Powered by Deep Web Technologies
Note: This page contains sample records for the topic "aquifer reservoirs water-only" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

EIA - Natural Gas Pipeline Network - Aquifer Storage Reservoir...  

Annual Energy Outlook 2012 (EIA)

Aquifer Storage Reservoir Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Aquifer Underground...

2

Interaction of cold-water aquifers with exploited reservoirs of the Cerro Prieto geothermal system  

DOE Green Energy (OSTI)

Cerro Prieto geothermal reservoirs tend to exhibit good hydraulic communication with adjacent cool groundwater aquifers. Under natural state conditions the hot fluids mix with the surrounding colder waters along the margins of the geothermal system, or discharge to shallow levels by flowing up fault L. In response to exploitation reservoir pressures decrease, leading to changes in the fluid flow pattern in the system and to groundwater influx. The various Cerro Prieto reservoirs have responded differently to production, showing localized near-well or generalized boiling, depending on their access to cool-water recharge. Significant cooling by dilution with groundwater has only been observed in wells located near the edges of the field. In general, entry of cool water at Cerro Prieto is beneficial because it tends to maintain reservoir pressures, restrict boiling, and lengthen the life and productivity of wells. 15 refs., 10 figs., 1 tab.

Truesdell, A.H. (Geological Survey, Menlo Park, CA (USA)); Lippmann, M.J. (Lawrence Berkeley Lab., CA (USA))

1990-04-01T23:59:59.000Z

3

The Economics of CO2 Transport by Pipeline and Storage in Saline Aquifers and Oil Reservoirs  

E-Print Network (OSTI)

Description Date 0 Original document 1/29/2008 1 Estimate for carbon content of crude oil was incorrect (see pThe Economics of CO2 Transport by Pipeline and Storage in Saline Aquifers and Oil Reservoirs Sean T for this work was provided by the US Department of Energy under contract numbers DE-FC26-00NT40935 and DE-AC26

4

Modeling Density Effects in CO2 Injection in Oil Reservoirs and A Case Study of CO2 Sequestration in a Qatari Saline Aquifer  

E-Print Network (OSTI)

CO2 injection has been used to improve oil recovery for several decades. In recent years, CO2 injection has become even more attractive because of a dual effect; injection in the subsurface 1) allows reduction of CO2 concentration in the atmosphere to reduce global warming, and 2) improves the oil recovery. In this study, the density effect from CO2 dissolution in modeling of CO2 injection is examined. A method to model the increase in oil density with CO2 dissolution using the Peng-Robinson equation of state and the Pedersen viscosity correlation is presented. This method is applied to model the observed increase in oil density with CO2 dissolution in a West Texas crude oil. Compositional simulation of CO2 injection was performed in a 2D vertical cross section and a 3D reservoir with the density effect. The results show that the density increase from CO2 dissolution may have a drastic effect on CO2 flow path and recovery performance. One main conclusion from this work is that there is a need to have accurate density data for CO2/oil mixtures at different CO2 concentrations to ensure successful CO2 injection projects. While CO2 enhanced oil recovery (EOR) is part of the solution, saline aquifers have the largest potential for CO2 sequestration. A literature review of the CO2 sequestration in saline aquifers is performed. The dominant trapping mechanisms and transport processes and the methods used to model them are discussed in detail. The Aruma aquifer, a shallow saline aquifer in southwest Qatar is used as a case study for CO2 sequestration. A compositional simulation model is prepared for the Aruma aquifer using the available log data and flow test data. It was found that the grid size is a key parameter in modeling CO2 sequestration accurately. It affects the propagation of the CO2 plume and amount of CO2 dissolved in brine.

Ahmed, Tausif

2011-08-01T23:59:59.000Z

5

Modeling CO2 Sequestration in a Saline Reservoir and Depleted Oil Reservoir to Evaluate The Regional CO2 Sequestration Potential of The Ozark Plateau Aquifer System, South-Central Kansas  

NLE Websites -- All DOE Office Websites (Extended Search)

CO CO 2 Sequestration in a Saline Reservoir and Depleted Oil Reservoir to Evaluate The Regional CO 2 Sequestration Potential of The Ozark Plateau Aquifer System, South-Central Kansas Background Carbon capture, utilization and storage (CCUS) technologies offer the potential for reducing CO 2 emissions without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires adequate geologic formations capable of (1) storing large volumes of CO 2 , (2) receiving injected CO 2 at efficient and economic rates, and (3) retaining CO 2 safely over extended periods. Research efforts are currently focused on conventional and unconventional storage formations within depositional environments such as: deltaic, fluvial, alluvial,

6

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network (OSTI)

large quantities of hot water produced (1) as a by-productin one well and reservoir water is produced in another. Thesupply: produced from the aquifer. hot water is Spring (90

Tsang, C.-F.

2011-01-01T23:59:59.000Z

7

Potential Impacts of Leakage from Black Rock Reservoir on the Hanford Site Unconfined Aquifer: Initial Hypothetical Simulations of Flow and Contaminant Transport  

Science Conference Proceedings (OSTI)

Initial scoping calculations of the unconfined aquifer at the Hanford Site were carried out for the U.S. Bureau of Reclamation (USBR) to investigate the potential impacts on the Hanford unconfined aquifer that would result from leakage from the proposed Black Rock Reservoir to the west. Although impacts on groundwater flow and contaminant transport were quantified based on numerical simulation results, the investigation represented a qualitative assessment of the potential lateral recharge that could result in adverse effects on the aquifer. Because the magnitude of the potential leakage is unknown, hypothetical bounding calculations were performed. When a quantitative analysis of the magnitude of the potential recharge from Black Rock Reservoir is obtained, the hydrologic impacts analysis will be revisited. The analysis presented in this report represents initial bounding calculations. A maximum lateral recharge (i.e., upland flux) was determined in the first part of this study by executing steady-state flow simulations that raised the water table no higher than the elevation attained in the Central Plateau during the Hanford operational period. This metric was selected because it assumed a maximum remobilization of contaminants that existed under previous fully saturated conditions. Three steady-state flow fields were then used to analyze impacts to transient contaminant transport: a maximum recharge (27,000 acre-ft/yr), a no additional flux (365 acre-ft/yr), and an intermediate recharge case (16,000 acre-ft/yr). The transport behavior of four radionuclides was assessed for a 300 year simulation period with the three flow fields. The four radionuclides are tritium, iodine-129, technetium-99, and uranium-238. Transient flow and transport simulations were used to establish hypothetical concentration distributions in the subsurface. Using the simulated concentration distributions in 2005 as initial conditions for steady-state flow runs, simulations were executed to investigate the relative effects on contaminant transport from the increased upland fluxes. Contaminant plumes were analyzed for 1) peak concentrations and arrival times at downstream points of compliance, 2) the area of the aquifer contaminated at or above the drinking water standard (DWS), and 3) the total activity remaining in the domain at the end of the simulation. In addition to this analysis, unit source release simulations from a hypothetical tracer were executed to determine relative travel times from the Central Plateau. The results of this study showed that increases in the lateral recharge had limited impact on regional flow directions but accelerated contaminant transport. Although contaminant concentrations may have initially increased for the more mobile contaminants (tritium, technetium-99, and iodine-129), the accelerated transport caused dilution and a more rapid decline in concentrations relative to the Base Case (no additional flux). For the low-mobility uranium-238, higher lateral recharge caused increases in concentration, but these concentrations never approached the DWS. In this preliminary investigation, contaminant concentrations did not exceed the DWS study metric. With the increases in upland fluxes, more mass was transported out of the aquifer, and concentrations were diluted with respect to the base case where no additional flux was considered.

Freedman, Vicky L.

2008-01-30T23:59:59.000Z

8

Aquifer stability investigations  

DOE Green Energy (OSTI)

The study of compressed air energy storage (CAES) in porous rock reservoirs is carried out within the Reservoir Stability Studies Program at Pacific Northwest Laboratory. The goal of the study is to establish criteria for long-term stability of aquifer CAES reservoirs. These criteria are intended to be guidelines and check lists that utilities and architect-engineering firms may use to evaluate reservoir stability at candidate CAES sites. These criteria will be quantitative where possible, qualitative where necessary, and will provide a focal point for CAES relevant geotechnical knowledge, whether developed within this study or available from petroleum, mining or other geotechnical practices using rock materials. The Reservoir Stability Studies Program had four major activities: a state-of-the-art survey to establish preliminary stability criteria and identify areas requiring research and development; numerical modeling; laboratory testing to provide data for use in numerical models and to investigate fundamental rock mechanics, thermal, fluid, and geochemical response of aquifer materials; and field studies to verify the feasibility of air injection and recovery under CAES conditions in an aquifer, to validate and refine the stability criteria, and to evaluate the accuracy and adequacy of the numerical and experimental methodologies developed in previous work. Three phases of study, including preliminary criteria formulation, numerical model development, and experimental assessment of CAES reservoir materials have been completed. Present activity consists of construction and operation of the aquifer field test, and associated numerical and experimental work in support of that activity. Work is presently planned to be complete by 1983 at the end of the field test. At that time the final stability criteria for aquifers will be issued. Attached here also are preliminary criteria for aquifers.

Allen, R.D.; Doherty, T.J.

1981-09-01T23:59:59.000Z

9

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network (OSTI)

aquifers for thermal energy storage. Problems outlined aboveModeling of Thermal Energy Storage in Aquifers," Proceed-ings of Aquifer Thermal Energy Storage Workshop, Lawrence

Tsang, C.-F.

2011-01-01T23:59:59.000Z

10

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network (OSTI)

using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"Proceed- ings of Aquifer Thermal Energy Storage Workshop,

Tsang, C.-F.

2011-01-01T23:59:59.000Z

11

Geopressured aquifer simulator  

DOE Green Energy (OSTI)

Ten natural gas companies have funded the Institute of Gas Technology (IGT) development of a laboratory facility for fluid and core analyses at temperatures and pressures characteristic of geopressured aquifers. The facility has been designed and constructed to measure the following parameters at pressures up to 20,000 psi and temperatures to 450/sup 0/F: solubility of methane in brines from actual geopressured aquifers; dependence of compression and compaction reservoir drive upon pressure; dependence of permeability upon reservoir pressure and temperatures; dependence of relative permeabilities to gas and to water upon the water saturation of pores, pressure, and temperature. Brine pumped through the core can be either gas-free or from a reservoir of brine with gas in solution. The facility is modular in design with major components including the reservoir of gas-saturated brine, high-pressure positive displacement pumps, and the core holder housed in a large oven. All components contacted by high-pressure, high-temperature brine are fabricated from Hastelloy C-276, Elgaloy, or Inconel 625 to avoid corrosion. The temperatures, pressures, differential pressure, and flow rates are controlled and/or recorded by a digital microcomputer/microprocessor. Operation will be controlled from a separate room and programmed; hands-off operation will be the normal mode of operation. The facility has been constructed and is now being tested.Following performance testing with Berea sandstone, initial emphasis will be upon studies of brine and available core from DOE's Pleasant Bayou No. 1 and No. 2 wells.

Byrnes, A.P.; Rockar, E.M.; Randolph, P.L.; Kelkar, S.M.

1979-01-01T23:59:59.000Z

12

Geothermal reservoir management  

DOE Green Energy (OSTI)

The optimal management of a hot water geothermal reservoir was considered. The physical system investigated includes a three-dimensional aquifer from which hot water is pumped and circulated through a heat exchanger. Heat removed from the geothermal fluid is transferred to a building complex or other facility for space heating. After passing through the heat exchanger, the (now cooled) geothermal fluid is reinjected into the aquifer. This cools the reservoir at a rate predicted by an expression relating pumping rate, time, and production hole temperature. The economic model proposed in the study maximizes discounted value of energy transferred across the heat exchanger minus the discounted cost of wells, equipment, and pumping energy. The real value of energy is assumed to increase at r percent per year. A major decision variable is the production or pumping rate (which is constant over the project life). Other decision variables in this optimization are production timing, reinjection temperature, and the economic life of the reservoir at the selected pumping rate. Results show that waiting time to production and production life increases as r increases and decreases as the discount rate increases. Production rate decreases as r increases and increases as the discount rate increases. The optimal injection temperature is very close to the temperature of the steam produced on the other side of the heat exchanger, and is virtually independent of r and the discount rate. Sensitivity of the decision variables to geohydrological parameters was also investigated. Initial aquifer temperature and permeability have a major influence on these variables, although aquifer porosity is of less importance. A penalty was considered for production delay after the lease is granted.

Scherer, C.R.; Golabi, K.

1978-02-01T23:59:59.000Z

13

Analysis of Underpressured Reservoirs for Waste Disposal J. J. Jiao1  

E-Print Network (OSTI)

and are common in North America. Deep-well injection of hazardous liquid wastes into underpressured reservoirs that the underpressurization persists and the shallow aquifer is not contaminated after injection? Wells in the Hugoton field, v. 5, no. 3, 1997 Injection Well ,, Columns Shallow Aquifer Transition Zone Seal Reservoir Figure 6

Jiao, Jiu Jimmy

14

Geopressured-geothermal aquifers. Final contract report  

SciTech Connect

Task 1 is to provide petrophysical and reservoir analysis of wells drilled into geopressured-geothermal aquifers containing dissolved methane. The list of Design Wells and Wells of Opportunity analyzed: Fairfax Foster Sutter No. 2 (WOO), Pleasant Bayou No. 2 (Design), Amoco Fee No. 1 (Design), G.M. Koelemay No. 1 (WOO), Gladys McCall No. 1 (Design), P.R. Girouard No. 1 (WOO), and Crown Zellerbach No. 2 (WOO). Petrophysical and reservoir analysis of the above wells were performed based on availability of data. The analysis performed on each well, the assumptions made during simulation, and conclusions reached.

Not Available

1983-08-01T23:59:59.000Z

15

Water Influx, and Its Effect on Oil Recovery: Part 1. Aquifer Flow, SUPRI TR-103  

SciTech Connect

Natural water encroachment is commonly seen in many oil and gas reservoirs. In fact, overall, there is more water than oil produced from oil reservoirs worldwide. Thus it is clear that an understanding of reservoir/aquifer interaction can be an important aspect of reservoir management to optimize recovery of hydrocarbons. Although the mathematics of these processes are difficult, they are often amenable to analytical solution and diagnosis. Thus this will be the ultimate goal of a series of reports on this subject. This first report deals only with aquifer behavior, so it does not address these important reservoir/aquifer issues. However, it is an important prelude to them, for the insight gained gives important clues on how to address reservoir/aquifer problems. In general when looking at aquifer flow, there are two convenient inner boundary conditions that can be considered; constant pressure or constant flow rate. There are three outer boundary conditions that are convenient to consider; infinite, closed and constant pressure. And there are three geometries that can be solved reasonably easily; linear, radial and spherical. Thus there are a total of eighteen different solutions that can be analyzed.

Brigham, William E.

1999-08-09T23:59:59.000Z

16

Aquifer Management for CO2 Sequestration  

E-Print Network (OSTI)

Storage of carbon dioxide is being actively considered for the reduction of green house gases. To make an impact on the environment CO2 should be put away on the scale of gigatonnes per annum. The storage capacity of deep saline aquifers is estimated to be as high as 1,000 gigatonnes of CO2.(IPCC). Published reports on the potential for sequestration fail to address the necessity of storing CO2 in a closed system. This work addresses issues related to sequestration of CO2 in closed aquifers and the risk associated with aquifer pressurization. Through analytical modeling we show that the required volume for storage and the number of injection wells required are more than what has been envisioned, which renders geologic sequestration of CO2 a profoundly nonfeasible option for the management of CO2 emissions unless brine is produced to create voidage and pressure relief. The results from our analytical model match well with a numerical reservoir simulator including the multiphase physics of CO2 sequestration. Rising aquifer pressurization threatens the seal integrity and poses a risk of CO2 leakage. Hence, monitoring the long-term integrity of CO2 storage reservoirs will be a critical aspect for making geologic sequestration a safe, effective and acceptable method for greenhouse gas control. Verification of long-term CO2 residence in receptor formations and quantification of possible CO2 leaks are required for developing a risk assessment framework. Important aspects of pressure falloff tests for CO2 storage reservoirs are discussed with a focus on reservoir pressure monitoring and leakage detection. The importance of taking regular pressure falloffs for a commercial sequestration project and how this can help in diagnosing an aquifer leak will be discussed. The primary driver for leakage in bulk phase injection is the buoyancy of CO2 under typical deep reservoir conditions. Free-phase CO2 below the top seal is prone to leak if a breach happens in the top seal. Consequently, another objective of this research is to propose a way to engineer the CO2 injection system in order to accelerate CO2 dissolution and trapping. The engineered system eliminates the buoyancy-driven accumulation of free gas and avoids aquifer pressurization by producing brine out of the system. Simulations for 30 years of CO2 injection followed by 1,000 years of natural gradient show how CO2 can be securely and safely stored in a relatively smaller closed aquifer volume and with a greater storage potential. The engineered system increases CO2 dissolution and capillary trapping over what occurs under the bulk phase injection of CO2. This thesis revolves around identification, monitoring and mitigation of the risks associated with geological CO2 sequestration.

Anchliya, Abhishek

2009-12-01T23:59:59.000Z

17

Joule-Thomson Cooling Due to CO2 Injection into Natural Gas Reservoirs  

E-Print Network (OSTI)

cannot be produced because gas wells “water out,” a processcan be produced because there is no invading water to killwater flows into the reservoir from surrounding aquifers continuously while gas is produced.

Oldenburg, Curtis M.

2006-01-01T23:59:59.000Z

18

Feasibility of waterflooding Soku E7000 gas-condensate reservoir  

E-Print Network (OSTI)

We performed a simple 3D compositional reservoir simulation study to examine the possibility of waterflooding the Soku E7 gas-condensate reservoir. This study shows that water injection results in higher condensate recovery than natural depletion. To achieve this recovery, the reservoir should return to natural depletion after four years of water injection, before water invades the producing wells. Factors that affect the effectiveness of water injection in this reservoir include aquifer strength, reservoir property distribution, timing of the start of injection, and intra-reservoir shale thickness and continuity. Sensitivity analyses used to quantify the effects of these factors on condensate recovery indicate the need to acquire more production, pressure and log data to reduce the present large uncertainty on aquifer strength before proceeding on waterflooding this reservoir. The study also shows that the injection scheme should be implemented as soon as possible to avoid further loss of condensate recovery. The result of this study is applicable to other gas condensate reservoirs in the Niger delta with similar depositional environments.

Ajayi, Arashi

2002-01-01T23:59:59.000Z

19

Method of using in situ porosity measurements to place an upper bound on geothermal reservoir compaction  

DOE Green Energy (OSTI)

Placing an upper bound on reservoir compaction requires placing a lower bound on the reservoir effective compaction modulus. Porosity-depth data can be used to find that lower-bound modulus in a young sedimentary basin. Well-log and sample porosity data from a geothermal field in the Imperial Valley, CA, give a lower-bound modulus of 7.7 x 10{sup 3} psi. This modulus is used with pressure drops calculated for a reservoir to determine an upper bound on reservoir compaction. The effects of partial reinjection and aquifer leakage on upper-bound subsidence estimated from the compaction are illustrated for a hypothetical reservoir and well array.

Schatz, J.F.; Kasameyer, P.W.; Cheney, J.A.

1979-01-03T23:59:59.000Z

20

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

Accumulation of Solar Energy in an Aquifer. Geliotekhnika.Aquifer Heating in Solar-Energy Accumulation, Gelioteknhika.presented at Int. Solar Energy Soc. (American Sec. ) "Solar

Authors, Various

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aquifer reservoirs water-only" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

Aquifers of Hot Water from Solar Power Systems," presentedof hot water from solar power systems. Lawrence BerkeleyAquifers of Hot Water from Solar Power Systems," Proceedings

Authors, Various

2011-01-01T23:59:59.000Z

22

Thermophysical behavior of St. Peter sandstone: application to compressed air energy storage in an aquifer  

DOE Green Energy (OSTI)

The long-term stability of a sandstone reservoir is of primary importance to the success of compressed air energy storage (CAES) in aquifers. The purpose of this study was to: develop experimental techniques for the operation of the CAES Porous Media Flow Loop (PMFL), an apparatus designed to study the stability of porous media in subsurface geologic environments, conduct experiments in the PMFL designed to determine the effects of temperature, stress, and humidity on the stability of candidate CAES reservoir materials, provide support for the CAES field demonstration project in Pittsfield, Illinois, by characterizing the thermophysical stability of Pittsfield reservoir sandstone under simulated field conditions.

Erikson, R.L.

1983-12-01T23:59:59.000Z

23

EIA - Natural Gas Pipeline Network - Aquifer Storage Reservoir ...  

U.S. Energy Information Administration (EIA)

About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates

24

Aquitard control of stream-aquifer interaction and flow to a horizontal well in coastal aquifers  

E-Print Network (OSTI)

This dissertation is composed of three parts of major contributions: In Chapter II, we developed a new conceptual model and derived a new semi-analytical model for flow to a horizontal well beneath a water reservoir. Instead of treating the leakage from aquitard as a source term inside the aquifer which is called Hantush�s assumption (1964), we linked flows in aquitard and aquifer by the idea of continuity of flux and drawdown. The result in this chapter is compared with that of Zhan and Park in 2003 which Hantush�s assumption is adopted at various hydraulic and well configurations. It shows that Hantush�s assumption becomes inaccurate in regions where vertical velocity components are significant. In Chapter III, we deal with the interaction of an aquifer with two parallel surface water bodies such as two streams or canals. In this chapter, new closed-form analytical and semi-analytical solutions are acquired for the pumping induced dynamic interaction between two streams and ground water for two different cases. In the first case, the sediment layers separating the streams from the aquifer ground water do not exist. In the second case, the two low permeable layers are considered. The effect of aquitard and water right competition is addressed in this chapter. This model can be used for interpreting and deriving hydrologic parameters of aquitard and aquifer when pumping occurs between two channels. It can also be used to predict stream depletion which is essential for water management and ecology conservation. In Chapter IV, we investigated the three dimensional upconing due to a finite-length of horizontal well and its critical conditions. The results are compared with those of vertical wells. The critical condition which includes the critical rise and the critical time at a certain pumping rate depends on the well length, the initial interface location, the well location, and the pumping rate. Our results show that horizontal well might be a better tool for coastal groundwater resources development. In real field applications, installing long wells as shallow as possible is always desirable for sustaining long periods of pumping with significant rates.

Sun, Dongmin

2005-12-01T23:59:59.000Z

25

Microsoft Word - S08542_Aquifer  

Office of Legacy Management (LM)

Work Plan for the Enhanced Work Plan for the Enhanced Characterization of the Surficial Aquifer Riverton, Wyoming, Processing Site June 2012 LMS/RVT/S08542 This page intentionally left blank LMS/RVT/S08542 Work Plan for the Enhanced Characterization of the Surficial Aquifer Riverton, Wyoming, Processing Site June 2012 This page intentionally left blank U.S. Department of Energy Work Plan for the Enhanced Characterization of the Surficial Aquifer, Riverton, Wyoming June 2012 Doc. No. S08542 Page i Contents Abbreviations .................................................................................................................................. ii 1.0 Introduction ............................................................................................................................1

26

Fractured shale reservoirs: Towards a realistic model  

Science Conference Proceedings (OSTI)

Fractured shale reservoirs are fundamentally unconventional, which is to say that their behavior is qualitatively different from reservoirs characterized by intergranular pore space. Attempts to analyze fractured shale reservoirs are essentially misleading. Reliance on such models can have only negative results for fractured shale oil and gas exploration and development. A realistic model of fractured shale reservoirs begins with the history of the shale as a hydrocarbon source rock. Minimum levels of both kerogen concentration and thermal maturity are required for effective hydrocarbon generation. Hydrocarbon generation results in overpressuring of the shale. At some critical level of repressuring, the shale fractures in the ambient stress field. This primary natural fracture system is fundamental to the future behavior of the fractured shale gas reservoir. The fractures facilitate primary migration of oil and gas out of the shale and into the basin. In this process, all connate water is expelled, leaving the fractured shale oil-wet and saturated with oil and gas. What fluids are eventually produced from the fractured shale depends on the consequent structural and geochemical history. As long as the shale remains hot, oil production may be obtained. (e.g. Bakken Shale, Green River Shale). If the shale is significantly cooled, mainly gas will be produced (e.g. Antrim Shale, Ohio Shale, New Albany Shale). Where secondary natural fracture systems are developed and connect the shale to aquifers or to surface recharge, the fractured shale will also produce water (e.g. Antrim Shale, Indiana New Albany Shale).

Hamilton-Smith, T. [Applied Earth Science, Lexington, KY (United States)

1996-09-01T23:59:59.000Z

27

Guntong field: Development and management of a multiple-reservoir offshore waterflood  

SciTech Connect

The Guntong field, the largest waterflood field in offshore peninsular Malaysia, with an oil-in-place (OIP) of about 200 million m{sup 3}, has been producing since 1985. The field contains 13 stacked reservoirs with small gas caps and limited aquifer support. This paper describes some of the significant reservoir, geologic, and facility challenges faced during development and management of this complex reservoir system. A combination of five-spot and peripheral waterflood patterns was selected to provide the required areal coverage, and reservoirs were commingled into two operational groups. Key reservoir management strategies to maximize performance include determination of optimum target reservoir pressures, use of a PC-based program to guide production and injection targets, and meeting pattern-balancing and capacity-enhancement programs. The response to the reservoir management efforts has been favorable, with an all-time-high production rate of 14,000 m{sup 3}/d recorded in 1994.

Chik, A.N.; Selamat, S.; Elias, M.R.; White, J.P.; Wakatake, M.T.

1996-12-01T23:59:59.000Z

28

Update on the Raft River Geothermal Reservoir | Open Energy Information  

Open Energy Info (EERE)

on the Raft River Geothermal Reservoir on the Raft River Geothermal Reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Update on the Raft River Geothermal Reservoir Details Activities (1) Areas (1) Regions (0) Abstract: Since the last conference, a fourth well has been drilled to an intermediate depth and tested as a production well, with plans to use this well in the long term for injection of fluids into the strata above the production strata. The third, triple legged well has been fully pump tested, and the recovery of the second well from an injection well back to production status has revealed very interesting data on the reservoir conditions around that well. Both interference testing and geochemistry analysis shows that the third well is producing from a different aquifer

29

Relationship of regional water quality to aquifer thermal energy storage  

DOE Green Energy (OSTI)

Ground-water quality and associated geologic characteristics may affect the feasibility of aquifer thermal energy storage (ATES) system development in any hydrologic region. This study sought to determine the relationship between ground-water quality parameters and the regional potential for ATES system development. Information was collected from available literature to identify chemical and physical mechanisms that could adversely affect an ATES system. Appropriate beneficiation techniques to counter these potential geochemical and lithologic problems were also identified through the literature search. Regional hydrology summaries and other sources were used in reviewing aquifers of 19 drainage regions in the US to determine generic geochemical characteristics for analysis. Numerical modeling techniques were used to perform geochemical analyses of water quality from 67 selected aquifers. Candidate water resources regions were then identified for exploration and development of ATES. This study identified six principal mechanisms by which ATES reservoir permeability may be impaired: (1) particulate plugging, (2) chemical precipitation, (3) liquid-solid reactions, (4) formation disaggregation, (5) oxidation reactions, and (6) biological activity. Specific proven countermeasures to reduce or eliminate these effects were found. Of the hydrologic regions reviewed, 10 were identified as having the characteristics necessary for ATES development: (1) Mid-Atlantic, (2) South-Atlantic Gulf, (3) Ohio, (4) Upper Mississippi, (5) Lower Mississippi, (6) Souris-Red-Rainy, (7) Missouri Basin, (8) Arkansas-White-Red, (9) Texas-Gulf, and (10) California.

Allen, R.D.

1983-11-01T23:59:59.000Z

30

Status of Norris Reservoir  

DOE Green Energy (OSTI)

This is one in a series of reports prepared by the Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overview of Norris Reservoir summarizes reservoir and watershed characteristics, reservoir uses, conditions that impair reservoir uses, water quality and aquatic biological conditions, and activities of reservoir management agencies. This information was extracted from the most up-to-date publications and data available, and from interviews with water resource professionals in various federal, state, and local agencies, and in public and private water supply and wastewater treatment facilities. 14 refs., 3 figs.

Not Available

1990-09-01T23:59:59.000Z

31

Interactions and Implications of a Collector Well with a River in an Unconfined Aquifer with Regional Background Flow  

E-Print Network (OSTI)

Ranney radial collector wells consist of an array of horizontal lateral wells arranged radially around and connected to the base of a vertical well. They offer numerous advantages over traditional vertical wells with application in both the petroleum industry and hydrologic sciences. This study improved the understanding of the interaction of collector wells and the aquifers/reservoirs they tap by numerically modeling flux exchanges between a collector well and a river in an unconfined aquifer with regional background flow. Modeling demonstrated that flux along each horizontal lateral increased with distance from the vertical well stem following a third order polynomial function. Ultimately these models demonstrated that in the collector well/aquifer/river system, the pumping rate of the collector well was the dominant factor in controlling flux between the river and aquifer under various conditions. This study can be used to project the maximum allowable pumping rate without causing an initially gaining river to become a losing river.

Dugat, William D., IV

2009-08-01T23:59:59.000Z

32

Economics of producing methane (exclusively) from geopressured aquifers along the Gulf Coast  

SciTech Connect

The purpose of this report was to estimate the cost of producing methane (natural gas) from geopressured aquifers inland from and along the coast of the Gulf of New Mexico. No other economic values of the geopressured brines were considered for exploitation. There were several component tasks of such an overall analysis which had to be completed in order to arrive at the final conclusion. (1) An estimate of the reservoir parameters of the geopressured aquifers; their areal extent, net thickness of productive sand, porosity, permeability, effective compressibility. It is these parameters which determine the production rates and the total recovery of the resource that may be expected within an economic time frame. (2) An estimate of the production rates and cumulative production of geopressured aquifers having reservoir properties falling into the range of values that may be anticipated from the results of the first task. (3) An estimate of the operating and capital costs of drilling wells and producing such geopressured aquifers, integral and significant part of the operating costs is the cost of disposing of the large quantities of produced brines following the desorption of the methane. (4) An estimate of the sales price of the recovered methane using appropriate discount rates.

Doscher, Todd M.; Osborne, R.N.; Wilson, T.; Rhee, S.W.

1978-03-01T23:59:59.000Z

33

Reservoir simulation and geochemical study of Cerro Prieto I wells  

DOE Green Energy (OSTI)

Combined reservoir simulation and geochemical data analysis are used to investigate the effects of recharge and other reservoir processes occurring in the western part of the Cerro Prieto, Mexico, geothermal field (i.e., Cerro Prieto I area). Enthalpy-based temperatures and bottomhole temperatures are calculated based on simplified models of the system, considering different reservoir boundary conditions and zones of contrasting initial temperatures and reservoir properties. By matching the computed trends with geothermometer-based temperature and enthalpy histories of producing wells, the main processes active in the western area of Cerro Prieto are identified. This part of the geothermal system is strongly influenced by nearby groundwater aquifers; cooler waters readily recharge the reservoirs. In response to exploitation, the natural influx of cold water into the shallower alpha reservoir is mainly from the west and down Fault L, while the recharge to the deeper beta reservoir in this part of the field, seems to be only lateral, from the west and possibly south. 11 refs., 12 figs.

Lippmann, M.J. (Lawrence Berkeley Lab., CA (USA)); Truesdell, A.H. (Geological Survey, Menlo Park, CA (USA))

1990-03-01T23:59:59.000Z

34

Status of Wheeler Reservoir  

DOE Green Energy (OSTI)

This is one in a series of status reports prepared by the Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overview of Wheeler Reservoir summarizes reservoir purposes and operation, reservoir and watershed characteristics, reservoir uses and use impairments, and water quality and aquatic biological conditions. The information presented here is from the most recent reports, publications, and original data available. If no recent data were available, historical data were summarized. If data were completely lacking, environmental professionals with special knowledge of the resource were interviewed. 12 refs., 2 figs.

Not Available

1990-09-01T23:59:59.000Z

35

Status of Cherokee Reservoir  

DOE Green Energy (OSTI)

This is the first in a series of reports prepared by Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overviews of Cherokee Reservoir summarizes reservoir and watershed characteristics, reservoir uses and use impairments, water quality and aquatic biological conditions, and activities of reservoir management agencies. This information was extracted from the most current reports, publications, and data available, and interviews with water resource professionals in various Federal, state, and local agencies and in public and private water supply and wastewater treatment facilities. 11 refs., 4 figs., 1 tab.

Not Available

1990-08-01T23:59:59.000Z

36

Hydrothermal Reservoirs | Open Energy Information  

Open Energy Info (EERE)

Hydrothermal Reservoirs Hydrothermal Reservoirs Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Hydrothermal Reservoirs Dictionary.png Hydrothermal Reservoir: Hydrothermal Reservoirs are underground zones of porous rock containing hot water and steam, and can be naturally occurring or human-made. Other definitions:Wikipedia Reegle Natural, shallow hydrothermal reservoirs naturally occurring hot water reservoirs, typically found at depths of less than 5 km below the Earth's surface where there is heat, water and a permeable material (permeability in rock formations results from fractures, joints, pores, etc.). Often, hydrothermal reservoirs have an overlying layer that bounds the reservoir and also serves as a thermal insulator, allowing greater heat retention. If hydrothermal reservoirs

37

Geometry and reservoir heterogeneity of tertiary sandstones: a guide to reservoir continuity and geothermal resource development  

DOE Green Energy (OSTI)

External and internal continuity of Tertiary sandstones are controlled by various factors including structural trends, sand body geometry, and the distribution of mineral framework, matrix, and intersticies within the sand body. Except for the limits imposed by faults, these factors are largely inherited from the depositional environment and modified during sandstone compaction and cementation. Sandstone continuity affects energy exploration and production strategies. The strategies range in scope from regional to site-specific and closely parallel a sandstone hierarchy. The hierarchy includes subdivisions ranking from genetically related aquifer systems down to individual reservoirs within a fault-bounded sandstone. Volumes of individual reservoirs are 50% less to 200% more than estimated from conventional geologic mapping. In general, mapped volumes under-estimate actual volumes where faults are nonsealing and overestimate actual volumes where laterally continuous shale breaks cause reductions in porosity and permeability. Gross variations in these pore properties can be predicted on the basis of internal stratification and sandstone facies. Preliminary analyses indicate that large aquifers are found where barrier and strandplain sandstones parallel regional faults or where fluvial (meandering) channels trend normal to regional faults. Within these sand bodies, porosity and permeability are highest in large-scale crossbedded intervals and lowest in contorted, bioturbated, and small-scale ripple cross-laminated intervals.

Morton, R.A.; Ewing, T.E.

1981-01-01T23:59:59.000Z

38

Geothermal reservoir technology  

DOE Green Energy (OSTI)

A status report on Lawrence Berkeley Laboratory's Reservoir Technology projects under DOE's Hydrothermal Research Subprogram is presented. During FY 1985 significant accomplishments were made in developing and evaluating methods for (1) describing geothermal systems and processes; (2) predicting reservoir changes; (3) mapping faults and fractures; and (4) field data analysis. In addition, LBL assisted DOE in establishing the research needs of the geothermal industry in the area of Reservoir Technology. 15 refs., 5 figs.

Lippmann, M.J.

1985-09-01T23:59:59.000Z

39

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network (OSTI)

High temperature underground thermal energy storage, inProceedings, Thermal Energy Storage in Aquifers Workshop:underground thermal energy storage, in ATES newsletter:

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

40

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

Survey of Thermal Energy Storage in Aquifers Coupled withGeneration and Energy Storage," presented at Frontiers ofStudy of Underground Energy Storage Using High-Pressure,

Authors, Various

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aquifer reservoirs water-only" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network (OSTI)

1978, High temperature underground thermal energy storage,in Proceedings, Thermal Energy Storage in Aquifers Workshop:High temperature underground thermal energy storage, in ATES

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

42

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

B. Quale. Seasonal storage of thermal energy in water in theand J. Schwarz, Survey of Thermal Energy Storage in AquifersSecond Annual Thermal Energy Storage Contractors'

Authors, Various

2011-01-01T23:59:59.000Z

43

Aquifer Protection Area Land Use Regulations (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations describe allowable activities within aquifer protection areas, the procedure by which such areas are delineated, and relevant permit requirements. The regulations also describe...

44

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

M.R. Tek. 1970. Storage of Natural Gas in Saline Aquifers.petroleum, underground storage of natural gas, large scale

Authors, Various

2011-01-01T23:59:59.000Z

45

Geothermal Reservoir Dynamics - TOUGHREACT  

E-Print Network (OSTI)

Swelling in a Fractured Geothermal Reservoir, presented atTHC) Modeling Based on Geothermal Field Data, Geothermics,and Silica Scaling in Geothermal Production-Injection Wells

2005-01-01T23:59:59.000Z

46

EXPERIMENTAL AND THEORETICAL STUDIES OF THERMAL ENERGY STORAGE IN AQUIFERS  

E-Print Network (OSTI)

In Proceed- ings of Thermal Energy Storage in Aquifers Work-Mathematical Modeling of Thermal Energy storage in Aquifers.In Proceed- ings of Thermal Energy Storage in Aquifers Work-

Tsang, Chin Fu

2011-01-01T23:59:59.000Z

47

Geysers reservoir studies  

DOE Green Energy (OSTI)

LBL is conducting several research projects related to issues of interest to The Geysers operators, including those that deal with understanding the nature of vapor-dominated systems, measuring or inferring reservoir processes and parameters, and studying the effects of liquid injection. All of these topics are directly or indirectly relevant to the development of reservoir strategies aimed at stabilizing or increasing production rates of non-corrosive steam, low in non-condensable gases. Only reservoir engineering studies will be described here, since microearthquake and geochemical projects carried out by LBL or its contractors are discussed in accompanying papers. Three reservoir engineering studies will be described in some detail, that is: (a) Modeling studies of heat transfer and phase distribution in two-phase geothermal reservoirs; (b) Numerical modeling studies of Geysers injection experiments; and (c) Development of a dual-porosity model to calculate mass flow between rock matrix blocks and neighboring fractures.

Bodvarsson, G.S.; Lippmann, M.J.; Pruess, K.

1993-04-01T23:59:59.000Z

48

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University APPRAISAL SYSTEM FOR DEEP GEOTHERMAL ENERGY SYSTEMS IN AQUIFERS W.A. van Leeuwen, C.N.P.J. Maaijwee and N.a.vanleeuwen@geo.uu.nl ABSTRACT Pursuit and use of geothermal energy in the Netherlands is developing steadily. However, in order

Stanford University

49

Reservoir characterization of Pennsylvanian sandstone reservoirs. Final report  

SciTech Connect

This final report summarizes the progress during the three years of a project on Reservoir Characterization of Pennsylvanian Sandstone Reservoirs. The report is divided into three sections: (i) reservoir description; (ii) scale-up procedures; (iii) outcrop investigation. The first section describes the methods by which a reservoir can be described in three dimensions. The next step in reservoir description is to scale up reservoir properties for flow simulation. The second section addresses the issue of scale-up of reservoir properties once the spatial descriptions of properties are created. The last section describes the investigation of an outcrop.

Kelkar, M.

1995-02-01T23:59:59.000Z

50

Understanding reservoir mechanisms using phase and component streamline tracing  

E-Print Network (OSTI)

Conventionally streamlines are traced using total flux across the grid cell faces. The visualization of total flux streamlines shows the movement of flood, injector-producer relationship, swept area and movement of tracer. But they fail to capture some important signatures of reservoir dynamics, such as dominant phase in flow, appearance and disappearance of phases (e.g. gas), and flow of components like CO2. In the work being presented, we demonstrate the benefits of visualizing phase and component streamlines which are traced using phase and component fluxes respectively. Although the phase and component streamlines are not appropriate for simulation, as they might be discontinuous, they definitely have a lot of useful information about the reservoir processes and recovery mechanisms. In this research, phase and component streamline tracing has been successfully implemented in three-phase and compositional simulation and the additional information obtained using these streamlines have been explored. The power and utility of the phase and component streamlines have been demonstrated using synthetic examples and two field cases. The new formulation of streamline tracing provides additional information about the reservoir drive mechanisms. The phase streamlines capture the dominant phase in flow in different parts of the reservoir and the area swept corresponding to different phases can be identified. Based on these streamlines the appearance and disappearance of phases can be identified. Also these streamlines can be used for optimizing the field recovery processes like water injection and location of infill wells. Using component streamlines the movement of components like CO2 can be traced, so they can be used for optimizing tertiary recovery mechanisms and tracking of tracers. They can also be used to trace CO2 in CO2 sequestration project where the CO2 injection is for long term storage in aquifers or reservoirs. They have also other potential uses towards study of reservoir processes and behavior such as drainage area mapping for different phases, phase rate allocations to reservoir layers, etc.

Kumar, Sarwesh

2008-08-01T23:59:59.000Z

51

Underground hydrogen storage. Final report. [Salt caverns, excavated caverns, aquifers and depleted fields  

DOE Green Energy (OSTI)

The technical and economic feasibility of storing hydrogen in underground storage reservoirs is evaluated. The past and present technology of storing gases, primarily natural gas is reviewed. Four types of reservoirs are examined: salt caverns, excavated caverns, aquifers, and depleted fields. A technical investigation of hydrogen properties reveals that only hydrogen embrittlement places a limit on the underground storage by hydrogen. This constraint will limit reservoir pressures to 1200 psi or less. A model was developed to determine economic feasibility. After making reasonable assumptions that a utility might make in determining whether to proceed with a new storage operation, the model was tested and verified on natural gas storage. A parameteric analysis was made on some of the input parameters of the model to determine the sensitivity of the cost of service to them. Once the model was verified it was used to compute the cost of service of storing hydrogen in the four reservoir types. The costs of service for hydrogen storage ranged from 26 to 150% of the cost of the gas stored. The study concludes that it is now both safe and economic to store hydrogen in underground reservoirs.

Foh, S.; Novil, M.; Rockar, E.; Randolph, P.

1979-12-01T23:59:59.000Z

52

Reservoir Protection (Oklahoma)  

Energy.gov (U.S. Department of Energy (DOE))

The Oklahoma Water Resource Board has the authority to make rules for the control of sanitation on all property located within any reservoir or drainage basin. The Board works with the Department...

53

Geology and Reservoir Simulation  

NLE Websites -- All DOE Office Websites (Extended Search)

Service: 1-800-553-7681 Geology and Reservoir Simulation Background Natural gas from shale is becoming ever more recognized as an abundant and economically viable fuel in the...

54

Session: Reservoir Technology  

DOE Green Energy (OSTI)

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five papers: ''Reservoir Technology'' by Joel L. Renner; ''LBL Research on the Geysers: Conceptual Models, Simulation and Monitoring Studies'' by Gudmundur S. Bodvarsson; ''Geothermal Geophysical Research in Electrical Methods at UURI'' by Philip E. Wannamaker; ''Optimizing Reinjection Strategy at Palinpinon, Philippines Based on Chloride Data'' by Roland N. Horne; ''TETRAD Reservoir Simulation'' by G. Michael Shook

Renner, Joel L.; Bodvarsson, Gudmundur S.; Wannamaker, Philip E.; Horne, Roland N.; Shook, G. Michael

1992-01-01T23:59:59.000Z

55

THEORETICAL STUDIES IN LONG-TERM THERMAL ENERGY STORAGE IN AQUIFERS  

E-Print Network (OSTI)

Mathematical Modeling of Thermal Energy Storage in Aquifers.of Aquifer Thermal Energy Storage Workshop, LawrenceF.P. "Thermal Energy Storage in a Confined Aquifer- Second

Tsang, C.F.

2013-01-01T23:59:59.000Z

56

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

HAUSZ, W. , 1977. "Seasonal Storage in District Heating,"District Heating, July-August-September, 1977, pp. 5-11.aquifer storage for district heating and cooling. C. W.

Authors, Various

2011-01-01T23:59:59.000Z

57

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

and J. Schwarz, Survey of Thermal Energy Storage in AquifersA. 1957. Steady State Free Thermal Convection of Liquid in a1958. An Experiment on Free Thermal Convection of Water in

Authors, Various

2011-01-01T23:59:59.000Z

58

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

Jamaica Bay water nor cooling tower "agothy Fm, Elevation ofJFK. Investment Cost of Cooling Tower Case. Table 3. Annualthe JFK Aquifer System. I. Cooling Tower Case Winter Cooling

Authors, Various

2011-01-01T23:59:59.000Z

59

GEOTHERMAL RESERVOIR SIMULATIONS WITH SHAFT79  

E-Print Network (OSTI)

that well blocks must geothermal reservoir s·tudies, paperof Califomia. LBL-10066 GEOTHERMAL RESERVOIR SIMULATIONSbe presented at the Fifth Geothermal Reservoir Engineering

Pruess, Karsten

2012-01-01T23:59:59.000Z

60

Real natural gas reservoir data Vs. natural gas reservoir models  

Science Conference Proceedings (OSTI)

The gas reservoir per se model is an exceedingly simple model of a natural gas reservoir designed to develop the physical relationship between ultimate recovery and rate(s) of withdrawal for production regulation policy assessment. To be responsive, ...

Ellis A. Monash; John Lohrenz

1979-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "aquifer reservoirs water-only" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Depletion modeling of liquid dominated geothermal reservoirs  

DOE Green Energy (OSTI)

Depletion models for liquid-dominated geothermal reservoirs are derived and presented. The depletion models are divided into two categories: confined and unconfined. For both cases depletion models with no recharge (or influx), and depletion models including recharge, are used to match field data from the Svartsengi high temperature geothermal field in Iceland. The influx models included with the mass and energy balances are adopted from the petroleum engineering literature. The match to production data from Svartsengi is improved when influx was included. The Schilthuis steady-state influx gives a satisfactory match. The finite aquifer method of Fetkovitch, and the unsteady state method of Hurst gave reasonable answers, but not as good. The best match is obtained using Hurst simplified solution when lambda = 1.3 x 10{sup -4} m{sup -1}. From the match the cross-sectional area of the aquifer was calculated as 3.6 km{sup 2}. The drawdown was predicted using the Hurst simplified method, and compared with predicted drawdown from a boiling model and an empirical log-log model. A large difference between the models was obtained. The predicted drawdown using the Hurst simplified method falls between the other two. Injection has been considered by defining the net rate as being the production rate minus the injection rate. No thermal of transient effects were taken into account. Prediction using three different net rates shows that the pressure can be maintained using the Hurst simplified method if there is significant fluid reinjection. 32 refs., 44 figs., 2 tabs.

Olsen, G.

1984-06-01T23:59:59.000Z

62

Reinjection into geothermal reservoirs  

DOE Green Energy (OSTI)

Reinjection of geothermal wastewater is practiced as a means of disposal and for reservoir pressure support. Various aspects of reinjection are discussed, both in terms of theoretical studies as well as specific field examples. The discussion focuses on the major effects of reinjection, including pressure maintenance and chemical and thermal effects. (ACR)

Bodvarsson, G.S.; Stefansson, V.

1987-08-01T23:59:59.000Z

63

ENERGY STORAGE IN AQUIFERS - - A SURVEY OF RECENT THEORETICAL STUDIES  

E-Print Network (OSTI)

underground thermal energy storage. In Proc. Th~rmal1980), 'I'hermal energy storage? in a confined aquifer·--al modeling of thermal energy storage in aquifers. In ~~-

Tsang, Chin Fu

2013-01-01T23:59:59.000Z

64

ENERGY STORAGE IN AQUIFERS - - A SURVEY OF RECENT THEORETICAL STUDIES  

E-Print Network (OSTI)

temperature underground thermal energy storage. In Proc. Th~1980), Aquifer Thermal Energy Sto:t'age--·a survey, Invit.edal modeling of thermal energy storage in aquifers. In ~~-

Tsang, Chin Fu

2013-01-01T23:59:59.000Z

65

Fluid Dynamics of Carbon Dioxide Disposal into Saline Aquifers  

E-Print Network (OSTI)

L. (1990). Natural Gas Engineering: Production and Storage.experience with natural gas ?a, storage in aquifers in the

Garcia, Julio Enrique

2003-01-01T23:59:59.000Z

66

Aquifer thermal energy storage. International symposium: Proceedings  

DOE Green Energy (OSTI)

Aquifers have been used to store large quantities of thermal energy to supply process cooling, space cooling, space heating, and ventilation air preheating, and can be used with or without heat pumps. Aquifers are used as energy sinks and sources when supply and demand for energy do not coincide. Aquifer thermal energy storage may be used on a short-term or long-term basis; as the sole source of energy or as a partial storage; at a temperature useful for direct application or needing upgrade. The sources of energy used for aquifer storage are ambient air, usually cold winter air; waste or by-product energy; and renewable energy such as solar. The present technical, financial and environmental status of ATES is promising. Numerous projects are operating and under development in several countries. These projects are listed and results from Canada and elsewhere are used to illustrate the present status of ATES. Technical obstacles have been addressed and have largely been overcome. Cold storage in aquifers can be seen as a standard design option in the near future as it presently is in some countries. The cost-effectiveness of aquifer thermal energy storage is based on the capital cost avoidance of conventional chilling equipment and energy savings. ATES is one of many developments in energy efficient building technology and its success depends on relating it to important building market and environmental trends. This paper attempts to provide guidance for the future implementation of ATES. Individual projects have been processed separately for entry onto the Department of Energy databases.

NONE

1995-05-01T23:59:59.000Z

67

Status of Blue Ridge Reservoir  

DOE Green Energy (OSTI)

This is one in a series of reports prepared by the Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overview of Blue Ridge Reservoir summarizes reservoir and watershed characteristics, reservoir uses and use impairments, water quality and aquatic biological conditions, and activities of reservoir management agencies. This information was extracted from the most current reports and data available, as well as interview with water resource professionals in various federal, state, and local agencies. Blue Ridge Reservoir is a single-purpose hydropower generating project. When consistent with this primary objective, the reservoir is also operated to benefit secondary objectives including water quality, recreation, fish and aquatic habitat, development of shoreline, aesthetic quality, and other public and private uses that support overall regional economic growth and development. 8 refs., 1 fig.

Not Available

1990-09-01T23:59:59.000Z

68

System Design and Optimization of CO2 Storage in Deep Saline Aquifers  

E-Print Network (OSTI)

Optimization of waterflooding sweep efficiency has been widely applied in reservoir engineering to improve hydrocarbon recovery while delaying water breakthrough and minimizing the bypassed oil in reservoirs. We develop a new framework to optimize flooding sweep efficiency in geologic formations with heterogeneous properties and demonstrate its application to waterflooding and geological CO2 sequestration problems. The new method focuses on equalizing and delaying (under constant total injected volume) the breakthrough time of the injected fluid at production wells. For application to CO2 sequestration where producers may not be present, we introduce the concept of pseudo production wells that have insignificant production rates (with negligible effect on the overall flow regime) for quantification of hypothetical breakthrough curves that can be used for optimization purpose. We apply the new method to waterflooding and CO2 sequestration optimization using two heterogeneous reservoir models. We show that in water flooding experiments, the proposed method improves the sweep efficiency by delaying the field breakthrough and equalizing breakthrough times in all production wells. In this case, the optimization results in increased oil recovery and decreased water production. We apply a modified version of the proposed algorithm to geologic CO2 sequestration problems to maximize the storage capacity of aquifers by enhancing the residual and dissolution trapping. The results from applying the proposed approach to optimization of geologic CO2 storage problems illustrate the effectiveness of the algorithm in improving residual and solubility trapping by increasing the contact between available fresh brine and the injected CO2 plume through a more uniform distribution of CO2 in the aquifer.

Shamshiri, Hossein

2010-12-01T23:59:59.000Z

69

Aquifer thermal energy storage: a survey  

DOE Green Energy (OSTI)

The disparity between energy production and demand in many power plants has led to increased research on the long-term, large-scale storage of thermal energy in aquifers. Field experiments have been conducted in Switzerland, France, the United States, Japan, and the People's Republic of China to study various technical aspects of aquifer storage of both hot and cold water. Furthermore, feasibility studies now in progress include technical, economic, and environmental analyses, regional exploration to locate favorable storage sites, and evaluation and design of pilot plants. Several theoretical and modeling studies are also under way. Among the topics being studied using numerical models are fluid and heat flow, dispersion, land subsidence or uplift, the efficiency of different injection/withdrawal schemes, buoyancy tilting, numerical dispersion, the use of compensation wells to counter regional flow, steam injection, and storage in narrow glacial deposits of high permeability. Experiments to date illustrate the need for further research and development to ensure successful implementation of an aquifer storage system. Some of the areas identified for further research include shape and location of the hydrodynamic and thermal fronts, choice of appropriate aquifers, thermal dispersion, possibility of land subsidence or uplift, thermal pollution, water chemistry, wellbore plugging and heat exchange efficiency, and control of corrosion.

Tsang, C.F.; Hopkins, D.; Hellstroem, G.

1980-01-01T23:59:59.000Z

70

Fresh Water Generation from Aquifer-Pressured Carbon Storage: Interim Progress Report  

Science Conference Proceedings (OSTI)

This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including nanofiltration (NF) and reverse osmosis (RO). The aquifer pressure resulting from the energy required to inject the carbon dioxide provides all or part of the inlet pressure for the desalination system. Residual brine would be reinjected into the formation at net volume reduction. This process provides additional storage space (capacity) in the aquifer, reduces operational risks by relieving overpressure in the aquifer, and provides a source of low-cost fresh water to offset costs or operational water needs. Computer modeling and laboratory-scale experimentation are being used to examine mineral scaling and osmotic pressure limitations for brines typical of CCS sites. Computer modeling is being used to evaluate processes in the aquifer, including the evolution of the pressure field. This progress report deals mainly with our geochemical modeling of high-salinity brines and covers the first six months of project execution (September, 2008 to March, 2009). Costs and implementation results will be presented in the annual report. The brines typical of sequestration sites can be several times more concentrated than seawater, requiring specialized modeling codes typical of those developed for nuclear waste disposal calculations. The osmotic pressure developed as the brines are concentrated is of particular concern, as are precipitates that can cause fouling of reverse osmosis membranes and other types of membranes (e.g., NF). We have now completed the development associated with tasks (1) and (2) of the work plan. We now have a contract with Perlorica, Inc., to provide support to the cost analysis and nanofiltration evaluation. We have also conducted several preliminary analyses of the pressure effect in the reservoir in order to confirm that reservoir pressure can indeed be used to drive the reverse osmosis process. Our initial conclusions from the work to date are encouraging: (1) The concept of aquifer-pressured RO to provide fresh water associated with carbon dioxide storage appears feasible. (2) Concentrated brines such as those found in Wyoming are amenable to RO treatment. We have looked at sodium chloride brines from the Nugget Formation in Sublette County. 20-25% removal with conventional methods is realistic; higher removal appears achievable with NF. The less concentrated sulfate-rich brines from the Tensleep Formation in Sublette County would support >80% removal with conventional RO. (3) Brines from other proposed sequestration sites can now be analyzed readily. An osmotic pressure curve appropriate to these brines can be used to evaluate cost and equipment specifications. (4) We have examined a range of subsurface brine compositions that is potentially pertinent to carbon sequestration and noted the principal compositional trends pertinent to evaluating the feasibility of freshwater extraction. We have proposed a general categorization for the feasibility of the process based on total dissolved solids (TDS). (5) Withdrawing pressurized brine can have a very beneficial effect on reservoir pressure and total available storage capacity. Brine must be extracted from a deeper location in the aquifer than the point of CO{sub 2} injection to prevent CO{sub 2} from migrating to the brine extraction well.

Aines, R D; Wolery, T J; Hao, Y; Bourcier, W L

2009-07-22T23:59:59.000Z

71

Advanced reservoir simulation using soft computing  

Science Conference Proceedings (OSTI)

Reservoir simulation is a challenging problem for the oil and gas industry. A correctly calibrated reservoir simulator provides an effective tool for reservoir evaluation that can be used to obtain essential reservoir information. A long-standing problem ... Keywords: fuzzy control, history matching, parallel processing, reservoir simulation

G. Janoski; F.-S. Li; M. Pietrzyk; A. H. Sung; S.-H. Chang; R. B. Grigg

2000-06-01T23:59:59.000Z

72

Session 4: Geothermal Reservoir Definition  

DOE Green Energy (OSTI)

The study of geothermal reservoir behavior is presently in a state of change brought about by the discovery that reservoir heterogeneity--fractures in particular--is responsible for large scale effects during production. On the other hand, some parts of a reservoir, or some portions of its behavior. may be unaffected by fractures and behave, instead, as if the reservoir were a homogeneous porous medium. Drilling has for many years been guided by geologists prospecting for fractures (which have been recognized as the source of production), but until recently reservoir engineers have not studied the behavior of fractured systems under production. In the last three years research efforts, funded by the Department of Energy and others, have made significant progress in the study of fractures. The investigations into simulation of fracture flow, tracer analysis of fractured systems, and well test analysis of double porosity reservoirs are all advancing. However, presently we are at something of a conceptual impasse in defining a reservoir as fractured or porous. It seems likely that future directions will not continue to attempt to distinguish two separate reservoir types, but will focus instead on defining behavior types. That is, certain aspects of reservoir behavior may be considered to be generally of the porous medium type (for example, field wide decline), while others may be more frequently fracture type (for example, breakthrough of reinjected water). In short, our overall view of geothermal reservoir definition is becoming a little more complex, thereby better accommodating the complexities of the reservoirs themselves. Recent research results already enable us to understand some previously contradictory results, and recognition of the difficulties is encouraging for future progress in the correct direction.

Horne, Roland N.

1983-12-01T23:59:59.000Z

73

-Injection Technology -Geothermal Reservoir Engineering  

E-Print Network (OSTI)

.A. Hsieh 1e$ Pressure Buildup Monitoring of the Krafla Geothermal Field, . . . . . . . . 1'1 Xceland - 0 Initial Chemical and Reservoir Conditions at Lo6 Azufres Wellhead Power Plant Startup - P. Kruger, LSGP-TR-92 - Injection Technology - Geothermal Reservoir Engineering Research at Stanford Principal

Stanford University

74

Reservoir Modeling for Production Management  

DOE Green Energy (OSTI)

For both petroleum and geothermal resources, many of the reservoirs are fracture dominated--rather than matrix-permeability controlled. For such reservoirs, a knowledge of the pressure-dependent permeability of the interconnected system of natural joints (i.e., pre-existing fractures) is critical to the efficient exploitation of the resource through proper pressure management. Our experience and that reported by others indicates that a reduction in the reservoir pressure sometimes leads to an overall reduction in production rate due to the ''pinching off'' of the joint network, rather than the anticipated increase in production rate. This effect occurs not just in the vicinity of the wellbore, where proppants are sometimes employed, but throughout much of the reservoir region. This follows from the fact that under certain circumstances, the decline in fracture permeability (or conductivity) with decreasing reservoir pressure exceeds the far-field reservoir ''drainage'' flow rate increase due to the increased pressure gradient. Further, a knowledge of the pressure-dependent joint permeability could aid in designing more appropriate secondary recovery strategies in petroleum reservoirs or reinjection procedures for geothermal reservoirs.

Brown, Donald W.

1989-03-21T23:59:59.000Z

75

Water resources review: Ocoee reservoirs, 1990  

DOE Green Energy (OSTI)

Tennessee Valley Authority (TVA) is preparing a series of reports to make technical information on individual TVA reservoirs readily accessible. These reports provide a summary of reservoir purpose and operation; physical characteristics of the reservoir and watershed; water quality conditions; aquatic biological conditions; and designated, actual and potential uses of the reservoir and impairments of those use. This reservoir status report addressed the three Ocoee Reservoirs in Polk County, Tennessee.

Cox, J.P.

1990-08-01T23:59:59.000Z

76

Reservoir management using streamline simulation  

E-Print Network (OSTI)

Geostatistical techniques can generate fine-scale description of reservoir properties that honor a variety of available data. The differences among multiple geostatistical realizations indicate the presence of uncertainty due to the lack of information and sparsity of data. Quantifying this uncertainty in terms of reservoir performance forecast poses a major reservoir management challenge. One solution to this problem is flow simulation of a large number of these plausible reservoir descriptions. However, this approach is not feasible in practice because of the computational costs associated with multiple detailed flow simulations. Other major reservoir management challenges include the determination of the swept and unswept areas at a particular time of interest in the life of a reservoir. Until now, sweep efficiency correlations have generally been limited to homogeneous 2-D cases. Calculating volumetric sweep efficiency in a 3-D heterogeneous reservoir is difficult due to the inherent complexity of multiple layers and arbitrary well configurations. Identifying the swept and unswept areas is primarily important for making a decision on the infill locations. Most of the mature reservoirs all over the world are under waterflood. Managing a waterflood requires an understanding of how injection wells displace oil to producing wells. By quantifying the fluid movements, the displacement process can be actively managed. Areas that are not being swept can be developed, and inefficiencies, such as water cycling, can be removed. Conventional simulation provides general answers to almost all of these problems, however time constraint prohibits using a detailed model to capture complexities for each well. Three dimensional streamline simulation can meet most of these reservoir management challenges. Moreover use of fast streamline-based simulation technique offers significant potential in terms of computational efficiency. Its high performance simulation speed makes it well suited for describing flow characteristics for high resolution reservoir models and can be used on a routine basis to make effective and efficient reservoir management decisions. In this research, we extend the capability of streamline simulation as an efficient tool for reservoir management purposes. We show its application in terms of swept volume calculations, ranking of stochastic reservoir models, pattern rate allocation and reservoir performance forecasting under uncertainty.

Choudhary, Manoj Kumar

2000-01-01T23:59:59.000Z

77

Tertiary carbonate reservoirs in Indonesia  

Science Conference Proceedings (OSTI)

Hydrocarbon production from Tertiary carbonate reservoirs accounted for ca. 10% of daily Indonesian production at the beginning of 1978. Environmentally, the reservoirs appear as parts of reef complexes and high-energy carbonate deposits within basinal areas situated mainly in the back arc of the archipelago. Good porosities of the reservoirs are represented by vugular/moldic and intergranular porosity types. The reservoirs are capable of producing prolific amounts of hydrocarbons: production tests in Salawati-Irian Jaya reaches maximum values of 32,000 bpd, and in Arun-North Sumatra tests recorded 200 MMCF gas/day. Significant hydrocarbon accumulations are related to good reservoir rocks in carbonates deposited as patch reefs, pinnacle reefs, and platform complexes. Exploration efforts expand continuously within carbonate formations which are extensive horizontally as well as vertically in the Tertiary stratigraphic column.

Nayoan, G.A.S.; Arpandi; Siregar, M.

1981-01-01T23:59:59.000Z

78

Numerical Simulation of CO2 Sequestration in Natural CO2 Reservoirs on the Colorado Plateau  

NLE Websites -- All DOE Office Websites (Extended Search)

Simulation of CO Simulation of CO 2 Sequestration in Natural CO 2 Reservoirs on the Colorado Plateau Stephen P. White (S.White@irl.cri.nz, (64) 4 5690000) Graham J. Weir (G.Weir@irl.cri.nz, (64) 4 5690000) Warwick M. Kissling (W.Kissling@irl.cri.nz, (64) 4 5690000) Industrial Research Ltd. P.O. Box 31310 Lower Hutt, New Zealand Abstract This paper outlines the proposed research and summarizes pre-project work that forms a basis for a new research program on CO 2 sequestration in saline aquifers. The pre-project work considers storage and disposal of CO 2 several kilometers beneath the surface in generic aquifers and demonstrates the use of reactive chemical transport modeling to simulate mineral sequestration of CO 2. The current research project applies these techniques to particular saline

79

Modeling CO2 Sequestration in Saline Aquifer and Depleted Oil Reservoir  

E-Print Network (OSTI)

successful waterfloods ­ Wellington field · CO2 sequestration potential of CO2-EOR ­ minor compared to deep active wells, 20.5 MM BO ­ Unitized and owned by BEREXCO ­ Excellent waterflood ­ ideal for CO2-EOR

Peterson, Blake R.

80

NETL: Discrete Fracture Reservoir Simulation Software  

NLE Websites -- All DOE Office Websites (Extended Search)

Discrete Fracture Reservoir Simulation FRACGENNFFLOW Shale Gas Flow Simulation Shale Gas Flow Simulation FRACGENNFFLOW, a fractured reservoir modeling software developed by the...

Note: This page contains sample records for the topic "aquifer reservoirs water-only" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING  

E-Print Network (OSTI)

Bibliography Definition of Geothermal Reservoir EngineeringDevelopment of Geothermal Reservoir Engineering. * 1.4 DataF i r s t Geopressured Geothermal Energy Conference. Austin,

Sudo!, G.A

2012-01-01T23:59:59.000Z

82

Data requirements and acquisition for reservoir characterization  

Science Conference Proceedings (OSTI)

This report outlines the types of data, data sources and measurement tools required for effective reservoir characterization, the data required for specific enhanced oil recovery (EOR) processes, and a discussion on the determination of the optimum data density for reservoir characterization and reservoir modeling. The two basic sources of data for reservoir characterization are data from the specific reservoir and data from analog reservoirs, outcrops, and modern environments. Reservoir data can be divided into three broad categories: (1) rock properties (the container) and (2) fluid properties (the contents) and (3)interaction between reservoir rock and fluid. Both static and dynamic measurements are required.

Jackson, S.; Chang, Ming Ming; Tham, Min

1993-03-01T23:59:59.000Z

83

Coal bed methane reservoir simulation studies.  

E-Print Network (OSTI)

??The purpose of this study is to perform simulation studies for a specific coal bed methane reservoir. First, the theory and reservoir engineering aspects of… (more)

Karimi, Kaveh

2005-01-01T23:59:59.000Z

84

Greenhouse gas cycling in experimental boreal reservoirs.  

E-Print Network (OSTI)

??Hydroelectric reservoirs account for 59% of the installed electricity generating capacity in Canada and 26% in Ontario. Reservoirs also provide irrigation capacity, drinking water, and… (more)

Venkiteswaran, Jason James

2009-01-01T23:59:59.000Z

85

ANALYSIS OF PRODUCTION DECLINE IN GEOTHERMAL RESERVOIRS  

E-Print Network (OSTI)

Petroleum Reservoirs. Geothermal Reservoirs IV. DATA1970, Superheating of Geothermal Steam, Proc. of the U.N.the Development & Utilization of Geothermal Resources, Pisa.

Zais, E.J.; Bodvarsson, G.

2008-01-01T23:59:59.000Z

86

Unconfined Aquifer Flow Theory - from Dupuit to present  

E-Print Network (OSTI)

Analytic and semi-analytic solution are often used by researchers and practicioners to estimate aquifer parameters from unconfined aquifer pumping tests. The non-linearities associated with unconfined (i.e., water table) aquifer tests makes their analysis more complex than confined tests. Although analytical solutions for unconfined flow began in the mid-1800s with Dupuit, Thiem was possibly the first to use them to estimate aquifer parameters from pumping tests in the early 1900s. In the 1950s, Boulton developed the first transient well test solution specialized to unconfined flow. By the 1970s Neuman had developed solutions considering both primary transient storage mechanisms (confined storage and delayed yield) without non-physical fitting parameters. In the last decade, research into developing unconfined aquifer test solutions has mostly focused on explicitly coupling the aquifer with the linearized vadose zone. Despite the many advanced solution methods available, there still exists a need for realism ...

Mishra, Phoolendra K

2013-01-01T23:59:59.000Z

87

Analysis of real-time reservoir monitoring : reservoirs, strategies, & modeling.  

Science Conference Proceedings (OSTI)

The project objective was to detail better ways to assess and exploit intelligent oil and gas field information through improved modeling, sensor technology, and process control to increase ultimate recovery of domestic hydrocarbons. To meet this objective we investigated the use of permanent downhole sensors systems (Smart Wells) whose data is fed real-time into computational reservoir models that are integrated with optimized production control systems. The project utilized a three-pronged approach (1) a value of information analysis to address the economic advantages, (2) reservoir simulation modeling and control optimization to prove the capability, and (3) evaluation of new generation sensor packaging to survive the borehole environment for long periods of time. The Value of Information (VOI) decision tree method was developed and used to assess the economic advantage of using the proposed technology; the VOI demonstrated the increased subsurface resolution through additional sensor data. Our findings show that the VOI studies are a practical means of ascertaining the value associated with a technology, in this case application of sensors to production. The procedure acknowledges the uncertainty in predictions but nevertheless assigns monetary value to the predictions. The best aspect of the procedure is that it builds consensus within interdisciplinary teams The reservoir simulation and modeling aspect of the project was developed to show the capability of exploiting sensor information both for reservoir characterization and to optimize control of the production system. Our findings indicate history matching is improved as more information is added to the objective function, clearly indicating that sensor information can help in reducing the uncertainty associated with reservoir characterization. Additional findings and approaches used are described in detail within the report. The next generation sensors aspect of the project evaluated sensors and packaging survivability issues. Our findings indicate that packaging represents the most significant technical challenge associated with application of sensors in the downhole environment for long periods (5+ years) of time. These issues are described in detail within the report. The impact of successful reservoir monitoring programs and coincident improved reservoir management is measured by the production of additional oil and gas volumes from existing reservoirs, revitalization of nearly depleted reservoirs, possible re-establishment of already abandoned reservoirs, and improved economics for all cases. Smart Well monitoring provides the means to understand how a reservoir process is developing and to provide active reservoir management. At the same time it also provides data for developing high-fidelity simulation models. This work has been a joint effort with Sandia National Laboratories and UT-Austin's Bureau of Economic Geology, Department of Petroleum and Geosystems Engineering, and the Institute of Computational and Engineering Mathematics.

Mani, Seethambal S.; van Bloemen Waanders, Bart Gustaaf; Cooper, Scott Patrick; Jakaboski, Blake Elaine; Normann, Randy Allen; Jennings, Jim (University of Texas at Austin, Austin, TX); Gilbert, Bob (University of Texas at Austin, Austin, TX); Lake, Larry W. (University of Texas at Austin, Austin, TX); Weiss, Chester Joseph; Lorenz, John Clay; Elbring, Gregory Jay; Wheeler, Mary Fanett (University of Texas at Austin, Austin, TX); Thomas, Sunil G. (University of Texas at Austin, Austin, TX); Rightley, Michael J.; Rodriguez, Adolfo (University of Texas at Austin, Austin, TX); Klie, Hector (University of Texas at Austin, Austin, TX); Banchs, Rafael (University of Texas at Austin, Austin, TX); Nunez, Emilio J. (University of Texas at Austin, Austin, TX); Jablonowski, Chris (University of Texas at Austin, Austin, TX)

2006-11-01T23:59:59.000Z

88

TEXAS A&M UNIVERSITY Reservoir Geophysics Program  

E-Print Network (OSTI)

includes applications to clastic reservoirs, heavy oil reservoirs, gas/oil shale, gas hydrates. Basic

89

EXPERIMENTAL AND THEORETICAL STUDIES OF THERMAL ENERGY STORAGE IN AQUIFERS  

E-Print Network (OSTI)

Department of Energy, Energy Storage Division through thegeneration and energy storage, Presented at Frontiers ofIn Proceed- ings of Thermal Energy Storage in Aquifers Work-

Tsang, Chin Fu

2011-01-01T23:59:59.000Z

90

Simulation analysis of the unconfined aquifer, Raft River Geothermal...  

Open Energy Info (EERE)

Simulation analysis of the unconfined aquifer, Raft River Geothermal Area, Idaho-Utah Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Simulation analysis of...

91

Why sequence archaea in a terrestrial subsurface aquifer?  

NLE Websites -- All DOE Office Websites (Extended Search)

genome sequencing. Principal Investigators: Wen-Tso Liu, University of Illinois Program: CSP 2011 Home > Sequencing > Why sequence archaea in a terrestrial subsurface aquifer...

92

Data-collection instrumentation and interpretation for geopressured aquifer well tests  

DOE Green Energy (OSTI)

The Wells of Opportunity program funded by the Department of Energy, sought to determine the amount of natural gas and thermal energy entrained in geopressured, geothermal aquifers of the Texas and Louisiana Gulf Coast fairways. This determination was made by bringing representative wells onto production for periods long enough to ascertain such characteristics as temperature, gas/brine ratio, reservoir boundaries and permeabilities. During testing, amounts of produced gas and brine were carefully monitored through a computer controlled instrumentation station, which provided reliable and precise indications of the amounts of recoverable gas being produced from the reservoir. A data collection system was designed to be integrated into the surface test equipment to provide real-time control and data compilation during the well tests. Strip chart records provided real-time control information during the test. All pressures, both differential pressures, brine and gas temperatures, and sand detector signals were displayed, and the physical records were maintained for interpretation of well performance. The data collection system coupled with the interpretation software permitted gas/brine ratio to be determined with accuracy of five percent for values as low as 0.02 MCF/STB. In addition, graphical representation of well performance, brine flow rates, gas production, pressure histories, etc., could be made as the test progressed. Data system reliability was very high. Downtime was minimal even under relatively harsh environmental conditions for electronic equipment. This data collection system, while designed initially for geopressured aquifers, is adaptable to the automated collection of scientific and engineering information for the interpretation of well tests of other petroleum resources.

Rose, R.E.; Doherty, M.G.

1982-01-01T23:59:59.000Z

93

Geophysical remote sensing of water reservoirs suitable for desalinization.  

Science Conference Proceedings (OSTI)

In many parts of the United States, as well as other regions of the world, competing demands for fresh water or water suitable for desalination are outstripping sustainable supplies. In these areas, new water supplies are necessary to sustain economic development and agricultural uses, as well as support expanding populations, particularly in the Southwestern United States. Increasing the supply of water will more than likely come through desalinization of water reservoirs that are not suitable for present use. Surface-deployed seismic and electromagnetic (EM) methods have the potential for addressing these critical issues within large volumes of an aquifer at a lower cost than drilling and sampling. However, for detailed analysis of the water quality, some sampling utilizing boreholes would be required with geophysical methods being employed to extrapolate these sampled results to non-sampled regions of the aquifer. The research in this report addresses using seismic and EM methods in two complimentary ways to aid in the identification of water reservoirs that are suitable for desalinization. The first method uses the seismic data to constrain the earth structure so that detailed EM modeling can estimate the pore water conductivity, and hence the salinity. The second method utilizes the coupling of seismic and EM waves through the seismo-electric (conversion of seismic energy to electrical energy) and the electro-seismic (conversion of electrical energy to seismic energy) to estimate the salinity of the target aquifer. Analytic 1D solutions to coupled pressure and electric wave propagation demonstrate the types of waves one expects when using a seismic or electric source. A 2D seismo-electric/electro-seismic is developed to demonstrate the coupled seismic and EM system. For finite-difference modeling, the seismic and EM wave propagation algorithms are on different spatial and temporal scales. We present a method to solve multiple, finite-difference physics problems that has application beyond the present use. A limited field experiment was conducted to assess the seismo-electric effect. Due to a variety of problems, the observation of the electric field due to a seismic source is not definitive.

Aldridge, David Franklin; Bartel, Lewis Clark; Bonal, Nedra; Engler, Bruce Phillip

2009-12-01T23:59:59.000Z

94

A reservoir management strategy for multilayered reservoirs in eastern Venezuela  

E-Print Network (OSTI)

A reservoir management strategy has been developed for a field located in eastern Venezuela. The field contains deep, high pressure, multilayer reservoirs. A thorough formation evaluation was accomplished using the log data, core data, PVT data, geologic data, well completion data and the production data. A reservoir simulation model was built to forecast reservoir performance for a variety of exploitation and well completion strategies. Reserve forecasts have been made using the reservoir model. The methodology applied in this research consists of eight tasks: 1) build a data base with existing data, 2) analyze the log and core data, 3) analyze the pressure and production data, 4) analyze the PVT data, 5) analyze the hydraulic fracture treatments, 6) build the reservoir model, 7) determine the possible reservoir management strategies, and 8) perform economic evaluations for the management strategies. While much of the data for the field studied was supplied by PDVSA, we did not receive all of the data we requested. For example, no pressure buildup data were available. When necessary, we used correlations to determine values for reservoir data that we were not supplied. In this research four formations were studied and characterized, determining porosity and permeability values. Also, fracture treatments were analyzed and a reservoir model was developed. Runs for black oil and volatile oil were performed. The results show that the upper zones are the most prospective areas, but fracture treatments must be performed to reduce the damage on the sand face. Lower formations (Cretaceous) have a lower permeability value, but high OOIP that justify performing fracture treatments and completing this zone. Economics were developed to support this conclusion. Optimum well spacing was calculated showing that 960 acres is the optimum well spacing, but also that 640 acres can be maintained for all the reservoirs and dual completions can be performed, first hydraulic fracturing and completing the Cretaceous formation, and then, completing any upper zone. Reservoir simulation results show that up to 31% of OOIP may be incrementally recovered by hydraulic fracturing the Cretaceous formation and 10 or less from the upper zones.

Espinel Diaz, Arnaldo Leopoldo

1998-01-01T23:59:59.000Z

95

AQUIFER THERMAL ENERGY STORAGE. A NUMERICAL SIMULATION OF AUBURN UNIVERSITY FIELD EXPERIMENTS  

E-Print Network (OSTI)

University Thermal Energy Storage , LBL No. 10194. Edwards,modeling of thermal energy storage in aquifers, ProceedingsAquifer Thermal Energy Storage Programs (in preparation).

Tsang, Chin Fu

2013-01-01T23:59:59.000Z

96

SEASONAL THERMAL ENERGY STORAGE IN AQUIFERS-MATHEMATICAL MODELING STUDIES IN 1979  

E-Print Network (OSTI)

of Aquifer Thermal Energy Storage." Lawrence BerkeleyP, Andersen, "'rhermal Energy Storage in a Confined Aquifer~University Thermal Energy Storage Experiment." Lawrence

Tsang, Chin Fu

2013-01-01T23:59:59.000Z

97

SEASONAL THERMAL ENERGY STORAGE IN AQUIFERS-MATHEMATICAL MODELING STUDIES IN 1979  

E-Print Network (OSTI)

Aspects of Aquifer Thermal Energy Storage." Lawrencethe Auburn University Thermal Energy Storage Experiment."LBL~l0208 SEASONAL THERMAL ENERGY STORAGE IN AQUIFERS~

Tsang, Chin Fu

2013-01-01T23:59:59.000Z

98

THEORETICAL STUDIES IN LONG-TERM THERMAL ENERGY STORAGE IN AQUIFERS  

E-Print Network (OSTI)

Mathematical Modeling of Thermal Energy Storage in Aquifers.Proceedings of Aquifer Thermal Energy Storage Workshop,within the Seasonal Thermal Energy Storage program managed

Tsang, C.F.

2013-01-01T23:59:59.000Z

99

Alternate Methods in Reservoir Simulation  

Science Conference Proceedings (OSTI)

As time progresses, more and more oil fields and reservoirs are reaching maturity; consequently, secondary and tertiary methods of oil recovery have become increasingly important in the petroleum industry. This significance has added to the industry's ...

Guadalupe I. Janoski; Andrew H. Sung

2001-05-01T23:59:59.000Z

100

Fracture characterization of multilayered reservoirs  

Science Conference Proceedings (OSTI)

Fracture treatment optimization techniques have been developed using Long-Spaced-Digital-Sonic (LSDS) log, pumpin-flowback, mini-frac, and downhole treating pressure data. These analysis techniques have been successfully applied in massive hydraulic fracturing (MHF) of ''tight gas'' wells. Massive hydraulic fracture stimulations have been used to make many tight gas reservoirs commercially attractive. However, studies have shown that short highly conductive fractures are optimum for the successful stimulation of wells in moderate permeability reservoirs. As a result, the ability to design and place optimal fractures in these reservoirs is critical. This paper illustrates the application of fracture analysis techniques to a moderate permeability multi-layered reservoir. These techniques were used to identify large zonal variations in rock properties and pore pressure which result from the complex geology. The inclusion of geologic factors in fracture treatment design allowed the placement of short highly conductive fractures which were used to improve injectivity and vertical sweep, and therefore, ultimate recovery.

Britt, L.K.; Larsen, M.J.

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aquifer reservoirs water-only" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Geothermal Reservoir Dynamics - TOUGHREACT  

DOE Green Energy (OSTI)

This project has been active for several years and has focused on developing, enhancing and applying mathematical modeling capabilities for fractured geothermal systems. The emphasis of our work has recently shifted towards enhanced geothermal systems (EGS) and hot dry rock (HDR), and FY05 is the first year that the DOE-AOP actually lists this project under Enhanced Geothermal Systems. Our overall purpose is to develop new engineering tools and a better understanding of the coupling between fluid flow, heat transfer, chemical reactions, and rock-mechanical deformation, to demonstrate new EGS technology through field applications, and to make technical information and computer programs available for field applications. The objectives of this project are to: (1) Improve fundamental understanding and engineering methods for geothermal systems, primarily focusing on EGS and HDR systems and on critical issues in geothermal systems that are difficult to produce. (2) Improve techniques for characterizing reservoir conditions and processes through new modeling and monitoring techniques based on ''active'' tracers and coupled processes. (3) Improve techniques for targeting injection towards specific engineering objectives, including maintaining and controlling injectivity, controlling non-condensable and corrosive gases, avoiding scale formation, and optimizing energy recovery. Seek opportunities for field testing and applying new technologies, and work with industrial partners and other research organizations.

Pruess, Karsten; Xu, Tianfu; Shan, Chao; Zhang, Yingqi; Wu,Yu-Shu; Sonnenthal, Eric; Spycher, Nicolas; Rutqvist, Jonny; Zhang,Guoxiang; Kennedy, Mack

2005-03-15T23:59:59.000Z

102

Aquifer thermal energy (heat and chill) storage  

DOE Green Energy (OSTI)

As part of the 1992 Intersociety Conversion Engineering Conference, held in San Diego, California, August 3--7, 1992, the Seasonal Thermal Energy Storage Program coordinated five sessions dealing specifically with aquifer thermal energy storage technologies (ATES). Researchers from Sweden, The Netherlands, Germany, Switzerland, Denmark, Canada, and the United States presented papers on a variety of ATES related topics. With special permission from the Society of Automotive Engineers, host society for the 1992 IECEC, these papers are being republished here as a standalone summary of ATES technology status. Individual papers are indexed separately.

Jenne, E.A. (ed.)

1992-11-01T23:59:59.000Z

103

Chickamauga reservoir embayment study - 1990  

DOE Green Energy (OSTI)

The objectives of this report are three-fold: (1) assess physical, chemical, and biological conditions in the major embayments of Chickamauga Reservoir; (2) compare water quality and biological conditions of embayments with main river locations; and (3) identify any water quality concerns in the study embayments that may warrant further investigation and/or management actions. Embayments are important areas of reservoirs to be considered when assessments are made to support water quality management plans. In general, embayments, because of their smaller size (water surface areas usually less than 1000 acres), shallower morphometry (average depth usually less than 10 feet), and longer detention times (frequently a month or more), exhibit more extreme responses to pollutant loadings and changes in land use than the main river region of the reservoir. Consequently, embayments are often at greater risk of water quality impairments (e.g. nutrient enrichment, filling and siltation, excessive growths of aquatic plants, algal blooms, low dissolved oxygen concentrations, bacteriological contamination, etc.). Much of the secondary beneficial use of reservoirs occurs in embayments (viz. marinas, recreation areas, parks and beaches, residential development, etc.). Typically embayments comprise less than 20 percent of the surface area of a reservoir, but they often receive 50 percent or more of the water-oriented recreational use of the reservoir. This intensive recreational use creates a potential for adverse use impacts if poor water quality and aquatic conditions exist in an embayment.

Meinert, D.L.; Butkus, S.R.; McDonough, T.A.

1992-12-01T23:59:59.000Z

104

Steamflooding in a waterdrive reservoir; Upper Tulare sands, South Belridge field  

SciTech Connect

A steamflood project in the strong edgewater-drive Upper Tulare reservoir at South Belridge recovered about 31% of the original oil in place (OOIP) at a cumulative steam/oil ratio (SOR) of 2.7 vol/vol. Seven years of downdip steam injection depressed water influx and created an oil bank updip from the injectors. Response continued under the influence of returning aquifer water and heat scavenging after the injectors were shut down. Numerical reservoir simulation of the historical steamflood performance indicate that the high production/injection capacity (P/I) ratio induced early water encroachment and partial quenching of the growing steam zone. Restarting downdip steam injection at much higher rates after 6 years without injection is shown to recover more oil than continuing the steamflood with either a seven-spot or inverted nine-spot pattern.

Dietrich, J.K. (Dietrich Corp., Durango, CO (US))

1990-08-01T23:59:59.000Z

105

Integrated Reflection Seismic Monitoring and Reservoir Modeling for Geologic CO2 Sequestration  

Science Conference Proceedings (OSTI)

The US DOE/NETL CCS MVA program funded a project with Fusion Petroleum Technologies Inc. (now SIGMA) to model the proof of concept of using sparse seismic data in the monitoring of CO{sub 2} injected into saline aquifers. The goal of the project was to develop and demonstrate an active source reflection seismic imaging strategy based on deployment of spatially sparse surface seismic arrays. The primary objective was to test the feasibility of sparse seismic array systems to monitor the CO{sub 2} plume migration injected into deep saline aquifers. The USDOE/RMOTC Teapot Dome (Wyoming) 3D seismic and reservoir data targeting the Crow Mountain formation was used as a realistic proxy to evaluate the feasibility of the proposed methodology. Though the RMOTC field has been well studied, the Crow Mountain as a saline aquifer has not been studied previously as a CO{sub 2} sequestration (storage) candidate reservoir. A full reprocessing of the seismic data from field tapes that included prestack time migration (PSTM) followed by prestack depth migration (PSDM) was performed. A baseline reservoir model was generated from the new imaging results that characterized the faults and horizon surfaces of the Crow Mountain reservoir. The 3D interpretation was integrated with the petrophysical data from available wells and incorporated into a geocellular model. The reservoir structure used in the geocellular model was developed using advanced inversion technologies including Fusion's ThinMAN{trademark} broadband spectral inversion. Seal failure risk was assessed using Fusion's proprietary GEOPRESS{trademark} pore pressure and fracture pressure prediction technology. CO{sub 2} injection was simulated into the Crow Mountain with a commercial reservoir simulator. Approximately 1.2MM tons of CO{sub 2} was simulated to be injected into the Crow Mountain reservoir over 30 years and subsequently let 'soak' in the reservoir for 970 years. The relatively small plume developed from this injection was observed migrating due to gravity to the apexes of the double anticline in the Crow Mountain reservoir of the Teapot dome. Four models were generated from the reservoir simulation task of the project which included three saturation models representing snapshots at different times during and after simulated CO{sub 2} injection and a fully saturated CO{sub 2} fluid substitution model. The saturation models were used along with a Gassmann fluid substitution model for CO{sub 2} to perform fluid volumetric substitution in the Crow Mountain formation. The fluid substitution resulted in a velocity and density model for the 3D volume at each saturation condition that was used to generate a synthetic seismic survey. FPTI's (Fusion Petroleum Technologies Inc.) proprietary SeisModelPRO{trademark} full acoustic wave equation software was used to simulate acquisition of a 3D seismic survey on the four models over a subset of the field area. The simulated acquisition area included the injection wells and the majority of the simulated plume area.

John Rogers

2011-12-31T23:59:59.000Z

106

Interpretation of earth tide response of three deep, confined aquifers |  

Open Energy Info (EERE)

Interpretation of earth tide response of three deep, confined aquifers Interpretation of earth tide response of three deep, confined aquifers Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Interpretation of earth tide response of three deep, confined aquifers Details Activities (3) Areas (3) Regions (0) Abstract: The response of a confined, areally infinite aquifer to external loads imposed by earth tides is examined. Because the gravitational influence of celestial objects occurs over large areas of the earth, the confined aquifer is assumed to respond in an undrained fashion. Since undrained response is controlled by water compressibility, earth tide response can be directly used only to evaluate porous medium compressibility if porosity is known. Moreover, since specific storage S/sub s/ quantifies a drained behavior of the porous medium, one cannot

107

Sole Source Aquifer Demonstration Program | Open Energy Information  

Open Energy Info (EERE)

Sole Source Aquifer Demonstration Program Sole Source Aquifer Demonstration Program Jump to: navigation, search Statute Name Sole Source Aquifer Demonstration Program Year 1986 Url [[File:|160px|link=http://www.gpo.gov/fdsys/search/pagedetails.action?browsePath=Title+42%2FChapter+6a%2FSubchapter+Xii%2FPart+C%2FSec.+300h-6&granuleId=USCODE-2010-title42-chap6A-subchapXII-partC-sec300h-6&packageId=USCODE-2010-title42&collapse=true&fromBrowse=true&bread=true]] Description References US GPO - 42 USC 300H-6[1] Key Dates in Water History[2] The Sole Source Aquifer Demonstration Program provides funding to identify and provide the special protections needed for sole source aquifers. This statute required States with primacy to adopt regulations and begin enforcing them within 18 months of the EPA's promulgation.

108

Method for isolating two aquifers in a single borehole  

DOE Patents (OSTI)

A method for isolating and individually instrumenting separate aquifers within a single borehole is disclosed. A borehole is first drilled from the ground surface, through an upper aquifer, and into a separating confining bed. A casing, having upper and lower sections separated by a coupling collar, is lowered into the borehole. The borehole is grouted in the vicinity of the lower section of the casing. A borehole is then drilled through the grout plug and into a lower aquifer. After the lower aquifer is instrumented, the borehole is grouted back into the lower portion of the casing. Then the upper section of the casing is unscrewed via the coupling collar and removed from the borehole. Finally, instrumentation is added to the upper aquifer and the borehole is appropriately grouted. The coupling collar is designed to have upper right-hand screw threads and lower left-hand screw thread, whereby the sections of the casing can be readily separated.

Burklund, P.W.

1984-01-20T23:59:59.000Z

109

Modeling well performance in compartmentalized gas reservoirs  

E-Print Network (OSTI)

Predicting the performance of wells in compartmentalized reservoirs can be quite challenging to most conventional reservoir engineering tools. The purpose of this research is to develop a Compartmentalized Gas Depletion Model that applies not only to conventional consolidated reservoirs (with constant formation compressibility) but also to unconsolidated reservoirs (with variable formation compressibility) by including geomechanics, permeability deterioration and compartmentalization to estimate the OGIP and performance characteristics of each compartment in such reservoirs given production data. A geomechanics model was developed using available correlation in the industry to estimate variable pore volume compressibility, reservoir compaction and permeability reduction. The geomechanics calculations were combined with gas material balance equation and pseudo-steady state equation and the model was used to predict well performance. Simulated production data from a conventional gas Simulator was used for consolidated reservoir cases while synthetic data (generated by the model using known parameters) was used for unconsolidated reservoir cases. In both cases, the Compartmentalized Depletion Model was used to analyze data, and estimate the OGIP and Jg of each compartment in a compartmentalized gas reservoir and predict the subsequent reservoir performance. The analysis was done by history-matching gas rate with the model using an optimization technique. The model gave satisfactory results with both consolidated and unconsolidated reservoirs for single and multiple reservoir layers. It was demonstrated that for unconsolidated reservoirs, reduction in permeability and reservoir compaction could be very significant especially for unconsolidated gas reservoirs with large pay thickness and large depletion pressure.

Yusuf, Nurudeen

2007-12-01T23:59:59.000Z

110

Analysis of the Development of Messoyakha Gas Field: A Commercial Gas Hydrate Reservoir  

E-Print Network (OSTI)

Natural gas is an important energy source that contributes up to 25% of the total US energy reserves (DOE 2011). An increase in natural gas demand spurs further development of unconventional resources, including methane hydrate (Rajnauth 2012). Natural gas from methane hydrate has the potential to play a major role in ensuring adequate future energy supplies in the US. The worldwide volume of gas in the hydrate state has been estimated to be approximately 1.5 x 10^16 m^3 (Makogon 1984). More than 230 gas-hydrate deposits have been discovered globally. Several production technologies have been tested; however, the development of the Messoyakha field in the west Siberian basin is the only successful commercial gas-hydrate field to date. Although the presence of gas hydrates in the Messoyakha field was not a certainty, this current study determined the undeniable presence of gas hydrates in the reservoir. This study uses four models of the Messoyakha field structure and reservoir conditions and examines them based on the available geologic and engineering data. CMG STARS and IMEX software packages were used to calculate gas production from a hydrate-bearing formation on a field scale. Results of this analysis confirm the presence of gas hydrates in the Messoyakha field and also determine the volume of hydrates in place. The cumulative production from the field on January 1, 2012 is 12.9 x 10^9 m^3, and it was determined in this study that 5.4 x 10^9 m^3 was obtained from hydrates. The important issue of pressure-support mechanisms in developing a gas hydrate reservoir was also addressed in this study. Pressure-support mechanisms were investigated using different evaluation methods such as the use of gas-injection well patterns and gas/water injection using isothermal and non-isothermal simulators. Several aquifer models were examined. Simulation results showed that pressure support due to aquifer activity was not possible. Furthermore, it was shown that the water obtained from hydrates was not produced and remained in the reservoir. Results obtained from the aquifer models were confirmed by the actual water production from the field. It was shown that water from hydrates is a very strong pressure-support mechanism. Water not only remained in the reservoir, but it formed a thick water-saturated layer between the free-gas and gas-hydrate zone. Finally, thermodynamic behavior of gas hydrate decomposition was studied. Possible areas of hydrate preservation were determined. It was shown that the central top portion of the field preserved most of hydrates due to temperature reduction of hydrate decomposition.

Omelchenko, Roman 1987-

2012-12-01T23:59:59.000Z

111

Water geochemistry and hydrogeology of the shallow aquifer at Roosevelt Hot Springs, southern Utah: A hot dry rock prospect  

DOE Green Energy (OSTI)

On the western edge of the geothermal field, three deep holes have been drilled that are very hot but mostly dry. Two of them (Phillips 9-1 and Acord 1-26 wells) have been studied by Los Alamos National Laboratory for the Hot Dry Rock (HDR) resources evaluation program. A review of data and recommendations have been formulated to evaluate the HDR geothermal potential at Roosevelt. The present report is directed toward the study of the shallow aquifer of the Milford Valley to determine if the local groundwater would be suitable for use as make-up water in an HDR system. This investigation is the result of a cooperative agreement between Los Alamos and Phillips Petroleum Co., formerly the main operator of the Roosevelt Hot Springs Unit. The presence of these hot dry wells and the similar setting of the Roosevelt area to the prototype HDR site at Fenton Hill, New Mexico, make Roosevelt a very good candidate site for creation of another HDR geothermal system. This investigation has two main objectives: to assess the water geochemistry of the valley aquifer, to determine possible problems in future make-up water use, such as scaling or corrosion in the wells and surface piping, and to assess the hydrogeology of the shallow groundwaters above the HDR zone, to characterize the physical properties of the aquifer. These two objectives are linked by the fact that the valley aquifer is naturally contaminated by geothermal fluids leaking out of the hydrothermal reservoir. In an arid region where good-quality fresh water is needed for public water supply and irrigation, nonpotable waters would be ideal for an industrial use such as injection into an HDR energy extraction system. 50 refs., 10 figs., 10 tabs.

Vuataz, F.D.; Goff, F.

1987-12-01T23:59:59.000Z

112

Analysis of the semianalytical method for matching aquifer influence functions using an analytical model  

E-Print Network (OSTI)

For a heterogeneous aquifer of unknown size and shape, ics. Aquifer Influence Functions (AIF) can be used to model the aquifer pressure behavior from field production and pressure data. Two methods have been used in the past to accomplish this, namely Linear Programming (LP) and the Semianalytical technique. The latter is based on the analytical solution form of a heterogeneous aquifer of any size and shape. The approximating AIF is a continuous function, which is a truncated series of the exact analytical solution. This Semianalytical function is fitted to field data by the use of nonlinear least squares fitting. It has the advantages over the LP method that it is much faster, uses less computer space, and does not require evenly spaced production periods. For the cases in which the OGIP is unknown, a technique was proposed in the past in which the term Relative Error is defined. Several values of OGIP are assumed, and the one that yields the minimum Relative Error is the actual or optimum value of OGIP. Because of the nonlinear nature of the optimization procedure, when the Semianalytical technique is used along with the Relative Error technique, it tends to be caught in the so-called local minima, which lead to the determination of spurious values of the AIF and the optimum OGIP. Both the LP and the Semianalytical techniques have been validated using field data. However, when the latter is used, weird variations of the Relative Error function, and unrealistically low values of the optimum OGIP are observed. A simple analytical model is used in this project. It allows the generation of synthetic data. The objective is to use those as input data to the Semianalytical and Relative Error techniques and determine their effectiveness to determine the AIF and the optimum OGIP which are known in advance. A modification is proposed in the current research to prevent the nonlinear regression from getting caught in the local minima. After this goal is attained, typical features in the normalized Relative Error and allows the determination of the drive mechanism and the OGIP even in gas reservoirs whose histories are so brief that the use of the p/Z technique becomes prohibitive.

Vega, Leonardo

1998-01-01T23:59:59.000Z

113

Fresh Water Generation from Aquifer-Pressured Carbon Storage: Annual Report FY09  

SciTech Connect

This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including reverse osmosis (RO) and nanofiltration (NF). The aquifer pressure resulting from the energy required to inject the carbon dioxide provides all or part of the inlet pressure for the desalination system. Residual brine is reinjected into the formation at net volume reduction, such that the volume of fresh water extracted balances the volume of CO{sub 2} injected into the formation. This process provides additional CO{sub 2} storage capacity in the aquifer, reduces operational risks (cap-rock fracturing, contamination of neighboring fresh water aquifers, and seismicity) by relieving overpressure in the formation, and provides a source of low-cost fresh water to offset costs or operational water needs. This multi-faceted project combines elements of geochemistry, reservoir engineering, and water treatment engineering. The range of saline formation waters is being identified and analyzed. Computer modeling and laboratory-scale experimentation are being used to examine mineral scaling and osmotic pressure limitations. Computer modeling is being used to evaluate processes in the storage aquifer, including the evolution of the pressure field. Water treatment costs are being evaluated by comparing the necessary process facilities to those in common use for seawater RO. There are presently limited brine composition data available for actual CCS sites by the site operators including in the U.S. the seven regional Carbon Sequestration Partnerships (CSPs). To work around this, we are building a 'catalog' of compositions representative of 'produced' waters (waters produced in the course of seeking or producing oil and gas), to which we are adding data from actual CCS sites as they become available. Produced waters comprise the most common examples of saline formation waters. Therefore, they are expected to be representative of saline formation waters at actual and potential future CCS sites. We are using a produced waters database (Breit, 2002) covering most of the United States compiled by the U.S. Geological Survey (USGS). In one instance to date, we have used this database to find a composition corresponding to the brine expected at an actual CCS site (Big Sky CSP, Nugget Formation, Sublette County, Wyoming). We have located other produced waters databases, which are usually of regional scope (e.g., NETL, 2005, Rocky Mountains basins).

Wolery, T; Aines, R; Hao, Y; Bourcier, W; Wolfe, T; Haussman, C

2009-11-25T23:59:59.000Z

114

Analysis of Fault Permeability Using Mapping and Flow Modeling, Hickory Sandstone Aquifer, Central Texas  

Science Conference Proceedings (OSTI)

Reservoir compartments, typical targets for infill well locations, are commonly created by faults that may reduce permeability. A narrow fault may consist of a complex assemblage of deformation elements that result in spatially variable and anisotropic permeabilities. We report on the permeability structure of a km-scale fault sampled through drilling a faulted siliciclastic aquifer in central Texas. Probe and whole-core permeabilities, serial CAT scans, and textural and structural data from the selected core samples are used to understand permeability structure of fault zones and develop predictive models of fault zone permeability. Using numerical flow simulation, it is possible to predict permeability anisotropy associated with faults and evaluate the effect of individual deformation elements in the overall permeability tensor. We found relationships between the permeability of the host rock and those of the highly deformed (HD) fault-elements according to the fault throw. The lateral continuity and predictable permeability of the HD fault elements enhance capability for estimating the effects of subseismic faulting on fluid flow in low-shale reservoirs.

Nieto Camargo, Jorge E., E-mail: jorge.nietocamargo@aramco.com; Jensen, Jerry L., E-mail: jjensen@ucalgary.ca [University of Calgary, Department of Chemical and Petroleum Engineering (Canada)

2012-09-15T23:59:59.000Z

115

Feasibility studies of aquifer thermal energy storage  

DOE Green Energy (OSTI)

Determining the feasibility of using aquifer thermal energy storage (ATES) for a particular heating or cooling application is an interdisciplinary effort, requiring (at a minimum) expertise in engineering and hydrology. The feasibility study should proceed in two distinct stages. The first stage, which is limited in scope and detail, is intended to show if an ATES system is technically and economically suited to the application. Focus of this preliminary investigation is on revealing the existence of factors that might weigh heavily against the use of ATES methods, and, in the absence of such factors, on choosing a suitable scale for the ATES plant and well field. The results of the preliminary investigation are used to determine if more detailed investigation--including field studies--are justified, and to facilitate comparing the advantages of ATES to those of other means of providing heating or cooling. The second stage of the feasibility study focuses on detailed aquifer characterization, refinement of engineering design and cost estimates, and economic and environmental risk analysis. The results of this investigation, if favorable, will be used to justify the expense of constructing the ATES system.

Hall, S H

1993-01-01T23:59:59.000Z

116

Natural gas content of geopressured aquifers  

DOE Green Energy (OSTI)

It is hypothesized that free, but immobile, natural gas is trapped in pores in geopressured aquifers and that this gas becomes mobile as aquifer pressure is reduced by water production. Computer simulation reveals this hypothesis is a plausible explanation for the high gas/water ratio observed from the No. 1 sand in the Edna Delcambre No. 1 well. In this Delcambre well test, the gas/water ratio increased from the solution gas value of less than 20 SCF/bbl to more than 50 SCF/bbl during production of 32,000 barrels of water in 10 days. Bottom hole pressure was reduced from 10,846 to 9,905 psia. The computer simulation reveals that such increased gas production requires relative permeability to gas(k{sub rg}) increase from less than 10{sup -4} to about 10{sup -3} due to a decrease in fractional water saturation of pores (S{sub w}) of only about 0.001. Further, assuming drainage relative permeabilities are as calculated by the method of A.T. Corey{sup 1}, initial gas saturation of pores must be greater than 0.065. Means for achieving these initial conditions during geological time will be qualitatively discussed, and the effect of trapped gas upon long-term production will be described.

Randolph, Philip L.

1977-01-01T23:59:59.000Z

117

Rock Physics Based Determination of Reservoir Microstructure for Reservoir Characterization  

E-Print Network (OSTI)

One of the most important, but often ignored, factors affecting the transport and the seismic properties of hydrocarbon reservoir is pore shape. Transport properties depend on the dimensions, geometry, and distribution of pores and cracks. Knowledge of pore shape distribution is needed to explain the often-encountered complex interrelationship between seismic parameters (e.g. seismic velocity) and the independent physical properties (e.g. porosity) of hydrocarbon reservoirs. However, our knowledge of reservoir pore shape distribution is very limited. This dissertation employs a pore structure parameter via a rock physics model to characterize mean reservoir pore shape. The parameter was used to develop a new physical concept of critical clay content in the context of pore compressibility as a function of pore aspect ratio for a better understanding of seismic velocity as a function of porosity. This study makes use of well log dataset from offshore Norway and from North Viking Graben in the North Sea. In the studied North Sea reservoir, porosity and measured horizontal permeability was found to increase with increasing pore aspect ratio (PAR). PAR is relatively constant at 0.23 for volumes of clay (V_cl) less than 32% with a significant decrease to 0.04 for V_cl above 32%. The point of inflexion at 32% in the PAR –V_cl plane is defined as the critical clay volume. Much of the scatters in the compressional velocity-porosity cross-plots are observed where V_cl is above this critical value. For clay content higher than the critical value, Hertz-Mindlin (HM) contact theory over-predicts compressional velocity (V_p) by about 69%. This was reduced to 4% when PAR distribution was accounted for in the original HM formulation. The pore structure parameter was also used to study a fractured carbonate reservoir in the Sichuan basin, China. Using the parameter, the reservoir interval can be distinguished from those with no fracture. The former has a pore structure parameter value that is ? 3.8 whereas it was < 3.8 for the latter. This finding was consistent with the result of fracture analysis, which was based on FMI image. The results from this dissertation will find application in reservoir characterization as the industry target more complex, deeper, and unconventional reservoirs.

Adesokan, Hamid 1976-

2013-05-01T23:59:59.000Z

118

Application of Integrated Reservoir Management and Reservoir Characterization to Optimize Infill Drilling  

Science Conference Proceedings (OSTI)

Infill drilling if wells on a uniform spacing without regard to reservoir performance and characterization foes not optimize reservoir development because it fails to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. New and emerging technologies, such as geostatistical modeling, rigorous decline curve analysis, reservoir rock typing, and special core analysis can be used to develop a 3-D simulation model for prediction of infill locations.

None

1998-01-01T23:59:59.000Z

119

Application of Integrated Reservoir Management and Reservoir Characterization to Optimize Infill Drilling  

SciTech Connect

Initial drilling of wells on a uniform spacing, without regard to reservoir performance and characterization, must become a process of the past. Such efforts do not optimize reservoir development as they fail to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. These reservoirs are typically characterized by: o Large, discontinuous pay intervals o Vertical and lateral changes in reservoir properties o Low reservoir energy o High residual oil saturation o Low recovery efficiency

P. K. Pande

1998-10-29T23:59:59.000Z

120

STATUS OF GEOTHERMAL RESERVOIR ENGINEERING MANAGEMENT PROGRAM ("GREMP") -DECEMBER, 1979  

E-Print Network (OSTI)

the characteristics of a geothermal reservoir: Items 2, 6,new data important to geothermal reservoir engineering prac-forecast performance of the geothermal reservoir and bore

Howard, J. H.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aquifer reservoirs water-only" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

A STOCHASTIC METHOD FOR MODELING FLUID DISPLACEMENT IN PETROLEUM RESERVOIRS  

E-Print Network (OSTI)

FLUID DISPLACEMENT IN PETROLEUM RESERVOIRS C. Anderson andFLUID DISPLACEMENT IN PETROLEUM RESERVOIRS C. Anderson andachieve optimal recovery of petroleum from a reservoir, it

Anderson, C.

2011-01-01T23:59:59.000Z

122

Initial study of thermal energy storage in unconfined aquifers. [UCATES  

DOE Green Energy (OSTI)

Convective heat transport in unconfined aquifers is modeled in a semi-analytic way. The transient groundwater flow is modeled by superposition of analytic functions, whereby changes in the aquifer storage are represented by a network of triangles, each with a linearly varying sink distribution. This analytic formulation incorporates the nonlinearity of the differential equation for unconfined flow and eliminates numerical dispersion in modeling heat convection. The thermal losses through the aquifer base and vadose zone are modeled rather crudely. Only vertical heat conduction is considered in these boundaries, whereby a linearly varying temperature is assumed at all times. The latter assumption appears reasonable for thin aquifer boundaries. However, assuming such thin aquifer boundaries may lead to an overestimation of the thermal losses when the aquifer base is regarded as infinitely thick in reality. The approach is implemented in the computer program UCATES, which serves as a first step toward the development of a comprehensive screening tool for ATES systems in unconfined aquifers. In its present form, the program is capable of predicting the relative effects of regional flow on the efficiency of ATES systems. However, only after a more realistic heatloss mechanism is incorporated in UCATES will reliable predictions of absolute ATES efficiencies be possible.

Haitjema, H.M.; Strack, O.D.L.

1986-04-01T23:59:59.000Z

123

Blackfoot Reservoir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Blackfoot Reservoir Geothermal Area Blackfoot Reservoir Geothermal Area (Redirected from Blackfoot Reservoir Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Blackfoot Reservoir Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Idaho Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

124

Modeling of Geothermal Reservoirs: Fundamental Processes, Computer  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Modeling of Geothermal Reservoirs: Fundamental Processes, Computer Simulation and Field Applications Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Modeling of Geothermal Reservoirs: Fundamental Processes, Computer Simulation and Field Applications Abstract This article attempts to critically evaluate the present state of the art of geothermal reservoir simulation. Methodological aspects of geothermal reservoir modeling are briefly reviewed, with special emphasis on flow in fractured media. We then examine some applications of numerical simulation to studies of reservoir dynamics, well test design and analysis, and modeling of specific fields. Tangible impacts of reservoir simulation

125

Reservoir technology research at Lawrence Berkeley Laboratory  

DOE Green Energy (OSTI)

The research being carried out at LBL as part of DOE/GTD's Reservoir Technology Program includes field, theoretical and modeling activities. The purpose is to develop, improve and validate methods and instrumentation to: (1) determine geothermal reservoir parameters, (2) detect and characterize reservoir fractures and boundaries, and (3) identify and evaluate the importance of reservoir processes. The ultimate objective of this work is to advance the state-of-the-art for characterizing geothermal reservoirs and evaluating their productive capacity and longevity under commercial exploitation. LBL's FY1986 accomplishments, FY1987 progress to date, and possible future activities under DOE's Reservoir Technology Program are discussed.

Lippmann, M.J.

1987-04-01T23:59:59.000Z

126

Geotechnical studies of geothermal reservoirs  

DOE Green Energy (OSTI)

It is proposed to delineate the important factors in the geothermal environment that will affect drilling. The geologic environment of the particular areas of interest are described, including rock types, geologic structure, and other important parameters that help describe the reservoir and overlying cap rock. The geologic environment and reservoir characteristics of several geothermal areas were studied, and drill bits were obtained from most of the areas. The geothermal areas studied are: (1) Geysers, California, (2) Imperial Valley, California, (3) Roosevelt Hot Springs, Utah, (4) Bacca Ranch, Valle Grande, New Mexico, (5) Jemez Caldera, New Mexico, (6) Raft River, Idaho, and (7) Marysville, Montona. (MHR)

Pratt, H.R.; Simonson, E.R.

1976-01-01T23:59:59.000Z

127

A reservoir management study of a mature oil field  

E-Print Network (OSTI)

An integrated geological, petrophysical and reservoir engineering review was performed for a mature, producing oil field. Like many older fields, important data are missing or were not collected. The techniques used in this thesis may be applied to other mature oil fields to make sound engineering and business decisions. I interpreted the geological structure and stratigaphy of the salt dome oil field. Structure, isopach and cross-sectional maps were constructed. Depositional environments of the producing horizons were identified. Potential for additional reserves was assessed. Well logs, core data, water resistivity and produced fluids data were analyzed. Average values of porosity, permeability, and oil saturation were determined for the field. Potential reserves behind casing were identified. Based on the revised geological and petrophysical data, the original oil in place was estimated from volumetrics to be 42.3 MMSTB. Cumulative oil production was determined for the first time since 1963. The field, individual reservoir, and individual well production performances were reviewed. Initial production histories of more than 220 wells were documented. I collected wellhead fluid samples and analyzed oil gravity and viscosity. Other fluid properties were estimated from correlations. Pressure data from the field was collated and analyzed. Primary production mechanisms and aquifer influx were estimated by reviewing early producing history and performing material balance calculations. Water influx was calculated. The performances of analogous salt dome reservoirs were compared to that of the field. All past well stimulations were reviewed and suggestions made for better implementation. Water injection in the field was reviewed. Problems of implementation and reservoir response were identified. The best areas in the field for waterflooding were identified and analyzed with an analytical model. Based on existing development, the oil ultimate recovery is estimated to be 14.4 MMSTB or 34.0 % of original oil in place. To determine whether oil recovery can be improved, incremental, after tax economic analysis was applied to several schemes. Infill drilling, hydraulic fracturing and waterflooding were analyzed. A course of action to maximize economic return is outlined for the field. Hydraulic fracturing appears to be the most viable technique to improve oil production from the field.

Peruzzi, Tave

1995-01-01T23:59:59.000Z

128

Reservoir compaction loads on casings and liners  

Science Conference Proceedings (OSTI)

Pressure drawdown due to production from a reservoir causes compaction of the reservoir formation which induces axial and radial loads on the wellbore. Reservoir compaction loads increase during the production life of a well, and are greater for deviated wells. Presented here are casing and liner loads at initial and final pressure drawdowns for a particular reservoir and at well deviation angles of 0 to 45 degrees.

Wooley, G.R.; Prachner, W.

1984-09-01T23:59:59.000Z

129

Optimization Online - Managing Hydroelectric Reservoirs over an ...  

E-Print Network (OSTI)

Jul 7, 2013 ... Managing Hydroelectric Reservoirs over an Extended Planning Horizon using a Benders Decomposition Algorithm Exploiting a Memory Loss ...

130

Simulation analysis of the unconfined aquifer, Raft River Geothermal Area,  

Open Energy Info (EERE)

Simulation analysis of the unconfined aquifer, Raft River Geothermal Area, Simulation analysis of the unconfined aquifer, Raft River Geothermal Area, Idaho-Utah Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Simulation analysis of the unconfined aquifer, Raft River Geothermal Area, Idaho-Utah Details Activities (1) Areas (1) Regions (0) Abstract: This study covers about 1000 mi2 (2600 km2) of the southern Raft River drainage basin in south-central Idaho and northwest Utah. The main area of interest, approximately 200 mi2 (520 km2) of semiarid agricultural and rangeland in the southern Raft River Valley that includes the known Geothermal Resource Area near Bridge, Idaho, was modelled numerically to evaluate the hydrodynamics of the unconfined aquifer. Computed and estimated transmissivity values range from 1200 feet squared per day (110

131

Prevention of Reservoir Interior Discoloration  

SciTech Connect

Contamination is anathema in reservoir production. Some of the contamination is a result of welding and some appears after welding but existed before. Oxygen was documented to be a major contributor to discoloration in welding. This study demonstrates that it can be controlled and that some of the informal cleaning processes contribute to contamination.

Arnold, K.F.

2001-04-03T23:59:59.000Z

132

HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING  

E-Print Network (OSTI)

on the Cerro P r i e t o Geothermal F i e l d , Mexicali,e C e r r o P r i e t o Geothermal F i e l d , Baja C a l i1979 HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING R.

Schroeder, R.C.

2009-01-01T23:59:59.000Z

133

Nutrient transport model in CHAHNIMEH manmade reservoirs  

Science Conference Proceedings (OSTI)

A Model for predicting nutrient transport to CHAHNIMEH reservoir is developed in this paper. Nitrogen and phosphorous have been simulated as the important parameters in evaluating water quality in the reservoir. Solar radiation and wind flow are considered ... Keywords: CHAHNIMEH, modeling, nutrient, reservoir, transport, water movement

Seyyed Ahmad Mirbagheri; Seyyed Arman Hashemi Monfared

2008-08-01T23:59:59.000Z

134

Tenth workshop on geothermal reservoir engineering: proceedings  

DOE Green Energy (OSTI)

The workshop contains presentations in the following areas: (1) reservoir engineering research; (2) field development; (3) vapor-dominated systems; (4) the Geysers thermal area; (5) well test analysis; (6) production engineering; (7) reservoir evaluation; (8) geochemistry and injection; (9) numerical simulation; and (10) reservoir physics. (ACR)

Not Available

1985-01-22T23:59:59.000Z

135

Eutrophication modelling of reservoirs in Taiwan  

Science Conference Proceedings (OSTI)

Two reservoirs in Taiwan were modeled to simulate the hydrodynamics and water quality in the water column. The modelling effort was supported with data collected in the field for a 2-year period for both reservoirs. Spatial and temporal distributions ... Keywords: CE-QUAL-W2, Reservoir Eutrophication Modelling, Water quality

Jan-Tai Kuo; Wu-Seng Lung; Chou-Ping Yang; Wen-Cheng Liu; Ming-Der Yang; Tai-Shan Tang

2006-06-01T23:59:59.000Z

136

FEWA: a Finite Element model of Water flow through Aquifers  

Science Conference Proceedings (OSTI)

This report documents the implementation and demonstration of a Finite Element model of Water flow through Aquifers (FEWA). The particular features of FEWA are its versatility and flexibility to deal with as many real-world problems as possible. Point as well as distributed sources/sinks are included to represent recharges/pumpings and rainfall infiltrations. All sources/sinks can be transient or steady state. Prescribed hydraulic head on the Dirichlet boundaries and fluxes on Neumann or Cauchy boundaries can be time-dependent or constant. Source/sink strength over each element and node, hydraulic head at each Dirichlet boundary node, and flux at each boundary segment can vary independently of each other. Either completely confined or completely unconfined aquifers, or partially confined and partially unconfined aquifers can be dealt with effectively. Discretization of a compound region with very irregular curved boundaries is made easy by including both quadrilateral and triangular elements in the formulation. Large-field problems can be solved efficiently by including a pointwise iterative solution strategy as an optional alternative to the direct elimination solution method for the matrix equation approximating the partial differential equation of groundwater flow. FEWA also includes transient flow through confining leaky aquifers lying above and/or below the aquifer of interest. The model is verified against three simple cases to which analytical solutions are available. It is then demonstrated by two examples of how the model can be applied to heterogeneous and anisotropic aquifers with transient boundary conditions, time-dependent sources/sinks, and confining aquitards for a confined aquifer of variable thickness and for a free surface problem in an unconfined aquifer, respectively. 20 references, 25 figures, 8 tables.

Yeh, G.T.; Huff, D.D.

1983-11-01T23:59:59.000Z

137

Theoretical analysis of heat transfer in semi-infinite aquifer  

SciTech Connect

A simple model for temperature within an unconfined semi-infinite aquifer is proposed with ground water flowing perpendicular to heat flow. The authors results show that it is possible to correct the observed geothermal gradient in order to obtain the undisturbed gradient, to identify the portion of the aquifer where the perturbation produced by water motion is unimportant, and to recognize the depth and distance from the recharge zone where water temperature is higher and can be exploited for low enthalpy utilization.

Mongelli, F. (Univ. di Bari (Italy). Dipt. di Geologia e Geofisica)

1994-04-01T23:59:59.000Z

138

Increasing Waterflooding Reservoirs in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management, Class III  

SciTech Connect

This project was intended to increase recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs, transferring technology so that it can be applied in other sections of the Wilmington field and by operators in other slope and basin reservoirs is a primary component of the project.

Koerner, Roy; Clarke, Don; Walker, Scott; Phillips, Chris; Nguyen, John; Moos, Dan; Tagbor, Kwasi

2001-08-07T23:59:59.000Z

139

An Advanced Fracture Characterization and Well Path Navigation System for Effective Re-Development and Enhancement of Ultimate Recovery from the Complex Monterey Reservoir of South Ellwood Field, Offshore California  

Science Conference Proceedings (OSTI)

Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the methodologies developed in this project. This report presents a summary of all technical work conducted during the ninth quarter of Budget Period II.

Steve Horner

2006-01-31T23:59:59.000Z

140

Blackfoot Reservoir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Blackfoot Reservoir Geothermal Area Blackfoot Reservoir Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Blackfoot Reservoir Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Idaho Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

Note: This page contains sample records for the topic "aquifer reservoirs water-only" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

4. International reservoir characterization technical conference  

Science Conference Proceedings (OSTI)

This volume contains the Proceedings of the Fourth International Reservoir Characterization Technical Conference held March 2-4, 1997 in Houston, Texas. The theme for the conference was Advances in Reservoir Characterization for Effective Reservoir Management. On March 2, 1997, the DOE Class Workshop kicked off with tutorials by Dr. Steve Begg (BP Exploration) and Dr. Ganesh Thakur (Chevron). Tutorial presentations are not included in these Proceedings but may be available from the authors. The conference consisted of the following topics: data acquisition; reservoir modeling; scaling reservoir properties; and managing uncertainty. Selected papers have been processed separately for inclusion in the Energy Science and Technology database.

NONE

1997-04-01T23:59:59.000Z

142

Simulation study to investigate development options for a super-heavy oil reservoir  

E-Print Network (OSTI)

A reservoir simulation study was performed on a heavy oil reservoir with the main objective of evaluating possible development options beyond the existing cold production method. The 206-acre area simulated - part of a significantly larger oil accumulation - lies about 3000 ft. ss. and has a gross thickness of 560 ft. The simulated area contains 120 MMSTB oil of 9° API gravity with in situ viscosity of 6,000 cp. Production began in 1992 with the reservoir being drained by one vertical well, one slanted well and one horizontal well. The simulation study was conducted in a systematic manner using two types of commercial reservoir simulators to minimize computational time. For history matching the cold production period and forecasting of cold production cases, a black oil simulator was used (ECLIPSE 100). A fairly satisfactory match of the production and pressure data was obtained which required an analytical aquifer to be attached to the northern part of the reservoir. For thermal EOR cases, the oil was simulated as a hydrocarbon consisting of three pseudo components. These cases were run using a thermal compositional simulator (ECLIPSE 300). Simulation results indicate oil recovery, for the area developed by the existing horizontal well and two new horizontal wells, to be as follows. For cold production, the oil recovery amounts to 13% of original-oil-in-place (OOIP). With cyclic steam injection, the recovery factor is slightly increased to 15% OOIP. However, with steam flooding -utilizing the new horizontal wells as injectors - the recovery factor is significantly increased to 22% OOIP. Steam flooding is evidently superior to cyclic steam injection primarily due to the fact that the reservoir is pressurized in the former EOR method and not in the latter, and to the fact that cyclic steam injection is more a near-wellbore thermal stimulation process as opposed to a more reservoir-wide heating process under steam flooding. Finally, with steam-propane injection (at a constant steam:propane mass ratio of 100:5), the oil recovery factor is further increased to 26% OOIP. Simulation results indicate this EOR method creates a more favorable distribution of heat in the reservoir, thus better sweep efficiency and reduction in produced water cut. Selection of development options to be implemented would depend on the economics of each case. Economic evaluation of the various cases has not been covered in the thesis and is best done by the operator of the field.

Diaz Franco, Jose Manuel

2001-01-01T23:59:59.000Z

143

Commercialization of aquifer thermal energy storage technology  

DOE Green Energy (OSTI)

Pacific Northwest Laboratory (PNL) conducted this study for the US Department of Energy's (DOE) Office of Energy Storage and Distribution. The purpose of the study was to develop and screen a list of potential entry market applications for aquifer thermal energy storage (ATES). Several initial screening criteria were used to identify promising ATES applications. These include the existence of an energy availability/usage mismatch, the existence of many similar applications or commercial sites, the ability to utilize proven technology, the type of location, market characteristics, the size of and access to capital investment, and the number of decision makers involved. The in-depth analysis identified several additional screening criteria to consider in the selection of an entry market application. This analysis revealed that the best initial applications for ATES are those where reliability is acceptable, and relatively high temperatures are allowable. Although chill storage was the primary focus of this study, applications that are good candidates for heat ATES were also of special interest. 11 refs., 3 tabs.

Hattrup, M.P.; Weijo, R.O.

1989-09-01T23:59:59.000Z

144

Stability and design criteria studies for compressed air energy storage reservoirs. Progress report, FY 1977.  

DOE Green Energy (OSTI)

Progress made during FY-1977 in establishing design criteria to ensure the successful operation and long-term stability of Compressed Air Energy Storage (CAES) reservoirs in underground porous media, such as aquifers is summarized. The formulation of pertinent criteria is important since the long-term stability of air storage reservoirs is probably the item of greatest risk to the successful demonstration and commercialization of the CAES concept. The study has been divided into four phases: (1) state-of-the-art survey, (2) analytical modeling studies, (3) laboratory studies, and (4) field testing. The first of these phases, the state-of-the-art survey for air storage in porous reservoirs, has been completed on schedule and is reported in Section 2. Sections 3 and 4 are progress reports on Phases 2 and 3. No work has been done on Phase 4. It is planned that the field testing phase of this study will be carried out in conjunction with the Department of Energy/Electric Power Research Institute (DOE/EPRI) CAES Demonstration Program. This phase is not scheduled to begin until FY-1979.

Smith, G.C.; Stottlemyre, J.A.; Wiles, L.E.; Loscutoff, W.V.; Pincus, H.J.

1978-03-01T23:59:59.000Z

145

Storage capacity in hot dry rock reservoirs  

DOE Patents (OSTI)

A method is described for extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid inventory of the reservoir. 4 figs.

Brown, D.W.

1997-11-11T23:59:59.000Z

146

FEMA: a Finite Element Model of Material Transport through Aquifers  

Science Conference Proceedings (OSTI)

This report documents the construction, verification, and demonstration of a Finite Element Model of Material Transport through Aquifers (FEMA). The particular features of FEMA are its versatility and flexibility to deal with as many real-world problems as possible. Mechanisms included in FEMA are: carrier fluid advection, hydrodynamic dispersion and molecular diffusion, radioactive decay, sorption, source/sinks, and degradation due to biological, chemical as well as physical processes. Three optional sorption models are embodied in FEMA. These are linear isotherm and Freundlich and Langmuir nonlinear isotherms. Point as well as distributed source/sinks are included to represent artificial injection/withdrawals and natural infiltration of precipitation. All source/sinks can be transient or steady state. Prescribed concentration on the Dirichlet boundary, given gradient on the Neumann boundary segment, and flux at each Cauchy boundary segment can vary independently of each other. The aquifer may consist of as many formations as desired. Either completely confined or completely unconfined or partially confined and partially unconfined aquifers can be dealt with effectively. FEMA also includes transient leakage to or from the aquifer of interest through confining beds from or to aquifers lying below and/or above.

Yeh, G.T.; Huff, D.D.

1985-01-01T23:59:59.000Z

147

Aquifer test at Comore Loma No. 4, Idaho Falls, Idaho  

DOE Green Energy (OSTI)

An aquifer test was conducted at Comore Loma Well {number_sign}4 to determine the aquifer hydraulic characteristics at this location on July 11 and 12, 1991. Water was withdrawn from Comore Loma Well {number_sign}4 at approximately 850 gallons per minute for 8 hours while monitoring the water level in the plumping well and an observation well 930 ft away. The pumped well showed over 12 ft of drawdown with no discernable drawdown in the observation well. The drawdown in the pumped well was nearly instantaneous, showing little additional drawdown after 1 minute. The transmissivity was calculated to be approximately 140,000 ft{sup 2}/day using the Jacob solution. This gives a hydraulic conductivity of 1300 ft/day for the 110 ft interval tested. The high transmissivity and geologic setting suggest the aquifer may in part produce water from the Snake River Plain aquifer. However, the warm water temperature (71{degrees}F) indicates the presence of a geothermal source typical of the foothills aquifer. The storage coefficient could not be calculated since no water level decline was detected in the observation well.

Hubbell, J.M.

1991-12-01T23:59:59.000Z

148

AQUIFER THERMAL ENERGY STORAGE. A NUMERICAL SIMULATION OF AUBURN UNIVERSITY FIELD EXPERIMENTS  

E-Print Network (OSTI)

C.F. , 1980, "Aquifer Thermal Energy - Parameter Study" (infrom the Auburn University Thermal Energy Storage , LBL No.studies in aquifer thermal energy , Presented at the ~~~~~~~

Tsang, Chin Fu

2013-01-01T23:59:59.000Z

149

Geochemical modeling of an aquifer storage and recovery project in Union County, Arkansas  

E-Print Network (OSTI)

The Sparta aquifer in Union County, Arkansas has served as an important potable water supply to the public and industrial sectors in the area. However, increasing water demand and sustained heavy pumping from the aquifer ...

Zhu, Ni, M. Eng. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

150

Regional Analysis And Characterization Of Fractured Aquifers In The  

Open Energy Info (EERE)

Analysis And Characterization Of Fractured Aquifers In The Analysis And Characterization Of Fractured Aquifers In The Virginia Blue Ridge And Piedmont Provinces Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Regional Analysis And Characterization Of Fractured Aquifers In The Virginia Blue Ridge And Piedmont Provinces Details Activities (1) Areas (1) Regions (0) Abstract: Areas related to low-temperature geothermal applications include the recognition of and exploration for deep fracture permeability in crystalline rocks. It is well known that the best currently available downhole techniques to identify the locations of fracture zones in crystalline rocks depend upon the measurement of some thermal parameter such as temperature or heat flow. The temperature-depth profiles and their derivatives provide a direct indication of those fracture zones that

151

Why sequence Sulfur cycling in the Frasassi aquifer?  

NLE Websites -- All DOE Office Websites (Extended Search)

sulfur cycling in the Frasassi aquifer? sulfur cycling in the Frasassi aquifer? The terrestrial subsurface remains one of the least explored microbial habitats on earth, and is critical for understanding pollutant migration and attenuation, subsurface processes such as limestone dissolution (affecting porosity), and the search for life elsewhere in the solar system and beyond. The deep and sulfidic Frasassi aquifer (of Ancona, Italy) has emerged as a model system for studying sulfur cycling in the terrestrial subsurface, and this sequencing project has relevance for developing applications for wastewater treatment and capabilities relevant for radionuclide, metal and organic pollutant remediation that can be applied at environments at DOE subsurface sites. Principal Investigators: Jennifer Macalady, Penn State University

152

Accidental Gas Emission From Shallow Pressurized Aquifers At Alban Hills  

Open Energy Info (EERE)

Accidental Gas Emission From Shallow Pressurized Aquifers At Alban Hills Accidental Gas Emission From Shallow Pressurized Aquifers At Alban Hills Volcano (Rome, Italy)- Geochemical Evidence Of Magmatic Degassing? Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Accidental Gas Emission From Shallow Pressurized Aquifers At Alban Hills Volcano (Rome, Italy)- Geochemical Evidence Of Magmatic Degassing? Details Activities (0) Areas (0) Regions (0) Abstract: Recent studies suggested that Alban Hills (Rome) is a quiescent and not an extinct volcano, as it produced Holocene eruptions and several lahars until Roman times by water overflow from the Albano crater lake. Alban Hills are presently characterized by high PCO2 in groundwaters and by several cold gas emissions usually in sites where excavations removed the

153

A virtual company concept for reservoir management  

SciTech Connect

This paper describes how reservoir management problems were pursued with a virtual company concept via the Internet and World Wide Web. The focus of the paper is on the implementation of virtual asset management teams that were assembled with small independent oil companies. The paper highlights the mechanics of how the virtual team transferred data and interpretations, evaluated geological models of complex reservoirs, and used results of simulation studies to analyze various reservoir management strategies.

Martin, F.D. [Dave Martin and Associates, Inc. (United States); Kendall, R.P.; Whitney, E.M. [Los Alamos National Lab., NM (United States)

1998-12-31T23:59:59.000Z

154

Analysis of three geopressured geothermal aquifer-natural gas fields; Duson Hollywood and Church Point, Louisiana  

DOE Green Energy (OSTI)

The available well logs, production records and geological structure maps were analyzed for the Hollywood, Duson, and Church Point, Louisiana oil and gas field to determine the areal extent of the sealed geopressured blocks and to identify which aquifer sands within the blocks are connected to commercial production of hydrocarbons. The analysis showed that over the depth intervals of the geopressured zones shown on the logs essentially all of the sands of any substantial thickness had gas production from them somewhere or other in the fault block. It is therefore expected that the sands which are fully brine saturated in many of the wells are the water drive portion of the producing gas/oil somewhere else within the fault block. In this study only one deep sand was identified, in the Hollywood field, which was not connected to a producing horizon somewhere else in the field. Estimates of the reservoir parameters were made and a hypothetical production calculation showed the probable production to be less than 10,000 b/d. The required gas price to profitably produce this gas is well above the current market price.

Rogers, L.A.; Boardman, C.R.

1981-05-01T23:59:59.000Z

155

Slimholes for geothermal reservoir evaluation - An overview  

DOE Green Energy (OSTI)

The topics covered in this session include: slimhole testing and data acquisition, theoretical and numerical models for slimholes, and an overview of the analysis of slimhole data acquired by the Japanese. The fundamental issues discussed are concerned with assessing the efficacy of slimhole testing for the evaluation of geothermal reservoirs. the term reservoir evaluation is here taken to mean the assessment of the potential of the geothermal reservoir for the profitable production of electrical power. As an introduction to the subsequent presentations and discussions, a brief summary of the more important aspects of the use of slimholes in reservoir evaluation is given.

Hickox, C.E.

1996-08-01T23:59:59.000Z

156

Mapping Diffuse Seismicity for Geothermal Reservoir Management...  

Open Energy Info (EERE)

Facebook icon Twitter icon Mapping Diffuse Seismicity for Geothermal Reservoir Management with Matched Field Processing Geothermal Lab Call Project Jump to: navigation,...

157

Nonisothermal injection tests in fractured reservoirs  

DOE Green Energy (OSTI)

The paper extends the analysis of nonisothermal pressure transient data to fractured reservoirs. Two cases are considered: reservoirs with predominantly horzontal fractures and reservoirs with predominantly vertical fractures. Effects of conductive heat transfer between the fractures and the rock matrix are modeled, and the resulting pressure transients evaluated. Thermal conduction tends to retard the movement of the thermal front in the fractures, which significantly affects the pressure transient data. The purpose of the numerical simulation studies is to provide methods for analyzing nonisothermal injection/falloff data for fractured reservoirs.

Cox, B.L.; Bodvarsson, G.S.

1985-01-01T23:59:59.000Z

158

Injecting Carbon Dioxide into Unconventional Storage Reservoirs...  

NLE Websites -- All DOE Office Websites (Extended Search)

will also be investigated with a targeted CO 2 injection test into a depleted shale gas well. Different reservoir models will be used before, during, and after injection...

159

Naturally fractured tight gas reservoir detection optimization  

SciTech Connect

Research continued on methods to detect naturally fractured tight gas reservoirs. This report discusses 3D-3C seismic acquisition and 3D P-wave alternate processing.

NONE

1995-12-31T23:59:59.000Z

160

Safety of Dams and Reservoirs Act (Nebraska)  

Energy.gov (U.S. Department of Energy (DOE))

This act regulates dams and associated reservoirs to protect health and public safety and minimize adverse consequences associated with potential dam failure. The act describes the responsibilities...

Note: This page contains sample records for the topic "aquifer reservoirs water-only" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Storage capacity in hot dry rock reservoirs  

DOE Patents (OSTI)

A method of extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid

Brown, Donald W. (Los Alamos, NM)

1997-01-01T23:59:59.000Z

162

Legal and regulatory issues affecting aquifer thermal energy storage  

DOE Green Energy (OSTI)

This document updates and expands the report with a similar title issued in October 1980. This document examines a number of legal and regulatory issues that potentially can affect implementation of the aquifer thermal energy storage (ATES) concept. This concept involves the storage of thermal energy in an underground aquifer until a later date when it can be effectively utilized. Either heat energy or chill can be stored. Potential end uses of the energy include district space heating and cooling, industrial process applications, and use in agriculture or aquaculture. Issues are examined in four categories: regulatory requirements, property rights, potential liability, and issues related to heat or chill delivery.

Hendrickson, P.L.

1981-10-01T23:59:59.000Z

163

Development of a linear predictive model for carbon dioxide sequestration in deep saline carbonate aquifers  

Science Conference Proceedings (OSTI)

CO"2 injection into deep saline aquifers is a preferred method for mitigating CO"2 emission. Although deep saline aquifers are found in many sedimentary basins and provide very large storage capacities, several numerical simulations are needed before ... Keywords: CO2 sequestration, Deep saline carbonate aquifer, Latin hypercube space filling design, Predictive model

Sultan Anbar; Serhat Akin

2011-11-01T23:59:59.000Z

164

Modelling well leakage in multilayer aquifer systems using the extended finite element method  

Science Conference Proceedings (OSTI)

The extended finite element method (XFEM) is applied to the problem of predicting the steady-state leakage from layered sedimentary aquifer systems perforated by abandoned wells. Multi-aquifer systems are modelled using a quasi-three-dimensional model ... Keywords: Extended finite element method, GFEM, Generalised finite element method, Leakage, Multi-aquifer systems, XFEM

Robert Gracie; James R. Craig

2010-06-01T23:59:59.000Z

165

Simulation of coastal groundwater remediation: the case of Nardò fractured aquifer in Southern Italy  

Science Conference Proceedings (OSTI)

A new theoretical approach for evaluating the sharp interface position in a fractured aquifer was applied to the Nardo aquifer (Southern Italy). The results, based on Dupuit and Ghyben-Herzberg approximations, clearly show both the extent of seawater ... Keywords: Coastal springs, Fractured aquifers, Mathematical models, Seawater intrusion

Costantino Masciopinto

2006-01-01T23:59:59.000Z

166

Coal Energy Conversion with Aquifer-Based Carbon Sequestration: An Approach to Electric Power Generation with  

E-Print Network (OSTI)

Coal Energy Conversion with Aquifer-Based Carbon Sequestration: An Approach to Electric Power an impermeable seal to prevent it from escaping the aquifer. The proposed alternative technology processes coal carbon and non-mineral coal combustion products in the process. This stream is denser than the aquifer

Nur, Amos

167

Reservoir Engineering for Unconventional Gas Reservoirs: What Do We Have to Consider?  

Science Conference Proceedings (OSTI)

The reservoir engineer involved in the development of unconventional gas reservoirs (UGRs) is required to integrate a vast amount of data from disparate sources, and to be familiar with the data collection and assessment. There has been a rapid evolution of technology used to characterize UGR reservoir and hydraulic fracture properties, and there currently are few standardized procedures to be used as guidance. Therefore, more than ever, the reservoir engineer is required to question data sources and have an intimate knowledge of evaluation procedures. We propose a workflow for the optimization of UGR field development to guide discussion of the reservoir engineer's role in the process. Critical issues related to reservoir sample and log analysis, rate-transient and production data analysis, hydraulic and reservoir modeling and economic analysis are raised. Further, we have provided illustrations of each step of the workflow using tight gas examples. Our intent is to provide some guidance for best practices. In addition to reviewing existing methods for reservoir characterization, we introduce new methods for measuring pore size distribution (small-angle neutron scattering), evaluating core-scale heterogeneity, log-core calibration, evaluating core/log data trends to assist with scale-up of core data, and modeling flow-back of reservoir fluids immediately after well stimulation. Our focus in this manuscript is on tight and shale gas reservoirs; reservoir characterization methods for coalbed methane reservoirs have recently been discussed.

Clarkson, Christopher R [ORNL

2011-01-01T23:59:59.000Z

168

Subsurface monitoring of reservoir pressure, temperature, relative humidity, and water content at the CAES Field Experiment, Pittsfield, Illinois: system design  

DOE Green Energy (OSTI)

This subsurface-instrumentation design has been developed for the first Compressed Air Energy Storage (CAES) field experiment to be performed in porous media. Energy storage will be accomplished by alternating the injection and withdrawal of compressed air in a confined sandstone aquifer near Pittsfield, Illinois. The overall experiment objective is to characterize the reservoir's geochemical and thermohydraulic response to imposed CAES conditions. Specific experiment objectives require monitoring: air-bubble development; thermal development; cyclic pressure response; reservoir dehydration; and water coning. Supporting these objectives, four parameters will be continuously monitored at depth in the reservoir. They are: temperature; pressure; pore-air relative humidity; and pore-water content. Reservoir temperatures and pressures will range to maximum values approaching 200/sup 0/C and 300 psi, respectively. Both pore-air relative humidity and pore-water content will range from approx. 0 to 100%. This report discusses: instrumentation design; sensor and sensor system calibration; field installation and testing; and instrument-system operation. No comprehensive off-the-shelf instrument package exists to adequately monitor CAES reservoir parameters at depth. The best available sensors were selected and adapted for use under expected ranges of reservoir conditions. The instrumentation design criteria required: suitable sensor accuracy; continuous monitoring capability; redundancy; maximum sensor integrity; contingency planning; and minimum cost-information ratio. Three wells will be instrumented: the injection/withdrawal (I/W) well and the two instrument wells. Sensors will be deployed by wireline suspension in both open and backfilled (with sand) wellbores. The sensors deployed in the I/W well will be retrievable; the instrument-well sensors will not.

Hostetler, D.D.; Childs, S.W.; Phillips, S.J.

1983-03-01T23:59:59.000Z

169

Preliminary formation analysis for compressed air energy storage in depleted natural gas reservoirs : a study for the DOE Energy Storage Systems Program.  

Science Conference Proceedings (OSTI)

The purpose of this study is to develop an engineering and operational understanding of CAES performance for a depleted natural gas reservoir by evaluation of relative permeability effects of air, water and natural gas in depleted natural gas reservoirs as a reservoir is initially depleted, an air bubble is created, and as air is initially cycled. The composition of produced gases will be evaluated as the three phase flow of methane, nitrogen and brine are modeled. The effects of a methane gas phase on the relative permeability of air in a formation are investigated and the composition of the produced fluid, which consists primarily of the amount of natural gas in the produced air are determined. Simulations of compressed air energy storage (CAES) in depleted natural gas reservoirs were carried out to assess the effect of formation permeability on the design of a simple CAES system. The injection of N2 (as a proxy to air), and the extraction of the resulting gas mixture in a depleted natural gas reservoir were modeled using the TOUGH2 reservoir simulator with the EOS7c equation of state. The optimal borehole spacing was determined as a function of the formation scale intrinsic permeability. Natural gas reservoir results are similar to those for an aquifer. Borehole spacing is dependent upon the intrinsic permeability of the formation. Higher permeability allows increased injection and extraction rates which is equivalent to more power per borehole for a given screen length. The number of boreholes per 100 MW for a given intrinsic permeability in a depleted natural gas reservoir is essentially identical to that determined for a simple aquifer of identical properties. During bubble formation methane is displaced and a sharp N2methane boundary is formed with an almost pure N2 gas phase in the bubble near the borehole. During cycling mixing of methane and air occurs along the boundary as the air bubble boundary moves. The extracted gas mixture changes as a function of time and proximity of the bubble boundary to the well. For all simulations reported here, with a formation radius above 50 m the maximum methane composition in the produced gas phase was less than 0.5%. This report provides an initial investigation of CAES in a depleted natural gas reservoir, and the results will provide useful guidance in CAES system investigation and design in the future.

Gardner, William Payton

2013-06-01T23:59:59.000Z

170

Preliminary formation analysis for compressed air energy storage in depleted natural gas reservoirs : a study for the DOE Energy Storage Systems Program.  

SciTech Connect

The purpose of this study is to develop an engineering and operational understanding of CAES performance for a depleted natural gas reservoir by evaluation of relative permeability effects of air, water and natural gas in depleted natural gas reservoirs as a reservoir is initially depleted, an air bubble is created, and as air is initially cycled. The composition of produced gases will be evaluated as the three phase flow of methane, nitrogen and brine are modeled. The effects of a methane gas phase on the relative permeability of air in a formation are investigated and the composition of the produced fluid, which consists primarily of the amount of natural gas in the produced air are determined. Simulations of compressed air energy storage (CAES) in depleted natural gas reservoirs were carried out to assess the effect of formation permeability on the design of a simple CAES system. The injection of N2 (as a proxy to air), and the extraction of the resulting gas mixture in a depleted natural gas reservoir were modeled using the TOUGH2 reservoir simulator with the EOS7c equation of state. The optimal borehole spacing was determined as a function of the formation scale intrinsic permeability. Natural gas reservoir results are similar to those for an aquifer. Borehole spacing is dependent upon the intrinsic permeability of the formation. Higher permeability allows increased injection and extraction rates which is equivalent to more power per borehole for a given screen length. The number of boreholes per 100 MW for a given intrinsic permeability in a depleted natural gas reservoir is essentially identical to that determined for a simple aquifer of identical properties. During bubble formation methane is displaced and a sharp N2methane boundary is formed with an almost pure N2 gas phase in the bubble near the borehole. During cycling mixing of methane and air occurs along the boundary as the air bubble boundary moves. The extracted gas mixture changes as a function of time and proximity of the bubble boundary to the well. For all simulations reported here, with a formation radius above 50 m the maximum methane composition in the produced gas phase was less than 0.5%. This report provides an initial investigation of CAES in a depleted natural gas reservoir, and the results will provide useful guidance in CAES system investigation and design in the future.

Gardner, William Payton

2013-06-01T23:59:59.000Z

171

Increasing Waterflooding Reservoirs in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management  

Science Conference Proceedings (OSTI)

The objectives of this quarterly report was to summarize the work conducted under each task during the reporting period April - June 1998 and to report all technical data and findings as specified in the ''Federal Assistance Reporting Checklist''. The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology.

Koerner, Roy; Clarke, Don; Walker, Scott

1999-11-09T23:59:59.000Z

172

River Flow Forecasting for Reservoir management through Neural Networks  

Science Conference Proceedings (OSTI)

In utilities using a mixture of hydroelectric and nonhydroelectric power, the economics of the hydroelectric plants depend upon the reservoir height and the inflow into the reservoir for several months into the future. Accurate forecasts of reservoir ...

Meuser Valenca; Teresa Ludermir; Anelle Valenca

2005-12-01T23:59:59.000Z

173

Increasing Waterflood Reserves in the Wilmington Oil Field Through Reservoir Characterization and Reservoir Management  

SciTech Connect

This project is intended to increase recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project.

Chris Phillips; Dan Moos; Don Clarke; John Nguyen; Kwasi Tagbor; Roy Koerner; Scott Walker

1997-04-10T23:59:59.000Z

174

A comparative evaluation of conceptual models for the Snake River Plain aquifer at the Idaho Chemical Processing Plant, INEL  

SciTech Connect

Geologic and hydrologic data collected by the United States Geological Survey (USGS) are used to evaluate the existing ground water monitoring well network completed in the upper portion of the Snake River Plain aquifer (SRPA) beneath the Idaho Chemical Processing Plant (ICPP). The USGS data analyzed and compared in this study include: (a) lithologic, geophysical, and stratigraphic information, including the conceptual geologic models intrawell, ground water flow measurement (Tracejector tests) and (c) dedicated, submersible, sampling group elevations. Qualitative evaluation of these data indicate that the upper portion of the SRPA is both heterogeneous and anisotropic at the scale of the ICPP monitoring well network. Tracejector test results indicate that the hydraulic interconnection and spatial configuration of water-producing zones is extremely complex within the upper portion of the SRPA. The majority of ICPP monitoring wells currently are equipped to sample ground water only the upper lithostratigraphic intervals of the SRPA, primarily basalt flow groups E, EF, and F. Depth-specific hydrogeochemical sampling and analysis are necessary to determine if ground water quality varies significantly between the various lithostratigraphic units adjacent to individual sampling pumps.

Prahl, C.J.

1992-01-01T23:59:59.000Z

175

Unsteady Flow Model for Fractured Gas Reservoirs  

Science Conference Proceedings (OSTI)

Developing low permeability reservoirs is currently a big challenge to the industry. Because low permeability reservoirs are of low quality and are easily damaged, production from a single well is low, and there is unlikely to be any primary recovery. ... Keywords: Low permeability, Fractured well, Orthogonal transformation, Unsteady, Productivity

Li Yongming; Zhao Jinzhou; Gong Yang; Yao Fengsheng; Jiang Youshi

2010-12-01T23:59:59.000Z

176

Water resources review: Wheeler Reservoir, 1990  

DOE Green Energy (OSTI)

Protection and enhancement of water quality is essential for attaining the full complement of beneficial uses of TVA reservoirs. The responsibility for improving and protecting TVA reservoir water quality is shared by various federal, state, and local agencies, as well as the thousands of corporations and property owners whose individual decisions affect water quality. TVA's role in this shared responsibility includes collecting and evaluating water resources data, disseminating water resources information, and acting as a catalyst to bring together agencies and individuals that have a responsibility or vested interest in correcting problems that have been identified. This report is one in a series of status reports that will be prepared for each of TVA's reservoirs. The purpose of this status report is to provide an up-to-date overview of the characteristics and conditions of Wheeler Reservoir, including: reservoir purposes and operation; physical characteristics of the reservoir and the watershed; water quality conditions: aquatic biological conditions: designated, actual, and potential uses of the reservoir and impairments of those uses; ongoing or planned reservoir management activities. Information and data presented here are form the most recent reports, publications, and original data available. 21 refs., 8 figs., 29 tabs.

Wallus, R.; Cox, J.P.

1990-09-01T23:59:59.000Z

177

Geothermal reservoir insurance study. Final report  

DOE Green Energy (OSTI)

The principal goal of this study was to provide analysis of and recommendations on the need for and feasibility of a geothermal reservoir insurance program. Five major tasks are reported: perception of risk by major market sectors, status of private sector insurance programs, analysis of reservoir risks, alternative government roles, and recommendations.

Not Available

1981-10-09T23:59:59.000Z

178

Environmental risk assessment for aquifer thermal energy storage  

DOE Green Energy (OSTI)

This report has been prepared by Pacific Northwest Laboratory at the request of the International Energy Agency (IEA). The US Department of Energy represents the United States in the IEA for Annex IV, the IEA task for research and development in aquifer thermal energy storage (ATES). Installation and operation of an ATES system is necessarily intrusive to ground-water resources. Therefore, governmental authorities usually require an environmental risk assessment to be performed before permission to construct an ATES system is granted. Writing an accurate statement of risk presupposes a knowledge of aquifer and ground-water characteristics and that an engineering feasibility study has taken place. Effective and logical presentation of the results of the risk assessment can expedite the grant of approval. Introductory remarks should address questions regarding why the ATES project has been proposed, what it is expected to accomplish, and what the expected benefits are. Next, the system configuration, including the aquifer, ATES plant, and well field, should be described in terms of size and location, design components, and thermal and hydraulic capacity. The final element of system design, the predicted annual operating cycle, needs to be described in sufficient detail to allow the reviewer to appreciate the net hydraulic, thermal, and hydrochemical effects imposed on the aquifer. Risks may be environmental or legal. Only after a reviewer has been introduced to the proposed system`s design, operation, and scale can risk issues can be identified and weighed against the benefits of the proposed ATES system.

Hall, S.H.

1993-01-01T23:59:59.000Z

179

Environmental risk assessment for aquifer thermal energy storage  

DOE Green Energy (OSTI)

This report has been prepared by Pacific Northwest Laboratory at the request of the International Energy Agency (IEA). The US Department of Energy represents the United States in the IEA for Annex IV, the IEA task for research and development in aquifer thermal energy storage (ATES). Installation and operation of an ATES system is necessarily intrusive to ground-water resources. Therefore, governmental authorities usually require an environmental risk assessment to be performed before permission to construct an ATES system is granted. Writing an accurate statement of risk presupposes a knowledge of aquifer and ground-water characteristics and that an engineering feasibility study has taken place. Effective and logical presentation of the results of the risk assessment can expedite the grant of approval. Introductory remarks should address questions regarding why the ATES project has been proposed, what it is expected to accomplish, and what the expected benefits are. Next, the system configuration, including the aquifer, ATES plant, and well field, should be described in terms of size and location, design components, and thermal and hydraulic capacity. The final element of system design, the predicted annual operating cycle, needs to be described in sufficient detail to allow the reviewer to appreciate the net hydraulic, thermal, and hydrochemical effects imposed on the aquifer. Risks may be environmental or legal. Only after a reviewer has been introduced to the proposed system's design, operation, and scale can risk issues can be identified and weighed against the benefits of the proposed ATES system.

Hall, S.H.

1993-01-01T23:59:59.000Z

180

Estimation of formation strength index of aquifer from neural networks  

Science Conference Proceedings (OSTI)

The purpose of this study is to construct a model that predicts an aquifer's formation strength index (the ratio of shear modulus and bulk compressibility, G/C"b) from geophysical well logs by using a back-propagation neural network (BPNN). The BPNN ... Keywords: Back-propagation neural networks, Geophysical well logs, Groundwater, Soft computing

Bieng-Zih Hsieh; Chih-Wen Wang; Zsay-Shing Lin

2009-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "aquifer reservoirs water-only" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Potential Contaminant Pathways from Hydraulically Fractured Shale to Aquifers  

E-Print Network (OSTI)

Potential Contaminant Pathways from Hydraulically Fractured Shale to Aquifers by Tom Myers Abstract Hydraulic fracturing of deep shale beds to develop natural gas has caused concern regarding the potential and preferential flow through fractures--could allow the transport of contaminants from the fractured shale

182

Characterization of oil and gas reservoir heterogeneity  

SciTech Connect

The ultimate oojective of this cooperative research project is to characterize Alaskan petroleum reservoirs in terms of their reserves, physical and chemical properties, geologic configuration in relation to lithofacies and structure, and development potential. The project has two tasks: Task 1 is a geological description of the reservoirs including petrophysical properties, i.e., porosity, permeability, permeability variation, formation depth, temperature, and net pay, facies changes and reservoir structures as drawn from cores, well logs, and other geological data. Task 2 is reservoir fluid characterization--determination of physical properties of reservoir fluids including density, viscosity, phase distributions and composition as well as petrogenesis--source rock identification; and the study of asphaltene precipitation for Alaskan crude oils. This report presents a summary of technical progress of the well log analysis of Kuparuk Field, Northslope, Alaska.

Sharma, G.D.

1992-01-01T23:59:59.000Z

183

Characterization of oil and gas reservoir heterogeneity  

SciTech Connect

The ultimate objective of this cooperative research project is to characterize Alaskan petroleum reservoirs in terms of their reserves, physical and chemical properties, geologic configuration in relation to lithofacies and structure, and development potential. The project has two tasks: Task 1 is a geological description of the reservoirs including petrophysical properties, i.e., porosity, permeability, permeability variation, formation depth, temperature, and net pay, facies changes and reservoir structures as drawn from cores, well logs, and other geological data. Task 2 is reservoir fluid characterization -- determination of physical properties of reservoir fluids including density, viscosity, phase distributions and composition as well as petrogenesis -- source rock identification; and the study of asphaltene precipitation for Alaskan crude oils.

Sharma, G.D.

1991-01-01T23:59:59.000Z

184

Characterization of oil and gas reservoir heterogeneity  

SciTech Connect

The ultimate objective of this cooperative research project is to characterize Alaskan petroleum reservoirs in terms of their reserves, physical and chemical properties, geologic configuration in relation to lithofacies and structure, and development potential. The project has two tasks: Task 1 is a geological description of the reservoirs including petrophysical properties, i.e., porosity, permeability, permeability variation, formation depth, temperature, and net pay, facies changes and reservoir structures as drawn from cores, well logs, and other geological data. Task 2 is reservoir fluid characterization-determination of physical properties of reservoir fluids including density, viscosity, phase distributions and composition as well as petrogenesis-source rock identification; and the study of asphaltene precipitation for Alaskan crude oils. Results are discussed.

Sharma, G.D.

1992-01-01T23:59:59.000Z

185

Utah Natural Gas, Wet After Lease Separation New Reservoir Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Utah Natural Gas, Wet After Lease Separation New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0...

186

Utah Coalbed Methane Proved Reserves New Reservoir Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1...

187

Utah Nonassociated Natural Gas, Reserves in Nonproducing Reservoirs...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Utah Nonassociated Natural Gas, Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Decade Year-0 Year-1...

188

A New Method for Treating Wells in Reservoir Simulation.  

E-Print Network (OSTI)

??A new method for formulating finite difference equations for reservoir simulation has been developed. It can be applied throughout the entire simulated reservoir or to… (more)

Gessel, Gregory M 1980-

2007-01-01T23:59:59.000Z

189

Louisiana--North Crude Oil Reserves in Nonproducing Reservoirs...  

Annual Energy Outlook 2012 (EIA)

Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Louisiana--North Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

190

The Influence of Reservoir Heterogeneity on Geothermal Fluid...  

NLE Websites -- All DOE Office Websites (Extended Search)

Alliance for Sustainable Energy, LLC. THE INFLUENCE OF RESERVOIR HETEROGENEITY ON GEOTHERMAL FLUID AND METHANE RECOVERY FROM A GEOPRESSURED GEOTHERMAL RESERVOIR Ariel Esposito...

191

EIA - Natural Gas Pipeline Network - Salt Cavern Storage Reservoir...  

U.S. Energy Information Administration (EIA) Indexed Site

Salt Cavern Underground Natural Gas Storage Reservoir Configuration Salt Cavern Underground Natural Gas Storage Reservoir Configuration Source: PB Energy Storage Services Inc....

192

Wyoming Crude Oil Reserves in Nonproducing Reservoirs (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs (Million Barrels) Wyoming Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

193

Illinois Crude Oil Reserves in Nonproducing Reservoirs (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs (Million Barrels) Illinois Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

194

Arkansas Crude Oil Reserves in Nonproducing Reservoirs (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs (Million Barrels) Arkansas Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

195

Florida Crude Oil Reserves in Nonproducing Reservoirs (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs (Million Barrels) Florida Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

196

Montana Crude Oil Reserves in Nonproducing Reservoirs (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs (Million Barrels) Montana Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

197

Kentucky Crude Oil Reserves in Nonproducing Reservoirs (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs (Million Barrels) Kentucky Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

198

Michigan Crude Oil Reserves in Nonproducing Reservoirs (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs (Million Barrels) Michigan Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

199

Pennsylvania Crude Oil Reserves in Nonproducing Reservoirs (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs (Million Barrels) Pennsylvania Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

200

Oklahoma Crude Oil Reserves in Nonproducing Reservoirs (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs (Million Barrels) Oklahoma Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

Note: This page contains sample records for the topic "aquifer reservoirs water-only" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Colorado Crude Oil Reserves in Nonproducing Reservoirs (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs (Million Barrels) Colorado Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

202

Louisiana--South Onshore Crude Oil Reserves in Nonproducing Reservoirs...  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Louisiana--South Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2...

203

Effect of matrix shrinkage on permeability of coalbed methane reservoirs .  

E-Print Network (OSTI)

??The dynamic nature of coalbed methane reservoir permeability makes the continuous modeling of the flow process difficult. Knowledge of conventional reservoir modeling is of little… (more)

Tandon, Rohit, 1966-

1991-01-01T23:59:59.000Z

204

Borehole geophysics evaluation of the Raft River geothermal reservoir...  

Open Energy Info (EERE)

reservoir, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Borehole geophysics evaluation of the Raft River geothermal reservoir, Idaho Details...

205

California Federal Offshore Dry Natural Gas New Reservoir Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) California Federal Offshore Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0...

206

Statistical study of seismicity associated with geothermal reservoirs...  

Open Energy Info (EERE)

reservoirs in California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Statistical study of seismicity associated with geothermal reservoirs in California...

207

Lower 48 States Crude Oil Reserves in Nonproducing Reservoirs...  

Gasoline and Diesel Fuel Update (EIA)

Reserves in Nonproducing Reservoirs (Million Barrels) Lower 48 States Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

208

Miscellaneous States Crude Oil Reserves in Nonproducing Reservoirs...  

Annual Energy Outlook 2012 (EIA)

Reserves in Nonproducing Reservoirs (Million Barrels) Miscellaneous States Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

209

New Mexico - East Dry Natural Gas New Reservoir Discoveries in...  

U.S. Energy Information Administration (EIA) Indexed Site

Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) New Mexico - East Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade...

210

New Mexico - West Dry Natural Gas New Reservoir Discoveries in...  

U.S. Energy Information Administration (EIA) Indexed Site

Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) New Mexico - West Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade...

211

Texas--State Offshore Crude Oil Reserves in Nonproducing Reservoirs...  

Annual Energy Outlook 2012 (EIA)

Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Texas--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2...

212

AUTOMATED WATER LEVEL MEASUREMENTS IN SMALL-DIAMETER AQUIFER TUBES  

Science Conference Proceedings (OSTI)

Groundwater contaminated with hexavalent chromium, strontium-90, and uranium discharges into the Columbia River along approximately 16 km (10 mi) of the shoreline. Various treatment systems have and will continue to be implemented to eliminate the impact of Hanford Site contamination to the river. To optimize the various remediation strategies, it is important to understand interactions between groundwater and the surface water of the Columbia River. An automated system to record water levels in aquifer sampling tubes installed in the hyporheic zone was designed and tested to (1) gain a more complete understanding of groundwater/river water interactions based on gaining and losing conditions ofthe Columbia River, (2) record and interpret data for consistent and defensible groundwater/surface water conceptual models that may be used to better predict subsurface contaminant fate and transport, and (3) evaluate the hydrodynamic influence of extraction wells in an expanded pump-and-treat system to optimize the treatment system. A system to measure water levels in small-diameter aquifer tubes was designed and tested in the laboratory and field. The system was configured to allow manual measurements to periodically calibrate the instrument and to permit aquifer tube sampling without removing the transducer tube. Manual measurements were collected with an e-tape designed and fabricated especially for this test. Results indicate that the transducer system accurately records groundwater levels in aquifer tubes. These data are being used to refine the conceptual and numeric models to better understand interactions in the hyporheic zone of the Columbia River and the adjacent river water and groundwater, and changes in hydrochemistry relative to groundwater flux as river water recharges the aquifer and then drains back out in response to changes in the river level.

PETERSEN SW; EDRINGTON RS; MAHOOD RO; VANMIDDLESWORTH PE

2011-01-14T23:59:59.000Z

213

Descriptive analysis of aquifer thermal energy storage systems  

DOE Green Energy (OSTI)

The technical and economic feasibility of large-scale aquifer thermal energy storage (ATES) was examined. A key to ATESs attractiveness is its simplicity of design and construction. The storage device consists of two ordinary water wells drilled into an aquifer, connected at the surface by piping and a heat exchanger. During the storage cycle water is pumped out of the aquifer, through the heat exchanger to absorb thermal energy, and then back down into the aquifer through the second well. The thermal storage remains in the aquifer storage bubble until required for use, when it is recovered by reversing the storage operation. For many applications the installation can probably be designed and constructed using existing site-specific information and modern well-drilling techniques. The potential for cost-effective implementation of ATES was investigated in the Twin Cities District Heating-Cogeneration Study in Minnesota. In the study, ATES demonstrated a net energy saving of 32% over the nonstorage scenario, with an annual energy cost saving of $31 million. Discounting these savings over the life of the project, the authors found that the break-even capital cost for ATES construction was $76/kW thermal, far above the estimated ATES development cost of $23 to 50/kW thermal. It appears tht ATES can be highly cost effective as well as achieve substantial fuel savings. ATES would be environmentally beneficial and could be used in many parts of the USA. The existing body of information on ATES indicates that it is a cost-effective, fuel-conserving technique for providing thermal energy for residential, commercial, and industrial users. The negative aspects are minor and highly site-specific, and do not seem to pose a threat to widespread commercialization. With a suitable institutional framework, ATES promises to supply a substantial portion of the nation's future energy needs. (LCL)

Reilly, R.W.

1980-06-01T23:59:59.000Z

214

Aquifer characterization at the Veterans Administration Hospital, Tuscaloosa, Alabama  

DOE Green Energy (OSTI)

The Veterans Administration (VA) is studying the feasibility of aquifer thermal storage (ATES) at their Tuscaloosa, Alabama, facility. To determine the characteristics of the aquifer underlying the facility, the Pacific Northwest Laboratory gathered information about the environment of the aquifer and conducted tests to estimate the aquifer's transmissivity, ground-water flow direction, and velocity. Seven wells were drilled at the VA site. It was found that ground-water flow direction at the site is generally toward the southwest. The magnitude of the gradient is approximately 2.5 {times} 10{sup -3} to 3 {times} 10{sup -3} ft/ft. For six of the seven wells, clay lenses or thick clay layers appear to be acting locally as confining or semi-confining layers. Three types of test were conducted at the site: a step drawdown test, a constant discharge and recover test, and a single-well tracer test. The data yielded responses suggesting leaky confined or delayed yield models for the aquifer. Drawdown and recovery versus time were matched type curves for delayed yield to obtain estimates of transmissivity and storage. This recovery method gave the best fit to the drawdown-versus-time curves. Using this method it was found that transmissivity ranged from 500 to 9000 ft{sup 2}/day and storage ranged from 1.5 {times} 10{sup -4} to 4.5 {times} 10{sup -2} for the wells tested. Using the results of the pump and tracer tests simultaneously, ground-water velocity was estimated to be approximately 0.8 ft/day, with an effective porosity of approximately 12%. 4 refs., 7 figs., 3 tabs.

Cronin, W.E.; Luttrell, S.P.; Hall, S.H.

1989-10-01T23:59:59.000Z

215

Integrated reservoir study of the Appleton Oil Field, Escambia County, Alabama  

E-Print Network (OSTI)

The objective of this study is the development of a reservoir characterization of the Appleton Oil Field, Escambia County, Alabama, using petrophysical data, reservoir performance data and reservoir simulation. Appleton Field is comprised of two producing zones, the "Smackover" and the "Reef," which, as the names imply, are presumed to be separate and distinct geological sequences. In particular, the previous work of several authors delineated a marked difference in these zones based on the quality of the reservoir rocks and their productivity. In one particular study of the Appleton Field, the authors utilized only two wells in their analysis. In contrast, our study involves the use of all five producing wells in the field. The data available for these five wells confirms the differences in reservoir quality between the "Smackover" and the "Reef" producing intervals, although such differences vary from well to well. In this study we also provide a detailed description of Appleton Field using production data analysis and reservoir simulation, both of which reveal possible untapped oil reserves. The volumes of oil in place obtained from our analyses exceed those reported in literature for this field. However, the previous literature noted specifically a possible underestimation of the reported oil in place and the use of infill drilling to exploit these untapped resources The original oil in place (OOIP) using production data was estimated to be 78.8 million STB, which exceeds the reported value of 3.8 million STB by more than a factor of 20. An average recovery factor of 3.4 percent (using production to date) was calculated using the estimated ultimate recovery (or EUR) technique. This result is much lower than the 68 percent reported in literature. The history matched reservoir simulation model utilized an oil-in-place of 11.84 million STB and we obtained a recovery factor of 23 percent (using production to date). We recognize this extremely large variation in computed in-place volume, and it is our contention that an aquifer system is providing this "extra" energy (hence, extra volume). The energy from the aquifer appears to be provided in the form of fluid expansion and water influx (i.e., the production data show no clear "water influx" signal). Based on the variation of OOIP computed from our analysis, we have estimated a lower limit of 5 million STB and an upper limit of 30 million STB OOIP, and we believe that the true OOIP lies somewhere in between (most likely on the order of 20 million STB of oil). Resolution of this issue will require additional data. In particular, we require pressure data to calibrate the simulation, as well as the well performance analysis. We would also like to have a modern fluid sample (oil) made available for a complete PVT analysis.

Chijuka, Ekene F

2002-01-01T23:59:59.000Z

216

Integrated reservoir characterization for the Mazari oil field, Pakistan  

E-Print Network (OSTI)

This thesis describes a field study performed on the Mazari oil field located in Sind province, Pakistan. We used an integrated reservoir characterization technique to incorporate the geological, petrophysical, and reservoir performance data to interpret historical reservoir performance, to assess and refine reservoir management activities, and to make plans for future reservoir developments. We used a modified approach to characterize within the mappable geological facies. Our approach is based on the Kozeny-Carmen equation and uses the concept of mean hydraulic radius. As part of our objective to characterize the reservoir, we tabulated reservoir characteristics for each hydraulic flow unit, and we presented estimates of in-place reserves. We evaluated reservoir performance potential using the production history, well tests and cased-hole well log surveys. Suggestions for reservoir management activities in conjunction with the evaluation of the reservoir performance are discussed in detail. Finally, we give recommendations for activities in reservoir development particularly infill drilling considerations and secondary recovery efforts.

Ashraf, Ejaz

1994-01-01T23:59:59.000Z

217

Optimizing reservoir management through fracture modeling  

DOE Green Energy (OSTI)

Fracture flow will become increasingly important to optimal reservoir management as exploration of geothermal reservoirs continues and as injection of spent fluid increases. The Department of Energy conducts research focused on locating and characterizing fractures, modeling the effects of fractures on movement of fluid, solutes, and heat throughout a reservoir, and determining the effects of injection on long-term reservoir production characteristics in order to increase the ability to predict with greater certainty the long-term performance of geothermal reservoirs. Improvements in interpreting and modeling geophysical techniques such as gravity, self potential, and aeromagnetics are yielding new information for the delineation of active major conduits for fluid flow. Vertical seismic profiling and cross-borehole electromagnetic techniques also show promise for delineating fracture zones. DOE funds several efforts for simulating geothermal reservoirs. Lawrence Berkeley Laboratory has adopted a continuum treatment for reservoirs with a fracture component. Idaho National Engineering Laboratory has developed simulation techniques which utilize discrete fractures and interchange of fluid between permeable matrix and fractures. Results of these research projects will be presented to industry through publications and appropriate public meetings. 9 refs.

Renner, J.L.

1988-01-01T23:59:59.000Z

218

Adsorption of water vapor on reservoir rocks  

DOE Green Energy (OSTI)

Progress is reported on: adsorption of water vapor on reservoir rocks; theoretical investigation of adsorption; estimation of adsorption parameters from transient experiments; transient adsorption experiment -- salinity and noncondensible gas effects; the physics of injection of water into, transport and storage of fluids within, and production of vapor from geothermal reservoirs; injection optimization at the Geysers Geothermal Field; a model to test multiwell data interpretation for heterogeneous reservoirs; earth tide effects on downhole pressure measurements; and a finite-difference model for free surface gravity drainage well test analysis.

Not Available

1993-07-01T23:59:59.000Z

219

Dispersivity as an oil reservoir rock characteristic  

Science Conference Proceedings (OSTI)

The main objective of this research project is to establish dispersivity, {alpha}{sub d}, as an oil reservoir rock characteristic and to use this reservoir rock property to enhance crude oil recovery. A second objective is to compare the dispersion coefficient and the dispersivity of various reservoir rocks with other rock characteristics such as: porosity, permeability, capillary pressure, and relative permeability. The dispersivity of a rock was identified by measuring the physical mixing of two miscible fluids, one displacing the other in a porous medium. 119 refs., 27 figs., 12 tabs.

Menzie, D.E.; Dutta, S.

1989-12-01T23:59:59.000Z

220

Analysis of Field Development Strategies of CO2 EOR/Capture Projects Using a Reservoir Simulation Economic Model  

E-Print Network (OSTI)

A model for the evaluation of CO2-EOR projects has been developed. This model includes both reservoir simulation to handle reservoir properties, fluid flow and injection and production schedules, and a numerical economic model that generates a monthly cash flow stream from the outputs of the reservoir model. This model is general enough to be used with any project and provide a solid common basis to all of them. This model was used to evaluate CO2-EOR injection and production strategies and develop an optimization workflow. Producer constraints (maximum oil and gas production rates) should be optimized first to generate a reference case. Further improvements can then be obtained by optimizing the injection starting date and the injection plateau rate. Investigation of sensitivity of CO2-EOR to the presence of an aquifer showed that CO2 injection can limit water influx in the reservoir and is beneficial to recovery, even with a strong water drive. The influence of some key parameters was evaluated: the producer should be completed in the top part of the reservoir, while the injector should be completed over the entire thickness; it is recommended but not mandatory that the injection should start as early as possible to allow for lower water cut limit. Finally, the sensitivity of the economics of the projects to some key parameters was evaluated. The most influent parameter is by far the oil price, but other parameters such as the CO2 source to field distance, the pipeline cost scenario, the CO2 source type or the CO2 market price have roughly the same influence. It is therefore possible to offset an increase of one of them by reducing another.

Saint-Felix, Martin

2013-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "aquifer reservoirs water-only" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Preliminary stability criteria for compressed air energy storage in porous media reservoirs  

DOE Green Energy (OSTI)

Results from the initial phase of a study to establish subsurface design and operating criteria for a Compressed Air Energy Storage (CAES) facility are summarized. The primary objective was to derive a preliminary set of criteria that would help ensure the long term (30 to 40 year) integrity of CAES reservoirs in porous media, such as aquifers or abandoned natural gas reservoirs. In addition, appropriate research and development tasks were to be defined if the current technology was found to be inadequate. Preliminary stability and design criteria for storage of compressed air in porous media were determined on the basis of a survey of the open literature and the experience of experts in industry and universities. The results were separated into two categories: criteria for low temperature air injection (under 200/sup 0/F) and criteria for high temperature air injection (200 to 650/sup 0/F). Results are presented as maximum and/or minimum bounds for a number of parameters such as porosity, permeability, closure, storage pressure, caprock thickness, delta pressure, and caprock slope. One of the prime conclusions derived from an evaluation of the low temperature concept is that the technology currently exists to handle the potential design and operating problems. Therefore, there appears to be no technical roadblocks to the successful demonstration of the CAES concept, and a pilot project could be constructed in the near future.

Stottlemyre, J.A.

1978-06-01T23:59:59.000Z

222

Hydrologic properties of the Dixie Valley, Nevada, geothermal reservoir from well-test analyses  

DOE Green Energy (OSTI)

Temperature, pressure, and spinner (TPS) logs have been recorded in several wells from the Dixie Valley Geothermal Reservoir in west central Nevada. A variety of well-test analyses has been performed with these data to quantify the hydrologic properties of this fault-dominated geothermal resource. Four complementary analytical techniques were employed, their individual application depending upon availability and quality of data and validity of scientific assumptions. In some instances, redundancy in methodologies was used to decouple interrelated terms. The methods were (1) step-drawdown, variable-discharge test; (2) recovery analysis; (3) damped-oscillation response; and (4) injection test. To date, TPS logs from five wells have been examined and results fall into two distinct categories. Productive, economically viable wells have permeability-thickness values on the order of 10{sup 5} millidarcy-meter (mD-m) and storativities of about 10{sup {minus}3}. Low-productivity wells, sometimes located only a few kilometers from their permeable counterparts, are artesian and display a sharp reduction in permeability-thickness to about 10 mD-m with storativities on the order of 10{sup {minus}4}. These results demonstrate that the hydrologic characteristics of this liquid-dominated geothermal system exhibit a significant spatial variability along the range-bounding normal fault that forms the predominant aquifer. A large-scale, coherent model of the Dixie Valley Geothermal Reservoir will require an understanding of the nature of this heterogeneity and the parameters that control it.

Morin, R.H. [Geological Survey, Denver, CO (United States); Hickman, S.H. [Geological Survey, Menlo Park, CA (United States); Barton, C.A. [Stanford Univ., CA (United States). Dept. of Geophysics; Shapiro, A.M. [Geological Survey, Reston, VA (United States); Benoit, W.R. [Oxbow Geothermal Corp., Reno, NV (United States); Sass, J.H. [Geological Survey, Flagstaff, AZ (United States)

1998-08-01T23:59:59.000Z

223

The use of fluid geochemistry to indicate reservoir processes at Cerro Prieto, MX  

DOE Green Energy (OSTI)

Regular chemical sampling and analysis of fluids produced from the hot-water geothermal system of Cerro Prieto, Mexico has provided early warning of reservoir processes. The changes in chloride concentration, sodium to potassium ratio and measured fluid enthalpy are shown in the figures for wells M-5, M-26, M-21A, and M-11 of the Cerro Prieto field. The concentration of chloride, a ''conservative'' constituent, is characteristic of different water masses and is affected by a change of water source, by mixing of waters and by boiling and steam loss but not by reaction with rock minerals. The ratio of sodium to potassium is a temperature-sensitive geothermal index resulting from rock-water reaction and is not affected by boiling and steam loss or by mixing of water masses provided these processes occur at constant temperature. The enthalpy is related to the fluid temperature and to boiling in the aquifer with ''excess'' steam entering the well. These indices provide a reasonably complete picture of major reservoir processes occurring in hot water system. Silica analyses have not been reliable from Cerro Prieto but should be used in addition to Na/K as a temperature indicator. Analysis of fluids from a producing geothermal field must of course include other constituents for study of environmental effects, scaling, corrosion, etc.

Truesdell, Alfred H.

1978-01-01T23:59:59.000Z

224

A structurally complex and dynamic reservoir description for reservoir simulation, Kuparuk River Field, Alaska  

SciTech Connect

The Kupanuk River Field is a structurally complex giant oil field adjacent to the Prudhoe Bay Field on Alaska`s North Slope. Oil is reservoired within two Early Cretaceous shallow marine sandstone formations, separated stratigraphically by an erosionally truncated marine silt/shale. Subjected to several phases of tectonism, this highly compartmentalized reservoir has been developed on regular 160 acre direct line drive patterns. An integrated team of geoscientists and engineers from BP Exploration (Alaska) Inc. and ARCO Alaska Inc. is presently quantifying the benefits of infill drilling at Kuparuk, and identifying the best locations for well placement. The two primary reservoir characteristics believed to impact the effectiveness of infill drilling are large-scale reservoir heterogeneity, and reservoir comparmentation due to faulting. Multiple thin pay zones within the two reservoir intervals are isolated laterally by faults with magnitudes greater than pay zone thickness. A process and tools designed to construct and maintain a structurally complex reservoir description, shared by the geoscientists and reservoir engineers, are described. Cross-discipline integration is aided by the use of Tech*Logic`s IREX 3-D reservoir modeling and visualization application. The unique architecture of the IREX model allows for representation of very complex structural geometries, and facilitates iteration between reservoir description and simulation, along the seismic to simulation continuum. Modifications to the reservoir description are guided by well-level history matching within the constraints of all available geoscience information. The techniques described will be of particular interest to those working on reservoir description and simulation of structurally complex fields.

Walsh, T.P. [Alaska Petrotechnical Services Inc., Anchorage, AK (United States); Leander, M.H.; Wilcox, T.C. [BP Exploration (Alaska) Inc., Anchorage, AK (United States)] [and others

1995-08-01T23:59:59.000Z

225

Installation of a Devonian Shale Reservoir Testing Facility and acquisition of reservoir property measurements  

SciTech Connect

In October, a contract was awarded for the Installation of a Devonian Shale Reservoir Testing Facility and Acquisition of Reservoir Property measurements from wells in the Michigan, Illinois, and Appalachian Basins. Geologic and engineering data collected through this project will provide a better understanding of the mechanisms and conditions controlling shale gas production. This report summarizes the results obtained from the various testing procedures used at each wellsite and the activities conducted at the Reservoir Testing Facility.

Locke, C.D.; Salamy, S.P.

1991-09-01T23:59:59.000Z

226

Installation of a Devonian Shale Reservoir Testing Facility and acquisition of reservoir property measurements. Final report  

SciTech Connect

In October, a contract was awarded for the Installation of a Devonian Shale Reservoir Testing Facility and Acquisition of Reservoir Property measurements from wells in the Michigan, Illinois, and Appalachian Basins. Geologic and engineering data collected through this project will provide a better understanding of the mechanisms and conditions controlling shale gas production. This report summarizes the results obtained from the various testing procedures used at each wellsite and the activities conducted at the Reservoir Testing Facility.

Locke, C.D.; Salamy, S.P.

1991-09-01T23:59:59.000Z

227

Low-to-moderate-temperature hydrothermal reservoir engineering handbook  

DOE Green Energy (OSTI)

Guidelines are provided for evaluating reservoir characteristics containing setions on reservoir classification, conceptual modeling, testing during drilling, current theory of testing, test planning and methodology, instrumentation, and a sample computer program. Sections on test planning and methodology, geochemistry, reservoir monitoring, and the appendixes, containing technical detail, are included. Background information needed to monitor the program of reservoir evaluation is provided.

Not Available

1982-06-01T23:59:59.000Z

228

Appendix B Surface Infiltration and Aquifer Test Data  

Office of Legacy Management (LM)

B B Surface Infiltration and Aquifer Test Data This page intentionally left blank Infiltration Tests This page intentionally left blank 0 50 100 150 200 250 300 350 400 450 TIME (MIN) 200 250 TIME (MIN) 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 TIME (MIN) zoo 800 1000 TIME (MIN) 0 150 300 450 600 750 , 900 1050 1200 1350 1500 1650 1800 TIME (MIN) TIME (MIN) 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 TIME (MIN) INF-8 TEST I 300 400 TIME (MIN) INF-8 TEST 2 200 250 300 TIME (MIN) 200 250 TIME (MIN) zoo 800 1000 TIME (MIN) 0 50 100 150 200 250 300 350 400 450 500 550 600 TIME (MIN) 0 50 100 150 200 250 300 350 400 450 500 550 600 TIME (MIN) September 1997 Alluvial Aquifer Tests This page intentionally left blank - - - - - - - - - - - - - - -

229

Sizing a water softener for aquifer thermal energy storage  

DOE Green Energy (OSTI)

In aquifer thermal energy storage (ATES) installations, ground water is circulated between an aquifer and heat exchangers via a well field. It is often necessary to soften the water to prevent carbonate scaling in pipes, heat exchangers, and well screens. Most ATES projects requiring water softening will be best served by using synthetic ion-exchange resins. The size of the resin beds, the resin regeneration cycle, and the amount of NaCl brine used in each regeneration depend on several factors. These are (1) the chemistry of the native ground water, (2) allowable residual hardness after softening, (3) the maximum flow rate of water through the ATES plant, and (4) exchange characteristics of the resin. Example calculations are given for a three-bed water softening system.

Hall, S.H.; Jenne, E.A.

1993-03-01T23:59:59.000Z

230

Frio sandstone reservoirs in the deep subsurface along the Texas Gulf Coast: their potential for production of geopressured geothermal energy  

DOE Green Energy (OSTI)

Detailed geological, geophysical, and engineering studies conducted on the Frio Formation have delineated a geothermal test well site in the Austin Bayou Prospect which extends over an area of 60 square miles. A total of 800 to 900 feet of sandstone will occur between the depths of 13,500 and 16,500 feet. At leat 30 percent of the sand will have core permeabilities of 20 to 60 millidarcys. Temperature at the top of the sandstone section will be 300/sup 0/F. Water, produced at a rate of 20,000 to 40,000 barrels per day, will probably have to be disposed of by injection into shallower sandstone reservoirs. More than 10 billion barrels of water are in place in these sandstone reservoirs of the Austin Bayou Prospect; there should be approximately 400 billion cubic feet of methane in solution in this water. Only 10 percent of the water and methane (1 billion barrels of water and 40 billion cubic feet of methane) will be produced without reinjection of the waste water into the producing formation. Reservoir simulation studies indicate that 90 percent of the methane can be produced with reinjection. 106 figures.

Bebout, D.G.; Loucks, R.G.; Gregory, A.R.

1983-01-01T23:59:59.000Z

231

Improved energy recovery from geothermal reservoirs  

DOE Green Energy (OSTI)

Numerical simulation methods are used to study how the exploitation of different horizons affects the behavior of a liquid-dominated geothermal reservoir. The reservoir model is a schematic representation of the Olkaria field in Kenya. The model consists of a two-phase vapor-dominated zone overlying the main liquid dominated reservoir. Four different cases were studied, with fluid produced from: 1) the vapor zone only, 2) the liquid zone only, 3) both zones and 4) both zones, but assuming lower values for vertical permeability and porosity. The results indicate that production from the shallow two-phase zone, although resulting in higher enthalpy fluids, may not be advantageous in the long run. Shallow production gives rise to a rather localized depletion of the reservoir, whereas production from deeper horizons may yield a more uniform depletion proces, if vertical permeability is sufficiently large.

Boedvarsson, G.S.; Pruess, K.; Lippmann, M.; Bjoernsson, S.

1981-06-01T23:59:59.000Z

232

Definition: Hydrothermal Reservoir | Open Energy Information  

Open Energy Info (EERE)

Hydrothermal Reservoirs are underground zones of porous rock containing hot water and steam, and can be naturally occurring or human-made.1 References x Ret LikeLike...

233

Heat deliverability of homogeneous geothermal reservoirs  

DOE Green Energy (OSTI)

For the last two decades, the petroleum industry has been successfully using simple inflow performance relationships (IPR's) to predict oil deliverability. In contrast, the geothermal industry lacked a simple and reliable method to estimate geothermal wells' heat deliverability. To address this gap in the standard geothermal-reservoir-assessment arsenal, we developed generalized dimensionless geothermal inflow performance relationships (GIPR's). These ''reference curves'' may be regarded as an approximate general solution of the equations describing the practically important case of radial 2-phase inflow. Based on this approximate solution, we outline a straightforward approach to estimate the reservoir contribution to geothermal wells heat and mass deliverability for 2-phase reservoirs. This approach is far less costly and in most cases as reliable as numerically modeling the reservoir, which is the alternative for 2-phase inflow.

Iglesias, Eduardo R.; Moya, Sara L.

1991-01-01T23:59:59.000Z

234

Reservoir response to tidal and barometric effects  

DOE Green Energy (OSTI)

Solid earth tidal strain and surface loading due to fluctuations in barometric pressure have the effect, although extremely minute, of dilating or contracting the effective pore volume in a porous reservoir. If a well intersects the formation, the change in pore pressure can be measured with sensitive quartz pressure gauges. Mathematical models of the relevant fluid dynamics of the well-reservoir system have been generated and tested against conventional well pumping results or core data at the Salton Sea Geothermal Field (SSGF), California and at the Raft River, Geothermal Field (RRGF), Idaho. Porosity-total compressibility product evaluation based on tidal strain response compares favorably with results based on conventional pumping techniques. Analysis of reservoir response to barometric loading using Auto Regressive Integrated Moving Average (ARIMA) stochastic modeling appears also to have potential use for the evaluation of reservoir parameters.

Hanson, J.M.

1980-05-29T23:59:59.000Z

235

Heat deliverability of homogeneous geothermal reservoirs  

SciTech Connect

For the last two decades, the petroleum industry has been successfully using simple inflow performance relationships (IPR's) to predict oil deliverability. In contrast, the geothermal industry lacked a simple and reliable method to estimate geothermal wells' heat deliverability. To address this gap in the standard geothermal-reservoir-assessment arsenal, we developed generalized dimensionless geothermal inflow performance relationships (GIPR's). These ''reference curves'' may be regarded as an approximate general solution of the equations describing the practically important case of radial 2-phase inflow. Based on this approximate solution, we outline a straightforward approach to estimate the reservoir contribution to geothermal wells heat and mass deliverability for 2-phase reservoirs. This approach is far less costly and in most cases as reliable as numerically modeling the reservoir, which is the alternative for 2-phase inflow.

Iglesias, Eduardo R.; Moya, Sara L.

1991-01-01T23:59:59.000Z

236

Reservoir performance characterized in mature steam pattern  

Science Conference Proceedings (OSTI)

A detailed reservoir description provided new insight in an investigation of a ten-year-old steam flood. Mobil Oil Corporation conducted this study of the Pleistocene upper Tulare sands in South Belridge field, located in the San Joaquin basin, Kern County, California. The study area is on the gently dipping (6/degrees/) southwestern flank of the South Belridge anticline. Wireline logs from 19 wells in a 10-ac (660 ft x 660 ft) pattern were correlated in detail. Seven post-steam conventional cores (1523 ft) aided (1) the evaluation of vertical and lateral steam-sweep efficiency, (2) evaluation of reservoir and fluid changes due to steam, (3) influence of lithofacies in reservoir quality, and (4) provided insight to the three-dimensional reservoir flow-unit geometries.

Miller, D.D.; McPherson, J.G.; Covington, T.E.

1989-04-01T23:59:59.000Z

237

PROCEEDINGS TWENTIETH WORKSHOP GEOTHERMAL RESERVOIR ENGINEERING  

NLE Websites -- All DOE Office Websites (Extended Search)

a global reservoir value of the amount of adsorbed liquid water per kg of rock (called ADS in the present paper). We simulated the natural state with different values of ADS,...

238

Characterization of geothermal reservoir crack patterns using...  

Open Energy Info (EERE)

the time delays of the split waves they determined tomographically the 3-D fracture density distribution in the reservoir. Author(s): Lou, M.; Rial, J.A. Published: Geophysics,...

239

Reservoir screening criteria for underbalanced drilling  

Science Conference Proceedings (OSTI)

Properly designed and executed underbalanced drilling operations can eliminate or significantly reduce formation damage, mud or drill solids invasion, lost circulation, fluid entrainment and trapping effects, and potential adverse reactions of drilling fluids with the reservoir matrix or in-situ reservoir fluids. The key to selecting appropriate reservoir candidates is achieving a balance of technical, safety and economic factors. Not every reservoir is an ideal candidate for an underbalanced drilling operation and in some cases distinct disadvantages may exist in trying to execute an underbalanced drilling operation in comparison to a simpler more conventional overbalanced application. Extensive field experience has played an important role in determining the following key criteria and design considerations that should be examined when evaluating a well. Screening criteria are also provided to help operators ascertain if a given formation is, in fact, a viable underbalanced drilling candidate.

Bennion, D.B. [Hycal Energy Research Labs. Ltd., Calgary, Alberta (Canada)

1997-02-01T23:59:59.000Z

240

Optimizing injected solvent fraction in stratified reservoirs  

E-Print Network (OSTI)

Waterflooding has become standard practice for extending the productive life of many solution gas drive reservoirs, but has the disadvantage of leaving a substantial residual oil volume in the reservoir. Solvent flooding has been offered as a method whereby oil may be completely displaced from the reservoir, leaving no residual volume. Field results have demonstrated that solvent floods suffer from early solvent breakthrough and considerable oil by-passing owing to high solvent mobility. The injection of both water and solvent has been demonstrated to offer advantages. Water partially mitigates both the adverse mobility and high cost of solvent floods, while solvent mobilizes oil which would be left in the reservoir by water alone. The process is equally applicable to reservoirs currently at residual oil saturation (tertiary floods) and to reservoirs at maximum oil saturation (secondary floods). In stratified reservoirs high permeability layers may be preferentially swept by solvent floods, while low permeability layers may be scarcely swept at all. Presence or absence of transverse communication between layers can modify overall sweep efficiency. This work is a study of water-solvent injection in stratified reservoirs based on computer simulation results. Fractional oil recovery as a function of injected solvent fraction, permeability contrast between layers, initial oil saturation, and presence or absence of transverse communication between strata has been determined. Results are presented as a series of optimization curves. Permeability contrast between layers is shown to be the dominant control on fractional oil recovery. Transverse communicating reservoirs are shown to require a higher solvent-water ratio in order to attain recoveries comparable to transverse noncommunicating reservoirs. In actual field projects, water and solvent are injected alternately as discrete slugs. This process is known as "WAG" for "water-alternating-gas". In the simulations used in this study, continuous water-solvent injection at a fixed fraction rather than true WAG was employed. It is demonstrated that the two methods give equivalent results. In summary, this work is the first comprehensive study of the behavior of stratified reservoirs undergoing water-solvent injection.

Moon, Gary Michael

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aquifer reservoirs water-only" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Hydrogeophysical methods for analyzing aquifer storage and recovery systems  

SciTech Connect

Hydrogeophysical methods are presented that support the siting and monitoring of aquifer storage and recovery (ASR) systems. These methods are presented as numerical simulations in the context of a proposed ASR experiment in Kuwait, although the techniques are applicable to numerous ASR projects. Bulk geophysical properties are calculated directly from ASR flow and solute transport simulations using standard petrophysical relationships and are used to simulate the dynamic geophysical response to ASR. This strategy provides a quantitative framework for determining site-specific geophysical methods and data acquisition geometries that can provide the most useful information about the ASR implementation. An axisymmetric, coupled fluid flow and solute transport model simulates injection, storage, and withdrawal of fresh water (salinity {approx}500 ppm) into the Dammam aquifer, a tertiary carbonate formation with native salinity approximately 6000 ppm. Sensitivity of the flow simulations to the correlation length of aquifer heterogeneity, aquifer dispersivity, and hydraulic permeability of the confining layer are investigated. The geophysical response using electrical resistivity, time-domain electromagnetic (TEM), and seismic methods is computed at regular intervals during the ASR simulation to investigate the sensitivity of these different techniques to changes in subsurface properties. For the electrical and electromagnetic methods, fluid electric conductivity is derived from the modeled salinity and is combined with an assumed porosity model to compute a bulk electrical resistivity structure. The seismic response is computed from the porosity model and changes in effective stress due to fluid pressure variations during injection/recovery, while changes in fluid properties are introduced through Gassmann fluid substitution.

Minsley, B.J.; Ajo-Franklin, J.; Mukhopadhyay, A.; Morgan, F.D.

2009-12-01T23:59:59.000Z

242

Geothermal development of the Madison group aquifer: a case study  

SciTech Connect

A geothermal well has been drilled at the St. Mary's Hospital in Pierre, South Dakota. The well is 2176 feet deep and artesian flows 375 gpm at 106/sup 0/F. The well is producing fluids from the Mississippian Madison Group, a sequence of carbonate rocks deposited over several western states. The project was funded to demonstrate the goethermal potential of this widespread aquifer. This case study describes the development of the project through geology, drilling, stimulation, and testing.

Martinez, J.A.

1981-01-01T23:59:59.000Z

243

The LBL geothermal reservoir technology program  

DOE Green Energy (OSTI)

The main objective of the DOE/GD-funded Geothermal Reservoir Technology Program at Lawrence Berkeley Laboratory is the development and testing of new and improved methods and tools needed by industry in its effort to delineate, characterize, evaluate, and exploit hydrothermal systems for geothermal energy. This paper summarizes the recent and ongoing field, laboratory, and theoretical research activities being conducted as part of the Geothermal Reservoir Technology Program. 28 refs., 4 figs.

Lippmann, M.J.

1991-03-01T23:59:59.000Z

244

Stanford Geothermal Program, reservoir and injection technology  

DOE Green Energy (OSTI)

This annual report of the Stanford Geothermal Program presents major projects in reservoir and injection technology. The four include: (1) an application of the boundary element method to front tracking and pressure transient testing; (2) determination of fracture aperture, a multi-tracer approach; (3) an analysis of tracer and thermal transients during reinjection; and, (4) pressure transient modeling of a non-uniformly fractured reservoir. (BN)

Horne, R.; Ramey, H.J. Jr.; Miller, F.G.; Brigham, W.E.; Kruger, P.

1988-12-01T23:59:59.000Z

245

Optimizing the design and operation of aquifer thermal energy systems  

DOE Green Energy (OSTI)

The design of Aquifer Thermal Energy Storage (ATES) systems is complicated by significant uncertainties in ones ability to reliably predict the response of the aquifer to fluid and thermal fluxes. Overdesigning the system, to compensate for these uncertainties, reduces the potential economic and energy benefits of an ATES system. Underdesigning the system results in systems that fail to meet design targets. Unfortunately, standard aquifer characterization methods and hydrologic models do not provide adequate information to overcome these uncertainties. Thus, expensive full-scale tests are generally recommended to develop an adequate-understanding of the systems response. However, the standard engineering {open_quotes}design-build-operate{close_quotes} process is not. appropriate for ATES systems because an optimal design cannot be completed without some operational experience, i.e., field tests. A more adaptive engineering process is required. This engineering process should be flexible enough to allow the design to be adjusted during the operation, as monitoring data become available and as an understanding of the system response increases. Engineering approaches being developed for environmental restoration of contaminated soil and groundwater can be adapted to optimally design and operate ATES systems.

Vail, L.W.; Jenne, E.A.

1994-11-01T23:59:59.000Z

246

Reservoir assessment of The Geysers Geothermal field  

DOE Green Energy (OSTI)

Big Sulphur Creek fault zone, in The Geysers Geothermal field, may be part of a deep-seated, wrench-style fault system. Hydrothermal fluid in the field reservoir may rise through conduits beneath the five main anomalies associated with the Big Sulphur Creek wrench trend. Some geophysical anomalies (electrical resistivity and audio-magnetotelluric) evidently are caused by the hot water geothermal field or zones of altered rocks; others (gravity, P-wave delays, and possibly electrical resistivity) probably respresent the underlying heat source, a possible magma chamber; and others (microearthquake activity) may be related to the steam reservoir. A large negative gravity anomaly and a few low-resistivity anomalies suggest areas generally favorable for the presence of steam zones, but these anomalies apparently do not directly indicate the known steam reservoir. At the current generating capacity of 930 MWe, the estimated life of The Geysers Geothermal field reservoir is 129 years. The estimated reservoir life is 60 years for the anticipated maximum generating capacity of 2000 MWe as of 1990. Wells at The Geysers are drilled with conventional drilling fluid (mud) until the top of the steam reservoir is reached; then, they are drilled with air. Usually, mud, temperature, caliper, dual induction, and cement bond logs are run on the wells.

Thomas, R.P.; Chapman, R.H.; Dykstra, H.

1981-01-01T23:59:59.000Z

247

Integrated reservoir study of the 8 reservoir of the Green Canyon 18 field  

E-Print Network (OSTI)

The move into deeper waters in the Gulf of Mexico has produced new opportunities for petroleum production, but it also has produced new challenges as different reservoir problems are encountered. This integrated reservoir characterization effort has provided useful information about the behavior and characteristics of a typical unconsolidated, overpressured, fine-grained, turbidite reservoir, which constitutes the majority of the reservoirs present in the Outer Continental Shelf of the Gulf of Mexico. Reservoirs in the Green Canyon 18 (GC 18) field constitute part of a turbidite package with reservoir quality typically increasing with depth. Characterization of the relatively shallow 8 reservoir had hitherto been hindered by the difficulty in resolving its complex architecture and stratigraphy. Furthermore, the combination of its unconsolidated rock matrix and abnormal pore pressure has resulted in severe production-induced compaction. The reservoir's complex geology had previously obfuscated the delineation of its hydrocarbon accumulation and determination of its different resource volumes. Geological and architectural alterations caused by post-accumulation salt tectonic activities had previously undermined the determination of the reservoir's active drive mechanisms and their chronology. Seismic interpretation has provided the reservoir geometry and topography. The reservoir stratigraphy has been defined using log, core and seismic data. With well data as pilot points, the spatial distribution of the reservoir properties has been defined using geostatistics. The resulting geological model was used to construct a dynamic flow model that matched historical production and pressure data.. The reservoir's pressure and production behavior indicates a dominant compaction drive mechanism. The results of this work show that the reservoir performance is influenced not only by the available drive energy, but also by the spatial distribution of the different facies relative to well locations. The study has delineated the hydrocarbon bearing reservoir, quantified the different resource categories as STOIIP/GIIP = 19.8/26.2 mmstb/Bscf, ultimate recovery = 9.92/16.01 mmstb/Bscf, and reserves (as of 9/2001) = 1.74/5.99 mmstb/Bscf of oil and gas, respectively. There does not appear to be significant benefit to infill drilling or enhanced recovery operations.

Aniekwena, Anthony Udegbunam

2003-08-01T23:59:59.000Z

248

Geochemical Determination of the Fate and Transport of Injected Fresh Wastewater to a Deep Saline Aquifer.  

E-Print Network (OSTI)

?? Deep well injection into non-potable saline aquifers of treated domestic wastewater has been used in Florida for decades as a safe and effective alternative… (more)

Walsh, Virginia M

2012-01-01T23:59:59.000Z

249

40 Years Of Dogger Aquifer Management In Ile-De-France, Paris...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Journal Article: 40 Years Of Dogger Aquifer Management In Ile-De-France, Paris Basin, France edit Details Activities (0) Areas (0)...

250

THEORETICAL STUDIES IN LONG-TERM THERMAL ENERGY STORAGE IN AQUIFERS  

E-Print Network (OSTI)

Aquifer Storage of Hot Water from Solar Energy Collectors.of International Solar Energy Congress, New Delhi, India.Thermal Storage of Solar Energy 11 , Amsterdam, The

Tsang, C.F.

2013-01-01T23:59:59.000Z

251

Third workshop on geothermal reservoir engineering: Proceedings  

DOE Green Energy (OSTI)

The Third Workshop on Geothermal Reservoir Engineering convened at Stanford University on December 14, 1977, with 104 attendees from six nations. In keeping with the recommendations expressed by the participants at the Second Workshop, the format of the Workshop was retained, with three days of technical sessions devoted to reservoir physics, well and reservoir testing, field development, and mathematical modeling of geothermal reservoirs. The program presented 33 technical papers, summaries of which are included in these Proceedings. Although the format of the Workshop has remained constant, it is clear from a perusal of the Table of Contents that considerable advances have occurred in all phases of geothermal reservoir engineering over the past three years. Greater understanding of reservoir physics and mathematical representations of vapor-dominated and liquid-dominated reservoirs are evident; new techniques for their analysis are being developed, and significant field data from a number of newer reservoirs are analyzed. The objectives of these workshops have been to bring together researchers active in the various physical and mathematical disciplines comprising the field of geothermal reservoir engineering, to give the participants a forum for review of progress and exchange of new ideas in this rapidly developing field, and to summarize the effective state of the art of geothermal reservoir engineering in a form readily useful to the many government and private agencies involved in the development of geothermal energy. To these objectives, the Third Workshop and these Proceedings have been successfully directed. Several important events in this field have occurred since the Second Workshop in December 1976. The first among these was the incorporation of the Energy Research and Development Administration (ERDA) into the newly formed Department of Energy (DOE) which continues as the leading Federal agency in geothermal reservoir engineering research. The Third Workshop under the Stanford Geothermal Program was supported by a grant from DOE through a subcontract with the Lawrence Berkeley Laboratory of the University of California. A second significant event was the first conference under the ERDA (DOE)-ENEL cooperative program where many of the results of well testing in both nations were discussed. The Proceedings of that conference should be an important contribution to the literature. These Proceedings of the Third Workshop should also make an important contribution to the literature on geothermal reservoir engineering. Much of the data presented at the Workshop were given for the first time, and full technical papers on these subjects will appear in the professional journals. The results of these studies will assist markedly in developing the research programs to be supported by the Federal agencies, and in reducing the costs of research for individual developers and utilities. It is expected that future workshops of the Stanford Geothermal Program will be as successful as this third one. Planning and execution of the Workshop... [see file; ljd, 10/3/2005] The Program Committee recommended two novel sessions for the Third Workshop, both of which were included in the program. The first was the three overviews given at the Workshop by George Pinder (Princeton) on the Academic aspect, James Bresee (DOE-DGE) on the Government aspect, and Charles Morris (Phillips Petroleum) on the Industry aspect. These constituted the invited slate of presentations from the several sectors of the geothermal community. The Program Committee acknowledges their contributions with gratitude. Recognition of the importance of reservoir assurance in opting for geothermal resources as an alternate energy source for electric energy generation resulted in a Panel Session on Various Definitions of Geothermal Reservoirs. Special acknowledgments are offered to Jack Howard and Werner Schwarz (LBL) and to Jack Howard as moderator; to the panelists: James Leigh (Lloyd's Bank of California), Stephen Lipman (Union Oil), Mark Mathisen (PG&E), Patrick M

Ramey, H.J. Jr.; Kruger, P. (eds.)

1977-12-15T23:59:59.000Z

252

Application of integrated reservoir management and reservoir characterization to optimize infill drilling, Class II  

SciTech Connect

The major purpose of this project was to demonstrate the use of cost effective reservoir characterization and management tools that will be helpful to both independent and major operators for the optimal development of heterogeneous, low permeability carbonate reservoirs such as the North Robertson (Clearfork) Unit.

Bergeron, Jack; Blasingame, Tom; Doublet, Louis; Kelkar, Mohan; Freeman, George; Callard, Jeff; Moore, David; Davies, David; Vessell, Richard; Pregger, Brian; Dixon, Bill; Bezant, Bryce

2000-03-16T23:59:59.000Z

253

Reservoir Characterization, Production Characteristics, and Research Needs for Fluvial/Alluvial Reservoirs in the United States  

Science Conference Proceedings (OSTI)

The Department of Energy's (DOE's) Oil Recovery Field Demonstration Program was initiated in 1992 to maximize the economically and environmentally sound recovery of oil from known domestic reservoirs and to preserve access to this resource. Cost-shared field demonstration projects are being initiated in geology defined reservoir classes which have been prioritized by their potential for incremental recovery and their risk of abandonment. This document defines the characteristics of the fifth geological reservoir class in the series, fluvial/alluvial reservoirs. The reservoirs of Class 5 include deposits of alluvial fans, braided streams, and meandering streams. Deposit morphologies vary as a complex function of climate and tectonics and are characterized by a high degree of heterogeneity to fluid flow as a result of extreme variations in water energy as the deposits formed.

Cole, E.L.; Fowler, M.L.; Jackson, S.R.; Madden, M.P.; Raw-Schatzinger, V.; Salamy, S.P.; Sarathi, P.; Young, M.A.

1999-04-28T23:59:59.000Z

254

Seismic imaging of reservoir flow properties: Resolving waterinflux and reservoir permeability  

SciTech Connect

Methods for geophysical model assessment, in particuale thecomputation of model parameter resolution, indicate the value and thelimitations of time-lapse data in estimating reservoir flow properties. Atrajectory-based method for computing sensitivities provides an effectivemeans to compute model parameter resolutions. We examine the commonsituation in which water encroaches into a resrvoir from below, as due tothe upward movement of an oil-water contact. Using straight-forwardtechniques we find that, by inclusing reflections off the top and bottomof a reservoir tens of meters thick, we can infer reservoir permeabilitybased upon time-lapse data. We find that, for the caseof water influxfrom below, using multiple time-lapse 'snapshots' does not necessarilyimprove the resolution of reservoir permeability. An application totime-lapse data from the Norne field illustrates that we can resolve thepermeability near a producing well using reflections from threeinterfaces associated with the reservoir.

Vasco, D.W.; Keers, Henk

2006-11-27T23:59:59.000Z

255

An Updated Conceptual Model Of The Los Humeros Geothermal Reservoir  

Open Energy Info (EERE)

Humeros Geothermal Reservoir Humeros Geothermal Reservoir (Mexico) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: An Updated Conceptual Model Of The Los Humeros Geothermal Reservoir (Mexico) Details Activities (0) Areas (0) Regions (0) Abstract: An analysis of production and reservoir engineering data of 42 wells from the Los Humeros geothermal field (Mexico) allowed obtaining the pressure and temperature profiles for the unperturbed reservoir fluids and developing 1-D and 2-D models for the reservoir. Results showed the existence of at least two reservoirs in the system: a relatively shallow liquid-dominant reservoir located between 1025 and 1600 m above sea level (a.s.l.) the pressure profile of which corresponds to a 300-330°C boiling water column and a deeper low-liquid-saturation reservoir located between

256

Producing Gas-Oil Ratio Performance of Conventional and Unconventional Reservoirs.  

E-Print Network (OSTI)

?? This study presents a detailed analysis of producing gas-oil ratio performance characteristics from conventional reservoir to unconventional reservoir. Numerical simulations of various reservoir fluid… (more)

Lei, Guowen

2012-01-01T23:59:59.000Z

257

Gas network model allows full reservoir coupling  

Science Conference Proceedings (OSTI)

The gas-network flow model (Gasnet) developed for and added to an existing Qatar General Petroleum Corp. (OGPC) in-house reservoir simulator, allows improved modeling of the interaction among the reservoir, wells, and pipeline networks. Gasnet is a three-phase model that is modified to handle gas-condensate systems. The numerical solution is based on a control volume scheme that uses the concept of cells and junctions, whereby pressure and phase densities are defined in cells, while phase flows are defined at junction links. The model features common numerical equations for the reservoir, the well, and the pipeline components and an efficient state-variable solution method in which all primary variables including phase flows are solved directly. Both steady-state and transient flow events can be simulated with the same tool. Three test cases show how the model runs. One case simulates flow redistribution in a simple two-branch gas network. The second simulates a horizontal gas well in a waterflooded gas reservoir. The third involves an export gas pipeline coupled to a producing reservoir.

Methnani, M.M. [Qatar General Petroleum Corp., Doha (Qatar)

1998-02-23T23:59:59.000Z

258

Numerical investigations into the formation of a high temperature reservoir''  

DOE Green Energy (OSTI)

This paper summarizes an ongoing numerical modeling effort aimed at describing some of the thermodynamic conditions observed in vapor- dominated reservoirs, including the formation of a high temperature reservoir (HTR) beneath the typical'' reservoir. The modeled system begins as a hot water geothermal reservoir, and evolves through time into a vapor-dominated reservoir with a HTR at depth. This approach taken here to develop a vapor-dominated system is similar to that of Pruess (1985), and involves induced boiling through venting. The reservoir description is intentionally generic, but serves to describe a means of evolution of conditions observed (in particular) The Geysers.

Shook, M.

1993-01-01T23:59:59.000Z

259

Numerical investigations into the formation of a ``high temperature reservoir``  

DOE Green Energy (OSTI)

This paper summarizes an ongoing numerical modeling effort aimed at describing some of the thermodynamic conditions observed in vapor- dominated reservoirs, including the formation of a high temperature reservoir (HTR) beneath the ``typical`` reservoir. The modeled system begins as a hot water geothermal reservoir, and evolves through time into a vapor-dominated reservoir with a HTR at depth. This approach taken here to develop a vapor-dominated system is similar to that of Pruess (1985), and involves induced boiling through venting. The reservoir description is intentionally generic, but serves to describe a means of evolution of conditions observed (in particular) The Geysers.

Shook, M.

1993-04-01T23:59:59.000Z

260

AN ADVANCED FRACTURE CHARACTERIZATION AND WELL PATH NAVIGATION SYSTEM FOR EFFECTIVE RE-DEVELOPMENT AND ENHANCEMENT OF ULTIMATE RECOVERY FROM THE COMPLEX MONTEREY RESERVOIR OF SOUTH ELLWOOD FIELD, OFFSHORE CALIFORNIA  

SciTech Connect

Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the methodologies developed in this project. This report presents a summary of all technical work conducted during the fifth quarter of Budget Period II.

Steve Horner

2005-01-31T23:59:59.000Z

Note: This page contains sample records for the topic "aquifer reservoirs water-only" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Aquifer thermal energy storage costs with a seasonal heat source.  

SciTech Connect

The cost of energy supplied by an aquifer thermal energy storage (ATES) system from a seasonal heat source was investigated. This investigation considers only the storage of energy from a seasonal heat source. Cost estimates are based upon the assumption that all of the energy is stored in the aquifer before delivery to the end user. Costs were estimated for point demand, residential development, and multidistrict city ATES systems using the computer code AQUASTOR which was developed specifically for the economic analysis of ATES systems. In this analysis the cost effect of varying a wide range of technical and economic parameters was examined. Those parameters exhibiting a substantial influence on ATES costs were: cost of purchased thermal energy; cost of capital; source temperature; system size; transmission distance; and aquifer efficiency. ATES-delivered energy costs are compared with the costs of hot water heated by using electric power or fuel-oils. ATES costs are shown as a function of purchased thermal energy. Both the potentially low delivered energy costs available from an ATES system and its strong cost dependence on the cost of purchased thermal energy are shown. Cost components for point demand and multi-district city ATES systems are shown. Capital and thermal energy costs dominate. Capital costs, as a percentage of total costs, increase for the multi-district city due to the addition of a large distribution system. The proportion of total cost attributable to thermal energy would change dramatically if the cost of purchased thermal energy were varied. It is concluded that ATES-delivered energy can be cost competitive with conventional energy sources under a number of economic and technical conditions. This investigation reports the cost of ATES under a wide range of assumptions concerning parameters important to ATES economics. (LCL)

Reilly, R.W.; Brown, D.R.; Huber, H.D.

1981-12-01T23:59:59.000Z

262

Storage capacity and injection rate estimates for CO? sequestration in deep saline aquifers in the conterminous United States  

E-Print Network (OSTI)

A promising method to mitigate global warming is injecting CO? into deep saline aquifers. In order to ensure the safety of this method, it is necessary to understand how much CO? can be injected into an aquifer and at what ...

Szulczewski, Michael Lawrence

2009-01-01T23:59:59.000Z

263

Magic Reservoir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Magic Reservoir Geothermal Area Magic Reservoir Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Magic Reservoir Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.32833333,"lon":-114.3983333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

264

Prediction of reservoir compaction and surface subsidence  

SciTech Connect

A new loading-rate-dependent compaction model for unconsolidated clastic reservoirs is presented that considerably improves the accuracy of predicting reservoir rock compaction and surface subsidence resulting from pressure depletion in oil and gas fields. The model has been developed on the basis of extensive laboratory studies and can be derived from a theory relating compaction to time-dependent intergranular friction. The procedure for calculating reservoir compaction from laboratory measurements with the new model is outlined. Both field and laboratory compaction behaviors appear to be described by one single normalized, nonlinear compaction curve. With the new model, the large discrepancies usually observed between predictions based on linear compaction models and actual (nonlinear) field behavior can be explained.

De Waal, J.A.; Smits, R.M.M.

1988-06-01T23:59:59.000Z

265

Shale Reservoir Characterization | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil & Gas » Shale Gas » Shale Reservoir Oil & Gas » Shale Gas » Shale Reservoir Characterization Shale Reservoir Characterization Geologist examining the base of the Marcellus Shale at an outcrop near Bedford, PA. Geologist examining the base of the Marcellus Shale at an outcrop near Bedford, PA. Gas-producing shales are predominantly composed of consolidated clay-sized particles with a high organic content. High subsurface pressures and temperatures convert the organic matter to oil and gas, which may migrate to conventional petroleum traps and also remains within the shale. However, the clay content severely limits gas and fluid flow within the shales. It is, therefore, necessary to understand the mineral and organic content, occurrence of natural fractures, thermal maturity, shale volumes, porosity

266

Second workshop geothermal reservoir engineering: Proceedings  

DOE Green Energy (OSTI)

The Arab oil embargo of 1973 focused national attention on energy problems. A national focus on development of energy sources alternative to consumption of hydrocarbons led to the initiation of research studies of reservoir engineering of geothermal systems, funded by the National Science Foundation. At that time it appeared that only two significant reservoir engineering studies of geothermal reservoirs had been completed. Many meetings concerning development of geothermal resources were held from 1973 through the date of the first Stanford Geothermal Reservoir Engineering workshop December 15-17, 1975. These meetings were similar in that many reports dealt with the objectives of planned research projects rather than with results. The first reservoir engineering workshop held under the Stanford Geothermal Program was singular in that for the first time most participants were reporting on progress inactive research programs rather than on work planned. This was true for both laboratory experimental studies and for field experiments in producing geothermal systems. The Proceedings of the December 1975 workshop (SGP-TR-12) is a remarkable document in that results of both field operations and laboratory studies were freely presented and exchanged by all participants. With this in mind the second reservoir engineering workshop was planned for December 1976. The objectives were again two-fold. First, the workshop was designed as a forum to bring together researchers active in various physical and mathematical branches of the developing field of geothermal reservoir engineering, to give participants a current and updated view of progress being made in the field. The second purpose was to prepare this Proceedings of Summaries documenting the state of the art as of December 1976. The proceedings will be distributed to all interested members of the geothermal community involved in the development and utilization of the geothermal resources in the world. Many notable occurrences took place between the first workshop in December 1975 and this present workshop in December 1976. For one thing, the newly formed Energy Research and Development Administration (ERDA) has assumed the lead role in geothermal reservoir engineering research. The second workshop under the Stanford Geothermal Program was supported by a grant from ERDA. In addition, two significant meetings on geothermal energy were held in Rotarua, New Zealand and Taupo, New Zealand. These meetings concerned geothermal reservoir engineering, and the reinjection of cooled geothermal fluids back into a geothermal system. It was clear to attendees of both the New Zealand and the December workshop meetings that a great deal of new information had been developed between August and December 1976. Another exciting report made at the meeting was a successful completion of a new geothermal well on the big island of Hawaii which produces a geothermal fluid that is mainly steam at a temperature in excess of 600 degrees F. Although the total developed electrical power generating capacity due to all geothermal field developments in 1976 is on the order of 1200 megawatts, it was reported that rapid development in geothermal field expansion is taking place in many parts of the world. Approximately 400 megawatts of geothermal power were being developed in the Philippine Islands, and planning for expansion in production in Cerro Prieto, Mexico was also announced. The Geysers in the United States continued the planned expansion toward the level of more than 1000 megawatts. The Second Workshop on Geothermal Reservoir Engineering convened at Stanford December 1976 with 93 attendees from 4 nations, and resulted in the presentation of 44 technical papers, summaries of which are included in these Proceedings. The major areas included in the program consisted of reservoir physics, well testing, field development, well stimulation, and mathematical modeling of geothermal reservoirs. The planning forth is year's workshop and the preparation of the proceedings was carried out mainly by my associate Paul

Kruger, P.; Ramey, H.J. Jr. (eds.)

1976-12-03T23:59:59.000Z

267

Fluid Dynamics of Carbon Dioxide Disposal into Saline Aquifers  

SciTech Connect

Injection of carbon dioxide (CO{sub 2}) into saline aquifers has been proposed as a means to reduce greenhouse gas emissions (geological carbon sequestration). Large-scale injection of CO{sub 2} will induce a variety of coupled physical and chemical processes, including multiphase fluid flow, fluid pressurization and changes in effective stress, solute transport, and chemical reactions between fluids and formation minerals. This work addresses some of these issues with special emphasis given to the physics of fluid flow in brine formations. An investigation of the thermophysical properties of pure carbon dioxide, water and aqueous solutions of CO{sub 2} and NaCl has been conducted. As a result, accurate representations and models for predicting the overall thermophysical behavior of the system CO{sub 2}-H{sub 2}O-NaCl are proposed and incorporated into the numerical simulator TOUGH2/ECO{sub 2}. The basic problem of CO{sub 2} injection into a radially symmetric brine aquifer is used to validate the results of TOUGH2/ECO2. The numerical simulator has been applied to more complex flow problem including the CO{sub 2} injection project at the Sleipner Vest Field in the Norwegian sector of the North Sea and the evaluation of fluid flow dynamics effects of CO{sub 2} injection into aquifers. Numerical simulation results show that the transport at Sleipner is dominated by buoyancy effects and that shale layers control vertical migration of CO{sub 2}. These results are in good qualitative agreement with time lapse surveys performed at the site. High-resolution numerical simulation experiments have been conducted to study the onset of instabilities (viscous fingering) during injection of CO{sub 2} into saline aquifers. The injection process can be classified as immiscible displacement of an aqueous phase by a less dense and less viscous gas phase. Under disposal conditions (supercritical CO{sub 2}) the viscosity of carbon dioxide can be less than the viscosity of the aqueous phase by a factor of 15. Because of the lower viscosity, the CO{sub 2} displacement front will have a tendency towards instability. Preliminary simulation results show good agreement between classical instability solutions and numerical predictions of finger growth and spacing obtained using different gas/liquid viscosity ratios, relative permeability and capillary pressure models. Further studies are recommended to validate these results over a broader range of conditions.

Garcia, Julio Enrique

2003-12-18T23:59:59.000Z

268

Fundamental quantitative analysis of microbial activity in aquifer bioreclamation  

SciTech Connect

In situ bioremediation of hazardous organic chemicals that contaminate aquifer solids and ground water is a highly promising technique for many sites at DOE facilities. Its potential stems from having agents for destruction of the contaminants (bacteria) close to the separate-phase liquid or sorbed contaminants. This project was designed to advance knowledge in several of the microbiological fundamentals most important to in situ bioremediation: biodegradation of poorly soluable organic contaminants; dual limitation kinetics of electron donors and acceptors; kinetics of sequential degradation involving oxygenase reaction; biologically induced clogging in porous media, and two dimensional modeling of biofilm reactions in non homogeneous porous media.

Rittman, B.E.; Valocchi, A.J. [Univ. of Illinois, Urbana, IL (United States). Dept. of Civil Engineering; Baveye, P. [Cornell Univ., Ithaca, NY (United States). Dept. of Agronomy

1993-08-01T23:59:59.000Z

269

Characterization of oil and gas reservoir heterogeneity  

SciTech Connect

Research described In this report addresses the internal architecture of two specific reservoir types: restricted-platform carbonates and fluvial-deltaic sandstones. Together, these two reservoir types contain more than two-thirds of the unrecovered mobile oil remaining ill Texas. The approach followed in this study was to develop a strong understanding of the styles of heterogeneity of these reservoir types based on a detailed outcrop description and a translation of these findings into optimized recovery strategies in select subsurface analogs. Research targeted Grayburg Formation restricted-platform carbonate outcrops along the Algerita Escarpment and In Stone Canyon In southeastern New Mexico and Ferron deltaic sandstones in central Utah as analogs for the North Foster (Grayburg) and Lake Creek (Wilcox) units, respectively. In both settings, sequence-stratigraphic style profoundly influenced between-well architectural fabric and permeability structure. It is concluded that reservoirs of different depositional origins can therefore be categorized Into a heterogeneity matrix'' based on varying intensity of vertical and lateral heterogeneity. The utility of the matrix is that it allows prediction of the nature and location of remaining mobile oil. Highly stratified reservoirs such as the Grayburg, for example, will contain a large proportion of vertically bypassed oil; thus, an appropriate recovery strategy will be waterflood optimization and profile modification. Laterally heterogeneous reservoirs such as deltaic distributary systems would benefit from targeted infill drilling (possibly with horizontal wells) and improved areal sweep efficiency. Potential for advanced recovery of remaining mobile oil through heterogeneity-based advanced secondary recovery strategies In Texas is projected to be an Incremental 16 Bbbl. In the Lower 48 States this target may be as much as 45 Bbbl at low to moderate oil prices over the near- to mid-term.

Tyler, N.; Barton, M.D.; Bebout, D.G.; Fisher, R.S.; Grigsby, J.D.; Guevara, E.; Holtz, M.; Kerans, C.; Nance, H.S.; Levey, R.A.

1992-10-01T23:59:59.000Z

270

Quantification of Libby Reservoir Water Levels Needed to Maintain or Enhance Reservoir Fisheries, 1983 Final Report.  

DOE Green Energy (OSTI)

The first six months of the fishery investigations in Libby Reservoir were aimed at developing suitable methodology for sampling physical-chemical limnology, fish food availability, fish food habits, and seasonal distribution and abundance of fish populations. Appropriate methods have been developed for all aspects with minor modification of original proposed methodologies. Purse seining has yet to be tested. Physical-chemical limnologic sampling could be reduced or subcontracted with the U.S. Geologic Survey to allow for more intensive sampling of fish food or fish distribution portions of the investigation. Final sample design will be determined during 1983-84. Future directions of the study revolve around two central issues, the potential for flexibility in reservoir operation and determination of how reservoir operation affects fish populations. Simulated maximum drawdown levels during a 40-year period were controlled by power in seven out of eight years. Drawdowns were generally within 10 feet of the flood control rule curve, however. There may be more flexibility with regards to timing of refill and evacuation. This aspect needs to be evaluated further. Production and availability of fish food, suitability of reservoir habitat, and accessibility of off-reservoir spawning and rearing habitat were identified as components of fish ecology which reservoir operation could potentially impact. Two models based on trophic dynamics and habitat suitabilities were suggested as a framework for exploring the relationship of reservoir operation on the fish community.

Shepard, Bradley B.

1984-07-01T23:59:59.000Z

271

Column Studies of Anaerobic Carbon Tetrachloride Biotransformation with Hanford Aquifer Material  

E-Print Network (OSTI)

on CT transformations in Hanford soil. This work assessed the potential for in situ CT biotransColumn Studies of Anaerobic Carbon Tetrachloride Biotransformation with Hanford Aquifer Material a column reactor system containing Hanford Aquifer material in order to assess the potential of in situ

Semprini, Lewis

272

Aquifer Vulnerability Assessment to Petroleum Contaminants Based on Fuzzy Variable Set Theory and Geographic Information System  

Science Conference Proceedings (OSTI)

It is a common environmental and hydro-geological problem that groundwater system is contaminated by petroleum hydrocarbons. An important step of pollution control and treatment is aquifer vulnerability assessment. In this paper, a karst fissure groundwater ... Keywords: fuzzy variable set, GIS, aquifer, petroleum contamination, vulnerability, assessment

Li Qingguo; Ma Zhenmin; Fang Yunzhi; Chen Shouyu

2009-07-01T23:59:59.000Z

273

Vulnerability assessment of groundwater resources: A modelling-based approach to the Mancha Occidental aquifer, Spain  

Science Conference Proceedings (OSTI)

The semiarid Mancha Occidental aquifer represents a paradigmatic case of intensive groundwater use for agriculture. Irrigation has proven a catalyst for welfare in the area over the last three decades, if at a significant environmental cost and while ... Keywords: Aquifer, Groundwater, Mancha Occidental, Participatory modelling, Vulnerability, Water Framework Directive

Pedro Martínez-Santos; M. Ramón Llamas; Pedro E. Martínez-Alfaro

2008-09-01T23:59:59.000Z

274

Regional assessment of aquifers for thermal-energy storage. Volume 2. Regions 7 through 12  

DOE Green Energy (OSTI)

This volume contains information on the geologic and hydrologic framework, major aquifers, aquifers which are suitable and unsuitable for annual thermal energy storage (ATES) and the ATES potential of the following regions of the US: Unglaciated Central Region; Glaciated Appalachians, Unglaciated Appalachians; Coastal Plain; Hawaii; and Alaska. (LCL)

Not Available

1981-06-01T23:59:59.000Z

275

Regional assessment of aquifers for thermal energy storage. Volume 1. Regions 1 through 6  

DOE Green Energy (OSTI)

This volume contains information on the geologic and hydrologic framework, major aquifers, aquifers which are suitable and unsuitable for annual thermal energy storage (ATES) and the ATES potential of the following regions of the US: the Western Mountains; Alluvial Basins; Columbia LAVA Plateau; Colorado Plateau; High Plains; and Glaciated Central Region. (LCL)

Not Available

1981-06-01T23:59:59.000Z

276

Regional assessment of aquifers for thermal-energy storage. Volume 3. Appendices  

DOE Green Energy (OSTI)

This volume contains two appendices to the main report. The first lists the aquifers in the 12 geographic regions of the USA and characterizes each as containing sands and gravels or limestones or volcanic rock. The second appendix tabulates the hydrologic characteristics of each aquifer. (LCL)

Not Available

1981-06-01T23:59:59.000Z

277

Characterization of oil and gas reservoir heterogeneity  

SciTech Connect

The objective of the cooperative research program is to characterize Alaskan reservoirs in terms of their reserves, physical and chemical properties, geologic configuration and structure, and the development potential. The tasks completed during this period include: (1) geologic reservoir description of Endicott Field; (2) petrographic characterization of core samples taken from selected stratigraphic horizons of the West Sak and Ugnu (Brookian) wells; (3) development of a polydispersed thermodynamic model for predicting asphaltene equilibria and asphaltene precipitation from crude oil-solvent mixtures, and (4) preliminary geologic description of the Milne Point Unit.

Not Available

1991-01-01T23:59:59.000Z

278

Geothermal reservoir engineering code: comparison and validation  

DOE Green Energy (OSTI)

INTERCOMP has simulated six geothermal reservoir problems. INTERCOMP's geothermal reservoir model was used for all problems. No modifications were made to this model except to provide tabular output of the simulation results in the units used in RFP No. DE-RP03-80SF-10844. No difficulty was encountered in performing the problems described herein, although setting up the boundary and grid conditions exactly as specified were sometimes awkward, and minor modifications to the grid system were necessitated. The results of each problem are presented in tabular and (for many) graphical form.

Not Available

1981-02-27T23:59:59.000Z

279

INCREASING WATERFLOOD RESERVES IN THE WILMINGTON OIL FIELD THROUGH IMPROVED RESERVOIR CHARACTERIZATION AND RESERVOIR MANAGEMENT  

Science Conference Proceedings (OSTI)

This project increased recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project. This project used advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three-dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturated sands was stimulated by recompleting existing production and injection wells in these sands using conventional means as well as a short radius redrill candidate. Although these reservoirs have been waterflooded over 40 years, researchers have found areas of remaining oil saturation. Areas such as the top sand in the Upper Terminal Zone Fault Block V, the western fault slivers of Upper Terminal Zone Fault Block V, the bottom sands of the Tar Zone Fault Block V, and the eastern edge of Fault Block IV in both the Upper Terminal and Lower Terminal Zones all show significant remaining oil saturation. Each area of interest was uncovered emphasizing a different type of reservoir characterization technique or practice. This was not the original strategy but was necessitated by the different levels of progress in each of the project activities.

Scott Walker; Chris Phillips; Roy Koerner; Don Clarke; Dan Moos; Kwasi Tagbor

2002-02-28T23:59:59.000Z

280

Precision Dual-Aquifer Dewatering at a Low Level Radiological Cleanup in New Jersey  

SciTech Connect

Cleanup of low-level radioactive wastes at the Wayne Interim Storage Site (WISS), Wayne, New Jersey during the period October, 2000 through November, 2001 required the design, installation and operation of a dual-aquifer dewatering system to support excavation of contaminated soils. Waste disposal pits from a former rare-earth processing facility at the WISS had been in contact with the water table aquifer, resulting in moderate levels of radionuclides being present in the upper aquifer groundwater. An uncontaminated artesian aquifer underlies the water table aquifer, and is a localized drinking water supply source. The lower aquifer, confined by a silty clay unit, is flowing artesian and exhibits potentiometric heads of up to 4.5 meters above grade. This high potentiometric head presented a strong possibility that unloading due to excavation would result in a ''blowout'', particularly in areas where the confining unit was < 1 meter thick. Excavation of contaminated materials w as required down to the surface of the confining unit, potentially resulting in an artesian aquifer head of greater than 8 meters above the excavation surface. Consequently, it was determined that a dual-aquifer dewatering system would be required to permit excavation of contaminated material, with the water table aquifer dewatered to facilitate excavation, and the deep aquifer depressurized to prevent a ''blowout''. An additional concern was the potential for vertical migration of contamination present in the water table aquifer that could result from a vertical gradient reversal caused by excessive pumping in the confined system. With these considerations in mind, a conceptual dewatering plan was developed with three major goals: (1) dewater the water table aquifer to control radionuclide migration and allow excavation to proceed; (2) depressurize the lower, artesian aquifer to reduce the potential for a ''blowout''; and (3) develop a precise dewatering level control mechanism to insure a vertical gradient reversal did not result in cross-contamination. The plan was executed through a hydrogeologic investigation culminating with the design and implementation of a complex, multi-phased dual-aquifer dewatering system equipped with a state of the art monitoring network.

Gosnell, A. S.; Langman, J. W. Jr.; Zahl, H. A.; Miller, D. M.

2002-02-27T23:59:59.000Z

Note: This page contains sample records for the topic "aquifer reservoirs water-only" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Geothermal reservoir engineering computer code comparison and validation calculations using MUSHRM and CHARGR geothermal reservoir simulators  

DOE Green Energy (OSTI)

The essential features of the reservoir codes CHARGR and MUSHRM are described. Solutions obtained for the problem set posed by DOE are presented. CHARGR was used for all six problems; MUSHRM was used for one. These problems are: the 1-D Avdonin solution, the 1-D well test analysis, 2-D flow to a well in fracture/block media, expanding two-phase system with drainage, flow in a 2-D areal reservoir, and flow in a 3-D reservoir. Results for the last problem using both codes are compared. (MHR)

Pritchett, J.W.

1980-11-01T23:59:59.000Z

282

SEISMIC DETERMINATION OF RESERVOIR HETEROGENEITY; APPLICATION TO THE CHARACTERIZATION OF HEAVY OIL RESERVOIRS  

SciTech Connect

The objective of the project is to examine how seismic and geologic data can be used to improve characterization of small-scale heterogeneity and their parameterization in reservoir models. The study is performed at West Coalinga Field in California. We continued our investigation on the nature of seismic reactions from heterogeneous reservoirs. We began testing our algorithm to infer parameters of object-based reservoir models from seismic data. We began integration of seismic and geologic data to determine the deterministic limits of conventional seismic data interpretation. Lastly, we began integration of seismic and geologic heterogeneity using stochastic models conditioned both on wireline and seismic data.

Matthias G. Imhof; James W. Castle

2003-11-01T23:59:59.000Z

283

A petrophysics and reservoir performance-based reservoir characterization of Womack Hill (Upper Smackover) Field (Alabama)  

E-Print Network (OSTI)

Womack Hill is one of the 57 Smackover fields throughout the Gulf Coast region. Since its discovery in 1970, Womack Hill Field has produced 30 million STB from the Upper Smackover sequence of carbonate reservoirs. Since production reached its peak in 1977, oil and gas rates have declined substantially. During the last ten years, the production decline has accelerated despite an increase in the water injection rate. This production decline along with the increase in the operating costs has caused a considerable drop in profitability of the field. The field currently produces 640 STB/D of oil and 330 MSCF/D of gas, along with 6,700 STB/D of water, which implies a water cut of over 90 percent. In order to optimize the reservoir management strategies for Womack Hill Field, we need to develop an integrated reservoir study. This thesis addresses the creation of an integrated reservoir study and specifically provides a detailed reservoir description that represents the high level of heterogeneity that exists within this field. Such levels of heterogeneity are characteristic of carbonate reservoirs. This research should serve as a guide for future work in reservoir simulation and can be used to evaluate various scenarios for additional development as well as to optimize the operating practices in the field. We used a non-parametric regression algorithm (ACE) to develop correlations between the core and well log data. These correlations allow us to estimate reservoir permeability at the "flow unit" scale. We note that our efforts to reach an overall correlation were unsuccessful. We generated distributions of porosity and permeability throughout the reservoir area using statistically derived estimates of porosity and permeability. The resulting reservoir description indicates a clear contrast in reservoir permeability between the western and eastern areas - and in particular, significant variability in the reservoir. We do note that we observed an essentially homogenous porosity distribution. We provided analysis of the production and injection data using various techniques (history plots, EUR plots, and decline type curve analysis) and we note this effort yielded a remaining recoverable oil of 1.9 MMSTB (under the current operating conditions). This analysis suggests a moderate flow separation between the western and eastern areas and raised some questions regarding the suitability of the hydraulic "jet pumps" (the water rate increased coincidentally with the installation of the jet pumps).

Avila Urbaneja, Juan Carlos

2002-01-01T23:59:59.000Z

284

Structural styles of the Wilcox and Frio growth-fault trends in Texas: Constraints on geopressured reservoirs  

DOE Green Energy (OSTI)

The wide variability in structural styles within the growth-faulted, geopressured trends of the Texas Gulf Coast is illustrated by detailed structural maps of selected areas of the Wilcox and Frio growth-fault trends and quantified by statistical analysis of fault compartment geometries. Structural variability is a key determinant of the size of geopressured aquifers in the deep subsurface. Two major structural styles exist in the Wilcox trend. (1) In southeast and Central Texas, the trend consists of continuous, closely spaced faults that have little associated rollover despite moderate expansion of section; the fault plane flattens little with depth. (2) By contrast, in South Texas a narrow band of growth faults having high expansion and moderate rollover lies above and downdip of a ridge of deformed, overpressured shale but updip of a deep basin formed by withdrawal of overpressured shale. Frio fault systems generally display greater rollover and wider spacing than do Wilcox fault systems; however, the Frio trend displays distinctive features in each study area. Most of the Frio growth faults, however, have a similar geometry, showing substantial rollover, expansion of section, and a moderate flattening of the fault zone with depth, possibly related to a deep decollement surface. The local variability in style is related to the magnitude of Frio sedimentation and progradation and to the presence of thick salt or shale. Finding and developing a large geopressured aquifer require recognition of a favorable combination of sand-body geometry, reservoir quality, and fault compartment size and shape.

Ewing, T.E.

1986-01-01T23:59:59.000Z

285

Ground-Water Table and Chemical Changes in an Alluvial Aquifer During  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ground-Water Table and Chemical Changes in an Alluvial Aquifer Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells More Documents & Publications Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium

286

Ground-Water Table and Chemical Changes in an Alluvial Aquifer During  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ground-Water Table and Chemical Changes in an Alluvial Aquifer Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells More Documents & Publications Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium

287

Utah Dry Natural Gas New Reservoir Discoveries in Old Fields...  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Utah Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

288

Evaluating human fecal contamination sources in Kranji Reservoir Catchment, Singapore  

E-Print Network (OSTI)

Singapore government through its Public Utilities Board is interested in opening Kranji Reservoir to recreational use. However, water courses within the Kranji Reservoir catchment contain human fecal indicator bacteria ...

Nshimyimana, Jean Pierre

2010-01-01T23:59:59.000Z

289

California Dry Natural Gas New Reservoir Discoveries in Old Fields...  

Annual Energy Outlook 2012 (EIA)

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) California Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

290

Ohio Dry Natural Gas New Reservoir Discoveries in Old Fields...  

Annual Energy Outlook 2012 (EIA)

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Ohio Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

291

Utah Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs (Million Barrels) Utah Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

292

New Mexico--East Crude Oil Reserves in Nonproducing Reservoirs...  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) New Mexico--East Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

293

Ohio Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs (Million Barrels) Ohio Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

294

Kansas Crude Oil Reserves in Nonproducing Reservoirs (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs (Million Barrels) Kansas Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

295

Michigan Dry Natural Gas New Reservoir Discoveries in Old Fields...  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Michigan Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

296

U.S. Coalbed Methane Proved Reserves New Reservoir Discoveries...  

Annual Energy Outlook 2012 (EIA)

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) U.S. Coalbed Methane Proved Reserves New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1...

297

Colorado Dry Natural Gas New Reservoir Discoveries in Old Fields...  

Gasoline and Diesel Fuel Update (EIA)

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Colorado Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

298

New Mexico Crude Oil Reserves in Nonproducing Reservoirs (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs (Million Barrels) New Mexico Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

299

West Virginia Crude Oil Reserves in Nonproducing Reservoirs ...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs (Million Barrels) West Virginia Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

300

North Dakota Crude Oil Reserves in Nonproducing Reservoirs (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs (Million Barrels) North Dakota Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

Note: This page contains sample records for the topic "aquifer reservoirs water-only" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Texas Dry Natural Gas New Reservoir Discoveries in Old Fields...  

Gasoline and Diesel Fuel Update (EIA)

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Texas Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

302

Geolocation of man-made reservoirs across terrains of varying complexity using GIS  

Science Conference Proceedings (OSTI)

The Reservoir Sedimentation Survey Information System (RESIS) is one of the world's most comprehensive databases of reservoir sedimentation rates, comprising nearly 6000 surveys for 1819 reservoirs across the continental United States. Sediment surveys ... Keywords: DEM, GIS, Reservoir sedimentation, Terrain complexity

David M. Mixon; David A. Kinner; Robert F. Stallard; James P. M. Syvitski

2008-10-01T23:59:59.000Z

303

Analysis of Cameron Parish geopressured aquifer. Final report  

DOE Green Energy (OSTI)

The Sweet Lake geopressured-geothermal prospect is located in northern Cameron Parish, Louisiana in T.12 S., R. 7 W. and T. 12 S., R. 8 W. approximately 10 to 15 miles south of Lake Charles. The region is characterized by Cenozoic sand and clay deposits of geosynclinal thickness and differentially uplifted salt structures. The primary geopressured-geothermal aquifer is the Miogyp sand of the Camerina zone (Upper Frio formation of Oligocene-Miocene age). The main prospect is located in a basin on the north flank of the Hackberry-Big Lake-Sweet Lake salt ridge. Interpretation of 27 miles of seismic lines and 17 deep well logs localizes the prospect in a basin with northwesterly dip in a graben between east--west faults converging eastward. Aquifer depth ranges from 14,000 to 18,000 feet. Net sand thickness exceeds 400 feet with 22% porosity. Temperatures range from 280/sup 0/F. (corrected) at 14,000 feet to 350/sup 0/F. at 18,000 feet. Geopressures occur below 9,000 feet with mud weight equivalents in the sand from 12 to 13 pounds per gallon. Net sand volume of one cubic mile is estimated in the area mapped.

Durham, C.O. Jr.

1978-09-01T23:59:59.000Z

304

Fractured reservoir characterization through injection, falloff, and flowback tests  

SciTech Connect

This paper presents the development of a multiphase pressure-transient-analysis technique for naturally fractured reservoirs and the analysis of a series of field tests performed to evaluate the water injection potential and the reservoir characteristics of a naturally fractured reservoir. These included step-rate, water-injectivity, pressure-falloff, and flowback tests. Through these tests, a description of the reservoir was obtained.

Peng, C.P.; Singh, P.K. (Amoco Production Co., Tulsa, OK (United States)); Halvorsen, H. (Amoco Norway Oil Co., Stavanger (NO)); York, S.D. (Amoco Production Co., Houston, TX (United States))

1992-09-01T23:59:59.000Z

305

Water Sampling At Blackfoot Reservoir Area (Hutsinpiller & Parry...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Blackfoot Reservoir Area (Hutsinpiller & Parry, 1985) Exploration Activity...

306

Underground natural gas storage reservoir management  

SciTech Connect

The objective of this study is to research technologies and methodologies that will reduce the costs associated with the operation and maintenance of underground natural gas storage. This effort will include a survey of public information to determine the amount of natural gas lost from underground storage fields, determine the causes of this lost gas, and develop strategies and remedial designs to reduce or stop the gas loss from selected fields. Phase I includes a detailed survey of US natural gas storage reservoirs to determine the actual amount of natural gas annually lost from underground storage fields. These reservoirs will be ranked, the resultant will include the amount of gas and revenue annually lost. The results will be analyzed in conjunction with the type (geologic) of storage reservoirs to determine the significance and impact of the gas loss. A report of the work accomplished will be prepared. The report will include: (1) a summary list by geologic type of US gas storage reservoirs and their annual underground gas storage losses in ft{sup 3}; (2) a rank by geologic classifications as to the amount of gas lost and the resultant lost revenue; and (3) show the level of significance and impact of the losses by geologic type. Concurrently, the amount of storage activity has increased in conjunction with the net increase of natural gas imports as shown on Figure No. 3. Storage is playing an ever increasing importance in supplying the domestic energy requirements.

Ortiz, I.; Anthony, R.

1995-06-01T23:59:59.000Z

307

Fourteenth workshop geothermal reservoir engineering: Proceedings  

DOE Green Energy (OSTI)

The Fourteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 24--26, 1989. Major areas of discussion include: (1) well testing; (2) various field results; (3) geoscience; (4) geochemistry; (5) reinjection; (6) hot dry rock; and (7) numerical modelling. For these workshop proceedings, individual papers are processed separately for the Energy Data Base.

Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.; Cook, J.W.

1989-01-01T23:59:59.000Z

308

Fourteenth workshop geothermal reservoir engineering: Proceedings  

DOE Green Energy (OSTI)

The Fourteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 24--26, 1989. Major areas of discussion include: (1) well testing; (2) various field results; (3) geoscience; (4) geochemistry; (5) reinjection; (6) hot dry rock; and (7) numerical modelling. For these workshop proceedings, individual papers are processed separately for the Energy Data Base.

Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.; Cook, J.W.

1989-12-31T23:59:59.000Z

309

Intake Operation for Deep Cooling Reservoirs  

Science Conference Proceedings (OSTI)

Use of a submerged intake, rather than a conventional surface intake, would improve the thermal performance of most cooling reservoirs in the United States. Projected operating cost savings at a typical plant would range from $1 million to $10 million because of decreased intake temperatures during the summer.

1987-04-21T23:59:59.000Z

310

Hydroelectric reservoir optimization in a pool market  

Science Conference Proceedings (OSTI)

For a price-taking generator operating a hydro-electric reservoir in a pool electricity market, the optimal stack to offer in each trading period over a planning horizon can be computed using dynamic programming. However, the market trading period (usually ...

G. Pritchard; A. B. Philpott; P. J. Neame

2005-07-01T23:59:59.000Z

311

Physical processes of subsidence in geothermal reservoirs  

DOE Green Energy (OSTI)

The objectives of this project were to acquire core and fluid from producing geothermal reservoirs (East Mesa, United States, and Cerro Prieto, Mexico); to test specimens of this core for their short-term and long-term (creep) compaction response; and to develop a compaction constitutive model that would allow future analysis of reservoir compaction and a surface subsidence. A total of approximately two hundred feet of core was obtained from eleven wells in the two geothermal fields. Depths and porosities ranged from 3500 to 11,000 feet and 15 to 40 percent, respectively. Several samples of geothermal fluids were also obtained. After geologically and geochemically describing the materials obtained, selected specimens were tested for their response to the pressures and temperatures of the geothermal environment and to simulated changes in those conditions that would be caused by production. Short-term tests (for example, tests for compressibility extending over a time interval of an hour or less in the laboratory) indicated that these sedimentary materials behaved normally with respect to the expected behavior of reservoir sandstones of these depths and porosities. Compressibilities were of the order 1 x 10/sup 6/ psi. Long-term tests, extending up to several weeks in duration, indicated that pore pressure reduction, simulating reservoir production, tended to cause creep compaction at an initial rate of about 1 x 10/sup -7/ percent porosity reduction per second.

Schatz, J.F.

1982-06-01T23:59:59.000Z

312

Innovative MIOR Process Utilizing Indigenous Reservoir Constituents  

Science Conference Proceedings (OSTI)

This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal was to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents.

Hitzman, D.O.; Stepp, A.K.; Dennis, D.M.; Graumann, L.R.

2003-02-11T23:59:59.000Z

313

Waterflood surveillance techniques; A reservoir management approach  

SciTech Connect

The reservoir management aspects of waterflooding span the time before the start of waterflood to the time when the secondary recovery either is uneconomic or is changed to an enhanced recovery. This paper reviews waterflood techniques and reports on surveillance techniques in the management of waterflooding of oil wells.

Thakur, G.C. (Chevron USA Inc. (US))

1991-10-01T23:59:59.000Z

314

Seismic Determination of Reservoir Heterogeneity: Application to the Characterization of Heavy Oil Reservoirs  

Science Conference Proceedings (OSTI)

The objective of the project was to examine how seismic and geologic data could be used to improve characterization of small-scale heterogeneity and their parameterization in reservoir models. The study was performed at West Coalinga Field in California.

Imhof, Matthias G.; Castle, James W.

2003-03-12T23:59:59.000Z

315

Automatic history matching in petroleum reservoirs using the TSVD method  

Science Conference Proceedings (OSTI)

History matching is an important inverse problem extensively used to estimate petrophysical properties of an oil reservoir by matching a numerical simulation to the reservoir's history of oil production. In this work, we present a method for the ... Keywords: TSVD, adjoint formulation, history matching, optimization, reservoir simulation

Elisa Portes dos Santos Amorim; Paulo Goldfeld; Flavio Dickstein; Rodrigo Weber dos Santos; Carolina Ribeiro Xavier

2010-03-01T23:59:59.000Z

316

Intelligent seismic inversion workflow for high-resolution reservoir characterization  

Science Conference Proceedings (OSTI)

Developing a geological model is the first and a very important step during the reservoir simulation and modeling process. The geological model usually represents our best interpretation of the reservoir characteristics that extends beyond the well where ... Keywords: Buffalo Valley Field, Neural networks, Reservoir characterization, Seismic inversion

E. Artun; S. Mohaghegh

2011-02-01T23:59:59.000Z

317

Radon as an In Situ Tracer in Geothermal Reservoirs  

Science Conference Proceedings (OSTI)

By measuring trace amounts of radon in geothermal steam, utilities can estimate changes in the properties of the fluid produced from a reservoir. These measurements provide a method to monitor the transition from a liquid-dominated reservoir to a boiling reservoir.

1987-08-26T23:59:59.000Z

318

EOR (enhanced oil recovery): the reservoir and its contents  

SciTech Connect

Factors in commitment to enhanced oil recovery of any type are discussed with relation to reservoir characteristics. Core analysis, well logging, reservoir engineering studies, well transient testing, and chemical tracer testing are recommended in order to ascertain the dimensions and conditions of the potentially hydrocarbon bearing reservoir. The calculated risk that is necessary even after conducting the recommended practices is emphasized.

Frederick, R.O.

1982-08-01T23:59:59.000Z

319

Advanced Reservoir Characterization and Evaluation of CO(2) Gravity Drainage in the Naturally Fractured Spraberry Reservoir  

SciTech Connect

Progress has been made in the area of laboratory analysis of Spraberry oil/brine/rock interactions during this quarter. Water imbibition experiments were conducted under ambient conditions, using cleaned Spraberry cores, synthetic Spraberry reservoir brine, and Spraberry oil. It has been concluded that the Spraberry reservoir cores are weakly water-wet. The average Amott wettability index to water is about 0.55. The average oil recovery due to spontaneous water imbibition is about 50% of original oil in place.

Schechter, David

1996-12-01T23:59:59.000Z

320

Increasing Waterflood Reserves in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management  

Science Conference Proceedings (OSTI)

This project used advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three-dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturated sands was stimulated by recompleting existing production and injection wells in these sands using conventional means as well as a short radius redrill candidate.

Clarke, D.; Koerner, R.; Moos D.; Nguyen, J.; Phillips, C.; Tagbor, K.; Walker, S.

1999-04-05T23:59:59.000Z

Note: This page contains sample records for the topic "aquifer reservoirs water-only" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Improved recovery from Gulf of Mexico reservoirs  

Science Conference Proceedings (OSTI)

The Gulf of Mexico Basin offers the greatest near-term potential for reducing the future decline in domestic oil and gas production. The Basin is less mature than productive on-shore areas, large unexplored areas remain, and there is great potential for reducing bypassed oil in known fields. Much of the remaining oil in the offshore is trapped in formations that are extremely complex due to intrusions Of salt domes. Recently, however, significant innovations have been made in seismic processing and reservoir simulation. In addition, significant advances have been made in deviated and horizontal drilling technologies. Effective application of these technologies along with improved integrated resource management methods offer opportunities to significantly increase Gulf of Mexico production, delay platform abandonments, and preserve access to a substantial remaining oil target for both exploratory drilling and advanced recovery processes. On February 18, 1992, Louisiana State University (the Prime Contractor) with two technical subcontractors, BDNL Inc. and ICF, Inc., began a research program to estimate the potential oil and gas reserve additions that could result from the application of advanced secondary and enhanced oil recovery technologies and the exploitation of undeveloped and attic oil zones in the Gulf of Mexico oil fields that are related to piercement salt dornes. This project is a one year continuation of this research and will continue work in reservoir description, extraction processes, and technology transfer. Detailed data will be collected for two previously studied reservoirs: a South Marsh Island reservoir operated by Taylor Energy and a South Pelto reservoir operated by Mobil. This data will include reprocessed 2-D seismic data, newly acquired 3-D data, fluid data, fluid samples, pressure data, well test data, well logs, and core data/samples. Geologic data is being compiled; extraction research has not begun.

Schenewerk, P.

1995-07-30T23:59:59.000Z

322

Horizontal Well Placement Optimization in Gas Reservoirs Using Genetic Algorithms  

E-Print Network (OSTI)

Horizontal well placement determination within a reservoir is a significant and difficult step in the reservoir development process. Determining the optimal well location is a complex problem involving many factors including geological considerations, reservoir and fluid properties, economic costs, lateral direction, and technical ability. The most thorough approach to this problem is that of an exhaustive search, in which a simulation is run for every conceivable well position in the reservoir. Although thorough and accurate, this approach is typically not used in real world applications due to the time constraints from the excessive number of simulations. This project suggests the use of a genetic algorithm applied to the horizontal well placement problem in a gas reservoir to reduce the required number of simulations. This research aims to first determine if well placement optimization is even necessary in a gas reservoir, and if so, to determine the benefit of optimization. Performance of the genetic algorithm was analyzed through five different case scenarios, one involving a vertical well and four involving horizontal wells. The genetic algorithm approach is used to evaluate the effect of well placement in heterogeneous and anisotropic reservoirs on reservoir recovery. The wells are constrained by surface gas rate and bottom-hole pressure for each case. This project's main new contribution is its application of using genetic algorithms to study the effect of well placement optimization in gas reservoirs. Two fundamental questions have been answered in this research. First, does well placement in a gas reservoir affect the reservoir performance? If so, what is an efficient method to find the optimal well location based on reservoir performance? The research provides evidence that well placement optimization is an important criterion during the reservoir development phase of a horizontal-well project in gas reservoirs, but it is less significant to vertical wells in a homogeneous reservoir. It is also shown that genetic algorithms are an extremely efficient and robust tool to find the optimal location.

Gibbs, Trevor Howard

2010-05-01T23:59:59.000Z

323

Geotechnical studies of geothermal reservoirs | Open Energy Information  

Open Energy Info (EERE)

Geotechnical studies of geothermal reservoirs Geotechnical studies of geothermal reservoirs Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geotechnical studies of geothermal reservoirs Details Activities (7) Areas (7) Regions (0) Abstract: It is proposed to delineate the important factors in the geothermal environment that will affect drilling. The geologic environment of the particular areas of interest are described, including rock types, geologic structure, and other important parameters that help describe the reservoir and overlying cap rock. The geologic environment and reservoir characteristics of several geothermal areas were studied, and drill bits were obtained from most of the areas. The geothermal areas studied are: (1) Geysers, California, (2) Imperial Valley, California, (3) Roosevelt Hot

324

Method of extracting heat from dry geothermal reservoirs  

DOE Patents (OSTI)

Hydraulic fracturing is used to interconnect two or more holes that penetrate a previously dry geothermal reservoir, and to produce within the reservoir a sufficiently large heat-transfer surface so that heat can be extracted from the reservoir at a usefully high rate by a fluid entering it through one hole and leaving it through another. Introduction of a fluid into the reservoir to remove heat from it and establishment of natural (unpumped) convective circulation through the reservoir to accomplish continuous heat removal are important and novel features of the method. (auth)

Potter, R.M.; Robinson, E.S.; Smith, M.C.

1974-01-22T23:59:59.000Z

325

Reservoir technology research at the Idaho National Engineering Laboratory  

DOE Green Energy (OSTI)

The Idaho National Engineering Laboratory (INEL) has been conducting geothermal reservoir research and testing sponsored by the US Department of Energy (DOE) since 1983. The INEL research program is primarily aimed at the development of reservoir engineering techniques for fractured geothermal reservoirs. Numerical methods have been developed which allow the simulation of fluid flow and heat transfer in complex fractured reservoirs. Sensitivity studies have illustrated the importance of incorporating the influence of fractures in reservoir simulations. Related efforts include fracture characterization, geochemical reaction kinetics and field testing.

Stiger, S.G.; Renner, J.L.

1987-01-01T23:59:59.000Z

326

The University of Minnesota aquifer thermal energy storage (ATES) field test facility -- system description, aquifer characterization, and results of short-term test cycles  

DOE Green Energy (OSTI)

Phase 1 of the Aquifer Thermal Energy Storage (ATES) Project at the University of Minnesota was to test the feasibility, and model, the ATES concept at temperatures above 100{degrees}C using a confined aquifer for the storage and recovery of hot water. Phase 1 included design, construction, and operation of a 5-MW thermal input/output field test facility (FTF) for four short-term ATES cycles (8 days each of heat injection, storage, and heat recover). Phase 1 was conducted from May 1980 to December 1983. This report describes the FTF, the Franconia-Ironton-Galesville (FIG) aquifer used for the test, and the four short-term ATES cycles. Heat recovery; operational experience; and thermal, chemical, hydrologic, and geologic effects are all included. The FTF consists of monitoring wells and the source and storage well doublet completed in the FIG aquifer with heat exchangers and a fixed-bed precipitator between the wells of the doublet. The FIG aquifer is highly layered and a really anisotropic. The upper Franconia and Ironton-Galesville parts of the aquifer, those parts screened, have hydraulic conductivities of {approximately}0.6 and {approximately}1.0 m/d, respectively. Primary ions in the ambient ground water are calcium and magnesium bicarbonate. Ambient temperature FIG ground water is saturated with respect to calcium/magnesium bicarbonate. Heating the ground water caused most of the dissolved calcium to precipitate out as calcium carbonate in the heat exchanger and precipitator. Silica, calcium, and magnesium were significantly higher in recovered water than in injected water, suggesting dissolution of some constituents of the aquifer during the cycles. Further work on the ground water chemistry is required to understand water-rock interactions.

Walton, M.; Hoyer, M.C.; Eisenreich, S.J.; Holm, N.L.; Holm, T.R.; Kanivetsky, R.; Jirsa, M.A.; Lee, H.C.; Lauer, J.L.; Miller, R.T.; Norton, J.L.; Runke, H. (Minnesota Geological Survey, St. Paul, MN (United States))

1991-06-01T23:59:59.000Z

327

Investigation of groundwater recirculation for the removal of RDX from the Pantex Plant perched aquifer  

SciTech Connect

The Pantex Plant near Amarillo, Texas, is a US Department of Energy (DOE) facility that has been in operation since 1942. Past and present operations at Pantex include the creation of chemical high explosives components for nuclear weapons and assembly and disassembly of nuclear weapons. The Pantex Plant is underlain by the Ogallala aquifer, which in this area, consists of the main water-bearing unit and a perched water zone. These are separated by a fine-grained zone of low permeability. Multiple contaminant plumes containing high explosive (HE) compounds have been detected in the perched aquifer beneath the plant. The occurrence of these contaminants is the result of past waste disposal practices at the facility. RDX is an HE compound, which has been detected in the groundwater of the perched aquifer at significant concentrations. A pilot-scale, dual-phase extraction treatment system has been installed at one location at the plant, east of Zone 12, to test the effectiveness of such a system on the removal of these contaminants from the subsurface. A tracer test using a conservative tracer, bromide (Br), was conducted at the treatment site in 1996. In addition to the bromide, RDX and water elevations in the aquifer were monitored. Using data from the tracer test and other relevant data from the investigations at Pantex, flow and contaminant transport in the perched aquifer were simulated with groundwater models. The flow was modeled using MODFLOW and the transport of contaminants in the aqueous phase was modeled using MT3D. Modeling the perched aquifer had been conducted to characterize the flow in the perched aquifer; estimate RDX retardation in the perched aquifer; and evaluate the use of groundwater re-circulation to enhance the extraction of RDX from the perched aquifer.

Woods, A.L. [ed.; Barnes, D.L. [Amarillo National Resource Center for Plutonium, TX (United States); Boles, K.M.; Charbeneau, R.J. [Univ. of Texas, Austin, TX (United States); Black, S.; Rainwater, K. [Texas Tech Univ., Lubbock, TX (United States). Water Resources Center

1998-07-01T23:59:59.000Z

328

Heavy oil reservoirs recoverable by thermal technology. Annual report  

SciTech Connect

This volume contains reservoir, production, and project data for target reservoirs which contain heavy oil in the 8 to 25/sup 0/ API gravity range and are susceptible to recovery by in situ combustion and steam drive. The reservoirs for steam recovery are less than 2500 feet deep to comply with state-of-the-art technology. In cases where one reservoir would be a target for in situ combustion or steam drive, that reservoir is reported in both sections. Data were collectd from three source types: hands-on (A), once-removed (B), and twice-removed (C). In all cases, data were sought depicting and characterizing individual reservoirs as opposed to data covering an entire field with more than one producing interval or reservoir. The data sources are listed at the end of each case. This volume also contains a complete listing of operators and projects, as well as a bibliography of source material.

Kujawa, P.

1981-02-01T23:59:59.000Z

329

Cost analysis of power plant cooling using aquifer thermal energy storage  

DOE Green Energy (OSTI)

Most utilities in the US experience their peak demand for electric power during periods with high ambient temperature. Unfortunately, the performance of many power plants decreases with high ambient temperature. The use of aquifer thermal energy storage (ATES) for seasonal storage of chill can be an alternative method for heat rejection. Cold water produced during the previous winter is stored in the aquifer and can be used to provide augmented cooling during peak demand periods increasing the output of many Rankine cycle power plants. This report documents an investigation of the technical and economic feasibility of using aquifer thermal energy storage for peak cooling of power plants. 9 refs., 15 figs., 5 tabs.

Zimmerman, P.W.; Drost, M.K.

1989-05-01T23:59:59.000Z

330

In Situ Biological Uranium Remediation within a Highly Contaminated Aquifer  

NLE Websites -- All DOE Office Websites (Extended Search)

In Situ Biological Uranium Remediation In Situ Biological Uranium Remediation within a Highly Contaminated Aquifer Matthew Ginder-Vogel1, Wei-Min Wu1, Jack Carley2, Phillip Jardine2, Scott Fendorf1 and Craig Criddle1 1Stanford University, Stanford, CA 2Oak Ridge National Laboratory, Oak Ridge, TN Microbial Respiration Figure 1. Uranium(VI) reduction is driven by microbial respiration resulting in the precipitation of uraninite. Uranium contamination of ground and surface waters has been detected at numerous sites throughout the world, including agricultural evaporation ponds (1), U.S. Department of Energy nuclear weapons manufacturing areas, and mine tailings sites (2). In oxygen-containing groundwater, uranium is generally found in the hexavalent oxidation state (3,4), which is a relatively soluble chemical form. As U(VI) is transported through

331

Methane entrained in geopressured aquifers, Texas Gulf Coast  

DOE Green Energy (OSTI)

Six tests of geopressured aquifers have yielded between 3.6 to 4.5 m/sup 3//m/sup 3/ (20 to 25 scf/bbl) of gas. These low gas concentrations are attributed to high salinities, that in all tests exceeded 100,000 mg/l, but undersaturated conditions cannot be ruled out completely. Research efforts are designed to delineate the geographic and stratigraphic variations in salinity and to recognize regional and local trends so that zones of lower salinity and higher gas concentration can be identified. Moreover, well logs and seismic data are being used to develop methods of detecting low concentrations of free gas in watered-out gas sands and in thin sands that were considered as noncommercial prior to renewed interest in unconventional gas supplies. (MHR)

Morton, R.A.

1980-07-01T23:59:59.000Z

332

ALKALINE-SURFACTANT-POLYMER FLOODING AND RESERVOIR CHARACTERIZATION OF THE BRIDGEPORT AND CYPRESS RESERVOIRS OF THE LAWRENCE FIELD  

Science Conference Proceedings (OSTI)

Feasibility of alkaline-surfactant-polymer flood for the Lawrence Field in Lawrence County, Illinois is being studied. Two injected formulations are being designed; one for the Bridgeport A and Bridgeport B reservoirs and one for Cypress and Paint Creek reservoirs. Fluid-fluid and coreflood evaluations have developed a chemical solution that produces incremental oil in the laboratory from the Cypress and Paint Creek reservoirs. A chemical formulation for the Bridgeport A and Bridgeport B reservoirs is being developed. A reservoir characterization study is being done on the Bridgeport A, B, & D sandstones, and on the Cypress sandstone. The study covers the pilot flood area and the Lawrence Field.

Malcolm Pitts; Ron Damm; Bev Seyler

2003-03-01T23:59:59.000Z

333

ALKALINE-SURFACTANT-POLYMER FLOODING AND RESERVOIR CHARACTERIZATION OF THE BRIDGEPORT AND CYPRESS RESERVOIRS OF THE LAWRENCE FIELD  

Science Conference Proceedings (OSTI)

Feasibility of alkaline-surfactant-polymer flood for the Lawrence Field in Lawrence County, Illinois is being studied. Two injected formulations are being designed; one for the Bridgeport A and Bridgeport B reservoirs and one for Cypress and Paint Creek reservoirs. Fluid-fluid and coreflood evaluations have developed a chemical solution that produces incremental oil in the laboratory from the Cypress and Paint Creek reservoirs. A chemical formulation for the Bridgeport A and Bridgeport B reservoirs is being developed. A reservoir characterization study is being done on the Bridgeport A, B, & D sandstones, and on the Cypress sandstone. The study covers the pilot flood area and the Lawrence Field.

Malcolm Pitts; Ron Damm; Bev Seyler

2003-04-01T23:59:59.000Z

334

Review of simulation techniques for aquifer thermal energy storage (ATES)  

DOE Green Energy (OSTI)

The storage of thermal energy in aquifers has recently received considerable attention as a means to conserve and more efficiently use energy supplies. The analysis of aquifer thermal energy storage (ATES) systems will rely on the results from mathematical and geochemical models. Therefore, the state-of-the-art models relevant to ATES was reviewed and evaluated. These models describe important processes active in ATES including ground-water flow, heat transport (heat flow), solute transport (movement of contaminants), and geochemical reactions. In general, available models of the saturated ground-water environment are adequate to address most concerns associated with ATES; that is, design, operation, and environmental assessment. In those cases where models are not adequate, development should be preceded by efforts to identify significant physical phenomena and relate model parameters to measurable quantities. Model development can then proceed with the expectation of an adequate data base existing for the model's eventual use. Review of model applications to ATES shows that the major emphasis has been on generic sensitivity analysis and site characterization. Assuming that models are applied appropriately, the primary limitation on model calculations is the data base used to construct the model. Numerical transport models are limited by the uncertainty of subsurface data and the lack of long-term historical data for calibration. Geochemical models are limited by the lack of thermodynamic data for the temperature ranges applicable to ATES. Model applications undertaken with data collection activities on ATES sites should provide the most important contributions to the understanding and utilization of ATES. Therefore, the primary conclusion of this review is that model application to field sites in conjunction with data collection activities is essential to the development of this technology.

Mercer, J.W.; Faust, C.R.; Miller, W.J.; Pearson, F.J. Jr.

1981-03-01T23:59:59.000Z

335

Reducing long-term reservoir performance uncertainty  

DOE Green Energy (OSTI)

Reservoir performance is one of the key issues that have to be addressed before going ahead with the development of a geothermal field. In order to select the type and size of the power plant and design other surface installations, it is necessary to know the characteristics of the production wells and of the produced fluids, and to predict the changes over a 10--30 year period. This is not a straightforward task, as in most cases the calculations have to be made on the basis of data collected before significant fluid volumes have been extracted from the reservoir. The paper describes the methodology used in predicting the long-term performance of hydrothermal systems, as well as DOE/GTD-sponsored research aimed at reducing the uncertainties associated with these predictions. 27 refs., 1 fig.

Lippmann, M.J.

1988-04-01T23:59:59.000Z

336

Thermodynamic behaviour of simplified geothermal reservoirs  

DOE Green Energy (OSTI)

Starting from the basic laws of conservation of mass and energy, the differential equations that represent the thermodynamic behavior of a simplified geothermal reservoir are derived. Its application is limited to a reservoir of high permeability as it usually occurs in the central zone of a geothermal field. A very practical method to solve numerically the equations is presented, based on the direct use of the steam tables. The method, based in one general equation, is extended and illustrated with a numerical example to the case of segregated mass extraction, variable influx and heat exchange between rock and fluid. As it is explained, the method can be easily coupled to several influx models already developed somewhere else. The proposed model can become an important tool to solve practical problems, where like in Los Azufres Mexico, the geothermal field can be divided in an inner part where flashing occurs and an exterior field where storage of water plays the main role.

Hiriart, G.; Sanchez, E.

1985-01-22T23:59:59.000Z

337

Enhancing Reservoir Management in the Appalach  

NLE Websites -- All DOE Office Websites (Extended Search)

Reservoir Management in the Appalachian Basin by Identifying Technical Reservoir Management in the Appalachian Basin by Identifying Technical Barrier and Preferred Practices Final Report Reporting Period Start Date: September 1, 2001 Reporting Period End Date: September 15, 2003 Principal Author(s): Ronald R. McDowell Khashayar Aminian Katharine L. Avary John M. Bocan Michael Ed. Hohn Douglas G. Patchen September 2003 DE-FC26-01BC15273 West Virginia University Research Corporation West Virginia Geological and Economic Survey (subcontractor) ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

338

Injection into a fractured geothermal reservoir  

DOE Green Energy (OSTI)

A detailed study is made on the movement of the thermal fronts in the fracture and in the porous medium when 100{sup 0}C water is injected into a 300{sup 0}C geothermal reservoir with equally spaced horizontal fractures. Numerical modeling calculations were made for a number of thermal conductivity values, as well as different values of the ratio of fracture and rock medium permeabilities. One important result is an indication that although initially, the thermal front in the fracture moves very fast relative to the front in the porous medium as commonly expected, its speed rapidly decreases. At some distance from the injection well the thermal fronts in the fracture and the porous medium coincide, and from that point they advance together. The implication of this result on the effects of fractures on reinjection into geothermal reservoirs is discussed.

Bodvarsson, G.S.; Tsang, C.F.

1980-05-01T23:59:59.000Z

339

Innovative MIOR Process Utilizing Indigenous Reservoir Constituents  

Science Conference Proceedings (OSTI)

This research program is directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal is to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents. Experimental laboratory work is underway. Microbial cultures have been isolated from produced water samples. Comparative laboratory studies demonstrating in situ production of microbial products as oil recovery agents were conducted in sand packs with natural field waters with cultures and conditions representative of oil reservoirs. Field pilot studies are underway.

D. O. Hitzman; A. K. Stepp; D. M. Dennis; L. R. Graumann

2003-03-31T23:59:59.000Z

340

Application of stress corrosion to geothermal reservoirs  

DOE Green Energy (OSTI)

There are several alternative equations which describe slow crack growth by stress corrosion. Presently available data suggest that an alternative form may be preferable to the form which is most often used, but the issue cannot be clearly decided. Presently available stress corrosion data on glasses and ceramics suggest that rocks in a proposed geothermal reservoir will crack readily over long time periods, thus seriously limiting the operation of this type of power source. However, in situ hydrofracturing measurements together with a theoretical treatment suggest that such a reservoir will contain a relatively high pressure over a long period of time without further cracking. Further experimentation is desirable to measure directly the critical stresses for crack growth rates on the order of 10/sup -7/ m/sec.

Demarest, H.H. Jr.

1975-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "aquifer reservoirs water-only" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Hot dry rock Phase II reservoir engineering  

DOE Green Energy (OSTI)

Early attempts to hydraulically fracture and connect two wells drilled at the Hot Dry Rock site at Fenton Hill in New Mexico failed. Microearthquakes triggered by hydraulic fracturing indicated that the fracture zones grew in unexpected directions. Consequently one of the wells was sidetracked at a depth of 2.9 km; was redrilled into the zones of most intense microseismic activity; and a flow connection was achieved. Hydraulic communication was improved by supplemental fracturing using recently developed high temperature and high pressure open hole packers. Preliminary testing indicates a reservoir with stimulated joint volume which already surpasses that attained in the earlier phase I reservoir after several years of development. 12 refs., 6 figs.

Murphy, H.D.

1985-01-01T23:59:59.000Z

342

Pressure transient analysis for naturally fractured reservoirs  

Science Conference Proceedings (OSTI)

New ideas are presented for the interpretation of pressure transient tests for wells in naturally fractured reservoirs. This work is based on the transient matrix flow model formulated by de Swaan. The differences between this model and the Warren and Root model occur during the transition flow period. It is demonstrated that the behavior of a naturally fractured reservoir can be correlated by using three dimensionless parameters. It is established that regardless of matrix geometry the transition period might exhibit a straight line whose slope is equal to half the slope of the classical parallel semilog straight lines, provided the transient matrix linear flow is present. In addition, information is provided on the estimation of fracture area per unit matrix volume or matrix parameters from the transition period semilog straight line. It is shown that matrix geometry might be identified when pressure data are smooth. Field examples are included to illustrate the application and the validity of the theoretical results of this study.

Cinco-ley, H.; Samaniego, F.V.

1982-09-01T23:59:59.000Z

343

Quantification of Libby Reservoir Levels Needed to Maintain or Enhance Reservoir Fisheries, 1983-1987 Methods and Data Summary.  

DOE Green Energy (OSTI)

Libby Reservoir was created under an International Columbia River Treaty between the United States and Canada for cooperative water development of the Columbia River Basin. The authorized purpose of the dam is to provide power, flood control, and navigation and other benefits. Research began in May 1983 to determine how operations of Libby dam impact the reservoir fishery and to suggest ways to lessen these impacts. This study is unique in that it was designed to accomplish its goal through detailed information gathering on every trophic level in the reservoir system and integration of this information into a quantitative computer model. The specific study objectives are to: quantify available reservoir habitat, determine abundance, growth and distribution of fish within the reservoir and potential recruitment of salmonids from Libby Reservoir tributaries within the United States, determine abundance and availability of food organisms for fish in the reservoir, quantify fish use of available food items, develop relationships between reservoir drawdown and reservoir habitat for fish and fish food organisms, and estimate impacts of reservoir operation on the reservoir fishery. 115 refs., 22 figs., 51 tabs.

Chisholm, Ian

1989-12-01T23:59:59.000Z

344

Innovative MIOR Process Utilizing Indigenous Reservoir Constituents  

SciTech Connect

This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal was to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with inorganic nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents.

Hitzman, D.O.; Stepp, A.K.; Dennis, D.M.; Graumann, L.R.

2003-02-11T23:59:59.000Z

345

A better understanding of a Uinta Basin channelized analog reservoir through geostatistics and reservoir simulation  

E-Print Network (OSTI)

The Green River Formation is located in the Uinta basin of northeastern Utah. It contains several reservoirs that can be classified as lacustrine such as the Altamont-Bluebell and Red Wash. Lacustrine reservoirs are abundant in other provinces in the world such as China, Southeast Asia, Brazil, West Africa, and the Caspian Sea. Even though they can contain important accumulations of hydrocarbons, our understanding of the primary controls on fluid flow within these systems is still not clear. This ambiguity leads in some cases to inefficient recovery of hydrocarbons in such reservoirs. This study is aimed at clarifying the effects of heterogeneities in channelized reservoirs on fluid flow. It uses a multidisciplinary approach combining geologic knowledge with reservoir engineering. It involves the geologic modeling and fluid flow simulation of a channelized outcrop of the Green River formation. The study of this outcrop provides insights for modeling, understanding, and possibly predicting the behavior of channelized oil and gas reservoirs. Results show that the number of channels in the model can have a significant effect on performance. The rock properties in these channels and the channel paths are also important factors that determine the recovery efficiency. Other findings include the effect on performance of vertical anisotropy in a channelized reservoir. We discovered that an isotropic reservoir performs better than an anisotropic one and that the well perforation interval is extremely important when comparing the performance of several anisotropic cases. Finally, we investigated the effects of the recovery strategy on performance in a channelized setting. We found that waterflooding yields better results than any of the other recovery techniques analyzed. Sensitivity runs with different waterflood patterns indicated that a staggered line drive results in the best performance in the analog channelized reservoir we modeled, as it allows for the best recovery factor in the least amount of time. The results of this work can be used qualitatively to predict performance in a channelized setting but their use is limited quantitatively because of the issue of scale, i.e. the outcrop width is much less than typical interwell scale.

Robbana, Enis

2002-01-01T23:59:59.000Z

346

History match simulation of Serrazzano geothermal reservoir  

DOE Green Energy (OSTI)

The simulator SHAFT79 of Lawrence Berkeley Laboratory has been applied to field-wide distributed parameter simulation of the vapor-dominated geothermal reservoir at Serrazzano, Italy. Using a three-dimensional geologically accurate mesh and detailed flow rate data from 19 producing wells, a period of 15.5 years (from 1959 to 1975) has been simulated. The reservoir model used is based on field measurements of temperatures and pressures, laboratory data for core samples, and available geological and hydrological information. The main parameters determined (adjusted) during development of the simulation are permeabilities and much of the initial conditions. Simulated patterns of pressure decline show semi-quantitative agreement with field observations. The simulation suggests that there is cold water recharge and/or incomplete heat transfer from he rock due to fractures in the margins of the reservoir, and some steam flowing to the main well field originates from deep fractures rather than from boiling in the two-phase zones modeled. Simulation methodology and ambiguity of parameter determination is discussed.

Pruess, K.; Weres, O.; Schroeder, R.; Marconcini, R.; Neri, G.

1980-08-01T23:59:59.000Z

347

40 Years Of Dogger Aquifer Management In Ile-De-France, Paris Basin, France  

Open Energy Info (EERE)

Years Of Dogger Aquifer Management In Ile-De-France, Paris Basin, France Years Of Dogger Aquifer Management In Ile-De-France, Paris Basin, France Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: 40 Years Of Dogger Aquifer Management In Ile-De-France, Paris Basin, France Details Activities (0) Areas (0) Regions (0) Abstract: Geothermal energy has been supplying heat to district networks in the Paris Basin for more than 40 years. The most serious difficulties have been corrosion and scaling related problems that occurred in many geothermal loops in the mid-1980s. The main target of all exploration and exploitation projects has been the Dogger aquifer. Most of the operating facilities use the "doublet" technology which consists of a closed loop with one production well and one injection well. Injection of the cooled

348

The hydrogeochemistry of pond and rice field recharge : implications for the arsenic contaminated aquifers in Bangladesh  

E-Print Network (OSTI)

The shallow aquifers in Bangladesh, which provide drinking water for millions and irrigation water for innumerable rice fields, are severely contaminated with geogenic arsenic. Water mass balance calculations show that ...

Neumann, Rebecca B

2010-01-01T23:59:59.000Z

349

Estimation of CO2 injection well requirements into saline aquifers for pre-feasibility CCS economics.  

E-Print Network (OSTI)

??Sub-surface saline aquifers are candidates as CO2 injection sites because they could have significant storage potential. One of the long-standing issues in assessing such storage… (more)

Bukhteeva, Olga

2012-01-01T23:59:59.000Z

350

Seasonal dynamics in costal aquifers : investigation of submarine groundwater discharge through field measurements and numerical models  

E-Print Network (OSTI)

The fresh and saline groundwater flowing from coastal aquifers into the ocean comprise submarine groundwater discharge (SGD). This outflow is an important pathway for the transport of nutrients and contaminants, and has ...

Michael, Holly Anne, 1976-

2005-01-01T23:59:59.000Z

351

Molecular analysis of phosphate limitation in Geobacteraceae during the bioremediation of a uranium-contaminated aquifer  

E-Print Network (OSTI)

the Bioremediation of a Uranium-Contaminated Aquifer A.et al. , 1999) as well as uranium (Anderson et al. , 2003;Geobacter species to remove uranium from the groundwater of

N'Guessan, L.A.

2010-01-01T23:59:59.000Z

352

Saturated-Unsaturated flow in a Compressible Leaky-unconfined Aquifer  

E-Print Network (OSTI)

An analytical solution is developed for three-dimensional flow towards a partially penetrating large-diameter well in an unconfined aquifer bounded below by an aquitard of finite or semi-infinite extent. The analytical solution is derived using Laplace and Hankel transforms, then inverted numerically. Existing solutions for flow in leaky unconfined aquifers neglect the unsaturated zone following an assumption of instantaneous drainage assumption due to Neuman [1972]. We extend the theory of leakage in unconfined aquifers by (1) including water flow and storage in the unsaturated zone above the water table, and (2) allowing the finite-diameter pumping well to partially penetrate the aquifer. The investigation of model-predicted results shows that leakage from an underlying aquitard leads to significant departure from the unconfined solution without leakage. The investigation of dimensionless time-drawdown relationships shows that the aquitard drawdown also depends on unsaturated zone properties and the pumping-well wellbore storage effects.

Phoolendra K. Mishra; Velimir V. Vessilinov; Kristopher L. Kuhlman

2011-11-04T23:59:59.000Z

353

Saturated-Unsaturated flow in a Compressible Leaky-unconfined Aquifer  

E-Print Network (OSTI)

An analytical solution is developed for three-dimensional flow towards a partially penetrating large-diameter well in an unconfined aquifer bounded below by an aquitard of finite or semi-infinite extent. The analytical solution is derived using Laplace and Hankel transforms, then inverted numerically. Existing solutions for flow in leaky unconfined aquifers neglect the unsaturated zone following an assumption of instantaneous drainage assumption due to Neuman [1972]. We extend the theory of leakage in unconfined aquifers by (1) including water flow and storage in the unsaturated zone above the water table, and (2) allowing the finite-diameter pumping well to partially penetrate the aquifer. The investigation of model-predicted results shows that leakage from an underlying aquitard leads to significant departure from the unconfined solution without leakage. The investigation of dimensionless time-drawdown relationships shows that the aquitard drawdown also depends on unsaturated zone properties and the pumping...

Mishra, Phoolendra K; Kuhlman, Kristopher L

2011-01-01T23:59:59.000Z

354

Isotopes of helium, hydrogen, and carbon as groundwater tracers in aquifers along the Colorado River  

E-Print Network (OSTI)

2.1. Battle for Colorado River Water. Importance ofthat will be replaced by Colorado River water in Arizona,in Aquifers along the Colorado River A Thesis submitted in

Haber, Samuel Ainsworth

2009-01-01T23:59:59.000Z

355

Environmental assessment of the potential effects of aquifer thermal energy storage systems on microorganisms in groundwater  

DOE Green Energy (OSTI)

The primary objective of this study was to evaluate the potential environmental effects (both adverse and beneficials) of aquifer thermal energy storage (ATES) technology pertaining to microbial communities indigenous to subsurface environments (i.e., aquifers) and the propagation, movement, and potential release of pathogenic microorganisms (specifically, Legionella) within ATES systems. Seasonal storage of thermal energy in aquifers shows great promise to reduce peak demand; reduce electric utility load problems; contribute to establishing favorable economics for district heating and cooling systems; and reduce pollution from extraction, refining, and combustion of fossil fuels. However, concerns that the widespread implementation of this technology may have adverse effects on biological systems indigeneous to aquifers, as well as help to propagate and release pathogenic organisms that enter thee environments need to be resolved. 101 refs., 2 tabs.

Hicks, R.J.; Stewart, D.L.

1988-03-01T23:59:59.000Z

356

SEISMIC DETERMINATION OF RESERVOIR HETEROGENEITY: APPLICATION TO THE CHARACTERIZATION OF HEAVY OIL RESERVOIRS  

SciTech Connect

The objective of the project was to examine how seismic and geologic data can be used to improve characterization of small-scale heterogeneity and their parameterization in reservoir models. The study focused on West Coalinga Field in California. The project initially attempted to build reservoir models based on different geologic and geophysical data independently using different tools, then to compare the results, and ultimately to integrate them all. We learned, however, that this strategy was impractical. The different data and tools need to be integrated from the beginning because they are all interrelated. This report describes a new approach to geostatistical modeling and presents an integration of geology and geophysics to explain the formation of the complex Coalinga reservoir.

Matthias G. Imhof; James W. Castle

2005-02-01T23:59:59.000Z

357

SEISMIC DETERMINATION OF RESERVOIR HETEROGENEITY: APPLICATION TO THE CHARACTERIZATION OF HEAVY OIL RESERVOIRS  

SciTech Connect

The objective of the project was to examine how seismic and geologic data can be used to improve characterization of small-scale heterogeneity and their parameterization in reservoir models. The study focused on West Coalinga Field in California. The project initially attempted to build reservoir models based on different geologic and geophysical data independently using different tools, then to compare the results, and ultimately to integrate them all. Throughout the project, however, we learned that this strategy was impractical because the different data and model are complementary instead of competitive. For the complex Coalinga field, we found that a thorough understanding of the reservoir evolution through geologic times provides the necessary framework which ultimately allows integration of the different data and techniques.

Matthias G. Imhof; James W. Castle

2005-02-01T23:59:59.000Z

358

Simulating CO2 storage in saline aquifers with improved code RCB  

Science Conference Proceedings (OSTI)

The geological storage of CO2 in saline aquifers is believed to be one of the most promising ways to reduce the concentration of the greenhouse gas in the atmosphere. Injection of CO2 will, however, lead to dissolution of minerals in regions of lowered ... Keywords: CO2, RCB (retrasocodebright), gas density correction, gas solubility correction, geochemistry, geomechanics, improved Newton-Raphson iteration method, multiphase flow, relaxation factor, saline aquifer, simulation

Shunping Liu; Bjorn Kvamme

2007-11-01T23:59:59.000Z

359

Effects of Barometric Fluctuations on Well Water-Level Measurements and Aquifer Test Data  

Science Conference Proceedings (OSTI)

The Pacific Northwest National Laboratory, as part of the Hanford Groundwater Monitoring Project, examines the potential for offsite migration of contamination within underlying aquifer systems. Well water-level elevation measurements from selected wells within these aquifer systems commonly form the basis for delineating groundwater-flow patterns (i.e., flow direction and hydraulic gradient). In addition, the analysis of water-level responses obtained in wells during hydrologic tests provides estimates of hydraulic properties that are important for evaluating groundwater-flow velocity and transport characteristics. Barometric pressure fluctuations, however, can have a discernible impact on well water-level measurements. These barometric effects may lead to erroneous indications of hydraulic head within the aquifer. Total hydraulic head (i.e., sum of the water-table elevation and the atmospheric pressure at the water-table surface) within the aquifer, not well water-level elevation, is the hydrologic parameter for determining groundwater-flow direction and hydraulic gradient conditions. Temporal variations in barometric pressure may also adversely affect well water-level responses obtained during hydrologic tests. If significant, adjustments or removal of these barometric effects from the test-response record may be required for quantitative hydraulic property determination. This report examines the effects of barometric fluctuations on well water-level measurements and evaluates adjustment and removal methods for determining areal aquifer head conditions and aquifer test analysis. Two examples of Hanford Site unconfined aquifer tests are examined that demonstrate barometric response analysis and illustrate the predictive/removal capabilities of various methods for well water-level and aquifer total head values. Good predictive/removal characteristics were demonstrated with best corrective results provided by multiple-regression deconvolution methods.

FA Spane, Jr.

1999-12-16T23:59:59.000Z

360

Selection of best drilling, completion and stimulation method for coalbed methane reservoirs  

E-Print Network (OSTI)

Over the past three decades, coalbed methane (CBM) has moved from a mining hazard and novel unconventional resource to an important fossil fuel that accounts for approximately 10% of the U.S. natural gas production and reserves. The expansion of this industry required development of different drilling, completion and stimulation practices for CBM in specific North American basins, owing to the complex combinations of geologic settings and reservoir parameters encountered. These challenges led to many technology advances and to development of CBM drilling, completion and stimulation technology for specific geologic settings. The objectives of this study were to (1) determine which geologic parameters affect CBM drilling, completion and stimulation decisions, (2) identify to the engineering best practices for specific geologic settings, and (3) present these findings in decision charts or advisory systems that could be applied by industry professionals. To determine best drilling, completion and stimulation practices for CBM reservoirs, I reviewed literature and solicited opinions of industry experts through responses to a questionnaire. I identified thirteen geologic parameters (and their ranges of values) that are assessed when selecting CBM drilling, completion and stimulating applications. These are coal thickness, number of seams, areal extent, dip, depth, rank, gas content, formation pressure, permeability, water saturation, and compressive strength, as well as the vertical distribution of coal beds and distance from coal reservoirs to fracture barriers or aquifers. Next, I identified the optimum CBM drilling, completion and stimulating practices for specific combinations of these geologic parameters. The engineering best practices identified in this project may be applied to new or existing fields, to optimize gas reserves and project economics. I identified the best engineering practices for the different CBM basins in N.A and combined these results in the form of two decision charts that engineers may use to select best drilling and completion practices, as well as the optimal stimulation methods and fluids for specific geologic settings. The decision charts are presented in a Visual Basic Application software program to facilitate their use by engineers.

Ramaswamy, Sunil

2007-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "aquifer reservoirs water-only" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Waterflood and Enhanced Oil Recovery Studies using Saline Water and Dilute Surfactants in Carbonate Reservoirs  

E-Print Network (OSTI)

Water injection has been practiced to displace the hydrocarbons towards adjacent wells and to support the reservoir pressure at or above the bubble point. Recently, waterflooding in sandstone reservoirs, as secondary and tertiary modes, proved to decrease the residual oil saturation. In calcareous rocks, water from various resources (deep formation, seawater, shallow beds, lakes and rivers) is generally injected in different oil fields. The ions interactions between water molecules, salts ions, oil components, and carbonate minerals are still ambiguous. Various substances are usually added before or during water injection to enhance oil recovery such as dilute surfactant. Various methods were used including surface charge (zeta potential), static and dynamic contact angle, core flooding, inductively coupled plasma spectrometry, CAT scan, and geochemical simulation. Limestone and dolomite particles were prepared at different wettability conditions to mimic the actual carbonate reservoirs. In addition to seawater and dilute seawater (50, 20, 10, and 1 vol%), formation brine, shallow aquifer water, deionized water and different crude oil samples were used throughout this study. The crude oil/water/carbonates interactions were also investigated using short and long (50 cm) limestone and dolomite rocks at different wettability and temperature conditions. The aqueous ion interactions were extensively monitored via measuring their concentrations using advanced analytical techniques. The activity of the free ions, complexes, and ion pairs in aqueous solutions were simulated at high temperatures and pressures using OLI electrolyte simulation software. Dilute seawater decreased the residual oil saturation in some of the coreflood tests. Hydration and dehydration processes through decreasing and increasing salinity showed no impact on calcite wettability. Effect of individual ions (Ca, Mg, and Na) and dilute seawater injection on oil recovery was insignificant in compare to the dilute surfactant solutions (0.1 wt%). The reaction mechanisms were confirmed to be adsorption of hydroxide ions, complexes and ion pairs at the interface which subsequently altered the surface potential from positive to negative. Results in this study indicate multistage waterflooding can enhance oil recovery in the field under certain conditions. Mixed streams simulation results suggest unexpected ions interactions (NaCO3-1, HSO4-1, NaSO4-1 and SO4-2) with various activities trends especially at high temperatures.

Alotaibi, Mohammed

2011-12-01T23:59:59.000Z

362

Reservoir and injection technology: Geothermal reservoir engineering research at Stanford: Third annual report for the period October 1, 1986 through September 30, 1987: (Final report)  

DOE Green Energy (OSTI)

This paper discusses different aspects of geothermal reservoir engineering. General topics covered are: reinjection technology, reservoir technology, and heat extraction. (LSP)

Ramey, H.J. Jr.; Horne, R.N.; Miller, F.G.; Brigham, W.E.

1988-02-01T23:59:59.000Z

363

Quantification of Libby Reservoir Levels Needed to Maintain or Enhance Reservoir Fisheries, 1985 Annual Report.  

DOE Green Energy (OSTI)

The goal was to quantify seasonal water levels needed to maintain or enhance the reservoir fishery in Libby. This report summarizes data collected from July 1984 through July 1985, and, where appropriate, presents data collected since 1983. The Canada, Rexford, and Tenmile areas of the reservoir are differentially affected by drawdown. Relative changes in water volume and surface area are greatest in the Canada area and smallest in the Tenmile area. Reservoir morphology and hydraulics probably play a major role in fish distribution through their influence on water temperature. Greatest areas of habitat with optimum water temperature for Salmo spp. and kokanee occurred during the spring and fall months. Dissolved oxygen, pH and conductivity levels were not limiting during any sampling period. Habitat enhancement work was largely unsuccessful. Littoral zone vegetation plantings did not survive well, primarily the result of extreme water level fluctuations. Relative abundances of fish species varied seasonally within and between the three areas. Water temperature is thought to be the major influence in fish distribution patterns. Other factors, such as food availability and turbidity, may mitigate its influence. Sampling since 1975 illustrates a continued increase in kokanee numbers and a dramatic decline in redside shiners. Salmo spp., bull trout, and burbot abundances are relatively low while peamouth and coarsescale sucker numbers remain high. A thermal dynamics model and a trophic level components model will be used to quantify the impact of reservoir operation on the reservoir habitat, primary production, secondary production and fish populations. Particulate carbon will be used to track energy flow through trophic levels. A growth-driven population dynamics simulation model that will estimate the impacts of reservoir operation on fish population dynamics is also being considered.

Chisholm, Ian

1985-01-01T23:59:59.000Z

364

Time scales of DNAPL migration in sandy aquifers examined via numerical simulation  

Science Conference Proceedings (OSTI)

The time required for dense nonaqueous phase liquid (DNAPL) to cease migrating following release to the subsurface is a valuable component of a site conceptual model. This study uses numerical simulation to investigate the migration of six different DNAPLs in sandy aquifers. The most influential parameters governing migration cessation time are the density and viscosity of the DNAPL and the mean hydraulic conductivity of the aquifer. Releases of between 1 and 40 drums of chlorinated solvent DNAPLs, characterized by relatively high density and low viscosity, require on the order of months to a few years to cease migrating in a heterogeneous medium sand aquifer having an average hydraulic conductivity of 7.4 x 10{sup -3} cm/s. In contrast to this, the release of 20 drums of coal tar {rho}{sub D} = 1061 kg/m{sup 3}, {mu}{sub D} = 0.161 Pa(.)s) requires more than 100 years to cease migrating in the same aquifer. Altering the mean hydraulic conductivity of the aquifer results in a proportional change in cessation times. Parameters that exhibit relatively little influence on migration time scales are the DNAPL-water interfacial tension, release volume, source capillary pressure, mean aquifer porosity, and ambient ground water hydraulic gradient. This study also demonstrates that low-density DNAPLs (e.g., coal tar) give rise to greater amounts of lateral spreading and greater amounts of pooling on capillary barriers than high-density DNAPLs such as trichloroethylene or tetrachloroethylene.

Gerhard, J.I.; Pang, T.; Kueper, B.H. [University of Edinburgh, Edinburgh (United Kingdom). Inst. of Infrastructure & Environmental

2007-03-15T23:59:59.000Z

365

Borehole geophysics evaluation of the Raft River geothermal reservoir |  

Open Energy Info (EERE)

reservoir reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Borehole geophysics evaluation of the Raft River geothermal reservoir Details Activities (1) Areas (1) Regions (0) Abstract: Borehole geophysics techniques were used in evaluating the Raft River geothermal reservoir to establish a viable model for the system. The assumed model for the hot water (145/sup 0/C) reservoir was a zone of higher conductivity, increased porosity, decreased density, and lower sonic velocity. It was believed that the long term contact with the hot water would cause alteration producing these effects. With this model in mind, cross-plots of the above parameters were made to attempt to delineate the reservoir. It appears that the most meaningful data include smoothed and

366

FLUID STRATIGRAPHY OF THE COSO GEOTHERMAL RESERVOIR | Open Energy  

Open Energy Info (EERE)

FLUID STRATIGRAPHY OF THE COSO GEOTHERMAL RESERVOIR FLUID STRATIGRAPHY OF THE COSO GEOTHERMAL RESERVOIR Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: FLUID STRATIGRAPHY OF THE COSO GEOTHERMAL RESERVOIR Details Activities (1) Areas (1) Regions (0) Abstract: A fluid model for the Coso geothermal reservoir is developed from Fluid Inclusion Stratigraphy (FIS) analyses. Fluid inclusion gas chemistry in well cuttings collected at 20 ft intervals is analyzed and plotted on well log diagrams. The working hypothesis is that select gaseous species and species ratios indicate areas of groundwater and reservoir fluid flow, fluid processes and reservoir seals. Boiling and condensate zones are distinguished. Models are created using cross-sections and fence diagrams. A thick condensate and boiling zone is indicated across the western portion

367

Fluid Stratigraphy and Permeable Zones of the Coso Geothermal Reservoir |  

Open Energy Info (EERE)

Stratigraphy and Permeable Zones of the Coso Geothermal Reservoir Stratigraphy and Permeable Zones of the Coso Geothermal Reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Fluid Stratigraphy and Permeable Zones of the Coso Geothermal Reservoir Details Activities (1) Areas (1) Regions (0) Abstract: A fence-diagram for the Coso geothermal reservoir is developed from Fluid Inclusion Stratigraphy (FIS) analyses. Fluid inclusion gas chemistry in well cuttings collected at 20 ft intervals is analyzed and plotted on well log diagrams. The working hypothesis is that select gaseous species and species ratios indicate areas of groundwater and reservoir fluid flow, fluid processes and reservoir seals. Boiling and condensate zones are distinguished. Permeable zones are indicated by a large change in

368

Geothermal Reservoir Technology Research Program: Abstracts of selected research projects  

DOE Green Energy (OSTI)

Research projects are described in the following areas: geothermal exploration, mapping reservoir properties and reservoir monitoring, and well testing, simulation, and predicting reservoir performance. The objectives, technical approach, and project status of each project are presented. The background, research results, and future plans for each project are discussed. The names, addresses, and telephone and telefax numbers are given for the DOE program manager and the principal investigators. (MHR)

Reed, M.J. (ed.)

1993-03-01T23:59:59.000Z

369

Fractured geothermal reservoir growth induced by heat extraction  

DOE Green Energy (OSTI)

Field testing of a hydraulically-stimulated, hot dry rock geothermal system at the Fenton Hill site in northern New Mexico has indicated that significant reservoir growth occurred as energy was extracted. Tracer, microseismic, and geochemical measurements provided the primary quantitative evidence for documenting the increases in accessible reservoir volume and fractured rock surface area that were observed during energy extraction operations which caused substantial thermal drawdown in portions of the reservoir. These temporal increases suggest that augmentation of reservoir heat production capacity in hot dry rock systems may be possible.

Tester, J.W.; Murphy, H.D.; Grigsby, C.O.; Robinson, B.A.; Potter, R.M.

1986-01-01T23:59:59.000Z

370

Hot dry rock geothermal reservoir testing: 1978 to 1980  

DOE Green Energy (OSTI)

Experimental results and re-evaluation of the Phase I Hot Dry Rock Geothermal Energy reservoirs at the Fenton Hill field site are summarized. This report traces reservoir growth as demonstrated during Run Segments 2 through 5 (January 1978 to December 1980). Reservoir growth was caused not only by pressurization and hydraulic fracturing, but also by heat extraction and thermal contraction effects. Reservoir heat-transfer area grew from 8000 to 50,000 m/sup 2/ and reservoir fracture volume grew from 11 to 266 m/sup 3/. Despite this reservoir growth, the water loss rate increased only 30%, under similar pressure environments. For comparable temperature and pressure conditions, the flow impedance (a measure of the resistance to circulation of water through the reservoir) remained essentially unchanged, and if reproduced in the Phase II reservoir under development, could result in self pumping. Geochemical and seismic hazards have been nonexistent in the Phase I reservoirs. The produced water is relatively low in total dissolved solids and shows little tendency for corrosion or scaling. The largest microearthquake associated with heat extraction measures less than -1 on the extrapolated Richter scale.

Dash, Z.V.; Murphy, H.D.; Cremer, G.M. (eds.)

1981-11-01T23:59:59.000Z

371

Scales of geologic reservoir description for engineering applications  

SciTech Connect

A consequence of the increased interaction between geologists and engineers in resolving reservoir problems has been an awareness on the part of geologists of the need to vary the scale of their geologic description according to particular engineering applications. Conventional geological descriptions are normally too detailed for reservoir engineering simulations and often are not in an appropriate form for relating to reservoir performance. An example is presented of two scales of description of a North Sea oil field for two different applications. The field is a Tertiary submarine slope-fan deposit consisting of thick unconsolidated channel sand facies, a lobe sand facies, and a slope claystone facies, all arranged into 12 stratigraphic units and several subunits. Permeability of the channel sands is about twice that of lobe sands, demonstrating a facies control on reservoir quality. For the purpose of calculating reservoir volumetrics, it was possible to scale up the stratigraphy, by combining similar stratigraphic units, into a simple four-layer reservoir model. Average porosity and permeability vary among the layers in this geologically based model. For the purpose of improving understanding of the reservoir, a more complex flow unit model was developed according to geological and petrophysical properties that would influence the flow of fluids in the reservoir. This model is partly based upon sedimentary facies distribution, but differs from a geologic facies model and is in a more suitable form for relating to reservoir performance.

Slatt, R.M.; Hopkins, G.L.

1988-01-01T23:59:59.000Z

372

Numerical simulation of water injection into vapor-dominated reservoirs  

DOE Green Energy (OSTI)

Water injection into vapor-dominated reservoirs is a means of condensate disposal, as well as a reservoir management tool for enhancing energy recovery and reservoir life. We review different approaches to modeling the complex fluid and heat flow processes during injection into vapor-dominated systems. Vapor pressure lowering, grid orientation effects, and physical dispersion of injection plumes from reservoir heterogeneity are important considerations for a realistic modeling of injection effects. An example of detailed three-dimensional modeling of injection experiments at The Geysers is given.

Pruess, K.

1995-01-01T23:59:59.000Z

373

,"Shale Natural Gas New Reservoir Discoveries in Old Fields ...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Shale Natural Gas New Reservoir Discoveries in Old Fields ",36,"Annual",2011,"6302009"...

374

Miscellaneous States Shale Gas Proved Reserves New Reservoir...  

U.S. Energy Information Administration (EIA) Indexed Site

to avoid disclosure of individual company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Shale Natural Gas New Reservoir Discoveries in Old Fields...

375

INJECTION AND THERMAL BREAKTHROUGH IN FRACTURED GEOTHERMAL RESERVOIRS  

E-Print Network (OSTI)

and Pruess, K. , Analysis of injection testing of geothermalreservoirs: Geothermal Resoures Council, Vol. 4. , (into a fractured geothermal reservoir: Transactions, Vol. 4,

Bodvarsson, Gudmundur S.

2012-01-01T23:59:59.000Z

376

,"West Virginia Crude Oil Reserves in Nonproducing Reservoirs...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2011 ,"Release...

377

,"North Dakota Crude Oil Reserves in Nonproducing Reservoirs...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2011 ,"Release...

378

,"New Mexico Crude Oil Reserves in Nonproducing Reservoirs (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2011 ,"Release...

379

,"New York Crude Oil Reserves in Nonproducing Reservoirs (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

380

,"Miscellaneous States Crude Oil Reserves in Nonproducing Reservoirs...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Miscellaneous States Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2011 ,"Release...

Note: This page contains sample records for the topic "aquifer reservoirs water-only" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

FRACSTIM/I: An Integrated Fracture Stimulation and Reservoir...  

Open Energy Info (EERE)

An Integrated Fracture Stimulation and Reservoir Flow and Transport Simulator Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011. Project Title...

382

An Integrated Study Method For Exploration Of Gas Hydrate Reservoirs...  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon An Integrated Study Method For Exploration Of Gas Hydrate Reservoirs In Marine Areas Jump to:...

383

Field Algae Measurements Using Empirical Correlations at Deer Creek Reservoir.  

E-Print Network (OSTI)

??Deer Creek Reservoir in Utah has a history of high algae concentrations. Despite recent nutrient reduction efforts, seasonal algae continue to present problems. Cost effective,… (more)

Stephens, Ryan A

2011-01-01T23:59:59.000Z

384

Carbonation Mechanism of Reservoir Rock by Supercritical Carbon...  

Open Energy Info (EERE)

Technologies Project Type Topic 2 Supercritical Carbon Dioxide Reservoir Rock Chemical Interactions Project Description Supercritical CO2 is currently becoming a more...

385

Modeling Of Hydraulic Fracture Network Propagation In Shale Gas Reservoirs.  

E-Print Network (OSTI)

??The most effective method for stimulating shale gas reservoirs is massive hydraulic fracture treatments. Recent fracture diagnostic technologies such as microseismic technology have shown that… (more)

Ahn, Chong

2012-01-01T23:59:59.000Z

386

Optimizing Development Strategies to Increase Reserves in Unconventional Gas Reservoirs  

E-Print Network (OSTI)

The ever increasing energy demand brings about widespread interest to rapidly, profitably and efficiently develop unconventional resources, among which tight gas sands hold a significant portion. However, optimization of development strategies in tight gas fields is challenging, not only because of the wide range of depositional environments and large variability in reservoir properties, but also because the evaluation often has to deal with a multitude of wells, limited reservoir information, and time and budget constraints. Unfortunately, classical full-scale reservoir evaluation cannot be routinely employed by small- to medium-sized operators, given its timeconsuming and expensive nature. In addition, the full-scale evaluation is generally built on deterministic principles and produces a single realization of the reservoir, despite the significant uncertainty faced by operators. This work addresses the need for rapid and cost-efficient technologies to help operators determine optimal well spacing in highly uncertain and risky unconventional gas reservoirs. To achieve the research objectives, an integrated reservoir and decision modeling tool that fully incorporates uncertainty was developed. Monte Carlo simulation was used with a fast, approximate reservoir simulation model to match and predict production performance in unconventional gas reservoirs. Simulation results were then fit with decline curves to enable direct integration of the reservoir model into a Bayesian decision model. These integrated tools were applied to the tight gas assets of Unconventional Gas Resources Inc. in the Berland River area, Alberta, Canada.

Turkarslan, Gulcan

2010-08-01T23:59:59.000Z

387

Synchrotron X-ray Studies of Supercritical Carbon Dioxide/ Reservoir...  

Open Energy Info (EERE)

Edit with form History Facebook icon Twitter icon Synchrotron X-ray Studies of Supercritical Carbon Dioxide Reservoir Rock Interfaces Geothermal Lab Call Project Jump to:...

388

Application of thermal depletion model to geothermal reservoirs...  

Open Energy Info (EERE)

of thermal depletion model to geothermal reservoirs with fracture and pore permeability Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings:...

389

Collection and Analysis of Reservoir Data from Testing and Operation...  

Open Energy Info (EERE)

and Analysis of Reservoir Data from Testing and Operation of the Raft River 5 MW Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference...

390

Geothermal Reservoir Assessment Case Study, Northern Basin and...  

Open Energy Info (EERE)

GLO2386 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Geothermal Reservoir Assessment Case Study, Northern Basin and Range...

391

FMI Borehole Geology, Geomechanics and 3D Reservoir Modeling...  

Open Energy Info (EERE)

NA, 2002 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for FMI Borehole Geology, Geomechanics and 3D Reservoir Modeling Citation...

392

Numerical Modeling of Gas Recovery from Methane Hydrate Reservoirs.  

E-Print Network (OSTI)

??ABSTRACTClass 1 hydrate deposits are characterized by a hydrate bearing layer underlain by a two phase, free-gas and water, zone. A Class 1 hydrate reservoir… (more)

Silpngarmlert, Suntichai

2007-01-01T23:59:59.000Z

393

AN ADVISORY SYSTEM FOR THE DEVELOPMENT OF UNCONVENTIONAL GAS RESERVOIRS.  

E-Print Network (OSTI)

??With the rapidly increasing demand for energy and the increasing prices for oil and gas, the role of unconventional gas reservoirs (UGRs) as energy sources… (more)

Wei, Yunan

2010-01-01T23:59:59.000Z

394

Evaluation of testing and reservoir parameters in geothermal...  

Open Energy Info (EERE)

testing and reservoir parameters in geothermal wells at Raft River and Boise, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Evaluation...

395

,"U.S. Coalbed Methane Proved Reserves New Reservoir Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves New Reservoir Discoveries in Old Fields (Billion Cubic...

396

Evaluation of Fluid Transport Properties of Coal Bed Methane Reservoirs.  

E-Print Network (OSTI)

??Determination of petro-physical properties of coal bed methane (CBM) reservoirs is essential in evaluating a potential prospect for commercial exploitation. In particular, permeability is the… (more)

Alexis, Dennis Arun

2013-01-01T23:59:59.000Z

397

Use Of Electrical Surveys For Geothermal Reservoir Characterization...  

Open Energy Info (EERE)

Use Of Electrical Surveys For Geothermal Reservoir Characterization- Beowawe Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Use Of...

398

Steamflooding as an alternative EOR process for light oil reservoirs  

Science Conference Proceedings (OSTI)

This paper seeks to stimulate consideration of steamflooding as a viable alternative to chemical enhanced oil recovery (EOR) techniques in shallow, light-oil reservoirs. A highly implicit steamflood reservoir simulator was used to predict steamflood performance of a typical shallow oil reservoir. For this study, non-uniform oil saturations were created by simulating a waterflood prior to initiating each steam injection case. The effects of final waterflood water-oil ratio, reservoir thickness, and amount of distillable component in the crude were examined. 10 refs.

Hanzlik, E.J.

1981-01-01T23:59:59.000Z

399

,"California Dry Natural Gas New Reservoir Discoveries in Old...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic...

400

Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada...  

Open Energy Info (EERE)

Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada, Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

Note: This page contains sample records for the topic "aquifer reservoirs water-only" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Two-dimensional simulation of the Raft River geothermal reservoir...  

Open Energy Info (EERE)

and wells. (SINDA-3G program) Details Activities (1) Areas (1) Regions (0) Abstract: Computer models describing both the transient reservoir pressure behavior and the time...

402

EIA - Natural Gas Pipeline Network - Depleted Reservoir Storage...  

Annual Energy Outlook 2012 (EIA)

Depleted Reservoir Storage Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Depleted Production...

403

,"Texas Dry Natural Gas New Reservoir Discoveries in Old Fields...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic...

404

The Optimization of Well Spacing in a Coalbed Methane Reservoir  

E-Print Network (OSTI)

Numerical reservoir simulation has been used to describe mechanism of methane gas desorption process, diffusion process, and fluid flow in a coalbed methane reservoir. The reservoir simulation model reflects the response of a reservoir system and the relationship among coalbed methane reservoir properties, operation procedures, and gas production. This work presents a procedure to select the optimum well spacing scenario by using a reservoir simulation. This work uses a two-phase compositional simulator with a dual porosity model to investigate well-spacing effects on coalbed methane production performance and methane recovery. Because of reservoir parameters uncertainty, a sensitivity and parametric study are required to investigate the effects of parameter variability on coalbed methane reservoir production performance and methane recovery. This thesis includes a reservoir parameter screening procedures based on a sensitivity and parametric study. Considering the tremendous amounts of simulation runs required, this work uses a regression analysis to replace the numerical simulation model for each wellspacing scenario. A Monte Carlo simulation has been applied to present the probability function. Incorporated with the Monte Carlo simulation approach, this thesis proposes a well-spacing study procedure to determine the optimum coalbed methane development scenario. The study workflow is applied in a North America basin resulting in distinct Net Present Value predictions between each well-spacing design and an optimum range of well-spacing for a particular basin area.

Sinurat, Pahala Dominicus

2010-12-01T23:59:59.000Z

405

,"New Mexico--West Crude Oil Reserves in Nonproducing Reservoirs...  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

406

,"New Mexico--East Crude Oil Reserves in Nonproducing Reservoirs...  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

407

,"New Mexico Dry Natural Gas New Reservoir Discoveries in Old...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic...

408

,"Texas--State Offshore Crude Oil Reserves in Nonproducing Reservoirs...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million...

409

Modelling the propagation of turbid density inflows into a stratified lake: Daecheong Reservoir, Korea  

Science Conference Proceedings (OSTI)

Many reservoirs and associated downstream ecosystems located in the Asian monsoon climate region are under increased pressure from the long-term negative effects of turbid flood runoff. Despite the ubiquitous use of turbidity (C"T) as a barometer of ... Keywords: Daecheong Reservoir, ELCOM-CAEDYM, Real-time reservoir management, Reservoir density flow, Stratified reservoir, Turbidity modelling

S. W. Chung; M. R. Hipsey; J. Imberger

2009-12-01T23:59:59.000Z

410

Seventeenth workshop on geothermal reservoir engineering: Proceedings  

DOE Green Energy (OSTI)

PREFACE The Seventeenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 29-31, 1992. There were one hundred sixteen registered participants which equaled the attendance last year. Participants were from seven foreign countries: Italy, Japan, United Kingdom, France, Belgium, Mexico and New Zealand. Performance of many geothermal fields outside the United States was described in the papers. The Workshop Banquet Speaker was Dr. Raffaele Cataldi. Dr. Cataldi gave a talk on the highlights of his geothermal career. The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy was awarded to Dr. Cataldi. Dr. Frank Miller presented the award at the banquet. Thirty-eight papers were presented at the Workshop with two papers submitted for publication only. Dr. Roland Horne opened the meeting and the key note speaker was J.E. ''Ted'' Mock who discussed the DOE Geothermal R. & D. Program. The talk focused on aiding long-term, cost effective private resource development. Technical papers were organized in twelve sessions concerning: geochemistry, hot dry rock, injection, geysers, modeling, and reservoir mechanics. Session chairmen were major contributors to the program and we thank: Sabodh Garg., Jim Lovekin, Jim Combs, Ben Barker, Marcel Lippmann, Glenn Horton, Steve Enedy, and John Counsil. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate audiovisual equipment and to Francois Groff who coordinated the meeting arrangements for the Workshop. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook -vii

Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Cook, J.W. (Stanford Geothermal Program) [Stanford Geothermal Program

1992-01-31T23:59:59.000Z

411

APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SANANDRES RESERVOIR  

Science Conference Proceedings (OSTI)

The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; (7) Mobility control agents.

Unknown

2003-01-15T23:59:59.000Z

412

Use of TOUGHREACT to Simulate Effects of Fluid Chemistry on Injectivity in Fractured Geothermal Reservoirs with High Ionic Strength Fluids  

E-Print Network (OSTI)

be close to the produced reservoir water without surfaceof directly using the produced reservoir water, the Pitzerusing the produced reservoir and the mixing waters for each

Xu, Tianfu; Zhang, Guoxiang; Pruess, Karsten

2005-01-01T23:59:59.000Z

413

DESCRIPTION OF THE THREE-DIMENSIONAL TWO-PHASE SIMULATOR SHAFT78 FOR USE IN GEOTHERMAL RESERVOIR STUDIES  

E-Print Network (OSTI)

i n Vapor-Dominated Geothermal Reservoirs, I' Report No. 76-G. : Three- . Dimensional Geothermal Reservoir Simulation,f1161. Coats, K. H. : "Geothermal Reservoir Modeling," paper

Pruess, K.

2011-01-01T23:59:59.000Z

414

Transient pressure analysis in composite reservoirs  

Science Conference Proceedings (OSTI)

The problem of fluid flow in a radially composite reservoir is discussed. Recently published was the most general analytic solution available thus far. That analytic solution is analyzed, and the results are presented. The solution is dependent upon the following dimensionless parameters (if well-bore storage and skin effect are neglected): (1) dimensionless time based on the discontinuity radius, (2) the dimensionless discontinuity radius, (3) the mobility ratio, and (4) the diffusivity ratio. The range of parameters used in generating the results include dimensionless radius time of 0.01 t

Tang, R.W.K.; Brigham, W.E.

1982-08-01T23:59:59.000Z

415

Geothermal Reservoir Well Stimulation Program: technology transfer  

DOE Green Energy (OSTI)

A literature search on reservoir and/or well stimulation techniques suitable for application in geothermal fields is presented. The literature on stimulation techniques in oil and gas field applications was also searched and evaluated as to its relevancy to geothermal operations. The equivalent low-temperature work documented in the open literature is cited, and an attempt is made to evaluate the relevance of this information as far as high-temperature stimulation work is concerned. Clays play an important role in any stimulation work. Therefore, special emphasis has been placed on clay behavior anticipated in geothermal operations. (MHR)

Not Available

1980-05-01T23:59:59.000Z

416

Seismic Determination of Reservoir Heterogeneity: Application to the Characterization of Heavy Oil Reservoirs  

SciTech Connect

The objective of the project was to examine how seismic and geologic data could be used to improve characterization of small-scale heterogeneity and their parameterization in reservoir models. Performed a theoretical and numerical study to examine which subsurface features the surface seismic method actually resolves.

Imhof, Matthias G.; Castle, James W.

2003-03-12T23:59:59.000Z

417

Potential energy savings from aquifer thermal energy storage  

DOE Green Energy (OSTI)

Pacific Northwest Laboratory researchers developed an aggregate-level model to estimate the short- and long-term potential energy savings from using aquifer thermal storage (ATES) in the United States. The objectives of this effort were to (1) develop a basis from which to recommend whether heat or chill ATES should receive future research focus and (2) determine which market sector (residential, commercial, or industrial) offers the largest potential energy savings from ATES. Information was collected on the proportion of US land area suitable for ATES applications. The economic feasibility of ATES applications was then evaluated. The potential energy savings from ATES applications was calculated. Characteristic energy use in the residential, commercial, and industrial sectors was examined, as was the relationship between waste heat production and consumption by industrial end-users. These analyses provided the basis for two main conclusions: heat ATES applications offer higher potential for energy savings than do chill ATES applications; and the industrial sector can achieve the highest potential energy savings for the large consumption markets. Based on these findings, it is recommended that future ATES research and development efforts be directed toward heat ATES applications in the industrial sector. 11 refs., 6 figs., 9 tabs.

Anderson, M.R.; Weijo, R.O.

1988-07-01T23:59:59.000Z

418

Groundwater Manual for the Electric Utility Industry, Second Edition, Volume 1: Groundwater Laws, Geologic Formations, and Groundwat er Aquifers: Volume 1: Groundwater Laws, Geologic Formations, and Groundwater Aquifers  

Science Conference Proceedings (OSTI)

This comprehensive manual brings together hydrogeologic information on subsurface water resources, the fundamentals of aqueous geochemistry, and details on state and federal groundwater laws and regulations. Designed for utility personnel responsible for power plant construction, management, and operation, this manual discusses groundwater management and aquifer protection.

1991-10-14T23:59:59.000Z

419

Reservoir technology - geothermal reservoir engineering research at Stanford. Fifth annual report, October 1, 1984-September 30, 1985  

DOE Green Energy (OSTI)

The objective is to carry out research on geothermal reservoir engineering techniques useful to the geothermal industry. A parallel objective is the training of geothermal engineers and scientists. The research is focused toward accelerated development of hydrothermal resources through the evaluation of fluid reserves, and the forecasting of field behavior with time. Injection technology is a research area receiving special attention. The program is divided into reservoir definition research, modeling of heat extraction from fractured reservoirs, application and testing of new and proven reservoir engineering technology, and technology transfer. (ACR)

Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.

1985-09-01T23:59:59.000Z

420

Application of integrated reservoir management and reservoir characterization to optimize infill drilling. Annual report, June 13, 1994--June 12, 1995  

SciTech Connect

This project has used a multi-disciplinary approach employing geology, geophysics, and engineering to conduct advanced reservoir characterization and management activities to design and implement an optimized infill drilling program at the North Robertson (Clearfork) Unit in Gaines County, Texas. The activities during the first Budget Period have consisted of developing an integrated reservoir description from geological, engineering, and geostatistical studies, and using this description for reservoir flow simulation. Specific reservoir management activities are being identified and tested. The geologically targeted infill drilling program will be implemented using the results of this work. A significant contribution of this project is to demonstrate the use of cost-effective reservoir characterization and management tools that will be helpful to both independent and major operators for the optimal development of heterogeneous, low permeability shallow-shelf carbonate (SSC) reservoirs. The techniques that are outlined for the formulation of an integrated reservoir description apply to all oil and gas reservoirs, but are specifically tailored for use in the heterogeneous, low permeability carbonate reservoirs of West Texas.

Pande, P.K.

1996-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "aquifer reservoirs water-only" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Time-lapse gravity monitoring: A systematic 4D approach with application to aquifer storage and recovery  

E-Print Network (OSTI)

microgravity method for waterflood surveillance: 2 -- Gravity measure- ments for the Prudhoe Bay reservoir

422

Hydrologic characterization of the unconfined aquifer at the General Motors Harrison Division Plant, Tuscaloosa, Alabama  

Science Conference Proceedings (OSTI)

General Motors (GM) is studying the feasibility of aquifer thermal energy storage (ATES) for air conditioning at their Harrison Division plant located in Tuscaloosa, Alabama. Pacific Northwest Laboratory (PNL) has assisted in this effort by conducting field tests to measure the hydraulic properties of the proposed ATES well field, which will be within the unconfined aquifer and adjacent to the GM plant. Results showed that in the vicinity of the test well, transmissivity was 2000 ft{sup 2}/d, effective aquifer thickness was 50 ft, effective porosity was 6.2%, hydraulic gradient was 0.005, and seepage velocity was 3.2 ft/d. A second test series at a newly constructed well was expanded to include measuring specific capacity and investigating the vertical distribution of flow within the aquifer. Specific objectives were to determine the injection capacity of the aquifer and to examine efficiency of the well design. Transmissivity was 2300 to 2600 ft{sup 2}/d, effective aquifer thickness was 58 ft, effective porosity was 6.0 to 8.0%, hydraulic gradient was 0.0047, and seepage velocity was 3.1 to 2.7 ft/d. Injection capacity, based on a step-injection test, was approximately 17 gpm/ft and was independent of flow rate within the experimental range 90 to 338 gpm. Maximum hydraulic conductivity occurred within the uppermost 20 ft of saturated sediments, which consisted of well-sorted sand. Below the sand, sorting was progressively poorer with depth, and hydraulic conductivity decreased smoothly. At the base of the aquifer, hydraulic conductivity was less than 10% of that of the uppermost 20 ft. 7 refs., 10 figs.

Hall, S.H.; Newcomer, D.R.; Luttrell, S.P.

1991-03-01T23:59:59.000Z

423

Controls on reservoir development in Devonian Chert: Permian Basin, Texas  

SciTech Connect

Chert reservoirs of the Lower Devonian Thirtyone Formation contain a significant portion of the hydrocarbon resource in the Permian basin. More than 700 million bbl of oil have been produced from these rocks, and an equivalent amount of mobile oil remains. Effective exploitation of this sizable remaining resource, however, demands a comprehensive appreciation of the complex factors that have contributed to reservoir development. Analysis of Thirtyone Formation chert deposits in Three Bar field and elsewhere in the Permian basin indicates that reservoirs display substantial heterogeneity resulting from depositional, diagenetic, and structural processes. Large-scale reservoir geometries and finer scale, intra-reservoir heterogeneity are primarily attributable to original depositional processes. Despite facies variations, porosity development in these cherts is principally a result of variations in rates and products of early silica diagenesis. Because this diagenesis was in part a function of depositional facies architecture, porosity development follows original depositional patterns. In reservoirs such as Three Bar field, where the Thirtyone Formation has been unroofed by Pennsylvanian deformation, meteoric diagenesis has created additional heterogeneity by causing dissolution of chert and carbonate, especially in areas of higher density fracturing and faulting and along truncated reservoir margins. Structural deformation also has exerted direct controls on heterogeneity that are particularly noteworthy in reservoirs under waterflood. High-density fracture zones create preferred flow paths that result in nonuniform sweep through the reservoir. Faulting locally creates compartments by offsetting reservoir flow units. As such, the processes and models defined here improve understanding of the causes of heterogeneity in all Thirtyone chert reservoirs in the Permian basin and aid recovery of the sizable hydrocarbon resource remaining in these rocks.

Ruppel, S.C.; Hovorka, S.D. [Univ. of Texas, Austin, TX (United States)

1995-12-01T23:59:59.000Z

424

Multigrid methods with applications to reservoir simulation  

Science Conference Proceedings (OSTI)

Multigrid methods are studied for solving elliptic partial differential equations. Focus is on parallel multigrid methods and their use for reservoir simulation. Multicolor Fourier analysis is used to analyze the behavior of standard multigrid methods for problems in one and two dimensions. Relation between multicolor and standard Fourier analysis is established. Multiple coarse grid methods for solving model problems in 1 and 2 dimensions are considered; at each coarse grid level we use more than one coarse grid to improve convergence. For a given Dirichlet problem, a related extended problem is first constructed; a purification procedure can be used to obtain Moore-Penrose solutions of the singular systems encountered. For solving anisotropic equations, semicoarsening and line smoothing techniques are used with multiple coarse grid methods to improve convergence. Two-level convergence factors are estimated using multicolor. In the case where each operator has the same stencil on each grid point on one level, exact multilevel convergence factors can be obtained. For solving partial differential equations with discontinuous coefficients, interpolation and restriction operators should include information about the equation coefficients. Matrix-dependent interpolation and restriction operators based on the Schur complement can be used in nonsymmetric cases. A semicoarsening multigrid solver with these operators is used in UTCOMP, a 3-D, multiphase, multicomponent, compositional reservoir simulator. The numerical experiments are carried out on different computing systems. Results indicate that the multigrid methods are promising.

Xiao, Shengyou

1994-05-01T23:59:59.000Z

425

INNOVATIVE MIOR PROCESS UTILIZING INDIGENOUS RESERVOIR CONSTITUENTS  

Science Conference Proceedings (OSTI)

This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions and technologies for improving oil production. The goal was to identify and utilize indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents. Experimental laboratory work in model sandpack cores was conducted using microbial cultures isolated from produced water samples. Comparative laboratory studies demonstrating in situ production of microbial products as oil recovery agents were conducted in sand packs with natural field waters using cultures and conditions representative of oil reservoirs. Increased oil recovery in multiple model sandpack systems was achieved and the technology and results were verified by successful field studies. Direct application of the research results has lead to the development of a feasible, practical, successful, and cost-effective technology which increases oil recovery. This technology is now being commercialized and applied in numerous field projects to increase oil recovery. Two field applications of the developed technology reported production increases of 21% and 24% in oil recovery.

D.O. Hitzman; A.K. Stepp; D.M. Dennis; L.R. Graumann

2003-09-01T23:59:59.000Z

426

Twentieth workshop on geothermal reservoir engineering: Proceedings  

DOE Green Energy (OSTI)

PREFACE The Twentieth Workshop on Geothermal Reservoir Engineering, dedicated to the memory of Professor Hank Ramey, was held at Stanford University on January 24-26, 1995. There were ninety-five registered participants. Participants came from six foreign countries: Japan, Mexico, England, Italy, New Zealand and Iceland. The performance of many geothermal reservoirs outside the United States was described in several of the papers. Professor Roland N. Horne opened the meeting and welcomed visitors to the campus. The key note speaker was Marshall Reed, who gave a brief overview of the Department of Energy's current plan. Thirty-two papers were presented in the technical sessions of the workshop. Technical papers were organized into eleven sessions concerning: field development, modeling, well tesubore, injection, geoscience, geochemistry and field operations. Session chairmen were major contributors to the workshop, and we thank: Ben Barker, Bob Fournier, Mark Walters, John Counsil, Marcelo Lippmann, Keshav Goyal, Joel Renner and Mike Shook. In addition to the technical sessions, a panel discussion was held on ''What have we learned in 20 years?'' Panel speakers included Patrick Muffler, George Frye, Alfred Truesdell and John Pritchett. The subject was further discussed by Subir Sanyal, who gave the post-dinner speech at the banquet. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank our students who operated the audiovisual equipment. Shaun D. Fitzgerald Program Manager

None

1995-01-26T23:59:59.000Z

427

INNOVATIVE MIOR PROCESS UTILIZING INDIGENOUS RESERVOIR CONSTITUENTS  

SciTech Connect

This research program is directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal is to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with inorganic nutrient amendments to increase oil recovery.This microbial technology has the capability of producing multiple oil releasing agents. The potential of the system will be illustrated and demonstrated by the example of biopolymer production on oil recovery. Research has begun on the program and experimental laboratory work is underway. Polymer-producing cultures have been isolated from produced water samples and initially characterized. Concurrently, a microcosm scale sand-packed column has been designed and developed for testing cultures of interest, including polymer-producing strains. In research that is planned to begin in future work, comparative laboratory studies demonstrating in situ production of microbial products as oil recovery agents will be conducted in sand pack and cores with synthetic and natural field waters at concentrations, flooding rates, and with cultures and conditions representative of oil reservoirs.

D.O. Hitzman; S.A. Bailey

2000-01-01T23:59:59.000Z

428

Sixth workshop on geothermal reservoir engineering: Proceedings  

SciTech Connect

INTRODUCTION TO THE PROCEEDINGS OF THE SIXTH GEOTHERMAL RESERVOIR ENGINEERING WORKSHOP, STANFORD GEOTHERMAL PROGRAM Henry J. Ramey, Jr., and Paul Kruger Co-Principal Investigators Ian G. Donaldson Program Manager Stanford Geothermal Program The Sixth Workshop on Geothermal Reservoir Engineering convened at Stanford University on December 16, 1980. As with previous Workshops the attendance was around 100 with a significant participation from countries other than the United States (18 attendees from 6 countries). In addition, there were a number of papers from foreign contributors not able to attend. Because of the success of all the earlier workshops there was only one format change, a new scheduling of Tuesday to Thursday rather than the earlier Wednesday through Friday. This change was in general considered for the better and will be retained for the Seventh Workshop. Papers were presented on two and a half of the three days, the panel session, this year on the numerical modeling intercomparison study sponsored by the Department of Energy, being held on the second afternoon. This panel discussion is described in a separate Stanford Geothermal Program Report (SGP-TR42). This year there was a shift in subject of the papers. There was a reduction in the number of papers offered on pressure transients and well testing and an introduction of several new subjects. After overviews by Bob Gray of the Department of Energy and Jack Howard of Lawrence Berkeley Laboratory, we had papers on field development, geopressured systems, production engineering, well testing, modeling, reservoir physics, reservoir chemistry, and risk analysis. A total of 51 papers were contributed and are printed in these Proceedings. It was, however, necessary to restrict the presentations and not all papers printed were presented. Although the content of the Workshop has changed over the years, the format to date has proved to be satisfactory. The objectives of the Workshop, the bringing together of researchers, engineers and managers involved in geothermal reservoir study and development and the provision of a forum for the prompt and open reporting of progress and for the exchange of ideas, continue to be met . Active discussion by the majority of the participants is apparent both in and outside the workshop arena. The Workshop Proceedings now contain some of the most highly cited geothermal literature. Unfortunately, the popularity of the Workshop for the presentation and exchange of ideas does have some less welcome side effects. The major one is the developing necessity for a limitation of the number of papers that are actually presented. We will continue to include all offered papers in the Summaries and Proceedings. As in the recent past, this sixth Workshop was supported by a grant from the Department of Energy. This grant is now made directly to Stanford as part of the support for the Stanford Geothermal Program (Contract No. DE-AT03-80SF11459). We are certain that all participants join us in our appreciation of this continuing support. Thanks are also due to all those individuals who helped in so many ways: The members of the program committee who had to work so hard to keep the program to a manageable size - George Frye (Aminoil USA), Paul G. Atkinson (Union Oil Company). Michael L. Sorey (U.S.G.S.), Frank G. Miller (Stanford Geothermal Program), and Roland N. Horne (Stanford Geothermal Program). The session chairmen who contributed so much to the organization and operation of the technical sessions - George Frye (Aminoil USA), Phillip H. Messer (Union Oil Company), Leland L. Mink (Department of Energy), Manuel Nathenson (U.S.G.S.), Gunnar Bodvarsson (Oregon State University), Mohindar S. Gulati (Union Oil Company), George F. Pinder (Princeton University), Paul A. Witherspoon (Lawrence Berkeley Laboratory), Frank G. Miller (Stanford Geothermal Program) and Michael J. O'Sullivan (Lawrence Berkeley Laboratory). The many people who assisted behind the scenes, making sure that everything was prepared and organized - in particular we would like

Ramey, H.J. Jr.; Kruger, P. (eds.)

1980-12-18T23:59:59.000Z

429

Sixth workshop on geothermal reservoir engineering: Proceedings  

DOE Green Energy (OSTI)

INTRODUCTION TO THE PROCEEDINGS OF THE SIXTH GEOTHERMAL RESERVOIR ENGINEERING WORKSHOP, STANFORD GEOTHERMAL PROGRAM Henry J. Ramey, Jr., and Paul Kruger Co-Principal Investigators Ian G. Donaldson Program Manager Stanford Geothermal Program The Sixth Workshop on Geothermal Reservoir Engineering convened at Stanford University on December 16, 1980. As with previous Workshops the attendance was around 100 with a significant participation from countries other than the United States (18 attendees from 6 countries). In addition, there were a number of papers from foreign contributors not able to attend. Because of the success of all the earlier workshops there was only one format change, a new scheduling of Tuesday to Thursday rather than the earlier Wednesday through Friday. This change was in general considered for the better and will be retained for the Seventh Workshop. Papers were presented on two and a half of the three days, the panel session, this year on the numerical modeling intercomparison study sponsored by the Department of Energy, being held on the second afternoon. This panel discussion is described in a separate Stanford Geothermal Program Report (SGP-TR42). This year there was a shift in subject of the papers. There was a reduction in the number of papers offered on pressure transients and well testing and an introduction of several new subjects. After overviews by Bob Gray of the Department of Energy and Jack Howard of Lawrence Berkeley Laboratory, we had papers on field development, geopressured systems, production engineering, well testing, modeling, reservoir physics, reservoir chemistry, and risk analysis. A total of 51 papers were contributed and are printed in these Proceedings. It was, however, necessary to restrict the presentations and not all papers printed were presented. Although the content of the Workshop has changed over the years, the format to date has proved to be satisfactory. The objectives of the Workshop, the bringing together of researchers, engineers and managers involved in geothermal reservoir study and development and the provision of a forum for the prompt and open reporting of progress and for the exchange of ideas, continue to be met . Active discussion by the majority of the participants is apparent both in and outside the workshop arena. The Workshop Proceedings now contain some of the most highly cited geothermal literature. Unfortunately, the popularity of the Workshop for the presentation and exchange of ideas does have some less welcome side effects. The major one is the developing necessity for a limitation of the number of papers that are actually presented. We will continue to include all offered papers in the Summaries and Proceedings. As in the recent past, this sixth Workshop was supported by a grant from the Department of Energy. This grant is now made directly to Stanford as part of the support for the Stanford Geothermal Program (Contract No. DE-AT03-80SF11459). We are certain that all participants join us in our appreciation of this continuing support. Thanks are also due to all those individuals who helped in so many ways: The members of the program committee who had to work so hard to keep the program to a manageable size - George Frye (Aminoil USA), Paul G. Atkinson (Union Oil Company). Michael L. Sorey (U.S.G.S.), Frank G. Miller (Stanford Geothermal Program), and Roland N. Horne (Stanford Geothermal Program). The session chairmen who contributed so much to the organization and operation of the technical sessions - George Frye (Aminoil USA), Phillip H. Messer (Union Oil Company), Leland L. Mink (Department of Energy), Manuel Nathenson (U.S.G.S.), Gunnar Bodvarsson (Oregon State University), Mohindar S. Gulati (Union Oil Company), George F. Pinder (Princeton University), Paul A. Witherspoon (Lawrence Berkeley Laboratory), Frank G. Miller (Stanford Geothermal Program) and Michael J. O'Sullivan (Lawrence Berkeley Laboratory). The many people who assisted behind the scenes, making sure that everything was prepared and organized - in particular we would like to t

Ramey, H.J. Jr.; Kruger, P. (eds.)

1980-12-18T23:59:59.000Z

430

Reservoir description breathes new life into an old fireflood  

SciTech Connect

The MOCO T reservoir is a Miocene-age (''Stevens equivalent,'' Monterey Formation) unconsolidated sand reservoir in the Midway-Sunset field, Kern County, California. This reservoir was discovered in 1957 as a deeper pay beneath the Monarch and Webster reservoirs. Due to low prices for heavy oil (14/sup 0/ API), the MOCO T was only partially developed and remained essentially shut-in until initiation of in-situ combustion in 1960. Exploitation of the MOCO T by the combustion process continues today, with cumulative production to date of approximately 14 million bbl of oil. The MOCO T reservoir is approximately 500 ft thick and lies at an average drill depth of 2,100-2,700 ft. Based on modern core data and sand distribution maps, these sands were probably deposited by channelized turbidity currents that flowed southwest to northwest in this area. Detailed recorrelation of wireline logs, stratigraphic zonation, and description of individual zones of the MOCO T reservoir in the context of a channelized turbidite system have led to: (1) determination of probable flow paths, vertically and laterally, between injectors and producers by zone, (2) control for workovers to optimize conformance between injection and production intervals, and (3) identification of previously unrecognized and undeveloped reserves. Integration of this geologic model with an understanding of how the combustion front has advanced through the MOCO T reservoir has led to successful placement of infill wells to produce the reservoir more efficiently and completely.

Hall, B.R.

1988-01-01T23:59:59.000Z

431

Application of horizontal wells in steeply dipping reservoirs  

E-Print Network (OSTI)

A three-dimensional reservoir simulation study is performed to evaluate the impact of horizontal well applications on oil recovery from steeply dipping reservoirs. The Provincia field, located in Colombia, provided the basic reservoir information for the study. Reservoir simulation results indicate that for reservoir dip angles greater than about 40', this parameter has little or no effect on the primary recovery performance for homogeneous high-permeability reservoirs, The initial gascap size and the anisotropy of permeability (kv/kh ratio) are the dominant parameters affecting the oil recovery. For thin reservoirs, the location of the horizontal injector will not significantly affect the oil recovery. Simultaneous gas and water injection through horizontal wells can increase the oil recovery factor from almost 35% under primary production to 40%. A significant incremental oil recovery could be expected by employing horizontal wells for simultaneous gas and water injection. A comparison of the production performance of horizontal and vertical producers shows that a horizontal well can produce oil up to 2.5 times the oil rate of a vertical well, without a high rate of gas production. Also, the use of horizontal producers significantly accelerates the oil recovery. For the case of a homogeneous reservoir under simultaneous gas and water injection, the horizontal well system does not give a significant increment in the oil recovery compared to the vertical well system.

Lopez Navarro, Jose David

1995-01-01T23:59:59.000Z

432

Reservoir and injection technology and Heat Extraction Project  

DOE Green Energy (OSTI)

For the Stanford Geothermal Program in the fiscal year 1989, the task areas include predictive modeling of reservoir behavior and tracer test interpretation and testing. Major emphasis is in reservoir technology, reinjection technology, and heat extraction. Predictive modeling of reservoir behavior consists of a multi-pronged approach to well test analysis under a variety of conditions. The efforts have been directed to designing and analyzing well tests in (1) naturally fractured reservoirs; (2) fractured wells; (3) complex reservoir geometries; and, (4) gas reservoirs including inertial and other effects. The analytical solutions for naturally fractured reservoirs are determined using fracture size distribution. In the study of fractured wells, an elliptical coordinate system is used to obtain semi-analytical solutions to finite conductivity fractures. Effort has also been directed to the modeling and creation of a user friendly computer program for steam/gas reservoirs including wellbore storage, skin and non-Darcy flow effects. This work has a complementary effort on modeling high flow rate wells including inertial effects in the wellbore and fractures. In addition, work on gravity drainage systems is being continued.

Horne, R.N.; Ramey, H.H. Jr.; Miller, F.G.; Brigham, W.E.; Kruger, P.

1989-12-31T23:59:59.000Z

433

Resolution of reservoir scale electrical anisotropy from marine CSEM data  

Science Conference Proceedings (OSTI)

A combination of 1D and 3D forward and inverse solutions is used to quantify the sensitivity and resolution of conventional controlled source electromagnetic (CSEM) data collected using a horizontal electric dipole source to transverse electrical anisotropy located in a deep-water exploration reservoir target. Since strongly anisotropic shale layers have a vertical resistivity that can be comparable to many reservoirs, we examine how CSEM can discriminate confounding shale layers through their characteristically lower horizontal resistivity. Forward modeling demonstrates that the sensitivity to reservoir level anisotropy is very low compared to the sensitivity to isotropic reservoirs, especially when the reservoir is deeper than about 2 km below the seabed. However, for 1D models where the number of inversion parameters can be fixed to be only a few layers, both vertical and horizontal resistivity of the reservoir can be well resolved using a stochastic inversion. We find that the resolution of horizontal resistivity increases as the horizontal resistivity decreases. We show that this effect is explained by the presence of strong horizontal current density in anisotropic layers with low horizontal resistivity. Conversely, when the reservoir has a vertical to horizontal resistivity ratio of about 10 or less, the current density is vertically polarized and hence has little sensitivity to the horizontal resistivity. Resistivity anisotropy estimates from 3D inversion for 3D targets suggest that resolution of reservoir level anisotropy for 3D targets will require good a priori knowledge of the background sediment conductivity and structural boundaries.

Brown, V.; Hoversten, G.M.; Key, K.; Chen, J.

2011-10-01T23:59:59.000Z

434

Water reservoir control under economic, social and environmental constraints  

Science Conference Proceedings (OSTI)

Although great progress has been made in the last 40 years, efficient operation of water reservoir systems still remains a very active research area. The combination of multiple water uses, non-linearities in the model and in the objectives, strong uncertainties ... Keywords: Multiobjective optimisation, Multipurpose water reservoirs, Nonlinear control, Stochastic control, Uncertain dynamic systems

Andrea Castelletti; Francesca Pianosi; Rodolfo Soncini-Sessa

2008-06-01T23:59:59.000Z

435

Research to understand and predict geopressured reservoir characteristics with confidence  

DOE Green Energy (OSTI)

The Department of Energy's Geopressured Geothermal Program has sponsored a series of geoscience studies to resolve key uncertainties in the performance of geopressured reservoirs. The priority areas for research include improving the ability to predict reservoir size and flow capabilities, understanding the role of oil and gas in reservoir depletion and evaluating mechanisms for reservoir pressure maintenance. Long-term production from the Gladys McCall well has provided the basis for most of the current research efforts. The well was shut-in on October 29, 1987, for pressure recovery after producing over 27 million barrels of brine with associated gas. Geologic investigations are evaluating various mechanisms for pressure maintenance in this reservoir, including recharge from adjacent reservoirs or along growth faults, shale dewatering, and laterally overlapping and connected sandstone layers. Compaction studies using shale and sandstone core samples have provided data on the relationship between rock compression and reservoir pressure decline and the correlation to changes in porosity and permeability. The studies support the use of a porosity-coupled reservoir simulation model which has provided an excellent match to the well's production history. 10 refs., 3 figs.

Stiger, S.G.; Prestwich, S.M.

1988-01-01T23:59:59.000Z

436

Analysis of reservoir performance and forecasting for the eastern area of the C-2 Reservoir, Lake Maracaibo, Venezuela  

E-Print Network (OSTI)

This research developed a numerical simulation based on the latest reservoir description to evaluate the feasibility of new infill wells to maximize the recovery specifically in the eastern region of the reservoir operated by Petroleos de Venezuela S.A. (PDVSA). This research provides a full-field numerical simulation that predicts performance and aids in planning future development with infill wells for a reservoir located at the south of Block V, Lamar in Lake Maracaibo. The simulation is especially promising for the eastern region, which has the current highest oil production behavior. The final model achieved an acceptable history match for pressure and fluids for the entire reservoir, especially for the eastern area. On the basis of this model and an opportunity index, the best six infill wells should be located in the eastern area of the reservoir, which would increased the cumulated production in 44.5 MMSTB. This work is important because it provides the first numerical simulation for the entire reservoir that considers the new geological model developed during reservoir description. Furthermore, it provides PDVSA with a powerful tool for planning and reservoir management decisions, especially in the eastern area of the reservoir. Predictions resulting from this area show an important increment in the final reservoir recovery over the base case, production depletion under current conditions without any change. On the basis of these results, I strongly recommend starting a new infill drilling campaign in the eastern area as indicated by the simulation results to increase the oil rate reservoir productions and to improve total ultimate recovery.

Urdaneta Anez, Jackeline C

2001-01-01T23:59:59.000Z

437

Geothermal Reservoir Assessment Case Study, Northern Basin and Range  

Open Energy Info (EERE)

Reservoir Assessment Case Study, Northern Basin and Range Reservoir Assessment Case Study, Northern Basin and Range Province, Northern Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geothermal Reservoir Assessment Case Study, Northern Basin and Range Province, Northern Dixie Valley, Nevada Abstract N/A Authors Elaine J. Bell, Lawrence T. Larson and Russell W. Juncal Published U.S. Department of Energy, 1980 Report Number GLO2386 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Geothermal Reservoir Assessment Case Study, Northern Basin and Range Province, Northern Dixie Valley, Nevada Citation Elaine J. Bell,Lawrence T. Larson,Russell W. Juncal. 1980. Geothermal Reservoir Assessment Case Study, Northern Basin and Range Province,

438

Decline curve derivative analysis for homogeneous and composite reservoirs  

DOE Green Energy (OSTI)

In this study, the rate decline and rate decline derivatives of a constant pressure well are presented for infinite, constant pressure outer boundary, and closed outer boundary homogeneous reservoirs. A rate derivative type curve is provided for these cases as well. The effects of the dimensionless reservoir exterior radius are discussed. Rate decline and rate decline derivatives of a constant pressure well in an infinite composite reservoir are also presented. For composite reservoirs, the effects of mobility ratios and discontinuity distance on both rate decline and rate decline derivatives are presented. Type curves for dimensionless wellbore flow rate derivatives for infinite composite reservoirs are provided. A new correlating group for the derivative type curve is provided, and is different than the correlating group for the rate type curve presented in the past. Finally, an analysis method that comprises type curve and derivative type curve matching to determine the dimensionless variables is proposed and demonstrated with a simulated example.

Demski, J.A.

1987-06-01T23:59:59.000Z

439

Transient well testing in two-phase geothermal reservoirs  

DOE Green Energy (OSTI)

A study of well test analysis techniques in two-phase geothermal reservoirs has been conducted using a three-dimensional, two-phase, wellbore and reservoir simulation model. Well tests from Cerro Prieto and the Hawaiian Geothermal project have been history matched. Using these well tests as a base, the influence of reservoir permeability, porosity, thickness, and heat capacity, along with flow rate and fracturing were studied. Single and two-phase transient well test equations were used to analyze these tests with poor results due to rapidly changing fluid properties and inability to calculate the flowing steam saturation in the reservoir. The injection of cold water into the reservoir does give good data from which formation properties can be calculated.

Aydelotte, S.R.

1980-03-01T23:59:59.000Z

440

Property:AvgReservoirDepth | Open Energy Information  

Open Energy Info (EERE)

AvgReservoirDepth AvgReservoirDepth Jump to: navigation, search Property Name AvgReservoirDepth Property Type Quantity Description Average depth to reservoir Use this type to express a quantity of length. The default unit is the meter (m). Acceptable units (and their conversions) are: Meters - 1 m, meter, meters Meter, Meters, METER, METERS Kilometers - 0.001 km, kilometer, kilometers, Kilometer, Kilometers, KILOMETERS, KILOMETERS Miles - 0.000621371 mi, mile, miles, Mile, Miles, MILE, MILES Feet - 3.28084 ft, foot, feet, Foot, Feet, FOOT, FEET Yards - 1.09361 yd, yard, yards, Yard, Yards, YARD, YARDS Pages using the property "AvgReservoirDepth" Showing 24 pages using this property. A Amedee Geothermal Area + 213 m0.213 km 0.132 mi 698.819 ft 232.939 yd + B Beowawe Hot Springs Geothermal Area + 850 m0.85 km

Note: This page contains sample records for the topic "aquifer reservoirs water-only" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Lithology and alteration mineralogy of reservoir rocks at Coso Geothermal  

Open Energy Info (EERE)

Lithology and alteration mineralogy of reservoir rocks at Coso Geothermal Lithology and alteration mineralogy of reservoir rocks at Coso Geothermal Area, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Lithology and alteration mineralogy of reservoir rocks at Coso Geothermal Area, California Details Activities (1) Areas (1) Regions (0) Abstract: Coso is one of several high-temperature geothermal systems associated with recent volcanic activity in the Basin and Range province. Chemical and fluid inclusion data demonstrate that production is from a narrow, asymmetric plume of thermal water that originates from a deep reservoir to the south and then flows laterally to the north. Geologic controls on the geometry of the upwelling plume were investigated using petrographic and analytical analyses of reservoir rock and vein material.

442

Physical model of a fractured reservoir | Open Energy Information  

Open Energy Info (EERE)

model of a fractured reservoir model of a fractured reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Physical model of a fractured reservoir Details Activities (1) Areas (1) Regions (0) Abstract: The objectives of the physical modeling effort are to: (1) evaluate injection-backflow testing for fractured reservoirs under conditions of known reservoir parameters (porosity, fracture width, etc.); (2) study the mechanisms controlling solute transport in fracture systems; and (3) provide data for validation of numerical models that explicitly simulate solute migration in fracture systems. The fracture network is 0.57-m wide, 1.7-m long, and consists of two sets of fractures at right angles to one another with a fracture spacing of 10.2 cm. A series of

443

Characterization of geothermal reservoir crack patterns using shear-wave  

Open Energy Info (EERE)

geothermal reservoir crack patterns using shear-wave geothermal reservoir crack patterns using shear-wave splitting Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Characterization of geothermal reservoir crack patterns using shear-wave splitting Details Activities (1) Areas (1) Regions (0) Abstract: Microearthquakes recorded by a downhole, three-component seismic network deployed around the Coso, California, geothermal reservoir since 1992 display distinctive shear-wave splitting and clear polarization directions. From the polarizations the authors estimated three predominant subsurface fracture directions, and from the time delays of the split waves they determined tomographically the 3-D fracture density distribution in the reservoir. Author(s): Lou, M.; Rial, J.A. Published: Geophysics, 3/1/1997

444

Tectonic setting of the Coso geothermal reservoir | Open Energy Information  

Open Energy Info (EERE)

Tectonic setting of the Coso geothermal reservoir Tectonic setting of the Coso geothermal reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Tectonic setting of the Coso geothermal reservoir Details Activities (1) Areas (1) Regions (0) Abstract: The Coso geothermal reservoir is being developed in Sierran-type crystalline bedrock of the Coso Mountains, a small desert mountain range just to the east of the Sierra Nevada and Rose Valley, which is the southern extension of the Owens Valley of eastern California Optimum development of this reservoir requires an understanding of the fracture hydrology of the Coso Mountains crystalline terrain and its hydrologic connection to regional groundwater and thermal sources. An interpreted, conceptually balanced regional cross section that extends from the Sierra

445

Dams and Reservoirs Safety Act (South Carolina) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dams and Reservoirs Safety Act (South Carolina) Dams and Reservoirs Safety Act (South Carolina) Dams and Reservoirs Safety Act (South Carolina) < Back Eligibility Utility Commercial Agricultural Investor-Owned Utility Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Institutional Savings Category Water Buying & Making Electricity Program Info State South Carolina Program Type Siting and Permitting Provider South Carolina Department of Health and Environmental Control The Dams and Reservoirs Safety Act provides for the certification and inspection of dams in South Carolina and confers regulatory authority on the Department of Health and Environmental Control. Owners of dams and reservoirs are responsible for maintaining the safety of the structures,

446

Integrated Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada |  

Open Energy Info (EERE)

Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Integrated Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada Details Activities (2) Areas (1) Regions (0) Abstract: A 3-D surface seismic reflection survey, covering an area of over 3 square miles, was conducted at the Rye Patch geothermal reservoir (Nevada) to explore the structural features that may control geothermal production in the area. In addition to the surface sources and receivers, a high-temperature three-component seismometer was deployed in a borehole at a depth of 3900 ft within the basement below the reservoir, which recorded the waves generated by all surface sources. A total of 1959 first-arrival travel times were determined out of 2134 possible traces. Two-dimensional

447

Opportunities to improve oil productivity in unstructured deltaic reservoirs  

SciTech Connect

This report contains presentations presented at a technical symposium on oil production. Chapter 1 contains summaries of the presentations given at the Department of Energy (DOE)-sponsored symposium and key points of the discussions that followed. Chapter 2 characterizes the light oil resource from fluvial-dominated deltaic reservoirs in the Tertiary Oil Recovery Information System (TORIS). An analysis of enhanced oil recovery (EOR) and advanced secondary recovery (ASR) potential for fluvial-dominated deltaic reservoirs based on recovery performance and economic modeling as well as the potential resource loss due to well abandonments is presented. Chapter 3 provides a summary of the general reservoir characteristics and properties within deltaic deposits. It is not exhaustive treatise, rather it is intended to provide some basic information about geologic, reservoir, and production characteristics of deltaic reservoirs, and the resulting recovery problems.

Not Available

1991-01-01T23:59:59.000Z

448

Heat Extraction Project, geothermal reservoir engineering research at Stanford  

DOE Green Energy (OSTI)

The main objective of the SGP Heat Extraction Project is to provide a means for estimating the thermal behavior of geothermal fluids produced from fractured hydrothermal resources. The methods are based on estimated thermal properties of the reservoir components, reservoir management planning of production and reinjection, and the mixing of reservoir fluids: geothermal, resource fluid cooled by drawdown and infiltrating groundwater, and reinjected recharge heated by sweep flow through the reservoir formation. Several reports and publications, listed in Appendix A, describe the development of the analytical methods which were part of five Engineer and PhD dissertations, and the results from many applications of the methods to achieve the project objectives. The Heat Extraction Project is to evaluate the thermal properties of fractured geothermal resource and forecasted effects of reinjection recharge into operating reservoirs.

Kruger, P.

1989-01-01T23:59:59.000Z

449

Technical feasibility of chemical flooding in California reservoirs  

SciTech Connect

A study of the applicability of chemical flooding to California is presented. It is shown that the five processes reviewed (CO/sub 2/), micellar-polymer, polymer, caustic and hydrocarbon miscible can increase oil recovery from California reservoirs. Over one half of the 435 California reservoirs on which DOE has crude oil data contain oils with quantities of 25/degree/API or higher and viscosities of less than 20 cp. These reservoirs include sands in the large Wilmington, Belridge, Coalinga, Ventura and Midway Sunset fields. Based on crude oil properties, these reservoirs are candidates for all of the chemical flooding processes (Miscible and non-miscible. Economic success will depend on how well the problems of reservoir geology, CO/sub 2/ availability and mobility control, and surfactant and polymer quality are handled in the design and operation of each project. 40 refs.

Holm, L.W.

1982-01-01T23:59:59.000Z

450

Computational Intelligence for Deepwater Reservoir Depositional Environments Interpretation  

E-Print Network (OSTI)

Predicting oil recovery efficiency of a deepwater reservoir is a challenging task. One approach to characterize a deepwater reservoir and to predict its producibility is by analyzing its depositional information. This research proposes a deposition-based stratigraphic interpretation framework for deepwater reservoir characterization. In this framework, one critical task is the identification and labeling of the stratigraphic components in the reservoir, according to their depositional environments. This interpretation process is labor intensive and can produce different results depending on the stratigrapher who performs the analysis. To relieve stratigrapher's workload and to produce more consistent results, we have developed a novel methodology to automate this process using various computational intelligence techniques. Using a well log data set, we demonstrate that the developed methodology and the designed workflow can produce finite state transducer models that interpret deepwater reservoir depositional...

Yu, Tina; Clark, Julian; Sullivan, Morgan; 10.1016/j.jngse.2011.07.014

2013-01-01T23:59:59.000Z

451

Reviving Abandoned Reservoirs with High-Pressure Air Injection: Application in a Fractured and Karsted Dolomite Reservoir  

Science Conference Proceedings (OSTI)

Despite declining production rates, existing reservoirs in the United States contain vast volumes of remaining oil that is not being effectively recovered. This oil resource constitutes a huge target for the development and application of modern, cost-effective technologies for producing oil. Chief among the barriers to the recovery of this oil are the high costs of designing and implementing conventional advanced recovery technologies in these mature, in many cases pressure-depleted, reservoirs. An additional, increasingly significant barrier is the lack of vital technical expertise necessary for the application of these technologies. This lack of expertise is especially notable among the small operators and independents that operate many of these mature, yet oil-rich, reservoirs. We addressed these barriers to more effective oil recovery by developing, testing, applying, and documenting an innovative technology that can be used by even the smallest operator to significantly increase the flow of oil from mature U.S. reservoirs. The Bureau of Economic Geology and Goldrus Producing Company assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The Permian Basin, the largest oil-bearing basin in North America, contains more than 70 billion barrels of remaining oil in place and is an ideal venue to validate this technology. We have demonstrated the potential of HPAI for oil-recovery improvement in preliminary laboratory tests and a reservoir pilot project. To more completely test the technology, this project emphasized detailed characterization of reservoir properties, which were integrated to access the effectiveness and economics of HPAI. The characterization phase of the project utilized geoscientists and petroleum engineers from the Bureau of Economic Geology and the Department of Petroleum Engineering (both at The University of Texas at Austin) to define the controls on fluid flow in the reservoir as a basis for developing a reservoir model. The successful development of HPAI technology has tremendous potential for increasing the flow of oil from deep carbonate reservoirs in the Permian Basin, a target resource that can be conservatively estimated at more than 1.5 billion barrels. Successful implementation in the field chosen for demonstration, for example, could result in the recovery of more than 34 million barrels of oil that will not otherwise be produced. Geological and petrophysical analysis of available data at Barnhart field reveals the following important observations: (1) the Barnhart Ellenburger reservoir is similar to most other Ellenburger reservoirs in terms of depositional facies, diagenesis, and petrophysical attributes; (2) the reservoir is characterized by low to moderate matrix porosity much like most other Ellenburger reservoirs in the Permian Basin; (3) karst processes (cave formation, infill, and collapse) have substantially altered stratigraphic architecture and reservoir properties; (4) porosity and permeability increase with depth and may be associated with the degree of karst-related diagenesis; (5) tectonic fractures overprint the reservoir, improving overall connectivity; (6) oil-saturation profiles show that the oil-water contact (OWC) is as much as 125 ft lower than previous estimations; (7) production history and trends suggest that this reservoir is very similar to other solution-gas-drive reservoirs in the Permian Basin; and (8) reservoir simulation study showed that the Barnhart reservoir is a good candidate for HPAI and that application of horizontal-well technology can improve ultimate resource recovery from the