way. In other words, barometric response contains only as much information on the elastic properties of the aquifer as the earth tide response does. Factors such as well bore storage, aquifer transmissivity, and storage coefficient contribute to time lag and damping of the aquifer response as observed in the well. Analysis shows that the observation of fluid pressure changes alone, without concurrent measurement of external stress changes, is sufficient to interpret uniquely earth tide response. In the present work, change in external stress is estimated from dilatation by assuming a reasonable value for bulk modulus. Earth tide response of geothermal aquifers from Marysville, Montana. East Mesa, California; and Raft River Valley, Idaho, were analyzed, and the ratio of S/sub 3/ to porosity was estimated. Comparison of these estimates with independent pumping tests show reasonable agreement.

Narasimhan, T.N.; Kanehiro, B.Y.; Witherspoon, P.A.

1984-03-10T23:59:59.000Z

99

The Basics of Underground Natural Gas Storage  

Gasoline and Diesel Fuel Update (EIA)

The Basics of Underground Natural Gas Storage The Basics of Underground Natural Gas Storage Latest update: August 2004 Natural gas-a colorless, odorless, gaseous hydrocarbon-may be stored in a number of different ways. It is most commonly held in inventory underground under pressure in three types of facilities. These are: (1) depleted reservoirs in oil and/or gas fields, (2) aquifers, and (3) salt cavern formations. (Natural gas is also stored in liquid form in above-ground tanks. A discussion of liquefied natural gas (LNG) is beyond the scope of this report. For more information about LNG, please see the EIA report, The Global Liquefied Natural Gas Market: Status & Outlook.) Each storage type has its own physical characteristics (porosity, permeability, retention capability) and economics (site preparation and

100

DEVELOPMENT OF METHODOLOGY AND FIELD DEPLOYABLE SAMPLING TOOLS FOR SPENT NUCLEAR FUEL INTERROGATION IN LIQUID STORAGE  

SciTech Connect

This project developed methodology and field deployable tools (test kits) to analyze the chemical and microbiological condition of the fuel storage medium and determine the oxide thickness on the spent fuel basin materials. The overall objective of this project was to determine the amount of time fuel has spent in a storage basin to determine if the operation of the reactor and storage basin is consistent with safeguard declarations or expectations. This project developed and validated forensic tools that can be used to predict the age and condition of spent nuclear fuels stored in liquid basins based on key physical, chemical and microbiological basin characteristics. Key parameters were identified based on a literature review, the parameters were used to design test cells for corrosion analyses, tools were purchased to analyze the key parameters, and these were used to characterize an active spent fuel basin, the Savannah River Site (SRS) L-Area basin. The key parameters identified in the literature review included chloride concentration, conductivity, and total organic carbon level. Focus was also placed on aluminum based cladding because of their application to weapons production. The literature review was helpful in identifying important parameters, but relationships between these parameters and corrosion rates were not available. Bench scale test systems were designed, operated, harvested, and analyzed to determine corrosion relationships between water parameters and water conditions, chemistry and microbiological conditions. The data from the bench scale system indicated that corrosion rates were dependent on total organic carbon levels and chloride concentrations. The highest corrosion rates were observed in test cells amended with sediment, a large microbial inoculum and an organic carbon source. A complete characterization test kit was field tested to characterize the SRS L-Area spent fuel basin. The sampling kit consisted of a TOC analyzer, a YSI multiprobe, and a thickness probe. The tools were field tested to determine their ease of use, reliability, and determine the quality of data that each tool could provide. Characterization was done over a two day period in June 2011, and confirmed that the L Area basin is a well operated facility with low corrosion potential.

Berry, T.; Milliken, C.; Martinez-Rodriguez, M.; Hathcock, D.; Heitkamp, M.

2012-06-04T23:59:59.000Z

Note: This page contains sample records for the topic "aquifer storage field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network (OSTI)

In Switzerland, district heating accounts for 50% of totalproposed hot-water district heating system in the St. Paul/an industrial in a district heating Washington Market and

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

102

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network (OSTI)

high-pressure hot water and cavern of hot oil the potentialC, 18.6 MPa (2 1 700 and deep cavern of hot oil (Collins andprocedures, well design, and cavern leaching have been

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

103

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

first passed through a steam turbine to produce electrtcityhigh pressure steam turbines, could have detrimentalwhich flashes into steam to feed turbines when the sun is

Authors, Various

2011-01-01T23:59:59.000Z

104

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network (OSTI)

baseload power and oil-fired boilers for peak and standbyoil-fired boilers used in the conventional system as a backup, and to meet peak

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

105

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

III, "Man-made Geothermal Energy," presented at MiamiA.C.Meyers III; "Manmade Geothermal Energy", Proc. of MiamiBlack is director of Geothermal Energy Systems, Fox Parry is

Authors, Various

2011-01-01T23:59:59.000Z

106

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

summer heat as by solar ponds or "heating towers"; some goodsolar cooking (third world) Relieve firewood depletion Year-round exploitation No cooling towers

Authors, Various

2011-01-01T23:59:59.000Z

107

Modeling of CO2 storage in aquifers  

E-Print Network (OSTI)

Feb 6, 2011 ... atmosphere, increasing its temperature (greenhouse effect). To minimize climate change impacts, geological sequestration of CO2 is an ...

santos,,,

108

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network (OSTI)

8 T. E. 8 1977, Subsurface waste heat ' experimental study:to process heat and waste heat recovery in the primaryand use what is now waste heat. The ability to provide heat

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

109

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

the International Solar Energy Society, Winnipeg, Canada. 8:Intern. Solar Energy Soc. , Winnipeg, Canada, August 15-20,

Authors, Various

2011-01-01T23:59:59.000Z

110

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network (OSTI)

source of energy, proceedings, International Solar Energybuilding and solar energy could be used as sources of heat

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

111

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

of Thermal Energy Energy Sources o Solar Heat o Winter Coldusual Solar Energy System which uses only a heat source andsources and heat sinks not found anywhere else. Furthermore even where Solar energy

Authors, Various

2011-01-01T23:59:59.000Z

112

Aquifer behavior with reinjection  

E-Print Network (OSTI)

AQUIFER BEHAVIOR WITH REINJECTION A Thesis By EUCLIDES JOSE BONET Submitted to the Graduate College of the Texas ARUM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May, f967 Major Subject... Petroleum Engineering AQUIFER BEHAVIOR WITH REINJECTION A Thesis By E UC LI DES JOSE BONE T Approved as to style and content by: (Chairman of Committee) (Member) (Member) May, 1967 ACKNOWLEDGMENT Thanks are due to Petroleo Brasilerio S...

Bonet, Euclides Jose

1967-01-01T23:59:59.000Z

113

Field-Derived Hydraulic Properties for Perched-Water Aquifer Wells 299-E33-350 and 299-E33-351, Hanford Site B-Complex Area  

SciTech Connect

During February and March 2014, Pacific Northwest National Laboratory conducted hydraulic (slug) tests at 200-DV-1 Operable Unit wells 299-E33-350 (C8914) and 299-E33-351 (C8915) as part of B-Complex Area Perched-Water characterization activities at the Hanford Site 200-East Area. During the construction/completion phase of each well, two overlapping depth intervals were tested within the unconfined perched-water aquifer contained in the silty-sand subunit of the Cold Creek Unit. The purpose of the slug-test characterization was to provide estimates of transmissivity and hydraulic conductivity for the perched-water aquifer at these selected well locations.

Newcomer, Darrell R.

2014-07-01T23:59:59.000Z

114

THE WIDE-AREA ENERGY STORAGE AND MANAGEMENT SYSTEM PHASE II Final Report - Flywheel Field Tests  

SciTech Connect

This research was conducted by Pacific Northwest National Laboratory (PNNL) operated for the U.S. department of Energy (DOE) by Battelle Memorial Institute for Bonneville Power Administration (BPA), California Institute for Energy and Environment (CIEE) and California Energy Commission (CEC). A wide-area energy management system (WAEMS) is a centralized control system that operates energy storage devices (ESDs) located in different places to provide energy and ancillary services that can be shared among balancing authorities (BAs). The goal of this research is to conduct flywheel field tests, investigate the technical characteristics and economics of combined hydro-flywheel regulation services that can be shared between Bonneville Power Administration (BPA) and California Independent System Operator (CAISO) controlled areas. This report is the second interim technical report for Phase II of the WAEMS project. This report presents: 1) the methodology of sharing regulation service between balancing authorities, 2) the algorithm to allocate the regulation signal between the flywheel and hydro power plant to minimize the wear-and-tear of the hydro power plants, 3) field results of the hydro-flywheel regulation service (conducted by the Beacon Power), and 4) the performance metrics and economic analysis of the combined hydro-flywheel regulation service.

Lu, Ning; Makarov, Yuri V.; Weimar, Mark R.; Rudolph, Frank; Murthy, Shashikala; Arseneaux, Jim; Loutan, Clyde; Chowdhury, S.

2010-08-31T23:59:59.000Z

115

Seawater Intrusion Assessment and Mitigation in the Coastal Aquifer of Wadi Ham  

Science Journals Connector (OSTI)

The Quaternary aquifer of Wadi Ham, UAE, is naturally replenished by the rainfall as well as from the water storage in the ponding area. The construction of ... from the shoreline and the depth below the seawater

Mohsen Sherif; Mohamed Almulla; Ampar Shetty

2013-01-01T23:59:59.000Z

116

Analyzing aquifers associated with gas reservoirs using aquifer influence functions  

E-Print Network (OSTI)

ANALYZING AQUIFERS ASSOCIATED WITH GAS RESERVOIRS USING AQUIFER INFLUENCE FUNCTIONS A Thesis by GARY WAYNE TARGAC Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE V z May 1988 z V z z I- Major Subject: Petroleum Engineering ANALYZING AQUIFERS ASSOCIATED WITH GAS RESERVOIRS USING AQUIFER INFLUENCE FUNCTIONS A Thesis by GARY WAYNE TARGAC Approved as to style and content by: (Chair of Committ R...

Targac, Gary Wayne

1988-01-01T23:59:59.000Z

117

NETL: Carbon Storage - Geologic Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Geologic Storage Geologic Storage Carbon Storage Geologic Storage Focus Area Geologiccarbon dioxide (CO2) storage involves the injection of supercritical CO2 into deep geologic formations (injection zones) overlain by competent sealing formations and geologic traps that will prevent the CO2 from escaping. Current research and field studies are focused on developing better understanding 11 major types of geologic storage reservoir classes, each having their own unique opportunities and challenges. Understanding these different storage classes provides insight into how the systems influence fluids flow within these systems today, and how CO2 in geologic storage would be anticipated to flow in the future. The different storage formation classes include: deltaic, coal/shale, fluvial, alluvial, strandplain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef. Basaltic interflow zones are also being considered as potential reservoirs. These storage reservoirs contain fluids that may include natural gas, oil, or saline water; any of which may impact CO2 storage differently. The following summarizes the potential for storage and the challenges related to CO2 storage capability for fluids that may be present in more conventional clastic and carbonate reservoirs (saline water, and oil and gas), as well as unconventional reservoirs (unmineable coal seams, organic-rich shales, and basalts):

118

The Basics of Underground Natural Gas Storage  

Gasoline and Diesel Fuel Update (EIA)

Analysis > The Basics of Underground Natural Gas Storage Analysis > The Basics of Underground Natural Gas Storage The Basics of Underground Natural Gas Storage Latest update: August 2004 Printer-Friendly Version Natural gas-a colorless, odorless, gaseous hydrocarbon-may be stored in a number of different ways. It is most commonly held in inventory underground under pressure in three types of facilities. These are: (1) depleted reservoirs in oil and/or gas fields, (2) aquifers, and (3) salt cavern formations. (Natural gas is also stored in liquid form in above-ground tanks. A discussion of liquefied natural gas (LNG) is beyond the scope of this report. For more information about LNG, please see the EIA report, The Global Liquefied Natural Gas Market: Status & Outlook.) Each storage type has its own physical characteristics (porosity, permeability, retention capability) and economics (site preparation and maintenance costs, deliverability rates, and cycling capability), which govern its suitability to particular applications. Two of the most important characteristics of an underground storage reservoir are its capacity to hold natural gas for future use and the rate at which gas inventory can be withdrawn-its deliverability rate (see Storage Measures, below, for key definitions).

119

Seymour Aquifer Water Quality Improvement Project Final Report  

E-Print Network (OSTI)

significant financial benefits. Another important finding was that soil storage rather than irrigation method was the dominant factor influencing leaching potential of a given area. This finding suggests that future implementation of BMPs should... be prioritized to areas with low soil storage capacity/ high leaching potential soils. Continued work is needed to improve conditions in the Seymour Aquifer. Educational programs on irrigation management and nutrient management are needed to encourage...

Sij, J.; Morgan, C.; Belew, M.; Jones, D.; Wagner, K.

120

Applications of carbon dioxide capture and storage technologies in reducing emissions from fossil-fired power plants  

SciTech Connect

The aim of this paper is to investigate the global contribution of carbon capture and storage technologies to mitigating climate change. Carbon capture and storage is a technology that comprises the separation of from carbon dioxide industrial- and energy-related sources, transport to a storage location (e.g., saline aquifers and depleted hydrocarbon fields), and long-term isolation from the atmosphere. The carbon dioxides emitted directly at the power stations are reduced by 80 to 90%. In contrast, the life cycle assessment shows substantially lower reductions of greenhouse gases in total (minus 65 to 79%).

Balat, M.; Balat, H.; Oz, C. [University of Mahallesi, Trabzon (Turkey)

2009-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "aquifer storage field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Degradation kinetics of aromatic organic solutes introduced into a heterogeneous aquifer  

SciTech Connect

Degradation rates of benzene, p-xylene, naphthalene, and o-dichlorobenzene have been determined in the Columbus, MS aquifer. The objective of this research was to measure the degradation of organic compounds in an aquifer, using pulse injection. Degradation rates of these compounds were calculated, and the rates were related to aquifer structure and hydrologic properties. the injection was made into the saturated zone of the unconfined aquifer. This technique is suggested for future field experiments because it distinguishes solute degradation from solute losses by sorption and evaporation and allows mass balance to be demonstrated throughout the course of the reaction in the aquifer. 18 refs., 6 figs., 3 tabs.

MacIntyre, W.G. (College of William and Mary, Gloucester Point, VA (United States)); Boggs, M. (Tennessee Valley Lab., Norris, TN (United States)); Antworth, C.P.; Stauffer, T.B. (Tyndall Air Force Base, Panama City, FL (United States))

1993-12-01T23:59:59.000Z

122

cryogenic storage  

Science Journals Connector (OSTI)

Storage in which (a) the superconductive property of materials is used to store data and (b) use is made of the phenomenon that superconductivity is destroyed in the presence of a magnetic field, thus enabling...

2001-01-01T23:59:59.000Z

123

RADIOACTIVE WASTE STORAGE IN MINED CAVERNS IN CRYSTALLINE ROCK-RESULTS OF FIELD INVESTIGATIONS AT STRIPA, SWEDEN  

E-Print Network (OSTI)

Waste Storage in Mined Caverns—Program Summary. LawrenceWASTE STORAGE IN MINED CAVERNS IN CRYSTALLINE ROCK- BESULTS

Witherspoon, P.A.

2010-01-01T23:59:59.000Z

124

Safe storage and effective monitoring of CO2 in depleted gas fields  

Science Journals Connector (OSTI)

...Department of Exploration Geophysics...engineering and the oil and gas industries...The higher costs of offshore storage...rate was the benchmark for the...because of cost. Figure S4...Asia Pacific Oil & Gas Conference...2009), A benchmark study on...sequestration process. Exploration Geophysics...

Charles R. Jenkins; Peter J. Cook; Jonathan Ennis-King; James Undershultz; Chris Boreham; Tess Dance; Patrice de Caritat; David M. Etheridge; Barry M. Freifeld; Allison Hortle; Dirk Kirste; Lincoln Paterson; Roman Pevzner; Ulrike Schacht; Sandeep Sharma; Linda Stalker; Milovan Urosevic

2012-01-01T23:59:59.000Z

125

Field Test Report: Preliminary Aquifer Test Characterization Results for Well 299-W15-225: Supporting Phase I of the 200-ZP-1 Groundwater Operable Unit Remedial Design  

SciTech Connect

This report examines the hydrologic test results for both local vertical profile characterization and large-scale hydrologic tests associated with a new extraction well (well 299-W15-225) that was constructed during FY2009 for inclusion within the future 200-West Area Groundwater Treatment System that is scheduled to go on-line at the end of FY2011. To facilitate the analysis of the large-scale hydrologic test performed at newly constructed extraction well 299-W15-225 (C7017; also referred to as EW-1 in some planning documents), the existing 200-ZP-1 interim pump-and-treat system was completely shut-down ~1 month before the performance of the large-scale hydrologic test. Specifically, this report 1) applies recently developed methods for removing barometric pressure fluctuations from well water-level measurements to enhance the detection of hydrologic test and pump-and-treat system effects at selected monitor wells, 2) analyzes the barometric-corrected well water-level responses for a preliminary determination of large-scale hydraulic properties, and 3) provides an assessment of the vertical distribution of hydraulic conductivity in the vicinity of newly constructed extraction well 299-W15-225. The hydrologic characterization approach presented in this report is expected to have universal application for meeting the characterization needs at other remedial action sites located within unconfined and confined aquifer systems.

Spane, Frank A.; Newcomer, Darrell R.

2009-09-23T23:59:59.000Z

126

Assessment of seawater intrusion into underground oil storage cavern and prediction of its sustainability  

Science Journals Connector (OSTI)

Operation of underground oil (gas) storage cavern in coastal area can induce seawater intrusion because excavation of underground storage cavern causes the groundwater level decrease of coastal aquifer. Seawater ...

Eunhee Lee; Jeong-Won Lim; Hee Sun Moon; Kang-Kun Lee

2014-07-01T23:59:59.000Z

127

Aquifer test at Comore Loma No. 4, Idaho Falls, Idaho  

SciTech Connect

An aquifer test was conducted at Comore Loma Well {number_sign}4 to determine the aquifer hydraulic characteristics at this location on July 11 and 12, 1991. Water was withdrawn from Comore Loma Well {number_sign}4 at approximately 850 gallons per minute for 8 hours while monitoring the water level in the plumping well and an observation well 930 ft away. The pumped well showed over 12 ft of drawdown with no discernable drawdown in the observation well. The drawdown in the pumped well was nearly instantaneous, showing little additional drawdown after 1 minute. The transmissivity was calculated to be approximately 140,000 ft{sup 2}/day using the Jacob solution. This gives a hydraulic conductivity of 1300 ft/day for the 110 ft interval tested. The high transmissivity and geologic setting suggest the aquifer may in part produce water from the Snake River Plain aquifer. However, the warm water temperature (71{degrees}F) indicates the presence of a geothermal source typical of the foothills aquifer. The storage coefficient could not be calculated since no water level decline was detected in the observation well.

Hubbell, J.M.

1991-12-01T23:59:59.000Z

128

Colloid-facilitated transport of radium and thorium in the Memphis Aquifer, Memphis, Tennessee, U.S.A.  

E-Print Network (OSTI)

??The significance of groundwater colloidal transport was examined in the context of the Memphis Aquifer (Memphis, Tennessee) in the vicinity of the Sheahan well field.… (more)

Todd, Vincent Michael

2013-01-01T23:59:59.000Z

129

Compilation and summary of technical and economic assessments in the field of energy storage  

SciTech Connect

Information is presented which was extracted from various assessments of energy storage technologies conducted during the past four years, primarily under the auspices of the Office of Energy Systems Research and Development (formerly the Division of Energy Storage Systems). A thorough search of the relevant literature was conducted using the DOE/RECON computerized data base and other sources. Only tabular or graphic material was abstracted from the documents. The material has been organized in two ways: by the intended end use, i.e., vehicles, utility load leveling, residential load leveling, industrial, and solar, and within each end use, by technology. The summary tables attempt to compare the results of different studies of the same technology or end use. No attempt is made to summarize the conclusions of each individual study, but rather to point out areas of agreement or disagreement between them. The reader should be aware of the risks in making comparisons between studies conducted by researchers with possibly differing purposes and assumptions. Any conclusions based on the summary sections are more indicative than definitive.

DeVries, J.

1981-10-01T23:59:59.000Z

130

Microsoft Word - S08542_Aquifer  

Office of Legacy Management (LM)

Work Plan for the Enhanced Work Plan for the Enhanced Characterization of the Surficial Aquifer Riverton, Wyoming, Processing Site June 2012 LMS/RVT/S08542 This page intentionally left blank LMS/RVT/S08542 Work Plan for the Enhanced Characterization of the Surficial Aquifer Riverton, Wyoming, Processing Site June 2012 This page intentionally left blank U.S. Department of Energy Work Plan for the Enhanced Characterization of the Surficial Aquifer, Riverton, Wyoming June 2012 Doc. No. S08542 Page i Contents Abbreviations .................................................................................................................................. ii 1.0 Introduction ............................................................................................................................1

131

A feasibility study of ECBM recovery and CO2 storage for a producing CBM field in Southeast Qinshui Basin, China  

Science Journals Connector (OSTI)

Abstract This paper presents a geo-engineering and economic analysis of the potential for enhanced coalbed methane (ECBM) recovery and CO2 storage in the South Shizhuang CBM Field, Southeast Qinshui Basin, China. We construct a static model using the well log and laboratory data and then upscale this model to use in dynamic simulations. We history match field water and gas rates using the dynamic model. The parameters varied during the history match include porosity and permeability. Using the history matched dynamic model, we make predictions of CBM and ECBM recoveries for various field developments. We build a techno-economic model that calculates the incremental nominal net present value (NPV) of the ECBM incremental recovery and CO2 storage over the CBM recovery. We analyse how the NPV is affected by well spacing, CH4 price, carbon credit and the type of coal. Our analyses suggest that 300 m is the optimum well spacing for the study area under the current CH4 price in China and with a zero carbon credit. Using this well spacing, we predict the recoveries for different injection gas compositions of CO2 and N2 and different injection starting times. The results show that gas injection yields incremental CBM production whatever the composition of the injected gas. Pure CO2 injection yields highest ECBM for low swelling coals while flue gas injection gives highest ECBM for high swelling coals. However, the differences in recoveries are small. Injection can be economically viable depending on the CH4 price and the carbon credit. At current prices and no carbon credit, flue gas injection is commercial. At higher CH4 prices and/or with the introduction of carbon credits, co-optimisation could be commercially viable. High carbon credits favour injecting pure CO2 rather than other gases because this stores more CO2. Injecting CO2 at late stage increases CO2 storage but decreases the project's NPV. High-swelling coals require about $20/tonnes additional carbon credit.

Fengde Zhou; Wanwan Hou; Guy Allinson; Jianguang Wu; Jianzhong Wang; Yildiray Cinar

2013-01-01T23:59:59.000Z

132

Transboundary aquifers: Southwestern states assess  

E-Print Network (OSTI)

tx H2O | pg. 14 Southwestern states assess Researchers from three universities in Texas, New Mexico, and Arizona and from the U.S. Geological Survey (USGS) are partnering on a new project to evaluate aquifers that span the United States... and Mexico borders. The federally funded project, known as United States-Mexico Transboundary Aquifer Assessment, will provide a scientific foundation for state and local officials to address pressing water resources challenges in the United States...

Wythe, Kathy

2008-01-01T23:59:59.000Z

133

Potential for CO2 storage in depleted fields on the Dutch Continental Shelf–Cost estimate for offshore facilities  

Science Journals Connector (OSTI)

A study was performed on capital and operational costs for offshore injection of CO2 into depleted fields. The main focus was on the design and costs of process requirements for injection, required conservation (hibernation) and modification of existing platforms between end of gas/oil production and start of CO2 injection. Also cost estimates for new platforms are provided. The study is ‘high level’ and generic in nature as no specific target for CO2 storage has been selected. For the purpose of this study a simplified approach is used for determination of the required injection facilities and platform modifications. Nevertheless, the study provides a good indication on the level of expenditures that can be expected.

Floor Jansen; Rob Steinz; Boudewijn van Gelder

2011-01-01T23:59:59.000Z

134

Underground Natural Gas Storage by Storage Type  

NLE Websites -- All DOE Office Websites (Extended Search)

1973-2014 Withdrawals 43,752 63,495 73,368 47,070 52,054 361,393 1973-2014 Salt Cavern Storage Fields Natural Gas in Storage 381,232 399,293 406,677 450,460 510,558 515,041...

135

Evaluating impacts of CO2 gas intrusion into a confined sandstone aquifer: Experimental results  

SciTech Connect

Deep subsurface storage and sequestration of CO2 has been identified as a potential mitigation technique for rising atmospheric CO2 concentrations. Sequestered CO2 represents a potential risk to overlying aquifers if the CO2 leaks from the deep storage reservoir. Experimental and modeling work is required to evaluate potential risks to groundwater quality and develop a systematic understanding of how CO2 leakage may cause important changes in aquifer chemistry and mineralogy by promoting dissolution/precipitation, adsorption/desorption, and redox reactions. Sediments from the High Plains aquifer in Kansas, United States, were used in this investigation, which is part of the National Risk Assessment Partnership Program sponsored by the US Department of Energy. This aquifer was selected to be representative of consolidated sand and gravel/sandstone aquifers overlying potential CO2 sequestration repositories within the continental US. In this paper, we present results from batch experiments conducted at room temperature and atmospheric pressure with four High Plains aquifer sediments. Batch experiments simulate sudden, fast, and short-lived releases of the CO2 gas as would occur in the case of well failure during injection. Time-dependent release of major, minor, and trace elements were determined by analyzing the contacting solutions. Characterization studies demonstrated that the High Plains aquifer sediments were abundant in quartz and feldspars, and contained about 15 to 20 wt% montmorillonite and up to 5 wt% micas. Some of the High Plains aquifer sediments contained no calcite, while others had up to about 7 wt% calcite. The strong acid extraction tests confirmed that in addition to the usual elements present in most soils, rocks, and sediments, the High Plains aquifer sediments had appreciable amounts of As, Cd, Pb, Cu, and occasionally Zn, which potentially may be mobilized from the solid to the aqueous phase during or after exposure to CO2. However, the results from the batch experiments showed that the High Plains sediments mobilized only low concentrations of trace elements (potential contaminants), which were detected occasionally in the aqueous phase during these experiments. Importantly, these occurrences were more frequent in the calcite-free sediment. Results from these investigations provide useful information to support site selection, risk assessment, and public education efforts associated with geological CO2 storage and sequestration.

Qafoku, Nikolla; Lawter, Amanda R.; Shao, Hongbo; Wang, Guohui; Brown, Christopher F.

2014-12-31T23:59:59.000Z

136

Supercritical CO2-Corrosion in Heat Treated Steel Pipes during Carbon Capture and Storage CCS  

Science Journals Connector (OSTI)

Heat treatment of steels used for engineering a saline aquifer Carbon Capture and Storage (CCS) site may become...2...) into deep geological rock formations. 13% Chromium steel injection pipes heat treated differ...

Anja Pfennig; Phillip Zastrow…

2013-01-01T23:59:59.000Z

137

Carbon capture and sequestration versus carbon capture utilisation and storage for enhanced oil recovery  

Science Journals Connector (OSTI)

There are 74 integrated carbon capture projects worldwide currently listed by the Global ... oil recovery and those for permanent storage of carbon dioxide in saline aquifers or in depleted ... challenges related...

Bob Harrison; Gioia Falcone

2014-02-01T23:59:59.000Z

138

AUTOMATED WATER LEVEL MEASUREMENTS IN SMALL-DIAMETER AQUIFER TUBES  

SciTech Connect

Groundwater contaminated with hexavalent chromium, strontium-90, and uranium discharges into the Columbia River along approximately 16 km (10 mi) of the shoreline. Various treatment systems have and will continue to be implemented to eliminate the impact of Hanford Site contamination to the river. To optimize the various remediation strategies, it is important to understand interactions between groundwater and the surface water of the Columbia River. An automated system to record water levels in aquifer sampling tubes installed in the hyporheic zone was designed and tested to (1) gain a more complete understanding of groundwater/river water interactions based on gaining and losing conditions ofthe Columbia River, (2) record and interpret data for consistent and defensible groundwater/surface water conceptual models that may be used to better predict subsurface contaminant fate and transport, and (3) evaluate the hydrodynamic influence of extraction wells in an expanded pump-and-treat system to optimize the treatment system. A system to measure water levels in small-diameter aquifer tubes was designed and tested in the laboratory and field. The system was configured to allow manual measurements to periodically calibrate the instrument and to permit aquifer tube sampling without removing the transducer tube. Manual measurements were collected with an e-tape designed and fabricated especially for this test. Results indicate that the transducer system accurately records groundwater levels in aquifer tubes. These data are being used to refine the conceptual and numeric models to better understand interactions in the hyporheic zone of the Columbia River and the adjacent river water and groundwater, and changes in hydrochemistry relative to groundwater flux as river water recharges the aquifer and then drains back out in response to changes in the river level.

PETERSEN SW; EDRINGTON RS; MAHOOD RO; VANMIDDLESWORTH PE

2011-01-14T23:59:59.000Z

139

An evaluation of aquifer intercommunication between the unconfined and Rattlesnake Ridge aquifers on the Hanford Site  

SciTech Connect

During 1986, Pacific Northwest Laboratory conducted a study of a portion of the Rattlesnake Ridge aquifer (confined aquifer) that lies beneath the B Pond - Gable Mountain Pond area of the Hanford Site. The purpose was to determine the extent of intercommunication between the unconfined aquifer and the uppermost regionally extensive confined aquifer, referred to as the Rattlesnake Ridge aquifer. Hydraulic head data and chemical data were collected from the ground water in the study area during December 1986. The hydraulic head data were used to determine the effects caused by water discharged to the ground from B Pond on both the water table of the unconfined aquifer and the potentiometric surface of the confined aquifer. The chemical data were collected to determine the extent of chemical constituents migrating from the unconfined aquifer to the confined aquifer. Analysis of chemical constituents in the Rattlesnake Ridge aquifer demonstrated that communication between the unconfined and confined aquifers had occurred. However, the levels of contaminants found in the Rattlesnake Ridge aquifer during this study were below the DOE Derived Concentration Guides.

Jensen, E.J.

1987-10-01T23:59:59.000Z

140

Aquifer Protection Area Land Use Regulations (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations describe allowable activities within aquifer protection areas, the procedure by which such areas are delineated, and relevant permit requirements. The regulations also describe...

Note: This page contains sample records for the topic "aquifer storage field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The role of aquifer storage and recovery (ASR) in sustainbility.  

E-Print Network (OSTI)

??Kuwait is an arid country situated at the head of the Arabian Gulf and its water resources can be classified into three significant types: (1)… (more)

AlRukaibi, Duaij

2011-01-01T23:59:59.000Z

142

Aquifer testing data package for 1993 200-UP-1 Groundwater Operable Unit  

SciTech Connect

The following aquifer testing data supported 1993 Interim Remedial Measure field work for the U-1 and U-2 crib area near the uranium technetium and nitrate plumes beneath the U Plant Aggregate Area. The purpose of aquifer testing was to fill in hydraulic conductivity data gaps in the western portion of 200 West Area and help refine the hydrogeologic conceptual model. This data package reports data collected in accordance with the description of work released in 1993 by L.C. Swanson, entitled Description of Work for the 200-UP-1 Aquifer Testing Activity. These data are analyzed in the document Aquifer Test Analysis Results for 1993 200-UP-1 Groundwater Operable Unit. Slug tests were conducted at 7 existing wells, and pumping tests were conducted at 2 of those same existing wells.

Swanson, L.C.

1994-06-24T23:59:59.000Z

143

Water conservation reserve program alternatives for the southern Ogallala aquifer.  

E-Print Network (OSTI)

??The Ogallala Aquifer is a vast resource underlying parts of eight states. The southern portion of the Ogallala Aquifer is considered to be an exhaustible… (more)

Wheeler, Erin Alexis

2008-01-01T23:59:59.000Z

144

THE SNAKE RIVER PLAIN AQUIFER THE SNAKE RIVER...  

NLE Websites -- All DOE Office Websites (Extended Search)

the complex to be found in the aquifer are volatile organic contaminants - particularly carbon tetrachloride ("carbon tet"). The carbon tet found in the aquifer is attributed to...

145

The INL and the Snake River Plain Aquifer  

NLE Websites -- All DOE Office Websites (Extended Search)

the complex to be found in the aquifer are volatile organic contaminants particularly carbon tetrachloride (carbon tet). The carbon tet found in the aquifer is attributed...

146

COMPUTER PROGRAM CCC USER'S MANUAL VERSION II.  

E-Print Network (OSTI)

M.J. , 1978b; of thermal energy storage in aquifers:C. , 1979b; Aquifer thermal energy storage---a numericalAquifer Thermal Energy Storage Field Experiment (1979)

Mangold, D.C.

2013-01-01T23:59:59.000Z

147

Analytical Estimation of CO2 Storage Capacity in Depleted Oil and Gas Reservoirs Based on Thermodynamic State Functions  

E-Print Network (OSTI)

dimensions. Vertical discretization of grid size allows to improve aquifer influx modeling......................................... 55 Table 4.2? Reservoir model properties. ................................................................ 58 Table 4... fuel dependency will continue in the near future, increasing the need to develop economic and technologically feasible approaches to reduce and capture and dispose CO2 emissions. Geological storage of CO2 in aquifers and depleted oil and gas...

Valbuena Olivares, Ernesto

2012-02-14T23:59:59.000Z

148

Laboratory Experiments to Evaluate Diffusion of 14C into Nevada Test Site Carbonate Aquifer Matrix  

SciTech Connect

Determination of groundwater flow velocities at the Nevada Test Site is important since groundwater is the principal transport medium of underground radionuclides. However, 14C-based groundwater velocities in the carbonate aquifers of the Nevada Test Site are several orders of magnitude slower than velocities derived from the Underground Test Area regional numerical model. This discrepancy has been attributed to the loss or retardation of 14C from groundwater into the surrounding aquifer matrix making 14C-based groundwater ages appear much older. Laboratory experiments were used to investigate the retardation of 14C in the carbonate aquifers at the Nevada Test Site. Three sets of experiments were conducted evaluating the diffusion of 14C into the carbonate aquifer matrix, adsorption and/or isotopic exchange onto the pore surfaces of the carbonate matrix, and adsorption and/or isotopic exchange onto the fracture surfaces of the carbonate aquifer. Experimental results a nd published aquifer matrix and fracture porosities from the Lower Carbonate Aquifer were applied to a 14C retardation model. The model produced an extremely wide range of retardation factors because of the wide range of published aquifer matrix and fracture porosities (over three orders of magnitude). Large retardation factors suggest that groundwater with very little measured 14C activity may actually be very young if matrix porosity is large relative to the fracture porosity. Groundwater samples collected from highly fractured aquifers with large effective fracture porosities may have relatively small correction factors, while samples from aquifers with a few widely spaced fractures may have very large correction factors. These retardation factors were then used to calculate groundwater velocities from a proposed flow path at the Nevada Test Site. The upper end of the range of 14C correction factors estimated groundwater velocities that appear to be at least an order of magnitude too high compared to published velocities. The lower end of the range of 14C correction factors falls within the range of reported velocities. From these results, future experimental studies (both laboratory and field scale) to support 14C groundwater age dating should focus on obtaining better estimates of aquifer properties including matrix and fracture porosities.

Ronald L. Hershey; William Howcroft; Paul W. Reimus

2003-03-01T23:59:59.000Z

149

Field lines twisting in a noisy corona: implications for energy storage and release, and initiation of solar eruptions  

E-Print Network (OSTI)

We present simulations modeling closed regions of the solar corona threaded by a strong magnetic field where localized photospheric vortical motions twist the coronal field lines. The linear and nonlinear dynamics are investigated in the reduced magnetohydrodynamic regime in Cartesian geometry. Initially the magnetic field lines get twisted and the system becomes unstable to the internal kink mode, confirming and extending previous results. As typical in this kind of investigations, where initial conditions implement smooth fields and flux-tubes, we have neglected fluctuations and the fields are laminar until the instability sets in. But previous investigations indicate that fluctuations, excited by photospheric motions and coronal dynamics, are naturally present at all scales in the coronal fields. Thus, in order to understand the effect of a photospheric vortex on a more realistic corona, we continue the simulations after kink instability sets in, when turbulent fluctuations have already developed in the co...

Rappazzo, A F; Einaudi, G

2013-01-01T23:59:59.000Z

150

Field Lines Twisting in a Noisy Corona: Implications for Energy Storage and Release, and Initiation of Solar Eruptions  

Science Journals Connector (OSTI)

We present simulations modeling closed regions of the solar corona threaded by a strong magnetic field where localized photospheric vortical motions twist the coronal field lines. The linear and nonlinear dynamics are investigated in the reduced magnetohydrodynamic regime in Cartesian geometry. Initially the magnetic field lines get twisted and the system becomes unstable to the internal kink mode, confirming and extending previous results. As typical in this kind of investigations, where initial conditions implement smooth fields and flux-tubes, we have neglected fluctuations and the fields are laminar until the instability sets in. However, previous investigations indicate that fluctuations, excited by photospheric motions and coronal dynamics, are naturally present at all scales in the coronal fields. Thus, in order to understand the effect of a photospheric vortex on a more realistic corona, we continue the simulations after kink instability sets in, when turbulent fluctuations have already developed in the corona. In the nonlinear stage the system never returns to the simple initial state with ordered twisted field lines, and kink instability does not occur again. Nevertheless, field lines get twisted, although in a disordered way, and energy accumulates at large scales through an inverse cascade. This energy can subsequently be released in micro-flares or larger flares, when interaction with neighboring structures occurs or via other mechanisms. The impact on coronal dynamics and coronal mass ejections initiation is discussed.

A. F. Rappazzo; M. Velli; G. Einaudi

2013-01-01T23:59:59.000Z

151

FIELD LINES TWISTING IN A NOISY CORONA: IMPLICATIONS FOR ENERGY STORAGE AND RELEASE, AND INITIATION OF SOLAR ERUPTIONS  

SciTech Connect

We present simulations modeling closed regions of the solar corona threaded by a strong magnetic field where localized photospheric vortical motions twist the coronal field lines. The linear and nonlinear dynamics are investigated in the reduced magnetohydrodynamic regime in Cartesian geometry. Initially the magnetic field lines get twisted and the system becomes unstable to the internal kink mode, confirming and extending previous results. As typical in this kind of investigations, where initial conditions implement smooth fields and flux-tubes, we have neglected fluctuations and the fields are laminar until the instability sets in. However, previous investigations indicate that fluctuations, excited by photospheric motions and coronal dynamics, are naturally present at all scales in the coronal fields. Thus, in order to understand the effect of a photospheric vortex on a more realistic corona, we continue the simulations after kink instability sets in, when turbulent fluctuations have already developed in the corona. In the nonlinear stage the system never returns to the simple initial state with ordered twisted field lines, and kink instability does not occur again. Nevertheless, field lines get twisted, although in a disordered way, and energy accumulates at large scales through an inverse cascade. This energy can subsequently be released in micro-flares or larger flares, when interaction with neighboring structures occurs or via other mechanisms. The impact on coronal dynamics and coronal mass ejections initiation is discussed.

Rappazzo, A. F. [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, DE 19716 (United States); Velli, M. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Einaudi, G., E-mail: rappazzo@udel.edu [Berkeley Research Associates, Inc., 6537 Mid Cities Avenue, Beltsville, MD 20705 (United States)

2013-07-10T23:59:59.000Z

152

Streamline simulation of Surfactant Enhanced Aquifer Remediation  

E-Print Network (OSTI)

Nonaqueous Phase Liquids (NAPLS) are a recognized source of groundwater contamination. Surfactant Enhanced Aquifer Remediation (SEAR) shows promise in increasing the efficiency and effectiveness over traditional "pump and treat" NAPL remediation...

Tunison, Douglas Irvin

1996-01-01T23:59:59.000Z

153

The Edwards Aquifer: An Economic Perspective  

E-Print Network (OSTI)

now served by the Edwards Aquifer. A system of transferable groundwater rights is commendable for several reasons. It is flexible because it accomodates unforeseeable future shifts in demand. Transferable rights allow voluntary action on behalf...

Merrifield, John D.; McCarl, Bruce A.; Griffin, Ronald C.; Emerson, Peter M.; Collinge, Robert A.

154

A statistical analysis of well production rates from UK oil and gas fields – Implications for carbon capture and storage  

Science Journals Connector (OSTI)

Abstract The number of wells required to dispose of global CO2 emissions by injection into geological formations is of interest as a key indicator of feasible deployment rate, scale and cost. Estimates have largely been driven by forecasts of sustainable injection rate from mathematical modelling of the CO2 injection process. Recorded fluid production rates from oil and gas fields can be considered an observable analogue in this respect. The article presents statistics concerning Cumulative average Bulk fluid Production (CBP) rates per well for 104 oil and gas fields from the UK offshore region. The term bulk fluid production is used here to describe the composite volume of oil, gas and water produced at reservoir conditions. Overall, the following key findings are asserted: (1) CBP statistics for UK offshore oil and gas fields are similar to those observed for CO2 injection projects worldwide. (2) 50% probability of non-exceedance (PNE) for CBP for oil and gas fields without water flood is around 0.35 Mt/yr/well of CO2 equivalent. (3) There is negligible correlation between reservoir transmissivity and CBP. (4) Study of net and gross CBP for water flood fields suggest a 50% PNE that brine co-production during CO2 injection could lead to a 20% reduction in the number of wells required.

Simon A. Mathias; Jon G. Gluyas; Eric J. Mackay; Ward H. Goldthorpe

2013-01-01T23:59:59.000Z

155

Aquitard control of stream-aquifer interaction and flow to a horizontal well in coastal aquifers  

E-Print Network (OSTI)

from aquitard as a source term inside the aquifer which is called Hantush�s assumption (1964), we linked flows in aquitard and aquifer by the idea of continuity of flux and drawdown. The result in this chapter is compared with that of Zhan and Park...

Sun, Dongmin

2007-04-25T23:59:59.000Z

156

Carbon Capture and Storage Poster | Department of Energy  

Office of Environmental Management (EM)

Carbon Capture and Storage - In Depth (poster) More Documents & Publications Geologic Carbon Dioxide Storage Field Projects Supported by DOE's Sequestration Program Training...

157

Hydrogen fuel closer to reality because of storage advances  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen fuel closer to reality because of storage advances Advances made in rechargeable solid hydrogen fuel storage tanks. March 21, 2012 Field experiments on the Alamosa Canyon...

158

Assessing the Effect of Timing of Availability for Carbon Dioxide Storage in the Largest Oil and Gas Pools in the Alberta Basin: Description of Data and Methodology  

SciTech Connect

Carbon dioxide capture from large stationary sources and storage in geological media is a technologically-feasible mitigation measure for the reduction of anthropogenic emissions of CO2 to the atmosphere in response to climate change. Carbon dioxide (CO2) can be sequestered underground in oil and gas reservoirs, in deep saline aquifers, in uneconomic coal beds and in salt caverns. The Alberta Basin provides a very large capacity for CO2 storage in oil and gas reservoirs, along with significant capacity in deep saline formations and possible unmineable coal beds. Regional assessments of potential geological CO2 storage capacity have largely focused so far on estimating the total capacity that might be available within each type of reservoir. While deep saline formations are effectively able to accept CO2 immediately, the storage potential of other classes of candidate storage reservoirs, primarily oil and gas fields, is not fully available at present time. Capacity estimates to date have largely overlooked rates of depletion in these types of storage reservoirs and typically report the total estimated storage capacity that will be available upon depletion. However, CO2 storage will not (and cannot economically) begin until the recoverable oil and gas have been produced via traditional means. This report describes a reevaluation of the CO2 storage capacity and an assessment of the timing of availability of the oil and gas pools in the Alberta Basin with very large storage capacity (>5 MtCO2 each) that are being looked at as likely targets for early implementation of CO2 storage in the region. Over 36,000 non-commingled (i.e., single) oil and gas pools were examined with effective CO2 storage capacities being individually estimated. For each pool, the life expectancy was estimated based on a combination of production decline analysis constrained by the remaining recoverable reserves and an assessment of economic viability, yielding an estimated depletion date, or year that it will be available for CO2 storage. The modeling framework and assumptions used to assess the impact of the timing of CO2 storage resource availability on the region’s deployment of CCS technologies is also described. The purpose of this report is to describe the data and methodology for examining the carbon dioxide (CO2) storage capacity resource of a major hydrocarbon province incorporating estimated depletion dates for its oil and gas fields with the largest CO2 storage capacity. This allows the development of a projected timeline for CO2 storage availability across the basin and enables a more realistic examination of potential oil and gas field CO2 storage utilization by the region’s large CO2 point sources. The Alberta Basin of western Canada was selected for this initial examination as a representative mature basin, and the development of capacity and depletion date estimates for the 227 largest oil and gas pools (with a total storage capacity of 4.7 GtCO2) is described, along with the impact on source-reservoir pairing and resulting CO2 transport and storage economics. The analysis indicates that timing of storage resource availability has a significant impact on the mix of storage reservoirs selected for utilization at a given time, and further confirms the value that all available reservoir types offer, providing important insights regarding CO2 storage implementation to this and other major oil and gas basins throughout North America and the rest of the world. For CCS technologies to deploy successfully and offer a meaningful contribution to climate change mitigation, CO2 storage reservoirs must be available not only where needed (preferably co-located with or near large concentrations of CO2 sources or emissions centers) but also when needed. The timing of CO2 storage resource availability is therefore an important factor to consider when assessing the real opportunities for CCS deployment in a given region.

Dahowski, Robert T.; Bachu, Stefan

2007-03-05T23:59:59.000Z

159

E-Print Network 3.0 - acidic uranium-contaminated aquifer Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

(19% of wells) and Other (14% of wells) aquifers and none in the Ogallala-N aquifer. Uranium... ... 69...

160

Energy Storage  

SciTech Connect

ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

Paranthaman, Parans

2014-06-03T23:59:59.000Z

Note: This page contains sample records for the topic "aquifer storage field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Energy Storage  

ScienceCinema (OSTI)

ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

Paranthaman, Parans

2014-06-23T23:59:59.000Z

162

A Lumped Parameter Model for the Edwards Aquifer  

E-Print Network (OSTI)

A lumped parameter model has been developed to simulate monthly water levels and spring flows in the Edwards Aquifer. It is less complex and easier to use than the existing complex finite difference models for the Edwards Aquifer. The lumped...

Anaya, Roberto; Wanakule, Nisai

163

Application of the decline curve method to aquifers  

E-Print Network (OSTI)

curves for Fetkovich aquifers. . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . 22 23 24 11a. Semi-log straight line behavior for an aquifer in pseudosteady state. . . . . . . . . . 24 1 lb, Comparison between the normalized influx rate... early for a strong water drive and later for a weak aquifer support. This fact is concluded by Bruns and Fetkovich3 where the authors studied the effect of water influx on p/z plot and showed that shape depends not only on the strength of the aquifer...

Potnis, Girish Vijay

1992-01-01T23:59:59.000Z

164

ECONOMIC EVALUATION OF CO2 STORAGE AND SINK ENHANCEMENT OPTIONS  

SciTech Connect

This project developed life-cycle costs for the major technologies and practices under development for CO{sub 2} storage and sink enhancement. The technologies evaluated included options for storing captured CO{sub 2} in active oil reservoirs, depleted oil and gas reservoirs, deep aquifers, coal beds, and oceans, as well as the enhancement of carbon sequestration in forests and croplands. The capture costs for a nominal 500 MW{sub e} integrated gasification combined cycle plant from an earlier study were combined with the storage costs from this study to allow comparison among capture and storage approaches as well as sink enhancements.

Bert Bock; Richard Rhudy; Howard Herzog; Michael Klett; John Davison; Danial G. De La Torre Ugarte; Dale Simbeck

2003-02-01T23:59:59.000Z

165

In situ feldspar dissolution rates in an aquifer  

Science Journals Connector (OSTI)

In situ silicate dissolution rates within the saturated Navajo sandstone, at Black Mesa, Arizona were determined from elemental fluxes in the aquifer. The mass transfer between groundwater and mineral matrix along flow paths was calculated from inverse mass balance modeling. The reaction time is bound by 14C-based travel time. BET surface areas were measured with N2 gas adsorption. Dissolution rates for K-feldspar and plagioclase are 10?19 and 10?16 mol (feldspar) m?2 s?1, respectively, which are ?105 times slower than laboratory experiment-derived rates under similar pH and temperature but at far from equilibrium conditions. The rates obtained in this study are consistent with the slower field rates found in numerous watershed and soil profile studies. However, these rates are from saturated aquifers, overcoming some concerns on estimated rates from unsaturated systems. The Navajo sandstone is a quartz-sandstone with a relatively simple and well-studied hydrogeology, groundwater geochemistry, and lithology, a large number of groundwater analyses and 14C groundwater ages, groundwater residence times up to ?37 ky, groundwater pH from ?8 to 10, and temperature from ?15 to 35°C.

Chen Zhu

2005-01-01T23:59:59.000Z

166

field  

National Nuclear Security Administration (NNSA)

9%2A en Ten-Year Site Plans (TYSP) http:nnsa.energy.govaboutusouroperationsinfopsinfopstysp

field field-type-text field-field-page-name">

167

Hydrogen Storage  

Energy.gov (U.S. Department of Energy (DOE))

On-board hydrogen storage for transportation applications continues to be one of the most technically challenging barriers to the widespread commercialization of hydrogen-fueled vehicles. The EERE...

168

Energy Storage - More Information | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Storage - More Information Energy Storage - More Information Energy Storage - More Information As energy storage technology may be applied to a number of areas that differ in power and energy requirements, DOE's Energy Storage Program performs research and development on a wide variety of storage technologies. This broad technology base includes batteries (both conventional and advanced), flywheels, electrochemical capacitors, superconducting magnetic energy storage (SMES), power electronics, and control systems. The Energy Storage Program works closely with industry partners, and many of its projects are highly cost-shared. The Program collaborates with utilities and State energy organizations such as the California Energy Commission and New York State Energy Research and Development Authority to field major pioneering storage installations that

169

Aquifer Structure Identification Using Stochastic Inversion  

SciTech Connect

This study presents a stochastic inverse method for aquifer structure identification using sparse geophysical and hydraulic response data. The method is based on updating structure parameters from a transition probability model to iteratively modify the aquifer structure and parameter zonation. The method is extended to the adaptive parameterization of facies hydraulic parameters by including these parameters as optimization variables. The stochastic nature of the statistical structure parameters leads to nonconvex objective functions. A multi-method genetically adaptive evolutionary approach (AMALGAM-SO) was selected to perform the inversion given its search capabilities. Results are obtained as a probabilistic assessment of facies distribution based on indicator cokriging simulation of the optimized structural parameters. The method is illustrated by estimating the structure and facies hydraulic parameters of a synthetic example with a transient hydraulic response.

Harp, Dylan R [Los Alamos National Laboratory; Dai, Zhenxue [Los Alamos National Laboratory; Wolfsberg, Andrew V [Los Alamos National Laboratory; Vrugt, Jasper A [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

170

Experiences with aquifer testing and analysis in fractured low-permeability sedimentary rocks exhibiting nonradial pumping response  

SciTech Connect

Multiple-well aquifer pumping tests have been used successfully to measure the bulk hydraulic properties of limestone and shale formations of the Conasauga Group of East Tennessee and to define directional components in transmissivity associated with joints and small-scale folds. This experience demonstrates that multiple-well pumping tests can be used to measure the characteristics of low-permeability fractured rocks, and it illustrates the application of data interpretation techniques that are based on models of nonradial aquifer pumping response. Analytical models that have been used to interpret pumping test data include models for simple anisotropic response and for complex pumping response in an anisotropic aquifer intersected by a single high-conductivity vertical fracture. Comparisons of results obtained using nonradial flow methods with those obtained using traditional (radial flow) analytical methods indicate that the error from radial flow methods is generally less than an order of magnitude, an insignificant error in most low-permeability settings. However, the nonradial flow methods provide much more information on structural controls on groundwater movement. Special challenges encountered in conducting aquifer pumping tests in this hydrogeologic environment include selecting a pumping rate that can be sustained after fracture storage is depleted and laying out a test configuration that is consistent with the test geometry required by the nonradial flow interpretive models. Effective test design and data interpretation thus require extensive insight into site geology.

Smith, E.D.; Vaughan, N.D.

1985-01-01T23:59:59.000Z

171

Carbon Capture and Storage: How Green Can Black Be?  

Science Journals Connector (OSTI)

...coal, gas, and oil) and sometimes...the highest cost. Historical...progressively larger equipment from pilot...introduction, operation, and establishment...reducing the cost and also...To avoid costs of overcompression...aquifers, oil fields, or gas fields...commercial pipe operation. Fig. 3...

R. Stuart Haszeldine

2009-09-25T23:59:59.000Z

172

Estimation of Recharge to the Middle Trinity Aquifer of Central Texas Using Water-Level Fluctuations  

E-Print Network (OSTI)

A 23-site monitoring well network located in the Trinity Aquifer region of Central Texas, with all wells penetrating the Middle Trinity Aquifer, was used with available values of aquifer storativity and specific yield to estimate recharge...

Jennings, Marshall; Chad, Thomas; Burch, John; Creutzburg, Brian; Lambert, Lance

173

NETL: Carbon Storage - Program Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Overview Program Overview Carbon Storage Program Overview The Carbon Storage Program involves three key elements for technology development: Core Research and Development (Core R&D), Infrastructure, and Global Collaborations. The image below displays the relationship among the three elements and provides a means for navigation throughout NETL's Storage Program Website. Click on Image to Navigate Storage Website Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player NETL's Carbon Storage Program Structure CORE R&D Core R&D is driven by industry's technology needs and segregates those needs into focus areas to more efficiently obtain solutions that can then be tested and deployed in the field. The Core R&D Element contains four

174

NETL: Natural Gas and Petroleum Storage Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Storage Strategic Petroleum Reserve Click on project number for a more detailed description of the project Project Number Project Name Primary Performer DE-FE0014830 Strategic Petroleum Reserve Core Laboratories Natural Gas Storage There are currently no active storage projects Storage - Completed Projects Click on project number for a more detailed description of the project Project Number Project Name Primary Performer DE-DT0000358 Strategic Petroleum Reserve Northrop Grumman Missions System DE-FC26-03NT41813 Geomechanical Analysis and Design Criteria Terralog Technologies DE-FC26-03NT41779 Natural Gas Storage Technology Consortium Pennsylvania State University (PSU) DE-FC26-03NT41743 Improved Deliverability in Gas Storage Fields by Identifying the Timing and Sources of Damage Using Smart Storage Technology Schlumberger Technology Corporation

175

E-Print Network 3.0 - aquifer subtropical africa Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Charge 2003 12;-ii- Acknowledgements Tim Blair introduced the aquifer... aquifers in Jordan as an example to demonstrate the theoretical formulations. However, by ... Source:...

176

E-Print Network 3.0 - alto piura aquifer Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Charge 2003 12;-ii- Acknowledgements Tim Blair introduced the aquifer... aquifers in Jordan as an example to demonstrate the theoretical formulations. However, by ... Source:...

177

E-Print Network 3.0 - aquifers case study Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

in the conned aquifer will be controlled mainly by leakage. The study also... the tide-induced groundwater uctuation in a conned aquifer. This ... Source: Jiao, Jiu...

178

E-Print Network 3.0 - aerobic shallow aquifer Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

the characteristics of the shallow aquifers (depth, thickness, transmisivity, chemical... energy exploitability1 of aquifers; one talks about the ... Source: Ecole Polytechnique,...

179

E-Print Network 3.0 - aquifer system california Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

coastal aquifers', Hydrological Sciences Journal... ;Theoretical study of the impact of tide-induced airflow on hydraulic head in air-confined coastal aquifers Source: Jiao, Jiu...

180

E-Print Network 3.0 - aquifer testing recommendations Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

of... of estimated aquifer parameters is demonstrated by analysing the pumping test data at Cottam in the Nottingham... the spatial distribution of aquifer properties and...

Note: This page contains sample records for the topic "aquifer storage field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

E-Print Network 3.0 - aquifer column studies Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

the site... of the Aquifer-Test Site The aquifer at the study site is composed of unconsolidated glacial outwash sediments... ESTIMATION OF HYDRAULIC PARAMETERS FROM AN UNCONFINED...

182

Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Daniel R. Borneo, PE Daniel R. Borneo, PE Sandia National Laboratories September 27, 2007 San Francisco, CA PEER REVIEW 2007 DOE(SNL)/CEC Energy Storage Program FYO7 Projects Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000. 2 Presentation Outline * DOE(SNL)/CEC Collaboration - Background of DOE(SNL)/CEC Collaboration - FY07 Project Review * Zinc Bromine Battery (ZBB) Demonstration * Palmdale Super capacitor Demonstration * Sacramento Municipal Utility District (SMUD) Regional Transit (RT) Super capacitor demonstration * Beacon Flywheel Energy Storage System (FESS) 3 Background of DOE(SNL)/CEC Collaboration * Memorandum of Understanding Between CEC and DOE (SNL). - In Place since 2004

183

Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development Concept Development Concept Nitrogen-Air Battery F.M. Delnick, D. Ingersoll, K.Waldrip Sandia National Laboratories Albuquerque, NM presented to U.S. DOE Energy Storage Systems Research Program Washington, DC November 2-4, 2010 Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Funded by the Energy Storage Systems Program of the U.S. Department Of Energy through Sandia National Laboratories Full Air Breathing Battery Concept * Concept is to use O 2 and N 2 as the electrodes in a battery * Novel because N 2 is considered inert * Our group routinely reacts N 2 electrochemically

184

Radon Concern in the Hickory Aquifer  

E-Print Network (OSTI)

Radon ConcernStory by Amanda Crawford tx H2O | pg. 20 As the primary water source for Mason,Concho, McCulloch, San Saba, Menard, Kimble, and Gillespie counties in Central Texas, the threat of elevated radionuclide concentra- tions... in the Hickory Aquifer's groundwater poses health risks for residents in the area. Radon is a natural, radioactive gas that may be found indoors in air or drinking water. Radon is the decay product of radium, so radon indi- rectly reflects the presence...

Crawford, Amanda

2005-01-01T23:59:59.000Z

185

Hydrate Control for Gas Storage Operations  

SciTech Connect

The overall objective of this project was to identify low cost hydrate control options to help mitigate and solve hydrate problems that occur in moderate and high pressure natural gas storage field operations. The study includes data on a number of flow configurations, fluids and control options that are common in natural gas storage field flow lines. The final phase of this work brings together data and experience from the hydrate flow test facility and multiple field and operator sources. It includes a compilation of basic information on operating conditions as well as candidate field separation options. Lastly the work is integrated with the work with the initial work to provide a comprehensive view of gas storage field hydrate control for field operations and storage field personnel.

Jeffrey Savidge

2008-10-31T23:59:59.000Z

186

Sole Source Aquifer Demonstration Program | Open Energy Information  

Open Energy Info (EERE)

Sole Source Aquifer Demonstration Program Sole Source Aquifer Demonstration Program Jump to: navigation, search Statute Name Sole Source Aquifer Demonstration Program Year 1986 Url [[File:|160px|link=http://www.gpo.gov/fdsys/search/pagedetails.action?browsePath=Title+42%2FChapter+6a%2FSubchapter+Xii%2FPart+C%2FSec.+300h-6&granuleId=USCODE-2010-title42-chap6A-subchapXII-partC-sec300h-6&packageId=USCODE-2010-title42&collapse=true&fromBrowse=true&bread=true]] Description References US GPO - 42 USC 300H-6[1] Key Dates in Water History[2] The Sole Source Aquifer Demonstration Program provides funding to identify and provide the special protections needed for sole source aquifers. This statute required States with primacy to adopt regulations and begin enforcing them within 18 months of the EPA's promulgation.

187

Gas storage materials, including hydrogen storage materials  

DOE Patents (OSTI)

A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

2014-11-25T23:59:59.000Z

188

Superconducting magnetic energy storage  

SciTech Connect

Recent programmatic developments in Superconducting Magnetic Energy Storage (SMES) have prompted renewed and widespread interest in this field. In mid 1987 the Defense Nuclear Agency, acting for the Strategic Defense Initiative Office, issued a request for proposals for the design and construction of SMES Engineering Test Model (ETM). Two teams, one led by Bechtel and the other by Ebasco, are now engaged in the first phase of the development of a 10 to 20 MWhr ETM. This report presents the rationale for energy storage on utility systems, describes the general technology of SMES, and explains the chronological development of the technology. The present ETM program is outlined; details of the two projects for ETM development are described in other papers in these proceedings. The impact of high T/sub c/ materials on SMES is discussed. 69 refs., 3 figs., 3 tabs.

Hassenzahl, W.

1988-08-01T23:59:59.000Z

189

Nuclear materials management storage study  

SciTech Connect

The Office of Weapons and Materials Planning (DP-27) requested the Planning Support Group (PSG) at the Savannah River Site to help coordinate a Departmental complex-wide nuclear materials storage study. This study will support the development of management strategies and plans until Defense Programs` Complex 21 is operational by DOE organizations that have direct interest/concerns about or responsibilities for nuclear material storage. They include the Materials Planning Division (DP-273) of DP-27, the Office of the Deputy Assistant Secretary for Facilities (DP-60), the Office of Weapons Complex Reconfiguration (DP-40), and other program areas, including Environmental Restoration and Waste Management (EM). To facilitate data collection, a questionnaire was developed and issued to nuclear materials custodian sites soliciting information on nuclear materials characteristics, storage plans, issues, etc. Sites were asked to functionally group materials identified in DOE Order 5660.1A (Management of Nuclear Materials) based on common physical and chemical characteristics and common material management strategies and to relate these groupings to Nuclear Materials Management Safeguards and Security (NMMSS) records. A database was constructed using 843 storage records from 70 responding sites. The database and an initial report summarizing storage issues were issued to participating Field Offices and DP-27 for comment. This report presents the background for the Storage Study and an initial, unclassified summary of storage issues and concerns identified by the sites.

Becker, G.W. Jr.

1994-02-01T23:59:59.000Z

190

Underground Natural Gas Storage by Storage Type  

Gasoline and Diesel Fuel Update (EIA)

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History All Operators Net Withdrawals 192,093 33,973 -348,719 -17,009 -347,562 -7,279 1967-2012 Injections 3,132,920 3,340,365 3,314,990 3,291,395 3,421,813 2,825,427 1935-2012 Withdrawals 3,325,013 3,374,338 2,966,180 3,274,385 3,074,251 2,818,148 1944-2012 Salt Cavern Storage Fields Net Withdrawals 20,001 -42,044 -56,010 -58,295 -92,413 -19,528 1994-2012 Injections 400,244 440,262 459,330 510,691 532,893 465,005 1994-2012 Withdrawals 420,245 398,217 403,321 452,396 440,480 445,477 1994-2012 Nonsalt Cavern Storage Net Withdrawals 172,092 76,017 -292,710 41,286 -255,148 12,249 1994-2012 Injections 2,732,676 2,900,103 2,855,667 2,780,703 2,888,920 2,360,422 1994-2012 Withdrawals

191

Underground Natural Gas Storage by Storage Type  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History All Operators Net Withdrawals 192,093 33,973 -348,719 -17,009 -347,562 -7,279 1967-2012 Injections 3,132,920 3,340,365 3,314,990 3,291,395 3,421,813 2,825,427 1935-2012 Withdrawals 3,325,013 3,374,338 2,966,180 3,274,385 3,074,251 2,818,148 1944-2012 Salt Cavern Storage Fields Net Withdrawals 20,001 -42,044 -56,010 -58,295 -92,413 -19,528 1994-2012 Injections 400,244 440,262 459,330 510,691 532,893 465,005 1994-2012 Withdrawals 420,245 398,217 403,321 452,396 440,480 445,477 1994-2012 Nonsalt Cavern Storage Net Withdrawals 172,092 76,017 -292,710 41,286 -255,148 12,249 1994-2012 Injections 2,732,676 2,900,103 2,855,667 2,780,703 2,888,920 2,360,422 1994-2012 Withdrawals

192

Solid-State Hydrogen Storage: Storage Capacity,Thermodynamics...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage: Storage Capacity,Thermodynamics and Kinetics. Solid-State Hydrogen Storage: Storage Capacity,Thermodynamics and Kinetics. Abstract: Solid-state reversible...

193

Groundwater nitrates in the Seymour Aquifer: problem or resource?  

E-Print Network (OSTI)

24 tx H2O Fall 2012 Story by Alejandra Arreola-Triana In the Rolling Plains of Texas, the Seymour Aquifer is the major source of water for Haskell, Jones and Knox counties. #31;e water from the Seymour Aquifer, however, contains nitrate levels... are working on ways to manage the nitrate levels in this aquifer. Tracking the source Nitrates in groundwater can come from runo#27;, fertilizer use, leaks from septic tanks, sewage and erosion of natural deposits, according to the U.S. Environmental...

Arreola-Triana, Alejandra

2012-01-01T23:59:59.000Z

194

Regional aquifers and petroleum in Williston Basin region of US  

SciTech Connect

At least five major aquifers underlie the northern Great Plains of the US, which includes parts of the Williston basin in Montana and North Dakota. These aquifers form a hydrologic system that extends more than 960 km from recharge areas in the Rocky Mountains to discharge areas in eastern North Dakota and the Canadian Provinces of Manitoba and Saskatchewan. The regional flow system in the aquifers has had a major effect on the chemical composition of ground water within the Williston basin. Hydrodynamic forces may contribute to the accumulation of petroleum within the basin.

Downey, J.S.; Busby, J.F.; Dinwiddie, G.A.

1985-05-01T23:59:59.000Z

195

Regulated underground storage tanks  

SciTech Connect

This guidance package is designed to assist DOE Field operations by providing thorough guidance on the underground storage tank (UST) regulations. (40 CFR 280). The guidance uses tables, flowcharts, and checklists to provide a roadmap'' for DOE staff who are responsible for supervising UST operations. This package is tailored to address the issues facing DOE facilities. DOE staff should use this guidance as: An overview of the regulations for UST installation and operation; a comprehensive step-by-step guidance for the process of owning and operating an UST, from installation to closure; and a quick, ready-reference guide for any specific topic concerning UST ownership or operation.

Not Available

1992-06-01T23:59:59.000Z

196

Regulated underground storage tanks  

SciTech Connect

This guidance package is designed to assist DOE Field operations by providing thorough guidance on the underground storage tank (UST) regulations. [40 CFR 280]. The guidance uses tables, flowcharts, and checklists to provide a ``roadmap`` for DOE staff who are responsible for supervising UST operations. This package is tailored to address the issues facing DOE facilities. DOE staff should use this guidance as: An overview of the regulations for UST installation and operation; a comprehensive step-by-step guidance for the process of owning and operating an UST, from installation to closure; and a quick, ready-reference guide for any specific topic concerning UST ownership or operation.

Not Available

1992-06-01T23:59:59.000Z

197

Underground natural gas storage reservoir management  

SciTech Connect

The objective of this study is to research technologies and methodologies that will reduce the costs associated with the operation and maintenance of underground natural gas storage. This effort will include a survey of public information to determine the amount of natural gas lost from underground storage fields, determine the causes of this lost gas, and develop strategies and remedial designs to reduce or stop the gas loss from selected fields. Phase I includes a detailed survey of US natural gas storage reservoirs to determine the actual amount of natural gas annually lost from underground storage fields. These reservoirs will be ranked, the resultant will include the amount of gas and revenue annually lost. The results will be analyzed in conjunction with the type (geologic) of storage reservoirs to determine the significance and impact of the gas loss. A report of the work accomplished will be prepared. The report will include: (1) a summary list by geologic type of US gas storage reservoirs and their annual underground gas storage losses in ft{sup 3}; (2) a rank by geologic classifications as to the amount of gas lost and the resultant lost revenue; and (3) show the level of significance and impact of the losses by geologic type. Concurrently, the amount of storage activity has increased in conjunction with the net increase of natural gas imports as shown on Figure No. 3. Storage is playing an ever increasing importance in supplying the domestic energy requirements.

Ortiz, I.; Anthony, R.

1995-06-01T23:59:59.000Z

198

U.S. Department of Energy: Update Conference- 2010 Energy Storage Systems Program ESS Washington DC- November 2, 2010  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy: Update Conference-2010 Energy: Update Conference-2010 Energy Storage Systems Program ESS Washington DC- November 2, 2010 Iowa Stored Energy Park (ISEP) By: Kent Holst: ISEPA- Development Director Michael King, R.G., C.E.G., C.HG.: The Hydrodynamics Group, LLC Special thanks for support from: Georgianne Huff, Sandia National Laboratories, Albuquerque, NM Dr. Imre Gyuk, DOE, Energy Storage Systems, Program Manager Funded in part by the Energy Storage Systems Program of the U.S. Department Of Energy through Sandia National Laboratories Goal: Prove Aquifer Storage for CAES DOE funding started in 2005 Activities funded: * Project Management * Marketing & Public Relations * Seismic Survey & Analysis * Computer Modeling * Test Wells * Economic Analysis ISEP CAES Project Aquifer Feasibility Analysis

199

Carbon Storage in Basalt  

Science Journals Connector (OSTI)

...immobile and thus the storage more secure, though...continental margins have huge storage capacities adjacent...unlimited supplies of seawater. On the continents...present in the target storage formation can be pumped up and used to dissolve...

Sigurdur R. Gislason; Eric H. Oelkers

2014-04-25T23:59:59.000Z

200

Solar Thermal Energy Storage  

Science Journals Connector (OSTI)

Various types of thermal energy storage systems are introduced and their importance and desired characteristics are outlined. Sensible heat storage, which is one of the most commonly used storage systems in pract...

E. Paykoç; S. Kakaç

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aquifer storage field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Simulation analysis of the unconfined aquifer, Raft River Geothermal Area,  

Open Energy Info (EERE)

Simulation analysis of the unconfined aquifer, Raft River Geothermal Area, Simulation analysis of the unconfined aquifer, Raft River Geothermal Area, Idaho-Utah Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Simulation analysis of the unconfined aquifer, Raft River Geothermal Area, Idaho-Utah Details Activities (1) Areas (1) Regions (0) Abstract: This study covers about 1000 mi2 (2600 km2) of the southern Raft River drainage basin in south-central Idaho and northwest Utah. The main area of interest, approximately 200 mi2 (520 km2) of semiarid agricultural and rangeland in the southern Raft River Valley that includes the known Geothermal Resource Area near Bridge, Idaho, was modelled numerically to evaluate the hydrodynamics of the unconfined aquifer. Computed and estimated transmissivity values range from 1200 feet squared per day (110

202

Migration and trapping of CO? in saline aquifers  

E-Print Network (OSTI)

Mitigation of climate change requires a reduction in atmospheric carbon dioxide (C0 2) emissions. One promising tool for achieving this is the large-scale injection of CO2 into deep saline aquifers. After injection, upward ...

MacMinn, Christopher William

2012-01-01T23:59:59.000Z

203

Analyzing aquifer driven reservoirs using a computer-oriented approach  

E-Print Network (OSTI)

A new computer-oriented approach for analyzing aquifer driven reservoirs incorporates both geological and historical pressure data to determine original hydrocarbons-in-place and to forecast production. This new approach does not rely entirely...

Flumerfelt, Raymond William

1996-01-01T23:59:59.000Z

204

On the solute transport in an aquifer-aquitard system  

E-Print Network (OSTI)

This dissertation is composed of five chapters and three major contributions are presented in Chapter II, III and IV. Chapter I provided a review of studies on solute transport in aquifer-aquitard system. If the aquitard is considered, two...

Bian, Aiguo

2009-05-15T23:59:59.000Z

205

Seawater circulation in coastal aquifers : processes and impacts  

E-Print Network (OSTI)

This thesis explores the subterranean domain of chemical cycling in coastal oceans abutting permeable aquifers, where transport through sediments is dominated by advection, rather than diffusion. We investigate the mechanisms ...

Karam, Hanan Nadim

2012-01-01T23:59:59.000Z

206

Injection of Zero Valent Iron into an Unconfined Aquifer Using...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Zero Valent Iron into an Unconfined Aquifer Using Shear-Thinning Fluids."Ground Water Monitoring and Remediation 31(1):50-58. Authors: MJ Truex VR Vermeul DP Mendoza BG...

207

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network (OSTI)

hydro, compressed air, and battery energy storage are allenergy storage sys tem s suc h as pumped hydro and compressed air.

Hassenzahl, W.

2011-01-01T23:59:59.000Z

208

Analysis of pressure data with the aquifer influence function  

E-Print Network (OSTI)

ANALYSIS OF PRESSURE DATA WITH THE AQUIFER INFllJENCE FUNCTION A Thesis by THEODORE D. EICKS Submitted to the Office of Graduate Studies of Texas A&N University in partial fulfillment of the requirenmts for the degree of MASTER OF SCIENCE... ~r 1989 Major subject: Petroleum Engineering ANALYSIS OF PRESSURE DATA WITH THE AQUIFER INFIIJENCE FUNCTION A Thesis by Approved as to style and content by: R. A. Startzman (Member) T. G. Rozgonyi (Member) W D. Von nten (Head of troleum...

Eicks, Theodore D

1989-01-01T23:59:59.000Z

209

Reduction of trichloroethylene in a model aquifer with methanotrophic bacteria  

E-Print Network (OSTI)

REDUCTION OF TRICHLOROETHYLENE IN A MODEL AQUIFER WITH METHANOTROPHIC BACTERIA A Thesis by Duane Dee Hicks Submitted to the Office of Graduate Studies of Texas ARM University in partial fullfillment of the requirements for thc degree... of MASTER OF SCIENCE December 1990 Major Subject: Civil Engineering REDUCTION OF TRICHLOROETHYLENE IN A MODEL AQUIFER WITH METHANOTROPHIC BACTEPslA A Thesis by Duane Dec Hicks Approved as to style and content by Bill Batchclor (Chair of Committee...

Hicks, Duane Dee

1990-01-01T23:59:59.000Z

210

Methanogens in Central Texas aquifers: a microbiological and molecular study  

E-Print Network (OSTI)

METHANOGENS IN CENTRAL TEXAS AQUIFERS: A MICROBIOLOGICAL AND MOLECULAR STUDY A Thesis by MARTHA JEAN DAVIES MACRAE Submitted to the Office of Graduate Studies of Texas A8cM University in partial fulfillmen of the requirements for the degree... of MASTER OF SCIENCE December 1992 Major Subject: Oceanography METHANOGENS IN CENTRAL TEXAS AQUIFERS: A MICROBIOLOGICAL AND MOLECULAR STUDY A Thesis by MARTHA JEAN DAVIES MACRAE Approved as to style and content by: James W. Ammerman (Chair...

MacRae, Martha Jean Davies

1992-01-01T23:59:59.000Z

211

Hydrogen and Hydrogen-Storage Materials  

Science Journals Connector (OSTI)

Currently, neutron applications in the field of hydrogen and hydrogen-storage materials represent a large and promising research ... relevant topics from this subject area, including hydrogen bulk properties (con...

Milva Celli; Daniele Colognesi; Marco Zoppi

2009-01-01T23:59:59.000Z

212

Assessing the cumulative impacts of surface mining and coal bed methane development on shallow aquifers in the Powder River Basin, Wyoming  

SciTech Connect

Large scale surface coal mining taken place along the cropline of the Wyodak-Anderson coal seam since approximately 1977. Groundwater impacts due to surface mining of coal and other energy-related development is a primary regulatory concern and an identified Office of Surface Mining deficiency in the Wyoming coal program. The modeled aquifers are the upper unit (coal) of the Paleocene Fort Union Formation and the overlying Eocene Wasatch Formation. A regional groundwater model covering 790 square miles was constructed using MODFLOW, to simulate the impacts from three surface coal mines and coal bed methane development occurring downdip. Assessing anisotropy of the coal aquifer, quality checking of in situ aquifer tests and database quality control were precursors to modelling. Geologic data was kriged to develop the structural model of the aquifers. A Geographic Information System (GIS) was utilized to facilitate storage, analysis, display, development of input modelling arrays and assessment of hydrologic boundaries. Model output presents the predicted impacts of likely development scenarios, including impacts from coal bed methane development and surface coal mining through anticipated life of mining, and surface mining impacts independent of gas development.

Peacock, K. [Dept. of Interior, Casper, WY (United States)

1997-12-31T23:59:59.000Z

213

Design and Assessment of a Battery-Supercapacitor Hybrid Energy Storage System for Remote Area Wind Power Systems.  

E-Print Network (OSTI)

??Recent advances in innovative energy storage devices such as supercapacitors have made battery-supercapacitor hybrid energy storage systems technically attractive. However the field of hybrid energy… (more)

Gee, A

2012-01-01T23:59:59.000Z

214

Gas Storage Technology Consortium  

SciTech Connect

The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to jointly host technology transfer meetings and occasional field excursions. A total of 15 technology transfer/strategic planning workshops were held.

Joel Morrison; Elizabeth Wood; Barbara Robuck

2010-09-30T23:59:59.000Z

215

Storage | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Storage Storage Energy storage isn’t just for AA batteries. Thanks to investments from the Energy Department's Advanced Research Projects Agency-Energy (ARPA-E), energy storage may soon play a bigger part in our electricity grid, making it possible to generate more renewable electricity. Learn more. Energy storage isn't just for AA batteries. Thanks to investments from the Energy Department's Advanced Research Projects Agency-Energy (ARPA-E), energy storage may soon play a bigger part in our electricity grid, making it possible to generate more renewable electricity. Learn more.

216

AZ CO2 Storage Pilot  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2 Storage Pilot Regional Carbon Sequestration Partnerships Initiative Review Meeting Pittsburgh, Pennsylvania October 7, 2008 John Henry Beyer, Ph.D. WESTCARB Program Manager, Geophysicist 510-486-7954, jhbeyer@lbl.gov Lawrence Berkeley National Laboratory Earth Sciences Division, MS 90-1116 Berkeley, CA 94720 2 WESTCARB region has major CO2 point sources 3 WESTCARB region has many deep saline formations - candidates for CO2 storage WESTCARB also created GIS layers for oil/gas fields and deep coal basins Source: DOE Carbon Sequestration Atlas of the United States and Canada 4 - Aspen Environmental - Bevilacqua-Knight, Inc. Arizona Utilities CO2 Storage Pilot Contracting and Funding Flow Department of Energy National Energy Technology Laboratory Lawrence Berkeley National

217

NREL: Energy Storage - Energy Storage Thermal Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Thermal Management Infrared image of rectangular battery cell. Infrared thermal image of a lithium-ion battery cell with poor terminal design. Graph of relative...

218

NREL: Energy Storage - Energy Storage Systems Evaluation  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Systems Evaluation Photo of man standing between two vehicles and plugging the vehicle on the right into a charging station. NREL system evaluation has confirmed...

219

Characterization of groundwater flow and transport in the General Separations Area, Savannah River Plant: Effect of groundwater withdrawals on the Tuscaloosa-Congaree aquifer head reversal in H Area. Final report  

SciTech Connect

The Savannah River Plant (SRP) has maintained a number of sites used for land disposal of various waste materials. The General Separations Area at SRP, located between the Upper Three Runs and Four Mile Creeks, has served as an active area for waste storage for about thirty years. The Tuscaloosa aquifer, which lies beneath the General Separations Area, is a water source for SRP and the surrounding area. The isolation of the Tuscaloosa aquifer has been maintained by an upward hydraulic gradient from the Tuscaloosa aquifer to the overlying Congaree aquifer. This upward gradient is referred to as a hydraulic head reversal in the General Separations Area, i.e., hydraulic heads in the upper Tuscaloosa are higher than hydraulic heads in the Congaree. This head reversal has declined in recent years due to increased groundwater pumping in the upper and lower Tuscaloosa formations. The objective of this investigation is to assess the effects of pumping within the General Separations Area on the Congaree/upper Tuscaloosa head reversal. Methods of maintaining future Tuscaloosa aquifer isolation through the optimization of groundwater withdrawal location and rate were studied. Steady-state and transient groundwater flow models were used to characterize past and potential future groundwater conditions. Future groundwater conditions were simulated for a variety of pumping scenarios.

Spalding, C.P.; Duffield, G.M.; Shaw, S.T. [GeoTrans, Inc., Herndon, VA (United States)

1988-01-01T23:59:59.000Z

220

Characterization of groundwater flow and transport in the General Separations Area, Savannah River Plant: Effect of groundwater withdrawals on the Tuscaloosa-Congaree aquifer head reversal in H Area  

SciTech Connect

The Savannah River Plant (SRP) has maintained a number of sites used for land disposal of various waste materials. The General Separations Area at SRP, located between the Upper Three Runs and Four Mile Creeks, has served as an active area for waste storage for about thirty years. The Tuscaloosa aquifer, which lies beneath the General Separations Area, is a water source for SRP and the surrounding area. The isolation of the Tuscaloosa aquifer has been maintained by an upward hydraulic gradient from the Tuscaloosa aquifer to the overlying Congaree aquifer. This upward gradient is referred to as a hydraulic head reversal in the General Separations Area, i.e., hydraulic heads in the upper Tuscaloosa are higher than hydraulic heads in the Congaree. This head reversal has declined in recent years due to increased groundwater pumping in the upper and lower Tuscaloosa formations. The objective of this investigation is to assess the effects of pumping within the General Separations Area on the Congaree/upper Tuscaloosa head reversal. Methods of maintaining future Tuscaloosa aquifer isolation through the optimization of groundwater withdrawal location and rate were studied. Steady-state and transient groundwater flow models were used to characterize past and potential future groundwater conditions. Future groundwater conditions were simulated for a variety of pumping scenarios.

Spalding, C.P.; Duffield, G.M.; Shaw, S.T. (GeoTrans, Inc., Herndon, VA (United States))

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aquifer storage field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Contaminant transport in aquifers with spatially variable hydraulic and sorption properties  

Science Journals Connector (OSTI)

...correlated to some degree. The anisotropic structural features that are...statistically stationary and anisotropic random space function (RSF...in granular aquifers, in shales, etc. For illustrative purposes...three-dimensional statistically anisotropic aquifer where K and P are...

1998-01-01T23:59:59.000Z

222

A simulation model for generation of aquifer characteristics and contaminant concentrations  

E-Print Network (OSTI)

Remediation of natural systems such as aquifers requires a thorough characterization of its physical and hydraulic properties. Variability in physical and hydraulic properties of aquifers makes design and operation of suitable remediation process...

Deena, Jayaram

1993-01-01T23:59:59.000Z

223

Using GIS Tainted Glasses to Help Subdivide the Ogallala/High Plains Aquifer in Kansas  

E-Print Network (OSTI)

Using GIS Tainted Glasses to Help Subdivide the Ogallala/High Plains Aquifer Brownie Wilson Geohydrology Section Kansas Geological Survey University of Kansas 12th Annual GIS Day @ KU November 20, 2013 The High Plains Aquifer Kansas Geological...

Wilson, Brownie

2013-11-20T23:59:59.000Z

224

Why sequence Sulfur cycling in the Frasassi aquifer?  

NLE Websites -- All DOE Office Websites (Extended Search)

sulfur cycling in the Frasassi aquifer? sulfur cycling in the Frasassi aquifer? The terrestrial subsurface remains one of the least explored microbial habitats on earth, and is critical for understanding pollutant migration and attenuation, subsurface processes such as limestone dissolution (affecting porosity), and the search for life elsewhere in the solar system and beyond. The deep and sulfidic Frasassi aquifer (of Ancona, Italy) has emerged as a model system for studying sulfur cycling in the terrestrial subsurface, and this sequencing project has relevance for developing applications for wastewater treatment and capabilities relevant for radionuclide, metal and organic pollutant remediation that can be applied at environments at DOE subsurface sites. Principal Investigators: Jennifer Macalady, Penn State University

225

Accidental Gas Emission From Shallow Pressurized Aquifers At Alban Hills  

Open Energy Info (EERE)

Accidental Gas Emission From Shallow Pressurized Aquifers At Alban Hills Accidental Gas Emission From Shallow Pressurized Aquifers At Alban Hills Volcano (Rome, Italy)- Geochemical Evidence Of Magmatic Degassing? Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Accidental Gas Emission From Shallow Pressurized Aquifers At Alban Hills Volcano (Rome, Italy)- Geochemical Evidence Of Magmatic Degassing? Details Activities (0) Areas (0) Regions (0) Abstract: Recent studies suggested that Alban Hills (Rome) is a quiescent and not an extinct volcano, as it produced Holocene eruptions and several lahars until Roman times by water overflow from the Albano crater lake. Alban Hills are presently characterized by high PCO2 in groundwaters and by several cold gas emissions usually in sites where excavations removed the

226

Regional Analysis And Characterization Of Fractured Aquifers In The  

Open Energy Info (EERE)

Analysis And Characterization Of Fractured Aquifers In The Analysis And Characterization Of Fractured Aquifers In The Virginia Blue Ridge And Piedmont Provinces Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Regional Analysis And Characterization Of Fractured Aquifers In The Virginia Blue Ridge And Piedmont Provinces Details Activities (1) Areas (1) Regions (0) Abstract: Areas related to low-temperature geothermal applications include the recognition of and exploration for deep fracture permeability in crystalline rocks. It is well known that the best currently available downhole techniques to identify the locations of fracture zones in crystalline rocks depend upon the measurement of some thermal parameter such as temperature or heat flow. The temperature-depth profiles and their derivatives provide a direct indication of those fracture zones that

227

Combining microseismic and geomechanical observations to interpret storage integrity at the In Salah CCS site  

Science Journals Connector (OSTI)

......site at the In Salah gas development project in...dioxide from several gas fields is separated from the production stream and then compressed...aquifer of a producing gas field at Krechba. Injection...monitoring technology and to cost-effectively verify......

Bettina P. Goertz-Allmann; Daniela Kühn; Volker Oye; Bahman Bohloli; Eyvind Aker

2014-01-01T23:59:59.000Z

228

E-Print Network 3.0 - anoxic aquifer slurries Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

groundwater and aquifer particles from Bangladesh, India, Vietnam, and Nepal Summary: 1 Comparison of arsenic concentrations in simultaneously-collected...

229

E-Print Network 3.0 - aquifer microbial community Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

that sustains microbial communities capable... Biogeochemical Dynamics: Controlling Uranium Mobility and Bioremediation in Contaminated Aquifers... ) at Rifle, Colorado, is a...

230

,"Underground Natural Gas Storage by Storage Type"  

U.S. Energy Information Administration (EIA) Indexed Site

by Storage Type" by Storage Type" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","All Operators",6,"Monthly","9/2013","1/15/1973" ,"Data 2","Salt Cavern Storage Fields",6,"Monthly","9/2013","1/15/1994" ,"Data 3","Nonsalt Cavern Storage",6,"Monthly","9/2013","1/15/1994" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ng_stor_type_s1_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_stor_type_s1_m.htm"

231

The delineation of DNAPL in a heterogeneous unconsolidated aquifer using a hydro punch sampler and hydrophobic dye testing procedures  

SciTech Connect

The site is a pharmaceutical facility located in Newark, New Jersey. The facility which has been in operation for approximately 90 years, previously contained a 15,000 gallon underground tank used to store TCE. Upon the tanks removal in the early 1980`s the tank integrity was found to have been compromised. In compliance with the NJDEP Industrial Site Recovery Act, the responsible party was required to locate DNAPL in the aquifer. Due to TCE`s relative density, vertical migration to depths greater than 80 feet has occurred. Lateral migration over distances greater than 500 feet has been documented. Currently, the investigation has focused on the neighboring cemetery, where approximately 20 deep soil borings have been advanced at selected locations downslope of the TCE source area. The soil borings were drilled by mud rotary methods to a depth that was determined in the field to be proximal to the bottom of the heterogeneous unconsolidated aquifer. Continuous split spoon soil sampling for detailed geologic interpretation and field screening utilizing an organic vapor instrument was performed. The Hydro Punch (HP II) sampler was used in the aqueous sampling model to collect a discrete ground water sample from the interface between the aquifer and the till.

Cirilli, J. [Langan Engineering and Environmental Services, Elmwood Park, NJ (United States); DeRose, N. [Langan Engineering and Environmental Services, Doylestown, PA (United States)

1995-09-01T23:59:59.000Z

232

Sandia National Laboratories: Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

New Mexico Renewable Energy Storage Task Force On January 28, 2014, in Energy, Energy Storage, Energy Storage Systems, Infrastructure Security, News, News & Events, Partnership,...

233

NETL: Carbon Storage - Knowledge Sharing  

NLE Websites -- All DOE Office Websites (Extended Search)

Knowledge Sharing Knowledge Sharing Carbon Storage Knowledge Sharing Outreach Efforts at SECARB's Anthropogenic Test Site in Alabama Outreach Efforts at SECARB's Anthropogenic Test Site in Alabama In order to achieve the commercialization of CO2 storage technologies, the U.S. Department of Energy (DOE) acknowledges that knowledge sharing between various entities is essential. Distribution of the results and lessons learned from both field projects and Core R&D efforts will provide the foundation for future, large-scale CCS field tests across North America and in addressing future challenges associated with public acceptance, infrastructure (pipelines, compressor stations, etc.), and regulatory framework. DOE promotes information and knowledge sharing through various avenues including the Regional Carbon Sequestration Partnerships (RCSP)

234

Hydraulics of horizontal wells in fractured shallow aquifer systems Eungyu Parka,*, Hongbin Zhanb  

E-Print Network (OSTI)

Hydraulics of horizontal wells in fractured shallow aquifer systems Eungyu Parka,*, Hongbin Zhanb Accepted 1 May 2003 Abstract An analysis of groundwater hydraulic head in the vicinity of a horizontal well in fractured or porous aquifers considering confined, leaky confined, and water-table aquifer boundary

Zhan, Hongbin

235

Simulation of coastal groundwater remediation: the case of Nardò fractured aquifer in Southern Italy  

Science Journals Connector (OSTI)

A new theoretical approach for evaluating the sharp interface position in a fractured aquifer was applied to the Nardo aquifer (Southern Italy). The results, based on Dupuit and Ghyben-Herzberg approximations, clearly show both the extent of seawater ... Keywords: Coastal springs, Fractured aquifers, Mathematical models, Seawater intrusion

Costantino Masciopinto

2006-01-01T23:59:59.000Z

236

The Economics of CO2 Transport by Pipeline and Storage in Saline Aquifers and Oil Reservoirs  

E-Print Network (OSTI)

that I was getting lost in the details and giving me the push I needed--which he didn't hesitate to do are to the most important people in my life. My parents, Ed and Peggy, and my brother Kyle, taught me that hard work will get you wherever you want to go in life. Without my parents support I wouldn't be where I am

237

TWO WELL STORAGE SYSTEMS FOR COMBINED HEATING AND AIRCONDITIONING BY GROUNDWATER HEATPUMPS IN SHALLOW AQUIFERS  

E-Print Network (OSTI)

In warmer climates air source heat pumps have gained widestadvantages over air source heat pumps. For example, theair source equipment is much less. The source for this kind of heat pump

Pelka, Walter

2010-01-01T23:59:59.000Z

238

Onboard Storage Tank Workshop  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) and Sandia National Laboratories co-hosted the Onboard Storage Tank Workshop on April 29th, 2010. Onboard storage tank experts gathered to share lessons learned...

239

Solar Energy Storage  

Science Journals Connector (OSTI)

The intermittent nature of the solar energy supply makes the provision of adequate energy storage essential for the majority of practical applications. Thermal storage is needed for both low-temperature and high-...

Brian Norton BSc; MSc; PhD; F Inst E; C Eng

1992-01-01T23:59:59.000Z

240

Storage of Solar Energy  

Science Journals Connector (OSTI)

Energy storage provides a means for improving the performance and efficiency of a wide range of energy systems. It also plays an important role in energy conservation. Typically, energy storage is used when there...

H. P. Garg

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aquifer storage field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Chemical Energy Storage  

Science Journals Connector (OSTI)

The oldest and most commonly practiced method to store solar energy is sensible heat storage. The underlying technology is well developed and the basic storage materials, water and rocks, are available ... curren...

H. P. Garg; S. C. Mullick; A. K. Bhargava

1985-01-01T23:59:59.000Z

242

Cool Storage Performance  

E-Print Network (OSTI)

Utilities have promoted the use of electric heat and thermal storage to increase off peak usage of power. High daytime demand charges and enticing discounts for off peak power have been used as economic incentives to promote thermal storage systems...

Eppelheimer, D. M.

1985-01-01T23:59:59.000Z

243

Safe Home Food Storage  

E-Print Network (OSTI)

Proper food storage can preserve food quality and prevent spoilage and food/borne illness. The specifics of pantry, refrigerator and freezer storage are given, along with helpful information on new packaging, label dates, etc. A comprehensive table...

Van Laanen, Peggy

2002-08-22T23:59:59.000Z

244

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Definitions Definitions Definitions Since 2006, EIA has reported two measures of aggregate capacity, one based on demonstrated peak working gas storage, the other on working gas design capacity. Demonstrated Peak Working Gas Capacity: This measure sums the highest storage inventory level of working gas observed in each facility over the 5-year range from May 2005 to April 2010, as reported by the operator on the Form EIA-191M, "Monthly Underground Gas Storage Report." This data-driven estimate reflects actual operator experience. However, the timing for peaks for different fields need not coincide. Also, actual available maximum capacity for any storage facility may exceed its reported maximum storage level over the last 5 years, and is virtually certain to do so in the case of newly commissioned or expanded facilities. Therefore, this measure provides a conservative indicator of capacity that may understate the amount that can actually be stored.

245

Underground Natural Gas Working Storage Capacity - Methodology  

Gasoline and Diesel Fuel Update (EIA)

Summary Prices Exploration & Reserves Production Imports/Exports Pipelines Storage Consumption All Natural Gas Data Reports Analysis & Projections Most Requested Consumption Exploration & Reserves Imports/Exports & Pipelines Prices Production Projections Storage All Reports ‹ See All Natural Gas Reports Underground Natural Gas Working Storage Capacity With Data for November 2012 | Release Date: July 24, 2013 | Next Release Date: Spring 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 Go Methodology Demonstrated Peak Working Gas Capacity Estimates: Estimates are based on aggregation of the noncoincident peak levels of working gas inventories at individual storage fields as reported monthly over a 60-month period ending in November 2012 on Form EIA-191, "Monthly Natural Gas Underground Storage

246

Thermochemical Energy Storage  

Energy.gov (U.S. Department of Energy (DOE))

This presentation summarizes the introduction given by Christian Sattler during the Thermochemical Energy Storage Workshop on January 8, 2013.

247

Energy Storage Systems  

SciTech Connect

Energy Storage Systems – An Old Idea Doing New Things with New Technology article for the International Assoication of ELectrical Inspectors

Conover, David R.

2013-12-01T23:59:59.000Z

248

BNL Gas Storage Achievements, Research Capabilities, Interests...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BNL Gas Storage Achievements, Research Capabilities, Interests, and Project Team Metal hydride gas storage Cryogenic gas storage Compressed gas storage Adsorbed gas storage...

249

Net Withdrawals of Natural Gas from Underground Storage (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

250

Storage Sub-committee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Sub-committee Storage Sub-committee 2012 Work Plan Confidential 1 2012 Storage Subcommittee Work Plan * Report to Congress. (legislative requirement) - Review existing and projected research and funding - Review existing DOE, Arpa-e projects and the OE 5 year plan - Identify gaps and recommend additional topics - Outline distributed (review as group) * Develop and analysis of the need for large scale storage deployment (outline distributed again) * Develop analysis on regulatory issues especially valuation and cost recovery Confidential 2 Large Scale Storage * Problem Statement * Situation Today * Benefits Analysis * Policy Issues * Technology Gaps * Recommendations * Renewables Variability - Reserves and capacity requirements - Financial impacts - IRC Response to FERC NOI and update

251

FCT Hydrogen Storage: Hydrogen Storage R&D Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage R&D Activities Hydrogen Storage R&D Activities to someone by E-mail Share FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Facebook Tweet about FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Twitter Bookmark FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Google Bookmark FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Delicious Rank FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Digg Find More places to share FCT Hydrogen Storage: Hydrogen Storage R&D Activities on AddThis.com... Home Basics Current Technology DOE R&D Activities National Hydrogen Storage Compressed/Liquid Hydrogen Tanks Testing and Analysis Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards

252

Hydrogeologic Controls on Bioactive Zone Development in Biostimulated Aquifers  

E-Print Network (OSTI)

and the Faculty of the Graduate School of The University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy 2012 _____________________________ Dr. J.F. Devlin, Chair... that this is the approved version of the following dissertation: Hydrogeologic Controls on Bioactive Zone Development in Biostimulated Aquifers _____________________________ Dr. J.F. Devlin, Chair...

Schillig, Peter Curtis

2012-05-31T23:59:59.000Z

253

Groundwater: the processes and global significance of aquifer degradation  

Science Journals Connector (OSTI)

...climates in particular, this wastewater is widely used 1968 S. S...aquifers below major areas of wastewater reuse for agricultural irrigation...irrigation efficiencies with wastewater are invariably low, high...after taking account of the recycling of nitrate in irrigation water...

2003-01-01T23:59:59.000Z

254

Investigation of Possible Extra ~Recharge During Pumping in Nottinghant .Aquifer  

E-Print Network (OSTI)

Pumping test analysis based on the Theis equation using log-log or semilog curve-matching methods has been and even a large part ofthe recovery period can be fitted very well by the Theis equation. However. In a real pumping test, if the geological condition of an aquifer is not well recognized or a conventional

Jiao, Jiu Jimmy

255

Chemical Storage-Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage - Storage - Overview Ali T-Raissi, FSEC Hydrogen Storage Workshop Argonne National Laboratory, Argonne, Illinois August 14-15, 2002 Hydrogen Fuel - Attributes * H 2 +½ O 2 → H 2 O (1.23 V) * High gravimetric energy density: 27.1 Ah/g, based on LHV of 119.93 kJ/g * 1 wt % = 189.6 Wh/kg (0.7 V; i.e. η FC = 57%) * Li ion cells: 130-150 Wh/kg Chemical Hydrides - Definition * They are considered secondary storage methods in which the storage medium is expended - primary storage methods include reversible systems (e.g. MHs & C-nanostructures), GH 2 & LH 2 storage Chemical Hydrides - Definition (cont.) * The usual chemical hydride system is reaction of a reactant containing H in the "-1" oxidation state (hydride) with a reactant containing H in the "+1" oxidation

256

NETL: Carbon Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Storage Technologies Carbon Storage (formerly referred to as the "Carbon Sequestration Program") Program Overview For quick navigation of NETL's Carbon Storage Program website, please click on the image. NETL's Carbon Storage Program Fossil fuels are considered the most dependable, cost-effective energy source in the world. The availability of these fuels to provide clean, affordable energy is essential for domestic and global prosperity and security well into the 21st century. However, a balance is needed between energy security and concerns over the impacts of concentrations of greenhouse gases (GHGs) in the atmosphere - particularly carbon dioxide (CO2). NETL's Carbon Storage Program is developing a technology portfolio of safe, cost-effective, commercial-scale CO2 capture, storage, and mitigation

257

Design Considerations for High Energy Electron -- Positron Storage Rings  

DOE R&D Accomplishments (OSTI)

High energy electron-positron storage rings give a way of making a new attack on the most important problems of elementary particle physics. All of us who have worked in the storage ring field designing, building, or using storage rings know this. The importance of that part of storage ring work concerning tests of quantum electrodynamics and mu meson physics is also generally appreciated by the larger physics community. However, I do not think that most of the physicists working tin the elementary particle physics field realize the importance of the contribution that storage ring experiments can make to our understanding of the strongly interacting particles. I would therefore like to spend the next few minutes discussing the sort of things that one can do with storage rings in the strongly interacting particle field.

Richter, B.

1966-11-00T23:59:59.000Z

258

Sample storage impact on the assimilable organic carbon (AOC) bioassay  

Science Journals Connector (OSTI)

The effects of sample storage on the assimilable organic carbon (AOC) bioassay using Pseudomonas fluorescens strain P17 and Spirillum strain NOX have not been fully quantified to date, and in the current Standard Method, it is stated that samples can “probably be held for several days” (Standard Methods for the Examination of Water and Wastewater, ed. A. D. Eaton, L. S. Clesceri, A. E. Greenberg, 19th Edn., (1995)). Experiments were performed by splitting 22 samples after chlorine residual neutralization and pasteurization at 70°C for 30 min, and holding one half of the replicate samples at 4°C for one week prior to analysis. The majority of the samples were taken from a local water treatment plant and distribution system with source water from the deep Floridan aquifer. The others were taken from the laboratory tap water, whose source was also the Floridan aquifer. All collected samples were tested for effects due to storage, with each sample tested for AOC as soon as possible while an identical replicate was stored for one week. After one week, the AOC of the held samples was also determined. By comparing the AOC of samples that were not stored with samples that were stored, it was observed that after one week of storage, the AOC of the stored identical sample replicates increased by approximately 65%. This was determined to result from BOM (biodegradable organic matter) fermentation to AOC by a yeast, Cryptococcus neoformans. Of the 22 samples tested, only four displayed no significant change in AOC and none displayed a significant decrease in AOC. It was then determined that samples heat treated at 70°C for 30 min could be stored for less than 2 days, but a modified pasteurization of 72°C for 30 min immediately followed by an ice bath for 30 min allowed storage for at least 7 days without significant changes in AOC.

Isabel C Escobar; Andrew A Randall

2000-01-01T23:59:59.000Z

259

Death Valley Lower Carbonate Aquifer Monitoring Program Wells Down gradient of the Proposed Yucca Mountain Nuclear Waste Repository  

SciTech Connect

Inyo County has participated in oversight activities associated with the Yucca Mountain Nuclear Waste Repository since 1987. The overall goal of these studies are the evaluation of far-field issues related to potential transport, by ground water, or radionuclides into Inyo County, including Death Valley, and the evaluation of a connection between the Lower Carbonate Aquifer (LCA) and the biosphere. Our oversight and completed Cooperative Agreement research, and a number of other investigators research indicate that there is groundwater flow between the alluvial and carbonate aquifers both at Yucca Mountain and in Inyo County. In addition to the potential of radionuclide transport through the LCA, Czarnecki (1997), with the US Geological Survey, research indicate potential radionuclide transport through the shallower Tertiary-age aquifer materials with ultimate discharge into the Franklin Lake Playa in Inyo County. The specific purpose of this Cooperative Agreement drilling program was to acquire geological, subsurface geology, and hydrologic data to: (1) establish the existence of inter-basin flow between the Amargosa Basin and Death Valley Basin; (2) characterize groundwater flow paths in the LCA through Southern Funeral Mountain Range, and (3) Evaluation the hydraulic connection between the Yucca Mountain repository and the major springs in Death Valley through the LCA.

Inyo County

2006-07-26T23:59:59.000Z

260

Carbon Capture, Utilization & Storage | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Capture, Utilization & Storage Carbon Capture, Utilization & Storage Carbon Capture, Utilization & Storage Lawrence Livermore National Laboratory demonstrated coal gasification in large-scale field experiments at the Rocky Mountain Test Facility (above) near Hanna, Wyoming. Coal gasification and sequestration of the carbon dioxide produced are among the technologies being used in a Texas Clean Energy Project. Lawrence Livermore National Laboratory demonstrated coal gasification in large-scale field experiments at the Rocky Mountain Test Facility (above) near Hanna, Wyoming. Coal gasification and sequestration of the carbon dioxide produced are among the technologies being used in a Texas Clean Energy Project. Carbon capture, utilization and storage (CCUS), also referred to as carbon

Note: This page contains sample records for the topic "aquifer storage field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Applications of geographic information systems (GIS) in decision analysis for monitoring aquifer systems during oilfield development projects  

SciTech Connect

Geographic Information Systems (GIS) coupled with numerical ground water models provide a powerful Decision Support System (DSS) and visualization tool for monitoring aquifer systems during oilfield development projects. A GIS is a coupled software/hardware system that stores, processes, and displays a variety of data structures (raster, vector, TIN, CAD) that have been geographically referenced to some common map projection and coordinate system. Georeferencing allows the analyst to integrate diverse types of data layers into thematic maps for analysis of spatial trends and analyses. The integration of quasi 3-D numerical ground water models with GIS provides project managers with a Decision Support System (DSS) to assess potential impacts to aquifer systems during oilfield development projects. The rapid advancement in desktop PC computing power and data storage has allowed software developers to produce 32-bit GIS and data integration software applications. A variety of image processing, GIS, and numerical ground water modeling software will be used to demonstrate techniques for monitoring and visualizing the migration of an oilfield brine plume leaking during an oilfield development project. Emphasis will be placed on the integration of data structures and on database design to create a DSS within a desktop GIS to serve Project Managers during oilfield development.

Blundell, S.; Baldwin, D.O.; Anderson, N.J. [Integrated Geoscience, Inc., Helena, MT (United States)

1996-06-01T23:59:59.000Z

262

Summary of operations and performance of the Utica aquifer and North Lake Basin Wetlands restoration project in December 2009-November 2010.  

SciTech Connect

This document summarizes the performance of the groundwater restoration systems installed by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) at the former CCC/USDA grain storage facility in Utica, Nebraska, during the sixth year of system operation, from December 1, 2009, until November 30, 2010. In the project at Utica, the CCC/USDA is cooperating with multiple state and federal agencies to remove carbon tetrachloride contamination from a shallow aquifer underlying the town and to provide supplemental treated groundwater for use in the restoration of a nearby wetlands area. Argonne National Laboratory has assisted the CCC/USDA by providing technical oversight for the aquifer restoration effort and facilities during this review period. This document presents overviews of the aquifer restoration facilities (Section 2) and system operations (Section 3), then describes groundwater production results (Section 4), groundwater treatment results (Section 5), and associated groundwater monitoring, system modifications, and costs during the review period (Section 6). Section 7 summarizes the present year of operation. Performance prior to December 1, 2009, has been reviewed previously (Argonne 2005, 2006, 2008, 2009a, 2010).

LaFreniere, L. M. (Environmental Science Division)

2011-03-11T23:59:59.000Z

263

Energy Storage Systems 2007 Peer Review - International Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Energy International Energy Storage Program Presentations Energy Storage Systems 2007 Peer Review - International Energy Storage Program Presentations The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer review on September 27, 2007 in San Francisco, CA. Eighteen presentations were divided into categories; those related to international energy storage programs are below. Other presentation categories were: Economics - Benefit Studies and Environment Benefit Studies Utility & Commercial Applications of Advanced Energy Storage Systems Power Electronics Innovations in Energy Storage Systems ESS 2007 Peer Review - DOE-CEC Energy Storage Program FY07 Projects - Daniel Borneo, SNL.pdf ESS 2007 Peer Review - Joint NYSERDA-DOE Energy Storage Initiative Projects

264

NETL: Carbon Storage - Infrastructure  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrastructure Infrastructure Carbon Storage Infrastructure The Infrastructure Element of DOE's Carbon Storage Program is focused on research and development (R&D) initiatives to advance geologic CO2 storage toward commercialization. DOE determined early in the program's development that addressing CO2 mitigation on a regional level is the most effective way to address differences in geology, climate, population density, infrastructure, and socioeconomic development. This element includes the following efforts designed to support the development of regional infrastructure for carbon capture and storage (CCS). Click on Image to Navigate Infrastructure Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player Regional Carbon Sequestration Partnerships (RCSP) - This

265

Sorption Storage Technology Summary  

Energy.gov (U.S. Department of Energy (DOE))

Presented at the R&D Strategies for Compressed, Cryo-Compressed and Cryo-Sorbent Hydrogen Storage Technologies Workshops on February 14 and 15, 2011.

266

Storage of solar energy  

Science Journals Connector (OSTI)

A framework is presented for identifying appropriate systems for storage of electrical, mechanical, chemical, and thermal energy in solar energy supply systems. Classification categories include the nature ... su...

Theodore B. Taylor

1979-09-01T23:59:59.000Z

267

HEATS: Thermal Energy Storage  

SciTech Connect

HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

None

2012-01-01T23:59:59.000Z

268

1 BASEMENT STORAGE 3 MICROSCOPE LAB  

E-Print Network (OSTI)

MECHANICAL ROOM 13 SHOWER ROOMSAIR COMPRESSOR 14 NITROGEN STORAGE 15 DIESEL FUEL STORAGE 16 ACID NEUT. TANK 17a ACID STORAGE 17b INERT GAS STORAGE 17c BASE STORAGE 17d SHELVES STORAGE * KNOCK-OUT PANEL

Boonstra, Rudy

269

NETL: Carbon Storage - Reference Shelf  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Storage > Reference Shelf Carbon Storage > Reference Shelf Carbon Storage Reference Shelf Below are links to Carbon Storage Program documents and reference materials. Each of the 10 categories has a variety of documents posted for easy access to current information - just click on the category link to view all related materials. RSS Icon Subscribe to the Carbon Storage RSS Feed. Carbon Storage Collage 2012 Carbon Utilization and Storage Atlas IV Carbon Sequestration Project Portfolio DOE/NETL Carbon Dioxide Capture and Storage RD&D Roadmap Public Outreach and Education for Carbon Storage Projects Carbon Storage Technology Program Plan Carbon Storage Newsletter Archive Impact of the Marcellus Shale Gas Play on Current and Future CCS Activities Site Screening, Selection, and Initial Characterization for Storage of CO2 in Deep Geologic Formations Carbon Storage Systems and Well Management Activities Monitoring, Verification, and Accounting of CO2 Stored in Deep Geologic Formations

270

Appendix B Surface Infiltration and Aquifer Test Data  

Office of Legacy Management (LM)

B B Surface Infiltration and Aquifer Test Data This page intentionally left blank Infiltration Tests This page intentionally left blank 0 50 100 150 200 250 300 350 400 450 TIME (MIN) 200 250 TIME (MIN) 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 TIME (MIN) zoo 800 1000 TIME (MIN) 0 150 300 450 600 750 , 900 1050 1200 1350 1500 1650 1800 TIME (MIN) TIME (MIN) 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 TIME (MIN) INF-8 TEST I 300 400 TIME (MIN) INF-8 TEST 2 200 250 300 TIME (MIN) 200 250 TIME (MIN) zoo 800 1000 TIME (MIN) 0 50 100 150 200 250 300 350 400 450 500 550 600 TIME (MIN) 0 50 100 150 200 250 300 350 400 450 500 550 600 TIME (MIN) September 1997 Alluvial Aquifer Tests This page intentionally left blank - - - - - - - - - - - - - - -

271

Natural Gas Depleted Fields Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

6,801,291 6,805,490 6,917,547 7,074,773 7,104,948 7,038,245 6,801,291 6,805,490 6,917,547 7,074,773 7,104,948 7,038,245 1999-2012 Alabama 11,000 11,000 11,000 11,000 13,500 13,500 1999-2012 Arkansas 22,000 22,000 21,760 21,760 21,359 21,853 1999-2012 California 487,711 498,705 513,005 542,511 570,511 592,411 1999-2012 Colorado 98,068 95,068 105,768 105,768 105,858 124,253 1999-2012 Illinois 103,731 103,606 103,606 218,106 220,070 220,070 1999-2012 Indiana 32,804 32,946 32,946 30,003 30,003 30,003 1999-2012 Iowa 0 1999-2012 Kansas 287,996 281,291 281,370 283,891 283,800 283,974 1999-2012 Kentucky 210,792 210,792 210,801 212,184 212,184 212,184 1999-2012 Louisiana 527,051 527,051 528,626 528,626 528,626 402,626 1999-2012 Maryland 64,000 64,000 64,000 64,000 64,000 64,000 1999-2012

272

Physics and Seismic Modeling for Monitoring CO2 Storage JOSE M. CARCIONE,1  

E-Print Network (OSTI)

, methane-bearing coal beds and saline aquifers. An example of the latter is the Sleipner field in the North-elastical equations model the seismic properties of reservoir rocks saturated with CO2, methane, oil and brine conditions, and can approach that of liquid water. Instead, pure CH4 (methane, hydrocarbon gas) exhibits

Santos, Juan

273

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Methodology Methodology Methodology Demonstrated Peak Working Gas Capacity Estimates: Estimates are based on aggregation of the noncoincident peak levels of working gas inventories at individual storage fields as reported monthly over a 60-month period ending in April 2010 on Form EIA-191M, "Monthly Natural Gas Underground Storage Report." The months of measurement for the peak storage volumes by facilities may differ; i.e., the months do not necessarily coincide. As such, the noncoincident peak for any region is at least as big as any monthly volume in the historical record. Data from Form EIA-191M, "Monthly Natural Gas Underground Storage Report," are collected from storage operators on a field-level basis. Operators can report field-level data either on a per reservoir basis or on an aggregated reservoir basis. It is possible that if all operators reported on a per reservoir basis that the demonstrated peak working gas capacity would be larger. Additionally, these data reflect inventory levels as of the last day of the report month, and a facility may have reached a higher inventory on a different day of the report month, which would not be recorded on Form EIA-191M.

274

Hydrogen Storage Materials Database Demonstration | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Storage Materials Database Demonstration Hydrogen Storage Materials Database Demonstration Presentation slides from the Fuel Cell Technologies Office webinar "Hydrogen Storage...

275

Solid-state hydrogen storage: Storage capacity, thermodynamics, and kinetics  

Science Journals Connector (OSTI)

Solid-state reversible hydrogen storage systems hold great promise for onboard applications. ... key criteria for a successful solid-state reversible storage material are high storage capacity, suitable thermodyn...

William Osborn; Tippawan Markmaitree; Leon L. Shaw; Ruiming Ren; Jianzhi Hu…

2009-04-01T23:59:59.000Z

276

Large Scale Energy Storage  

Science Journals Connector (OSTI)

This work is mainly an experimental investigation on the storage of solar energy and/or the waste heat of a ... lake or a ground cavity. A model storage unit of (1×2×0.75)m3 size was designed and constructed. The...

F. Çömez; R. Oskay; A. ?. Üçer

1987-01-01T23:59:59.000Z

277

Carbon Capture and Storage  

SciTech Connect

Carbon capture and sequestration (CCS) is the long-term isolation of carbon dioxide from the atmosphere through physical, chemical, biological, or engineered processes. This includes a range of approaches including soil carbon sequestration (e.g., through no-till farming), terrestrial biomass sequestration (e.g., through planting forests), direct ocean injection of CO{sub 2} either onto the deep seafloor or into the intermediate depths, injection into deep geological formations, or even direct conversion of CO{sub 2} to carbonate minerals. Some of these approaches are considered geoengineering (see the appropriate chapter herein). All are considered in the 2005 special report by the Intergovernmental Panel on Climate Change (IPCC 2005). Of the range of options available, geological carbon sequestration (GCS) appears to be the most actionable and economic option for major greenhouse gas reduction in the next 10-30 years. The basis for this interest includes several factors: (1) The potential capacities are large based on initial estimates. Formal estimates for global storage potential vary substantially, but are likely to be between 800 and 3300 Gt of C (3000 and 10,000 Gt of CO{sub 2}), with significant capacity located reasonably near large point sources of the CO{sub 2}. (2) GCS can begin operations with demonstrated technology. Carbon dioxide has been separated from large point sources for nearly 100 years, and has been injected underground for over 30 years (below). (3) Testing of GCS at intermediate scale is feasible. In the US, Canada, and many industrial countries, large CO{sub 2} sources like power plants and refineries lie near prospective storage sites. These plants could be retrofit today and injection begun (while bearing in mind scientific uncertainties and unknowns). Indeed, some have, and three projects described here provide a great deal of information on the operational needs and field implementation of CCS. Part of this interest comes from several key documents written in the last three years that provide information on the status, economics, technology, and impact of CCS. These are cited throughout this text and identified as key references at the end of this manuscript. When coupled with improvements in energy efficiency, renewable energy supplies, and nuclear power, CCS help dramatically reduce current and future emissions (US CCTP 2005, MIT 2007). If CCS is not available as a carbon management option, it will be much more difficult and much more expensive to stabilize atmospheric CO{sub 2} emissions. Recent estimates put the cost of carbon abatement without CCS to be 30-80% higher that if CCS were to be available (Edmonds et al. 2004).

Friedmann, S

2007-10-03T23:59:59.000Z

278

Warehouse and Storage Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Warehouse and Storage Warehouse and Storage Characteristics by Activity... Warehouse and Storage Warehouse and storage buildings are those used to store goods, manufactured products, merchandise, raw materials, or personal belongings. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Warehouse and Storage Buildings... While the idea of a warehouse may bring to mind a large building, in reality most warehouses were relatively small. Forty-four percent were between 1,001 and 5,000 square feet, and seventy percent were less than 10,000 square feet. Many warehouses were newer buildings. Twenty-five percent were built in the 1990s and almost fifty percent were constructed since 1980. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

279

Sandia National Laboratories: evaluate energy storage opportunity  

NLE Websites -- All DOE Office Websites (Extended Search)

energy storage opportunity 2013 Electricity Storage Handbook Published On July 31, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety, Grid...

280

Sandia National Laboratories: implement energy storage projects  

NLE Websites -- All DOE Office Websites (Extended Search)

implement energy storage projects 2013 Electricity Storage Handbook Published On July 31, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety,...

Note: This page contains sample records for the topic "aquifer storage field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Hydrogen Storage Fact Sheet | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Storage Fact Sheet Hydrogen Storage Fact Sheet Fact sheet produced by the Fuel Cell Technologies Office describing hydrogen storage. Hydrogen Storage More Documents & Publications...

282

Compressed Air Storage Strategies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Strategies Compressed Air Storage Strategies This tip sheet briefly discusses compressed air storage strategies. COMPRESSED AIR TIP SHEET 9 Compressed Air Storage...

283

,"Underground Natural Gas Storage by Storage Type"  

U.S. Energy Information Administration (EIA) Indexed Site

Sourcekey","N5030US2","N5010US2","N5020US2","N5070US2","N5050US2","N5060US2" "Date","U.S. Natural Gas Underground Storage Volume (MMcf)","U.S. Total Natural Gas in Underground...

284

The use of a semi-analytical method for matching aquifer influence functions  

E-Print Network (OSTI)

of water-drive gas reservoirs. The method is suitable for hand calculation. Fetkovich ", in 1971, presented an approach that utilizes the "stabilized", or pseudosteady-state aquifer productivity index and an aquifer material balance to represent...THE USE OF A SEMI-ANALYTICAL METHOD FOR MATCHING AQUIFER INFLUENCE FUNCTIONS A Thesis by SHENG DING Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER...

Ding, Sheng

1990-01-01T23:59:59.000Z

285

E-Print Network 3.0 - arsenic contaminated aquifer Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

is the actual exposure that people will experience. Summary: -lying aquifers, so shallow open-pit or underground mines may not contaminate the water because of the limited......

286

E-Print Network 3.0 - aquifer management project Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

are good aquifers if groundwater is presented. A confining layer (such as a clay of shale layer Source: Pan, Feifei - Department of Geography, University of North Texas...

287

E-Print Network 3.0 - aquifer heterogeneity final Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

-30 may-1th june 2006, Dijon, France Summary: is considered like a heterogeneous aquifer: permeability tensor and salt water interface position could... International symposium -...

288

Analytical models of contaminant transport in coastal aquifers Diogo T. Bolster a,*, Daniel M. Tartakovsky a  

E-Print Network (OSTI)

water intrudes into a coastal aquifer, which poses significant envi- ronmental and economical challenges sources, such as imported water, or to implement costly technological solutions, such as desalination

Bolster, Diogo

289

E-Print Network 3.0 - aquifers receiving livestock Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

approxi- mately 80% of its recharge through losing (influent) streams... legal, political, and economic interests. Much attention is focused on the Edwards aquifer, which is...

290

E-Print Network 3.0 - aquifer sediment reactors Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

sediment reactors Search Powered by Explorit Topic List Advanced Search Sample search results for: aquifer sediment reactors Page: << < 1 2 3 4 5 > >> 1 Theme 1. Exposure:...

291

E-Print Network 3.0 - aquifer stable isotopes Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

results for: aquifer stable isotopes Page: << < 1 2 3 4 5 > >> 1 Treated domestic wastewater traditionally has been discharged offshore in coastal areas via ocean outfalls. In...

292

E-Print Network 3.0 - anaerobic aquifer column Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Explorit Topic List Advanced Search Sample search results for: anaerobic aquifer column Page: << < 1 2 3 4 5 > >> 1 Biodegradation 11: 107116, 2000. 2001 Kluwer Academic...

293

E-Print Network 3.0 - aquifer system brazil Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Sciences and Ecology 2 An analytical solution of two-dimensional reactive solute transport in an aquifer-aquitard system Summary: An analytical solution of two-dimensional...

294

EXERGETIC ANALYSIS OF A STEAM-FLASHING THERMAL STORAGE SYSTEM  

E-Print Network (OSTI)

cost benefits are still evident. Currently, there are many solar power plants that have been announced Abstract Thermal energy storage is attractive in the design of concentrator solar thermal systems because, power output from a solar field. At the right cost, a storage system can improve overall economics

295

Ultrafine hydrogen storage powders  

DOE Patents (OSTI)

A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

Anderson, Iver E. (Ames, IA); Ellis, Timothy W. (Doylestown, PA); Pecharsky, Vitalij K. (Ames, IA); Ting, Jason (Ames, IA); Terpstra, Robert (Ames, IA); Bowman, Robert C. (La Mesa, CA); Witham, Charles K. (Pasadena, CA); Fultz, Brent T. (Pasadena, CA); Bugga, Ratnakumar V. (Arcadia, CA)

2000-06-13T23:59:59.000Z

296

Sandia National Laboratories: Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Molten Salt Energy-Storage Demonstration On May 21, 2014, in Capabilities, Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility,...

297

NREL: Transportation Research - Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Transportation Research Cutaway image of an automobile showing the location of energy storage components (battery and inverter), as well as electric motor, power...

298

Hydrogen Storage Materials Database Demonstration  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Fuel Cell Technologies Program Source: US DOE 4252011 eere.energy.gov Hydrogen Storage Materials Database Demonstration FUEL CELL TECHNOLOGIES PROGRAM Ned Stetson Storage Tech...

299

Hydrogen storage gets new hope  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen storage gets new hope Hydrogen storage gets new hope A new method for "recycling" hydrogen-containing fuel materials could open the door to economically viable...

300

Energy Storage | Department of Energy  

Energy Savers (EERE)

Energy Storage Energy Storage One of the distinctive characteristics of the electric power sector is that the amount of electricity that can be generated is relatively fixed over...

Note: This page contains sample records for the topic "aquifer storage field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

The Utility Battery Storage Systems Program Overview  

SciTech Connect

Utility battery energy storage allows a utility or customer to store electrical energy for dispatch at a time when its use is more economical, strategic, or efficient. The UBS program sponsors systems analyses, technology development of subsystems and systems integration, laboratory and field evaluation, and industry outreach. Achievements and planned activities in each area are discussed.

Not Available

1994-11-01T23:59:59.000Z

302

FE Carbon Capture and Storage News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

carbon-capture-storage-news Office of Fossil Energy carbon-capture-storage-news Office of Fossil Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585202-586-6503 en Energy Department Invests to Drive Down Costs of Carbon Capture, Support Reductions in Greenhouse Gas Pollution http://energy.gov/articles/energy-department-invests-drive-down-costs-carbon-capture-support-reductions-greenhouse-gas Energy Department Invests to Drive Down Costs of Carbon Capture, Support Reductions in Greenhouse Gas Pollution

303

Gas Storage Technology Consortium  

SciTech Connect

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created - the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January1, 2007 through March 31, 2007. Key activities during this time period included: {lg_bullet} Drafting and distributing the 2007 RFP; {lg_bullet} Identifying and securing a meeting site for the GSTC 2007 Spring Proposal Meeting; {lg_bullet} Scheduling and participating in two (2) project mentoring conference calls; {lg_bullet} Conducting elections for four Executive Council seats; {lg_bullet} Collecting and compiling the 2005 GSTC Final Project Reports; and {lg_bullet} Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-03-31T23:59:59.000Z

304

Gas Storage Technology Consortium  

SciTech Connect

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-06-30T23:59:59.000Z

305

B O N N E V I L L E P O W E R A D M I N I S T R A T I O N BPA Energy Storage Pilots  

E-Print Network (OSTI)

's balancing authority · Nearing limits of hydro system to provide balancing reserves 3 #12;B O N N E V I L L E P O W E R A D M I N I S T R A T I O N 4 hydro load thermal wind inter- change Wind increasing and storage · Small-scale battery energy storage · Load increase using aquifer recharge opportunities #12;B O

306

Sorption thermal storage for solar energy  

Science Journals Connector (OSTI)

Abstract Sorption technologies, which are considered mainly for solar cooling and heat pumping before, have gained a lot of interests for heat storage of solar energy in recent years, due to their high energy densities and long-term preservation ability for thermal energy. The aim of this review is to provide an insight into the basic knowledge and the current state of the art of research on sorption thermal storage technologies. The first section is concerned with the terminology and classification for sorption processes to give a clear scope of discussion in this paper. Sorption thermal storage is suggested to cover four technologies: liquid absorption, solid adsorption, chemical reaction and composite materials. Then the storage mechanisms and descriptions of basic closed and open cycles are given. The progress of sorption materials, cycles, and systems are also reviewed. Besides the well-known sorbents like silica gels and zeolites, some new materials, including aluminophosphates (AlPOs), silico-aluminophosphates (SAPOs) and metal-organic frameworks (MOFs), are proposed for heat storage. As energy density is a key criterion, emphais is given to the comparison of storage densities and charging tempertures for different materials. Ongoing research and development studies show that the challenges of the technology focus on the aspects of different types of sorption materials, the configurations of absorption cycles and advanced adsorption reactors. Booming progress illustrates that sorption thermal storage is a realistic and sustainable option for storing solar energy, especially for long-term applications. To bring the sorption storage solution into market, more intensive studies in fields of evaluation of advanced materials and development of efficient and compact prototypes are still required.

N. Yu; R.Z. Wang; L.W. Wang

2013-01-01T23:59:59.000Z

307

Subsurface Geology of Arsenic-Bearing Permian Sedimentary Rocks in the Garber-Wellington Interval of the Central Oklahoma Aquifer, Cleveland County, Oklahoma.  

E-Print Network (OSTI)

??The Central Oklahoma Aquifer is an important source of drinking water in central Oklahoma. The major formations making up the aquifer, the Garber Sandstone and… (more)

Abbott, Ben Nicholas

2005-01-01T23:59:59.000Z

308

Hydrogen Storage- Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

- - Overview George Thomas, Hydrogen Consultant to SNL * and Jay Keller, Hydrogen Program Manager Sandia National Laboratories H 2 Delivery and Infrastructure Workshop May 7-8, 2003 * Most of this presentation has been extracted from George Thomas' invited BES Hydrogen Workshop presentation (May 13-14, 2003) Sandia National Laboratories 4/14/03 2 Sandia National Laboratories From George Thomas, BES workshop 5/13/03 H 2 storage is a critical enabling technology for H 2 use as an energy carrier The low volumetric density of gaseous fuels requires a storage method which compacts the fuel. Hence, hydrogen storage systems are inherently more complex than liquid fuels. Storage technologies are needed in all aspects of hydrogen utilization. production distribution utilization

309

NETL: Carbon Storage FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

Where is CO2 storage happening today? Where is CO2 storage happening today? Sleipner Project (Norway) Sleipner Project (Norway) Carbon dioxide (CO2) storage is currently happening across the United States and around the world. Large, commercial-scale projects, like the Sleipner CO2 Storage Site in Norway, the Weyburn-Midale CO2 Project in Canada, and the In Salah project in Algeria, have been injecting CO2 for many years. Each of these projects stores more than 1 million tons of CO2 per year. Large-scale efforts are currently underway in Africa, China, Australia, and Europe, too. These commercial-scale projects are demonstrating that large volumes of CO2 can be safely and permanently stored. Additionally, a multitude of pilot efforts are underway in different parts of the world to determine suitable locations and technologies for future

310

Carbon Capture and Storage  

Science Journals Connector (OSTI)

The main object of the carbon capture and storage (CCS) technologies is the...2...emissions produced in the combustion of fossil fuels such as coal, oil, or natural gas. CCS involves first the capture of the emit...

Ricardo Guerrero-Lemus; José Manuel Martínez-Duart

2013-01-01T23:59:59.000Z

311

Multiported storage devices  

E-Print Network (OSTI)

In the past decade the demand for systems that can process and deliver massive amounts of storage has increased. Traditionally, large disk farms have been deployed by connecting several disks to a single server. A problem with this configuration...

Grande, Marcus Bryan

2012-06-07T23:59:59.000Z

312

Heat Transport in Groundwater Systems--Finite Element Model  

E-Print Network (OSTI)

into groundwater aquifers for long term energy storage. Analytical solutions are available that predict water temperatures as hot water is injected into a groundwater aquifer, but little field and laboratory data are available to verify these models. The objectives...

Grubaugh, E. K.; Reddell, D. L.

313

NETL: Carbon Storage FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

different options for CO2 storage? different options for CO2 storage? Oil and gas reservoirs, many containing carbon dioxide (CO2), as well as natural deposits of almost pure CO2, can be found in many places in the United States and around the world. These are examples of long-term storage of CO2 by nature, where "long term" means millions of years. Their existence demonstrates that naturally occurring geologic formations and structures of various kinds are capable of securely storing CO2 deep in the subsurface for very long periods of time. Because of the economic importance of oil and gas, scientists and engineers have studied these natural deposits for many decades in order to understand the physical and chemical processes which led to their formation. There are also many decades of engineering experience in subsurface operations similar to those needed for CO2 storage. The most directly applicable experience comes from the oil industry, which, for 40 years, has injected CO2 in depleted oil reservoirs for the recovery of additional product through enhanced oil recovery (EOR). Additional experience comes from natural gas storage operations, which have utilized depleted gas reservoirs, as well as reservoirs containing only water. Scientists and engineers are now combining the knowledge obtained from study of natural deposits with experience from analogous operations as a basis for studying the potential for large-scale storage of CO2 in the deep subsurface.

314

Stream aquifer interactions: analytical solution to estimate stream depletions caused by stream stage fluctuations and pumping wells near streams  

E-Print Network (OSTI)

This dissertation is composed of three parts of contributions. Systems of a fully penetrating pumping well in a confined aquifer near a fully penetrating stream with and without streambeds are discussed in Chapter II. In Chapter III, stream-aquifer...

Intaraprasong, Trin

2009-05-15T23:59:59.000Z

315

Behaviour of a small sedimentary volcanic aquifer receiving irrigation return flows: La Aldea, Gran Canaria, Canary Islands (Spain)  

Science Journals Connector (OSTI)

In many arid and semi-arid areas, intensive cultivation is practiced despite water commonly being a limiting factor. Often, irrigation water is from local aquifers or imported from out-of-area aquifers and surfac...

T. Cruz-Fuentes; J. Heredia; M. C. Cabrera; E. Custodio

2014-06-01T23:59:59.000Z

316

Carbon-based Materials for Energy Storage  

E-Print Network (OSTI)

Architectures for Solar Energy Production, Storage andArchitectures for Solar Energy Production, Storage and

Rice, Lynn Margaret

2012-01-01T23:59:59.000Z

317

Efficiency optimization for atomic frequency comb storage  

SciTech Connect

We study the efficiency of the atomic frequency comb storage protocol. We show that for a given optical depth, the preparation procedure can be optimize to significantly improve the retrieval. Our prediction is well supported by the experimental implementation of the protocol in a Tm{sup 3+}:YAG crystal. We observe a net gain in efficiency from 10 to 17% by applying the optimized preparation procedure. In the perspective of high bandwidth storage, we investigate the protocol under different magnetic fields. We analyze the effect of the Zeeman and superhyperfine interaction.

Bonarota, M.; Ruggiero, J.; Le Goueet, J.-L.; Chaneliere, T. [Laboratoire Aime Cotton, CNRS-UPR 3321, Univ. Paris-Sud, Bat. 505, F-91405 Orsay Cedex (France)

2010-03-15T23:59:59.000Z

318

DOE Partner Begins Carbon Storage Test | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Partner Begins Carbon Storage Test Partner Begins Carbon Storage Test DOE Partner Begins Carbon Storage Test June 25, 2009 - 1:00pm Addthis Washington, D.C. -- A Department of Energy sponsored project in Hopkins County, Kentucky has begun injecting carbon dioxide (CO2) into a mature oil field to assess the region's CO2 storage capacity and feasibility for enhanced oil recovery. The project is part of DOE's Regional Carbon Sequestration Partnership (RCSP) program and is being conducted by The Midwest Geological Sequestration Consortium (MGSC). The project is part of the RCSP's "validation phase," where field tests are being conducted nationwide to assess the most promising sites to deploy carbon capture and storage technologies. This project is expected to create 13 full time jobs which will be

319

Savannah River Hydrogen Storage Technology  

Energy.gov (U.S. Department of Energy (DOE))

Presentation from the Hydrogen Storage Pre-Solicitation Meeting held June 19, 2003 in Washington, DC.

320

The effects of juniper removal on rainfall partitioning in the Edwards Aquifer region: large-scale rainfall simulation experiments  

E-Print Network (OSTI)

fault zone, and a confined area of both fresh and saline water zones. The Edwards Aquifer is also one of the most productive carbonate aquifers in the United States, with large porosity and high permeability due to limestone dissolution... fault zone, and a confined area of both fresh and saline water zones. The Edwards Aquifer is also one of the most productive carbonate aquifers in the United States, with large porosity and high permeability due to limestone dissolution...

Taucer, Philip Isaiah

2006-08-16T23:59:59.000Z

Note: This page contains sample records for the topic "aquifer storage field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

On the use of the Boussinesq equation for interpreting recession hydrographs from sloping aquifers  

E-Print Network (OSTI)

On the use of the Boussinesq equation for interpreting recession hydrographs from sloping aquifers solutions to the one-dimensional Boussinesq equation for unconfined flow in a homogeneous and horizontal compare analytical solutions to the linearized one-dimensional Boussinesq equation for a sloping aquifer

Tullos, Desiree

322

Seawater intrusion and aquifer freshening near reclaimed coastal area of Shenzhen  

E-Print Network (OSTI)

Seawater intrusion and aquifer freshening near reclaimed coastal area of Shenzhen K.P. Chen and J this period indicate that the aquifer experienced seawater intrusion in the 1980s but underwent gradual freshening in the 1990s. It is speculated that seawater intrusion was induced by excessive groundwater

Jiao, Jiu Jimmy

323

A Fractal Interpretation of Controlled-Source Helicopter Electromagnetic Survey Data Seco Creek, Edwards Aquifer, TX  

E-Print Network (OSTI)

The Edwards aquifer lies in the structurally complex Balcones fault zone and supplies water to the growing city of San Antonio. To ensure that future demands for water are met, the hydrological and geophysical properties of the aquifer must be well...

Decker, Kathryn T.

2010-07-14T23:59:59.000Z

324

Limiting Pumping from the Edwards Aquifer: An Economic Investigation of Proposals, Water Markets and Springflow Guarantees  

E-Print Network (OSTI)

Limiting Pumping from the Edwards Aquifer: An Economic Investigation of Proposals, Water Markets for pumping and springflow which in turn provides water for recreation and habitat for several endangered species. A management authority is charged with aquifer management and is mandated to reduce pumping

McCarl, Bruce A.

325

Detecting sub-glacial aquifers in the north polar layered deposits with Mars Express/MARSIS  

E-Print Network (OSTI)

water ice cap and underlying dusty-ice polar layered deposits or PLD) via melting from ice insulation into the polar ice mass is modeled to determine the capability of the instrument to locate sub-glacial aquifers will investigate the effect of ice reflective and conductive losses on the radar-detection of subsurface aquifers

Gurnett, Donald A.

326

The 1997 Irrigation Suspension Program for the Edwards Aquifer: Evaluation and Alternatives  

E-Print Network (OSTI)

................................ ................................ ................................ .......................... 9 P ARTICIPATION ................................ ................................ ................................ .................... 10 E STIMATED E FFECTS O F T HE 1997 I RRIGATION S USPENSION P ROGRAM .............................. 11 C HANGES... ackground The Edwards Aquifer (Aquif er) is a tremendous resource for the economy of south central Texas. It supplies virtually all the municipal and industrial water supply for the greater San Antonio region (the 10th largest city in the United States...

Keplinger, Keith O.; McCarl, Bruce A.

327

Thermal anomalies indicate preferential flow along faults in unconsolidated sedimentary aquifers  

E-Print Network (OSTI)

Thermal anomalies indicate preferential flow along faults in unconsolidated sedimentary aquifers V in unconsolidated siliciclastic aquifers off-set by normal-faults in the Lower Rhine Embayment, Germany. High plane. Most current models of fault hydrology in unconsolidated sedimentary sequences assume faults

Bense, Victor

328

GAS STORAGE TECHNOLOGY CONSORTIUM  

SciTech Connect

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with the second 3-months of the project and encompasses the period December 31, 2003, through March 31, 2003. During this 3-month, the dialogue of individuals representing the storage industry, universities and the Department of energy was continued and resulted in a constitution for the operation of the consortium and a draft of the initial Request for Proposals (RFP).

Robert W. Watson

2004-04-17T23:59:59.000Z

329

Gas Storage Technology Consortium  

SciTech Connect

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created-the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of July 1, 2006 to September 30, 2006. Key activities during this time period include: {lg_bullet} Subaward contracts for all 2006 GSTC projects completed; {lg_bullet} Implement a formal project mentoring process by a mentor team; {lg_bullet} Upcoming Technology Transfer meetings: {sm_bullet} Finalize agenda for the American Gas Association Fall Underground Storage Committee/GSTC Technology Transfer Meeting in San Francisco, CA. on October 4, 2006; {sm_bullet} Identify projects and finalize agenda for the Fall GSTC Technology Transfer Meeting, Pittsburgh, PA on November 8, 2006; {lg_bullet} Draft and compile an electronic newsletter, the GSTC Insider; and {lg_bullet} New members update.

Joel L. Morrison; Sharon L. Elder

2006-09-30T23:59:59.000Z

330

Avoca, New York Salt Cavern Gas Storage Facility  

SciTech Connect

The first salt cavern natural gas storage facility in the northeastern United States designed to serve the interstate gas market is being developed by J Makowski Associates and partners at Avoca in Steuben County, New York. Multiple caverns will be leached at a depth of about 3800 ft from an approximately 100 ft interval of salt within the F unit of the Syracuse Formation of the Upper Silurian Salina Group. The facility is designed to provide 5 Bcf of working gas capacity and 500 MMcfd of deliverability within an operating cavern pressure range between 760 psi and 2850 psi. Fresh water for leaching will be obtained from the Cohocton River aquifer at a maximum rate of 3 million gallons per day and produced brine will be injected into deep permeable Cambrian age sandstones and dolostones. Gas storage service is anticipated to commence in the Fall of 1997 with 2 Bcf of working gas capacity and the full 5 Bcf or storage service is scheduled to be available in the Fall of 1999.

Morrill, D.C. [J. Makowski and Associates, Boston, MA (United States)

1995-09-01T23:59:59.000Z

331

FCT Hydrogen Storage: Current Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Current Technology to someone Current Technology to someone by E-mail Share FCT Hydrogen Storage: Current Technology on Facebook Tweet about FCT Hydrogen Storage: Current Technology on Twitter Bookmark FCT Hydrogen Storage: Current Technology on Google Bookmark FCT Hydrogen Storage: Current Technology on Delicious Rank FCT Hydrogen Storage: Current Technology on Digg Find More places to share FCT Hydrogen Storage: Current Technology on AddThis.com... Home Basics Current Technology Gaseous and Liquid Hydrogen Storage Materials-Based Hydrogen Storage Hydrogen Storage Challenges Status of Hydrogen Storage Technologies DOE R&D Activities Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Current Technology

332

DOE Global Energy Storage Database  

DOE Data Explorer (OSTI)

The DOE International Energy Storage Database has more than 400 documented energy storage projects from 34 countries around the world. The database provides free, up-to-date information on grid-connected energy storage projects and relevant state and federal policies. More than 50 energy storage technologies are represented worldwide, including multiple battery technologies, compressed air energy storage, flywheels, gravel energy storage, hydrogen energy storage, pumped hydroelectric, superconducting magnetic energy storage, and thermal energy storage. The policy section of the database shows 18 federal and state policies addressing grid-connected energy storage, from rules and regulations to tariffs and other financial incentives. It is funded through DOE’s Sandia National Laboratories, and has been operating since January 2012.

333

Studies of solid state hydrogen storage materials by SAXS and QENS Qing Shi a, b  

E-Print Network (OSTI)

Studies of solid state hydrogen storage materials by SAXS and QENS Qing Shi a, b , Hjalte S than that of other chemical fuels1 . However, hydrogen storage is still a key problem remaining on reversible hydrogen storage in complex metal hydrides, these materials have dominated the research field due

334

Prediction of the effects of compositional mixing in a reservoir on conversion to natural gas storage.  

E-Print Network (OSTI)

??The increased interest in the development of new Gas Storage Fields over the lastseveral decades has created some interesting challenges for the industry. Most existinggas… (more)

Brannon, Alan W.

2011-01-01T23:59:59.000Z

335

Energy conversions and storage caused by an unsteady poloidal flow in active solar regions  

Science Journals Connector (OSTI)

In this paper we discuss coupling processes between a magnetic field and an unsteady plasma motion, and analyze the features of energy storage and conversions in active region.

Zhongyuan Li; W. R. Hu

336

Ground-Water Table and Chemical Changes in an Alluvial Aquifer During  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ground-Water Table and Chemical Changes in an Alluvial Aquifer Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells More Documents & Publications Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium

337

Ground-Water Table and Chemical Changes in an Alluvial Aquifer During  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ground-Water Table and Chemical Changes in an Alluvial Aquifer Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells More Documents & Publications Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium

338

Temporal and spatial scaling of hydraulic response to recharge in fractured aquifers: Insights from a frequency domain analysis  

E-Print Network (OSTI)

Temporal and spatial scaling of hydraulic response to recharge in fractured aquifers: Insights from investigate the hydraulic response to recharge of a fractured aquifer, using a frequency domain approach scaling of hydraulic response to recharge in fractured aquifers: Insights from a frequency domain analysis

Paris-Sud XI, Université de

339

A life cycle cost analysis framework for geologic storage of hydrogen : a user's tool.  

SciTech Connect

The U.S. Department of Energy (DOE) has an interest in large scale hydrogen geostorage, which could offer substantial buffer capacity to meet possible disruptions in supply or changing seasonal demands. The geostorage site options being considered are salt caverns, depleted oil/gas reservoirs, aquifers and hard rock caverns. The DOE has an interest in assessing the geological, geomechanical and economic viability for these types of geologic hydrogen storage options. This study has developed an economic analysis methodology and subsequent spreadsheet analysis to address costs entailed in developing and operating an underground geologic storage facility. This year the tool was updated specifically to (1) incorporate more site-specific model input assumptions for the wells and storage site modules, (2) develop a version that matches the general format of the HDSAM model developed and maintained by Argonne National Laboratory, and (3) incorporate specific demand scenarios illustrating the model's capability. Four general types of underground storage were analyzed: salt caverns, depleted oil/gas reservoirs, aquifers, and hard rock caverns/other custom sites. Due to the substantial lessons learned from the geological storage of natural gas already employed, these options present a potentially sizable storage option. Understanding and including these various geologic storage types in the analysis physical and economic framework will help identify what geologic option would be best suited for the storage of hydrogen. It is important to note, however, that existing natural gas options may not translate to a hydrogen system where substantial engineering obstacles may be encountered. There are only three locations worldwide that currently store hydrogen underground and they are all in salt caverns. Two locations are in the U.S. (Texas), and are managed by ConocoPhillips and Praxair (Leighty, 2007). The third is in Teeside, U.K., managed by Sabic Petrochemicals (Crotogino et al., 2008; Panfilov et al., 2006). These existing H{sub 2} facilities are quite small by natural gas storage standards. The second stage of the analysis involved providing ANL with estimated geostorage costs of hydrogen within salt caverns for various market penetrations for four representative cities (Houston, Detroit, Pittsburgh and Los Angeles). Using these demand levels, the scale and cost of hydrogen storage necessary to meet 10%, 25% and 100% of vehicle summer demands was calculated.

Kobos, Peter Holmes; Lord, Anna Snider; Borns, David James; Klise, Geoffrey T.

2011-09-01T23:59:59.000Z

340

GAS STORAGE TECHNOLOGY CONSORTIUM  

SciTech Connect

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period April 1, 2004, through June 30, 2004. During this 3-month period, a Request for Proposals (RFP) was made. A total of 17 proposals were submitted to the GSTC. A proposal selection meeting was held June 9-10, 2004 in Morgantown, West Virginia. Of the 17 proposals, 6 were selected for funding.

Robert W. Watson

2004-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "aquifer storage field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

. . Underground Natural Gas Storage Capacity by State, December 31, 1996 (Capacity in Billion Cubic Feet) Table State Interstate Companies Intrastate Companies Independent Companies Total Number of Active Fields Capacity Number of Active Fields Capacity Number of Active Fields Capacity Number of Active Fields Capacity Percent of U.S. Capacity Alabama................. 0 0 1 3 0 0 1 3 0.04 Arkansas ................ 0 0 3 32 0 0 3 32 0.40 California................ 0 0 10 470 0 0 10 470 5.89 Colorado ................ 4 66 5 34 0 0 9 100 1.25 Illinois ..................... 6 259 24 639 0 0 30 898 11.26 Indiana ................... 6 16 22 97 0 0 28 113 1.42 Iowa ....................... 4 270 0 0 0 0 4 270 3.39 Kansas ................... 16 279 2 6 0 0 18 285 3.57 Kentucky ................ 6 167 18 49 0 0 24 216 2.71 Louisiana................ 8 530 4 25 0 0 12 555 6.95 Maryland ................ 1 62

342

Radioactive waste storage issues  

SciTech Connect

In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.

Kunz, D.E.

1994-08-15T23:59:59.000Z

343

Flywheel Energy Storage Module  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

kWh/100 kW kWh/100 kW Flywheel Energy Storage Module * 100KWh - 1/8 cost / KWh vs. current State of the Art * Bonded Magnetic Bearings on Rim ID * No Shaft / Hub (which limits surface speed) * Flexible Motor Magnets on Rim ID * Develop Touch-down System for Earthquake Flying Rim Eliminate Shaft and Hub Levitate on Passive Magnetic Bearings Increase Rim Tip Speed Larger Diameter Thinner Rim Stores More Energy 4 X increase in Stored Energy with only 60% Increase in Weight Development of a 100 kWh/100 kW Flywheel Energy Storage Module High Speed, Low Cost, Composite Ring with Bore-Mounted Magnetics Current State of the Art Flywheel Limitations of Existing Flywheel * 15 Minutes of storage * Limited to Frequency Regulation Application * Rim Speed (Stored Energy) Limited by Hub Strain and Shaft Dynamics

344

NREL: Learning - Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage Hydrogen Storage On the one hand, hydrogen's great asset as a renewable energy carrier is that it is storable and transportable. On the other hand, its very low natural density requires storage volumes that are impractical for vehicles and many other uses. Current practice is to compress the gas in pressurized tanks, but this still provides only limited driving range for vehicles and is bulkier than desirable for other uses as well. Liquefying the hydrogen more than doubles the fuel density, but uses up substantial amounts of energy to lower the temperature sufficiently (-253°C at atmospheric pressure), requires expensive insulated tanks to maintain that temperature, and still falls short of desired driving range. One possible way to store hydrogen at higher density is in the spaces within the crystalline

345

Storage Ring Operation Modes  

NLE Websites -- All DOE Office Websites (Extended Search)

Longitudinal bunch profile and Up: APS Storage Ring Parameters Longitudinal bunch profile and Up: APS Storage Ring Parameters Previous: Source Parameter Table Storage Ring Operation Modes Standard Operating Mode, top-up Fill pattern: 102 mA in 24 singlets (single bunches) with a nominal current of 4.25 mA and a spacing of 153 nanoseconds between singlets. Lattice configuration: Low emittance lattice with effective emittance of 3.1 nm-rad and coupling of 1%. Bunch length (rms): 33.5 ps. Refill schedule: Continuous top-up with single injection pulses occurring at a minimum of two minute intervals, or a multiple of two minute intervals. Special Operating Mode - 324 bunches, non top-up Fill pattern: 102 mA in 324 uniformly spaced singlets with a nominal single bunch current of 0.31 mA and a spacing of 11.37 nanoseconds between singlets.

346

AB Levitator and Electricity Storage  

E-Print Network (OSTI)

The author researched this new idea - support of flight by any aerial vehicles at significant altitude solely by the magnetic field of the planet. It is shown that current technology allows humans to create a light propulsion (AB engine) which does not depend on air, water or ground terrain. Simultaniosly, this revolutionary thruster is a device for the storage of electricity which is extracted and is replenished (during braking) from/into the storage with 100 percent efficiency. The relative weight ratio of this engine is 0.01 - 0.1 (from thrust). For some types of AB engine (toroidal form) the thrust easily may be changed in any direction without turning of engine. The author computed many projects using different versions of offered AB engine: small device for levitation-flight of a human (including flight from Earth to Outer Space), fly VTOL car (track), big VTOL aircrat, suspended low altitude stationary satellite, powerful Space Shuttle-like booster for travel to the Moon and Mars without spending energ...

Bolonkin, A

2007-01-01T23:59:59.000Z

347

Utility of Bromide and Heat Tracers for Aquifer Characterization Affected by Highly Transient Flow Conditions  

SciTech Connect

A tracer test using both bromide and heat tracers conducted at the Integrated Field Research Challenge site in Hanford 300 Area (300A), Washington, provided an instrument for evaluating the utility of bromide and heat tracers for aquifer characterization. The bromide tracer data were critical to improving the calibration of the flow model complicated by the highly dynamic nature of the flow field. However, most bromide concentrations were obtained from fully screened observation wells, lacking depth-specific resolution for vertical characterization. On the other hand, depth-specific temperature data were relatively simple and inexpensive to acquire. However, temperature-driven fluid density effects influenced heat plume movement. Moreover, the temperature data contained “noise” caused by heating during fluid injection and sampling events. Using the hydraulic conductivity distribution obtained from the calibration of the bromide transport model, the temperature depth profiles and arrival times of temperature peaks simulated by the heat transport model were in reasonable agreement with observations. This suggested that heat can be used as a cost-effective proxy for solute tracers for calibration of the hydraulic conductivity distribution, especially in the vertical direction. However, a heat tracer test must be carefully designed and executed to minimize fluid density effects and sources of noise in temperature data. A sensitivity analysis also revealed that heat transport was most sensitive to hydraulic conductivity and porosity, less sensitive to thermal distribution factor, and least sensitive to thermal dispersion and heat conduction. This indicated that the hydraulic conductivity remains the primary calibration parameter for heat transport.

Ma, Rui; Zheng, Chunmiao; Zachara, John M.; Tonkin, Matthew J.

2012-08-29T23:59:59.000Z

348

FOREST CENTRE STORAGE BUILDING  

E-Print Network (OSTI)

FOREST CENTRE STORAGE BUILDING 3 4 5 6 7 8 UniversityDr. 2 1 G r e n f e l l D r i v e MULTI BUILDING STORAGE BUILDING LIBRARY & COMPUTING FINE ARTS FOREST CENTRE ARTS &SCIENCE BUILDING ARTS &SCIENCE BUILDING A&S BUILDING EXTENSIO N P7 P5.1 P5 P2 P3.1 P3.2 P6 P8 P4 P2 P2 P4 P8 P2.4 PARKING MAP GRENFELL

deYoung, Brad

349

Marketing Cool Storage Technology  

E-Print Network (OSTI)

storage has been substantiated. bv research conducted by Electric Power Research Institute, and by numerous installations, it has become acknowledged that cool stora~e can provide substantial benefits to utilities and end-users alike. A need was reco...~ned to improve utility load factors, reduce peak electric demands, and other-wise mana~e the demand-side use of electricity. As a result of these many pro~rams, it became apparent that the storage of coolin~, in the form of chilled water, ice, or other phase...

McCannon, L.

350

Formation Damage due to CO2 Sequestration in Saline Aquifers  

E-Print Network (OSTI)

Carbon dioxide (CO2) sequestration is defined as the removal of gas that would be emitted into the atmosphere and its subsequent storage in a safe, sound place. CO2 sequestration in underground formations is currently being considered to reduce...

Mohamed, Ibrahim Mohamed 1984-

2012-10-25T23:59:59.000Z

351

NETL: Carbon Storage - Geologic Characterization Efforts  

NLE Websites -- All DOE Office Websites (Extended Search)

RCSP Geologic Characterization Efforts RCSP Geologic Characterization Efforts The U.S. Department of Energy created a nationwide network of seven Regional Carbon Sequestration Partnerships (RCSP) in 2003 to help determine and implement the technology, infrastructure, and regulations most appropriate to promote carbon storage in different regions of the United States and Canada. The RCSP Initiative is being implemented in three phases: (1) Characterization Phase (2003-2005) to collect data on CO2 stationary sources and geologic formations and develop the human capital to support and enable future carbon storage field tests, (2) Validation Phase (2005-2011) to evaluate promising CO2 storage opportunities through a series of small-scale (<1 million metric tons of CO2) field tests, and (3) Development Phase (2008-2018+) that involves the injection of 1 million metric tons or more of CO2 by each RCSP into regionally significant geologic formations. In addition to working toward developing human capital, encouraging stakeholder networking, and enhancing public outreach and education on carbon capture and storage (CCS), the RCSPs are conducting extensive geologic characterization across all three project phases, as well as CO2 stationary source identification and re-evaluation over time.

352

Interim storage of recyclable materials. Final report  

SciTech Connect

The purpose of this study was to investigate long-term, economical, outdoor storage of a variety of postconsumer recyclable materials. Field investigations and laboratory analysis were performed to examine how protected and unprotected storage would affect marketability and product quality of baled plastics, papers, and other miscellaneous potentially recyclable materials. Baled materials were stored and evaluated over a period of approximately two years. Evaluation of the stored paper products was undertaken using handsheets to perform tests as published by the Technical Association of the Pulp and Paper Industry (TAPPI). A beater curve analysis of selected stored papers, a pilot-scale papermaking run on a Number 2 Fourdrinier Paper machine, and two microbial analysis of the paper materials were also undertaken. Plastic samples obtained from the field were evaluated for oxidation using an Infrared Spectrophotometer (IR), and a controlled `blackbox` IR study was completed. Liquid run-off from bales was analyzed on a quarterly basis. The authors` investigations show that inexpensive outdoor storage for some paper and plastic products is potentially viable as some postconsumer paper and plastic products can be stored outdoors for long periods of time, 300 days or more, without protection. Few potential negative environmental impacts of such storage were found.

NONE

1998-11-01T23:59:59.000Z

353

Storage Business Model White Paper  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Business Model White Paper Storage Business Model White Paper Summary June 11 2013 Storage Business Model White Paper - Purpose  Identify existing business models for investors/operators, utilities, end users  Discuss alignment of storage "value proposition" with existing market designs and regulatory paradigms  Difficulties in realizing wholesale market product revenue streams for distributed storage - the "bundled applications" problem  Discuss risks/barriers to storage adoption and where existing risk mitigation measures fall down  Recommendations for policy/research steps - Alternative business models - Accelerated research into life span and failure modes

354

Spent-fuel-storage alternatives  

SciTech Connect

The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

Not Available

1980-01-01T23:59:59.000Z

355

Upper Basalt-Confined Aquifer System in the Southern Hanford Site  

SciTech Connect

The 1990 DOE Tiger Team Finding GW/CF-202 found that the hydrogeologic regime at the Hanford Site was inadequately characterized. This finding also identified the need for completing a study of the confined aquifer in the central and southern portions of the Hanford Site. The southern portion of the site is of particular interest because hydraulic-head patterns in the upper basalt-confined aquifer system indicate that groundwater from the Hanford central plateau area, where contaminants have been found in the aquifer, flows southeast toward the southern site boundary. This results in a potential for offsite migration of contaminants through the upper basalt-confined aquifer system. Based on the review presented in this report, available hydrogeologic characterization information for the upper basalt-confined aquifer system in this area is considered adequate to close the action item. Recently drilled offsite wells have provided additional information on the structure of the aquifer system in and near the southern part of the Hanford Site. Information on hydraulic properties, hydrochemistry, hydraulic heads and flow directions for the upper basalt-confined aquifer system has been re-examined and compiled in recent reports including Spane and Raymond (1993), Spane and Vermeul ( 1994), and Spane and Webber (1995).

Thorne, P.

1999-01-04T23:59:59.000Z

356

Proceedings of the Workshop on Numerical Modeling of Thermohydrological Flow in Fractured Rock Masses, Feb. 19-20, 1980, Berkeley, CA  

E-Print Network (OSTI)

Mathematical modeling of thermal energy storage in aquifers:presented at the Thermal Energy storage in aquifers1979; Aquifer thermal energy storage—a numerical simulation

Witherspoon, P.A.

2010-01-01T23:59:59.000Z

357

EARTH SCIENCES DIVISION ANNUAL REPORT 1978  

E-Print Network (OSTI)

Schwarz Aquifer Thermal Energy Storage STUDY O GROUNDWATERMATHEMATICAL MODELING O THERMAL ENERGY STORAGE IN AQUIFERS FMATHEMATICAL MODELING OF THERMAL ENERGY STORAGE IN AQUIFERS

Authors, Various

2012-01-01T23:59:59.000Z

358

THE STATE OF THE ART OF NUMERICAL MODELING OF THERMOHYDROLOGIC FLOW IN FRACTURED ROCK MASSES  

E-Print Network (OSTI)

Doughty, 1979a, Aquifer thermal energy storage--a numericalical modeling of thermal energy storage in aquifers.Presented at the Thermal Energy Storage in Aquifers

Wang, J.S.Y.

2013-01-01T23:59:59.000Z

359

Solar Energy Storage Methods  

Science Journals Connector (OSTI)

Solar Energy Storage Methods ... Conducting polymers have superior specific energies to the carbon-based supercapacitors and have greater power capability, compared to inorganic battery material. ... The question of load redistribution for better energetic usage is of vital importance since these new renewable energy sources are often intermittent. ...

Yu Hou; Ruxandra Vidu; Pieter Stroeve

2011-06-09T23:59:59.000Z

360

Seed Cotton Handling & Storage  

E-Print Network (OSTI)

Seed Cotton Handling & Storage #12;S.W. Searcy Texas A&M University College Station, Texas M) Lubbock, Texas E.M. Barnes Cotton Incorporated Cary, North Carolina Acknowledgements: Special thanks for the production of this document has been provided by Cotton Incorporated, America's Cotton Producers

Mukhtar, Saqib

Note: This page contains sample records for the topic "aquifer storage field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Underground pumped hydroelectric storage  

SciTech Connect

Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-leveling requirements of a greater metropolitan area with population of 1 million or more. The technical feasibility of UPHS depends upon excavation of a subterranean powerhouse cavern and reservoir caverns within a competent, impervious rock formation, and upon selection of reliable and efficient turbomachinery - pump-turbines and motor-generators - all remotely operable.

Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

1984-07-01T23:59:59.000Z

362

NV Energy Electricity Storage Valuation  

SciTech Connect

This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp rate resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.

Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.; Jin, Chunlian

2013-06-30T23:59:59.000Z

363

Hydrochemistry and hydrogeologic conditions within the Hanford Site upper basalt confined aquifer system  

SciTech Connect

As part of the Hanford Site Ground-Water Surveillance Project, Flow System Characterization Task. Pacific Northwest Laboratory examines the potential for offsite migration of contamination within the upper basalt confined aquifer system for the US Department of Energy (DOE). As part of this activity, groundwater samples were collected over the past 2 years from selected wells completed in the upper Saddle Mountains Basalt. The hydrochemical and isotopic information obtained from these groundwater samples provides hydrologic information concerning the aquifer-flow system. Ideally, when combined with other hydrologic property information, hydrochemical and isotopic data can be used to evaluate the origin and source of groundwater, areal groundwater-flow patterns, residence and groundwater travel time, rock/groundwater reactions, and aquifer intercommunication for the upper basalt confined aquifer system. This report presents the first comprehensive Hanford Site-wide summary of hydrochemical properties for the upper basalt confined aquifer system. This report provides the hydrogeologic characteristics (Section 2.0) and hydrochemical properties (Section 3.0) for groundwater within this system. A detailed description of the range of the identified hydrochemical parameter subgroups for groundwater in the upper basalt confined aquifer system is also presented in Section 3.0. Evidence that is indicative of aquifer contamination/aquifer intercommunication and an assessment of the potential for offsite migration of contaminants in groundwater within the upper basalt aquifer is provided in Section 4.0. The references cited throughout the report are given in Section 5.0. Tables that summarize groundwater sample analysis results for individual test interval/well sites are included in the Appendix.

Spane, F.A. Jr.; Webber, W.D.

1995-09-01T23:59:59.000Z

364

Nanostructured Materials for Energy Generation and Storage  

E-Print Network (OSTI)

for Electrochemical Energy Storage Nanostructured Electrodesof Electrode Design for Energy Storage and Generation .batteries and their energy storage efficiency. vii Contents

Khan, Javed Miller

2012-01-01T23:59:59.000Z

365

Recommendation 212: Evaluate additional storage and disposal...  

Office of Environmental Management (EM)

212: Evaluate additional storage and disposal options Recommendation 212: Evaluate additional storage and disposal options The ORSSAB encourages DOE to evaluate additional storage...

366

Sandia National Laboratories: Energy Storage Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity Storage Handbook Published On July 31, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety, Grid Integration, Infrastructure...

367

Storage/Handling | Department of Energy  

Energy Savers (EERE)

StorageHandling StorageHandling Records Management Procedures for Storage, Transfer & Retrieval of Records from the Washington National Records Center (WNRC) or Legacy Management...

368

Hydrogen Storage Challenges | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Current Technology Hydrogen Storage Challenges Hydrogen Storage Challenges For transportation, the overarching technical challenge for hydrogen storage is how to store the...

369

Chemical Hydrogen Storage Research and Development | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Chemical Hydrogen Storage Research and Development Chemical Hydrogen Storage Research and Development DOE's chemical hydrogen storage R&D is focused on developing low-cost...

370

Carbon-based Materials for Energy Storage  

E-Print Network (OSTI)

Flexible, lightweight energy-storage devices are of greatstrategy to fabricate flexible energy-storage devices.Flexible, lightweight energy-storage devices (batteries and

Rice, Lynn Margaret

2012-01-01T23:59:59.000Z

371

HYDROGEN STORAGE USINGHYDROGEN STORAGE USING COMPLEX HYDRIDESCOMPLEX HYDRIDES  

E-Print Network (OSTI)

, Michael D. HamptonDarlene K. Slattery, Michael D. Hampton FL Solar Energy Center, U. of Central FLFL Solar Energy Center, U. of Central FL #12;Objective · Identify a hydrogen storage system that meets the DOEHYDROGEN STORAGE USINGHYDROGEN STORAGE USING COMPLEX HYDRIDESCOMPLEX HYDRIDES Darlene K. Slattery

372

In Situ Biological Uranium Remediation within a Highly Contaminated Aquifer  

NLE Websites -- All DOE Office Websites (Extended Search)

In Situ Biological Uranium Remediation In Situ Biological Uranium Remediation within a Highly Contaminated Aquifer Matthew Ginder-Vogel1, Wei-Min Wu1, Jack Carley2, Phillip Jardine2, Scott Fendorf1 and Craig Criddle1 1Stanford University, Stanford, CA 2Oak Ridge National Laboratory, Oak Ridge, TN Microbial Respiration Figure 1. Uranium(VI) reduction is driven by microbial respiration resulting in the precipitation of uraninite. Uranium contamination of ground and surface waters has been detected at numerous sites throughout the world, including agricultural evaporation ponds (1), U.S. Department of Energy nuclear weapons manufacturing areas, and mine tailings sites (2). In oxygen-containing groundwater, uranium is generally found in the hexavalent oxidation state (3,4), which is a relatively soluble chemical form. As U(VI) is transported through

373

Enhanced Integrity LNG Storage Tanks  

Science Journals Connector (OSTI)

In recent years close attention has been given to increasing the integrity of LNG storage tanks. The M.W. Kellogg Company is a participant in four major LNG projects that incorporate enhanced integrity LNG storag...

W. S. Jacobs; S. E. Handman

1986-01-01T23:59:59.000Z

374

Hydrogen storage in molecular compounds  

Science Journals Connector (OSTI)

...have application for energy storage. We synthesized...automobiles, is very energy intensive; up to 40% of the energy content must be spent...concerns and logistical obstacles. Other storage methods, including...satellites of the outer solar system...

Wendy L. Mao; Ho-kwang Mao

2004-01-01T23:59:59.000Z

375

Gaseous and Liquid Hydrogen Storage  

Energy.gov (U.S. Department of Energy (DOE))

Today's state of the art for hydrogen storage includes 5,000- and 10,000-psi compressed gas tanks and cryogenic liquid hydrogen tanks for on-board hydrogen storage.

376

Storage Systems for Solar Steam  

Science Journals Connector (OSTI)

Three different basic concepts (encapsulation, composite material and fins) for isothermal energy storage systems using phase change materials in the ... the most promising concept for the design of storage syste...

Wolf-Dieter Steinmann; Doerte Laing…

2009-01-01T23:59:59.000Z

377

Hydrogen storage and distribution systems  

Science Journals Connector (OSTI)

Hydrogen storage and transportation or distribution is closely linked together. Hydrogen can be distributed continuously in pipelines or ... or airplanes. All batch transportation requires a storage system but al...

Andreas Züttel

2007-03-01T23:59:59.000Z

378

Thin Film Hydrogen Storage System  

Science Journals Connector (OSTI)

In the last one decade the use of hydrogen as an energy carrier has attracted world ... on the technology involved for the production, storage and use of hydrogen. In this paper we discuss storage aspect of hydrogen

I. P. Jain; Y. K. Vijay

1987-01-01T23:59:59.000Z

379

Hydrogen Storage Technologies Hydrogen Delivery  

E-Print Network (OSTI)

Hydrogen Storage Technologies Roadmap Hydrogen Delivery Technical Team Roadmap June 2013 #12;This.................................................................................. 13 6. Hydrogen Storage). The Hydrogen Delivery Technical Team is one of 12 U.S. DRIVE technical teams ("tech teams") whose mission

380

Thermal Storage of Solar Energy  

Science Journals Connector (OSTI)

Thermal storage is needed to improve the efficiency and usefulness of solar thermal systems. The paper indicates the main storage ... which would greatly increase the practical use of solar energy — is more diffi...

H. Tabor

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aquifer storage field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Hydrogen fuel closer to reality because of storage advances  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen fuel closer to reality because of storage advances Hydrogen fuel closer to reality because of storage advances Hydrogen fuel closer to reality because of storage advances Advances made in rechargeable solid hydrogen fuel storage tanks. March 21, 2012 Field experiments on the Alamosa Canyon How best to achieve the benchmark of 300 miles of travel without refueling? It may be to use the lightweight compound ammonia-borane to carry the hydrogen. With hydrogen accounting for almost 20 percent of its weight, this stable, non-flammable compound is one of the highest-capacity materials for storing hydrogen. In a car, the introduction of a chemical catalyst would release the hydrogen as needed, thus avoiding on-board storage of large quantities of flammable hydrogen gas. When the ammonia-borane fuel is depleted of hydrogen, it would be regenerated at a

382

Electromagnetic energy storage and power dissipation in nanostructures  

E-Print Network (OSTI)

The processes of storage and dissipation of electromagnetic energy in nanostructures depend on both the material properties and the geometry. In this paper, the distributions of local energy density and power dissipation in nanogratings are investigated using the rigorous coupled-wave analysis. It is demonstrated that the enhancement of absorption is accompanied by the enhancement of energy storage both for material at the resonance of its dielectric function described by the classical Lorentz oscillator and for nanostructures at the resonance induced by its geometric arrangement. The appearance of strong local electric field in nanogratings at the geometry-induced resonance is directly related to the maximum electric energy storage. Analysis of the local energy storage and dissipation can also help gain a better understanding of the global energy storage and dissipation in nanostructures for photovoltaic and heat transfer applications.

Zhao, J M

2014-01-01T23:59:59.000Z

383

Webinar: Hydrogen Storage Materials Requirements  

Energy.gov (U.S. Department of Energy (DOE))

Video recording and text version of the webinar titled, Hydrogen Storage Materials Requirements, originally presented on June 25, 2013.

384

Compressed Air Energy Storage System  

E-Print Network (OSTI)

/expanders are crucial for the economical viability of a Compressed Air Energy Storage (CAES) system such as the

Farzad A. Shirazi; Mohsen Saadat; Bo Yan; Perry Y. Li; Terry W. Simon

385

Economic analysis of using above ground gas storage devices for compressed air energy storage system  

Science Journals Connector (OSTI)

Above ground gas storage devices for compressed air energy storage (CAES) have three types: air storage tanks, gas cylinders, and gas storage pipelines. A cost model of these gas storage devices is established on...

Jinchao Liu; Xinjing Zhang; Yujie Xu; Zongyan Chen…

2014-12-01T23:59:59.000Z

386

Energy Storage & Power Electronics 2008 Peer Review - Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

& Power Electronics 2008 Peer Review - Energy & Power Electronics 2008 Peer Review - Energy Storage Systems (ESS) Presentations Energy Storage & Power Electronics 2008 Peer Review - Energy Storage Systems (ESS) Presentations The 2008 Peer Review Meeting for the DOE Energy Storage and Power Electronics Program (ESPE) was held in Washington DC on Sept. 29-30, 2008. Current and completed program projects were presented and reviewed by a group of industry professionals. The 2008 agenda was composed of 28 projects that covered a broad range of new and ongoing, state-of-the-art, energy storage and power electronics technologies, including updates on the collaborations among DOE/ESPE, CEC in California, and NYSERDA in New York. Energy Storage Systems (ESS) presentations are available below. ESPE 2008 Peer Review - EAC Energy Storage Subcommittee - Brad Roberts, S&C

387

FE Carbon Capture and Storage News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 19, 2012 December 19, 2012 DOE's Carbon Utilization and Storage Atlas Estimates at Least 2,400 Billion Metric Tons of U.S. CO2 Storage Resource The United States has at least 2,400 billion metric tons of possible carbon dioxide storage resource in saline formations, oil and gas reservoirs, and unmineable coal seams, according to a new U.S. Department of Energy publication. November 20, 2012 DOE Approves Field Test for Promising Carbon Capture Technology A promising post combustion membrane technology that can separate and capture 90 percent of the carbon dioxide from a pulverized coal plant has been successfully demonstrated and received Department of Energy approval to advance to a larger-scale field test. November 19, 2012 Carbon Storage Partner Completes First Year of CO2 Injection Operations in

388

FE Carbon Capture and Storage News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 24, 2011 August 24, 2011 Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction Construction activities have begun at an Illinois ethanol plant that will demonstrate carbon capture and storage. July 6, 2011 Confirming CCS Security and Environmental Safety Aim of Newly Selected Field Projects The U.S. Department of Energy's portfolio of field projects aimed at confirming that long-term geologic carbon dioxide storage is safe and environmentally secure has been expanded by three projects selected to collectively receive $34.5 million over four years. June 28, 2011 Redesigned CCS Website Offers Wealth of Information on Worldwide Technology, Projects A wealth of information about worldwide carbon capture and storage technologies and projects is available on the newly launched, updated and

389

FAQs about Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

about Storage Capacity about Storage Capacity How do I determine if my tanks are in operation or idle or non-reportable? Refer to the following flowchart. Should idle capacity be included with working capacity? No, only report working capacity of tanks and caverns in operation, but not for idle tanks and caverns. Should working capacity match net available shell in operation/total net available shell capacity? Working capacity should be less than net available shell capacity because working capacity excludes contingency space and tank bottoms. What is the difference between net available shell capacity in operation and total net available shell capacity? Net available shell capacity in operation excludes capacity of idle tanks and caverns. What do you mean by transshipment tanks?

390

gas cylinder storage guidelines  

NLE Websites -- All DOE Office Websites (Extended Search)

Compressed Gas Cylinder Storage Guidelines Compressed Gas Cylinder Storage Guidelines All cylinders must be stored vertical, top up across the upper half the cylinder but below the shoulder. Small cylinder stands or other methods may be appropriate to ensure that the cylinders are secured from movement. Boxes, cartons, and other items used to support small cylinders must not allow water to accumulate and possible cause corrosion. Avoid corrosive chemicals including salt and fumes - keep away from direct sunlight and keep objects away that could fall on them. Use Gas pressure regulators that have been inspected in the last 5 years. Cylinders that contain fuel gases whether full or empty must be stored away from oxidizer cylinders at a minimum of 20 feet. In the event they are stored together, they must be separated by a wall 5 feet high with

391

Carbon Storage Review 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequestration Options in the Illinois Basin - Phase III DE-FC26-05NT42588 Robert J. Finley and the MGSC Project Team Illinois State Geological Survey (University of Illinois) and Schlumberger Carbon Services U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 * The Midwest Geological Sequestration Consortium is funded by the U.S. Department of Energy through the National Energy Technology Laboratory (NETL) via the Regional Carbon Sequestration Partnership Program (contract number DE-FC26-05NT42588) and by a cost share agreement with the Illinois Department of Commerce and Economic Opportunity, Office of Coal Development through the Illinois Clean Coal

392

NSLS VUV Storage Ring  

NLE Websites -- All DOE Office Websites (Extended Search)

VUV Storage Ring VUV Storage Ring VUV Normal Operations Operating Parameters (pdf) Insertion Devices Flux & Brightness Orbit Stability Lattice Information (pdf) Lattice : MAD Dataset Mechanical Drawing (pdf) VUV Operating Schedule Introduction & History The VUV Ring at the National Synchrotron Light Source was one of the first of the 2nd generation light sources to operate in the world. Initially designed in 1976 the final lattice design was completed in 1978 shortly after funding was approved. Construction started at the beginning of FY 1979 and installation of the magnets was well underway by the end of FY 1980. The first stored beam was achieved in December of 1981 at 600 MeV and the first photons were delivered to beamlines in May 1982, with routine beam line operations underway by the start of FY 1983. The number of beam

393

40 Years Of Dogger Aquifer Management In Ile-De-France, Paris Basin, France  

Open Energy Info (EERE)

Years Of Dogger Aquifer Management In Ile-De-France, Paris Basin, France Years Of Dogger Aquifer Management In Ile-De-France, Paris Basin, France Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: 40 Years Of Dogger Aquifer Management In Ile-De-France, Paris Basin, France Details Activities (0) Areas (0) Regions (0) Abstract: Geothermal energy has been supplying heat to district networks in the Paris Basin for more than 40 years. The most serious difficulties have been corrosion and scaling related problems that occurred in many geothermal loops in the mid-1980s. The main target of all exploration and exploitation projects has been the Dogger aquifer. Most of the operating facilities use the "doublet" technology which consists of a closed loop with one production well and one injection well. Injection of the cooled

394

Analysis of mineral trapping for CO2 disposal in deep aquifers  

E-Print Network (OSTI)

of Mineral Trapping for CO2 Disposal in Deep Aquifers Tianfue~mail: Tianfu Xu@lbl. gov) CO2 disposal into deep aquiferspermit significant sequestration of CO2. We performed batch

Xu, Tianfu

2014-01-01T23:59:59.000Z

395

E-Print Network 3.0 - aquifer grindsted denmark Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

worldwide potential: very big Deep saline aquifers 400 - 10,000 Gt (16 - 400yr) Oil and gas... Party Group Sci Tech,. Holyrood 10 Injection: buoyant, then lateral Injection Top...

396

E-Print Network 3.0 - arsenious quaternary aquifer Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

(m s1 ) Unit type Till Quaternary drift 3 108 -3 106 Aquifer U-K Upper K shale 3 1010... Quaternary Science Reviews 26 (2007) 1384-1397 Modeling the subglacial...

397

E-Print Network 3.0 - aquifer recharge investigations Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

the upper confining layer. In this case, there is a no-flow boundary... is confined by shale above and by granite below. The aquifer ... Source: Sukop, Mike - Department of Earth...

398

E-Print Network 3.0 - aquifer recharge areas Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

the upper confining layer. In this case, there is a no-flow boundary... is confined by shale above and by granite below. The aquifer ... Source: Sukop, Mike - Department of Earth...

399

E-Print Network 3.0 - aveiro quaternary aquifer Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

(m s1 ) Unit type Till Quaternary drift 3 108 -3 106 Aquifer U-K Upper K shale 3 1010... Quaternary Science Reviews 26 (2007) 1384-1397 Modeling the subglacial...

400

Evaluation of the impacts of climate changes on the coastal Chaouia aquifer, Morocco, using numerical modeling  

Science Journals Connector (OSTI)

The aquifer of the Chaouia Coast, Morocco constitutes an example of groundwater resources subjected to intensive and uncontrolled withdrawals in a semi-arid region. The analysis of the trends of precipitation ...

J. Moustadraf; M. Razack; M. Sinan

2008-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "aquifer storage field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

BPA, electric co-op and irrigation district testing aquifer recharge  

NLE Websites -- All DOE Office Websites (Extended Search)

Wednesday, April 4, 2012 CONTACT: Doug Johnson, 503-230-5840 or 503-230-5131 BPA, electric co-op and irrigation district testing aquifer recharge Dispatching recharge pumping...

402

Simulation Study of Heat Transportation in an Aquifer about Well-water-source Heat Pump  

E-Print Network (OSTI)

The study of groundwater reinjection, pumping and heat transportation in an aquifer plays an important theoretical role in ensuring the stability of deep-well water reinjection and pumping as well as smooth reinjection. Based on the related...

Cong, X.; Liu, Y.; Yang, W.

2006-01-01T23:59:59.000Z

403

Analysis of No-Flow Boundaries in Mixed Unconfined-Confined Aquifer Systems  

E-Print Network (OSTI)

As human population increases, demand for water supplies will cause an increase in pumping rates from confined aquifers which may become unconfined after long-term pumping. Such an unconfined-confined conversion problem has not been fully...

Langerlan, Kent A.

2010-07-14T23:59:59.000Z

404

E-Print Network 3.0 - aquifer heterogeneity completion Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

<< < 1 2 3 4 5 > >> 1 What can be learned from sequential multi-well pumping tests in fracture-karst media? A case study in Zhangji, China Summary: -karst aquifers, they are...

405

The Protection of Groundwaters Destined for Human Consumption in Karstic Aquifers. Advances Towards Safeguard Zones  

Science Journals Connector (OSTI)

Carbonate aquifers constitute a water reserve of critical importance as a source of drinking water. For this, it is necessary to establish suitable protection measures so that groundwater bodies can achieve good ...

A. Jiménez-Madrid; F. Carrasco; C. Martínez

2010-01-01T23:59:59.000Z

406

Weathered Diesel oil as a sorptive phase for hydrophobic organic compounds in aquifer materials  

E-Print Network (OSTI)

The sorptive properties of weathered diesel oil were investigated by conducting miscible displacement experiments with three hydrophobic organic compounds (HOCs), acenapthene, fluorene, and dibenzothiophene, as tracers in columns containing aquifer...

Hudson, Rondall James

2012-06-07T23:59:59.000Z

407

E-Print Network 3.0 - aquifer tests conducted Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Bali, Indonesia, 25-29 April 2010 Summary: of Shallow Aquifers: Decision-Aid Tool for Heat-Pump Installation Sophie Bezelgues1 , Jean-Claude Martin2... on the available data on...

408

Simulation of microbial transport and carbon tetrachloride biodegradation in intermittently-fed aquifer columns  

E-Print Network (OSTI)

Simulation of microbial transport and carbon tetrachloride biodegradation in intermittently associated with carbon tetrachloride (CT) biodegradation in laboratory aquifer columns operated with a pulsed Hydrology: Groundwater transport; KEYWORDS: biodegradation, carbon tetrachloride, microbial transport

409

Uncertainty analyses of CO2 plume expansion subsequent to wellbore CO2 leakage into aquifers  

SciTech Connect

In this study, we apply an uncertainty quantification (UQ) framework to CO2 sequestration problems. In one scenario, we look at the risk of wellbore leakage of CO2 into a shallow unconfined aquifer in an urban area; in another scenario, we study the effects of reservoir heterogeneity on CO2 migration. We combine various sampling approaches (quasi-Monte Carlo, probabilistic collocation, and adaptive sampling) in order to reduce the number of forward calculations while trying to fully explore the input parameter space and quantify the input uncertainty. The CO2 migration is simulated using the PNNL-developed simulator STOMP-CO2e (the water-salt-CO2 module). For computationally demanding simulations with 3D heterogeneity fields, we combined the framework with a scalable version module, eSTOMP, as the forward modeling simulator. We built response curves and response surfaces of model outputs with respect to input parameters, to look at the individual and combined effects, and identify and rank the significance of the input parameters.

Hou, Zhangshuan; Bacon, Diana H.; Engel, David W.; Lin, Guang; Fang, Yilin; Ren, Huiying; Fang, Zhufeng

2014-08-01T23:59:59.000Z

410

Analysis of steady-state flow and advective transport in the Eastern Snake River Plain Aquifer System, Idaho  

SciTech Connect

The regional aquifer system of the eastern Snake River Plain is an important component of the hydrologic system in eastern Idaho. The aquifer was thought to be the largest unified ground-water reservoir on the North American continent but is probably second to the Floridian aquifer in the southeastern United States. Flow in the aquifer is from major recharge areas in the northeastern part of the plain to discharge areas in the southwestern part. A comprehensive analysis of the occurrence and movement of water in the aquifer was presented by Garabedian. The analysis included a description of the recharge and discharge, the hydraulic properties, and a numerical model of the aquifer. The purposes of this report are to: (1) describe compartments in the aquifer that function as intermediate and regional flow systems, (2) describe pathlines for flow originating at or near the water table, and (3) quantify traveltimes for adjective transport originating at or near the water table. The model constructed for this study and described in this report will aid those concerned with the management and protection of the aquifer. The model will serve as a tool to further our understanding of the aquifer and will aid in assessing the needs for future flow and transport studies of the aquifer.

Ackerman, D.J.

1995-10-01T23:59:59.000Z

411

Solar energy storage: A demonstration experiment  

Science Journals Connector (OSTI)

Solar energy storage: A demonstration experiment ... A demonstration of a phase transition that can be used for heat storage. ...

Howard S. Kimmel; Reginald P. T. Tomkins

1979-01-01T23:59:59.000Z

412

Combinatorial Approaches for Hydrogen Storage Materials (presentation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Combinatorial Approaches for Hydrogen Storage Materials (presentation) Combinatorial Approaches for Hydrogen Storage Materials (presentation) Presentation on NIST Combinatorial...

413

Webinar: Hydrogen Storage Materials Database Demonstration |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Materials Database Demonstration Webinar: Hydrogen Storage Materials Database Demonstration Presentation slides from the Fuel Cell Technologies Office webinar "Hydrogen...

414

Effect of methane pulsation on methanotropic biodegradation of trichloroethylene in an in-situ model aquifer  

E-Print Network (OSTI)

of Technology Chair of Advisory Committee: Dr. Charlie G. Coble Trichloroethylene (TCE) which is used as a solvent in many industries is one of the most common contaminant of ground waters. TCE can be degraded by methanotrophic bacteria, along with other... heterotrophic organisms, into inorganic end products. An in situ model aquifer with six sampling zones was used to degrade TCE aerobically by stimulating a methanotrophic population. Three experiments were done on the aquifer. TCE concentration for all...

Natarajan, Ranjan

1993-01-01T23:59:59.000Z

415

Geology and hydrogeology of the Edwards Aquifer Transition Zone, Bexar County, Texas  

E-Print Network (OSTI)

GEOLOGY AND HYDROGEOLOGY OF THE EDWARDS AQUIFER TRANSITION ZONE, BEXAR COUNTY, TEXAS A Thesis by JEFFREY STEPHEN HEATHERY Submitted to the Office of Graduate Studies of Texas AQh University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE May 1989 Major Subject: Geology GEOLOGY AND HYDROGEOLOGY OF THE EDWARDS AQUIFER TRANSITION ZONE, BEXAR COUNTY, TEXAS A Thesis by JEFFREY STEPHEN HEATHERY Approved as to style and content by: Chris pher C. Mathewson...

Neathery, Jeffrey Stephen

1989-01-01T23:59:59.000Z

416

Effect of sediment concentration on artificial well recharge in a fine sand aquifer  

E-Print Network (OSTI)

EFFECT OF SEDIMENT CONCENTRATION ON ARTIFICIAL WELL RECHARGE IN A FINE SAND AQUIFER A Thesis By MD. ATAUR RAHMAN Submitted to the Graduate College of the Texas ASM University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE May 1968 Major Subject: Agricultural Engineering EFFECT OF SEDIMENT CONCENTRATION ON ARTIFICIAL WELL RECHARGE IN A FINE SAND AqUIFER A Thesis By MD. ATAUR RAHMAN Approved as to style and content by: (Chairman of ommitt ) ( a o...

Rahman, Mohammed Ataur

1968-01-01T23:59:59.000Z

417

Grid Applications for Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Applications for Energy Storage Applications for Energy Storage Flow Cells for Energy Storage Workshop Washington DC 7-8 March 2012 Joe Eto jheto@lbl.gov (510) 486-7284 Referencing a Recent Sandia Study,* This Talk Will: Describe and illustrate selected grid applications for energy storage Time-of-use energy cost management Demand charge management Load following Area Regulation Renewables energy time shift Renewables capacity firming Compare Sandia's estimates of the economic value of these applications to the Electricity Storage Association's estimates of the capital costs of energy storage technologies *Eyer, J. and G. Corey. Energy Storage for the Electricity Grid: Benefits and Market Potential Assessment Guide. February 2010. SAND2010-0815 A Recent Sandia Study Estimates the Economic

418

Energy Storage | Open Energy Information  

Open Energy Info (EERE)

Storage Storage Jump to: navigation, search TODO: Source information Contents 1 Introduction 2 Benefits 3 Technologies 4 References Introduction Energy storage is a tool that can be used by grid operators to help regulate the electrical grid and help meet demand. In its most basic form, energy storage "stores" excess energy that would otherwise be wasted so that it can be used later when demand is higher. Energy Storage can be used to balance microgrids, perform frequency regulation, and provide more reliable power for high tech industrial facilities.[1] Energy storage will also allow for the expansion of intermittent renewable energy, like wind and solar, to provide electricity around the clock. Some of the major issues concerning energy storage include cost, efficiency, and size.

419

HYDROGEL TRACER BEADS: THE DEVELOPMENT, MODIFICATION, AND TESTING OF AN INNOVATIVE TRACER FOR BETTER UNDERSTANDING LNAPL TRANSPORT IN KARST AQUIFERS  

SciTech Connect

The goal of this specific research task is to develop proxy tracers that mimic contaminant movement to better understand and predict contaminant fate and transport in karst aquifers. Hydrogel tracer beads are transported as a separate phase than water and can used as a proxy tracer to mimic the transport of non-aqueous phase liquids (NAPL). They can be constructed with different densities, sizes & chemical attributes. This poster describes the creation and optimization of the beads and the field testing of buoyant beads, including sampling, tracer analysis, and quantitative analysis. The buoyant beads are transported ahead of the dissolved solutes, suggesting that light NAPL (LNAPL) transport in karst may occur faster than predicted from traditional tracing techniques. The hydrogel beads were successful in illustrating this enhanced transport.

Amanda Laskoskie, Harry M. Edenborn, and Dorothy J. Vesper

2012-01-01T23:59:59.000Z

420

Assessment of plutonium storage safety issues at Department of Energy facilities  

SciTech Connect

The Department of Energy (DOE) mission for utilization and storage of nuclear materials has recently changed as a result of the end of the ``Cold War`` era. Past and current plutonium storage practices largely reflect a temporary, in-process, or in-use storage condition which must now be changed to accommodate longer-term storage. This report summarizes information concerning current plutonium metal and oxide storage practices which was presented at the Office of Defense programs (DP) workshop in Albuquerque, New Mexico on May 26-27, 1993 and contained in responses to questions by DP-62 from the field organizations.

Not Available

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aquifer storage field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

NETL: Carbon Storage - NETL Carbon Capture and Storage Database  

NLE Websites -- All DOE Office Websites (Extended Search)

CCS Database CCS Database Carbon Storage NETL's Carbon Capture, Utilization, and Storage Database - Version 4 Welcome to NETL's Carbon Capture, Utilization, and Storage (CCUS) Database. The database includes active, proposed, canceled, and terminated CCUS projects worldwide. Information in the database regarding technologies being developed for capture, evaluation of sites for carbon dioxide (CO2) storage, estimation of project costs, and anticipated dates of completion is sourced from publically available information. The CCUS Database provides the public with information regarding efforts by various industries, public groups, and governments towards development and eventual deployment of CCUS technology. As of November 2012, the database contained 268 CCUS projects worldwide. The 268 projects include 68 capture, 61 storage, and 139 for capture and storage in more than 30 countries across 6 continents. While most of the projects are still in the planning and development stage, or have recently been proposed, 37 are actively capturing and injecting CO2

422

Modeling CO2 Sequestration in a Saline Reservoir and Depleted Oil Reservoir to Evaluate The Regional CO2 Sequestration Potential of The Ozark Plateau Aquifer System, South-Central Kansas  

NLE Websites -- All DOE Office Websites (Extended Search)

CO CO 2 Sequestration in a Saline Reservoir and Depleted Oil Reservoir to Evaluate The Regional CO 2 Sequestration Potential of The Ozark Plateau Aquifer System, South-Central Kansas Background Carbon capture, utilization and storage (CCUS) technologies offer the potential for reducing CO 2 emissions without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires adequate geologic formations capable of (1) storing large volumes of CO 2 , (2) receiving injected CO 2 at efficient and economic rates, and (3) retaining CO 2 safely over extended periods. Research efforts are currently focused on conventional and unconventional storage formations within depositional environments such as: deltaic, fluvial, alluvial,

423

NETL: Carbon Storage Best Practices Manuals  

NLE Websites -- All DOE Office Websites (Extended Search)

Best Practices Manuals Best Practices Manuals Developing best practices - or reliable and consistent standards and operational characteristics for CO2 collection, injection and storage - is essential for providing the basis for a legal and regulatory framework and encouraging widespread global CCS deployment. The lessons learned during the Regional Carbon Sequestration Partnerships' (RCSP) Validation Phase small-scale field tests are being utilized to generate a series of Best Practices Manuals (BPMs) that serve as the basis for the design and implementation of both large-scale field tests and commercial carbon capture and storage (CCS) projects. NETL has released six BPMS: NETL's "Monitoring, Verification, and Accounting (MVA) of CO2 Stored in Deep Geologic Formations - 2012 Update" BPM provides an overview of MVA techniques that are currently in use or are being developed; summarizes DOE's MVA R&D program; and presents information that can be used by regulatory organizations, project developers, and policymakers to ensure the safety and efficacy of carbon storage projects.

424

A geochemical assessment of petroleum from underground oil storage caverns in relation to petroleum from natural reservoirs offshore Norway.  

E-Print Network (OSTI)

??The aim of this study is to compare oils from known biodegraded fields offshore Norway to waxes and oils from an artificial cavern storage facility,… (more)

Østensen, Marie

2005-01-01T23:59:59.000Z

425

Developing conservation plan for the Edwards Aquifer: Stakeholders reach consensus resolution to balance protection of endangered species and water use  

E-Print Network (OSTI)

Fall 2012 tx H2O 17 Story by Courtney Smith ] Comal and San Marcos springs are the only known habitats for eight federally listed threatened or endangered species. Photo courtesy of the Edwards Aquifer Authority. What does it take... Aquifer region of Texas achieved a milestone in a struggle that has lasted nearly six decades. Working together, participants in the Edwards Aquifer Recovery Implementation Program (EARIP) developed a habitat conservation plan that will protect...

Smith, Courtney

2012-01-01T23:59:59.000Z

426

Heat storage with CREDA  

SciTech Connect

The principle of operation of ETS or Electric Thermal Storage is discussed in this book. As can be seen by the diagram presented, heating elements buried deep within the core are energized during off-peak periods or periods of lower cost energy. These elements charge the core to a per-determined level, then during the on-peak periods when the cost of electricity is higher or demand is higher, the heat is extracted from the core. The author discusses how this technology has progressed to the ETS equipment of today; this being the finer control of charging rates and extraction of heat from the core.

Beal, T. (Fostoria Industries, Fostoria, OH (US))

1987-01-01T23:59:59.000Z

427

Natural Gas Storage in Basalt Aquifers of the Columbia Basin, Pacific Northwest USA: A Guide to Site Characterization  

SciTech Connect

This report provides the technical background and a guide to characterizing a site for storing natural gas in the Columbia River Basalt

Reidel, Steve P.; Spane, Frank A.; Johnson, Vernon G.

2002-08-08T23:59:59.000Z

428

Exergy analysis of the use of geothermal energy and carbon capture, transportation and storage in underground aquifers :.  

E-Print Network (OSTI)

??At the moment global climate change is one of the most prominent environmental and energy issues of our life time. Currently CO2 levels in the… (more)

De Mooij, J.W.C.

2010-01-01T23:59:59.000Z

429

ECO2N - A New TOUGH2 Fluid Property Module for Studies of CO2 Storage in Saline Aquifers  

E-Print Network (OSTI)

bar; salinity up to full halite saturation). Flow processes1190 kg/m3 for full halite saturation. According to Eq. (2),

Pruess, Karsten; Spycher, Nicholas

2006-01-01T23:59:59.000Z

430

Research Project on CO2 Geological Storage and Groundwater Resources: Water Quality Effects Caused by CO2 Intrusion into Shallow Groundwater  

SciTech Connect

One promising approach to reduce greenhouse gas emissions is injecting CO{sub 2} into suitable geologic formations, typically depleted oil/gas reservoirs or saline formations at depth larger than 800 m. Proper site selection and management of CO{sub 2} storage projects will ensure that the risks to human health and the environment are low. However, a risk remains that CO{sub 2} could migrate from a deep storage formation, e.g. via local high-permeability pathways such as permeable faults or degraded wells, and arrive in shallow groundwater resources. The ingress of CO{sub 2} is by itself not typically a concern to the water quality of an underground source of drinking water (USDW), but it will change the geochemical conditions in the aquifer and will cause secondary effects mainly induced by changes in pH, in particular the mobilization of hazardous inorganic constituents present in the aquifer minerals. Identification and assessment of these potential effects is necessary to analyze risks associated with geologic sequestration of CO{sub 2}. This report describes a systematic evaluation of the possible water quality changes in response to CO{sub 2} intrusion into aquifers currently used as sources of potable water in the United States. Our goal was to develop a general understanding of the potential vulnerability of United States potable groundwater resources in the event of CO{sub 2} leakage. This goal was achieved in two main tasks, the first to develop a comprehensive geochemical model representing typical conditions in many freshwater aquifers (Section 3), the second to conduct a systematic reactive-transport modeling study to quantify the effect of CO{sub 2} intrusion into shallow aquifers (Section 4). Via reactive-transport modeling, the amount of hazardous constituents potentially mobilized by the ingress of CO{sub 2} was determined, the fate and migration of these constituents in the groundwater was predicted, and the likelihood that drinking water standards might be exceeded was evaluated. A variety of scenarios and aquifer conditions was considered in a sensitivity evaluation. The scenarios and conditions simulated in Section 4, in particular those describing the geochemistry and mineralogy of potable aquifers, were selected based on the comprehensive geochemical model developed in Section 3.

Birkholzer, Jens; Apps, John; Zheng, Liange; Zhang, Yingqi; Xu, Tianfu; Tsang, Chin-Fu

2008-10-01T23:59:59.000Z

431

Mathematical models as tools for probing long-term safety of CO2 storage  

E-Print Network (OSTI)

deep saline aquifers, and oil and gas reservoirs, with largesaline aquifers, oil and gas reservoirs, and unmineable coalwith oil, gas, and geothermal reservoirs, in which similar

Pruess, Karsten

2010-01-01T23:59:59.000Z

432

Efficient parallel simulation of CO2 geologic sequestration insaline aquifers  

SciTech Connect

An efficient parallel simulator for large-scale, long-termCO2 geologic sequestration in saline aquifers has been developed. Theparallel simulator is a three-dimensional, fully implicit model thatsolves large, sparse linear systems arising from discretization of thepartial differential equations for mass and energy balance in porous andfractured media. The simulator is based on the ECO2N module of the TOUGH2code and inherits all the process capabilities of the single-CPU TOUGH2code, including a comprehensive description of the thermodynamics andthermophysical properties of H2O-NaCl- CO2 mixtures, modeling singleand/or two-phase isothermal or non-isothermal flow processes, two-phasemixtures, fluid phases appearing or disappearing, as well as saltprecipitation or dissolution. The new parallel simulator uses MPI forparallel implementation, the METIS software package for simulation domainpartitioning, and the iterative parallel linear solver package Aztec forsolving linear equations by multiple processors. In addition, theparallel simulator has been implemented with an efficient communicationscheme. Test examples show that a linear or super-linear speedup can beobtained on Linux clusters as well as on supercomputers. Because of thesignificant improvement in both simulation time and memory requirement,the new simulator provides a powerful tool for tackling larger scale andmore complex problems than can be solved by single-CPU codes. Ahigh-resolution simulation example is presented that models buoyantconvection, induced by a small increase in brine density caused bydissolution of CO2.

Zhang, Keni; Doughty, Christine; Wu, Yu-Shu; Pruess, Karsten

2007-01-01T23:59:59.000Z

433

Magnetic-field-dosimetry system  

DOE Patents (OSTI)

A device is provided for measuring the magnetic field dose and peak field exposure. The device includes three Hall-effect sensors all perpendicular to each other, sensing the three dimensional magnetic field and associated electronics for data storage, calculating, retrieving and display.

Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

1981-01-21T23:59:59.000Z

434

Hydrogen Storage Materials Database Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

| Fuel Cell Technologies Program Source: US DOE 4/25/2011 eere.energy.gov | Fuel Cell Technologies Program Source: US DOE 4/25/2011 eere.energy.gov Hydrogen Storage Materials Database Demonstration FUEL CELL TECHNOLOGIES PROGRAM Ned Stetson Storage Tech Team Lead Fuel Cell Technologies Program U.S. Department of Energy 12/13/2011 Hydrogen Storage Materials Database Marni Lenahan December 13, 2011 Database Background * The Hydrogen Storage Materials Database was built to retain information from DOE Hydrogen Storage funded research and make these data more accessible. * Data includes properties of hydrogen storage materials investigated such as synthesis conditions, sorption and release conditions, capacities, thermodynamics, etc. http://hydrogenmaterialssearch.govtools.us Current Status * Data continues to be collected from DOE funded research.

435

The potential use of surfactant and cosolvent soil washing as adjuvant for in-situ aquifer restoration.  

E-Print Network (OSTI)

??The use of surfactant and aqueous cosolvent soil washing for the restoration of contaminated aquifers was investigated by laboratory experimentation and literature review. The effect… (more)

Ziegenfuss, Philip Scott

1988-01-01T23:59:59.000Z

436

Enabling Utility-Scale Electrical Energy Storage through Underground Hydrogen-Natural Gas Co-Storage.  

E-Print Network (OSTI)

??Energy storage technology is needed for the storage of surplus baseload generation and the storage of intermittent wind power, because it can increase the flexibility… (more)

Peng, Dan

2013-01-01T23:59:59.000Z

437

Gas hydrate cool storage system  

DOE Patents (OSTI)

The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

Ternes, M.P.; Kedl, R.J.

1984-09-12T23:59:59.000Z

438

MAXIMIZING MAGNETIC ENERGY STORAGE IN THE SOLAR CORONA  

SciTech Connect

The energy that drives solar eruptive events such as coronal mass ejections (CMEs) almost certainly originates in coronal magnetic fields. Such energy may build up gradually on timescales of days or longer before its sudden release in an eruptive event, and the presence of free magnetic energy capable of rapid release requires nonpotential magnetic fields and associated electric currents. For magnetic energy to power a CME, that energy must be sufficient to open the magnetic field to interplanetary space, to lift the ejecta against solar gravity, and to accelerate the material to speeds of typically several hundred km s{sup -1}. Although CMEs are large-scale structures, many originate from relatively compact active regions on the solar surface-suggesting that magnetic energy storage may be enhanced when it takes place in smaller magnetic structures. This paper builds on our earlier work exploring energy storage in large-scale dipolar and related bipolar magnetic fields. Here we consider two additional cases: quadrupolar fields and concentrated magnetic bipoles intended to simulate active regions. Our models yield stored energies whose excess over that of the corresponding open field state can be greater than 100% of the associated potential field energy; this contrasts with maximum excess energies of only about 20% for dipolar and symmetric bipolar configurations. As in our previous work, energy storage is enhanced when we surround a nonpotential field with a strong overlying potential field that acts to 'hold down' the nonpotential flux as its magnetic energy increases.

Wolfson, Richard; Drake, Christina; Kennedy, Max, E-mail: wolfson@middlebury.edu [Department of Physics, Middlebury College, Middlebury, VT 05753 (United States)

2012-05-01T23:59:59.000Z

439

Maximizing Magnetic Energy Storage in the Solar Corona  

Science Journals Connector (OSTI)

The energy that drives solar eruptive events such as coronal mass ejections (CMEs) almost certainly originates in coronal magnetic fields. Such energy may build up gradually on timescales of days or longer before its sudden release in an eruptive event, and the presence of free magnetic energy capable of rapid release requires nonpotential magnetic fields and associated electric currents. For magnetic energy to power a CME, that energy must be sufficient to open the magnetic field to interplanetary space, to lift the ejecta against solar gravity, and to accelerate the material to speeds of typically several hundred km s–1. Although CMEs are large-scale structures, many originate from relatively compact active regions on the solar surface—suggesting that magnetic energy storage may be enhanced when it takes place in smaller magnetic structures. This paper builds on our earlier work exploring energy storage in large-scale dipolar and related bipolar magnetic fields. Here we consider two additional cases: quadrupolar fields and concentrated magnetic bipoles intended to simulate active regions. Our models yield stored energies whose excess over that of the corresponding open field state can be greater than 100% of the associated potential field energy; this contrasts with maximum excess energies of only about 20% for dipolar and symmetric bipolar configurations. As in our previous work, energy storage is enhanced when we surround a nonpotential field with a strong overlying potential field that acts to "hold down" the nonpotential flux as its magnetic energy increases.

Richard Wolfson; Christina Drake; Max Kennedy

2012-01-01T23:59:59.000Z

440

Electrochemical hydrogen Storage Systems  

SciTech Connect

As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin halides. To enable a closed-loop cycle, our task was then to be able to hydrogenate the organotin halides back to th

Dr. Digby Macdonald

2010-08-09T23:59:59.000Z

Note: This page contains sample records for the topic "aquifer storage field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Sandia National Laboratories: Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

UNM On September 16, 2014, in Advanced Materials Laboratory, Capabilities, Energy, Energy Storage, Facilities, Materials Science, News, News & Events, Partnership, Research...

442

Underground Storage Tank Program (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

These rules are intended to protect public health and the environment by establishing standards for the design, installation, operation, maintenance, monitoring, and closure of underground storage...

443

Savannah River Hydrogen Storage Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Member of DOE Carbon Working Group - Developed novel method for forming doped carbon nanotubes as part of DOE Storage Program (patent pending) - Collaborated with universities and...

444

Sandia National Laboratories: Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Simulations Reveal Ion Dynamics in Polymer Electrolyte On November 13, 2012, in Energy Storage, News, News & Events Improving battery electrolytes is highly desirable, particularly...

445

Energy storage in carbon nanoparticles.  

E-Print Network (OSTI)

??Hydrogen (H2) and methane (CH4) are clean energy sources, and their storage in carbonaceous materials is a promising technology for safe and cost effective usage… (more)

Guan, Cong.

2009-01-01T23:59:59.000Z

446

Powertech: Hydrogen Expertise Storage Needs  

Energy.gov (U.S. Department of Energy (DOE))

This presentation by Angela Das of Powertech was given at the DOE Hydrogen Compression, Storage, and Dispensing Workshop in March 2013.

447

Energy Storage Laboratory (Fact Sheet)  

SciTech Connect

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Storage Laboratory at the Energy Systems Integration Facility. At NREL's Energy Storage Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on the integration of energy storage systems (both stationary and vehicle-mounted) and interconnection with the utility grid. Focusing on battery technologies, but also hosting ultra-capacitors and other electrical energy storage technologies, the laboratory will provide all resources necessary to develop, test, and prove energy storage system performance and compatibility with distributed energy systems. The laboratory will also provide robust vehicle testing capability, including a drive-in environmental chamber, which can accommodate commercial-sized hybrid, electric, biodiesel, ethanol, compressed natural gas, and hydrogen fueled vehicles. The Energy Storage Laboratory is designed to ensure personnel and equipment safety when testing hazardous battery systems or other energy storage technologies. Closely coupled with the research electrical distribution bus at ESIF, the Energy Storage Laboratory will offer megawatt-scale power testing capability as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Some application scenarios are: The following types of tests - Performance, Efficiency, Safety, Model validation, and Long duration reliability. (2) Performed on the following equipment types - (a) Vehicle batteries (both charging and discharging V2G); (b) Stationary batteries; (c) power conversion equipment for energy storage; (d) ultra- and super-capacitor systems; and (e) DC systems, such as commercial microgrids.

Not Available

2011-10-01T23:59:59.000Z

448

EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

00: Managing Treatment, Storage, and Disposal of Radioactive 00: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste SUMMARY This EIS evaluates the potential environmental and cost impacts of strategic managment alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear defense and research activities at a variety of sites around the United States. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 7, 2011 EIS-0200-SA-03: Supplement Analysis Treatment of Transuranic Waste at the Idaho National Laboratory, Carlsbad Field Office March 7, 2008 EIS-0200: Amendment to the Record of Decision Treatment and Storage of Transuranic Waste

449

BASIC RESEARCH NEEDS IN ENERGY CONSERVATION  

E-Print Network (OSTI)

Current Aquifer Thermal Energy Storage Projects," Lawrenceof Workshop on Thermal Energy Storage in Aquifers, LBL-k431,

Hollander, Jack M.

2011-01-01T23:59:59.000Z

450

Creating a programmable object storage stack  

Science Journals Connector (OSTI)

The current file system and storage stack is restricted in the amount of information that flows from application to storage and from storage to application. This limits the ability of applications to tailor the storage system to particular needs of the ... Keywords: filesystems, object storage

Orko Momin, Cengiz Karakoyunlu, Michael T. Runde, John A. Chandy

2014-06-01T23:59:59.000Z

451

NIAGARA FALLS STORAGE SITE  

Office of Legacy Management (LM)

:i" :i" _,, ' _~" ORISE 95/C-70 :E : i:; :' l,J : i.: RADIOLOGICAL SURVEY Op BUILDINGS 401, ' 403, AND ' m HITTMAN BUILDING $ <,' 2:. NIAGARA FALLS STORAGE SITE I .~~ ; " LEWISTON, ' NEW YORK : f? j:,:i I ,.J- ;b f" /: Li _e.*. ~,, I ,,~, ,:,,;:, Prepared by T. .I. Vitkus i,c Environmental Survey and Site Assessment Program Energy/Environment Systems Division ;>::; Oak Ridge Institute for Science and Education .,:, "Oak Ridge, Temressee 37831-0117 .F P ., ? :_ &,d ,,,, ;<:x,, Prepared for the 3 I. Office of Environmental Restoration I, U.S. Department of Energy i gy i. ~: ,,, "! ? ' :' : "' ,//, FINAL REPORT ".$ :,a ,,, MARCH 1995 ; m L ,, ,, ,,,. ., ,,. ' 1 jq ,Ij:,., .,~ _,I_ 1 This report is based on work performed under contract number DE-AC05-760R00033 with the

452

Reversible hydrogen storage materials  

DOE Patents (OSTI)

In accordance with the present disclosure, a process for synthesis of a complex hydride material for hydrogen storage is provided. The process includes mixing a borohydride with at least one additive agent and at least one catalyst and heating the mixture at a temperature of less than about 600.degree. C. and a pressure of H.sub.2 gas to form a complex hydride material. The complex hydride material comprises MAl.sub.xB.sub.yH.sub.z, wherein M is an alkali metal or group IIA metal, Al is the element aluminum, x is any number from 0 to 1, B is the element boron, y is a number from 0 to 13, and z is a number from 4 to 57 with the additive agent and catalyst still being present. The complex hydride material is capable of cyclic dehydrogenation and rehydrogenation and has a hydrogen capacity of at least about 4 weight percent.

Ritter, James A. (Lexington, SC); Wang, Tao (Columbia, SC); Ebner, Armin D. (Lexington, SC); Holland, Charles E. (Cayce, SC)

2012-04-10T23:59:59.000Z

453

Core assembly storage structure  

DOE Patents (OSTI)

A structure for the storage of core assemblies from a liquid metal-cooled nuclear reactor. The structure comprises an enclosed housing having a substantially flat horizontal top plate, a bottom plate and substantially vertical wall members extending therebetween. A plurality of thimble members extend downwardly through the top plate. Each thimble member is closed at its bottom end and has an open end adjacent said top plate. Each thimble member has a length and diameter greater than that of the core assembly to be stored therein. The housing is provided with an inlet duct for the admission of cooling air and an exhaust duct for the discharge of air therefrom, such that when hot core assemblies are placed in the thimbles, the heat generated will by convection cause air to flow from the inlet duct around the thimbles and out the exhaust duct maintaining the core assemblies at a safe temperature without the necessity of auxiliary powered cooling equipment.

Jones, Jr., Charles E. (Northridge, CA); Brunings, Jay E. (Chatsworth, CA)

1988-01-01T23:59:59.000Z

454

The Silver Bullet: Storage!  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Philly High X-prize PHEV The Silver Bullet... Storage! Terry Boston President & CEO PJM Interconnection July 12, 2011 PJM©2011 2 United States PJM Eastern Interconnection PJM as Part of the Eastern Interconnection KEY STATISTICS PJM member companies 700+ millions of people served 58 peak load in megawatts 158,448 MWs of generating capacity 180,400 miles of transmission lines 61,200 GWh of annual energy 794,335 generation sources 1,365 square miles of territory 211,000 area served 13 states + DC Internal/external tie lines 142 * 24% of generation in Eastern Interconnection * 27% of load in Eastern Interconnection * 19% of transmission assets in Eastern Interconnection 20% of U.S. GDP produced in PJM www.pjm.com As of 6/1/2011 PJM©2011 3 43,623 0 5,000 10,000 15,000

455

Superconducting energy storage  

SciTech Connect

This report describes the status of energy storage involving superconductors and assesses what impact the recently discovered ceramic superconductors may have on the design of these devices. Our description is intended for R&D managers in government, electric utilities, firms, and national laboratories who wish an overview of what has been done and what remains to be done. It is assumed that the reader is acquainted with superconductivity, but not an expert on the topics discussed here. Indeed, it is the author`s aim to enable the reader to better understand the experts who may ask for the reader`s attention, support, or funding. This report may also inform scientists and engineers who, though expert in related areas, wish to have an introduction to our topic.

Giese, R.F.

1993-10-01T23:59:59.000Z

456

Argonne leads hydrogen storage project  

Science Journals Connector (OSTI)

A new $1.88m research project on on-board hydrogen storage at the US Department of Energy's Argonne National Laboratory in Illinois aims to develop a hydrogen storage system that can hold enough hydrogen for a driving range of 300 miles (480 km).

2007-01-01T23:59:59.000Z

457

Reversible Seeding in Storage Rings  

SciTech Connect

We propose to generate steady-state microbunching in a storage ring with a reversible seeding scheme. High gain harmonic generation (HGHG) and echo-enabled harmonic generation (EEHG) are two promising methods for microbunching linac electron beams. Because both schemes increase the energy spread of the seeded beam, they cannot drive a coherent radiator turn-by-turn in a storage ring. However, reversing the seeding process following the radiator minimizes the impact on the electron beam and may allow coherent radiation at or near the storage ring repetition rate. In this paper we describe the general idea and outline a proof-of-principle experiment. Electron storage rings can drive high average power light sources, and free-electron lasers (FELs) are now producing coherent light sources of unprecedented peak brightness While there is active research towards high repetition rate FELs (for example, using energy recovery linacs), at present there are still no convenient accelerator-based sources of high repetition rate, coherent radiation. As an alternative avenue, we recently proposed to establish steady-state microbunching (SSMB) in a storage ring. By maintaining steady-state coherent microbunching at one point in the storage ring, the beam generates coherent radiation at or close to the repetition rate of the storage ring. In this paper, we propose a method of generating a microbunched beam in a storage ring by using reversible versions of linac seeding schemes.

Ratner, Daniel; Chao, Alex; /SLAC

2011-12-14T23:59:59.000Z

458

Nanostructured materials for hydrogen storage  

DOE Patents (OSTI)

A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

Williamson, Andrew J. (Pleasanton, CA); Reboredo, Fernando A. (Pleasanton, CA)

2007-12-04T23:59:59.000Z

459

Complex Hydrides for Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrides for Hydrides for Hydrogen Storage George Thomas, Consultant Sandia National Laboratories G. J. Thomas Efficient onboard hydrogen storage is a critical enabling technology for the use of hydrogen in vehicles * The low volumetric density of gaseous fuels requires a storage method which densifies the fuel. - This is particularly true for hydrogen because of its lower energy density relative to hydrocarbon fuels. * Storage methods result in additional weight and volume above that of the fuel. How do we achieve adequate stored energy in an efficient, safe and cost-effective system? G. J. Thomas However, the storage media must meet certain requirements: - reversible hydrogen uptake/release - lightweight - low cost - cyclic stability - rapid kinetic properties - equilibrium properties (P,T) consistent

460

Grid Storage and the Energy Frontier Research Centers | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grid Storage and the Energy Frontier Research Centers Grid Storage and the Energy Frontier Research Centers DOE: Grid Storage and the Energy Frontier Research Centers Grid Storage...

Note: This page contains sample records for the topic "aquifer storage field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

salt-water pumped-storage hydroelectric plant  

Science Journals Connector (OSTI)

salt-water pumped-storage hydroelectric plant, saltwater pumped-storage hydroelectric station, seawater pumped-storage hydroelectric plant, seawater pumped-storage hydroelectric station ? Salzwasser-...

2014-08-01T23:59:59.000Z

462

Sandia National Laboratories: DOE Energy Storage Systems program  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Systems program 2013 Electricity Storage Handbook Published On July 31, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety,...

463

Hydrogen Storage Materials Requirements to Meet the 2017 On Board...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Storage Materials Requirements to Meet the 2017 On Board Hydrogen Storage Technical Targets Hydrogen Storage Materials Requirements to Meet the 2017 On Board Hydrogen Storage...

464

Sleuthing the Fate of Water in Ancient Aquifers and Ice Cores | U.S. DOE  

Office of Science (SC) Website

Sleuthing the Fate of Water in Ancient Aquifers and Ice Cores Sleuthing the Fate of Water in Ancient Aquifers and Ice Cores Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » October 2012 Sleuthing the Fate of Water in Ancient Aquifers and Ice Cores Precision analytical techniques developed for fundamental experiments in nuclear physics now enable routine measurements of ultra-low concentrations of Krypton radioisotopes in samples of water, ice, and gas. Print Text Size: A A A Subscribe FeedbackShare Page

465

DOE Regional Partnership Successfully Demonstrates Terrestrial CO2 Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Successfully Demonstrates Terrestrial CO2 Successfully Demonstrates Terrestrial CO2 Storage Practices in Great Plains Region of U.S. and Canada DOE Regional Partnership Successfully Demonstrates Terrestrial CO2 Storage Practices in Great Plains Region of U.S. and Canada August 19, 2010 - 1:00pm Addthis Washington, DC - A field test demonstrating the best approaches for terrestrial carbon dioxide (CO2) storage in the heartland of North America has been successfully completed by one of the U.S. Department of Energy's (DOE) seven Regional Carbon Sequestration Partnerships (RCSPs). The Plains CO2 Reduction (PCOR) Partnership , a collaboration of over 80 U.S. and Canadian stakeholders, conducted the field test at sites in the Prairie Pothole Region, extending from central Iowa into Northern Alberta,

466

TOUGH+CO2: A multiphase fluid-flow simulator for CO2 geologic sequestration in saline aquifers  

Science Journals Connector (OSTI)

TOUGH+CO"2 is a new simulator for modeling of CO"2 geologic sequestration in saline aquifers. It is a member of TOUGH+, the successor to the TOUGH2 family of codes for multicomponent, multiphase fluid and heat flow simulation. The code accounts for heat ... Keywords: CO2 geologic sequestration, Modeling, Multiphase flow, Parallel computing, Saline aquifer, TOUGH+, TOUGH2

Keni Zhang; George Moridis; Karsten Pruess

2011-06-01T23:59:59.000Z

467

Carbon Capture and Storage | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Carbon Capture and Storage Through Office of Fossil Energy R&D the United States has become a world leader in carbon capture and storage science and technology. Fossil...

468

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

in floor tiles for thermal energy storage,” working paper,D. R. (2000). Thermal energy storage for space cooling,A simple model of thermal energy storage is developed as a

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

469

NATURAL GAS STORAGE ENGINEERING Kashy Aminian  

E-Print Network (OSTI)

NATURAL GAS STORAGE ENGINEERING Kashy Aminian Petroleum & Natural Gas Engineering, West Virginia University, Morgantown, WV, USA. Shahab D. Mohaghegh Petroleum & Natural Gas Engineering, West Virginia University, Morgantown, WV, USA. Keywords: Gas Storage, Natural Gas, Storage, Deliverability, Inventory

Mohaghegh, Shahab

470

Technical Assessment: Cryo-Compressed Hydrogen Storage  

E-Print Network (OSTI)

Technical Assessment: Cryo-Compressed Hydrogen Storage for Vehicular Applications October 30, 2006 .....................................................................................................................................................................8 APPENDIX A: Review of Cryo-Compressed Hydrogen Storage Systems ......................................................................................18 APPENDIX C: Presentation to the FreedomCAR & Fuel Hydrogen Storage Technical Team

471

Investigations in cool thermal storage: storage process optimization and glycol sensible storage enhancement  

E-Print Network (OSTI)

device in order to meet the utility's mandate. The first part of this study looks at the effects of adding propylene glycol to a static-water ice thermal storage tank, in the pursuit of increasing storage capacity. The effects of glycol addition...

Abraham, Michaela Marie

1993-01-01T23:59:59.000Z

472

Linear programming optimization for aquifer influence functions on microcomputers  

E-Print Network (OSTI)

for increasing operating speed and efficient computer storage with the AIF p~ on micraccmputers. Three LP methods were investigated on microoczrputers using the AIF p~: (I) the simplex method, (2) the revised simplex methcd, and (3) the symmetric msthcd. Each... ACKNOWLEIGEMENTS TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES INTRODUCTION LP METHODS V V1 V11 Simplex Methcd Revised Simplex Methcd Symmetric Methcd 5 12 18 TEST PROBLEMS 23 Test Problem 1 Test Problem 2 23 24 25 DISCUSSION OF RESULTS 03...

Brown, Don L

2012-06-07T23:59:59.000Z

473

Structure Optimization of FePt Nanoparticles of Various Sizes for Magnetic Data Storage  

E-Print Network (OSTI)

to a modified reaction route based on Sun et al.[1] Hexane dispersions of nanoparticles were dried increases with particle size and with the temperature in the range 600 °C to 650 °C, being close to unity-assembly over large areas, and a narrow distribution of switching fields. The long storage time and high storage

Laughlin, David E.

474

Microporous Metal Organic Materials: Promising Candidates as Sorbents for Hydrogen Storage  

E-Print Network (OSTI)

Microporous Metal Organic Materials: Promising Candidates as Sorbents for Hydrogen Storage Long Pan coordination structures represent a promising new entry to the field of hydrogen storage materials.2 To fully that effectively store hydrogen are needed for use in fuel cell powered vehicles. Among the various candidate

Li, Jing

475

Evaluation of a distributed numerical simulation optimization approach applied to aquifer remediation  

Science Journals Connector (OSTI)

In this paper we evaluate a distributed approach which uses numerical simulation and optimization techniques to automatically find remediation solutions to a hypothetical contaminated aquifer. The repeated execution of the numerical simulation model of the aquifer through the optimization cycles tends to be computationally expensive. To overcome this drawback, the numerical simulations are executed in parallel using a network of heterogeneous workstations. Performance metrics for heterogeneous environments are not trivial; a new way of calculating speedup and efficiency for Bag-of-Tasks (BoT) applications is proposed. The performance of the parallel approach is evaluated.

Patrícia A.P. Costa; Eduardo L.M. Garcia; Bruno Schulze; Helio J.C. Barbosa

2010-01-01T23:59:59.000Z

476

Energy Storage Computational Tool | Open Energy Information  

Open Energy Info (EERE)

Energy Storage Computational Tool Energy Storage Computational Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Storage Computational Tool Agency/Company /Organization: Navigant Consulting Sector: Energy Focus Area: Grid Assessment and Integration Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.smartgrid.gov/recovery_act/program_impacts/energy_storage_computat Country: United States Web Application Link: www.smartgrid.gov/recovery_act/program_impacts/energy_storage_computat Cost: Free Northern America Language: English Energy Storage Computational Tool Screenshot References: Energy Storage Computational Tool[1] SmartGrid.gov[2] Logo: Energy Storage Computational Tool This tool is used for identifying, quantifying, and monetizing the benefits

477

Sandia National Laboratories: Energy Storage Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Systems New Liquid Salt Electrolytes Could Lead to Cost-Effective Flow Batteries On February 22, 2012, in Energy, Energy Storage Systems, Grid Integration, News,...

478

DRAFT "Energy Advisory Committee" - Energy Storage Subcommittee...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report: Revision 2 DRAFT "Energy Advisory Committee" - Energy Storage Subcommittee Report: Revision 2 Energy storage plays a vital role in all forms of business and affects the...

479

Sandia National Laboratories: Energy Storage Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Collaboration On May 28, 2014, in Biofuels, CRF, Distribution Grid Integration, Energy, Energy Storage, Energy Storage Systems, Energy Surety, Facilities, Grid Integration,...

480

Agenda: Natural Gas: Transmission, Storage and Distribution ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas: Transmission, Storage and Distribution Agenda: Natural Gas: Transmission, Storage and Distribution A Public Meeting on the Quadrennial Energy Review, Hosted by the...

Note: This page contains sample records for the topic "aquifer storage field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Hydrogen Storage Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

storing hydrogen include: Physical storage of compressed hydrogen gas in high pressure tanks (up to 700 bar) Physical storage of cryogenic liquid hydrogen (cooled to -253C, at...

482

Hydrogen for Energy Storage Analysis Overview (Presentation)  

NLE Websites -- All DOE Office Websites (Extended Search)

competing technologies for utility- scale energy storage systems. Explore the cost and GHG emissions impacts of interaction of hydrogen storage and variable renewable resources...

483

California Working Natural Gas Underground Storage Capacity ...  

Gasoline and Diesel Fuel Update (EIA)

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

484

California Working Natural Gas Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

485

Sandia National Laboratories: solar thermal energy storage  

NLE Websites -- All DOE Office Websites (Extended Search)

thermal energy storage Sandia Solar Energy Test System Cited in National Engineering Competition On May 16, 2013, in Concentrating Solar Power, Energy, Energy Storage, Facilities,...

486

Permitted Mercury Storage Facility Notifications | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services Waste Management Waste Disposition Long-Term Management and Storage of Elemental Mercury is in the Planning Stages Permitted Mercury Storage Facility...

487

Structured Storage in ATLAS Distributed Data Management  

E-Print Network (OSTI)

CHEP'12 Talk Structured Storage - Concepts - Technologies ATLAS DDM Use Cases - Storage facility - Data intensive analytics Operational Experiences - Software - Hardware Conclusions

Lassnig, M; The ATLAS collaboration; Molfetas, A; Beermann, T; Dimitrov, G; Canali, L; Zang, D

2012-01-01T23:59:59.000Z

488

Overview of Gridscale Rampable Intermittent Dispatchable Storage...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rampable Intermittent Dispatchable Storage (GRIDS) Program Presentation by Mark Johnson, Advanced Research Projects Agency - Energy, at the Flow Cells for Energy Storage...

489

Migrating enterprise storage applications to the cloud  

E-Print Network (OSTI)

2.1 Cloud Providers . . . . . . . . . . . .2.1.1 Cloud Storage . . . . . . . . .2.1.2 Cloud Computation . . . . . . 2.2 Enterprise Storage

Vrable, Michael Daniel

2011-01-01T23:59:59.000Z

490

Prediction of Novel Hydrogen Storage Reactions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Miwa Computational Physics Lab. Toyota Central R&D Labs., Inc. Theory Focus Session on Hydrogen Storage Materials, 18 MAY 2006 Prediction of Novel Hydrogen Storage Reactions 0...

491

Combinatorial Approach for Hydrogen Storage Materials (presentation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Combinatorial Approach for Hydrogen Storage Materials (presentation) Combinatorial Approach for Hydrogen Storage Materials (presentation) Presented at the U.S. Department of...

492

Agenda: Electricity Transmission, Storage and Distribution -...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electricity Transmission, Storage and Distribution - West Agenda: Electricity Transmission, Storage and Distribution - West A Public Meeting on the Quadrennial Energy Review,...

493

Sandia National Laboratories: Batteries & Energy Storage Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Radioactive Waste Prioritized Safeguards and Security Issues for extended Storage of Used Nuclear Fuel Research to Improve Transportation Energy Storage Fact Sheet Sandia's Battery...

494

Weekly Natural Gas Storage Report - EIA  

Gasoline and Diesel Fuel Update (EIA)

Form EIA-912, "Weekly Underground Natural Gas Storage Report." The dashed vertical lines indicate current and year-ago weekly periods. More Storage Data History 5-Year...

495

Storage Gas Water Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Gas Water Heaters Storage Gas Water Heaters The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance...

496

BNL Gas Storage Achievements, Research Capabilities, Interests...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Report for the DOE Metal Hydride Center of Excellence Recommended Best Practices for the Characterization of Storage Properties of Hydrogen Storage Materials...

497

Conductive lithium storage electrode  

DOE Patents (OSTI)

A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z, or (A.sub.1-aM''.sub.a).sub.xM'.sub.y(X.sub.2D.sub.7).sub.z. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001storage batteries.

Chiang, Yet-Ming; Chung, Sung-Yoon; Bloking, Jason T; Andersson, Anna M

2014-10-07T23:59:59.000Z

498

Coal Storage and Transportation  

Science Journals Connector (OSTI)

Abstract Coal preparation, storage, and transportation are essential to coal use. Preparation plants, located near to the mine, remove some inorganic minerals associated with raw coal. Coal is transported from the mines to the point of consumption, often an electric generating plant, by rail, barge and trucks. Railroads are the predominant form of coal transportation within a country. Global coal trade, movement by large ocean-going vessels, continues to increase. At the end use site, the coal is crushed, ground, and the moisture content reduced to the proper specifications for end use. Coal is stored at various points in the supply chain. Processed coal will weather and oxidize, changing its properties; it can self-ignite, unless precautions are taken. Technology in use today is similar to that used in previous decades. Performance improvements have come from improved software and instruments that deliver real-time data. These improve management of sub-processes in the coal supply chain and reduce costs along the supply chain.

J.M. Ekmann; P.H. Le

2014-01-01T23:59:59.000Z

499

Part II Energy Storage Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

II. II. Energy Storage Technology Overview * Instructor - Haresh Kamath, EPRI PEAC * Short term - Flywheels, Cranking Batteries, Electrochemical Capacitors, SMES * Long term - Compressed Air, Pumped Hydro storage, Stationary, Flow Batteries 2 Overview * Technology Types - Batteries, flywheels, electrochemical capacitors, SMES, compressed air, and pumped hydro * Theory of Operation - Brief description of the technologies and the differences between them * State-of-the-art - Past demonstrations, existing hurdles and performance targets for commercialization * Cost and cost projections: - Prototype cost vs. fully commercialized targets Technology Choice for Discharge Time and Power Rating (From ESA) 4 Maturity Levels for Energy Storage Technologies * Mature Technologies - Conventional pumped hydro

500

Carbon Capture and Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

SECARB's SECARB's Mississippi SalineTest Site: A Field Project Update Robert C. Trautz (rtrautz@epri.com) Electric Power Research Institute Senior Project Manager DOE Regional Carbon Sequestration Partnership Annual Review Meeting October 6-8, 2008 Pittsburgh, PA 2 1. Introduction 2. Well Drilling & Completion 3. Reservoir Characterization 4. CO 2 Injection Operations 5. Monitoring and Verification Outline 3 Key Organizations and Acknowledgments SOUTHERN STATES ENERGY BOARD Dr. Gerald (Jerry) R. Hill OTHER FIELD PROJECTS AND SUPPORTING ACTIVITIES * Advanced Resources * Alabama Geological Survey/ SCS * Gulf Coast Carbon Center (TXBEG) * EPRI * Virginia Tech University * Mississippi State University * Others Richard Esposito MISSISSIPPI POWER CO. Rick Berry Richard (Dick) Rhudy Robert (Rob) Trautz