National Library of Energy BETA

Sample records for aquifer reservoirs water-only

  1. EIA - Natural Gas Pipeline Network - Aquifer Storage Reservoir

    U.S. Energy Information Administration (EIA) Indexed Site

    Configuration Aquifer Storage Reservoir Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Aquifer Underground Natural Gas Storage Reservoir Configuration Aquifer Underground Natural Gas Well

  2. EIA - Natural Gas Pipeline Network - Aquifer Storage Reservoir...

    U.S. Energy Information Administration (EIA) Indexed Site

    Aquifer Storage Reservoir Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Aquifer Underground ...

  3. Determination of the original-gas-in-place and aquifer properties in a water-drive reservoir by optimization technique

    SciTech Connect (OSTI)

    Chen, T.L.; Lin, Z.S.; Chen, Y.L.

    1995-10-01

    The purpose of this study was to estimate the original-gas-in-place (OGIP) of a water-drive reservoir using optimization algorithm for Port Arthur field, Texas, US. The properties of the associate aquifer were also obtained. The good agreement, between the results from this study and those from simulation study, would be demonstrated in this paper. In this study, material balance equation for a gas reservoir and van Everdingen-Hurst model for an aquifer were solved simultaneously to calculate cumulative gas production. The result was then compared with cumulative gas production measured in the field that observed at each pressure. The following parameters were manually adjusted to obtain: OGIP, thickness of the aquifer, water encroachment angle, ratio of aquifer to reservoir radius, and aquifer`s permeability. The procedure was then applied with simplex technique, an optimization algorithm, to adjust parameters automatically. When the difference between cumulative gas production calculated and observed was minimal, the parameters used in the model would be the results obtained. A water-drive gas reservoir, ``C`` sand gas reservoir in Port Arthur field, which had produced for about 12 years, was analyzed successfully. The results showed that the OGIP of 60.6 BCF estimated in this study was favorably compared with 56.2 BCF obtained by a numerical simulator in other study. In addition, the aquifer properties that were unavailable from the conventional plotting method can be estimated from this study. The estimated aquifer properties from this study were compared favorably with the core data.

  4. Geochemical Impacts of Leaking CO2 from Subsurface Storage Reservoirs to Unconfined and Confined Aquifers

    SciTech Connect (OSTI)

    Qafoku, Nikolla; Brown, Christopher F.; Wang, Guohui; Sullivan, E. C.; Lawter, Amanda R.; Harvey, Omar R.; Bowden, Mark

    2013-04-15

    Experimental research work has been conducted and is undergoing at Pacific Northwest National Laboratory (PNNL) to address a variety of scientific issues related with the potential leaks of the carbon dioxide (CO2) gas from deep storage reservoirs. The main objectives of this work are as follows: • Develop a systematic understanding of how CO2 leakage is likely to influence pertinent geochemical processes (e.g., dissolution/precipitation, sorption/desorption and redox reactions) in the aquifer sediments. • Identify prevailing environmental conditions that would dictate one geochemical outcome over another. • Gather useful information to support site selection, risk assessment, policy-making, and public education efforts associated with geological carbon sequestration. In this report, we present results from experiments conducted at PNNL to address research issues related to the main objectives of this effort. A series of batch and column experiments and solid phase characterization studies (quantitative x-ray diffraction and wet chemical extractions with a concentrated acid) were conducted with representative rocks and sediments from an unconfined, oxidizing carbonate aquifer, i.e., Edwards aquifer in Texas, and a confined aquifer, i.e., the High Plains aquifer in Kansas. These materials were exposed to a CO2 gas stream simulating CO2 gas leaking scenarios, and changes in aqueous phase pH and chemical composition were measured in liquid and effluent samples collected at pre-determined experimental times. Additional research to be conducted during the current fiscal year will further validate these results and will address other important remaining issues. Results from these experimental efforts will provide valuable insights for the development of site-specific, generation III reduced order models. In addition, results will initially serve as input parameters during model calibration runs and, ultimately, will be used to test model predictive capability and

  5. Geochemical Impacts of Leaking CO2 from Subsurface Storage Reservoirs to an Unconfined Oxidizing Carbonate Aquifer

    SciTech Connect (OSTI)

    Wang, Guohui; Qafoku, Nikolla; Lawter, Amanda R.; Bowden, Mark E.; Harvey, Omar; Sullivan, E. C.; Brown, Christopher F.

    2015-07-15

    A series of batch and column experiments combined with solid phase characterization studies (i.e., quantitative x-ray diffraction and wet chemical extractions) were conducted to address a variety of scientific issues and evaluate the impacts of the potential leakage of carbon dioxide (CO2) from deep subsurface storage reservoirs. The main objective was to gain an understanding of how CO2 gas influences: 1) the aqueous phase pH; and 2) mobilization of major, minor, and trace elements from minerals present in an aquifer overlying potential CO2 sequestration subsurface repositories. Rocks and slightly weathered rocks representative of an unconfined, oxidizing carbonate aquifer within the continental US, i.e., the Edwards aquifer in Texas, were used in these studies. These materials were exposed to a CO2 gas stream or were leached with a CO2-saturated influent solution to simulate different CO2 gas leakage scenarios, and changes in aqueous phase pH and chemical composition were measured in the liquid samples collected at pre-determined experimental times (batch experiments) or continuously (column experiments). The results from the strong acid extraction tests confirmed that in addition to the usual elements present in most soils, rocks, and sediments, the Edward aquifer samples contain As, Cd, Pb, Cu, and occasionally Zn, which may potentially be mobilized from the solid to the aqueous phase during or after exposure to CO2. The results from the batch and column experiments confirmed the release of major chemical elements into the contacting aqueous phase (such as Ca, Mg, Ba, Sr, Si, Na, and K); the mobilization and possible rapid immobilization of minor elements (such as Fe, Al, and Mn), which are able to form highly reactive secondary phases; and sporadic mobilization of only low concentrations of trace elements (such as As, Cd, Pb, Cu, Zn, Mo, etc.). The results from this experimental research effort will help in developing a systematic understanding of how CO2

  6. Potential Impacts of Leakage from Black Rock Reservoir on the Hanford Site Unconfined Aquifer: Initial Hypothetical Simulations of Flow and Contaminant Transport

    SciTech Connect (OSTI)

    Freedman, Vicky L.

    2007-03-09

    Initial scoping calculations of the unconfined aquifer at the Hanford Site were carried out for the U.S. Bureau of Reclamation (USBR) to investigate the potential impacts on the Hanford unconfined aquifer that would result from leakage from the proposed Black Rock Reservoir to the west. Although impacts on groundwater flow and contaminant transport were quantified based on numerical simulation results, the investigation represented a qualitative assessment of the potential lateral recharge that could result in adverse effects on the aquifer. Because the magnitude of the potential leakage is unknown, hypothetical bounding calculations were performed. When a quantitative analysis of the magnitude of the potential recharge from Black Rock Reservoir is obtained, the hydrologic impacts analysis will be revisited. The analysis presented in this report represent initial bounding calculations. A maximum lateral recharge (i.e., upland flux) was determined in the first part of this study by executing steady-state flow simulations that raised the water table no higher than the elevation attained in the Central Plateau during the Hanford operational period. This metric was selected because it assumed a maximum remobilization of contaminants that existed under previous fully saturated conditions. Three steady-state flow fields were then used to analyze impacts to transient contaminant transport: a maximum recharge (27,000 acre-ft/yr), a no additional flux (365 acre-ft/yr), and an intermediate recharge case (16,000 acre-ft/yr). The transport behavior of four radionuclides was assessed for a 300 year simulation period with the three flow fields. The four radionuclides are current contaminants of concern (COCs) in the Central Plateau and include tritium, iodine-129, technetium-99, and uranium-238. Transient flow and transport simulations were used to establish hypothetical concentration distributions in the subsurface. Using the simulated concentration distributions in 2005 as

  7. Potential Impacts of Leakage from Black Rock Reservoir on the Hanford Site Unconfined Aquifer: Initial Hypothetical Simulations of Flow and Contaminant Transport

    SciTech Connect (OSTI)

    Freedman, Vicky L.

    2008-01-30

    Initial scoping calculations of the unconfined aquifer at the Hanford Site were carried out for the U.S. Bureau of Reclamation (USBR) to investigate the potential impacts on the Hanford unconfined aquifer that would result from leakage from the proposed Black Rock Reservoir to the west. Although impacts on groundwater flow and contaminant transport were quantified based on numerical simulation results, the investigation represented a qualitative assessment of the potential lateral recharge that could result in adverse effects on the aquifer. Because the magnitude of the potential leakage is unknown, hypothetical bounding calculations were performed. When a quantitative analysis of the magnitude of the potential recharge from Black Rock Reservoir is obtained, the hydrologic impacts analysis will be revisited. The analysis presented in this report represents initial bounding calculations. A maximum lateral recharge (i.e., upland flux) was determined in the first part of this study by executing steady-state flow simulations that raised the water table no higher than the elevation attained in the Central Plateau during the Hanford operational period. This metric was selected because it assumed a maximum remobilization of contaminants that existed under previous fully saturated conditions. Three steady-state flow fields were then used to analyze impacts to transient contaminant transport: a maximum recharge (27,000 acre-ft/yr), a no additional flux (365 acre-ft/yr), and an intermediate recharge case (16,000 acre-ft/yr). The transport behavior of four radionuclides was assessed for a 300 year simulation period with the three flow fields. The four radionuclides are tritium, iodine-129, technetium-99, and uranium-238. Transient flow and transport simulations were used to establish hypothetical concentration distributions in the subsurface. Using the simulated concentration distributions in 2005 as initial conditions for steady-state flow runs, simulations were executed to

  8. Modeling CO2 Sequestration in Saline Aquifer and Depleted Oil Reservoir To Evaluate Regional CO2 Sequestration Potential of Ozark Plateau Aquifer System, South-Central Kansas

    SciTech Connect (OSTI)

    Watney, W. Lynn; Rush, Jason; Raney, Jennifer

    2014-09-30

    1. Drilled, cored, and logged three wells to the basement and collecting more than 2,700 ft of conventional core; obtained 20 mi2 of multicomponent 3D seismic imaging and merged and reprocessed more than 125 mi2 of existing 3D seismic data for use in modeling CO2- EOR oil recovery and CO2 storage in five oil fields in southern Kansas. 2. Determined the technical feasibility of injecting and sequestering CO2 in a set of four depleted oil reservoirs in the Cutter, Pleasant Prairie South, Eubank, and Shuck fields in southwest Kansas; of concurrently recovering oil from those fields; and of quantifying the volumes of CO2 sequestered and oil recovered during the process. 3. Formed a consortium of six oil operating companies, five of which own and operate the four fields. The consortium became part of the Southwest Kansas CO2-EOR Initiative for the purpose of sharing data, knowledge, and interest in understanding the potential for CO2-EOR in Kansas. 4. Built a regional well database covering 30,000 mi2 and containing stratigraphic tops from ~90,000 wells; correlated 30 major stratigraphic horizons; digitized key wells, including wireline logs and sample logs; and analyzed more than 3,000 drill stem tests to establish that fluid levels in deep aquifers below the Permian evaporites are not connected to the surface and therefore pressures are not hydrostatic. Connectivity with the surface aquifers is lacking because shale aquitards and impermeable evaporite layers consist of both halite and anhydrite. 5. Developed extensive web applications and an interactive mapping system that do the following: a. Facilitate access to a wide array of data obtained in the study, including core descriptions and analyses, sample logs, digital (LAS) well logs, seismic data, gravity and magnetics maps, structural and stratigraphic maps, inferred fault traces, earthquakes, Class I and II disposal wells, and

  9. Characterization of Lignin Derived from Water-only and Dilute Acid Flowthrough Pretreatment of Poplar Wood at Elevated Temperatures

    SciTech Connect (OSTI)

    Zhang, Libing; Yan, Lishi; Wang, Zheming; Laskar, Dhrubojyoti D.; Swita, Marie S.; Cort, John R.; Yang, Bin

    2015-12-01

    Background: Flowthrough pretreatment of biomass has high potential to valorize lignin derivatives to high-value products, which is vital to enhance the economy of biorefinery plants. Comprehensive understanding of lignin behaviors and solubilization chemistry in aqueous pretreatment such as water-only and dilute acid flowthrough pretreatment is of fundamental importance to achieve the goal of providing flexible platform for lignin utilization. Results: In this study, the effects of flowthrough pretreatment conditions on lignin separation from poplar wood were reported as well as the characteristics of three sub-sets of lignin produced from the pretreatment, including residual lignin in pretreated solid residues (ReL), recovered insoluble lignin in pretreated liquid (RISL), and recovered soluble lignin in pretreatment liquid (RSL). Both the water-only and 0.05% (w/w) sulfuric acid pretreatments were performed at temperatures from 160 to 270°C on poplar wood in a flowthrough reactor system for 2-10 min. Results showed that water-only flowthrough pretreatment primarily removed syringyl (S units). Increased temperature and/or the addition of sulfuric acid enhanced the removal of guaiacyl (G units) compared to water-only pretreatments at lower temperatures, resulting in nearly complete removal of lignin from the biomass. Results also suggested that more RISL was recovered than ReL and RSL in both dilute acid and water-only flowthrough pretreatment at elevated temperatures. NMR spectra of the RISL revealed significant β-O-4 cleavage, α-β deoxygenation to form cinnamyl-like end groups, and slight β-5 repolymerization in both water-only and dilute acid flowthrough pretreatments. Conclusions: Elevated temperature and/or dilute acid greatly enhanced lignin removal to almost 100% by improving G unit removal besides S unit removal in flowthrough system. A new lignin chemistry transformation pathway was proposed and revealed the complexity of lignin structural change

  10. Characterization of lignin derived from water-only and dilute acid flowthrough pretreatment of poplar wood at elevated temperatures

    SciTech Connect (OSTI)

    Zhang, Libing; Yan, Lishi; Wang, Zheming; Laskar, Dhrubojyoti D.; Swita, Marie S.; Cort, John R.; Yang, Bin

    2015-12-01

    In this study, flowthrough pretreatment of biomass has high potential to valorize lignin derivatives to high-value products, which is vital to enhance the economy of biorefinery plants. Comprehensive understanding of lignin behaviors and solubilization chemistry in aqueous pretreatment such as water-only and dilute acid flowthrough pretreatment is of fundamental importance to achieve the goal of providing flexible platform for lignin utilization. In this study, the effects of flowthrough pretreatment conditions on lignin separation from poplar wood were reported as well as the characteristics of three sub-sets of lignin produced from the pretreatment, including residual lignin in pretreated solid residues (ReL), recovered insoluble lignin in pretreated liquid (RISL), and recovered soluble lignin in pretreatment liquid (RSL). Both the water-only and 0.05% (w/w) sulfuric acid pretreatments were performed at temperatures from 160 to 270°C on poplar wood in a flowthrough reactor system for 2-10 min. Results showed that water-only flowthrough pretreatment primarily removed syringyl (S units). Increased temperature and/or the addition of sulfuric acid enhanced the removal of guaiacyl (G units) compared to water-only pretreatments at lower temperatures, resulting in nearly complete removal of lignin from the biomass. Results also suggested that more RISL was recovered than ReL and RSL in both dilute acid and water-only flowthrough pretreatment at elevated temperatures. NMR spectra of the RISL revealed significant β-O-4 cleavage, α-β deoxygenation to form cinnamyl-like end groups, and slight β-5 repolymerization in both water-only and dilute acid flowthrough pretreatments. In conclusion, elevated temperature and/or dilute acid greatly enhanced lignin removal to almost 100% by improving G unit removal besides S unit removal in flowthrough system. A new lignin chemistry transformation pathway was proposed and revealed the complexity of lignin structural change during

  11. Characterization of lignin derived from water-only and dilute acid flowthrough pretreatment of poplar wood at elevated temperatures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Libing; Yan, Lishi; Wang, Zheming; Laskar, Dhrubojyoti D.; Swita, Marie S.; Cort, John R.; Yang, Bin

    2015-12-01

    In this study, flowthrough pretreatment of biomass has high potential to valorize lignin derivatives to high-value products, which is vital to enhance the economy of biorefinery plants. Comprehensive understanding of lignin behaviors and solubilization chemistry in aqueous pretreatment such as water-only and dilute acid flowthrough pretreatment is of fundamental importance to achieve the goal of providing flexible platform for lignin utilization. In this study, the effects of flowthrough pretreatment conditions on lignin separation from poplar wood were reported as well as the characteristics of three sub-sets of lignin produced from the pretreatment, including residual lignin in pretreated solid residues (ReL),more » recovered insoluble lignin in pretreated liquid (RISL), and recovered soluble lignin in pretreatment liquid (RSL). Both the water-only and 0.05% (w/w) sulfuric acid pretreatments were performed at temperatures from 160 to 270°C on poplar wood in a flowthrough reactor system for 2-10 min. Results showed that water-only flowthrough pretreatment primarily removed syringyl (S units). Increased temperature and/or the addition of sulfuric acid enhanced the removal of guaiacyl (G units) compared to water-only pretreatments at lower temperatures, resulting in nearly complete removal of lignin from the biomass. Results also suggested that more RISL was recovered than ReL and RSL in both dilute acid and water-only flowthrough pretreatment at elevated temperatures. NMR spectra of the RISL revealed significant β-O-4 cleavage, α-β deoxygenation to form cinnamyl-like end groups, and slight β-5 repolymerization in both water-only and dilute acid flowthrough pretreatments. In conclusion, elevated temperature and/or dilute acid greatly enhanced lignin removal to almost 100% by improving G unit removal besides S unit removal in flowthrough system. A new lignin chemistry transformation pathway was proposed and revealed the complexity of lignin structural change

  12. Recalcitrance and structural analysis by water-only flowthrough pretreatment of 13C enriched corn stover stem

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Foston, Marcus B.; Trajanob, Heather L.; Samuel, Reichel; Wyman, Charles E.; He, Jian; Ragauskas, Arthur J.

    2015-08-28

    Here, this study presents high temperature water-only continuous flowthrough pretreatment coupled with nuclear magnetic resonance (NMR) as a promising analytical tool to examine the plant cell wall, to understand its recalcitrance (i.e., cell wall resistance to deconstruction), and to probe the chemistry occurring during batch pretreatment of biomass. 13C-enriched corn stover stems were pretreated at 170 °C for 60 min with a hot-water flow rate of 20 mL/min to control fractionation of the cell wall. This approach helped elucidate the nature of plant cell wall chemical recalcitrance and biomass pretreatment chemistry by tracking cell wall fragmentation as a function ofmore » time. Fractions of the reactor effluent were collected in a time-resolved fashion and characterized by various NMR techniques to determine the degree and sequence of fragments released, as well as, the chemical composition, molecular structure, and relative molecular weight of those released fragments.« less

  13. Reservoir Claddings

    SciTech Connect (OSTI)

    2009-05-14

    This information sheet explains how to properly decouple reservoir claddings from water sensitive materials of the wall assembly.

  14. Groundwater in the Regional Aquifer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Groundwater in the Regional Aquifer Groundwater in the Regional Aquifer LANL maintains an ... August 1, 2013 Conceptual model of water movement and geology at Los Alamos National ...

  15. Water Influx, and Its Effect on Oil Recovery: Part 1. Aquifer Flow, SUPRI TR-103

    SciTech Connect (OSTI)

    Brigham, William E.

    1999-08-09

    Natural water encroachment is commonly seen in many oil and gas reservoirs. In fact, overall, there is more water than oil produced from oil reservoirs worldwide. Thus it is clear that an understanding of reservoir/aquifer interaction can be an important aspect of reservoir management to optimize recovery of hydrocarbons. Although the mathematics of these processes are difficult, they are often amenable to analytical solution and diagnosis. Thus this will be the ultimate goal of a series of reports on this subject. This first report deals only with aquifer behavior, so it does not address these important reservoir/aquifer issues. However, it is an important prelude to them, for the insight gained gives important clues on how to address reservoir/aquifer problems. In general when looking at aquifer flow, there are two convenient inner boundary conditions that can be considered; constant pressure or constant flow rate. There are three outer boundary conditions that are convenient to consider; infinite, closed and constant pressure. And there are three geometries that can be solved reasonably easily; linear, radial and spherical. Thus there are a total of eighteen different solutions that can be analyzed.

  16. SMALL, GEOLOGICALLY COMPLEX RESERVOIRS CAN BENEFIT FROM RESERVOIR SIMULATION

    SciTech Connect (OSTI)

    Richard E. Bennett

    2002-06-24

    on, and an expansion of the scope of the reservoir simulation and modeling effort was initiated, using DOE's BOAST98 (a visual, dynamic, interactive update of BOAST3), 3D, black oil reservoir simulation package as the basis for developing the reservoir model. Reservoir characterization, modeling, and reservoir simulation resulted in a significant change in the depletion strategy. Information from the reservoir characterization and modeling effort indicate that in-fill drilling and relying on natural water influx from the aquifer could increase remaining reserves by 125,000 barrels of oil per well, and that up to 10 infill wells could be drilled in the field. Through this scenario, field production could be increased two to three times over the current 65 bopd. Based on the results of the study, permits have been applied for to drill a directional infill well to encounter the productive zone at a high angle in order to maximize the amount of pay and reservoirs encountered.

  17. THE SNAKE RIVER PLAIN AQUIFER THE SNAKE RIVER PLAIN AQUIFER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aquifer THE INL & THE SNAKE RIVER PLAIN AQUIFER THE SNAKE RIVER PLAIN AQUIFER underneath the Idaho National Laboratory is one of the most productive groundwater resources in the U.S. Each year about 2 million acre-feet of water is drawn from the aquifer. Approximately 95 percent of the water withdrawn from the aquifer is used for irrigation, 3 per- cent for domestic water, and 2 percent for industrial purposes. The aquifer is the primary water source for more than 280,000 people in

  18. Analysis of Sweet Lake geopressured-geothermal aquifer

    SciTech Connect (OSTI)

    Andrade, M.; Rago, F.M.; Ohkuma, H.; Sepehrnoori, K.; Peters, E.; Dorfman, M.

    1983-01-01

    The Sweet Lake geopressured-geothermal aquifer, located southeast of Lake Charles, Louisiana, is an aquifer modeled by a two-dimensional geopressured-geothermal simulator. This aquifer is a sandstone within the Frio formation at depths between 15,000 to 15,640 ft with a net porous thickness of 250 ft, a calculated in-situ permeability (from drawdown data) of 17 md, an estimated porosity of 24 percent, a uniaxial compaction coefficient of 4.5 x 10/sup -7/ psi/sup -1/ and a solution gas-water ratio of 11 SCF/STB all at the initial reservoir pressure of 12,060 psi. These parameters are typically pressure sensitive in geopressured-geothermal aquifers and are critically important to aquifer performance. Several simulation experiments are conducted which investigate the effects of varying initial values for these parameters with the experimentally determined values as means. The simulations give both optimistic and pessimistic expectations for aquifer performance. The expected life of the geopressured-geothermal well is reported for each simulation.

  19. Geochemical detection of carbon dioxide in dilute aquifers

    SciTech Connect (OSTI)

    Carroll, S; Hao, Y; Aines, R

    2009-03-27

    Carbon storage in deep saline reservoirs has the potential to lower the amount of CO{sub 2} emitted to the atmosphere and to mitigate global warming. Leakage back to the atmosphere through abandoned wells and along faults would reduce the efficiency of carbon storage, possibly leading to health and ecological hazards at the ground surface, and possibly impacting water quality of near-surface dilute aquifers. We use static equilibrium and reactive transport simulations to test the hypothesis that perturbations in water chemistry associated with a CO{sub 2} gas leak into dilute groundwater are important measures for the potential release of CO{sub 2} to the atmosphere. Simulation parameters are constrained by groundwater chemistry, flow, and lithology from the High Plains aquifer. The High Plains aquifer is used to represent a typical sedimentary aquifer overlying a deep CO{sub 2} storage reservoir. Specifically, we address the relationships between CO{sub 2} flux, groundwater flow, detection time and distance. The CO{sub 2} flux ranges from 10{sup 3} to 2 x 10{sup 6} t/yr (0.63 to 1250 t/m{sup 2}/yr) to assess chemical perturbations resulting from relatively small leaks that may compromise long-term storage, water quality, and surface ecology, and larger leaks characteristic of short-term well failure.

  20. Analysis of Sweet Lake geopressured-geothermal aquifer

    SciTech Connect (OSTI)

    Andrade, M.; Rago, F.; Ohkuma, H.; Sepehrnoori, K.; Peters, E.; Dorfman, M.

    1982-01-01

    The Sweet Lake geopressured-geothermal aquifer, located southeast of Lake Charles, Louisiana, is modeled by a two-dimensional geopressured-geothermal simulator. This aquifer is a sandstone within the Frio formation at depths between 15,000 to 15,640 ft with a net porous thickness of 250 ft, a calculated in-situ permeability (from drawdown data) of 17 md, an estimated porosity of 24%, a uniaxial compaction coefficient of 4.5 x 10/sup -7/ psi/sup -1/ and a solution gas-water ratio of 11 SCF/STB all at the initial reservoir pressure of 12,060 psi. These parameters are typically pressure sensitive in geopressured-geothermal aquifers and are critically important to aquifer performance. Several simulation experiments are conducted which investigate the effects of varying initial values for these parameters with the experimentally determined values as means. The simulations give both optimistic and pessimistic expectations for aquifer performance. The expected life of the geopressured-geothermal well is reported for each simulation.

  1. Reservoir characterization of the Lower B sands VLC 100/949 Reservoirs, Block III, Lake Maracaibo

    SciTech Connect (OSTI)

    Gonzalez, G.; Coll, C.; Mora, J.L.; Meza, E.

    1996-08-01

    The Lower B Misoa Formation of Middle Eocene age is characterized by massive sand bodies. These sands were successfully tested in the northern part of Block III in Lake Maracaibo in 1956. Subsequent drilling during the next 27 years has failed to locate any productive pay zones. Only during the past 8 years, new seismic and well data have delineated a number of minor oil reservoirs resulting in extensive production from Misoa Lower B sands. The oil production came primarily from small structural traps located on the hanging walls of normal listric faults. Fault diagnosis and locations were more accurately mapped with the availability of 3-D seismic data. Consequently VLC-100 and VLC-949 reservoirs are now considered to be part of the same trap instead of being separated. A careful review of the fluid distribution and material balance calculations has confirmed that the wells from these reservoirs have, in fact, been producing from the same accumulation thereby validating the new geological model. The new model has defined new opportunities of oil exploitation. Firstly, it has led to the drilling of 4 new wells and increased production by 4500 STB/D. Secondly, it has indicated additional recovery opportunities in the form of drilling horizontal wells in the updip area. Finally, the new model indicates the existence of an aquifer of much lower strength than was previously thought. This has caused a revision in our reservoir management strategy, and we now recommend water injection to supplement the aquifer support and enhance oil recovery.

  2. Full Reviews: Reservoir Characterization

    Broader source: Energy.gov [DOE]

    Below are the project presentations and respective peer reviewer comments for Reservoir Characterization.

  3. Fractured shale reservoirs: Towards a realistic model

    SciTech Connect (OSTI)

    Hamilton-Smith, T.

    1996-09-01

    Fractured shale reservoirs are fundamentally unconventional, which is to say that their behavior is qualitatively different from reservoirs characterized by intergranular pore space. Attempts to analyze fractured shale reservoirs are essentially misleading. Reliance on such models can have only negative results for fractured shale oil and gas exploration and development. A realistic model of fractured shale reservoirs begins with the history of the shale as a hydrocarbon source rock. Minimum levels of both kerogen concentration and thermal maturity are required for effective hydrocarbon generation. Hydrocarbon generation results in overpressuring of the shale. At some critical level of repressuring, the shale fractures in the ambient stress field. This primary natural fracture system is fundamental to the future behavior of the fractured shale gas reservoir. The fractures facilitate primary migration of oil and gas out of the shale and into the basin. In this process, all connate water is expelled, leaving the fractured shale oil-wet and saturated with oil and gas. What fluids are eventually produced from the fractured shale depends on the consequent structural and geochemical history. As long as the shale remains hot, oil production may be obtained. (e.g. Bakken Shale, Green River Shale). If the shale is significantly cooled, mainly gas will be produced (e.g. Antrim Shale, Ohio Shale, New Albany Shale). Where secondary natural fracture systems are developed and connect the shale to aquifers or to surface recharge, the fractured shale will also produce water (e.g. Antrim Shale, Indiana New Albany Shale).

  4. Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface groundwater: Background, base cases, shallow reservoirs, short-term gas, and water transport

    SciTech Connect (OSTI)

    Reagan, Matthew T.; Moridis, George J.; Keen, Noel D.; Johnson, Jeffrey N.

    2015-04-18

    Hydrocarbon production from unconventional resources and the use of reservoir stimulation techniques, such as hydraulic fracturing, has grown explosively over the last decade. However, concerns have arisen that reservoir stimulation creates significant environmental threats through the creation of permeable pathways connecting the stimulated reservoir with shallower freshwater aquifers, thus resulting in the contamination of potable groundwater by escaping hydrocarbons or other reservoir fluids. This study investigates, by numerical simulation, gas and water transport between a shallow tight-gas reservoir and a shallower overlying freshwater aquifer following hydraulic fracturing operations, if such a connecting pathway has been created. We focus on two general failure scenarios: (1) communication between the reservoir and aquifer via a connecting fracture or fault and (2) communication via a deteriorated, preexisting nearby well. We conclude that the key factors driving short-term transport of gas include high permeability for the connecting pathway and the overall volume of the connecting feature. Production from the reservoir is likely to mitigate release through reduction of available free gas and lowering of reservoir pressure, and not producing may increase the potential for release. We also find that hydrostatic tight-gas reservoirs are unlikely to act as a continuing source of migrating gas, as gas contained within the newly formed hydraulic fracture is the primary source for potential contamination. Such incidents of gas escape are likely to be limited in duration and scope for hydrostatic reservoirs. Reliable field and laboratory data must be acquired to constrain the factors and determine the likelihood of these outcomes.

  5. Thermophysical behavior of St. Peter sandstone: application to compressed air energy storage in an aquifer

    SciTech Connect (OSTI)

    Erikson, R.L.

    1983-12-01

    The long-term stability of a sandstone reservoir is of primary importance to the success of compressed air energy storage (CAES) in aquifers. The purpose of this study was to: develop experimental techniques for the operation of the CAES Porous Media Flow Loop (PMFL), an apparatus designed to study the stability of porous media in subsurface geologic environments, conduct experiments in the PMFL designed to determine the effects of temperature, stress, and humidity on the stability of candidate CAES reservoir materials, provide support for the CAES field demonstration project in Pittsfield, Illinois, by characterizing the thermophysical stability of Pittsfield reservoir sandstone under simulated field conditions.

  6. Status of Norris Reservoir

    SciTech Connect (OSTI)

    Not Available

    1990-09-01

    This is one in a series of reports prepared by the Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overview of Norris Reservoir summarizes reservoir and watershed characteristics, reservoir uses, conditions that impair reservoir uses, water quality and aquatic biological conditions, and activities of reservoir management agencies. This information was extracted from the most up-to-date publications and data available, and from interviews with water resource professionals in various federal, state, and local agencies, and in public and private water supply and wastewater treatment facilities. 14 refs., 3 figs.

  7. Integrated geologic and engineering reservoir characterization of the Hutton Sandstone, Jackson region, Australia

    SciTech Connect (OSTI)

    Hamilton, D.S.; Holtz, M.H.; Yeh, J.

    1996-08-01

    An integrated geologic and engineering reservoir characterization study of the Hutton Sandstone was completed for the Jackson region, Eromanga Basin, Australia. Our approach involves four principal steps: (1) determine reservoir architecture within a high-resolution sequence stratigraphic framework, (2) investigate trends in reservoir fluid flow, (3) integrate fluid flow trends with reservoir architecture to identify fundamental reservoir heterogeneities, and (4) identify opportunities for reserve growth. Contrary to the existing perception, the Hutton Sandstone, a continental-scale bed-load fluvial system, does not behave as a large, homogeneous tank in which pistonlike displacement of produced oil occurs unimpeded by vertical migration of the aquifer. The sequence stratigraphic analysis identified numerous thin but widespread shale units, deposited during lacustrine flooding events that periodically interrupted episodes of coarse clastic Hutton deposition. These shales represent chronostratigraphically significant surfaces. More importantly, the trends established in reservoir fluid flow from monitoring aquifer encroachment, production response to water shut-off workovers, and differential depletion in Repeat Formation Tests indicate that these shale units act as efficient barriers to vertical fluid flow. Erosion of the upper part of the Hutton reservoir by the younger Birkhead mixed-load fluvial system caused further stratigraphic complexity and introduced additional barriers to vertical and lateral migration of mobile oil and aquifer encroachment. This integrated characterization targeted strategic infill and step-out drilling and recompletion candidates.

  8. Low-cost integrated teamwork and seismic monitoring improved reservoir management of Norwegian gas reservoir with active water drive

    SciTech Connect (OSTI)

    Grinde, P.; Blanche, J.P.; Schnapper, D.B.

    1994-12-31

    This paper shows how new techniques, using integrated seismic and reservoir modelling, have shown there is no need to drill two previously proposed additional need to drill two previously proposed additional producers on the Heimdal gas field. Older simulations had shown this to be necessary in order to recover locally trapped gas. The study emphasizes the necessity of close team work to obtain the detailed reservoir description needed for such a study. A multidisciplinary team of geologists, geophysicists and reservoir specialists performed this study to reappraise the Heimdal Field. Using seismic attributes from 3D (mainly 2D amplitude versus offset AVO) a detailed structural and seismic stratigraphic interpretation provided the geometrical basis for the field model. A heterogenetic approach (identifying potential flow barriers) to detailed geology was then applied using regional experience and detailed field data including the production characteristics. The resulting reservoir model also incorporated offset fields on common regional aquifers, to properly monitor and predict the dynamic pressure behavior and aquifer energy in this series of connecting, Paleocene, turbiditic sands. Two repetitive seismic campaigns have been acquired since the pre-production 3D seismic survey. Mapping of the water encroachment was accomplished using advanced interpretation techniques of 2D AVO and inversion. The results have been integrated into the dynamic matching process in the reservoir simulation.

  9. Status of Cherokee Reservoir

    SciTech Connect (OSTI)

    Not Available

    1990-08-01

    This is the first in a series of reports prepared by Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overviews of Cherokee Reservoir summarizes reservoir and watershed characteristics, reservoir uses and use impairments, water quality and aquatic biological conditions, and activities of reservoir management agencies. This information was extracted from the most current reports, publications, and data available, and interviews with water resource professionals in various Federal, state, and local agencies and in public and private water supply and wastewater treatment facilities. 11 refs., 4 figs., 1 tab.

  10. Status of Wheeler Reservoir

    SciTech Connect (OSTI)

    Not Available

    1990-09-01

    This is one in a series of status reports prepared by the Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overview of Wheeler Reservoir summarizes reservoir purposes and operation, reservoir and watershed characteristics, reservoir uses and use impairments, and water quality and aquatic biological conditions. The information presented here is from the most recent reports, publications, and original data available. If no recent data were available, historical data were summarized. If data were completely lacking, environmental professionals with special knowledge of the resource were interviewed. 12 refs., 2 figs.

  11. Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Buscheck, Thomas A.

    2012-01-01

    The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the producers with the need to manage reservoir overpressure to reduce the risks associated with overpressure, such as induced seismicity and CO2 leakage to overlying aquifers. This submittal contains input and output files of the reservoir model analyses. A reservoir-model "index-html" file was sent in a previous submittal to organize the reservoir-model input and output files according to sections of the FY1 Final Report to which they pertain. The recipient should save the file: Reservoir-models-inputs-outputs-index.html in the same directory that the files: Section2.1.*.tar.gz files are saved in.

  12. Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Buscheck, Thomas A.

    2000-01-01

    The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the producers with the need to manage reservoir overpressure to reduce the risks associated with overpressure, such as induced seismicity and CO2 leakage to overlying aquifers. This submittal contains input and output files of the reservoir model analyses. A reservoir-model "index-html" file was sent in a previous submittal to organize the reservoir-model input and output files according to sections of the FY1 Final Report to which they pertain. The recipient should save the file: Reservoir-models-inputs-outputs-index.html in the same directory that the files: Section2.1.*.tar.gz files are saved in.

  13. Integrated Geothermal-CO2 Storage Reservoirs: FY1 Final Report

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Buscheck, Thomas A.

    The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the producers with the need to manage reservoir overpressure to reduce the risks associated with overpressure, such as induced seismicity and CO2 leakage to overlying aquifers. This submittal contains input and output files of the reservoir model analyses. A reservoir-model "index-html" file was sent in a previous submittal to organize the reservoir-model input and output files according to sections of the FY1 Final Report to which they pertain. The recipient should save the file: Reservoir-models-inputs-outputs-index.html in the same directory that the files: Section2.1.*.tar.gz files are saved in.

  14. Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Buscheck, Thomas A.

    The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the producers with the need to manage reservoir overpressure to reduce the risks associated with overpressure, such as induced seismicity and CO2 leakage to overlying aquifers. This submittal contains input and output files of the reservoir model analyses. A reservoir-model "index-html" file was sent in a previous submittal to organize the reservoir-model input and output files according to sections of the FY1 Final Report to which they pertain. The recipient should save the file: Reservoir-models-inputs-outputs-index.html in the same directory that the files: Section2.1.*.tar.gz files are saved in.

  15. Integrated Geothermal-CO2 Storage Reservoirs: FY1 Final Report

    SciTech Connect (OSTI)

    Buscheck, Thomas A.

    2012-01-01

    The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the producers with the need to manage reservoir overpressure to reduce the risks associated with overpressure, such as induced seismicity and CO2 leakage to overlying aquifers. This submittal contains input and output files of the reservoir model analyses. A reservoir-model "index-html" file was sent in a previous submittal to organize the reservoir-model input and output files according to sections of the FY1 Final Report to which they pertain. The recipient should save the file: Reservoir-models-inputs-outputs-index.html in the same directory that the files: Section2.1.*.tar.gz files are saved in.

  16. An integrated approach to reservoir engineering at Pleasant Bayou Geopressured-Geothermal reservoir

    SciTech Connect (OSTI)

    Shook, G.M.

    1992-12-01

    A numerical model has been developed for the Pleasant Bayou Geothermal-Geopressured reservoir. This reservoir description is the result of integration of a variety of data, including geological and geophysical interpretations, pressure transient test analyses, and well operations. Transient test analyses suggested several enhancements to the geologic description provided by University of Texas Bureau of Economic Geology (BEG), including the presence of an internal fault not previously identified. The transient tests also suggested water influx from an adjacent aquifer during the long-term testing of Pleasant Bayou; comparisons between transient test analyses and the reservoir description from BEG suggests that this fault exhibits pressure-dependent behavior. Below some pressure difference across the fault, it remains a no-flow barrier; above this threshold pressure drop the barrier fails, and fluid moves across the fault. A history match exercise is presented, using the hypothesized {open_quotes}leaky fault.{close_quotes} Successful match of 4 years of production rates and estimates of average reservoir pressure supports the reservoir description developed herein. Sensitivity studies indicate that the degree of communication between the perforated interval and the upper and lower sands in the reservoir (termed {open_quotes}distal volume{close_quotes} by BEG) impact simulation results very little, whereas results are quite sensitive to storage and transport properties of this distal volume. The prediction phase of the study indicates that Pleasant Bayou is capable of producing 20,000 STB/d through 1997, with the final bottomhole pressure approximately 1600 psi above abandonment pressure.

  17. Blackfoot Reservoir Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean Capacity: Click "Edit With...

  18. Blackfoot Reservoir Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    GEA Development Phase: Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean...

  19. Relationship of regional water quality to aquifer thermal energy storage

    SciTech Connect (OSTI)

    Allen, R.D.

    1983-11-01

    Ground-water quality and associated geologic characteristics may affect the feasibility of aquifer thermal energy storage (ATES) system development in any hydrologic region. This study sought to determine the relationship between ground-water quality parameters and the regional potential for ATES system development. Information was collected from available literature to identify chemical and physical mechanisms that could adversely affect an ATES system. Appropriate beneficiation techniques to counter these potential geochemical and lithologic problems were also identified through the literature search. Regional hydrology summaries and other sources were used in reviewing aquifers of 19 drainage regions in the US to determine generic geochemical characteristics for analysis. Numerical modeling techniques were used to perform geochemical analyses of water quality from 67 selected aquifers. Candidate water resources regions were then identified for exploration and development of ATES. This study identified six principal mechanisms by which ATES reservoir permeability may be impaired: (1) particulate plugging, (2) chemical precipitation, (3) liquid-solid reactions, (4) formation disaggregation, (5) oxidation reactions, and (6) biological activity. Specific proven countermeasures to reduce or eliminate these effects were found. Of the hydrologic regions reviewed, 10 were identified as having the characteristics necessary for ATES development: (1) Mid-Atlantic, (2) South-Atlantic Gulf, (3) Ohio, (4) Upper Mississippi, (5) Lower Mississippi, (6) Souris-Red-Rainy, (7) Missouri Basin, (8) Arkansas-White-Red, (9) Texas-Gulf, and (10) California.

  20. Groundwater in the Regional Aquifer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Groundwater in the Regional Aquifer Groundwater in the Regional Aquifer LANL maintains an extensive groundwater monitoring and surveillance program through sampling. August 1, 2013 Conceptual model of water movement and geology at Los Alamos National Laboratory Conceptual model of water movement and geology at Los Alamos National Laboratory RELATED IMAGES http://farm4.staticflickr.com/3749/9827580556_473a91fd78_t.jpg Enlarge http://farm3.staticflickr.com/2856/9804364405_b25f74cbb2_t.jpg En

  1. Evaluating the impact of aquifer layer properties on geomechanical response during CO2 geological sequestration

    SciTech Connect (OSTI)

    Bao, Jie; Xu, Zhijie; Lin, Guang; Fang, Yilin

    2013-04-01

    Numerical models play an essential role in understanding the facts of carbon dioxide (CO2) geological sequestration in the life cycle of a storage reservoir. We present a series of test cases that reflect a broad and realistic range of aquifer reservoir properties to systematically evaluate and compare the impacts on the geomechanical response to CO2 injection. In this study, a coupled hydro-mechanical model was introduced to simulate the sequestration process, and a quasi-Monte Carlo sampling method was introduced to efficiently sample the value of aquifer properties and geometry parameters. Aquifer permeability was found to be of significant importance to the geomechanical response to the injection. To study the influence of uncertainty of the permeability distribution in the aquifer, an additional series of tests is presented, based on a default permeability distribution site sample with various distribution deviations generated by the Monte Carlo sampling method. The results of the test series show that different permeability distributions significantly affect the displacement and possible failure zone.

  2. Reservoir Temperature Estimator

    Energy Science and Technology Software Center (OSTI)

    2014-12-08

    The Reservoir Temperature Estimator (RTEst) is a program that can be used to estimate deep geothermal reservoir temperature and chemical parameters such as CO2 fugacity based on the water chemistry of shallower, cooler reservoir fluids. This code uses the plugin features provided in The Geochemist’s Workbench (Bethke and Yeakel, 2011) and interfaces with the model-independent parameter estimation code Pest (Doherty, 2005) to provide for optimization of the estimated parameters based on the minimization of themore » weighted sum of squares of a set of saturation indexes from a user-provided mineral assemblage.« less

  3. Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface groundwater: Background, base cases, shallow reservoirs, short-term gas, and water transport

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Reagan, Matthew T.; Moridis, George J.; Keen, Noel D.; Johnson, Jeffrey N.

    2015-04-18

    Hydrocarbon production from unconventional resources and the use of reservoir stimulation techniques, such as hydraulic fracturing, has grown explosively over the last decade. However, concerns have arisen that reservoir stimulation creates significant environmental threats through the creation of permeable pathways connecting the stimulated reservoir with shallower freshwater aquifers, thus resulting in the contamination of potable groundwater by escaping hydrocarbons or other reservoir fluids. This study investigates, by numerical simulation, gas and water transport between a shallow tight-gas reservoir and a shallower overlying freshwater aquifer following hydraulic fracturing operations, if such a connecting pathway has been created. We focus on twomore » general failure scenarios: (1) communication between the reservoir and aquifer via a connecting fracture or fault and (2) communication via a deteriorated, preexisting nearby well. We conclude that the key factors driving short-term transport of gas include high permeability for the connecting pathway and the overall volume of the connecting feature. Production from the reservoir is likely to mitigate release through reduction of available free gas and lowering of reservoir pressure, and not producing may increase the potential for release. We also find that hydrostatic tight-gas reservoirs are unlikely to act as a continuing source of migrating gas, as gas contained within the newly formed hydraulic fracture is the primary source for potential contamination. Such incidents of gas escape are likely to be limited in duration and scope for hydrostatic reservoirs. Reliable field and laboratory data must be acquired to constrain the factors and determine the likelihood of these outcomes.« less

  4. Seismicity and Reservoir Fracture Characterization

    Broader source: Energy.gov [DOE]

    Below are the project presentations and respective peer review results for Seismicity and Reservoir Fracture Characterization.

  5. How to revitalize a mature reservoir: New development stategy-an integrated study in petroleum engineering

    SciTech Connect (OSTI)

    Rondon, L.; Coll, C.; Cordova, P.; Gamero, H.

    1996-08-01

    The results from a 3-D, 3-Phase numerical simulation model of Lower Lagunillas reservoir in Block IV Lake Maracaibo indicate the possibility of additional recovery from this mature field by drilling infill horizontal wells. The simulation model was the final outcome of an integrated work effort by a team of specialists. The field has produced approximately 920 MMSTB or 43% of OOIP to date and the remaining reserves are estimated to be 270 MMSTB. The reservoir pressure has declined from 4200 psi to 1400 psi, well below the bubble point pressure of 4000 psi. The objectives of an integrated reservoir study were to understand the reservoir heterogeneity and dynamics, evaluate the efficiency of the gas injection started in 1966 and the strength of the active aquifer as pressure support mechanisms. The new model shows the presence of layers with bypassed oil and higher pressures between layers that show greater pressure depletion and high GOR. This situation demonstrates the need to formulate a new development strategy for efficiently recovering the remaining reserves. The study indicates that the drilling of horizontal wells or infill deviated wells in some of these layers offers the best solution for maximizing recovery from this reservoir taking full advantage of the reservoir heterogeneity, aquifer support and secondary gas cap to optimize well locations.

  6. Key factors for determining groundwater impacts due to leakage from geologic carbon sequestration reservoirs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Carroll, Susan A.; Keating, Elizabeth; Mansoor, Kayyum; Dai, Zhenxue; Sun, Yunwei; Trainor-Guitton, Whitney; Brown, Chris; Bacon, Diana

    2014-09-07

    The National Risk Assessment Partnership (NRAP) is developing a science-based toolset for the analysis of potential impacts to groundwater chemistry from CO2 injection (www.netldoe.gov/nrap). The toolset adopts a stochastic approach in which predictions address uncertainties in shallow groundwater and leakage scenarios. It is derived from detailed physics and chemistry simulation results that are used to train more computationally efficient models, referred to here as reduced-order models (ROMs), for each component system. In particular, these tools can be used to help regulators and operators understand the expected sizes and longevity of plumes in pH, TDS, and dissolved metals that could resultmore » from a leakage of brine and/or CO2 from a storage reservoir into aquifers. This information can inform, for example, decisions on monitoring strategies that are both effective and efficient. We have used this approach to develop predictive reduced-order models for two common types of reservoirs, but the approach could be used to develop a model for a specific aquifer or other common types of aquifers. In this paper we describe potential impacts to groundwater quality due to CO2 and brine leakage, discuss an approach to calculate thresholds under which no impact to groundwater occurs, describe the time scale for impact on groundwater, and discuss the probability of detecting a groundwater plume should leakage occur. To facilitate this, multi-phase flow and reactive transport simulations and emulations were developed for two classes of aquifers, considering uncertainty in leakage source terms and aquifer hydrogeology. We targeted an unconfined fractured carbonate aquifer based on the Edwards aquifer in Texas and a confined alluvium aquifer based on the High Plains Aquifer in Kansas, which share characteristics typical of many drinking water aquifers in the United States. The hypothetical leakage scenarios centered on the notion that wellbores are the most likely

  7. Key factors for determining groundwater impacts due to leakage from geologic carbon sequestration reservoirs

    SciTech Connect (OSTI)

    Carroll, Susan A.; Keating, Elizabeth; Mansoor, Kayyum; Dai, Zhenxue; Sun, Yunwei; Trainor-Guitton, Whitney; Brown, Chris; Bacon, Diana

    2014-09-07

    The National Risk Assessment Partnership (NRAP) is developing a science-based toolset for the analysis of potential impacts to groundwater chemistry from CO2 injection (www.netldoe.gov/nrap). The toolset adopts a stochastic approach in which predictions address uncertainties in shallow groundwater and leakage scenarios. It is derived from detailed physics and chemistry simulation results that are used to train more computationally efficient models, referred to here as reduced-order models (ROMs), for each component system. In particular, these tools can be used to help regulators and operators understand the expected sizes and longevity of plumes in pH, TDS, and dissolved metals that could result from a leakage of brine and/or CO2 from a storage reservoir into aquifers. This information can inform, for example, decisions on monitoring strategies that are both effective and efficient. We have used this approach to develop predictive reduced-order models for two common types of reservoirs, but the approach could be used to develop a model for a specific aquifer or other common types of aquifers. In this paper we describe potential impacts to groundwater quality due to CO2 and brine leakage, discuss an approach to calculate thresholds under which no impact to groundwater occurs, describe the time scale for impact on groundwater, and discuss the probability of detecting a groundwater plume should leakage occur. To facilitate this, multi-phase flow and reactive transport simulations and emulations were developed for two classes of aquifers, considering uncertainty in leakage source terms and aquifer hydrogeology. We targeted an unconfined fractured carbonate aquifer based on the Edwards aquifer in Texas and a confined alluvium aquifer based on the High Plains Aquifer in Kansas, which share characteristics typical of many drinking water aquifers in the United States. The hypothetical leakage scenarios centered on the notion that wellbores

  8. An evaluation of aquifer intercommunication between the unconfined and Rattlesnake Ridge aquifers on the Hanford Site

    SciTech Connect (OSTI)

    Jensen, E.J.

    1987-10-01

    During 1986, Pacific Northwest Laboratory conducted a study of a portion of the Rattlesnake Ridge aquifer (confined aquifer) that lies beneath the B Pond - Gable Mountain Pond area of the Hanford Site. The purpose was to determine the extent of intercommunication between the unconfined aquifer and the uppermost regionally extensive confined aquifer, referred to as the Rattlesnake Ridge aquifer. Hydraulic head data and chemical data were collected from the ground water in the study area during December 1986. The hydraulic head data were used to determine the effects caused by water discharged to the ground from B Pond on both the water table of the unconfined aquifer and the potentiometric surface of the confined aquifer. The chemical data were collected to determine the extent of chemical constituents migrating from the unconfined aquifer to the confined aquifer. Analysis of chemical constituents in the Rattlesnake Ridge aquifer demonstrated that communication between the unconfined and confined aquifers had occurred. However, the levels of contaminants found in the Rattlesnake Ridge aquifer during this study were below the DOE Derived Concentration Guides.

  9. Reinjection into geothermal reservoirs

    SciTech Connect (OSTI)

    Bodvarsson, G.S.; Stefansson, V.

    1987-08-01

    Reinjection of geothermal wastewater is practiced as a means of disposal and for reservoir pressure support. Various aspects of reinjection are discussed, both in terms of theoretical studies as well as specific field examples. The discussion focuses on the major effects of reinjection, including pressure maintenance and chemical and thermal effects. (ACR)

  10. Evaluating Impacts of CO2 Gas Intrusion Into a Confined Sandstone aquifer: Experimental Results

    SciTech Connect (OSTI)

    Qafoku, Nikolla; Lawter, Amanda R.; Shao, Hongbo; Wang, Guohui; Brown, Christopher F.

    2014-12-31

    Deep subsurface storage and sequestration of CO2 has been identified as a potential mitigation technique for rising atmospheric CO2 concentrations. Sequestered CO2 represents a potential risk to overlying aquifers if the CO2 leaks from the deep storage reservoir. Experimental and modeling work is required to evaluate potential risks to groundwater quality and develop a systematic understanding of how CO2 leakage may cause important changes in aquifer chemistry and mineralogy by promoting dissolution/precipitation, adsorption/desorption, and redox reactions. Sediments from the High Plains aquifer in Kansas, United States, were used in this investigation, which is part of the National Risk Assessment Partnership Program sponsored by the US Department of Energy. This aquifer was selected to be representative of consolidated sand and gravel/sandstone aquifers overlying potential CO2 sequestration repositories within the continental US. In this paper, we present results from batch experiments conducted at room temperature and atmospheric pressure with four High Plains aquifer sediments. Batch experiments simulate sudden, fast, and short-lived releases of the CO2 gas as would occur in the case of well failure during injection. Time-dependent release of major, minor, and trace elements were determined by analyzing the contacting solutions. Characterization studies demonstrated that the High Plains aquifer sediments were abundant in quartz and feldspars, and contained about 15 to 20 wt% montmorillonite and up to 5 wt% micas. Some of the High Plains aquifer sediments contained no calcite, while others had up to about 7 wt% calcite. The strong acid extraction tests confirmed that in addition to the usual elements present in most soils, rocks, and sediments, the High Plains aquifer sediments had appreciable amounts of As, Cd, Pb, Cu, and occasionally Zn, which potentially may be mobilized from the solid to the aqueous phase during or after exposure to CO2. However, the

  11. Evaluating Impacts of CO2 Gas Intrusion Into a Confined Sandstone aquifer: Experimental Results

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Qafoku, Nikolla; Lawter, Amanda R.; Shao, Hongbo; Wang, Guohui; Brown, Christopher F.

    2014-12-31

    Deep subsurface storage and sequestration of CO2 has been identified as a potential mitigation technique for rising atmospheric CO2 concentrations. Sequestered CO2 represents a potential risk to overlying aquifers if the CO2 leaks from the deep storage reservoir. Experimental and modeling work is required to evaluate potential risks to groundwater quality and develop a systematic understanding of how CO2 leakage may cause important changes in aquifer chemistry and mineralogy by promoting dissolution/precipitation, adsorption/desorption, and redox reactions. Sediments from the High Plains aquifer in Kansas, United States, were used in this investigation, which is part of the National Risk Assessment Partnershipmore » Program sponsored by the US Department of Energy. This aquifer was selected to be representative of consolidated sand and gravel/sandstone aquifers overlying potential CO2 sequestration repositories within the continental US. In this paper, we present results from batch experiments conducted at room temperature and atmospheric pressure with four High Plains aquifer sediments. Batch experiments simulate sudden, fast, and short-lived releases of the CO2 gas as would occur in the case of well failure during injection. Time-dependent release of major, minor, and trace elements were determined by analyzing the contacting solutions. Characterization studies demonstrated that the High Plains aquifer sediments were abundant in quartz and feldspars, and contained about 15 to 20 wt% montmorillonite and up to 5 wt% micas. Some of the High Plains aquifer sediments contained no calcite, while others had up to about 7 wt% calcite. The strong acid extraction tests confirmed that in addition to the usual elements present in most soils, rocks, and sediments, the High Plains aquifer sediments had appreciable amounts of As, Cd, Pb, Cu, and occasionally Zn, which potentially may be mobilized from the solid to the aqueous phase during or after exposure to CO2. However

  12. Evaluating impacts of CO2 gas intrusion into a confined sandstone aquifer: Experimental results

    SciTech Connect (OSTI)

    Qafoku, Nikolla; Lawter, Amanda R.; Shao, Hongbo; Wang, Guohui; Brown, Christopher F.

    2014-12-31

    Deep subsurface storage and sequestration of CO2 has been identified as a potential mitigation technique for rising atmospheric CO2 concentrations. Sequestered CO2 represents a potential risk to overlying aquifers if the CO2 leaks from the deep storage reservoir. Experimental and modeling work is required to evaluate potential risks to groundwater quality and develop a systematic understanding of how CO2 leakage may cause important changes in aquifer chemistry and mineralogy by promoting dissolution/precipitation, adsorption/desorption, and redox reactions. Sediments from the High Plains aquifer in Kansas, United States, were used in this investigation, which is part of the National Risk Assessment Partnership Program sponsored by the US Department of Energy. This aquifer was selected to be representative of consolidated sand and gravel/sandstone aquifers overlying potential CO2 sequestration repositories within the continental US. In this paper, we present results from batch experiments conducted at room temperature and atmospheric pressure with four High Plains aquifer sediments. Batch experiments simulate sudden, fast, and short-lived releases of the CO2 gas as would occur in the case of well failure during injection. Time-dependent release of major, minor, and trace elements were determined by analyzing the contacting solutions. Characterization studies demonstrated that the High Plains aquifer sediments were abundant in quartz and feldspars, and contained about 15 to 20 wt% montmorillonite and up to 5 wt% micas. Some of the High Plains aquifer sediments contained no calcite, while others had up to about 7 wt% calcite. The strong acid extraction tests confirmed that in addition to the usual elements present in most soils, rocks, and sediments, the High Plains aquifer sediments had appreciable amounts of As, Cd, Pb, Cu, and occasionally Zn, which potentially may be mobilized from the solid to the aqueous phase during or after exposure to CO2. However, the

  13. Case history of pressure maintenance by gas injection in the 26R gravity drainage reservoir

    SciTech Connect (OSTI)

    Wei, M.H.; Yu, J.P.; Moore, D.M.; Ezekwe, N.; Querin, M.E.; Williams, L.L.

    1992-02-01

    This paper is a field case history on the performance of the 26R Reservoir. This is a gravity drainage reservoir under pressure maintenance by crestal gas injection. The 26R Reservoir is a highly layered Stevens turbidite sandstone. The reservoir is located in the Naval Petroleum Reserve No. 1 (NPR{number_sign}1) in Elk Hills, Kern County, California. The 26R Reservoir is contained within the steeply dipping southwestern limb of the 31S Anticline. The reservoir had an initial oil column of 1800 feet. Original oil-in-place (OOIP) was estimated at 424 million barrels. Pressure maintenance by crestal gas injection was initiated immediately after production began in October 1976. The total volume of gas injected is about 586 BCF. This exceeds one reservoir pore volume. Reservoir pressure has declined from 3030 psi to 2461 psi. This pressure decline believe to be due to migration of injected gas into the overlaying shale reservoirs. Under the gas injection pressure maintenance strategy, reserves are estimated to be approximately 212 million barrels. Reservoir studies have concluded that the aquifer at the base of the reservoir has been relatively inactive. Well recompletions, deepenings, and horizontal wells are used to improve oil recovery. An aggressive program of controlling gas production began in the mid 1980`s by the installation of multiple packers and sleeves. As the gas-oil contact (GOC) has dropped, sand intervals have subsequently been isolated behind packers. A cased hole logging program was recently undertaken to identify possible remaining reserves in the gas cap. 15 refs., 24 figs., 2 tabs.

  14. Case history of pressure maintenance by gas injection in the 26R gravity drainage reservoir

    SciTech Connect (OSTI)

    Wei, M.H.; Yu, J.P.; Moore, D.M.; Ezekwe, N. ); Querin, M.E. ); Williams, L.L. )

    1992-01-01

    This paper is a field case history on the performance of the 26R Reservoir. This is a gravity drainage reservoir under pressure maintenance by crestal gas injection. The 26R Reservoir is a highly layered Stevens turbidite sandstone. The reservoir is located in the Naval Petroleum Reserve No. 1 (NPR{number sign}1) in Elk Hills, Kern County, California. The 26R Reservoir is contained within the steeply dipping southwestern limb of the 31S Anticline. The reservoir had an initial oil column of 1800 feet. Original oil-in-place (OOIP) was estimated at 424 million barrels. Pressure maintenance by crestal gas injection was initiated immediately after production began in October 1976. The total volume of gas injected is about 586 BCF. This exceeds one reservoir pore volume. Reservoir pressure has declined from 3030 psi to 2461 psi. This pressure decline believe to be due to migration of injected gas into the overlaying shale reservoirs. Under the gas injection pressure maintenance strategy, reserves are estimated to be approximately 212 million barrels. Reservoir studies have concluded that the aquifer at the base of the reservoir has been relatively inactive. Well recompletions, deepenings, and horizontal wells are used to improve oil recovery. An aggressive program of controlling gas production began in the mid 1980's by the installation of multiple packers and sleeves. As the gas-oil contact (GOC) has dropped, sand intervals have subsequently been isolated behind packers. A cased hole logging program was recently undertaken to identify possible remaining reserves in the gas cap. 15 refs., 24 figs., 2 tabs.

  15. Methodologies for Reservoir Characterization Using Fluid Inclusion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Methodologies for Reservoir Characterization Using Fluid Inclusion Gas Chemistry Methodologies for Reservoir Characterization Using Fluid Inclusion Gas Chemistry Methodologies for ...

  16. Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Buscheck, Thomas A.

    2012-01-01

    Active Management of Integrated Geothermal–CO2 Storage Reservoirs in Sedimentary Formations: An Approach to Improve Energy Recovery and Mitigate Risk : FY1 Final Report The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the producers with the need to manage reservoir overpressure to reduce the risks associated with overpressure, such as induced seismicity and CO2 leakage to overlying aquifers. This submittal contains input and output files of the reservoir model analyses. A reservoir-model "index-html" file was sent in a previous submittal to organize the reservoir-model input and output files according to sections of the FY1 Final Report to which they pertain. The recipient should save the file: Reservoir-models-inputs-outputs-index.html in the same directory that the files: Section2.1.*.tar.gz files are saved in.

  17. Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Buscheck, Thomas A.

    2000-01-01

    Active Management of Integrated Geothermal–CO2 Storage Reservoirs in Sedimentary Formations: An Approach to Improve Energy Recovery and Mitigate Risk: FY1 Final Report The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the producers with the need to manage reservoir overpressure to reduce the risks associated with overpressure, such as induced seismicity and CO2 leakage to overlying aquifers. This submittal contains input and output files of the reservoir model analyses. A reservoir-model "index-html" file was sent in a previous submittal to organize the reservoir-model input and output files according to sections of the FY1 Final Report to which they pertain. The recipient should save the file: Reservoir-models-inputs-outputs-index.html in the same directory that the files: Section2.1.*.tar.gz files are saved in.

  18. Reservoir management in a hydrodynamic environment, Iagifu-Hedinia area, Southern Highlands, Papua New Guinea

    SciTech Connect (OSTI)

    Eisenberg, L.I.; Langston, M.V.; Fitzmorris, R.E.

    1994-12-31

    Northwest to southeast regional scale flow in the Toro Sandstone parallels the Papuan Fold and Thrust Belt for a distance of 115 km, passing through Iagifu/Hedinia oil field along the way. This has had a profound effect on oil distribution in the Toro there, having swept the northwest side free of movable oil. A structurally controlled flow restriction causes a local, rapid drop in hydraulic potential, tilting local oil/water contacts up to six degrees and causing the three sandstone members of the Toro to locally behave as separate reservoirs, each with its own hydrocarbon/water contact. Reservoir simulations of Iagifu/Hedinia which include a flowing aquifer are able to match observed production history. Without a flowing aquifer, simulation predicts greater and earlier water production, and a greater pressure drop in the oil leg than has been observed. Reservoir modeling using a flowing aquifer has allowed downhole, structural targeting of later infill wells to be much closer to the OWC than would otherwise have been thought prudent, and has raised questions as to the potential effectiveness of a downdip water injection scheme. Production results from a small satellite field upstream of the main Iagifu/Hedinia field have shown a sudden increase in water production and reservoir pressure after a long period of pressure decline and no water production. This behavior appears to be due to an influx of higher hydraulic potential from a separate reservoir sand, the influx being brought about by pressure draw down during production and consequent breakdown of fault seal.

  19. Encapsulated microsensors for reservoir interrogation

    DOE Patents [OSTI]

    Scott, Eddie Elmer; Aines, Roger D.; Spadaccini, Christopher M.

    2016-03-08

    In one general embodiment, a system includes at least one microsensor configured to detect one or more conditions of a fluidic medium of a reservoir; and a receptacle, wherein the receptacle encapsulates the at least one microsensor. In another general embodiment, a method include injecting the encapsulated at least one microsensor as recited above into a fluidic medium of a reservoir; and detecting one or more conditions of the fluidic medium of the reservoir.

  20. Evaluating Impacts of CO2 Intrusion into an Unconsolidated Aquifer. I. Experimental Data

    SciTech Connect (OSTI)

    Lawter, Amanda R.; Qafoku, Nikolla; Wang, Guohui; Shao, Hongbo; Brown, Christopher F.

    2015-08-04

    Capture and deep subsurface sequestration of CO2 has been identified as a potential mitigation technique for rising atmospheric CO2 concentrations. Sequestered CO2 represents a potential risk to overlying aquifers if the CO2 leaks from the deep storage reservoir. Batch and column experiments combined with wet chemical extractions were conducted to evaluate these risks to groundwater quality and to understand effects of CO2 leakage on aquifer chemistry and mineralogy. Sediments from the High Plains aquifer in Kansas, a confined sandstone aquifer, were used to study time-dependent release of major, minor and trace elements when exposed to CO2 gas. Results showed that Ca, Ba, Si, Mg, Sr, Na, and K increased either instantaneously or followed nonlinear increasing trends with time, indicating dissolution and/or desorption reactions controlled their release. Other elements, such as Mn and Fe, were also released from all sediments, creating a potential for redox reactions to occur. Results from acid extractions confirmed sediments had appreciable amounts of contaminants that may potentially be released into the aqueous phase. However, results from the batch and column experiments demonstrated that only a few trace elements (e.g., As, Cu, Cr, Pb) were released, indicating the risk of groundwater quality degradation due to exposure to leakage of sequestered CO2 is low. Concentrations of Mo were consistently higher in the control experiments (absence of CO2) and were below detection in the presence of CO2 indicating a possible benefit of CO2 in groundwater aquifers. These investigations will provide useful information to support site selection, risk assessment, and public education efforts associated with geological CO2 storage and sequestration.

  1. New opportunities in Lower B sands VLC-100/949 reservoirs, Block III, Lake Maracaibo

    SciTech Connect (OSTI)

    Gonzalez, G.; Coll, C.; Mora, J.L. )

    1996-01-01

    The Lower B Misoa Formation of Middle Eocene age is characterized by massive sand bodies. These sands were successfully tested in the northern part of Block III in Lake Maracaibo in 1956. Subsequent drilling during the next 27 years has failed to locate any productive pay zones. Only during the past 8 years, new seismic and well data have delineated a number of minor oil reservoirs resulting in extensive production from Misoa Lower B sands. The oil production came primarily from small structural traps located on the hanging walls of normal listric faults. Fault diagnosis and locations were more accurately mapped with the availability of 3-D seismic data. Consequently, VLC-100 and VLC-949 reservoirs are now considered to be part of the same trap instead of being separated. A careful review of the fluid distribution and material balance calculations has confirmed that the wells from these reservoirs have, in fact, been producing from the same accumulation thereby validating the new geological model. The new model has defined new opportunities of oil exploitation. Firstly, it has led to the drilling of 4 new wells and increased production by 4,500 STB/D. Secondly, it has indicated additional recovery opportunities in the form of drilling horizontal wells in the updip area. Finally, the new model indicates the existence of an aquifer of much lower strength than was previously thought. This has caused a revision in our reservoir management strategy and we now recommend water injection to supplement the aquifer support and enhance oil recovery.

  2. New opportunities in Lower B sands VLC-100/949 reservoirs, Block III, Lake Maracaibo

    SciTech Connect (OSTI)

    Gonzalez, G.; Coll, C.; Mora, J.L.

    1996-12-31

    The Lower B Misoa Formation of Middle Eocene age is characterized by massive sand bodies. These sands were successfully tested in the northern part of Block III in Lake Maracaibo in 1956. Subsequent drilling during the next 27 years has failed to locate any productive pay zones. Only during the past 8 years, new seismic and well data have delineated a number of minor oil reservoirs resulting in extensive production from Misoa Lower B sands. The oil production came primarily from small structural traps located on the hanging walls of normal listric faults. Fault diagnosis and locations were more accurately mapped with the availability of 3-D seismic data. Consequently, VLC-100 and VLC-949 reservoirs are now considered to be part of the same trap instead of being separated. A careful review of the fluid distribution and material balance calculations has confirmed that the wells from these reservoirs have, in fact, been producing from the same accumulation thereby validating the new geological model. The new model has defined new opportunities of oil exploitation. Firstly, it has led to the drilling of 4 new wells and increased production by 4,500 STB/D. Secondly, it has indicated additional recovery opportunities in the form of drilling horizontal wells in the updip area. Finally, the new model indicates the existence of an aquifer of much lower strength than was previously thought. This has caused a revision in our reservoir management strategy and we now recommend water injection to supplement the aquifer support and enhance oil recovery.

  3. Reservoir Modeling Working Group Meeting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reservoir Modeling Working Group Meeting 2012 GEOTHERMAL TECHNOLOGIES PROGRAM PEER REVIEW ... History Past Meetings: March 2010 IPGT Modeling Working Group Meeting May 2010 GTP Peer ...

  4. FRACTURED PETROLEUM RESERVOIRS

    SciTech Connect (OSTI)

    Abbas Firoozabadi

    1999-06-11

    The four chapters that are described in this report cover a variety of subjects that not only give insight into the understanding of multiphase flow in fractured porous media, but they provide also major contribution towards the understanding of flow processes with in-situ phase formation. In the following, a summary of all the chapters will be provided. Chapter I addresses issues related to water injection in water-wet fractured porous media. There are two parts in this chapter. Part I covers extensive set of measurements for water injection in water-wet fractured porous media. Both single matrix block and multiple matrix blocks tests are covered. There are two major findings from these experiments: (1) co-current imbibition can be more efficient than counter-current imbibition due to lower residual oil saturation and higher oil mobility, and (2) tight fractured porous media can be more efficient than a permeable porous media when subjected to water injection. These findings are directly related to the type of tests one can perform in the laboratory and to decide on the fate of water injection in fractured reservoirs. Part II of Chapter I presents modeling of water injection in water-wet fractured media by modifying the Buckley-Leverett Theory. A major element of the new model is the multiplication of the transfer flux by the fractured saturation with a power of 1/2. This simple model can account for both co-current and counter-current imbibition and computationally it is very efficient. It can be orders of magnitude faster than a conventional dual-porosity model. Part II also presents the results of water injection tests in very tight rocks of some 0.01 md permeability. Oil recovery from water imbibition tests from such at tight rock can be as high as 25 percent. Chapter II discusses solution gas-drive for cold production from heavy-oil reservoirs. The impetus for this work is the study of new gas phase formation from in-situ process which can be significantly

  5. Water resources review: Ocoee reservoirs, 1990

    SciTech Connect (OSTI)

    Cox, J.P.

    1990-08-01

    Tennessee Valley Authority (TVA) is preparing a series of reports to make technical information on individual TVA reservoirs readily accessible. These reports provide a summary of reservoir purpose and operation; physical characteristics of the reservoir and watershed; water quality conditions; aquatic biological conditions; and designated, actual and potential uses of the reservoir and impairments of those use. This reservoir status report addressed the three Ocoee Reservoirs in Polk County, Tennessee.

  6. Collapsible sheath fluid reservoirs for flow cytometers

    DOE Patents [OSTI]

    Mark, Graham A. (Los Alamos, NM)

    2000-01-01

    The present invention is a container in the form of a single housing for holding fluid, including a first collapsible reservoir having a first valve. The first reservoir initially contains a volume of fluid. The container also includes a second reservoir, initially empty (or substantially empty), expandable to a second volume. The second reservoir has a second valve. As the volume of said first reservoir decreases, the volume of the second reservoir proportionally increases.

  7. Analysis of real-time reservoir monitoring : reservoirs, strategies, & modeling.

    SciTech Connect (OSTI)

    Mani, Seethambal S.; van Bloemen Waanders, Bart Gustaaf; Cooper, Scott Patrick; Jakaboski, Blake Elaine; Normann, Randy Allen; Jennings, Jim; Gilbert, Bob; Lake, Larry W.; Weiss, Chester Joseph; Lorenz, John Clay; Elbring, Gregory Jay; Wheeler, Mary Fanett; Thomas, Sunil G.; Rightley, Michael J.; Rodriguez, Adolfo; Klie, Hector; Banchs, Rafael; Nunez, Emilio J.; Jablonowski, Chris

    2006-11-01

    The project objective was to detail better ways to assess and exploit intelligent oil and gas field information through improved modeling, sensor technology, and process control to increase ultimate recovery of domestic hydrocarbons. To meet this objective we investigated the use of permanent downhole sensors systems (Smart Wells) whose data is fed real-time into computational reservoir models that are integrated with optimized production control systems. The project utilized a three-pronged approach (1) a value of information analysis to address the economic advantages, (2) reservoir simulation modeling and control optimization to prove the capability, and (3) evaluation of new generation sensor packaging to survive the borehole environment for long periods of time. The Value of Information (VOI) decision tree method was developed and used to assess the economic advantage of using the proposed technology; the VOI demonstrated the increased subsurface resolution through additional sensor data. Our findings show that the VOI studies are a practical means of ascertaining the value associated with a technology, in this case application of sensors to production. The procedure acknowledges the uncertainty in predictions but nevertheless assigns monetary value to the predictions. The best aspect of the procedure is that it builds consensus within interdisciplinary teams The reservoir simulation and modeling aspect of the project was developed to show the capability of exploiting sensor information both for reservoir characterization and to optimize control of the production system. Our findings indicate history matching is improved as more information is added to the objective function, clearly indicating that sensor information can help in reducing the uncertainty associated with reservoir characterization. Additional findings and approaches used are described in detail within the report. The next generation sensors aspect of the project evaluated sensors and packaging

  8. Reservoir-Stimulation Optimization with Operational Monitoring...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reservoir-Stimulation Optimization with Operational Monitoring for Creation of Enhanced Geothermal Systems Reservoir-Stimulation Optimization with Operational Monitoring for ...

  9. Supercritical Carbon Dioxide / Reservoir Rock Chemical Interactions...

    Open Energy Info (EERE)

    Supercritical Carbon Dioxide Reservoir Rock Chemical Interactions Jump to: navigation, search Geothermal Lab Call Projects for Supercritical Carbon Dioxide Reservoir Rock...

  10. Geothermal Reservoir Dynamics - TOUGHREACT

    SciTech Connect (OSTI)

    Pruess, Karsten; Xu, Tianfu; Shan, Chao; Zhang, Yingqi; Wu,Yu-Shu; Sonnenthal, Eric; Spycher, Nicolas; Rutqvist, Jonny; Zhang,Guoxiang; Kennedy, Mack

    2005-03-15

    This project has been active for several years and has focused on developing, enhancing and applying mathematical modeling capabilities for fractured geothermal systems. The emphasis of our work has recently shifted towards enhanced geothermal systems (EGS) and hot dry rock (HDR), and FY05 is the first year that the DOE-AOP actually lists this project under Enhanced Geothermal Systems. Our overall purpose is to develop new engineering tools and a better understanding of the coupling between fluid flow, heat transfer, chemical reactions, and rock-mechanical deformation, to demonstrate new EGS technology through field applications, and to make technical information and computer programs available for field applications. The objectives of this project are to: (1) Improve fundamental understanding and engineering methods for geothermal systems, primarily focusing on EGS and HDR systems and on critical issues in geothermal systems that are difficult to produce. (2) Improve techniques for characterizing reservoir conditions and processes through new modeling and monitoring techniques based on ''active'' tracers and coupled processes. (3) Improve techniques for targeting injection towards specific engineering objectives, including maintaining and controlling injectivity, controlling non-condensable and corrosive gases, avoiding scale formation, and optimizing energy recovery. Seek opportunities for field testing and applying new technologies, and work with industrial partners and other research organizations.

  11. 30 TAC 213 - Edwards Aquifer | Open Energy Information

    Open Energy Info (EERE)

    13 - Edwards Aquifer Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: 30 TAC 213 - Edwards AquiferLegal Published NA Year...

  12. Aquifer thermal energy storage. International symposium: Proceedings

    SciTech Connect (OSTI)

    1995-05-01

    Aquifers have been used to store large quantities of thermal energy to supply process cooling, space cooling, space heating, and ventilation air preheating, and can be used with or without heat pumps. Aquifers are used as energy sinks and sources when supply and demand for energy do not coincide. Aquifer thermal energy storage may be used on a short-term or long-term basis; as the sole source of energy or as a partial storage; at a temperature useful for direct application or needing upgrade. The sources of energy used for aquifer storage are ambient air, usually cold winter air; waste or by-product energy; and renewable energy such as solar. The present technical, financial and environmental status of ATES is promising. Numerous projects are operating and under development in several countries. These projects are listed and results from Canada and elsewhere are used to illustrate the present status of ATES. Technical obstacles have been addressed and have largely been overcome. Cold storage in aquifers can be seen as a standard design option in the near future as it presently is in some countries. The cost-effectiveness of aquifer thermal energy storage is based on the capital cost avoidance of conventional chilling equipment and energy savings. ATES is one of many developments in energy efficient building technology and its success depends on relating it to important building market and environmental trends. This paper attempts to provide guidance for the future implementation of ATES. Individual projects have been processed separately for entry onto the Department of Energy databases.

  13. Geochemical Triggers of Arsenic Mobilization during Managed Aquifer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recharge | Stanford Synchrotron Radiation Lightsource Geochemical Triggers of Arsenic Mobilization during Managed Aquifer Recharge Monday, February 29, 2016 Managed aquifer recharge (MAR) is an increasingly used water enhancement strategy, which involves subsurface storage of water supplies in groundwater aquifers. While MAR projects have the potential to alleviate water deficits, they can also adversely impact groundwater quality by altering the native geochemistry of the aquifer and

  14. Chickamauga reservoir embayment study - 1990

    SciTech Connect (OSTI)

    Meinert, D.L.; Butkus, S.R.; McDonough, T.A.

    1992-12-01

    The objectives of this report are three-fold: (1) assess physical, chemical, and biological conditions in the major embayments of Chickamauga Reservoir; (2) compare water quality and biological conditions of embayments with main river locations; and (3) identify any water quality concerns in the study embayments that may warrant further investigation and/or management actions. Embayments are important areas of reservoirs to be considered when assessments are made to support water quality management plans. In general, embayments, because of their smaller size (water surface areas usually less than 1000 acres), shallower morphometry (average depth usually less than 10 feet), and longer detention times (frequently a month or more), exhibit more extreme responses to pollutant loadings and changes in land use than the main river region of the reservoir. Consequently, embayments are often at greater risk of water quality impairments (e.g. nutrient enrichment, filling and siltation, excessive growths of aquatic plants, algal blooms, low dissolved oxygen concentrations, bacteriological contamination, etc.). Much of the secondary beneficial use of reservoirs occurs in embayments (viz. marinas, recreation areas, parks and beaches, residential development, etc.). Typically embayments comprise less than 20 percent of the surface area of a reservoir, but they often receive 50 percent or more of the water-oriented recreational use of the reservoir. This intensive recreational use creates a potential for adverse use impacts if poor water quality and aquatic conditions exist in an embayment.

  15. Reservoir characterization of Pennsylvanian Sandstone Reservoirs. Annual report

    SciTech Connect (OSTI)

    Kelkar, M.

    1992-09-01

    This annual report describes the progress during the second year of a project on Reservoir Characterization of Pennsylvanian Sandstone Reservoirs. The report is divided into three sections: (i) reservoir description and scale-up procedures; (ii) outcrop investigation; (iii) in-fill drilling potential. The first section describes the methods by which a reservoir can be characterized, can be described in three dimensions, and can be scaled up with respect to its properties, appropriate for simulation purposes. The second section describes the progress on investigation of an outcrop. The outcrop is an analog of Bartlesville Sandstone. We have drilled ten wells behind the outcrop and collected extensive log and core data. The cores have been slabbed, photographed and the several plugs have been taken. In addition, minipermeameter is used to measure permeabilities on the core surface at six inch intervals. The plugs have been analyzed for the permeability and porosity values. The variations in property values will be tied to the geological descriptions as well as the subsurface data collected from the Glen Pool field. The third section discusses the application of geostatistical techniques to infer in-fill well locations. The geostatistical technique used is the simulated annealing technique because of its flexibility. One of the important reservoir data is the production data. Use of production data will allow us to define the reservoir continuities, which may in turn, determine the in-fill well locations. The proposed technique allows us to incorporate some of the production data as constraints in the reservoir descriptions. The technique has been validated by comparing the results with numerical simulations.

  16. Geophysical remote sensing of water reservoirs suitable for desalinization.

    SciTech Connect (OSTI)

    Aldridge, David Franklin; Bartel, Lewis Clark; Bonal, Nedra; Engler, Bruce Phillip

    2009-12-01

    In many parts of the United States, as well as other regions of the world, competing demands for fresh water or water suitable for desalination are outstripping sustainable supplies. In these areas, new water supplies are necessary to sustain economic development and agricultural uses, as well as support expanding populations, particularly in the Southwestern United States. Increasing the supply of water will more than likely come through desalinization of water reservoirs that are not suitable for present use. Surface-deployed seismic and electromagnetic (EM) methods have the potential for addressing these critical issues within large volumes of an aquifer at a lower cost than drilling and sampling. However, for detailed analysis of the water quality, some sampling utilizing boreholes would be required with geophysical methods being employed to extrapolate these sampled results to non-sampled regions of the aquifer. The research in this report addresses using seismic and EM methods in two complimentary ways to aid in the identification of water reservoirs that are suitable for desalinization. The first method uses the seismic data to constrain the earth structure so that detailed EM modeling can estimate the pore water conductivity, and hence the salinity. The second method utilizes the coupling of seismic and EM waves through the seismo-electric (conversion of seismic energy to electrical energy) and the electro-seismic (conversion of electrical energy to seismic energy) to estimate the salinity of the target aquifer. Analytic 1D solutions to coupled pressure and electric wave propagation demonstrate the types of waves one expects when using a seismic or electric source. A 2D seismo-electric/electro-seismic is developed to demonstrate the coupled seismic and EM system. For finite-difference modeling, the seismic and EM wave propagation algorithms are on different spatial and temporal scales. We present a method to solve multiple, finite-difference physics

  17. Fresh Water Generation from Aquifer-Pressured Carbon Storage: Interim Progress Report

    SciTech Connect (OSTI)

    Aines, R D; Wolery, T J; Hao, Y; Bourcier, W L

    2009-07-22

    This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including nanofiltration (NF) and reverse osmosis (RO). The aquifer pressure resulting from the energy required to inject the carbon dioxide provides all or part of the inlet pressure for the desalination system. Residual brine would be reinjected into the formation at net volume reduction. This process provides additional storage space (capacity) in the aquifer, reduces operational risks by relieving overpressure in the aquifer, and provides a source of low-cost fresh water to offset costs or operational water needs. Computer modeling and laboratory-scale experimentation are being used to examine mineral scaling and osmotic pressure limitations for brines typical of CCS sites. Computer modeling is being used to evaluate processes in the aquifer, including the evolution of the pressure field. This progress report deals mainly with our geochemical modeling of high-salinity brines and covers the first six months of project execution (September, 2008 to March, 2009). Costs and implementation results will be presented in the annual report. The brines typical of sequestration sites can be several times more concentrated than seawater, requiring specialized modeling codes typical of those developed for nuclear waste disposal calculations. The osmotic pressure developed as the brines are concentrated is of particular concern, as are precipitates that can cause fouling of reverse osmosis membranes and other types of membranes (e.g., NF). We have now completed the development associated with tasks (1) and (2) of the work plan. We now have a contract with Perlorica, Inc., to provide support to the cost analysis and nanofiltration evaluation. We have also conducted several preliminary analyses of the pressure effect in the reservoir in order to confirm that reservoir

  18. Reservoir performance in viscoelastic porous media

    SciTech Connect (OSTI)

    Rago, F.M.; Ohkuma, H.; Sepehrnoori, K.; Thompson, T.W.

    1982-01-01

    The mass balance equations for a two-phase two-component fluid system are written for viscoelastic porous media. The resulting equations are approximated by finite differences and the resulting numerical simulator is used to conduct a sensitivity study on the effects of uniaxial viscoelastic deformation in geopressured aquifers. Results of this study indicate that viscoelastic deformation may have considerable influence on the pressure maintenance of these aquifers. A numerical model of the geopressured aquifer in Brazoria County, Texas, is constructed and the numerical simulator is used to predict the ultimate recovery of solution gas from this viscoelastic geopressured aquifer.

  19. Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Buscheck, Thomas A.

    2012-01-01

    Active Management of Integrated Geothermal–CO2 Storage Reservoirs in Sedimentary Formations: An Approach to Improve Energy Recovery and Mitigate Risk: FY1 Final Report The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the producers with the need to manage reservoir overpressure to reduce the risks associated with overpressure, such as induced seismicity and CO2 leakage to overlying aquifers. Based on a range of well schemes, techno-economic analyses of the levelized cost of electricity (LCOE) are conducted to determine the economic benefits of integrating GCS with geothermal energy production. In addition to considering CO2 injection, reservoir analyses are conducted for nitrogen (N2) injection to investigate the potential benefits of incorporating N2 injection with integrated geothermal-GCS, as well as the use of N2 injection as a potential pressure-support and working-fluid option. Phase 1 includes preliminary environmental risk assessments of integrated geothermal-GCS, with the focus on managing reservoir overpressure. Phase 1 also includes an economic survey of pipeline costs, which will be applied in Phase 2 to the analysis of CO2 conveyance costs for techno-economics analyses of integrated geothermal-GCS reservoir sites. Phase 1 also includes a geospatial GIS survey of potential integrated geothermal-GCS reservoir sites, which will be used in Phase 2 to conduct sweet-spot analyses that determine where promising geothermal resources are co-located in sedimentary settings conducive to safe CO2 storage, as well as being in adequate proximity to large stationary CO2 sources.

  20. Application of Integrated Reservoir Management and Reservoir Characterization to Optimize Infill Drilling

    SciTech Connect (OSTI)

    1998-01-01

    Infill drilling if wells on a uniform spacing without regard to reservoir performance and characterization foes not optimize reservoir development because it fails to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. New and emerging technologies, such as geostatistical modeling, rigorous decline curve analysis, reservoir rock typing, and special core analysis can be used to develop a 3-D simulation model for prediction of infill locations.

  1. Application of Integrated Reservoir management and Reservoir Characterization to Optimize Infill Drilling

    SciTech Connect (OSTI)

    B. Pregger; D. Davies; D. Moore; G. Freeman; J. Callard; J.W. Nevans; L. Doublet; R. Vessell; T. Blasingame

    1997-08-31

    Infill drilling if wells on a uniform spacing without regard to reservoir performance and characterization foes not optimize reservoir development because it fails to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. New and emerging technologies, such as geostatistical modeling, rigorous decline curve analysis, reservoir rock typing, and special core analysis can be used to develop a 3-D simulation model for prediction of infill locations.

  2. Steamflooding in a waterdrive reservoir; Upper Tulare sands, South Belridge field

    SciTech Connect (OSTI)

    Dietrich, J.K. )

    1990-08-01

    A steamflood project in the strong edgewater-drive Upper Tulare reservoir at South Belridge recovered about 31% of the original oil in place (OOIP) at a cumulative steam/oil ratio (SOR) of 2.7 vol/vol. Seven years of downdip steam injection depressed water influx and created an oil bank updip from the injectors. Response continued under the influence of returning aquifer water and heat scavenging after the injectors were shut down. Numerical reservoir simulation of the historical steamflood performance indicate that the high production/injection capacity (P/I) ratio induced early water encroachment and partial quenching of the growing steam zone. Restarting downdip steam injection at much higher rates after 6 years without injection is shown to recover more oil than continuing the steamflood with either a seven-spot or inverted nine-spot pattern.

  3. THMC Modeling of EGS Reservoirs … Continuum through Discontinuum...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    THMC Modeling of EGS Reservoirs Continuum through Discontinuum Representations: Capturing Reservoir Stimulation, Evolution and Induced Seismicity THMC Modeling of EGS Reservoirs ...

  4. THMC Modeling of EGS Reservoirs …Continuum through Discontinuum...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    THMC Modeling of EGS Reservoirs Continuum through Discontinuum Representations: Capturing Reservoir Stimulation, Evolution and Induced Seismicity THMC Modeling of EGS Reservoirs ...

  5. Reservoir Modeling Working Group Meeting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reservoir Modeling Working Group Meeting Reservoir Modeling Working Group Meeting Reservoir Modeling working group meeting presentation on May 10, 2012 at the 2012 Peer Review ...

  6. IPGT Reservoir Modeling Working Group | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    IPGT Reservoir Modeling Working Group IPGT Reservoir Modeling Working Group Summary of recommendations and geothermal reservoir benchmarking workshop gtp2012peerreviewreservoirm...

  7. Integrated Reflection Seismic Monitoring and Reservoir Modeling for Geologic CO2 Sequestration

    SciTech Connect (OSTI)

    John Rogers

    2011-12-31

    The US DOE/NETL CCS MVA program funded a project with Fusion Petroleum Technologies Inc. (now SIGMA) to model the proof of concept of using sparse seismic data in the monitoring of CO{sub 2} injected into saline aquifers. The goal of the project was to develop and demonstrate an active source reflection seismic imaging strategy based on deployment of spatially sparse surface seismic arrays. The primary objective was to test the feasibility of sparse seismic array systems to monitor the CO{sub 2} plume migration injected into deep saline aquifers. The USDOE/RMOTC Teapot Dome (Wyoming) 3D seismic and reservoir data targeting the Crow Mountain formation was used as a realistic proxy to evaluate the feasibility of the proposed methodology. Though the RMOTC field has been well studied, the Crow Mountain as a saline aquifer has not been studied previously as a CO{sub 2} sequestration (storage) candidate reservoir. A full reprocessing of the seismic data from field tapes that included prestack time migration (PSTM) followed by prestack depth migration (PSDM) was performed. A baseline reservoir model was generated from the new imaging results that characterized the faults and horizon surfaces of the Crow Mountain reservoir. The 3D interpretation was integrated with the petrophysical data from available wells and incorporated into a geocellular model. The reservoir structure used in the geocellular model was developed using advanced inversion technologies including Fusion's ThinMAN{trademark} broadband spectral inversion. Seal failure risk was assessed using Fusion's proprietary GEOPRESS{trademark} pore pressure and fracture pressure prediction technology. CO{sub 2} injection was simulated into the Crow Mountain with a commercial reservoir simulator. Approximately 1.2MM tons of CO{sub 2} was simulated to be injected into the Crow Mountain reservoir over 30 years and subsequently let 'soak' in the reservoir for 970 years. The relatively small plume developed from this

  8. Comparison of Caprock Mineral Characteristics at Field Demonstration Sites for Saline Aquifer Sequestration of Carbon Dioxide

    SciTech Connect (OSTI)

    Griffith, C.A.; Lowry, G. (Carnegie Mellon University); Dzombak, D. (Carnegie Mellon University); Soong, Yee; Hedges, S.W.

    2008-10-01

    In 2003 the U.S Department of Energy initiated regional partnership programs to address the concern for rising atmospheric CO2. These partnerships were formed to explore regional and economical means for geologically sequestering CO2 across the United States and to set the stage for future commercial applications. Several options exist for geological sequestration and among these sequestering CO2 into deep saline aquifers is one of the most promising. This is due, in part, to the possibility of stabilized permanent storage through mineral precipitation from chemical interactions of the injected carbon dioxide with the brine and reservoir rock. There are nine field demonstration sites for saline sequestration among the regional partnerships in Phase II development to validate the overall commercial feasibility for CO2 geological sequestration. Of the nine sites considered for Phase II saline sequestration demonstration, seven are profiled in this study for their caprock lithologic and mineral characteristics.

  9. Tenth workshop on geothermal reservoir engineering: proceedings

    SciTech Connect (OSTI)

    Not Available

    1985-01-22

    The workshop contains presentations in the following areas: (1) reservoir engineering research; (2) field development; (3) vapor-dominated systems; (4) the Geysers thermal area; (5) well test analysis; (6) production engineering; (7) reservoir evaluation; (8) geochemistry and injection; (9) numerical simulation; and (10) reservoir physics. (ACR)

  10. Increasing Waterflooding Reservoirs in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management, Class III

    SciTech Connect (OSTI)

    Koerner, Roy; Clarke, Don; Walker, Scott; Phillips, Chris; Nguyen, John; Moos, Dan; Tagbor, Kwasi

    2001-08-07

    This project was intended to increase recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs, transferring technology so that it can be applied in other sections of the Wilmington field and by operators in other slope and basin reservoirs is a primary component of the project.

  11. Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Buscheck, Thomas A.

    2012-01-01

    The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the producers with the need to manage reservoir overpressure to reduce the risks associated with overpressure, such as induced seismicity and CO2 leakage to overlying aquifers. Based on a range of well schemes, techno-economic analyses of the levelized cost of electricity (LCOE) are conducted to determine the economic benefits of integrating GCS with geothermal energy production. In addition to considering CO2 injection, reservoir analyses are conducted for nitrogen (N2) injection to investigate the potential benefits of incorporating N2 injection with integrated geothermal-GCS, as well as the use of N2 injection as a potential pressure-support and working-fluid option. Phase 1 includes preliminary environmental risk assessments of integrated geothermal-GCS, with the focus on managing reservoir overpressure. Phase 1 also includes an economic survey of pipeline costs, which will be applied in Phase 2 to the analysis of CO2 conveyance costs for techno-economics analyses of integrated geothermal-GCS reservoir sites. Phase 1 also includes a geospatial GIS survey of potential integrated geothermal-GCS reservoir sites, which will be used in Phase 2 to conduct sweet-spot analyses that determine where promising geothermal resources are co-located in sedimentary settings conducive to safe CO2 storage, as well as being in adequate proximity to large stationary CO2 sources.

  12. Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Buscheck, Thomas A.

    The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the producers with the need to manage reservoir overpressure to reduce the risks associated with overpressure, such as induced seismicity and CO2 leakage to overlying aquifers. Based on a range of well schemes, techno-economic analyses of the levelized cost of electricity (LCOE) are conducted to determine the economic benefits of integrating GCS with geothermal energy production. In addition to considering CO2 injection, reservoir analyses are conducted for nitrogen (N2) injection to investigate the potential benefits of incorporating N2 injection with integrated geothermal-GCS, as well as the use of N2 injection as a potential pressure-support and working-fluid option. Phase 1 includes preliminary environmental risk assessments of integrated geothermal-GCS, with the focus on managing reservoir overpressure. Phase 1 also includes an economic survey of pipeline costs, which will be applied in Phase 2 to the analysis of CO2 conveyance costs for techno-economics analyses of integrated geothermal-GCS reservoir sites. Phase 1 also includes a geospatial GIS survey of potential integrated geothermal-GCS reservoir sites, which will be used in Phase 2 to conduct sweet-spot analyses that determine where promising geothermal resources are co-located in sedimentary settings conducive to safe CO2 storage, as well as being in adequate proximity to large stationary CO2 sources.

  13. THMC Modeling of EGS Reservoirs -- Continuum through Discontinuum...

    Office of Scientific and Technical Information (OSTI)

    Capturing Reservoir Stimulation, Evolution and Induced Seismicity Citation Details ... Capturing Reservoir Stimulation, Evolution and Induced Seismicity This work has ...

  14. Sunset Reservoir Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Reservoir Solar Power Plant Facility Sunset Reservoir Sector Solar Facility Type Photovoltaic Developer Recurrent Energy Location San Francisco, California Coordinates...

  15. Sole Source Aquifer Demonstration Program | Open Energy Information

    Open Energy Info (EERE)

    Demonstration Program Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Sole Source Aquifer Demonstration ProgramLegal...

  16. On parameterization of the inverse problem for estimating aquifer...

    Office of Scientific and Technical Information (OSTI)

    Title: On parameterization of the inverse problem for estimating aquifer properties using tracer data Authors: Kowalsky, M. B. ; Finsterle, S. ; Commer, M. ; Williams, K. H. ; ...

  17. Chemical and Isotopic Prediction of Aquifer Temperatures in the...

    Open Energy Info (EERE)

    of Aquifer Temperatures in the Geothermal System at Long Valley, California Authors R.O. Fournier, Michael L. Sorey, Robert H. Mariner and Alfred H. Truesdell Published Journal...

  18. Development of Reservoir Characterization Techniques and Production Models for Exploiting Naturally Fractured Reservoirs

    SciTech Connect (OSTI)

    Wiggins, M.L.; Evans, R.D.; Brown, R.L.; Gupta, A.

    2001-03-28

    This report focuses on integrating geoscience and engineering data to develop a consistent characterization of the naturally fractured reservoirs. During this reporting period, effort was focused on relating seismic data to reservoir properties of naturally fractured reservoirs, scaling well log data to generate interwell descriptors of these reservoirs, enhancing and debugging a naturally fractured reservoir simulator, and developing a horizontal wellbore model for use in the simulator.

  19. The use of Ahuachapan fluid chemistry to indicate natural state conditions and reservoir processes during exploitation

    SciTech Connect (OSTI)

    Treusdell, A.H. ); Aunzo, Z.; Bodvarsson, G. ); Alonso, J.; Campos, A. )

    1989-01-01

    Chemical analyses of production fluids from Ahuachapan, El Salvador, have been used to indicate natural state reservoir fluid temperatures and chloride concentrations and reservoir processes resulting from exploitation. Geothermometer temperatures (Na--K--Ca and SiO{sub 2}) and calculated aquifer Cl for early flows show a gradient from about 265{degree}C and 9000 ppM Cl in the western part of the well field to 235{degree}C and 6000 ppM Cl in the eastern part. The geochemical temperatures are 10--20{degree}C higher than early downhole measurements. Since exploitation started, pressures have declined over most of the drilled area with boiling and excess-enthalpy discharges in the eastern and western parts. In the center of the field, a number of wells show mixing with cooler, less-saline water. These wells are nearly coincident with a major NE-SW oriented fault that may be the conduit for downward recharge of cooler fluids from an overlying aquifer. 12 refs., 9 figs., 1 tab.

  20. THMC Modeling of EGS Reservoirs … Continuum through Discontinuum

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Representations: Capturing Reservoir Stimulation, Evolution and Induced Seismicity | Department of Energy THMC Modeling of EGS Reservoirs … Continuum through Discontinuum Representations: Capturing Reservoir Stimulation, Evolution and Induced Seismicity THMC Modeling of EGS Reservoirs … Continuum through Discontinuum Representations: Capturing Reservoir Stimulation, Evolution and Induced Seismicity THMC Modeling of EGS Reservoirs … Continuum through Discontinuum Representations: Capturing

  1. 4. International reservoir characterization technical conference

    SciTech Connect (OSTI)

    1997-04-01

    This volume contains the Proceedings of the Fourth International Reservoir Characterization Technical Conference held March 2-4, 1997 in Houston, Texas. The theme for the conference was Advances in Reservoir Characterization for Effective Reservoir Management. On March 2, 1997, the DOE Class Workshop kicked off with tutorials by Dr. Steve Begg (BP Exploration) and Dr. Ganesh Thakur (Chevron). Tutorial presentations are not included in these Proceedings but may be available from the authors. The conference consisted of the following topics: data acquisition; reservoir modeling; scaling reservoir properties; and managing uncertainty. Selected papers have been processed separately for inclusion in the Energy Science and Technology database.

  2. The role of reservoir characterization in the reservoir management process (as reflected in the Department of Energy`s reservoir management demonstration program)

    SciTech Connect (OSTI)

    Fowler, M.L.; Young, M.A.; Madden, M.P.

    1997-08-01

    Optimum reservoir recovery and profitability result from guidance of reservoir practices provided by an effective reservoir management plan. Success in developing the best, most appropriate reservoir management plan requires knowledge and consideration of (1) the reservoir system including rocks, and rock-fluid interactions (i.e., a characterization of the reservoir) as well as wellbores and associated equipment and surface facilities; (2) the technologies available to describe, analyze, and exploit the reservoir; and (3) the business environment under which the plan will be developed and implemented. Reservoir characterization is the essential to gain needed knowledge of the reservoir for reservoir management plan building. Reservoir characterization efforts can be appropriately scaled by considering the reservoir management context under which the plan is being built. Reservoir management plans de-optimize with time as technology and the business environment change or as new reservoir information indicates the reservoir characterization models on which the current plan is based are inadequate. BDM-Oklahoma and the Department of Energy have implemented a program of reservoir management demonstrations to encourage operators with limited resources and experience to learn, implement, and disperse sound reservoir management techniques through cooperative research and development projects whose objectives are to develop reservoir management plans. In each of the three projects currently underway, careful attention to reservoir management context assures a reservoir characterization approach that is sufficient, but not in excess of what is necessary, to devise and implement an effective reservoir management plan.

  3. Geostatistics applied to gas reservoirs

    SciTech Connect (OSTI)

    Meunier, G.; Coulomb, C.; Laille, J.P. )

    1989-09-01

    The spatial distribution of many of the physical parameters connected with a gas reservoir is of primary interest to both engineers and geologists throughout the study, development, and operation of a field. It is therefore desirable for the distribution to be capable of statistical interpretation, to have a simple graphical representation, and to allow data to be entered from either two- or three-dimensional grids. To satisfy these needs while dealing with the geographical variables, new methods have been developed under the name geostatistics. This paper describes briefly the theory of geostatistics and its most recent improvements for the specific problem of subsurface description. The external-drift technique has been emphasized in particular, and in addition, four case studies related to gas reservoirs are presented.

  4. Coupled Geochemical Impacts of Leaking CO2 and Contaminants from Subsurface Storage Reservoirs on Groundwater Quality

    SciTech Connect (OSTI)

    Shao, Hongbo; Qafoku, Nikolla; Lawter, Amanda R.; Bowden, Mark E.; Brown, Christopher F.

    2015-07-07

    The leakage of CO2 and the concomitant saline solutions from deep storage reservoirs to overlying groundwater aquifers is considered one of the major potential risks associated with geologic CO2 sequestration (GCS). Batch and column experiments were conducted to determine the fate of trace metals in groundwater in the scenarios of CO2 and metal contaminated brine leakage. The sediments used in this work were collected from an unconsolidated sand and gravel aquifer in Kansas, and contained 0-4 wt% carbonates. Cd and As were spiked into the reaction system to represent potential contaminants from the reservoir brine that could intrude into groundwater aquifers with leaking CO2 at initial concentrations of 114 and 40 ppb, respectively. Through this research we demonstrated that Cd and As were adsorbed on the sediments, in spite of the lowered pH due to CO2 dissolution in the groundwater. Cd concentrations were well below its MCL in both batch and column studies, even for sediment samples without detectable carbonate to buffer the pH. Arsenic concentrations in the effluent were also significantly lower than influent concentration, suggesting that the sediments tested have the capacity to mitigate the coupled adverse effects of CO2 leakage and brine intrusion. However, the mitigation capacity of sediment is a function of its geochemical properties [e.g., the calcite content; the presence of adsorbed As(III); and the presence of P in the natural sediment]. The competitive adsorption between phosphate and arsenate may result in higher concentrations of As in the aqueous phase.

  5. STRUCTURAL HETEROGENEITIES AND PALEO FLUID FLOW IN AN ANALOG SANDSTONE RESERVOIR 2001-2004

    SciTech Connect (OSTI)

    Pollard, David; Aydin, Atilla

    2005-02-22

    Fractures and faults are brittle structural heterogeneities that can act both as conduits and barriers with respect to fluid flow in rock. This range in the hydraulic effects of fractures and faults greatly complicates the challenges faced by geoscientists working on important problems: from groundwater aquifer and hydrocarbon reservoir management, to subsurface contaminant fate and transport, to underground nuclear waste isolation, to the subsurface sequestration of CO2 produced during fossil-fuel combustion. The research performed under DOE grant DE-FG03-94ER14462 aimed to address these challenges by laying a solid foundation, based on detailed geological mapping, laboratory experiments, and physical process modeling, on which to build our interpretive and predictive capabilities regarding the structure, patterns, and fluid flow properties of fractures and faults in sandstone reservoirs. The material in this final technical report focuses on the period of the investigation from July 1, 2001 to October 31, 2004. The Aztec Sandstone at the Valley of Fire, Nevada, provides an unusually rich natural laboratory in which exposures of joints, shear deformation bands, compaction bands and faults at scales ranging from centimeters to kilometers can be studied in an analog for sandstone aquifers and reservoirs. The suite of structures there has been documented and studied in detail using a combination of low-altitude aerial photography, outcrop-scale mapping and advanced computational analysis. In addition, chemical alteration patterns indicative of multiple paleo fluid flow events have been mapped at outcrop, local and regional scales. The Valley of Fire region has experienced multiple episodes of fluid flow and this is readily evident in the vibrant patterns of chemical alteration from which the Valley of Fire derives its name. We have successfully integrated detailed field and petrographic observation and analysis, process-based mechanical modeling, and numerical

  6. Aquifer thermal energy (heat and chill) storage

    SciTech Connect (OSTI)

    Jenne, E.A.

    1992-11-01

    As part of the 1992 Intersociety Conversion Engineering Conference, held in San Diego, California, August 3--7, 1992, the Seasonal Thermal Energy Storage Program coordinated five sessions dealing specifically with aquifer thermal energy storage technologies (ATES). Researchers from Sweden, The Netherlands, Germany, Switzerland, Denmark, Canada, and the United States presented papers on a variety of ATES related topics. With special permission from the Society of Automotive Engineers, host society for the 1992 IECEC, these papers are being republished here as a standalone summary of ATES technology status. Individual papers are indexed separately.

  7. Integrated reservoir characterization to define a hydrodynamic model in the Misoa formation, Eocene, Center Lake Field, Maracaibo Basin, Venezuela

    SciTech Connect (OSTI)

    Azuaje, V.; Gil, J.

    1996-08-01

    The Center Lake Field is one of the most important light oil reservoirs in the Maracaibo Basin. Field production of {open_quotes}C{close_quotes} sandstones, Misoa formation, Eocene, started in 1968. Actual cumulative production is 630 MMBls, which represents 23% of the original oil in place. Flank water injection programs have been executed since 1976; however, reservoirs within this field still have shown pressure and production declination. A multidisciplinary study has been conducted to produce an updated hydrodynamic model which matches the static and dynamic behavior of the reservoirs. An integrated interpretation team has merged geological, geophysical and engineering data and criteria to generate an updated and consistent interpretation of today`s performance of reservoirs. The integration of a 3D seismic survey with a sequence- stratigraphy analysis, petrophysical and production data allowed us to determine a new structural and stratigraphic framework. The first important conclusion is that active aquifer is not located at the flanks of the structure, as traditionally worked out. Instead, a water-bottom drive system was interpreted and validated with production data so a different strategy for water injection was recommended. The latter interpretation restricted the injection to those areas where rock volume calculation, permeability, porosity and depositional environment make it suitable and profitable. A pattern injection program is going to be developed in C-4-X.46 reservoir and 21.6 MMBls additional recovery is expected in respect to the old production scheme.

  8. Sensitivity study of CO2 storage capacity in brine aquifers withclosed boundaries: Dependence on hydrogeologic properties

    SciTech Connect (OSTI)

    Zhou, Q.; Birkholzer, J.; Rutqvist, J.; Tsang, C-F.

    2007-02-07

    In large-scale geologic storage projects, the injected volumes of CO{sub 2} will displace huge volumes of native brine. If the designated storage formation is a closed system, e.g., a geologic unit that is compartmentalized by (almost) impermeable sealing units and/or sealing faults, the native brine cannot (easily) escape from the target reservoir. Thus the amount of supercritical CO{sub 2} that can be stored in such a system depends ultimately on how much pore space can be made available for the added fluid owing to the compressibility of the pore structure and the fluids. To evaluate storage capacity in such closed systems, we have conducted a modeling study simulating CO{sub 2} injection into idealized deep saline aquifers that have no (or limited) interaction with overlying, underlying, and/or adjacent units. Our focus is to evaluate the storage capacity of closed systems as a function of various reservoir parameters, hydraulic properties, compressibilities, depth, boundaries, etc. Accounting for multi-phase flow effects including dissolution of CO{sub 2} in numerical simulations, the goal is to develop simple analytical expressions that provide estimates for storage capacity and pressure buildup in such closed systems.

  9. Aquifer Sampling Tube Results for Fiscal Year 2003

    SciTech Connect (OSTI)

    Hartman, Mary J.; Peterson, Robert E.

    2003-10-27

    This report presents and discusses results of the fiscal year 2003 sampling event associated with aquifer tubes along the Columbia River in the northern Hanford Site. Aquifer tube data help define the extent of groundwater contamination near the river, determine vertical variations in contamination, monitor the performance of interim remedial actions near the river, and support impact studies.

  10. Storage capacity in hot dry rock reservoirs

    DOE Patents [OSTI]

    Brown, D.W.

    1997-11-11

    A method is described for extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid inventory of the reservoir. 4 figs.

  11. Water geochemistry and hydrogeology of the shallow aquifer at Roosevelt Hot Springs, southern Utah: A hot dry rock prospect

    SciTech Connect (OSTI)

    Vuataz, F.D.; Goff, F.

    1987-12-01

    On the western edge of the geothermal field, three deep holes have been drilled that are very hot but mostly dry. Two of them (Phillips 9-1 and Acord 1-26 wells) have been studied by Los Alamos National Laboratory for the Hot Dry Rock (HDR) resources evaluation program. A review of data and recommendations have been formulated to evaluate the HDR geothermal potential at Roosevelt. The present report is directed toward the study of the shallow aquifer of the Milford Valley to determine if the local groundwater would be suitable for use as make-up water in an HDR system. This investigation is the result of a cooperative agreement between Los Alamos and Phillips Petroleum Co., formerly the main operator of the Roosevelt Hot Springs Unit. The presence of these hot dry wells and the similar setting of the Roosevelt area to the prototype HDR site at Fenton Hill, New Mexico, make Roosevelt a very good candidate site for creation of another HDR geothermal system. This investigation has two main objectives: to assess the water geochemistry of the valley aquifer, to determine possible problems in future make-up water use, such as scaling or corrosion in the wells and surface piping, and to assess the hydrogeology of the shallow groundwaters above the HDR zone, to characterize the physical properties of the aquifer. These two objectives are linked by the fact that the valley aquifer is naturally contaminated by geothermal fluids leaking out of the hydrothermal reservoir. In an arid region where good-quality fresh water is needed for public water supply and irrigation, nonpotable waters would be ideal for an industrial use such as injection into an HDR energy extraction system. 50 refs., 10 figs., 10 tabs.

  12. Fresh Water Generation from Aquifer-Pressured Carbon Storage: Annual Report FY09

    SciTech Connect (OSTI)

    Wolery, T; Aines, R; Hao, Y; Bourcier, W; Wolfe, T; Haussman, C

    2009-11-25

    This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including reverse osmosis (RO) and nanofiltration (NF). The aquifer pressure resulting from the energy required to inject the carbon dioxide provides all or part of the inlet pressure for the desalination system. Residual brine is reinjected into the formation at net volume reduction, such that the volume of fresh water extracted balances the volume of CO{sub 2} injected into the formation. This process provides additional CO{sub 2} storage capacity in the aquifer, reduces operational risks (cap-rock fracturing, contamination of neighboring fresh water aquifers, and seismicity) by relieving overpressure in the formation, and provides a source of low-cost fresh water to offset costs or operational water needs. This multi-faceted project combines elements of geochemistry, reservoir engineering, and water treatment engineering. The range of saline formation waters is being identified and analyzed. Computer modeling and laboratory-scale experimentation are being used to examine mineral scaling and osmotic pressure limitations. Computer modeling is being used to evaluate processes in the storage aquifer, including the evolution of the pressure field. Water treatment costs are being evaluated by comparing the necessary process facilities to those in common use for seawater RO. There are presently limited brine composition data available for actual CCS sites by the site operators including in the U.S. the seven regional Carbon Sequestration Partnerships (CSPs). To work around this, we are building a 'catalog' of compositions representative of 'produced' waters (waters produced in the course of seeking or producing oil and gas), to which we are adding data from actual CCS sites as they become available. Produced waters comprise the most common examples of saline

  13. Method for isolating two aquifers in a single borehole

    DOE Patents [OSTI]

    Burklund, Patrick W.

    1985-10-22

    A method for isolating and individually instrumenting separate aquifers within a single borehole. A borehole is first drilled from the ground surface, through an upper aquifer, and into a separating confining bed. A casing, having upper and lower sections separated by a coupling collar, is lowered into the borehole. The borehole is grouted in the vicinity of the lower section of the casing. A borehole is then drilled through the grout plug and into a lower aquifer. After the lower aquifer is instrumented, the borehole is grouted back into the lower portion of the casing. Then the upper section of the casing is unscrewed via the coupling collar and removed from the borehole. Finally, instrumentation is added to the upper aquifer and the borehole is appropriately grouted. The coupling collar is designed to have upper right-hand screw threads and lower left-hand screw thread, whereby the sections of the casing can be readily separated.

  14. Method for isolating two aquifers in a single borehole

    DOE Patents [OSTI]

    Burklund, P.W.

    1984-01-20

    A method for isolating and individually instrumenting separate aquifers within a single borehole is disclosed. A borehole is first drilled from the ground surface, through an upper aquifer, and into a separating confining bed. A casing, having upper and lower sections separated by a coupling collar, is lowered into the borehole. The borehole is grouted in the vicinity of the lower section of the casing. A borehole is then drilled through the grout plug and into a lower aquifer. After the lower aquifer is instrumented, the borehole is grouted back into the lower portion of the casing. Then the upper section of the casing is unscrewed via the coupling collar and removed from the borehole. Finally, instrumentation is added to the upper aquifer and the borehole is appropriately grouted. The coupling collar is designed to have upper right-hand screw threads and lower left-hand screw thread, whereby the sections of the casing can be readily separated.

  15. Tracer advection by steady groundwater flow in a stratified aquifer

    SciTech Connect (OSTI)

    Sposito, Garrison; Weeks, Scott W.

    1997-01-02

    The perfectly stratified aquifer has often been investigated as a simple, tractable model for exploring new theoretical issues in subsurface hydrology. Adopting this approach, we show that steady groundwater flows in the perfectly stratified aquifer are always confined to a set of nonintersecting permanent surfaces, on which both streamlines and vorticity lines lie. This foliation of the flow domain exists as well for steady groundwater flows in any isotropic, spatially heterogeneous aquifer. In the present model example it is a direct consequence of the existence of a stream function, we then demonstrate that tracer plume advection by steady groundwater flow in a perfectly stratified aquifer is never ergodic, regardless of the initial size of the tracer plume. This nonergodicity, which holds also for tracer advection in any isotropic, spatially heterogeneous aquifer, implies that stochastic theories of purely advective tracer plume movement err in assuming ergodic behavior to simplify probabilistic calculations of plume spatial concentration moments.

  16. Optimizing multiphase aquifer remediation using ITOUGH2

    SciTech Connect (OSTI)

    Finsterle, S.; Pruess, K.

    1994-06-01

    The T2VOC computer model for simulating the transport of organic chemical contaminants in non-isothermal multiphase systems has been coupled to the ITOUGH2 code which solves parameter optimization problems. This allows one to use nonlinear programming and simulated annealing techniques to solve groundwater management problems, i.e. the optimization of multiphase aquifer remediation. This report contains three illustrative examples to demonstrate the optimization of remediation operations by means of simulation-minimization techniques. The code iteratively determines an optimal remediation strategy (e.g. pumping schedule) which minimizes, for instance, pumping and energy costs, the time for cleanup, and residual contamination. While minimizing the objective function is straightforward, the relative weighting of different performance measures--e.g. pumping costs versus cleanup time versus residual contaminant content--is subject to a management decision process. The intended audience of this report is someone who is familiar with numerical modeling of multiphase flow of contaminants, and who might actually use T2VOC in conjunction with ITOUGH2 to optimize the design of aquifer remediation operations.

  17. Evaluating Impacts of CO2 and CH4 Gas Intrusion into an Unconsolidated Aquifer: Fate of As and Cd

    SciTech Connect (OSTI)

    Lawter, Amanda R.; Qafoku, Nikolla; Shao, Hongbo; Bacon, Diana H.; Brown, Christopher F.

    2015-07-10

    Abstract The sequestration of carbon dioxide (CO2) in deep underground reservoirs has been identified as an important strategy to decrease atmospheric CO2 levels and mitigate global warming, but potential risks on overlying aquifers currently lack a complete evaluation. In addition to CO2, other gases such as methane (CH4) may be present in storage reservoirs. This paper explores for the first time the combined effect of leaking CO2 and CH4 gasses on the fate of major, minor and trace elements in an aquifer overlying a potential sequestration site. Emphasis is placed on the fate of arsenic (As) and cadmium (Cd) released from the sediments or present as soluble constituents in the leaking brine. Results from macroscopic batch and column experiments show that the presence of CH4 (at a concentration of 1 % in the mixture CO2/CH4) does not have a significant effect on solution pH or the concentrations of most major elements (such as Ca, Ba, and Mg). However, the concentrations of Mn, Mo, Si and Na are inconsistently affected by the presence of CH4 (i.e., in at least one sediment tested in this study). Cd is not released from the sediments and spiked Cd is mostly removed from the aqueous phase most likely via adsorption. The fate of sediment associated As [mainly sorbed arsenite or As(III) in minerals] and spiked As [i.e., As5+] is complex. Possible mechanisms that control the As behavior in this system are discussed in this paper. Results are significant for CO2 sequestration risk evaluation and site selection and demonstrate the importance of evaluating reservoir brine and gas stream composition during site selection to ensure the safest site is being chosen.

  18. Skimming' a reservoir for trash

    SciTech Connect (OSTI)

    Shenman, L.E. )

    1993-02-01

    Several hydropower facilities are using a new technology for removing floating trash in reservoirs. Representatives from the facilities say the boat, called a trashskimmer, is efficient, easy to maneuver, and transportable. Designed by United Marine International, Inc., the pontoon boat features an operators cab that straddles an open hull between the skis of the pontoon, and uses dual propellers to maneuver through the water. The Marineskimmer allows the operator to approach the trash from the water side upstream of the plant. The Tennessee Valley Authority has used the boat since 1990.

  19. Hydrological, geochemical, and ecological characterization of Kesterson Reservoir

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    This report describes Kesterson Reservoir related research activities carried out under a cooperative program between Lawrence Berkeley Laboratory and the Division of Agriculture and Natural Resources at the University of California during FY89. The primary objectives of these investigations are: Predict the extent, probability of the occurrence, and selenium concentrations in surface water of temporary wetland habitat at Kesterson; assess rates and direction of migration of the drainage water plume that seeped into the aquifer under Kesterson; monitor and predict changes in quantity and speciation of selenium in surface soils and vadose zone pore-waters; and develop a comprehensive strategy through soil, water, and vegetation management to safely dissipate the high concentrations of selenium accumulated in Kesterson soils. This report provides an up-date on progress made in each of these areas. Chapter 2 describes results of recent investigations of water table fluctuations and plume migration. Chapter 3 describes results of ongoing monitoring of soil water selenium concentrations and evaporative accumulation of selenium at the soil surface. Chapter 4 describes early results from the soil, water, and vegetation management field trials as well as supporting laboratory and theoretical studies. In Chapter 5, new analytical methods for selenium speciation are described and quality assurance/quality control statistics for selenium and boron are provided. 110 refs., 138 figs., 62 tabs.

  20. An Advanced Fracture Characterization and Well Path Navigation System for Effective Re-Development and Enhancement of Ultimate Recovery from the Complex Monterey Reservoir of South Ellwood Field, Offshore California

    SciTech Connect (OSTI)

    Steve Horner

    2006-01-31

    Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the

  1. AN ADVANCED FRACTURE CHARACTERIZATION AND WELL PATH NAVIGATION SYSTEM FOR EFFECTIVE RE-DEVELOPMENT AND ENHANCEMENT OF ULTIMATE RECOVERY FROM THE COMPLEX MONTEREY RESERVOIR OF SOUTH ELLWOOD FIELD, OFFSHORE CALIFORNIA

    SciTech Connect (OSTI)

    Steve Horner

    2005-08-01

    Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the

  2. Analysis of Geothermal Reservoir Stimulation Using Geomechanics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis of Geothermal Reservoir Stimulation Using Geomechanics-based Stochastic Analysis of Injection-induced Seismicity; 2010 Geothermal Technology Program Peer Review Report ...

  3. Hydrothermal Convection Systems with Reservoir Temperatures greater...

    Open Energy Info (EERE)

    Systems with Reservoir Temperatures greater than or equal to 90 degrees C Authors Brook, Mariner, Mabey, Swanson, Guffanti and Muffler Published Journal Assessment of...

  4. Geothermometry At Blackfoot Reservoir Area (Hutsinpiller & Parry...

    Open Energy Info (EERE)

    Activity Details Location Blackfoot Reservoir Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown References Amy Hutsinpiller, W. T....

  5. Evaluation Of Chemical Geothermometers For Calculating Reservoir...

    Open Energy Info (EERE)

    Geothermometers For Calculating Reservoir Temperatures At Nevada Geothermal Power Plants Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

  6. Storage capacity in hot dry rock reservoirs

    DOE Patents [OSTI]

    Brown, Donald W.

    1997-01-01

    A method of extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid

  7. Characterization of Fractures in Geothermal Reservoirs Using...

    Open Energy Info (EERE)

    Abstract The optimal design of production in fractured geothermal reservoirs requires knowledge of the resource's connectivity, therefore making fracture characterization highly...

  8. Modeling of Geothermal Reservoirs: Fundamental Processes, Computer...

    Open Energy Info (EERE)

    of Geothermal Reservoirs: Fundamental Processes, Computer Simulation and Field Applications Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  9. International reservoir operations agreement helps NW fish &...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    or 503-230-5131 International reservoir operations agreement helps Northwest fish and power Portland, Ore. - The Bonneville Power Administration and the British Columbia...

  10. Precise Gravimetry and Geothermal Reservoir Management | Open...

    Open Energy Info (EERE)

    Precise Gravimetry and Geothermal Reservoir Management Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Precise Gravimetry and Geothermal...

  11. Analysis of Geothermal Reservoir Stimulation using Geomechanics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geomechanics-Based Stochastic Analysis of Injection-Induced Seismicity Analysis of Geothermal Reservoir Stimulation using Geomechanics-Based Stochastic Analysis of ...

  12. 201202 Reservoir System Modeling Technologies Conference

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling Applied To The Columbia River - PSR Adjoint Modeling Framework for Real-Time Control of Water - Deltares Reservoir Operations Analysis in the Willamette Water 2100...

  13. Geothermal reservoirs in hydrothermal convection systems

    SciTech Connect (OSTI)

    Sorey, M.L.

    1982-01-01

    Geothermal reservoirs commonly exist in hydrothermal convection systems involving fluid circulation downward in areas of recharge and upwards in areas of discharge. Because such reservoirs are not isolated from their surroundings, the nature of thermal and hydrologic connections with the rest of the system may have significant effects on the natural state of the reservoir and on its response to development. Conditions observed at numerous developed and undeveloped geothermal fields are discussed with respect to a basic model of the discharge portion of an active hydrothermal convection system. Effects of reservoir development on surficial discharge of thermal fluid are also delineated.

  14. Source Term Modeling for Evaluating the Potential Impacts to Groundwater of Fluids Escaping from a Depleted Oil Reservoir Used for Carbon Sequestration

    SciTech Connect (OSTI)

    Cantrell, Kirk J.; Brown, Christopher F.

    2014-06-13

    dissolves into the vapor phase. As the vapor phase moves up through the stratigraphic column, pressures and temperatures decrease, resulting in significant condensation of oil components. The heaviest organic components condense early in this process (at higher pressures and temperatures), while the lighter components tend to remain in the vapor phase until much lower pressures and temperatures are reached. Based on the model assumptions, the final concentrations of COI to reach an aquifer at 1,520 kPa and 25°C were quite significant for benzene and toluene, whereas the concentrations of polynuclear aromatic hydrocarbons that reach the aquifer were very small. This work demonstrates a methodology that can provide COI source term concentrations in CO2 leaking from a reservoir and entering an overlying aquifer for use in risk assessments.

  15. Reservoir Engineering for Unconventional Gas Reservoirs: What Do We Have to Consider?

    SciTech Connect (OSTI)

    Clarkson, Christopher R

    2011-01-01

    The reservoir engineer involved in the development of unconventional gas reservoirs (UGRs) is required to integrate a vast amount of data from disparate sources, and to be familiar with the data collection and assessment. There has been a rapid evolution of technology used to characterize UGR reservoir and hydraulic fracture properties, and there currently are few standardized procedures to be used as guidance. Therefore, more than ever, the reservoir engineer is required to question data sources and have an intimate knowledge of evaluation procedures. We propose a workflow for the optimization of UGR field development to guide discussion of the reservoir engineer's role in the process. Critical issues related to reservoir sample and log analysis, rate-transient and production data analysis, hydraulic and reservoir modeling and economic analysis are raised. Further, we have provided illustrations of each step of the workflow using tight gas examples. Our intent is to provide some guidance for best practices. In addition to reviewing existing methods for reservoir characterization, we introduce new methods for measuring pore size distribution (small-angle neutron scattering), evaluating core-scale heterogeneity, log-core calibration, evaluating core/log data trends to assist with scale-up of core data, and modeling flow-back of reservoir fluids immediately after well stimulation. Our focus in this manuscript is on tight and shale gas reservoirs; reservoir characterization methods for coalbed methane reservoirs have recently been discussed.

  16. THMC Modeling of EGS Reservoirs …Continuum through Discontinuum

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Representations: Capturing Reservoir Stimulation, Evolution and Induced Seismicity | Department of Energy THMC Modeling of EGS Reservoirs …Continuum through Discontinuum Representations: Capturing Reservoir Stimulation, Evolution and Induced Seismicity THMC Modeling of EGS Reservoirs …Continuum through Discontinuum Representations: Capturing Reservoir Stimulation, Evolution and Induced Seismicity This research will develop a thorough understanding of complex THMC interactions through

  17. Increasing Waterflooding Reservoirs in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management

    SciTech Connect (OSTI)

    Clarke, Don; Koerner, Roy; Moos, Dan; Nguyen, John; Phillips, Chris; Tagbor, Kwasi; Walker, Scott

    1999-11-09

    The objectives of this quarterly report are to summarize the work conducted under each task during the reporting period July - September 1998 and to report all technical data and findings as specified in the ''Federal Assistance Reporting Checklist''. The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology.

  18. Increasing Waterflooding Reservoirs in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management

    SciTech Connect (OSTI)

    Koerner, Roy; Clarke, Don; Walker, Scott

    1999-11-09

    The objectives of this quarterly report was to summarize the work conducted under each task during the reporting period April - June 1998 and to report all technical data and findings as specified in the ''Federal Assistance Reporting Checklist''. The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology.

  19. Modeling cross-hole slug tests in an unconfined aquifer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Malama, Bwalya; Kuhlman, Kristopher L.; Brauchler, Ralf; Bayer, Peter

    2016-06-28

    Cross-hole slug test date are analyzed with an extended version of a recently published unconfined aquifer model accounting for waterable effects using the linearized kinematic condition. The use of cross-hole slug test data to characterize aquifer heterogeneity and source/observation well oscillation parameters is evaluated. The data were collected in a series of multi-well and multi-level pneumatic slug tests conducted at a site in Widen, Switzerland. Furthermore, the tests involved source and observation well pairs separated by distances of up to 4 m, and instrumented with pressure transducers to monitor aquifer response in discrete intervals.

  20. The integration of geochemical, geological and engineering data to determine reservoir continuity in the Iagifu-Hedinia field, Papua New Guinea

    SciTech Connect (OSTI)

    Kaufman, R.L.; Eisenberg, L.I.; Fitzmorris, R.E.

    1995-08-01

    A series of oil and gas fields, including Iagifu-Hedinia, occur along the leading edge of the Papuan fold and thrust belt. Formed during Pliocene to Recent compression, they are structurally complex, and typically broken into multiple reservoir compartments. The presence of the karstic Darai Limestone at the surface over most of the fold belt prevents acquisition of useful seismic data. Reservoir mapping, and establishment of reservoir continuity, is therefore based soley on (1) surface geologic data, (2) drilling data; initially dipmeter and RFT pressure data, and subsequently well production histories, and (3) geochemical correlation of reservoir fluids. During appraisal of the Iagifu-Hedinia discovery, these complimentary data sets demonstrated that (1) a single hydrocarbon column existed above a flowing aquifer in the main block of Iagifu-Hedinia field, (2) a separate acuumulation existed in the Usano area. Geochemical data have suggested the presence of reservoir compartments where other data were missing or inconclusive. Subsequently-acquired production history data have confirmed the geochemically-based interpretations. Geochemical data suggest that oils at Iagifu-Hedinia have a common source. The slight differences in oil composition between reservoirs are likely due to multiple phases of expulsion from the same source rock and/or migration-fractionation.

  1. Reservoir facies architecture of microtidal barrier systems

    SciTech Connect (OSTI)

    Galloway, W.E.

    1986-06-01

    Sandstone reservoirs deposited in microtidal barrier systems contain large oil and gas reserves in several Gulf Coast basin plays. Three representative Frio Sandstone reservoirs in West Ranch field show that barrier-island sand bodies are complex mosaics of barrier-core, inlet-fill, flood-tidal-delta, washover-fan, barrier-flat, and shoreface facies. The proportions of these facies differ within progradational, aggradational, and transgressive barrier sand bodies. The 41-A reservoir is a progradational barrier sand body. The most important producing facies include the barrier core and crosscutting inlet fill. Permeability and distributions of irreducible water saturation reveal depositional patterns and subdivisions of the sand body into numerous facies-controlled compartments. Both original hydrocarbon saturation and irregularities in water encroachment show that the facies compartments locally affect fluid movement within the reservoir. The Greta reservoir is an aggradational barrier complex. This massive sand body consists of intermixed barrier-core and inlet-fill units. Prominent resistivity compartments are dip oriented, indicating the importance of inlet development during barrier aggradation. Despite the uniform appearance of the Greta reservoir, water encroachment has been irregular. The Glasscock reservoir is characterized by comparatively low permeability and is an atypically thin and discontinuous Frio reservoir. It is interpreted to be a transgressive barrier deposit that consists mainly of large washover-fan and associated barrier-flat sands. Hydrocarbon saturation, drainage, and injection response all reflect the facies geometry typical of a transgressive barrier complex.

  2. Economics of Developing Hot Stratigraphic Reservoirs

    SciTech Connect (OSTI)

    Greg Mines; Hillary Hanson; Rick Allis; Joseph Moore

    2014-09-01

    Stratigraphic geothermal reservoirs at 3 – 4 km depth in high heat-flow basins are capable of sustaining 100 MW-scale power plants at about 10 c/kWh. This paper examines the impacts on the levelized cost of electricity (LCOE) of reservoir depth and temperature, reservoir productivity, and drillhole/casing options. For a reservoir at 3 km depth with a moderate productivity index by hydrothermal reservoir standards (about 50 L/s/MPa, 5.6 gpm/psi), an LCOE of 10c/kWh requires the reservoir to be at about 200°C. This is the upper temperature limit for pumps. The calculations assume standard hydrothermal drilling costs, with the production interval completed with a 7 inch liner in an 8.5 inch hole. If a reservoir at 4 km depth has excellent permeability characteristics with a productivity index of 100 L/s/MPa (11.3 gpm/psi), then the LCOE is about 11 c/kWh assuming the temperature decline rate with development is not excessive (< 1%/y, with first thermal breakthrough delayed by about 10 years). Completing wells with modest horizontal legs (e.g. several hundred meters) may be important for improving well productivity because of the naturally high, sub-horizontal permeability in this type of reservoir. Reducing the injector/producer well ratio may also be cost-effective if the injectors are drilled as larger holes.

  3. Water resources review: Wheeler Reservoir, 1990

    SciTech Connect (OSTI)

    Wallus, R.; Cox, J.P.

    1990-09-01

    Protection and enhancement of water quality is essential for attaining the full complement of beneficial uses of TVA reservoirs. The responsibility for improving and protecting TVA reservoir water quality is shared by various federal, state, and local agencies, as well as the thousands of corporations and property owners whose individual decisions affect water quality. TVA's role in this shared responsibility includes collecting and evaluating water resources data, disseminating water resources information, and acting as a catalyst to bring together agencies and individuals that have a responsibility or vested interest in correcting problems that have been identified. This report is one in a series of status reports that will be prepared for each of TVA's reservoirs. The purpose of this status report is to provide an up-to-date overview of the characteristics and conditions of Wheeler Reservoir, including: reservoir purposes and operation; physical characteristics of the reservoir and the watershed; water quality conditions: aquatic biological conditions: designated, actual, and potential uses of the reservoir and impairments of those uses; ongoing or planned reservoir management activities. Information and data presented here are form the most recent reports, publications, and original data available. 21 refs., 8 figs., 29 tabs.

  4. Increasing Waterflood Reserves in the Wilmington Oil Field Through Reservoir Characterization and Reservoir Management

    SciTech Connect (OSTI)

    Chris Phillips; Dan Moos; Don Clarke; John Nguyen; Kwasi Tagbor; Roy Koerner; Scott Walker

    1997-04-10

    This project is intended to increase recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project.

  5. Development of Reservoir Characterization Techniques and Production Models for Exploiting Naturally Fractured Reservoirs

    SciTech Connect (OSTI)

    Wiggins, Michael L.; Brown, Raymon L.; Civan, Faruk; Hughes, Richard G.

    2003-02-11

    This research was directed toward developing a systematic reservoir characterization methodology which can be used by the petroleum industry to implement infill drilling programs and/or enhanced oil recovery projects in naturally fractured reservoir systems in an environmentally safe and cost effective manner. It was anticipated that the results of this research program will provide geoscientists and engineers with a systematic procedure for properly characterizing a fractured reservoir system and a reservoir/horizontal wellbore simulator model which can be used to select well locations and an effective EOR process to optimize the recovery of the oil and gas reserves from such complex reservoir systems.

  6. EIA - Natural Gas Pipeline Network - Depleted Reservoir Storage

    U.S. Energy Information Administration (EIA) Indexed Site

    Configuration Depleted Reservoir Storage Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Depleted Production Reservoir Underground Natural Gas Storage Well Configuration Depleted Production Reservoir Storage

  7. The Potosi Reservoir Model 2013

    SciTech Connect (OSTI)

    Adushita, Yasmin; Smith, Valerie; Leetaru, Hannes

    2014-09-30

    As a part of a larger project co-funded by the United States Department of Energy (US DOE) to evaluate the potential of formations within the Cambro-Ordovician strata above the Mt. Simon as potential targets for carbon sequestration in the Illinois and Michigan Basins, the Illinois Clean Coal Institute (ICCI) requested Schlumberger to evaluate the potential injectivity and carbon dioxide (CO2) plume size of the Cambrian Potosi Formation. The evaluation of this formation was accomplished using wireline data, core data, pressure data, and seismic data from the US DOE-funded Illinois Basin–Decatur Project (IBDP) being conducted by the Midwest Geological Sequestration Consortium in Macon County, Illinois. In 2010, technical performance evaluations on the Cambrian Potosi Formation were performed through reservoir modeling. The data included formation tops from mud logs, well logs from the VW1 and the CCS1 wells, structural and stratigraphic formation from three dimensional (3D) seismic data, and field data from several waste water injection wells for Potosi Formation. Intention was for two million tons per annum (MTPA) of CO2 to be injected for 20 years. In the preceding, the 2010 Potosi heterogeneous model (referred to as the "Potosi Dynamic Model 2010" in this topical report) was re-run using a new injection scenario; 3.2 MTPA for 30 years. The extent of the Potosi Dynamic Model 2010, however, appeared too small for the new injection target. It was not sufficiently large enough to accommodate the evolution of the plume. The new model, Potosi Dynamic Model 2013a, was built by extending the Potosi Dynamic Model 2010 grid to 30 miles x 30 miles (48.3km x48.3km), while preserving all property modeling workflows and layering. This model was retained as the base case of Potosi Dynamic Model 2013a. The Potosi reservoir model was updated to take into account the new data from the verification well VW2 which was drilled in 2012. The new porosity and permeability modeling was

  8. Simulation analysis of the unconfined aquifer, Raft River Geothermal...

    Open Energy Info (EERE)

    analysis of the unconfined aquifer, Raft River Geothermal Area, Idaho-Utah Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Simulation analysis of the...

  9. Sole Source Aquifer Protection Program (EPA) | Department of...

    Office of Environmental Management (EM)

    Sole Source Aquifer Protection Program (EPA) Section 1424(e) of the Safe Drinking Water Act of 1974 (Public Law 93-523, 42 U.S.C. 300 et. seq) authorizes the U.S. Environmental ...

  10. Appendix B Surface Infiltration and Aquifer Test Data

    Office of Legacy Management (LM)

    B Surface Infiltration and Aquifer Test Data This page intentionally left blank ... 1000 1100 1200 1300 1400 TIME (MIN) INF-8 TEST I 300 400 TIME (MIN) INF-8 TEST 2 200 250 ...

  11. Underground helium travels to the Earth's surface via aquifers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tweet EmailPrint Before it can put the party in party balloons, helium is carried from deep within the Earth's crust to the surface via aquifers, according to new research...

  12. Geophysical Monitoring of Ground Surface Deformation Associated with a Confined Aquifer Storage and Recovery Operation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bonneville, Alain; Heggy, Essam; Strickland, Christopher E.; Normand, Jonathan; Dermond, Jeffrey A.; Fang, Yilin; Sullivan, E. C.

    2015-08-11

    A main issue in the storage of large volumes of fluids, mainly water and CO2, in the deep subsurface is to determine their field-scale-induced displacements and consequences on the mechanical behavior of the storage reservoir and surroundings. A quantifiable estimation of displacement can be made by combining the robust, cost-effective, and repeatable geophysical techniques of micro-gravimetry, differential global positioning system (DGPS), and differential synthetic aperture radar interferometry (DInSAR). These techniques were field tested and evaluated in an active large-volume aquifer storage and recovery (ASR) project in Pendleton, Oregon, USA, where three ASR wells are injecting up to 1.9 million m3/yr-1more » into basalt aquifers to a depth of about 150 m. Injection and recovery of water at the wells was accompanied by significant gravity anomalies and vertical deformation of the ground surface localized to the immediate surroundings of the injection wells as evidenced by DGPS and gravity measurements collected in 2011. At a larger scale, and between 2011 and 2013, DInSAR monitoring of the Pendleton area suggests the occurrence of sub-centimetric deformation in the western part of the city and close to the injection locations associated with the ASR cycle. A numerical simulation of the effect of the water injection gives results in good agreement with the observations and confirms the validity of the approach, which could be deployed in similar geological contexts to look at the mechanical effects of water and gas injections. The gravity signal reflects deep phenomena and gives additional insight into the repartition of fluids in the subsurface.« less

  13. Geophysical Monitoring of Ground Surface Deformation Associated with a Confined Aquifer Storage and Recovery Operation

    SciTech Connect (OSTI)

    Bonneville, Alain; Heggy, Essam; Strickland, Christopher E.; Normand, Jonathan; Dermond, Jeffrey A.; Fang, Yilin; Sullivan, E. C.

    2015-08-11

    A main issue in the storage of large volumes of fluids, mainly water and CO2, in the deep subsurface is to determine their field-scale-induced displacements and consequences on the mechanical behavior of the storage reservoir and surroundings. A quantifiable estimation of displacement can be made by combining the robust, cost-effective, and repeatable geophysical techniques of micro-gravimetry, differential global positioning system (DGPS), and differential synthetic aperture radar interferometry (DInSAR). These techniques were field tested and evaluated in an active large-volume aquifer storage and recovery (ASR) project in Pendleton, Oregon, USA, where three ASR wells are injecting up to 1.9 million m3/yr-1 into basalt aquifers to a depth of about 150 m. Injection and recovery of water at the wells was accompanied by significant gravity anomalies and vertical deformation of the ground surface localized to the immediate surroundings of the injection wells as evidenced by DGPS and gravity measurements collected in 2011. At a larger scale, and between 2011 and 2013, DInSAR monitoring of the Pendleton area suggests the occurrence of sub-centimetric deformation in the western part of the city and close to the injection locations associated with the ASR cycle. A numerical simulation of the effect of the water injection gives results in good agreement with the observations and confirms the validity of the approach, which could be deployed in similar geological contexts to look at the mechanical effects of water and gas injections. The gravity signal reflects deep phenomena and gives additional insight into the repartition of fluids in the subsurface.

  14. Evaluation of Reservoir Wettability and its Effect on Oil Recovery...

    Office of Scientific and Technical Information (OSTI)

    Evaluation of Reservoir Wettability and its Effect on Oil Recovery. Citation Details In-Document Search Title: Evaluation of Reservoir Wettability and its Effect on Oil Recovery. ...

  15. Dispersed Fluid Flow in Fractured Reservoirs- an Analysis of...

    Open Energy Info (EERE)

    Reservoirs- an Analysis of Tracer-Determined Residence Time Distributions Abstract A methodology for analyzing the internal flow characteristics of a fractured geothermal reservoir...

  16. Update on the Raft River Geothermal Reservoir | Open Energy Informatio...

    Open Energy Info (EERE)

    the Raft River Geothermal Reservoir Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Update on the Raft River Geothermal Reservoir...

  17. Deep Geothermal Reservoir Temperatures in the Eastern Snake River...

    Office of Scientific and Technical Information (OSTI)

    Geothermal Reservoir Temperatures in the Eastern Snake River Plain, Idaho using Multicomponent Geothermometry Citation Details In-Document Search Title: Deep Geothermal Reservoir ...

  18. An Updated Conceptual Model Of The Los Humeros Geothermal Reservoir...

    Open Energy Info (EERE)

    Humeros Geothermal Reservoir (Mexico) Abstract An analysis of production and reservoir engineering data of 42 wells from the Los Humeros geothermal field (Mexico) allowed...

  19. Geysers Hi-T Reservoir Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Geysers Hi-T Reservoir Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geysers Hi-T Reservoir Geothermal Area Contents 1 Area Overview 2 History and...

  20. Flow and Thermal Behavior of an EGS Reservoir - Geothermal Code...

    Office of Scientific and Technical Information (OSTI)

    of an EGS Reservoir - Geothermal Code Comparison Study Citation Details In-Document Search Title: Flow and Thermal Behavior of an EGS Reservoir - Geothermal Code Comparison Study ...

  1. Two-dimensional simulation of the Raft River geothermal reservoir...

    Open Energy Info (EERE)

    of the Raft River geothermal reservoir and wells. (SINDA-3G program) Abstract Computer models describing both the transient reservoir pressure behavior and the time...

  2. Monitoring and Modeling Fluid Flow in a Developing EGS Reservoir...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EGS Reservoir Monitoring and Modeling Fluid Flow in a Developing EGS Reservoir Project ... More Documents & Publications Imaging, Characterizing, and Modeling of Fracture Networks ...

  3. Property:USGSMeanReservoirTemp | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Property Name USGSMeanReservoirTemp Property Type Temperature Description Mean estimated reservoir temperature at location based on the USGS 2008 Geothermal...

  4. Sustainability of Shear-Induced Permeability for EGS Reservoirs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainability of Shear-Induced Permeability for EGS Reservoirs A Laboratory Study Sustainability of Shear-Induced Permeability for EGS Reservoirs A Laboratory Study ...

  5. North Dakota Dry Natural Gas New Reservoir Discoveries in Old...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) North Dakota Dry Natural Gas ... Dry Natural Gas New Reservoir Discoveries in Old Fields North Dakota Dry Natural Gas ...

  6. ,"West Virginia Crude Oil Reserves in Nonproducing Reservoirs...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","West Virginia Crude Oil Reserves in Nonproducing Reservoirs ... to Contents","Data 1: West Virginia Crude Oil Reserves in Nonproducing Reservoirs ...

  7. ,"Miscellaneous States Crude Oil Reserves in Nonproducing Reservoirs...

    U.S. Energy Information Administration (EIA) Indexed Site

    for" ,"Data 1","Miscellaneous States Crude Oil Reserves in Nonproducing Reservoirs ... Contents","Data 1: Miscellaneous States Crude Oil Reserves in Nonproducing Reservoirs ...

  8. Producing Light Oil from a Frozen Reservoir: Reservoir and Fluid Characterization of Umiat Field, National Petroleum Reserve, Alaska

    SciTech Connect (OSTI)

    Hanks, Catherine

    2012-12-31

    surface locations with a wagon-wheel pattern of multilateral injectors and producers. There is no active aquifer support due to small peizometric head in the area and no existing gas cap, so an alternative method of pressure support is needed. Cold gas injection was used in the simulations as it is considered the most viable means of providing pressure maintenance while maintaining wellbore stability and reducing impact on the permafrost. Saline water injection may be a viable alternative, though this may have a detrimental effect on permafrost. In the short term, the results of this work are being incorporated into Linc Energy’s drilling and development plan. This project has also provided valuable information on the rock and fluid properties of low temperature reservoirs as well as the efficacy of potential production techniques for Umiat or similar shallow frozen reservoirs in the circum-Arctic.

  9. Mobilization and Transport of Organic Compounds from Reservoir Rock and Caprock in Geological Carbon Sequestration Sites

    SciTech Connect (OSTI)

    Zhong, Lirong; Cantrell, Kirk J.; Mitroshkov, Alexandre V.; Shewell, Jesse L.

    2014-05-06

    Supercritical CO2 (scCO2) is an excellent solvent for organic compounds, including benzene, toluene, ethyl-benzene, and xylene (BTEX), phenols, and polycyclic aromatic hydrocarbons (PAHs). Monitoring results from geological carbon sequestration (GCS) field tests has shown that organic compounds are mobilized following CO2 injection. Such results have raised concerns regarding the potential for groundwater contamination by toxic organic compounds mobilized during GCS. Knowledge of the mobilization mechanism of organic compounds and their transport and fate in the subsurface is essential for assessing risks associated with GCS. Extraction tests using scCO2 and methylene chloride (CH2Cl2) were conducted to study the mobilization of volatile organic compounds (VOCs, including BTEX), the PAH naphthalene, and n-alkanes (n-C20 – n-C30) by scCO2 from representative reservoir rock and caprock obtained from depleted oil reservoirs and coal from an enhanced coal-bed methane recovery site. More VOCs and naphthalene were extractable by scCO2 compared to the CH2Cl2 extractions, while scCO2 extractable alkane concentrations were much lower than concentrations extractable by CH2Cl2. In addition, dry scCO2 was found to extract more VOCs than water saturated scCO2, but water saturated scCO2 mobilized more naphthalene than dry scCO2. In sand column experiments, moisture content was found to have an important influence on the transport of the organic compounds. In dry sand columns the majority of the compounds were retained in the column except benzene and toluene. In wet sand columns the mobility of the BTEX was much higher than that of naphthalene. Based upon results determined for the reservoir rock, caprock, and coal samples studied here, the risk to aquifers from contamination by organic compounds appears to be relatively low; however, further work is necessary to fully evaluate risks from depleted oil reservoirs.

  10. Performance testing the Phase 2 HDR reservoir

    SciTech Connect (OSTI)

    Ponden, R.F.; Dreesen, D.S. ); Thomson, J.C. )

    1991-01-01

    The geothermal energy program at the Los Alamos National Laboratory is directed toward developing the Hot Dry Rock (HDR) technology as an alternate energy source. Positive results have been obtained in previous circulation tests of HDR reservoirs at the Laboratory's test site in Fenton Hill, New Mexico. There still remains however, the need to demonstrate that adequate geothermal energy can be extracted in an efficient manner to support commercial power production. This year, the Laboratory will begin a circulation test of its Phase 2, reservoir. The objectives of this test are to characterize steady-state power production and long-term reservoir performance. 6 refs., 2 figs., 3 tabs.

  11. Preliminary formation analysis for compressed air energy storage in depleted natural gas reservoirs : a study for the DOE Energy Storage Systems Program.

    SciTech Connect (OSTI)

    Gardner, William Payton

    2013-06-01

    The purpose of this study is to develop an engineering and operational understanding of CAES performance for a depleted natural gas reservoir by evaluation of relative permeability effects of air, water and natural gas in depleted natural gas reservoirs as a reservoir is initially depleted, an air bubble is created, and as air is initially cycled. The composition of produced gases will be evaluated as the three phase flow of methane, nitrogen and brine are modeled. The effects of a methane gas phase on the relative permeability of air in a formation are investigated and the composition of the produced fluid, which consists primarily of the amount of natural gas in the produced air are determined. Simulations of compressed air energy storage (CAES) in depleted natural gas reservoirs were carried out to assess the effect of formation permeability on the design of a simple CAES system. The injection of N2 (as a proxy to air), and the extraction of the resulting gas mixture in a depleted natural gas reservoir were modeled using the TOUGH2 reservoir simulator with the EOS7c equation of state. The optimal borehole spacing was determined as a function of the formation scale intrinsic permeability. Natural gas reservoir results are similar to those for an aquifer. Borehole spacing is dependent upon the intrinsic permeability of the formation. Higher permeability allows increased injection and extraction rates which is equivalent to more power per borehole for a given screen length. The number of boreholes per 100 MW for a given intrinsic permeability in a depleted natural gas reservoir is essentially identical to that determined for a simple aquifer of identical properties. During bubble formation methane is displaced and a sharp N2methane boundary is formed with an almost pure N2 gas phase in the bubble near the borehole. During cycling mixing of methane and air occurs along the boundary as the air bubble boundary moves. The extracted gas mixture changes as a

  12. Application of Cutting-Edge 3D Seismic Attribute Technology to the Assessment of Geological Reservoirs for CO2 Sequestration

    SciTech Connect (OSTI)

    Christopher Liner; Jianjun Zeng; Po Geng Heather King Jintan Li; Jennifer Califf; John Seales

    2010-03-31

    The goals of this project were to develop innovative 3D seismic attribute technologies and workflows to assess the structural integrity and heterogeneity of subsurface reservoirs with potential for CO{sub 2} sequestration. Our specific objectives were to apply advanced seismic attributes to aide in quantifying reservoir properies and lateral continuity of CO{sub 2} sequestration targets. Our study area is the Dickman field in Ness County, Kansas, a type locality for the geology that will be encountered for CO{sub 2} sequestration projects from northern Oklahoma across the U.S. midcontent to Indiana and beyond. Since its discovery in 1962, the Dickman Field has produced about 1.7 million barrels of oil from porous Mississippian carbonates with a small structural closure at about 4400 ft drilling depth. Project data includes 3.3 square miles of 3D seismic data, 142 wells, with log, some core, and oil/water production data available. Only two wells penetrate the deep saline aquifer. Geological and seismic data were integrated to create a geological property model and a flow simulation grid. We systematically tested over a dozen seismic attributes, finding that curvature, SPICE, and ANT were particularly useful for mapping discontinuities in the data that likely indicated fracture trends. Our simulation results in the deep saline aquifer indicate two effective ways of reducing free CO{sub 2}: (a) injecting CO{sub 2} with brine water, and (b) horizontal well injection. A tuned combination of these methods can reduce the amount of free CO{sub 2} in the aquifer from over 50% to less than 10%.

  13. Fifteenth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The Fifteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23--25, 1990. Major topics included: DOE's geothermal research and development program, well testing, field studies, geosciences, geysers, reinjection, tracers, geochemistry, and modeling.

  14. Reservoir Greenhouse Gas Emissions at Russian HPP

    SciTech Connect (OSTI)

    Fedorov, M. P.; Elistratov, V. V.; Maslikov, V. I.; Sidorenko, G. I.; Chusov, A. N.; Atrashenok, V. P.; Molodtsov, D. V.; Savvichev, A. S.; Zinchenko, A. V.

    2015-05-15

    Studies of greenhouse-gas emissions from the surfaces of the world’s reservoirs, which has demonstrated ambiguity of assessments of the effect of reservoirs on greenhouse-gas emissions to the atmosphere, is analyzed. It is recommended that greenhouse- gas emissions from various reservoirs be assessed by the procedure “GHG Measurement Guidelines for Fresh Water Reservoirs” (2010) for the purpose of creating a data base with results of standardized measurements. Aprogram for research into greenhouse-gas emissions is being developed at the St. Petersburg Polytechnic University in conformity with the IHA procedure at the reservoirs impounded by the Sayano-Shushenskaya and Mainskaya HPP operated by the RusHydro Co.

  15. Characterization of geothermal reservoir crack patterns using...

    Open Energy Info (EERE)

    the time delays of the split waves they determined tomographically the 3-D fracture density distribution in the reservoir. Authors Lou, M.; Rial and J.A. Published Journal...

  16. Magic Reservoir Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    110C383.15 K 230 F 689.67 R 1 USGS Estimated Reservoir Volume: 2 km 1 USGS Mean Capacity: 9 MW 1 Click "Edit With Form" above to add content History and...

  17. Application of integrated reservoir management and reservoir characterization to optimize infill drilling. Quarterly technical progress report, December 13, 1994--March 12, 1995

    SciTech Connect (OSTI)

    1995-03-12

    Results are presented concerning reservoir performance analysis and effectiveness of hydraulic fracture treatments. A geostatistical analysis task, reservoir simulation, and integrated reservoir description tasks are also described.

  18. Understanding the reservoir important to successful stimulation

    SciTech Connect (OSTI)

    Cramer, D.D. )

    1991-04-22

    In anisotropic Bakken shale reservoirs, fracture treatments serve to extend the well bore radius past a disturbed zone and vertically connect discrete intervals. Natural fractures in the near-well bore area strongly control the well deliverability rate. The Bakken is one of the few shale formations in the world with commercial oil production. This article covers the Bakken reservoir properties that influence production and stimulation treatments. The concluding part will discuss the design and effectiveness of the treatments.

  19. PROCEEDINGS FOURTH WORKSHOP GEOTHERMAL RESERVOIR ENGINEERING

    Office of Scientific and Technical Information (OSTI)

    SGP - TR - 30 PROCEEDINGS FOURTH WORKSHOP GEOTHERMAL RESERVOIR ENGINEERING c - .- - L Paul Kruger and Henry J. Ramey, Jr. Editors December 13-15, 1978 CONF-781222-29 RECENT RESERVOIR ENGINEERING DEVELOPMENTS AT BRADY HOT SPRINGS, NEVADA J. M. Rudisill Thermal Power Company 601 California St. San Francisco, California 94108 Brady's Hot Springs is a hydrothermal area located approximately 28Km northeast of Fernley, Nevada. Surface manifestations of geothermal activity occur along a north -

  20. Monitoring and Modeling Fluid Flow in a Developing EGS Reservoir |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy EGS Reservoir Monitoring and Modeling Fluid Flow in a Developing EGS Reservoir Project objectives: Better understand and model fluid injection into a tight reservoir on the edges of a hydrothermal field. Use seismic data to constrain geomechanical/hydrologic/thermal model of reservoir. seismic_fehler_fluid_flow.pdf (1.15 MB) More Documents & Publications Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow in EGS Reservoirs Detection and

  1. Frio sandstone reservoirs in the deep subsurface along the Texas Gulf Coast: their potential for production of geopressured geothermal energy

    SciTech Connect (OSTI)

    Bebout, D.G.; Loucks, R.G.; Gregory, A.R.

    1983-01-01

    Detailed geological, geophysical, and engineering studies conducted on the Frio Formation have delineated a geothermal test well site in the Austin Bayou Prospect which extends over an area of 60 square miles. A total of 800 to 900 feet of sandstone will occur between the depths of 13,500 and 16,500 feet. At leat 30 percent of the sand will have core permeabilities of 20 to 60 millidarcys. Temperature at the top of the sandstone section will be 300/sup 0/F. Water, produced at a rate of 20,000 to 40,000 barrels per day, will probably have to be disposed of by injection into shallower sandstone reservoirs. More than 10 billion barrels of water are in place in these sandstone reservoirs of the Austin Bayou Prospect; there should be approximately 400 billion cubic feet of methane in solution in this water. Only 10 percent of the water and methane (1 billion barrels of water and 40 billion cubic feet of methane) will be produced without reinjection of the waste water into the producing formation. Reservoir simulation studies indicate that 90 percent of the methane can be produced with reinjection. 106 figures.

  2. Uncertainty analyses of CO2 plume expansion subsequent to wellbore CO2 leakage into aquifers

    SciTech Connect (OSTI)

    Hou, Zhangshuan; Bacon, Diana H.; Engel, David W.; Lin, Guang; Fang, Yilin; Ren, Huiying; Fang, Zhufeng

    2014-08-01

    In this study, we apply an uncertainty quantification (UQ) framework to CO2 sequestration problems. In one scenario, we look at the risk of wellbore leakage of CO2 into a shallow unconfined aquifer in an urban area; in another scenario, we study the effects of reservoir heterogeneity on CO2 migration. We combine various sampling approaches (quasi-Monte Carlo, probabilistic collocation, and adaptive sampling) in order to reduce the number of forward calculations while trying to fully explore the input parameter space and quantify the input uncertainty. The CO2 migration is simulated using the PNNL-developed simulator STOMP-CO2e (the water-salt-CO2 module). For computationally demanding simulations with 3D heterogeneity fields, we combined the framework with a scalable version module, eSTOMP, as the forward modeling simulator. We built response curves and response surfaces of model outputs with respect to input parameters, to look at the individual and combined effects, and identify and rank the significance of the input parameters.

  3. Geologic aspects of horizontal drilling in self-sourcing reservoirs

    SciTech Connect (OSTI)

    Illich, H.A. )

    1991-03-01

    Horizontal drilling techniques provide a way to exploit hydrocarbon reserves that are either noneconomic or only marginally economic using vertical drilling techniques. A significant fraction of these reserves is contained in reservoirs that are self-sourcing or in reservoirs that are closely associated with their resources. Most formations drilled as horizontal targets are self-sourcing. The Austin Chalk, Niobrara, Mesaverde, and Bakken are examples of horizontally drilled, self-sourcing reservoir systems. In formations like the Bakken or Austin Chalk, the close relationship between reservoir and source makes risks associated with migration and accumulation less important. Reservoirs of this kind can contain oil or gas and often have little or no associated water. They can be matrix-dominated reservoirs, dual-porosity reservoirs (Mesaverde), or fractured reservoirs (Austin Chalk, Bakken, and Niobrara). Fractured, self-sourcing reservoirs also can possess matrix characteristics that contribute increased recovery efficiency. Most reservoirs drilled horizontally possess matrix characteristics that contribute increased recovery efficiency. Most reservoirs drilled horizontally possess highly heterogeneous reservoir systems. Characterization of the style of reservoir heterogeneity in self-sourcing systems is important if the favorable properties of horizontally oriented bore holes are to be realized. Production data and rock mechanics considerations are important in horizontal drilling ventures. Examples of the use of these data for the purpose of defining reservoir characteristics are discussed. Knowledge of lateral changes in reservoir properties is essential if we are to recover known reserves efficiently.

  4. Sleuthing the Fate of Water in Ancient Aquifers and Ice Cores...

    Office of Science (SC) Website

    Sleuthing the Fate of Water in Ancient Aquifers and Ice Cores Nuclear Physics (NP) NP Home ... Sleuthing the Fate of Water in Ancient Aquifers and Ice Cores Precision analytical ...

  5. Pressure behavior of laterally composite reservoirs

    SciTech Connect (OSTI)

    Kuchuk, F.J.; Habashy, T.

    1997-03-01

    This paper presents a new general method for solving the pressure diffusion equation in laterally composite reservoirs, where rock and fluid properties may change laterally as a function of y in the x-y plane. Composite systems can be encountered as a result of many different types of depositional and tectonic processes. For example, meandering point bar reservoirs or reservoirs with edgewater encroachment are examples of such systems. The new solution method presented is based on the reflection-transmission concept of electromagnetics to solve fluid-flow problems in 3D nonhomogeneous reservoirs, where heterogeneity is in only one (y) direction. A general Green`s function for a point source in 3D laterally composite systems is developed by using the reflection-transmission method. The solutions in the Laplace transform domain are then developed from the Green`s function for the pressure behavior of specific composite reservoirs. The solution method can also be applied to many different types of wells, such as vertical, fractured, and horizontal in composite reservoirs. The pressure behavior of a few well-known laterally composite systems are investigated. It is shown that a network of partially communicating faults and fractures in porous medium can be modeled as composite systems. It is also shown that the existing solutions for a partially communicating fault are not valid when the fault permeability is substantially larger than the formation permeability. The derivative plots are presented for selected faulted, fractured, channel, and composite reservoirs as diagnostic tools for well-test interpretation. It is also shown that if the composite system`s permeability varies moderately in the x or y direction, it exhibits a homogeneous system behavior. However, it does not yield the system`s average permeability. Furthermore, the composite systems with distributed low-permeability zones behave as if the system has many two no-flow boundaries.

  6. Application of integrated reservoir management and reservoir characterization to optimize infill drilling, Class II

    SciTech Connect (OSTI)

    Bergeron, Jack; Blasingame, Tom; Doublet, Louis; Kelkar, Mohan; Freeman, George; Callard, Jeff; Moore, David; Davies, David; Vessell, Richard; Pregger, Brian; Dixon, Bill; Bezant, Bryce

    2000-03-16

    The major purpose of this project was to demonstrate the use of cost effective reservoir characterization and management tools that will be helpful to both independent and major operators for the optimal development of heterogeneous, low permeability carbonate reservoirs such as the North Robertson (Clearfork) Unit.

  7. Reservoir Characterization, Production Characteristics, and Research Needs for Fluvial/Alluvial Reservoirs in the United States

    SciTech Connect (OSTI)

    Cole, E.L.; Fowler, M.L.; Jackson, S.R.; Madden, M.P.; Raw-Schatzinger, V.; Salamy, S.P.; Sarathi, P.; Young, M.A.

    1999-04-28

    The Department of Energy's (DOE's) Oil Recovery Field Demonstration Program was initiated in 1992 to maximize the economically and environmentally sound recovery of oil from known domestic reservoirs and to preserve access to this resource. Cost-shared field demonstration projects are being initiated in geology defined reservoir classes which have been prioritized by their potential for incremental recovery and their risk of abandonment. This document defines the characteristics of the fifth geological reservoir class in the series, fluvial/alluvial reservoirs. The reservoirs of Class 5 include deposits of alluvial fans, braided streams, and meandering streams. Deposit morphologies vary as a complex function of climate and tectonics and are characterized by a high degree of heterogeneity to fluid flow as a result of extreme variations in water energy as the deposits formed.

  8. Seismic imaging of reservoir flow properties: Resolving waterinflux and reservoir permeability

    SciTech Connect (OSTI)

    Vasco, D.W.; Keers, Henk

    2006-11-27

    Methods for geophysical model assessment, in particuale thecomputation of model parameter resolution, indicate the value and thelimitations of time-lapse data in estimating reservoir flow properties. Atrajectory-based method for computing sensitivities provides an effectivemeans to compute model parameter resolutions. We examine the commonsituation in which water encroaches into a resrvoir from below, as due tothe upward movement of an oil-water contact. Using straight-forwardtechniques we find that, by inclusing reflections off the top and bottomof a reservoir tens of meters thick, we can infer reservoir permeabilitybased upon time-lapse data. We find that, for the caseof water influxfrom below, using multiple time-lapse 'snapshots' does not necessarilyimprove the resolution of reservoir permeability. An application totime-lapse data from the Norne field illustrates that we can resolve thepermeability near a producing well using reflections from threeinterfaces associated with the reservoir.

  9. Anaerobic biodegradation of BTEX in aquifer material. Environmental research brief

    SciTech Connect (OSTI)

    Borden, R.C.; Hunt, M.J.; Shafer, M.B.; Barlaz, M.A.

    1997-08-01

    Laboratory and field experiments were conducted in two petroleum-contaminated aquifers to examine the anaerobic biodegradation of benzene, toluene, ethylbenzene and xylene isomers (BTEX) under ambient conditions. Aquifer material was collected from locations at the source, mid-plume and end-plume at both sites, incubated under ambient conditions, and monitored for disappearance of the test compounds. In the mid-plume location at the second site, in-situ column experiments were also conducted for comparison with the laboratory microscosm and field-scale results. In the end-plume microcosms, biodegradation was variable with extensive biodegradation in some microcosms and little or no biodegradation in others.

  10. Legal and regulatory issues affecting aquifer thermal energy storage

    SciTech Connect (OSTI)

    Hendrickson, P.L.

    1981-10-01

    This document updates and expands the report with a similar title issued in October 1980. This document examines a number of legal and regulatory issues that potentially can affect implementation of the aquifer thermal energy storage (ATES) concept. This concept involves the storage of thermal energy in an underground aquifer until a later date when it can be effectively utilized. Either heat energy or chill can be stored. Potential end uses of the energy include district space heating and cooling, industrial process applications, and use in agriculture or aquaculture. Issues are examined in four categories: regulatory requirements, property rights, potential liability, and issues related to heat or chill delivery.

  11. Experience in operating the Bratsk Reservoir

    SciTech Connect (OSTI)

    Nazarov, A.V.

    1984-04-01

    The Bratsk reservoir is the largest in the USSR and second largest in the world. Initially, the reservoir was expected to be filled by the end of 1966. However, the actual filling was not completed until September of 1967. During filling and in the first years of operation it was constantly necessary to deal with floating timber in order to ensure normal operation of the hydrostation, navigation safety, conditions for fishery, and fulfillment of the sanitary requirements. During seasonal variations of the reservoir level about 160 sq km of the shore zone was subjected to variable flooding and waterlogging. Maximum erosion occurred on expanded stretches, and within their limits on slopes composed of loam and sand deposits. Within the narrows, where the banks are composed mainly of hard and soft rocks and wave action is weak, erosion is negligible. Wind setup and setdown cause maximum denivellation of the water surface. The maximum increase of the level during setup reaches 232 cm and the maximum decrease during setdown is 24 cm. Seiche oscillations with various amplitudes and periods are observed on the reservoir surface. The main uses of the complex are hydropower, water transport, timber floating, water supply, and fishery. For the successful development of the shores of reservoirs it is necessary to select the construction sites with consideration of possible occurrence of karstic and landslide processes; the construction of heavy structures requires special karst-control measures. 3 references, 3 figures, 1 table.

  12. Eolian reservoir characteristics predicted from dune type

    SciTech Connect (OSTI)

    Kocurek, G.; Nielson, J.

    1985-02-01

    The nature of eolian-dune reservoirs is strongly influenced by stratification types (in decreasing order of quality: grain-flow, grain-fall, wind-ripple deposits) and their packaging by internal bounding surfaces. These are, in turn, a function of dune surface processes and migration behavior, allowing for predictive models of reservoir behavior. Migrating, simple crescentic dunes produce tabular bodies consisting mainly of grain-flow cross-strata, and form the best, most predictable reservoirs. Reservoir character improves as both original dune height and preserved set thickness increase, because fewer grain-fall deposits and a lower percentage of dune-apron deposits occur in the cross-strata, respectively. It is probable that many linear and star dunes migrate laterally, leaving a blanket of packages of wind ripple laminae reflecting deposition of broad, shifting aprons. This is distinct from models generated by freezing large portions of these dunes in place. Trailing margins of linear and star dunes are prone to reworking by sand-sheet processes that decrease potential reservoir quality. The occurrence of parabolic dunes isolated on vegetated sand sheets results in a core of grain-flow and grain-fall deposits surrounded by less permeable and porous deposits. Compound crescentic dunes, perhaps the most preservable dune type, may yield laterally (1) single sets of cross-strate, (2) compound sets derived from superimposed simple dunes, or (3) a complex of diverse sets derived from superimposed transverse and linear elements.

  13. A comparative evaluation of conceptual models for the Snake River Plain aquifer at the Idaho Chemical Processing Plant, INEL

    SciTech Connect (OSTI)

    Prahl, C.J.

    1992-01-01

    Geologic and hydrologic data collected by the United States Geological Survey (USGS) are used to evaluate the existing ground water monitoring well network completed in the upper portion of the Snake River Plain aquifer (SRPA) beneath the Idaho Chemical Processing Plant (ICPP). The USGS data analyzed and compared in this study include: (a) lithologic, geophysical, and stratigraphic information, including the conceptual geologic models intrawell, ground water flow measurement (Tracejector tests) and (c) dedicated, submersible, sampling group elevations. Qualitative evaluation of these data indicate that the upper portion of the SRPA is both heterogeneous and anisotropic at the scale of the ICPP monitoring well network. Tracejector test results indicate that the hydraulic interconnection and spatial configuration of water-producing zones is extremely complex within the upper portion of the SRPA. The majority of ICPP monitoring wells currently are equipped to sample ground water only the upper lithostratigraphic intervals of the SRPA, primarily basalt flow groups E, EF, and F. Depth-specific hydrogeochemical sampling and analysis are necessary to determine if ground water quality varies significantly between the various lithostratigraphic units adjacent to individual sampling pumps.

  14. Water-rock interaction during meteoric flushing of a limestone: Implications for porosity development in karstified petroleum reservoirs

    SciTech Connect (OSTI)

    Smalley, P.C. ); Bishop, P.K. . School of Earth Sciences); Dickson, J.A.D. . Dept. of Earth Sciences); Emery, D. )

    1994-04-01

    The Lincolnshire Limestone, comprising a succession of Jurassic wackestones, packstones, and oolitic grainstones, forms an important carbonate aquifer in eastern England. Meteoric waters enter at outcrop and penetrate between confining strata at least 25 km down-dip. This water dissolves and interacts with the limestone, and even water samples collected at or near outcrop are calcite-saturated. Net limestone dissolution is thus a process that is most dominant in the near-surface environment. Water samples taken at increasing distances from outcrop have increasing Sr and Mg contents, and [delta][sup 13]C values of dissolved bicarbonate increase from [minus]15[per thousand] to [minus]8[per thousand] (PDB), while [sup 87]Sr/[sup 86]Sr falls from 0.7082 to 0.7077. Isotopically light bulk-rock carbon near joint surfaces suggests that reprecipitation of calcite in the form of cement could be concentrated preferentially in and near joints. The Lincolnshire Limestone may be used as an analogue for karstified petroleum reservoirs, specifically those which have been buried and lost their unstable carbonate minerals (aragonite, high-Mg calcite) prior to uplift and karstification. The present water chemical data suggest that, in such reservoirs, influx of meteoric water at an unconformity creates porosity and enhances permeability through limestone dissolution, but this may be concentrated close (tens of meters) to the unconformity. Such factors should be taken into account when exploring for, and appraising, karstified petroleum reservoirs.

  15. An Intelligent Systems Approach to Reservoir Characterization

    SciTech Connect (OSTI)

    Shahab D. Mohaghegh; Jaime Toro; Thomas H. Wilson; Emre Artun; Alejandro Sanchez; Sandeep Pyakurel

    2005-08-01

    Today, the major challenge in reservoir characterization is integrating data coming from different sources in varying scales, in order to obtain an accurate and high-resolution reservoir model. The role of seismic data in this integration is often limited to providing a structural model for the reservoir. Its relatively low resolution usually limits its further use. However, its areal coverage and availability suggest that it has the potential of providing valuable data for more detailed reservoir characterization studies through the process of seismic inversion. In this paper, a novel intelligent seismic inversion methodology is presented to achieve a desirable correlation between relatively low-frequency seismic signals, and the much higher frequency wireline-log data. Vertical seismic profile (VSP) is used as an intermediate step between the well logs and the surface seismic. A synthetic seismic model is developed by using real data and seismic interpretation. In the example presented here, the model represents the Atoka and Morrow formations, and the overlying Pennsylvanian sequence of the Buffalo Valley Field in New Mexico. Generalized regression neural network (GRNN) is used to build two independent correlation models between; (1) Surface seismic and VSP, (2) VSP and well logs. After generating virtual VSP's from the surface seismic, well logs are predicted by using the correlation between VSP and well logs. The values of the density log, which is a surrogate for reservoir porosity, are predicted for each seismic trace through the seismic line with a classification approach having a correlation coefficient of 0.81. The same methodology is then applied to real data taken from the Buffalo Valley Field, to predict inter-well gamma ray and neutron porosity logs through the seismic line of interest. The same procedure can be applied to a complete 3D seismic block to obtain 3D distributions of reservoir properties with less uncertainty than the geostatistical

  16. Characterization of oil and gas reservoir heterogeneity

    SciTech Connect (OSTI)

    Tyler, N.; Barton, M.D.; Bebout, D.G.; Fisher, R.S.; Grigsby, J.D.; Guevara, E.; Holtz, M.; Kerans, C.; Nance, H.S.; Levey, R.A.

    1992-10-01

    Research described In this report addresses the internal architecture of two specific reservoir types: restricted-platform carbonates and fluvial-deltaic sandstones. Together, these two reservoir types contain more than two-thirds of the unrecovered mobile oil remaining ill Texas. The approach followed in this study was to develop a strong understanding of the styles of heterogeneity of these reservoir types based on a detailed outcrop description and a translation of these findings into optimized recovery strategies in select subsurface analogs. Research targeted Grayburg Formation restricted-platform carbonate outcrops along the Algerita Escarpment and In Stone Canyon In southeastern New Mexico and Ferron deltaic sandstones in central Utah as analogs for the North Foster (Grayburg) and Lake Creek (Wilcox) units, respectively. In both settings, sequence-stratigraphic style profoundly influenced between-well architectural fabric and permeability structure. It is concluded that reservoirs of different depositional origins can therefore be categorized Into a heterogeneity matrix'' based on varying intensity of vertical and lateral heterogeneity. The utility of the matrix is that it allows prediction of the nature and location of remaining mobile oil. Highly stratified reservoirs such as the Grayburg, for example, will contain a large proportion of vertically bypassed oil; thus, an appropriate recovery strategy will be waterflood optimization and profile modification. Laterally heterogeneous reservoirs such as deltaic distributary systems would benefit from targeted infill drilling (possibly with horizontal wells) and improved areal sweep efficiency. Potential for advanced recovery of remaining mobile oil through heterogeneity-based advanced secondary recovery strategies In Texas is projected to be an Incremental 16 Bbbl. In the Lower 48 States this target may be as much as 45 Bbbl at low to moderate oil prices over the near- to mid-term.

  17. Reservoir compartmentalization assessed with fluid compositional data

    SciTech Connect (OSTI)

    Smalley, P.C.; England, W.A. . Alliance R D Centre)

    1994-08-01

    Fluid composition is a valuable addition to the battery of static'' data available during reservoir appraisal that can be used to predict the dynamic behavior of the reservoir later in field life. This is because fluid data are not truly static; natural fluid mixing is a dynamic process that occurs over a long (geologic) time scale. Oil compositional differences, especially those that parallel changes in density, should be mixed rapidly by convection; their preservation indicates barriers to fluid flow. Water variations, now measurable on conventional core samples by use of residual salt analysis (RSA), help identify barriers to vertical fluid flow in oil and water legs.

  18. Characterization of oil and gas reservoir heterogeneity

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    The objective of the cooperative research program is to characterize Alaskan reservoirs in terms of their reserves, physical and chemical properties, geologic configuration and structure, and the development potential. The tasks completed during this period include: (1) geologic reservoir description of Endicott Field; (2) petrographic characterization of core samples taken from selected stratigraphic horizons of the West Sak and Ugnu (Brookian) wells; (3) development of a polydispersed thermodynamic model for predicting asphaltene equilibria and asphaltene precipitation from crude oil-solvent mixtures, and (4) preliminary geologic description of the Milne Point Unit.

  19. INCREASING WATERFLOOD RESERVES IN THE WILMINGTON OIL FIELD THROUGH IMPROVED RESERVOIR CHARACTERIZATION AND RESERVOIR MANAGEMENT

    SciTech Connect (OSTI)

    Scott Walker; Chris Phillips; Roy Koerner; Don Clarke; Dan Moos; Kwasi Tagbor

    2002-02-28

    This project increased recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project. This project used advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three-dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturated sands was stimulated by recompleting existing production and injection wells in these sands using conventional means as well as a short radius redrill candidate. Although these reservoirs have been waterflooded over 40 years, researchers have found areas of remaining oil saturation. Areas such as the top sand in the Upper Terminal Zone Fault Block V, the western fault slivers of Upper Terminal Zone Fault Block V, the bottom sands of the Tar Zone Fault Block V, and the eastern edge of Fault Block IV in both the Upper Terminal and Lower Terminal Zones all show significant remaining oil saturation. Each area of interest was uncovered emphasizing a different type of reservoir characterization technique or practice. This was not the original strategy but was necessitated by the different levels of progress in each of the project activities.

  20. Improved characterization of reservoir behavior by integration of reservoir performances data and rock type distributions

    SciTech Connect (OSTI)

    Davies, D.K.; Vessell, R.K.; Doublet, L.E.

    1997-08-01

    An integrated geological/petrophysical and reservoir engineering study was performed for a large, mature waterflood project (>250 wells, {approximately}80% water cut) at the North Robertson (Clear Fork) Unit, Gaines County, Texas. The primary goal of the study was to develop an integrated reservoir description for {open_quotes}targeted{close_quotes} (economic) 10-acre (4-hectare) infill drilling and future recovery operations in a low permeability, carbonate (dolomite) reservoir. Integration of the results from geological/petrophysical studies and reservoir performance analyses provide a rapid and effective method for developing a comprehensive reservoir description. This reservoir description can be used for reservoir flow simulation, performance prediction, infill targeting, waterflood management, and for optimizing well developments (patterns, completions, and stimulations). The following analyses were performed as part of this study: (1) Geological/petrophysical analyses: (core and well log data) - {open_quotes}Rock typing{close_quotes} based on qualitative and quantitative visualization of pore-scale features. Reservoir layering based on {open_quotes}rock typing {close_quotes} and hydraulic flow units. Development of a {open_quotes}core-log{close_quotes} model to estimate permeability using porosity and other properties derived from well logs. The core-log model is based on {open_quotes}rock types.{close_quotes} (2) Engineering analyses: (production and injection history, well tests) Material balance decline type curve analyses to estimate total reservoir volume, formation flow characteristics (flow capacity, skin factor, and fracture half-length), and indications of well/boundary interference. Estimated ultimate recovery analyses to yield movable oil (or injectable water) volumes, as well as indications of well and boundary interference.

  1. DEVELOPMENT OF RESERVOIR CHARACTERIZATION TECHNIQUES AND PRODUCTION MODELS FOR EXPLOITING NATURALLY FRACTURED RESERVOIRS

    SciTech Connect (OSTI)

    Michael L. Wiggins; Raymon L. Brown; Faruk Civan; Richard G. Hughes

    2002-12-31

    For many years, geoscientists and engineers have undertaken research to characterize naturally fractured reservoirs. Geoscientists have focused on understanding the process of fracturing and the subsequent measurement and description of fracture characteristics. Engineers have concentrated on the fluid flow behavior in the fracture-porous media system and the development of models to predict the hydrocarbon production from these complex systems. This research attempts to integrate these two complementary views to develop a quantitative reservoir characterization methodology and flow performance model for naturally fractured reservoirs. The research has focused on estimating naturally fractured reservoir properties from seismic data, predicting fracture characteristics from well logs, and developing a naturally fractured reservoir simulator. It is important to develop techniques that can be applied to estimate the important parameters in predicting the performance of naturally fractured reservoirs. This project proposes a method to relate seismic properties to the elastic compliance and permeability of the reservoir based upon a sugar cube model. In addition, methods are presented to use conventional well logs to estimate localized fracture information for reservoir characterization purposes. The ability to estimate fracture information from conventional well logs is very important in older wells where data are often limited. Finally, a desktop naturally fractured reservoir simulator has been developed for the purpose of predicting the performance of these complex reservoirs. The simulator incorporates vertical and horizontal wellbore models, methods to handle matrix to fracture fluid transfer, and fracture permeability tensors. This research project has developed methods to characterize and study the performance of naturally fractured reservoirs that integrate geoscience and engineering data. This is an important step in developing exploitation strategies for

  2. AUTOMATED WATER LEVEL MEASUREMENTS IN SMALL-DIAMETER AQUIFER TUBES

    SciTech Connect (OSTI)

    PETERSEN SW; EDRINGTON RS; MAHOOD RO; VANMIDDLESWORTH PE

    2011-01-14

    Groundwater contaminated with hexavalent chromium, strontium-90, and uranium discharges into the Columbia River along approximately 16 km (10 mi) of the shoreline. Various treatment systems have and will continue to be implemented to eliminate the impact of Hanford Site contamination to the river. To optimize the various remediation strategies, it is important to understand interactions between groundwater and the surface water of the Columbia River. An automated system to record water levels in aquifer sampling tubes installed in the hyporheic zone was designed and tested to (1) gain a more complete understanding of groundwater/river water interactions based on gaining and losing conditions ofthe Columbia River, (2) record and interpret data for consistent and defensible groundwater/surface water conceptual models that may be used to better predict subsurface contaminant fate and transport, and (3) evaluate the hydrodynamic influence of extraction wells in an expanded pump-and-treat system to optimize the treatment system. A system to measure water levels in small-diameter aquifer tubes was designed and tested in the laboratory and field. The system was configured to allow manual measurements to periodically calibrate the instrument and to permit aquifer tube sampling without removing the transducer tube. Manual measurements were collected with an e-tape designed and fabricated especially for this test. Results indicate that the transducer system accurately records groundwater levels in aquifer tubes. These data are being used to refine the conceptual and numeric models to better understand interactions in the hyporheic zone of the Columbia River and the adjacent river water and groundwater, and changes in hydrochemistry relative to groundwater flux as river water recharges the aquifer and then drains back out in response to changes in the river level.

  3. Ground-water hydraulics of the deep-basin brine aquifer, Palo Duro Basin, Texas panhandle

    SciTech Connect (OSTI)

    Smith, D.A.

    1985-01-01

    The Deep-Basin Brine aquifer of the Palo Duro Basin (Texas Panhandle) underlies thick Permian bedded evaporites that are being evaluated as a potential high-level nuclear waste isolation repository. Potentiometric surface maps of 5 units of the Deep-Basin Brine aquifer were drawn using drill-stem test (DST) pressure data, which were analyzed by a geostatistical technique (kriging) to smooth the large variation in the data. The potentiometric surface maps indicate that the Deep-Basin Brine aquifer could be conceptually modeled as 5 aquifer units; a Lower Permian (Wolfcamp) aquifer, upper and lower Pennsylvanian aquifers, a pre-Pennsylvanian aquifer, and a Pennsylvanian to Wolfcampian granite-wash aquifer. The hydraulic head maps indicate that ground-water flow in each of the units is west to east with a minor northerly component near the Amarillo Uplift, the northern structural boundary of the basin. The Wolfcamp potentiometric surface indicates the strongest component of northerly flow. Inferred flow direction in Pennsylvanian aquifers is easterly, and in the pre-Pennsylvanian aquifer near its pinch-out in the basin center, flow is inferred to be to the north. In the granite-wash aquifer the inferred flow direction is east across the northern edge of the basin and southeast along the Amarillo Uplift.

  4. Innovative MIOR Process Utilizing Indigenous Reservoir Constituents

    SciTech Connect (OSTI)

    Hitzman, D.O.; Stepp, A.K.; Dennis, D.M.; Graumann, L.R.

    2003-02-11

    This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal was to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents.

  5. Tight gas reservoirs: A visual depiction

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    Future gas supplies in the US will depend on an increasing contribution from unconventional sources such as overpressured and tight gas reservoirs. Exploitation of these resources and their conversion to economically producible gas reserves represents a major challenge. Meeting this challenge will require not only the continuing development and application of new technologies, but also a detailed understanding of the complex nature of the reservoirs themselves. This report seeks to promote understanding of these reservoirs by providing examples. Examples of gas productive overpressured tight reservoirs in the Greater Green River Basin, Wyoming are presented. These examples show log data (raw and interpreted), well completion and stimulation information, and production decline curves. A sampling of wells from the Lewis and Mesaverde formations are included. Both poor and good wells have been chosen to illustrate the range of productivity that is observed. The second section of this document displays decline curves and completion details for 30 of the best wells in the Greater Green River Basin. These are included to illustrate the potential that is present when wells are fortuitously located with respect to local stratigraphy and natural fracturing, and are successfully hydraulically fractured.

  6. Underground natural gas storage reservoir management

    SciTech Connect (OSTI)

    Ortiz, I.; Anthony, R.

    1995-06-01

    The objective of this study is to research technologies and methodologies that will reduce the costs associated with the operation and maintenance of underground natural gas storage. This effort will include a survey of public information to determine the amount of natural gas lost from underground storage fields, determine the causes of this lost gas, and develop strategies and remedial designs to reduce or stop the gas loss from selected fields. Phase I includes a detailed survey of US natural gas storage reservoirs to determine the actual amount of natural gas annually lost from underground storage fields. These reservoirs will be ranked, the resultant will include the amount of gas and revenue annually lost. The results will be analyzed in conjunction with the type (geologic) of storage reservoirs to determine the significance and impact of the gas loss. A report of the work accomplished will be prepared. The report will include: (1) a summary list by geologic type of US gas storage reservoirs and their annual underground gas storage losses in ft{sup 3}; (2) a rank by geologic classifications as to the amount of gas lost and the resultant lost revenue; and (3) show the level of significance and impact of the losses by geologic type. Concurrently, the amount of storage activity has increased in conjunction with the net increase of natural gas imports as shown on Figure No. 3. Storage is playing an ever increasing importance in supplying the domestic energy requirements.

  7. Waterflood surveillance techniques; A reservoir management approach

    SciTech Connect (OSTI)

    Thakur, G.C. )

    1991-10-01

    The reservoir management aspects of waterflooding span the time before the start of waterflood to the time when the secondary recovery either is uneconomic or is changed to an enhanced recovery. This paper reviews waterflood techniques and reports on surveillance techniques in the management of waterflooding of oil wells.

  8. Fourteenth workshop geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.; Cook, J.W.

    1989-12-31

    The Fourteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 24--26, 1989. Major areas of discussion include: (1) well testing; (2) various field results; (3) geoscience; (4) geochemistry; (5) reinjection; (6) hot dry rock; and (7) numerical modelling. For these workshop proceedings, individual papers are processed separately for the Energy Data Base.

  9. Fourteenth workshop geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.; Cook, J.W.

    1989-01-01

    The Fourteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 24--26, 1989. Major areas of discussion include: (1) well testing; (2) various field results; (3) geoscience; (4) geochemistry; (5) reinjection; (6) hot dry rock; and (7) numerical modelling. For these workshop proceedings, individual papers are processed separately for the Energy Data Base.

  10. Roger Road Reservoir Single-Axis Photovoltaic Array

    Broader source: Energy.gov [DOE]

    In this photograph, the Roger Road Reclamation Water Reservoir features a 110-kilowatt (kW) solar array. This system was built on a reservoir deck as its special design allowed for a single-axis...

  11. Tracer testing in geothermal reservoirs | Open Energy Information

    Open Energy Info (EERE)

    geothermal reservoirs Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Tracer testing in geothermal reservoirs Author PetroWiki Published PetroWiki,...

  12. Michigan Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Michigan Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  13. Wyoming Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Wyoming Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  14. Ohio Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Ohio Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  15. Mississippi Dry Natural Gas New Reservoir Discoveries in Old...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Mississippi Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  16. Montana Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Montana Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  17. Oklahoma Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Oklahoma Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  18. West Virginia Dry Natural Gas New Reservoir Discoveries in Old...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) West Virginia Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  19. Alabama Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Alabama Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  20. Florida Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ... Dry Natural Gas New Reservoir Discoveries in Old Fields Florida Dry Natural Gas Proved ...

  1. Colorado Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Colorado Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  2. Virginia Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Virginia Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  3. Louisiana Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Louisiana Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  4. Utah Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Utah Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  5. Pennsylvania Dry Natural Gas New Reservoir Discoveries in Old...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Pennsylvania Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  6. Alaska Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Alaska Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  7. Texas Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Texas Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  8. Kentucky Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Kentucky Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  9. Arkansas Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Arkansas Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  10. New Mexico--East Crude Oil Reserves in Nonproducing Reservoirs...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) New Mexico--East Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 ...

  11. New Mexico--West Crude Oil Reserves in Nonproducing Reservoirs...

    Gasoline and Diesel Fuel Update (EIA)

    Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) New Mexico--West Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 ...

  12. A METHODOLOGY TO INTEGRATE MAGNETIC RESONANCE AND ACOUSTIC MEASUREMENTS FOR RESERVOIR CHARACTERIZATION

    SciTech Connect (OSTI)

    Jorge O. Parra; Chris L. Hackert; Lorna L. Wilson

    2002-09-20

    The work reported herein represents the third year of development efforts on a methodology to interpret magnetic resonance and acoustic measurements for reservoir characterization. In this last phase of the project we characterize a vuggy carbonate aquifer in the Hillsboro Basin, Palm Beach County, South Florida, using two data sets--the first generated by velocity tomography and the second generated by reflection tomography. First, we integrate optical macroscopic (OM), scanning electron microscope (SEM) and x-ray computed tomography (CT) images, as well as petrography, as a first step in characterizing the aquifer pore system. This pore scale integration provides information with which to evaluate nuclear magnetic resonance (NMR) well log signatures for NMR well log calibration, interpret ultrasonic data, and characterize flow units at the field scale between two wells in the aquifer. Saturated and desaturated NMR core measurements estimate the irreducible water in the rock and the variable T{sub 2} cut-offs for the NMR well log calibration. These measurements establish empirical equations to extract permeability from NMR well logs. Velocity and NMR-derived permeability and porosity relationships integrated with velocity tomography (based on crosswell seismic measurements recorded between two wells 100 m apart) capture two flow units that are supported with pore scale integration results. Next, we establish a more detailed picture of the complex aquifer pore structures and the critical role they play in water movement, which aids in our ability to characterize not only carbonate aquifers, but reservoirs in general. We analyze petrography and cores to reveal relationships between the rock physical properties that control the compressional and shear wave velocities of the formation. A digital thin section analysis provides the pore size distributions of the rock matrix, which allows us to relate pore structure to permeability and to characterize flow units at the

  13. Incorporating reservoir heterogeneity with geostatistics to investigate waterflood recoveries

    SciTech Connect (OSTI)

    Wolcott, D.S. ); Chopra, A.K. )

    1993-03-01

    This paper presents an investigation of infill drilling performance and reservoir continuity with geostatistics and a reservoir simulator. The geostatistical technique provides many possible realizations and realistic descriptions of reservoir heterogeneity. Correlation between recovery efficiency and thickness of individual sand subunits is shown. Additional recovery from infill drilling results from thin, discontinuous subunits. The technique may be applied to variations in continuity for other sandstone reservoirs.

  14. Reservoir-Stimulation Optimization with Operational Monitoring for Creation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Enhanced Geothermal Systems | Department of Energy Reservoir-Stimulation Optimization with Operational Monitoring for Creation of Enhanced Geothermal Systems Reservoir-Stimulation Optimization with Operational Monitoring for Creation of Enhanced Geothermal Systems Reservoir-Stimulation Optimization with Operational Monitoring for Creation of Enhanced Geothermal Systems presentation at the April 2013 peer review meeting held in Denver, Colorado. reservoir_optimization_geo_sys_peer2013.pdf

  15. Water Sampling At Blackfoot Reservoir Area (Hutsinpiller & Parry...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Blackfoot Reservoir Area (Hutsinpiller & Parry, 1985) Exploration Activity...

  16. Increasing Waterflood Reserves in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management

    SciTech Connect (OSTI)

    Clarke, D.; Koerner, R.; Moos D.; Nguyen, J.; Phillips, C.; Tagbor, K.; Walker, S.

    1999-04-05

    This project used advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three-dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturated sands was stimulated by recompleting existing production and injection wells in these sands using conventional means as well as a short radius redrill candidate.

  17. EIA - Natural Gas Pipeline Network - Salt Cavern Storage Reservoir

    U.S. Energy Information Administration (EIA) Indexed Site

    Configuration Salt Cavern Storage Reservoir Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Salt Cavern Underground Natural Gas Storage Reservoir Configuration Salt Cavern Underground Natural Gas Storage Reservoir Configuration Source: PB Energy Storage Services Inc.

  18. Chemistry, Reservoir, and Integrated Models | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemistry, Reservoir, and Integrated Models Chemistry, Reservoir, and Integrated Models Below are the project presentations and respective peer review results for Chemistry, Reservoir and Integrated Models. Development and Validation of an Advanced Stimulation Prediction Model for Enhanced Geothermal Systems (EGS), Marte Gutierrez and Masami Nakagawa, Colorado School of Mines Development of Advanced Thermal-Hydrological-Mechanical-Chemical (THMC) Modeling Capabilities for Enhanced Geothermal

  19. Relation between facies, diagenesis, and reservoir quality of Rotliegende reservoirs in north Germany

    SciTech Connect (OSTI)

    David, F.; Gast, R.; Kraft, T. (BEB Erdgas Erdol GmbH, Hannover (Germany))

    1993-09-01

    In north Germany, the majority of Rotliegende gas fields is confined to an approximately 50 km-wide east-west-orientated belt, which is situated on the gently north-dipping flank of the southern Permian basin. Approximately 400 billion m[sup 3] of natural gas has been found in Rotliegende reservoir sandstones with average porosities of depths ranging from 3500 to 5000 m. Rotliegende deposition was controlled by the Autunian paleo-relief, and arid climate and cyclic transgressions of the desert lake. In general, wadis and large dunefields occur in the hinterland, sebkhas with small isolate dunes and shorelines define the coastal area, and a desert lake occurs to the north. The sandstones deposited in large dunefields contain only minor amounts of illite, anhydrite, and calcite and form good reservoirs. In contrast, the small dunes formed in the sebkha areas were affected by fluctuations of the desert lake groundwaters, causing the infiltration of detrital clay and precipitation of gypsum and calcite. These cements were transformed to illite, anhydrite, and calcite-II during later diagenesis, leading to a significant reduction of the reservoir quality. The best reservoirs occur in the shoreline sandstones because porosity and permeability were preserved by early magnesium-chlorite diagenesis. Since facies controls diagenesis and consequently reservoir quality, mapping of facies also indicates the distribution of reservoir and nonreservoir rocks. This information is used to identify play area and to interpret and calibrate three-dimensional seismic data.

  20. Using Pressure and Volumetric Approaches to Estimate CO2 Storage Capacity in Deep Saline Aquifers

    SciTech Connect (OSTI)

    Thibeau, Sylvain; Bachu, Stefan; Birkholzer, Jens; Holloway, Sam; Neele, Filip; Zhou, Quanlin

    2014-12-31

    Various approaches are used to evaluate the capacity of saline aquifers to store CO2, resulting in a wide range of capacity estimates for a given aquifer. The two approaches most used are the volumetric open aquifer and closed aquifer approaches. We present four full-scale aquifer cases, where CO2 storage capacity is evaluated both volumetrically (with open and/or closed approaches) and through flow modeling. These examples show that the open aquifer CO2 storage capacity estimation can strongly exceed the cumulative CO2 injection from the flow model, whereas the closed aquifer estimates are a closer approximation to the flow-model derived capacity. An analogy to oil recovery mechanisms is presented, where the primary oil recovery mechanism is compared to CO2 aquifer storage without producing formation water; and the secondary oil recovery mechanism (water flooding) is compared to CO2 aquifer storage performed simultaneously with extraction of water for pressure maintenance. This analogy supports the finding that the closed aquifer approach produces a better estimate of CO2 storage without water extraction, and highlights the need for any CO2 storage estimate to specify whether it is intended to represent CO2 storage capacity with or without water extraction.

  1. Reduced-Order Model for the Geochemical Impacts of Carbon Dioxide, Brine and Trace Metal Leakage into an Unconfined, Oxidizing Carbonate Aquifer, Version 2.1

    SciTech Connect (OSTI)

    Bacon, Diana H.

    2013-03-31

    The National Risk Assessment Partnership (NRAP) consists of 5 U.S DOE national laboratories collaborating to develop a framework for predicting the risks associated with carbon sequestration. The approach taken by NRAP is to divide the system into components, including injection target reservoirs, wellbores, natural pathways including faults and fractures, groundwater and the atmosphere. Next, develop a detailed, physics and chemistry-based model of each component. Using the results of the detailed models, develop efficient, simplified models, termed reduced order models (ROM) for each component. Finally, integrate the component ROMs into a system model that calculates risk profiles for the site. This report details the development of the Groundwater Geochemistry ROM for the Edwards Aquifer at PNNL. The Groundwater Geochemistry ROM for the Edwards Aquifer uses a Wellbore Leakage ROM developed at LANL as input. The detailed model, using the STOMP simulator, covers a 5x8 km area of the Edwards Aquifer near San Antonio, Texas. The model includes heterogeneous hydraulic properties, and equilibrium, kinetic and sorption reactions between groundwater, leaked CO2 gas, brine, and the aquifer carbonate and clay minerals. Latin Hypercube sampling was used to generate 1024 samples of input parameters. For each of these input samples, the STOMP simulator was used to predict the flux of CO2 to the atmosphere, and the volume, length and width of the aquifer where pH was less than the MCL standard, and TDS, arsenic, cadmium and lead exceeded MCL standards. In order to decouple the Wellbore Leakage ROM from the Groundwater Geochemistry ROM, the response surface was transformed to replace Wellbore Leakage ROM input parameters with instantaneous and cumulative CO2 and brine leakage rates. The most sensitive parameters proved to be the CO2 and brine leakage rates from the well, with equilibrium coefficients for calcite and dolomite, as well as the number of illite and kaolinite

  2. Method of extracting heat from dry geothermal reservoirs

    DOE Patents [OSTI]

    Potter, R.M.; Robinson, E.S.; Smith, M.C.

    1974-01-22

    Hydraulic fracturing is used to interconnect two or more holes that penetrate a previously dry geothermal reservoir, and to produce within the reservoir a sufficiently large heat-transfer surface so that heat can be extracted from the reservoir at a usefully high rate by a fluid entering it through one hole and leaving it through another. Introduction of a fluid into the reservoir to remove heat from it and establishment of natural (unpumped) convective circulation through the reservoir to accomplish continuous heat removal are important and novel features of the method. (auth)

  3. Simulation of Coupled Processes of Flow, Transport, and Storage of CO2 in Saline Aquifers

    SciTech Connect (OSTI)

    Wu, Yu-Shu; Chen, Zizhong; Kazemi, Hossein; Yin, Xiaolong; Pruess, Karsten; Oldenburg, Curt; Winterfeld, Philip; Zhang, Ronglei

    2014-09-30

    This report is the final scientific one for the award DE- FE0000988 entitled “Simulation of Coupled Processes of Flow, Transport, and Storage of CO2 in Saline Aquifers.” The work has been divided into six tasks. In task, “Development of a Three-Phase Non-Isothermal CO2 Flow Module,” we developed a fluid property module for brine-CO2 mixtures designed to handle all possible phase combinations of aqueous phase, sub-critical liquid and gaseous CO2, supercritical CO2, and solid salt. The thermodynamic and thermophysical properties of brine-CO2 mixtures (density, viscosity, and specific enthalpy of fluid phases; partitioning of mass components among the different phases) use the same correlations as an earlier fluid property module that does not distinguish between gaseous and liquid CO2-rich phases. We verified the fluid property module using two leakage scenarios, one that involves CO2 migration up a blind fault and subsequent accumulation in a secondary “parasitic” reservoir at shallower depth, and another investigating leakage of CO2 from a deep storage reservoir along a vertical fault zone. In task, “Development of a Rock Mechanical Module,” we developed a massively parallel reservoir simulator for modeling THM processes in porous media brine aquifers. We derived, from the fundamental equations describing deformation of porous elastic media, a momentum conservation equation relating mean stress, pressure, and temperature, and incorporated it alongside the mass and energy conservation equations from the TOUGH2 formulation, the starting point for the simulator. In addition, rock properties, namely permeability and porosity, are functions of effective stress and other variables that are obtained from the literature. We verified the simulator formulation and numerical implementation using analytical solutions and example problems from the literature. For the former, we matched a one-dimensional consolidation problem and a two-dimensional simulation of

  4. Stormwater runoff policy on the Spokane/Rathdrum Prairie Aquifer

    SciTech Connect (OSTI)

    Hale, E.O.

    1990-01-01

    The Panhandle Health District, in conjunction with the Idaho Department of Water Resources, is developing a stormwater runoff control program under the US EPA Wellhead Protection Program. The goal of the project is to protect the Spokane Valley/Rathdrum Prairie Aquifer from widespread subsurface disposal of stormwater runoff via shallow injection wells. Studies conducted by the health district in 1976 and 1977 established that areas downgradient from urban land uses had elevated nitrate level sand that the aquifer is vulnerable to contamination from surface activities. The stormwater runoff controls are being developed in conjunction with similar programs, such as chemical storage and use, solid waste and subsurface sewage disposal. The expected result will be a groundwater management system that protects the resource by preventing contamination rather than a program that responds to poor water quality with costly remedial action.

  5. In Situ Biological Uranium Remediation within a Highly Contaminated Aquifer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In Situ Biological Uranium Remediation within a Highly Contaminated Aquifer Matthew Ginder-Vogel1, Wei-Min Wu1, Jack Carley2, Phillip Jardine2, Scott Fendorf1 and Craig Criddle1 1Stanford University, Stanford, CA 2Oak Ridge National Laboratory, Oak Ridge, TN Microbial Respiration Figure 1. Uranium(VI) reduction is driven by microbial respiration resulting in the precipitation of uraninite. Uranium contamination of ground and surface waters has been detected at numerous sites throughout the

  6. Metal-gas cell with electrolyte reservoir

    SciTech Connect (OSTI)

    Miller, L.E.; Carr, D.D.

    1984-10-16

    A metal-gas electrochemical cell is disclosed wherein electrolyte is progressively supplied from a reservoir into the electrode or cell stack as needed, so as to maintain each stack component with adequate electrolyte, as the plates ''grow'' and absorb electrolyte with repeated cycling. The reservoir preferably is a compressible bladder positioned between on end of the plate stack and a retaining plate. As the plate stack ''grows'' with repeated cycling, the bladder is slowly compressed, forcing electrolyte from the bladder through an electrolyte distribution tube located within the plate stack. One end of the electrolyte distribution tube is fixed to an end plate of the plate stack and the second end of the distribution tube may be connected to a Belleville washer or other spring which acts through the distribution tube to compress the plate stack. The elasticity of the spring permits the stack to expand as the electrodes grow.

  7. Innovative MIOR Process Utilizing Indigenous Reservoir Constituents

    SciTech Connect (OSTI)

    D. O. Hitzman; A. K. Stepp; D. M. Dennis; L. R. Graumann

    2003-03-31

    This research program is directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal is to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents. Experimental laboratory work is underway. Microbial cultures have been isolated from produced water samples. Comparative laboratory studies demonstrating in situ production of microbial products as oil recovery agents were conducted in sand packs with natural field waters with cultures and conditions representative of oil reservoirs. Field pilot studies are underway.

  8. Heavy oil reservoirs recoverable by thermal technology. Annual report

    SciTech Connect (OSTI)

    Kujawa, P.

    1981-02-01

    This volume contains reservoir, production, and project data for target reservoirs which contain heavy oil in the 8 to 25/sup 0/ API gravity range and are susceptible to recovery by in situ combustion and steam drive. The reservoirs for steam recovery are less than 2500 feet deep to comply with state-of-the-art technology. In cases where one reservoir would be a target for in situ combustion or steam drive, that reservoir is reported in both sections. Data were collectd from three source types: hands-on (A), once-removed (B), and twice-removed (C). In all cases, data were sought depicting and characterizing individual reservoirs as opposed to data covering an entire field with more than one producing interval or reservoir. The data sources are listed at the end of each case. This volume also contains a complete listing of operators and projects, as well as a bibliography of source material.

  9. Alan Farquharson, SVP Reservoir Engineering Economics! Upstream

    U.S. Energy Information Administration (EIA) Indexed Site

    June 16, 2015 Alan Farquharson, SVP - Reservoir Engineering & Economics! Upstream Developments Generate Growing Hydrocarbon Gas Liquids Supply! 2 Forward-Looking Statements Certain statements and information in this presentation may constitute "forward-looking statements" within the meaning of the Private Securities Litigation Reform Act of 1995. The words "anticipate," "believe," "estimate," "expect," "forecast," "plan,"

  10. Innovative MIOR Process Utilizing Indigenous Reservoir Constituents

    SciTech Connect (OSTI)

    Hitzman, D.O.; Stepp, A.K.; Dennis, D.M.; Graumann, L.R.

    2003-02-11

    This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal was to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with inorganic nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents.