National Library of Energy BETA

Sample records for aquifer brine formations

  1. Ground-water hydraulics of the deep-basin brine aquifer, Palo Duro Basin, Texas panhandle

    SciTech Connect (OSTI)

    Smith, D.A.

    1985-01-01

    The Deep-Basin Brine aquifer of the Palo Duro Basin (Texas Panhandle) underlies thick Permian bedded evaporites that are being evaluated as a potential high-level nuclear waste isolation repository. Potentiometric surface maps of 5 units of the Deep-Basin Brine aquifer were drawn using drill-stem test (DST) pressure data, which were analyzed by a geostatistical technique (kriging) to smooth the large variation in the data. The potentiometric surface maps indicate that the Deep-Basin Brine aquifer could be conceptually modeled as 5 aquifer units; a Lower Permian (Wolfcamp) aquifer, upper and lower Pennsylvanian aquifers, a pre-Pennsylvanian aquifer, and a Pennsylvanian to Wolfcampian granite-wash aquifer. The hydraulic head maps indicate that ground-water flow in each of the units is west to east with a minor northerly component near the Amarillo Uplift, the northern structural boundary of the basin. The Wolfcamp potentiometric surface indicates the strongest component of northerly flow. Inferred flow direction in Pennsylvanian aquifers is easterly, and in the pre-Pennsylvanian aquifer near its pinch-out in the basin center, flow is inferred to be to the north. In the granite-wash aquifer the inferred flow direction is east across the northern edge of the basin and southeast along the Amarillo Uplift.

  2. Sensitivity study of CO2 storage capacity in brine aquifers withclosed boundaries: Dependence on hydrogeologic properties

    SciTech Connect (OSTI)

    Zhou, Q.; Birkholzer, J.; Rutqvist, J.; Tsang, C-F.

    2007-02-07

    In large-scale geologic storage projects, the injected volumes of CO{sub 2} will displace huge volumes of native brine. If the designated storage formation is a closed system, e.g., a geologic unit that is compartmentalized by (almost) impermeable sealing units and/or sealing faults, the native brine cannot (easily) escape from the target reservoir. Thus the amount of supercritical CO{sub 2} that can be stored in such a system depends ultimately on how much pore space can be made available for the added fluid owing to the compressibility of the pore structure and the fluids. To evaluate storage capacity in such closed systems, we have conducted a modeling study simulating CO{sub 2} injection into idealized deep saline aquifers that have no (or limited) interaction with overlying, underlying, and/or adjacent units. Our focus is to evaluate the storage capacity of closed systems as a function of various reservoir parameters, hydraulic properties, compressibilities, depth, boundaries, etc. Accounting for multi-phase flow effects including dissolution of CO{sub 2} in numerical simulations, the goal is to develop simple analytical expressions that provide estimates for storage capacity and pressure buildup in such closed systems.

  3. Formate brines -- New fluids for drilling and completions

    SciTech Connect (OSTI)

    Ramsey, M.S.; Shipp, J.A.

    1996-01-01

    The term ``formate brines`` refers broadly to three primary compounds dissolved in water -- sodium formate (NaCOOH), potassium formate (KCOOH) and cesium formate (CsCOOH). Each is chemically classified as an alkali-metal salt of formic acid. They offer properties that in many respects are superior to their predecessors, halide brines such as zinc bromide and calcium bromide, without the undesirable side effects of those more common halide brine systems. This article introduces the technology and provides an overview of published work to date regarding formates.

  4. Numerical modeling of regional ground-water flow in the deep-basin brine aquifer of the Palo Duro Basin, Texas Panhandle

    SciTech Connect (OSTI)

    Wirojanagud, P.; Kreitler, C.W.; Smith, D.A.

    1986-01-01

    Bedded Permian-age evaporite sequences in the Palo Duro Basin are being considered for a permanent nuclear waste repository by the U.S. Department of Energy. The purpose of this modeling study is to provide an understanding of regional ground-water flow in the formations beneath the Permian evaporite section. From this understanding, more detailed, smaller scale studies can be designed. This study is also intended to provide a better understanding of the boundary conditions and permeabilities of the aquifer and aquitard system as well as provide estimates of ground-water travel times across the basin. Numerical simulations were made of the Wolfcamp aquifer modeled as a single layer and of the entire Deep-Basin Brine aquifer system, including the Wolfcamp aquifer, modeled as a single layer.

  5. Geochemical Impacts of Carbon Dioxide, Brine, Trace Metal and Organic Leakage into an Unconfined, Oxidizing Limestone Aquifer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bacon, Diana H.; Dai, Zhenxue; Zheng, Liange

    2014-12-31

    An important risk at CO2 storage sites is the potential for groundwater quality impacts. As part of a system to assess the potential for these impacts a geochemical scaling function has been developed, based on a detailed reactive transport model of CO2 and brine leakage into an unconfined, oxidizing carbonate aquifer. Stochastic simulations varying a number of geochemical parameters were used to generate a response surface predicting the volume of aquifer that would be impacted with respect to regulated contaminants. The brine was assumed to contain several trace metals and organic contaminants. Aquifer pH and TDS were influenced by CO2more » leakage, while trace metal concentrations were most influenced by the brine concentrations rather than adsorption or desorption on calcite. Organic plume sizes were found to be strongly influenced by biodegradation.« less

  6. Behavior of natural uranium, thorium, and radium isotopes in the Wolfcamp brine aquifers, Palo Duro Basin, Texas

    SciTech Connect (OSTI)

    Laul, J.C.; Smith, M.R.; Hubbard, N.

    1984-10-01

    Previously reported results for Palo Duro deep brines show that Ra is highly soluble and not retarded. Relative to Ra, U and Th are highly sorbed. Uranium, like thorium, is in the +4 valence state, indicating a reducing environment. Additional data reported here support these results. However, one Wolfcamp brine sample gives somewhat different results. Radium appears to be somewhat sorbed. Uranium is largely in the +6 valence state, indicating a less reducing condition. In all brines, kinetics for sorption (/sup 228/Th) and desorption (/sup 224/Ra) are rapid. This Wolfcamp brine was tested for the effects of colloids for Ra, U, and Th concentrations. No effects were found.

  7. Reduced-Order Model for the Geochemical Impacts of Carbon Dioxide, Brine and Trace Metal Leakage into an Unconfined, Oxidizing Carbonate Aquifer, Version 2.1

    SciTech Connect (OSTI)

    Bacon, Diana H.

    2013-03-31

    The National Risk Assessment Partnership (NRAP) consists of 5 U.S DOE national laboratories collaborating to develop a framework for predicting the risks associated with carbon sequestration. The approach taken by NRAP is to divide the system into components, including injection target reservoirs, wellbores, natural pathways including faults and fractures, groundwater and the atmosphere. Next, develop a detailed, physics and chemistry-based model of each component. Using the results of the detailed models, develop efficient, simplified models, termed reduced order models (ROM) for each component. Finally, integrate the component ROMs into a system model that calculates risk profiles for the site. This report details the development of the Groundwater Geochemistry ROM for the Edwards Aquifer at PNNL. The Groundwater Geochemistry ROM for the Edwards Aquifer uses a Wellbore Leakage ROM developed at LANL as input. The detailed model, using the STOMP simulator, covers a 5x8 km area of the Edwards Aquifer near San Antonio, Texas. The model includes heterogeneous hydraulic properties, and equilibrium, kinetic and sorption reactions between groundwater, leaked CO2 gas, brine, and the aquifer carbonate and clay minerals. Latin Hypercube sampling was used to generate 1024 samples of input parameters. For each of these input samples, the STOMP simulator was used to predict the flux of CO2 to the atmosphere, and the volume, length and width of the aquifer where pH was less than the MCL standard, and TDS, arsenic, cadmium and lead exceeded MCL standards. In order to decouple the Wellbore Leakage ROM from the Groundwater Geochemistry ROM, the response surface was transformed to replace Wellbore Leakage ROM input parameters with instantaneous and cumulative CO2 and brine leakage rates. The most sensitive parameters proved to be the CO2 and brine leakage rates from the well, with equilibrium coefficients for calcite and dolomite, as well as the number of illite and kaolinite

  8. Geochemical Impacts of Carbon Dioxide, Brine, Trace Metal and...

    Office of Scientific and Technical Information (OSTI)

    Carbon Dioxide, Brine, Trace Metal and Organic Leakage into an Unconfined, Oxidizing Limestone Aquifer Citation Details In-Document Search Title: Geochemical Impacts of Carbon ...

  9. Brine flow up a borehole caused by pressure perturbation from CO2 storage: Static and dynamic evaluations

    SciTech Connect (OSTI)

    Birkholzer, J.T.; Nicot, J.-P.; Oldenburg, C.M.; Zhou, Q.; Kraemer, S.; Bandilla, K.W.

    2011-05-01

    Industrial-scale storage of CO{sub 2} in saline sedimentary basins will cause zones of elevated pressure, larger than the CO{sub 2} plume itself. If permeable conduits (e.g., leaking wells) exist between the injection reservoir and overlying shallow aquifers, brine could be pushed upwards along these conduits and mix with groundwater resources. This paper discusses the potential for such brine leakage to occur in temperature- and salinity-stratified systems. Using static mass-balance calculations as well as dynamic well flow simulations, we evaluate the minimum reservoir pressure that would generate continuous migration of brine up a leaking wellbore into a freshwater aquifer. Since the brine invading the well is denser than the initial fluid in the wellbore, continuous flow only occurs if the pressure perturbation in the reservoir is large enough to overcome the increased fluid column weight after full invasion of brine into the well. If the threshold pressure is exceeded, brine flow rates are dependent on various hydraulic (and other) properties, in particular the effective permeability of the wellbore and the magnitude of pressure increase. If brine flow occurs outside of the well casing, e.g., in a permeable fracture zone between the well cement and the formation, the fluid/solute transfer between the migrating fluid and the surrounding rock units can strongly retard brine flow. At the same time, the threshold pressure for continuous flow to occur decreases compared to a case with no fluid/solute transfer.

  10. TOUGHREACT Testing in High Ionic Strength Brine Sandstone Systems...

    Office of Scientific and Technical Information (OSTI)

    Title: TOUGHREACT Testing in High Ionic Strength Brine Sandstone Systems Deep saline formations and oil and gas reservoirs often contain concentrated brine solutions of ionic ...

  11. Interpretation of brine-permeability tests of the Salado Formation at the Waste Isolation Pilot Plant site: First interim report

    SciTech Connect (OSTI)

    Beauheim, R.L. ); Saulnier, G.J. Jr.; Avis, J.D. )

    1991-08-01

    Pressure-pulse tests have been performed in bedded evaporites of the Salado Formation at the Waste Isolation Pilot Plant (WIPP) site to evaluate the hydraulic properties controlling brine flow through the Salado. Hydraulic conductivities ranging from about 10{sup {minus}14} to 10{sup {minus}11} m/s (permeabilities of about 10{sup {minus}21} to 10{sup {minus}18} m{sup 2}) have been interpreted from nine tests conducted on five stratigraphic intervals within eleven meters of the WIPP underground excavations. Tests of a pure halite layer showed no measurable permeability. Pore pressures in the stratigraphic intervals range from about 0.5 to 9.3 MPa. An anhydrite interbed (Marker Bed 139) appears to be one or more orders of magnitude more permeable than the surrounding halite. Hydraulic conductivities appear to increase, and pore pressures decrease, with increasing proximity to the excavations. These effects are particularly evident within two to three meters of the excavations. Two tests indicated the presence of apparent zero-flow boundaries about two to three meters from the boreholes. The other tests revealed no apparent boundaries within the radii of influence of the tests, which were calculated to range from about four to thirty-five meters from the test holes. The data are insufficient to determine if brine flow through evaporites results from Darcy-like flow driven by pressure gradients within naturally interconnected porosity or from shear deformation around excavations connecting previously isolated pores, thereby providing pathways for fluids at or near lithostatic pressure to be driven towards the low-pressure excavations. Future testing will be performed at greater distances from the excavations to evaluate hydraulic properties and processes beyond the range of excavation effects.

  12. Brine Sampling and Evaluation Program, 1991 report

    SciTech Connect (OSTI)

    Deal, D.E.; Abitz, R.J.; Myers, J.; Martin, M.L.; Milligan, D.J.; Sobocinski, R.W.; Lipponer, P.P.J.; Belski, D.S.

    1993-09-01

    The data presented in this report are the result of Brine Sampling and Evaluation Program (BSEP) activities at the Waste Isolation Pilot Plan (WIPP) during 1991. These BSEP activities document and investigate the origins, hydraulic characteristics, extent, and composition of brine occurrences in the Permian Salado Formation and seepage of that brine into the excavations at the WIPP. When excavations began at the WIPP in 1982, small brine seepages (weeps) were observed on the walls. Brine studies began as part of the Site Validation Program and were formalized as a program in its own right in 1985. During nine years of observations (1982--1991), evidence has mounted that the amount of brine seeping into the WIPP excavations is limited, local, and only a small fraction of that required to produce hydrogen gas by corroding the metal in the waste drums and waste inventory. The data through 1990 is discussed in detail and summarized by Deal and others (1991). The data presented in this report describes progress made during the calendar year 1991 and focuses on four major areas: (1) quantification of the amount of brine seeping across vertical surfaces in the WIPP excavations (brine ``weeps); (2) monitoring of brine inflow, e.g., measuring brines recovered from holes drilled downward from the underground drifts (downholes), upward from the underground drifts (upholes), and from subhorizontal holes; (3) further characterization of brine geochemistry; and (4) preliminary quantification of the amount of brine that might be released by squeezing the underconsolidated clays present in the Salado Formation.

  13. Fresh Water Generation from Aquifer-Pressured Carbon Storage: Interim Progress Report

    SciTech Connect (OSTI)

    Aines, R D; Wolery, T J; Hao, Y; Bourcier, W L

    2009-07-22

    This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including nanofiltration (NF) and reverse osmosis (RO). The aquifer pressure resulting from the energy required to inject the carbon dioxide provides all or part of the inlet pressure for the desalination system. Residual brine would be reinjected into the formation at net volume reduction. This process provides additional storage space (capacity) in the aquifer, reduces operational risks by relieving overpressure in the aquifer, and provides a source of low-cost fresh water to offset costs or operational water needs. Computer modeling and laboratory-scale experimentation are being used to examine mineral scaling and osmotic pressure limitations for brines typical of CCS sites. Computer modeling is being used to evaluate processes in the aquifer, including the evolution of the pressure field. This progress report deals mainly with our geochemical modeling of high-salinity brines and covers the first six months of project execution (September, 2008 to March, 2009). Costs and implementation results will be presented in the annual report. The brines typical of sequestration sites can be several times more concentrated than seawater, requiring specialized modeling codes typical of those developed for nuclear waste disposal calculations. The osmotic pressure developed as the brines are concentrated is of particular concern, as are precipitates that can cause fouling of reverse osmosis membranes and other types of membranes (e.g., NF). We have now completed the development associated with tasks (1) and (2) of the work plan. We now have a contract with Perlorica, Inc., to provide support to the cost analysis and nanofiltration evaluation. We have also conducted several preliminary analyses of the pressure effect in the reservoir in order to confirm that reservoir

  14. An example of mixing-zone dolomite, Middle Eocene Avon Park Formation, Floridan aquifer system

    SciTech Connect (OSTI)

    Cander, H.S. )

    1994-07-01

    A late-formed dolomite cement in a core of the Middle Eocene Avon Park Formation, peninsular Florida, provides an example of dolomite cement from a mixing zone and illustrates how dolomite textural alteration and stabilization can occur at earth-surface conditions. The Avon Park Formation is a pervasively dolomitized peritidal platform carbonate 400 m thick in the Florida aquifer system. Typical Avon Park dolomite is inclusion-rich, fine-grained (< 40 mm), noncathodoluminescent, highly porous (average, 20%), and formed during the Eocene by normal to hypersaline seawater ([delta][sup 18]O = + 3.7[per thousand] PDB; [delta][sup 13]C = + 2.0[per thousand]; [sup 87]Sr/[sup 86]Sr = 0.70778; Sr = 167 ppm). In a 20 m interval in a core from southwest Florida, inclusion-free, cathodoluminescent dolomite overgrows the early-formed noncathodoluminescent marine dolomite. The cathodoluminescent dolomite cement profoundly alters the texture of Avon Park dolomite from typical Cenozoic-like porous, poorly crystalline dolomite to hard, dense, low-porosity, highly crystalline Paleozoic-like dolomite. The dolomite cement is not a replacement of limestone but an overgrowth of early-formed marine dolomite and pore-occluding cement. This study demonstrates that: (1) dolomite precipitated from a 75% seawater mixing-zone fluid that was both calcite saturated and sulfate-rich, and (2) dramatic textural maturation and stabilization in dolomite can occur in the near surface environment, without elevated temperature and burial conditions.

  15. Water/rock interaction efficiency and seawater dolomitization in the Eocene Avon Park Formation, Floridan Aquifer

    SciTech Connect (OSTI)

    Cander, H.S. )

    1990-05-01

    The Floridan aquifer has often been proposed as a system of extensive meteoric carbonate diagenesis and mixing zone dolomitization. However, the dominance of marine isotope (C, O, {sup 87}Sr/{sup 86}Sr) and trace element (Sr, Fe, Mn) compositions in dolomites and limestones in the Eocene Avon Park Formation, Floridan aquifer, suggests that the very active low temperature meteoric groundwater system has, over the past 40 m.y., been an inefficient mechanism of diagenesis. {delta}{sup 18}O values of all but two replacement dolomites sampled range from +2.0 to +5.1 (PDB) with high Sr concentrations (90-325 ppm), indicating dolomitization by near-normal marine water involving no significant interaction with meteoric groundwater. The two {delta}{sup 18}O-depleted (0.0 {plus minus} 1) dolomites have low Sr concentrations ({approximately}100 ppm) suggesting limited recrystallization in meteoric water. Several dolomite samples have radiogenic {sup 87}Sr/{sup 86}Sr compositions (0.70810-0.70883 {plus minus} 2), but have heavy oxygen isotope compositions (> +2.0) and high Sr concentrations (<200 ppm) suggesting precipitation from cold Miocene age or younger seawater that circulated through the Florida platform. Most limestone stable isotope compositions cluster around marine values (({delta}{sup 18}O = {minus}1 to +1, PDB) {delta}{sup 13}C = +0.5 to +2.5) and have Eocene seawater {sup 87}Sr/{sup 86}Sr compositions (0.70775 {plus minus} 2 to 0.70779 {plus minus} 2) with 400 to 500 ppm Sr. Isotopic compositions of limestones from the east coast of Florida are all within these ranges. Only some limestones from central Florida and the west coast contain depleted stable isotopic compositions and low Sr concentrations. The sample with the most depleted stable isotope values has a radiogenic {sup 87}Sr/{sup 86}Sr composition (0.70870 {plus minus} 2), suggesting that diagenetic meteoric water migrated through post-Miocene strata.

  16. Fresh Water Generation from Aquifer-Pressured Carbon Storage

    SciTech Connect (OSTI)

    Aines, R D; Wolery, T J; Bourcier, W L; Wolfe, T; Haussmann, C

    2010-02-19

    Can we use the pressure associated with sequestration to make brine into fresh water? This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including reverse osmosis (RO) and nanofiltration (NF). Possible products are: Drinking water, Cooling water, and Extra aquifer space for CO{sub 2} storage. The conclusions are: (1) Many saline formation waters appear to be amenable to largely conventional RO treatment; (2) Thermodynamic modeling indicates that osmotic pressure is more limiting on water recovery than mineral scaling; (3) The use of thermodynamic modeling with Pitzer's equations (or Extended UNIQUAC) allows accurate estimation of osmotic pressure limits; (4) A general categorization of treatment feasibility is based on TDS has been proposed, in which brines with 10,000-85,000 mg/L are the most attractive targets; (5) Brines in this TDS range appear to be abundant (geographically and with depth) and could be targeted in planning future CCS operations (including site selection and choice of injection formation); and (6) The estimated cost of treating waters in the 10,000-85,000 mg/L TDS range is about half that for conventional seawater desalination, due to the anticipated pressure recovery.

  17. Progress on radiometric dating of Wolfcamp brines using /sup 4/He and /sup 40/Ar

    SciTech Connect (OSTI)

    Zaikowski, A.; Kosanke, B.J.; Hubbard, N.

    1984-01-01

    Ground water samples (brines) from deep wells in the Palo Duro Basin, Texas are being analyzed for noble gases in an attempt to obtain radiometric ages for these brines. The brines contain radiogenic /sup 4/He and /sup 40/Ar produced from the radioactive decay of U, Th, and K. Consideration of hydrochemical data for the brines, various isotopic, chemical, and mineralogical data for the aquifer rocks and noble gas production rates allow estimating the age of the brines to be about 130 million years at two wells. At a third well interaquifer mixing has occurred and the age is presently indeterminate. 9 references, 3 figures, 1 table.

  18. Origin, distribution, and movement of brine in the Permian Basin (U. S. A. ). A model for displacement of connate brine

    SciTech Connect (OSTI)

    Bein, A.; Dutton, A.R. )

    1993-06-01

    Na-Cl, halite Ca-Cl, and gypsum Ca-Cl brines with salinities from 45 to >300 g/L are identified and mapped in four hydrostratigraphic units in the Permian Basin area beneath western Texas and Oklahoma and eastern New Mexico, providing spatial and lithologic constraints on the interpretation of the origin and movement of brine. Na-Cl brine is derived from meteoric water as young as 5-10 Ma that dissolved anhydrite and halite, whereas Ca-Cl brine is interpreted to be ancient, modified-connate Permian brine that now is mixing with, and being displaced by, the Na-Cl brine. Displacement fronts appear as broad mixing zones with no significant salinity gradients. Evolution of Ca-Cl brine composition from ideal evaporated sea water is attributed to dolomitization and syndepositional recycling of halite and bittern salts by intermittent influx of fresh water and sea water. Halite Ca-Cl brine in the evaporite section in the northern part of the basin differs from gypsum Ca-Cl brine in the south-central part in salinity and Na/Cl ratio and reflects segregation between halite- and gypsum-precipitating lagoons during the Permian. Ca-Cl brine moved downward through the evaporite section into the underlying Lower Permian and Pennsylvanian marine section that is now the deep-basin brine aquifer, mixing there with pre-existing sea water. Buoyancy-driven convection of brine dominated local flow for most of basin history, with regional advection governed by topographically related forces dominant only for the past 5 to 10 Ma. 71 refs., 11 figs.

  19. Viscous heavy brines

    SciTech Connect (OSTI)

    House, R.F.; Hoover, L.D.

    1984-07-10

    Hydroxyethyl cellulose and a sequestrant are added to a heavy brine containing one or more salts selected from calcium chloride, calcium bromide, and zinc bromide to increase the viscosity of the brine. Preferably the brine contains zinc bromide, has a density in the range from about 14.2-19.2 pounds per gallon, and the sequestrant is a polyphosphonic acid or water soluble salt thereof.

  20. Utilizing rare earth elements as tracers in high TDS reservoir brines in CCS applications

    SciTech Connect (OSTI)

    McLing, Travis; Smith, William; Smith, Robert

    2014-12-31

    In this paper we report the result of research associated with the testing of a procedures necessary for utilizing natural occurring trace elements, specifically the Rare Earth Elements (REE) as geochemical tracers in Carbon Capture and Storage (CCS) applications. Trace elements, particularly REE may be well suited to serve as in situ tracers for monitoring geochemical conditions and the migration of CO₂-charged waters within CCS storage systems. We have been conducting studies to determine the efficacy of using REE as a tracer and characterization tool in the laboratory, at a CCS analogue site in Soda Springs, Idaho, and at a proposed CCS reservoir at the Rock Springs Uplift, Wyoming. Results from field and laboratory studies have been encouraging and show that REE may be an effective tracer in CCS systems and overlying aquifers. In recent years, a series of studies using REE as a natural groundwater tracer have been conducted successfully at various locations around the globe. Additionally, REE and other trace elements have been successfully used as in situ tracers to describe the evolution of deep sedimentary Basins. Our goal has been to establish naturally occurring REE as a useful monitoring measuring and verification (MMV) tool in CCS research because formation brine chemistry will be particularly sensitive to changes in local equilibrium caused by the addition of large volumes of CO₂. Because brine within CCS target formations will have been in chemical equilibrium with the host rocks for millions of years, the addition of large volumes of CO₂ will cause reactions in the formation that will drive changes to the brine chemistry due to the pH change caused by the formation of carbonic acid. This CO₂ driven change in formation fluid chemistry will have a major impact on water rock reaction equilibrium in the formation, which will impart a change in the REE fingerprint of the brine that can measured and be used to monitor in situ

  1. Utilizing rare earth elements as tracers in high TDS reservoir brines in CCS applications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McLing, Travis; Smith, William; Smith, Robert

    2014-12-31

    In this paper we report the result of research associated with the testing of a procedures necessary for utilizing natural occurring trace elements, specifically the Rare Earth Elements (REE) as geochemical tracers in Carbon Capture and Storage (CCS) applications. Trace elements, particularly REE may be well suited to serve as in situ tracers for monitoring geochemical conditions and the migration of CO₂-charged waters within CCS storage systems. We have been conducting studies to determine the efficacy of using REE as a tracer and characterization tool in the laboratory, at a CCS analogue site in Soda Springs, Idaho, and at amore » proposed CCS reservoir at the Rock Springs Uplift, Wyoming. Results from field and laboratory studies have been encouraging and show that REE may be an effective tracer in CCS systems and overlying aquifers. In recent years, a series of studies using REE as a natural groundwater tracer have been conducted successfully at various locations around the globe. Additionally, REE and other trace elements have been successfully used as in situ tracers to describe the evolution of deep sedimentary Basins. Our goal has been to establish naturally occurring REE as a useful monitoring measuring and verification (MMV) tool in CCS research because formation brine chemistry will be particularly sensitive to changes in local equilibrium caused by the addition of large volumes of CO₂. Because brine within CCS target formations will have been in chemical equilibrium with the host rocks for millions of years, the addition of large volumes of CO₂ will cause reactions in the formation that will drive changes to the brine chemistry due to the pH change caused by the formation of carbonic acid. This CO₂ driven change in formation fluid chemistry will have a major impact on water rock reaction equilibrium in the formation, which will impart a change in the REE fingerprint of the brine that can measured and be used to monitor in situ reservoir

  2. Fresh Water Generation from Aquifer-Pressured Carbon Storage: Annual Report FY09

    SciTech Connect (OSTI)

    Wolery, T; Aines, R; Hao, Y; Bourcier, W; Wolfe, T; Haussman, C

    2009-11-25

    This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including reverse osmosis (RO) and nanofiltration (NF). The aquifer pressure resulting from the energy required to inject the carbon dioxide provides all or part of the inlet pressure for the desalination system. Residual brine is reinjected into the formation at net volume reduction, such that the volume of fresh water extracted balances the volume of CO{sub 2} injected into the formation. This process provides additional CO{sub 2} storage capacity in the aquifer, reduces operational risks (cap-rock fracturing, contamination of neighboring fresh water aquifers, and seismicity) by relieving overpressure in the formation, and provides a source of low-cost fresh water to offset costs or operational water needs. This multi-faceted project combines elements of geochemistry, reservoir engineering, and water treatment engineering. The range of saline formation waters is being identified and analyzed. Computer modeling and laboratory-scale experimentation are being used to examine mineral scaling and osmotic pressure limitations. Computer modeling is being used to evaluate processes in the storage aquifer, including the evolution of the pressure field. Water treatment costs are being evaluated by comparing the necessary process facilities to those in common use for seawater RO. There are presently limited brine composition data available for actual CCS sites by the site operators including in the U.S. the seven regional Carbon Sequestration Partnerships (CSPs). To work around this, we are building a 'catalog' of compositions representative of 'produced' waters (waters produced in the course of seeking or producing oil and gas), to which we are adding data from actual CCS sites as they become available. Produced waters comprise the most common examples of saline

  3. Thickened heavy brines

    SciTech Connect (OSTI)

    House, R.F.; Hoover, L.D.

    1983-12-13

    A thickened brine solution useful as a well servicing fluid is prepared, said solution consisting essentially of water, at least 20% by weight zinc bromide, calcium bromide, and a viscosifying amount of hydroxyethyl cellulose.

  4. Brine stability study

    SciTech Connect (OSTI)

    Gary Garland

    2015-04-15

    This is a study of the brine formulations that we were using in our testing were stable over time. The data includes charts, as well as, all of the original data from the ICP-MS runs to complete this study.

  5. Reactive transport modeling to study changes in water chemistry induced by CO2 injection at the Frio-I brine pilot

    SciTech Connect (OSTI)

    Kharaka, Y.K; Doughty, C.; Freifeld, B.M.; Daley, T.M.; Xu, T.

    2009-11-01

    To demonstrate the potential for geologic storage of CO{sub 2} in saline aquifers, the Frio-I Brine Pilot was conducted, during which 1600 tons of CO{sub 2} were injected into a high-permeability sandstone and the resulting subsurface plume of CO{sub 2} was monitored using a variety of hydrogeological, geophysical, and geochemical techniques. Fluid samples were obtained before CO{sub 2} injection for baseline geochemical characterization, during the CO{sub 2} injection to track its breakthrough at a nearby observation well, and after injection to investigate changes in fluid composition and potential leakage into an overlying zone. Following CO{sub 2} breakthrough at the observation well, brine samples showed sharp drops in pH, pronounced increases in HCO{sub 3}{sup -} and aqueous Fe, and significant shifts in the isotopic compositions of H{sub 2}O and dissolved inorganic carbon. Based on a calibrated 1-D radial flow model, reactive transport modeling was performed for the Frio-I Brine Pilot. A simple kinetic model of Fe release from the solid to aqueous phase was developed, which can reproduce the observed increases in aqueous Fe concentration. Brine samples collected after half a year had lower Fe concentrations due to carbonate precipitation, and this trend can be also captured by our modeling. The paper provides a method for estimating potential mobile Fe inventory, and its bounding concentration in the storage formation from limited observation data. Long-term simulations show that the CO{sub 2} plume gradually spreads outward due to capillary forces, and the gas saturation gradually decreases due to its dissolution and precipitation of carbonates. The gas phase is predicted to disappear after 500 years. Elevated aqueous CO{sub 2} concentrations remain for a longer time, but eventually decrease due to carbonate precipitation. For the Frio-I Brine Pilot, all injected CO{sub 2} could ultimately be sequestered as carbonate minerals.

  6. Fluid Dynamics of Carbon Dioxide Disposal into Saline Aquifers

    SciTech Connect (OSTI)

    Garcia, Julio Enrique

    2003-12-18

    Injection of carbon dioxide (CO{sub 2}) into saline aquifers has been proposed as a means to reduce greenhouse gas emissions (geological carbon sequestration). Large-scale injection of CO{sub 2} will induce a variety of coupled physical and chemical processes, including multiphase fluid flow, fluid pressurization and changes in effective stress, solute transport, and chemical reactions between fluids and formation minerals. This work addresses some of these issues with special emphasis given to the physics of fluid flow in brine formations. An investigation of the thermophysical properties of pure carbon dioxide, water and aqueous solutions of CO{sub 2} and NaCl has been conducted. As a result, accurate representations and models for predicting the overall thermophysical behavior of the system CO{sub 2}-H{sub 2}O-NaCl are proposed and incorporated into the numerical simulator TOUGH2/ECO{sub 2}. The basic problem of CO{sub 2} injection into a radially symmetric brine aquifer is used to validate the results of TOUGH2/ECO2. The numerical simulator has been applied to more complex flow problem including the CO{sub 2} injection project at the Sleipner Vest Field in the Norwegian sector of the North Sea and the evaluation of fluid flow dynamics effects of CO{sub 2} injection into aquifers. Numerical simulation results show that the transport at Sleipner is dominated by buoyancy effects and that shale layers control vertical migration of CO{sub 2}. These results are in good qualitative agreement with time lapse surveys performed at the site. High-resolution numerical simulation experiments have been conducted to study the onset of instabilities (viscous fingering) during injection of CO{sub 2} into saline aquifers. The injection process can be classified as immiscible displacement of an aqueous phase by a less dense and less viscous gas phase. Under disposal conditions (supercritical CO{sub 2}) the viscosity of carbon dioxide can be less than the viscosity of the aqueous

  7. Pre-injection brine production for managing pressure in compartmentalized CO₂ storage reservoirs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Buscheck, Thomas A.; White, Joshua A.; Chen, Mingjie; Sun, Yunwei; Hao, Yue; Aines, Roger D.; Bourcier, William L.; Bielicki, Jeffrey M.

    2014-12-31

    We present a reservoir management approach for geologic CO₂ storage that combines CO₂ injection with brine extraction. In our approach,dual-mode wells are initially used to extract formation brine and subsequently used to inject CO₂. These wells can also be used to monitor the subsurface during pre-injection brine extraction so that key data is acquired and analyzed prior to CO₂ injection. The relationship between pressure drawdown during pre-injection brine extraction and pressure buildup during CO₂ injection directly informs reservoir managers about CO₂ storage capacity. These data facilitate proactive reservoir management, and thus reduce costs and risks. The brine may be usedmore » directly as make-up brine for nearby reservoir operations; it can also be desalinated and/or treated for a variety of beneficial uses.« less

  8. Pre-injection brine production for managing pressure in compartmentalized CO₂ storage reservoirs

    SciTech Connect (OSTI)

    Buscheck, Thomas A.; White, Joshua A.; Chen, Mingjie; Sun, Yunwei; Hao, Yue; Aines, Roger D.; Bourcier, William L.; Bielicki, Jeffrey M.

    2014-12-31

    We present a reservoir management approach for geologic CO₂ storage that combines CO₂ injection with brine extraction. In our approach,dual-mode wells are initially used to extract formation brine and subsequently used to inject CO₂. These wells can also be used to monitor the subsurface during pre-injection brine extraction so that key data is acquired and analyzed prior to CO₂ injection. The relationship between pressure drawdown during pre-injection brine extraction and pressure buildup during CO₂ injection directly informs reservoir managers about CO₂ storage capacity. These data facilitate proactive reservoir management, and thus reduce costs and risks. The brine may be used directly as make-up brine for nearby reservoir operations; it can also be desalinated and/or treated for a variety of beneficial uses.

  9. Monitoring CO 2 sequestration into deep saline aquifer and associated salt intrusion using coupled multiphase flow modeling and time lapse electrical resistivity tomography

    SciTech Connect (OSTI)

    Chuan Lu; CHI Zhang; Hai Hanag; Timothy C. Johnson

    2014-04-01

    Successful geological storage and sequestration of carbon dioxide (CO2) require efficient monitoring of the migration of CO2 plume during and after large-scale injection in order to verify the containment of the injected CO2 within the target formation and to evaluate potential leakage risk. Field studies have shown that surface and cross-borehole electrical resistivity tomography (ERT) can be a useful tool in imaging and characterizing solute transport in heterogeneous subsurface. In this synthetic study, we have coupled a 3-D multiphase flow model with a parallel 3-D time-lapse ERT inversion code to explore the feasibility of using time-lapse ERT for simultaneously monitoring the migration of CO2 plume in deep saline formation and potential brine intrusion into shallow fresh water aquifer. Direct comparisons of the inverted CO2 plumes resulting from ERT with multiphase flow simulation results indicate the ERT could be used to delineate the migration of CO2 plume. Detailed comparisons on the locations, sizes and shapes of CO2 plume and intruded brine plumes suggest that ERT inversion tends to underestimate the area review of the CO2 plume, but overestimate the thickness and total volume of the CO2 plume. The total volume of intruded brine plumes is overestimated as well. However, all discrepancies remain within reasonable ranges. Our study suggests that time-lapse ERT is a useful monitoring tool in characterizing the movement of injected CO2 into deep saline aquifer and detecting potential brine intrusion under large-scale field injection conditions.

  10. Gas evolution from geopressured brines

    SciTech Connect (OSTI)

    Matthews, C.S.

    1980-06-01

    The process of gas evolution from geopressured brine is examined using as a basis the many past studies of gas evolution from liquids in porous media. A discussion of a number of speculations that have been made concerning gas evolution from geopressured brines is provided. According to one, rapid pressure reduction will cause methane gas to evolve as when one opens a champagne bottle. It has been further speculated that evolved methane gas would migrate up to form an easily producible cap. As a result of detailed analyses, it can be concluded that methane gas evolution from geopressured brines is far too small to ever form a connected gas saturation except very near to the producing well. Thus, no significant gas cap could ever form. Because of the very low solubility of methaned in brine, the process of methane gas evolution is not at all analogous to evolution of carbon dioxide from champagne. A number of other speculations and questions on gas evolution are analyzed, and procedures for completing wells and testing geopressured brine reservoirs are discussed, with the conclusion that presently used procedures will provide adequate data to enable a good evaluation of this resource.

  11. Viscous heavy brine completion fluids. [Oil wells

    SciTech Connect (OSTI)

    Darlington, R.K.; Hunter, D.V.

    1982-01-01

    An activated hydroxyethyl cellulose (HEC) has been developed which will viscosify brines of any density up to 19.2 lb/gal containing calcium chloride, calcium bromide and/or zinc bromide. The use of activated hydroxyethyl cellulose allows preparation of viscosified brines at ambient emperature and without undissolved polymer solids. The time required to prepare a viscosified brine is greatly reduced. In addition, the rheology of brines viscosified with activated HEC can be accurately predicted allowing brines with equivalent solution rheology properties to be prepared batch after batch. 29 refs.

  12. A method for quick assessment of CO2 storage capacity in closedand semi-closed saline formations

    SciTech Connect (OSTI)

    Zhou, Q.; Birkholzer, J.; Tsang, C.F.; Rutqvist, J.

    2008-02-10

    Saline aquifers of high permeability bounded by overlying/underlying seals may be surrounded laterally by low-permeability zones, possibly caused by natural heterogeneity and/or faulting. Carbon dioxide (CO{sub 2}) injection into and storage in such 'closed' systems with impervious seals, or 'semi-closed' systems with nonideal (low-permeability) seals, is different from that in 'open' systems, from which the displaced brine can easily escape laterally. In closed or semi-closed systems, the pressure buildup caused by continuous industrial-scale CO{sub 2} injection may have a limiting effect on CO{sub 2} storage capacity, because geomechanical damage caused by overpressure needs to be avoided. In this research, a simple analytical method was developed for the quick assessment of the CO{sub 2} storage capacity in such closed and semi-closed systems. This quick-assessment method is based on the fact that native brine (of an equivalent volume) displaced by the cumulative injected CO{sub 2} occupies additional pore volume within the storage formation and the seals, provided by pore and brine compressibility in response to pressure buildup. With nonideal seals, brine may also leak through the seals into overlying/underlying formations. The quick-assessment method calculates these brine displacement contributions in response to an estimated average pressure buildup in the storage reservoir. The CO{sub 2} storage capacity and the transient domain-averaged pressure buildup estimated through the quick-assessment method were compared with the 'true' values obtained using detailed numerical simulations of CO{sub 2} and brine transport in a two-dimensional radial system. The good agreement indicates that the proposed method can produce reasonable approximations for storage-formation-seal systems of various geometric and hydrogeological properties.

  13. Improved Water Flooding through Injection Brine Modification

    SciTech Connect (OSTI)

    Robertson, Eric Partridge; Thomas, Charles Phillip; Morrow, Norman

    2003-01-01

    Crude oil/brine/rock interactions can lead to large variations in the displacement efficiency of waterflooding, by far the most widely applied method of improved oil recovery. Laboratory waterflood tests show that injection of dilute brine can increase oil recovery. Numerous fields in the Powder River basin have been waterflooded using low salinity brine (about 500 ppm) from the Madison limestone or Fox Hills sandstone. Although many uncertainties arise in the interpretation and comparison of field production data, injection of low salinity brine appears to give higher recovery compared to brine of moderate salinity (about 7,000 ppm). Laboratory studies of the effect of brine composition on oil recovery cover a wide range of rock types and crude oils. Oil recovery increases using low salinity brine as the injection water ranged from a low of no notable increase to as much as 37.0% depending on the system being studied. Recovery increases using low salinity brine after establishing residual oil saturation (tertiary mode) ranged from no significant increase to 6.0%. Tests with two sets of reservoir cores and crude oil indicated slight improvement in recovery for low salinity brine. Crude oil type and rock type (particularly the presence and distribution of kaolinite) both play a dominant role in the effect that brine composition has on waterflood oil recovery.

  14. Durability of concrete materials in high-magnesium brine

    SciTech Connect (OSTI)

    Wakeley, L.D.; Poole, T.S.; Burkes, J.P.

    1994-03-01

    Cement pastes and mortars representing 11 combinations of candidate concrete materials were cast in the laboratory and monitored for susceptibility to chemical deterioration in high-magnesium brine. Mixtures were selected to include materials included in the current leading candidate concrete for seals at the Waste Isolation Pilot Plant (WIPP). Some materials were included in the experimental matrix to answer questions that had arisen during study of the concrete used for construction of the liner of the WIPP waste-handling shaft. Mixture combinations compared Class C and Class F fly ashes, presence or absence of an expansive component, and presence or absence of salt as a mixture component. Experimental conditions exposed the pastes and mortars to extreme conditions, those being very high levels of Mg ion and an effectively unlimited supply of brine. All pastes and mortars showed deterioration with brine exposure. In general, mortars deteriorated more extensively than the corresponding pastes. Two-inch cube specimens of mortar were not uniformly deteriorated, but showed obvious zoning even after a year in the brine, with a relatively unreacted zone remaining at the center of each cube. Loss of calcium from the calcium hydroxide of paste/aggregate interfaces caused measurable strength loss in the reacted zone comprising the outer portion of every mortar specimen. The current candidate mass concrete for WIPP seals includes salt as an initial component, and has a relatively closed initial microstructure. Both of these features contribute to its suitability for use in large placements within the Salado Formation.

  15. Brine disposal process for Morcinek coal mine

    SciTech Connect (OSTI)

    Tait, J.H.

    1995-04-01

    This paper describes the work to develop a commercial brine disposal process for the Morcinek mine, located 45 km south of the city of Katowice in Poland. Currently, brine is discharged into the Odra river and methane from the mine is released into the atmosphere. The process would use the released methane and convert a large percentage of the brine into potable water for commercial use. Thus, the proposed process has two environmental benefits. The brine salinity is about 31,100 ppm. Major brine components are Na (10,300 ppm), Ca (1,170 ppm), Mg (460 ppm), Cl (18,500 ppm) and SO{sub 4}{sup 2-} (252 ppm). Present in smaller amounts are K, S, Sr, B, Ba and NO{sub 3}. The process integrates a reverse osmosis (RO) unit and a submerged combustion evaporator. Extensive studies made at the Lawrence Livermore National Laboratory established the pretreatment method of the brine before it enters the RO unit. Without adequate pretreatment, mineral phases in the brine would become super-saturated and would precipitate in the RO unit. The pretreatment consists of first adding sodium carbonate to increase both the pH and the carbonate concentration of the brine. This addition causes precipitation of carbonate solids containing Ca, Mg, Sr, and Ba. After filtration of these precipitates, the fluid is acidified with HCl to prevent precipitation in the RO unit as the brine increases in salinity.

  16. Review and problem definition of water/rock reactions associated with injection of spent geothermal fluids from a geothermal plant into aquifers

    SciTech Connect (OSTI)

    Elders, W.A.

    1986-07-01

    Among the technical problems faced by the burgeoning geothermal industry is the disposal of spent fluids from power plants. Except in unusual circumstances the normal practice, especially in the USA, is to pump these spent fluids into injection wells to prevent contamination of surface waters, and possibly in some cases, to reduce pressure drawdown in the producing aquifers. This report is a survey of experience in geothermal injection, emphasizing geochemical problems, and a discussion of approaches to their possible mitigation. The extraction of enthalpy from geothermal fluid in power plants may cause solutions to be strongly supersaturated in various dissolved components such as silica, carbonates, sulfates, and sulfides. Injection of such supersaturated solutions into disposal wells has the potential to cause scaling in the well bores and plugging of the aquifers, leading to loss of injectivity. Various aspects of the geochemistry of geothermal brines and their potential for mineral formation are discussed, drawing upon a literature survey. Experience of brine treatment and handling, and the economics of mineral extraction are also addressed in this report. Finally suggestions are made on future needs for possible experimental, field and theoretical studies to avoid or control mineral scaling.

  17. Reduced order models for prediction of groundwater quality impacts from CO₂ and brine leakage

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Liange; Carroll, Susan; Bianchi, Marco; Mansoor, Kayyum; Sun, Yunwei; Birkholzer, Jens

    2014-12-31

    A careful assessment of the risk associated with geologic CO₂ storage is critical to the deployment of large-scale storage projects. A potential risk is the deterioration of groundwater quality caused by the leakage of CO₂ and brine leakage from deep subsurface reservoirs. In probabilistic risk assessment studies, numerical modeling is the primary tool employed to assess risk. However, the application of traditional numerical models to fully evaluate the impact of CO₂ leakage on groundwater can be computationally complex, demanding large processing times and resources, and involving large uncertainties. As an alternative, reduced order models (ROMs) can be used as highlymore » efficient surrogates for the complex process-based numerical models. In this study, we represent the complex hydrogeological and geochemical conditions in a heterogeneous aquifer and subsequent risk by developing and using two separate ROMs. The first ROM is derived from a model that accounts for the heterogeneous flow and transport conditions in the presence of complex leakage functions for CO₂ and brine. The second ROM is obtained from models that feature similar, but simplified flow and transport conditions, and allow for a more complex representation of all relevant geochemical reactions. To quantify possible impacts to groundwater aquifers, the basic risk metric is taken as the aquifer volume in which the water quality of the aquifer may be affected by an underlying CO₂ storage project. The integration of the two ROMs provides an estimate of the impacted aquifer volume taking into account uncertainties in flow, transport and chemical conditions. These two ROMs can be linked in a comprehensive system level model for quantitative risk assessment of the deep storage reservoir, wellbore leakage, and shallow aquifer impacts to assess the collective risk of CO₂ storage projects.« less

  18. Reduced order models for prediction of groundwater quality impacts from CO? and brine leakage

    SciTech Connect (OSTI)

    Zheng, Liange; Carroll, Susan; Bianchi, Marco; Mansoor, Kayyum; Sun, Yunwei; Birkholzer, Jens

    2014-12-31

    A careful assessment of the risk associated with geologic CO? storage is critical to the deployment of large-scale storage projects. A potential risk is the deterioration of groundwater quality caused by the leakage of CO? and brine leakage from deep subsurface reservoirs. In probabilistic risk assessment studies, numerical modeling is the primary tool employed to assess risk. However, the application of traditional numerical models to fully evaluate the impact of CO? leakage on groundwater can be computationally complex, demanding large processing times and resources, and involving large uncertainties. As an alternative, reduced order models (ROMs) can be used as highly efficient surrogates for the complex process-based numerical models. In this study, we represent the complex hydrogeological and geochemical conditions in a heterogeneous aquifer and subsequent risk by developing and using two separate ROMs. The first ROM is derived from a model that accounts for the heterogeneous flow and transport conditions in the presence of complex leakage functions for CO? and brine. The second ROM is obtained from models that feature similar, but simplified flow and transport conditions, and allow for a more complex representation of all relevant geochemical reactions. To quantify possible impacts to groundwater aquifers, the basic risk metric is taken as the aquifer volume in which the water quality of the aquifer may be affected by an underlying CO? storage project. The integration of the two ROMs provides an estimate of the impacted aquifer volume taking into account uncertainties in flow, transport and chemical conditions. These two ROMs can be linked in a comprehensive system level model for quantitative risk assessment of the deep storage reservoir, wellbore leakage, and shallow aquifer impacts to assess the collective risk of CO? storage projects.

  19. Brine Migration Experimental Studies for Salt Repositories

    Broader source: Energy.gov [DOE]

    Experiments were used to examine water content in Permian salt samples including impact of variation in thermal regime on water content of evaporites and other mineral species, behavior of brine inclusions in salt, and evolution of the gas/liquid brine/salt system.

  20. Summary Results for Brine Migration Modeling Performed by LANL...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Results for Brine Migration Modeling Performed by LANL, LBNL and SNL for the Used Fuel Disposition Program Summary Results for Brine Migration Modeling Performed by LANL, LBNL and ...

  1. Modeling acid-gas generation from boiling chloride brines (Journal...

    Office of Scientific and Technical Information (OSTI)

    Modeling acid-gas generation from boiling chloride brines Citation Details In-Document Search Title: Modeling acid-gas generation from boiling chloride brines This study ...

  2. Molecular Simulation of Carbon Dioxide, Brine, and Clay Mineral...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Molecular Simulation of Carbon Dioxide, Brine, and Clay Mineral Citation Details In-Document Search Title: Molecular Simulation of Carbon Dioxide, Brine, and Clay ...

  3. Raft River Geothermal Field Well Head Brine Sample

    SciTech Connect (OSTI)

    Tim Lanyk

    2015-12-18

    Raw data and data workup of assay for real-world brine sample. Brine sample was taken at the well head.

  4. EA-1482: Finding of No Significant Impact

    Broader source: Energy.gov [DOE]

    Pilot Experiment for Geological Sequestration of Carbon Dioxide in Saline Aquifer Brine Formations, Frio Formation, Liberty County, Texas

  5. Reactive transport modeling of the enhancement of density-driven CO2 convective mixing in carbonate aquifers and its potential implication on geological carbon sequestration

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Islam, Akand; Sun, Alexander Y.; Yang, Changbing

    2016-04-20

    We study the convection and mixing of CO2 in a brine aquifer, where the spread of dissolved CO2 is enhanced because of geochemical reactions with the host formations (calcite and dolomite), in addition to the extensively studied, buoyancy-driven mixing. The nonlinear convection is investigated under the assumptions of instantaneous chemical equilibrium, and that the dissipation of carbonate rocks solely depends on flow and transport and chemical speciation depends only on the equilibrium thermodynamics of the chemical system. The extent of convection is quantified in term of the CO2 saturation volume of the storage formation. Our results suggest that the densitymore » increase of resident species causes significant enhancement in CO2 dissolution, although no significant porosity and permeability alterations are observed. Furthermore, early saturation of the reservoir can have negative impact on CO2 sequestration.« less

  6. Two-phase convective CO2 dissolution in saline aquifers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Martinez, Mario J.; Hesse, Marc A.

    2016-01-01

    Geologic carbon storage in deep saline aquifers is a promising technology for reducing anthropogenic emissions into the atmosphere. Dissolution of injected CO2 into resident brines is one of the primary trapping mechanisms generally considered necessary to provide long-term storage security. Given that diffusion of CO2 in brine is woefully slow, convective dissolution, driven by a small increase in brine density with CO2 saturation, is considered to be the primary mechanism of dissolution trapping. Previous studies of convective dissolution have typically only considered the convective process in the single-phase region below the capillary transition zone and have either ignored the overlyingmore » two-phase region where dissolution actually takes place or replaced it with a virtual region with reduced or enhanced constant permeability. Our objective is to improve estimates of the long-term dissolution flux of CO2 into brine by including the capillary transition zone in two-phase model simulations. In the fully two-phase model, there is a capillary transition zone above the brine-saturated region over which the brine saturation decreases with increasing elevation. Our two-phase simulations show that the dissolution flux obtained by assuming a brine-saturated, single-phase porous region with a closed upper boundary is recovered in the limit of vanishing entry pressure and capillary transition zone. For typical finite entry pressures and capillary transition zone, however, convection currents penetrate into the two-phase region. As a result, this removes the mass transfer limitation of the diffusive boundary layer and enhances the convective dissolution flux of CO2 more than 3 times above the rate assuming single-phase conditions.« less

  7. Property:BrineConstituents | Open Energy Information

    Open Energy Info (EERE)

    Chloride type brine, "The content of potassium and calcium are high, while that of lithium, boron and sulfate is very low", See table 1 of Izquierdo et al. (2006). + Chena...

  8. How temperature and pressure affect clear brines

    SciTech Connect (OSTI)

    Hubbard, J.T.

    1984-04-01

    The correct application of the expansivity and compressibility of brine fluids under the influence of temperature and pressure is needed to calculate the actual hydrostatic pressure in a well. Well operations can benefit by reducing unintentional overbalance, lessening fluid losses, and lowering recommended fluid densities, hence reducing fluid costs. Since the early 1970s, the effects of temperature and pressure on the density of clear brine fluids have been questioned. As early as 1973, studies were started to define density loss with increased temperature in zinc bromide brines. This article describes a continuing study, begun in 1978, which has characterized the expansivity and compressibility of single salt brine solutions, such as are used in workover and completion fluids.

  9. Integrated process for coalbed brine disposal

    SciTech Connect (OSTI)

    Brandt, H. |; Bourcier, W.L.; Jackson, K.J.

    1994-03-01

    A brine disposal process is described that converts the brine stream of a coalbed gas producing site into clean water for agricultural use, combustion products and water vapor that can be released into the atmosphere and dry solids that can be recycled for industrial consumption. The process uses a reverse osmosis unit, a submerged combustion evaporator and a pulse combustion dryer. Pretreatment of the brine feedstream is necessary to prevent fouling of the membranes of the reverse osmosis unit and to separate from the brine stream hazardous metal and other constituents that may make the permeate from the reverse osmosis unit unsuitable for agricultural or other use. A chemical modeling code is used to calculate the saturation states of solids that may precipitate and foul the reverse osmosis membranes. Sodium carbonate is added to the brine to precipitate carbonates of Ba, Ca, Mg and Sr prior to filtration, acidification, and passage into the reverse osmosis unit. Optimization of the process in terms of types and amounts of additives is possible with analysis using the modeling code. The minimum amounts of additives to prevent scaling are calculated. In a typical operation, a brine feedstream of 1,000 m{sup 3}/day (6,290 bpd) that may have a total dissolved salt concentration (TDS) of 7,000 ppm will be separated into a permeate stream of 750 m{sup 3}/day (4,718 bpd) with a TDS of 400 ppm and a concentrated brine stream of 250 m{sup 3}/day (1,573 bpd) with a TDS of 26,800 ppm. The submerged combustion evaporator will concentrate this latter stream to a concentration of 268,000 ppm and reduce the volume to 25 m{sup 3}/day (158 bpd). The pulse combustion dryer can dry the concentrated brine mixture to a low moisture salt. Energy costs to operate the reverse osmosis unit are primarily the pumping costs.

  10. Hydrocarbon content of geopressured brines. Final report

    SciTech Connect (OSTI)

    Osif, T.L.

    1985-08-01

    Design Well data (bottomhole pressure minus wellhead pressure, GWR, and hydrocarbon composition) is presented as a function of producing conditions. These are examined in conjunction with the following models to attempt to deduce the reservoir brine saturation level: (1) reservoir contains gas dispersed in the pores and the gas saturation is greater than critical; (2) reservoir brine is gas-saturated; (3) bubble point below hydrostatic pressure; and (4) bubble point between hydrostatic pressure and reservoir pressure. 24 figs., 10 tabs. (ACR)

  11. Brine flow in heated geologic salt.

    SciTech Connect (OSTI)

    Kuhlman, Kristopher L.; Malama, Bwalya

    2013-03-01

    This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes' governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

  12. Portable brine evaporator unit, process, and system

    DOE Patents [OSTI]

    Hart, Paul John; Miller, Bruce G.; Wincek, Ronald T.; Decker, Glenn E.; Johnson, David K.

    2009-04-07

    The present invention discloses a comprehensive, efficient, and cost effective portable evaporator unit, method, and system for the treatment of brine. The evaporator unit, method, and system require a pretreatment process that removes heavy metals, crude oil, and other contaminates in preparation for the evaporator unit. The pretreatment and the evaporator unit, method, and system process metals and brine at the site where they are generated (the well site). Thus, saving significant money to producers who can avoid present and future increases in transportation costs.

  13. Groundwater in the Regional Aquifer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Groundwater in the Regional Aquifer Groundwater in the Regional Aquifer LANL maintains an ... August 1, 2013 Conceptual model of water movement and geology at Los Alamos National ...

  14. Method of removing benzene from petroleum desalter brine

    SciTech Connect (OSTI)

    Hart, P.R.

    1993-08-17

    A method is described for removing benzene from petroleum refinery desalter effluent brine containing dispersed oil, solids, oily solids and benzene comprising contacting the brine with a sufficient amount for the purpose of flocculating oily solids of a combination of a aluminum chlorohydrate and a water soluble cationic polymer selected from the group consisting of polyamines and dialkyldiallylammonium polymers, in a ratio of from 1:10 to 100:1 at a temperature of about 250 F, separating the resulting floc from the brine; and thereafter contacting the brine with a sufficient amount for the purpose of reducing benzene levels in the brine of an oil solvent in combination with a demulsifier.

  15. Expected brine movement at potential nuclear waste repository salt sites

    SciTech Connect (OSTI)

    McCauley, V.S.; Raines, G.E.

    1987-08-01

    The BRINEMIG brine migration code predicts rates and quantities of brine migration to a waste package emplaced in a high-level nuclear waste repository in salt. The BRINEMIG code is an explicit time-marching finite-difference code that solves a mass balance equation and uses the Jenks equation to predict velocities of brine migration. Predictions were made for the seven potentially acceptable salt sites under consideration as locations for the first US high-level nuclear waste repository. Predicted total quantities of accumulated brine were on the order of 1 m/sup 3/ brine per waste package or less. Less brine accumulation is expected at domal salt sites because of the lower initial moisture contents relative to bedded salt sites. Less total accumulation of brine is predicted for spent fuel than for commercial high-level waste because of the lower temperatures generated by spent fuel. 11 refs., 36 figs., 29 tabs.

  16. Petrology of lower and middle Eocene carbonate rocks, Floridan aquifer, central Florida

    SciTech Connect (OSTI)

    Thayer, P.A.; Miller, J.A.

    1984-09-01

    Study of cores from a US Geological Survey test well near Polk City, Florida, indicates that the Avon Park-Lake City (Claibornian) and Oldsmar (Sabinian) Limestones, which comprise most of the Floridan aquifer in central Florida, can be divided into six microfacies: foraminiferal mudstone, foraminiferal wackestone-packstone, foraminiferal grainstone, nodular anhydrite, laminated dolomicrite, and replacement dolomite. Dolomite containing variable amounts of nodular anhydrite forms more than 90% of the Avon Park-Lake city interval, whereas thte Oldsmar is chiefly limestone. Several episodes of dolomite formation are recognized. Laminated dolomicrite formed syngenetically in a supratidal-sabhka environment. Crystalline dolomite with nodular anhydrite formed early by replacement of limestone through reflux of dense, magnesium-rich brines. Replacement dolomite not associated with evaporites and containing limpid crystals probably formed later by a mixed-water process in the subsurface environment. Late diagenetic processes affecting crystalline dolomites include hydration of anhydrite to gypsum, partial dissolution of gypsum, minor alteration of gypsum to calcite, and dissolution of calcian dolomite cores in stoichiometric crystals. Crystalline dolomite and grainstone are the only rock types that have high enough porosities and permeabilities to provide significant yields of water. Medium and finely crystalline dolomites show best values of porosity and permeability because they have high percentages of intercrystal and moldic pores that are well connected. Filling of pores by anhydrite or gypsum can significantly reduce porosity and permeability.

  17. The implications of UIC and NPDES regulations on selection of disposal options for spent geothermal brine

    SciTech Connect (OSTI)

    1982-07-01

    This document reviews and evaluates the various options for the disposal of geothermal wastewater with respect to the promulgated regulations for the protection of surface and groundwaters. The Clean Water Act of 1977 and the Safe Drinking Water Act Amendments are especially important when designing disposal systems for geothermal fluids. The former promulgates regulations concerning the discharge of wastewater into surface waters, while the latter is concerned with the protection of ground water aquifers through the establishment of underground injection control (UIC) programs. There is a specific category for geothermal fluid discharge if injection is to be used as a method of disposal. Prior to February 1982, the UIC regulations required geothermal power plant to use Class III wells and direct use plants to use Class V wells. More stringent regulatory requirements, including construction specification and monitoring, are imposed on the Class III wells. On February 3, 1982, the classification of geothermal injection wells was changed from a Class III to Class V on the basis that geothermal wells do not inject for the extraction of minerals or energy, but rather they are used to inject brines, from which heat has been extracted, into formations from which they were originally taken. This reclassification implies that a substantial cost reduction will be realized for geothermal fluid injection primarily because well monitoring is no longer mandatory. The Clean Water Act of 1977 provides the legal basis for regulating the discharge of liquid effluent into the nation's surface waters, through a permitting system called the National Pollution Discharge Elimination System (NPDES) Discharge quantities, rates, concentrations and temperatures are regulated by the NPDES permits. These permits systems are based upon effluent guidelines developed by EPA on an industry by industry basis. For geothermal energy industry, effluent guidelines have not been formulated and are not

  18. THE SNAKE RIVER PLAIN AQUIFER THE SNAKE RIVER PLAIN AQUIFER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aquifer THE INL & THE SNAKE RIVER PLAIN AQUIFER THE SNAKE RIVER PLAIN AQUIFER underneath the Idaho National Laboratory is one of the most productive groundwater resources in the U.S. Each year about 2 million acre-feet of water is drawn from the aquifer. Approximately 95 percent of the water withdrawn from the aquifer is used for irrigation, 3 per- cent for domestic water, and 2 percent for industrial purposes. The aquifer is the primary water source for more than 280,000 people in

  19. Two-phase convective CO2 dissolution in saline aquifers

    SciTech Connect (OSTI)

    Martinez, Mario J.; Hesse, Marc A.

    2016-01-01

    Geologic carbon storage in deep saline aquifers is a promising technology for reducing anthropogenic emissions into the atmosphere. Dissolution of injected CO2 into resident brines is one of the primary trapping mechanisms generally considered necessary to provide long-term storage security. Given that diffusion of CO2 in brine is woefully slow, convective dissolution, driven by a small increase in brine density with CO2 saturation, is considered to be the primary mechanism of dissolution trapping. Previous studies of convective dissolution have typically only considered the convective process in the single-phase region below the capillary transition zone and have either ignored the overlying two-phase region where dissolution actually takes place or replaced it with a virtual region with reduced or enhanced constant permeability. Our objective is to improve estimates of the long-term dissolution flux of CO2 into brine by including the capillary transition zone in two-phase model simulations. In the fully two-phase model, there is a capillary transition zone above the brine-saturated region over which the brine saturation decreases with increasing elevation. Our two-phase simulations show that the dissolution flux obtained by assuming a brine-saturated, single-phase porous region with a closed upper boundary is recovered in the limit of vanishing entry pressure and capillary transition zone. For typical finite entry pressures and capillary transition zone, however, convection currents penetrate into the two-phase region. As a result, this removes the mass transfer limitation of the diffusive boundary layer and enhances the convective dissolution flux of CO2 more than 3 times above the rate assuming single-phase conditions.

  20. Molecular Simulation of Carbon Dioxide Brine and Clay Mineral...

    Office of Scientific and Technical Information (OSTI)

    of Carbon Dioxide Brine and Clay Mineral Interactions and Determination of Contact Angles. Citation Details In-Document Search Title: Molecular Simulation of Carbon Dioxide ...

  1. Fate of Magnesium Chloride Brine Applied to Suppress Dust from...

    Office of Scientific and Technical Information (OSTI)

    Within the deep vadose zone, which consists of interlayered basalt lava flows and sedimentary interbeds, brine has moved up to 110 m laterally. This lateral migration suggests ...

  2. Geochemistry of Ca, Sr, Ba and Ra sulfates in some deep brines from the Palo Duro basin, Texas

    SciTech Connect (OSTI)

    Langmuir, D.; Melchior, D.

    1985-11-01

    The geochemistry of Ca, Sr, Ba and Ra sulfates in some deep brines from the Palo Duro Basin of north Texas, was studied to define geochemical controls on radionuclides such as /sup 90/Sr and /sup 226/Ra. Published solubility data for gypsum, anhydrite, celestite, barite and RaSO/sub 4/ were first reevaluated, in most cases using the ion interaction approach of Pitzer, to determine solubility products of the sulfates as a function of temperature and pressure. Ionic strengths of the brines were from 2.9 to 4.8 m, their temperatures and pressures up to 40/sup 0/C and 130 bars. Saturation indices of the sulfates were computed with the ion-interaction approach in one brine from the arkosic granite wash facies and four from the carbonate Wolfcamp Formation. All five brines are saturated with respect to gypsum, anhydrite and celestite, and three of the five with respect to barite. All are undersaturated by from 5 to 6 orders of magnitude with respect to pure RaSO/sub 4/. /sup 226/Ra concentrations in the brines, which ranged from 10/sup -11.3/ to 10/sup -12.7/ m, are not controlled by RaSO/sub 4/ solubility or adsorption, but possibly by the solubility of trace Ra solid solutions in sulfates including celestite and barite.

  3. Radioactive waste isolation in salt: geochemistry of brine in rock salt in temperature gradients and gamma-radiation fields - a selective annotated bibliography

    SciTech Connect (OSTI)

    Hull, A.B.; Williams, L.B.

    1985-07-01

    Evaluation of the extensive research concerning brine geochemistry and transport is critically important to successful exploitation of a salt formation for isolating high-level radioactive waste. This annotated bibliography has been compiled from documents considered to provide classic background material on the interactions between brine and rock salt, as well as the most important results from more recent research. Each summary elucidates the information or data most pertinent to situations encountered in siting, constructing, and operating a mined repository in salt for high-level radioactive waste. The research topics covered include the basic geology, depositional environment, mineralogy, and structure of evaporite and domal salts, as well as fluid inclusions, brine chemistry, thermal and gamma-radiation effects, radionuclide migration, and thermodynamic properties of salts and brines. 4 figs., 6 tabs.

  4. Reduce completion fluid costs with on-site brine tests

    SciTech Connect (OSTI)

    Thomas, D.C.; Darlington, R.K.; Kinney, W.R.; Lowell, J.L.

    1982-09-01

    A newly developed field kit makes on-site brine completion fluid testing practical. Simple titration procedures are used to analyze brine for calcium, zinc, chloride and bromide with an accuracy and repeatability that compares favorably with expensive laboratory techniques. This article describes the field testing theory and details analytical procedures used.

  5. Radionuclide transport in sandstones with WIPP brine

    SciTech Connect (OSTI)

    Weed, H.C.; Bazan, F.; Fontanilla, J.; Garrison, J.; Rego, J.; Winslow, A.M.

    1981-02-01

    Retardation factors (R) have been measured for the transport of /sup 3/H, /sup 95m/Tc, and /sup 85/Sr in WIPP brine using St. Peter, Berea, Kayenta, and San Felipe sandstone cores. If tritium is assumed to have R=1, /sup 95m/Tc has R=1.0 to 1.3 and therefore is essentially not retarded. Strontium-85 has R = 1.0 to 1.3 on St. Peter, Berea, and Kayenta, but R=3 on San Felipe. This is attributed to sorption on the matrix material of San Felipe, which has 45 volume % matrix compared with 1 to 10 volume % for the others. Retardation factors (R/sub s/) for /sup 85/Sr calculated from static sorption measurements are unity for all the sandstones. Therefore, the static and transport results for /sup 85/Sr disagree in the case of San Felipe, but agree for St. Peter, Berea, and Kayenta.

  6. Technique for thermodynamic crystallization temperature of brine fluids

    SciTech Connect (OSTI)

    Clark, D.E.; Hubbard, J.T.

    1983-03-01

    The application of high density solids free brine fluids has proven to be technically and economically successful in hydrocarbon completion and workover operations. The use of inorganic salts such as calcium chloride, calcium bromide, zinc bromide, and sodium bromide has contributed to the development of complex salt systems. As the density and complexity of these systems becomes more detailed, the requirement for proper fluid design becomes increasingly important. When a brine solution is cooled sufficiently, a temperature is reached where the solution will be saturated. A further decrease in temperature will result in the precipitation of salt from the solution. The temperature at which this transpires, provided no super-cooling occurs, is the crystallization point of the solution. A correctly formulated solids free brine should have the optimum crystallization point for the temperature conditions it will encounter. A recently developed semiautomatic procedure constructs a cooling curve plot of each brine tested. This cooling curve plot allows the determination of the super-cooling potential, the Thermodynamic Crystallization Temperature, and the Last Crystal To Dissolve Temperature. The device provides a permanent record of the cooling curve with repeatable accuracy, which assists in the development of error free brine formulation tables, brine density, and/or crystallization point adjustments, and brine analysis.

  7. Generalized thickness and configuration of the top of the intermediate aquifer, West-Central Florida

    SciTech Connect (OSTI)

    Corral, M.A. Jr.; Wolansky, R.M.

    1984-01-01

    The water-bearing units of the intermediate aquifer consist of discontinuous sand, gravel, shell, and limestone and dolomite beds in the Tamiami Formation of late Miocene age and the Hawthorn Formation of middle Miocene age. Within parts of Polk, Manatee, Hardee, De Soto, Sarasota, and Charlotte Counties, sand and clay beds within the Tampa Limestone that are hydraulically connected to the Hawthorn Formation are also included in the intermediate aquifer. 15 refs.

  8. Targeted Pressure Management During CO2 Sequestration: Optimization of Well Placement and Brine Extraction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cihan, Abdullah; Birkholzer, Jens; Bianchi, Marco

    2014-12-31

    Large-scale pressure increases resulting from carbon dioxide (CO2) injection in the subsurface can potentially impact caprock integrity, induce reactivation of critically stressed faults, and drive CO2 or brine through conductive features into shallow groundwater. Pressure management involving the extraction of native fluids from storage formations can be used to minimize pressure increases while maximizing CO2 storage. However, brine extraction requires pumping, transportation, possibly treatment, and disposal of substantial volumes of extracted brackish or saline water, all of which can be technically challenging and expensive. This paper describes a constrained differential evolution (CDE) algorithm for optimal well placement and injection/ extractionmore » control with the goal of minimizing brine extraction while achieving predefined pressure contraints. The CDE methodology was tested for a simple optimization problem whose solution can be partially obtained with a gradient-based optimization methodology. The CDE successfully estimated the true global optimum for both extraction well location and extraction rate, needed for the test problem. A more complex example application of the developed strategy was also presented for a hypothetical CO2 storage scenario in a heterogeneous reservoir consisting of a critically stressed fault nearby an injection zone. Through the CDE optimization algorithm coupled to a numerical vertically-averaged reservoir model, we successfully estimated optimal rates and locations for CO2 injection and brine extraction wells while simultaneously satisfying multiple pressure buildup constraints to avoid fault activation and caprock fracturing. The study shows that the CDE methodology is a very promising tool to solve also other optimization problems related to GCS, such as reducing ‘Area of Review’, monitoring design, reducing risk of leakage and increasing storage capacity and trapping.« less

  9. Using Pressure and Volumetric Approaches to Estimate CO2 Storage Capacity in Deep Saline Aquifers

    SciTech Connect (OSTI)

    Thibeau, Sylvain; Bachu, Stefan; Birkholzer, Jens; Holloway, Sam; Neele, Filip; Zhou, Quanlin

    2014-12-31

    Various approaches are used to evaluate the capacity of saline aquifers to store CO2, resulting in a wide range of capacity estimates for a given aquifer. The two approaches most used are the volumetric open aquifer and closed aquifer approaches. We present four full-scale aquifer cases, where CO2 storage capacity is evaluated both volumetrically (with open and/or closed approaches) and through flow modeling. These examples show that the open aquifer CO2 storage capacity estimation can strongly exceed the cumulative CO2 injection from the flow model, whereas the closed aquifer estimates are a closer approximation to the flow-model derived capacity. An analogy to oil recovery mechanisms is presented, where the primary oil recovery mechanism is compared to CO2 aquifer storage without producing formation water; and the secondary oil recovery mechanism (water flooding) is compared to CO2 aquifer storage performed simultaneously with extraction of water for pressure maintenance. This analogy supports the finding that the closed aquifer approach produces a better estimate of CO2 storage without water extraction, and highlights the need for any CO2 storage estimate to specify whether it is intended to represent CO2 storage capacity with or without water extraction.

  10. Analysis of Sweet Lake geopressured-geothermal aquifer

    SciTech Connect (OSTI)

    Andrade, M.; Rago, F.M.; Ohkuma, H.; Sepehrnoori, K.; Peters, E.; Dorfman, M.

    1983-01-01

    The Sweet Lake geopressured-geothermal aquifer, located southeast of Lake Charles, Louisiana, is an aquifer modeled by a two-dimensional geopressured-geothermal simulator. This aquifer is a sandstone within the Frio formation at depths between 15,000 to 15,640 ft with a net porous thickness of 250 ft, a calculated in-situ permeability (from drawdown data) of 17 md, an estimated porosity of 24 percent, a uniaxial compaction coefficient of 4.5 x 10/sup -7/ psi/sup -1/ and a solution gas-water ratio of 11 SCF/STB all at the initial reservoir pressure of 12,060 psi. These parameters are typically pressure sensitive in geopressured-geothermal aquifers and are critically important to aquifer performance. Several simulation experiments are conducted which investigate the effects of varying initial values for these parameters with the experimentally determined values as means. The simulations give both optimistic and pessimistic expectations for aquifer performance. The expected life of the geopressured-geothermal well is reported for each simulation.

  11. Advanced biochemical processes for geothermal brines FY 1998 annual operating plan

    SciTech Connect (OSTI)

    1997-10-01

    As part of the overall Geothermal Energy Research which is aimed at the development of economical geothermal resources production systems, the aim of the Advanced Biochemical Processes for Geothermal Brines (ABPGB) effort is the development of economic and environmentally acceptable methods for disposal of geothermal wastes and conversion of by-products to useful forms. Methods are being developed for dissolution, separation and immobilization of geothermal wastes suitable for disposal, usable in inert construction materials, suitable for reinjection into the reservoir formation, or used for recovery of valuable metals.

  12. Actinide (III) solubility in WIPP Brine: data summary and recommendations

    SciTech Connect (OSTI)

    Borkowski, Marian; Lucchini, Jean-Francois; Richmann, Michael K.; Reed, Donald T.

    2009-09-01

    The solubility of actinides in the +3 oxidation state is an important input into the Waste Isolation Pilot Plant (WIPP) performance assessment (PA) models that calculate potential actinide release from the WIPP repository. In this context, the solubility of neodymium(III) was determined as a function of pH, carbonate concentration, and WIPP brine composition. Additionally, we conducted a literature review on the solubility of +3 actinides under WIPP-related conditions. Neodymium(III) was used as a redox-invariant analog for the +3 oxidation state of americium and plutonium, which is the oxidation state that accounts for over 90% of the potential release from the WIPP through the dissolved brine release (DBR) mechanism, based on current WIPP performance assessment assumptions. These solubility data extend past studies to brine compositions that are more WIPP-relevant and cover a broader range of experimental conditions than past studies.

  13. Analysis of Sweet Lake geopressured-geothermal aquifer

    SciTech Connect (OSTI)

    Andrade, M.; Rago, F.; Ohkuma, H.; Sepehrnoori, K.; Peters, E.; Dorfman, M.

    1982-01-01

    The Sweet Lake geopressured-geothermal aquifer, located southeast of Lake Charles, Louisiana, is modeled by a two-dimensional geopressured-geothermal simulator. This aquifer is a sandstone within the Frio formation at depths between 15,000 to 15,640 ft with a net porous thickness of 250 ft, a calculated in-situ permeability (from drawdown data) of 17 md, an estimated porosity of 24%, a uniaxial compaction coefficient of 4.5 x 10/sup -7/ psi/sup -1/ and a solution gas-water ratio of 11 SCF/STB all at the initial reservoir pressure of 12,060 psi. These parameters are typically pressure sensitive in geopressured-geothermal aquifers and are critically important to aquifer performance. Several simulation experiments are conducted which investigate the effects of varying initial values for these parameters with the experimentally determined values as means. The simulations give both optimistic and pessimistic expectations for aquifer performance. The expected life of the geopressured-geothermal well is reported for each simulation.

  14. Brine pH Modification Scale Control Technology. 2. A Review.pdf...

    Open Energy Info (EERE)

    Brine pH Modification Scale Control Technology. 2. A Review.pdf Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Brine pH Modification Scale...

  15. Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential...

    Office of Environmental Management (EM)

    Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential August 21, 2013 - 12:00am Addthis Utilizing a 1...

  16. Uranium (VI) solubility in carbonate-free ERDA-6 brine

    SciTech Connect (OSTI)

    Lucchini, Jean-francois; Khaing, Hnin; Reed, Donald T

    2010-01-01

    When present, uranium is usually an element of importance in a nuclear waste repository. In the Waste Isolation Pilot Plant (WIPP), uranium is the most prevalent actinide component by mass, with about 647 metric tons to be placed in the repository. Therefore, the chemistry of uranium, and especially its solubility in the WIPP conditions, needs to be well determined. Long-term experiments were performed to measure the solubility of uranium (VI) in carbonate-free ERDA-6 brine, a simulated WIPP brine, at pC{sub H+} values between 8 and 12.5. These data, obtained from the over-saturation approach, were the first repository-relevant data for the VI actinide oxidation state. The solubility trends observed pointed towards low uranium solubility in WIPP brines and a lack of amphotericity. At the expected pC{sub H+} in the WIPP ({approx} 9.5), measured uranium solubility approached 10{sup -7} M. The objective of these experiments was to establish a baseline solubility to further investigate the effects of carbonate complexation on uranium solubility in WIPP brines.

  17. Summary Results for Brine Migration Modeling Performed by LANL LBNL and SNL for the UFD Program.

    SciTech Connect (OSTI)

    Kuhlman, Kristopher L

    2014-09-01

    This report summarizes laboratory and field observations and numerical modeling related to coupled processes involving brine and vapor migration in geologic salt, focusing on recent developments and studies conducted at Sandia, Los Alamos, and Berkeley National Laboratories. Interest into the disposal of heat-generating waste in salt has led to interest into water distribution and migration in both run-of-mine crushed and intact geologic salt. Ideally a fully coupled thermal-hydraulic-mechanical-chemical simulation is performed using numerical models with validated constitutive models and parameters. When mechanical coupling is not available, mechanical effects are prescribed in hydraulic models as source, boundary, or initial conditions. This report presents material associated with developing appropriate initial conditions for a non-mechanical hydrologic simulation of brine migration in salt. Due to the strong coupling between the mechanical and hydrologic problems, the initial saturation will be low for the excavation disturbed zone surrounding the excavation. Although most of the material in this report is not new, the author hopes it is presented in a format making it useful to other salt researchers.

  18. Modeling Coupled THMC Processes and Brine Migration in Salt at High Temperatures

    SciTech Connect (OSTI)

    Rutqvist, Jonny; Blanco Martin, Laura; Mukhopadhyay, Sumit; Houseworth, Jim; Birkholzer, Jens

    2014-08-14

    In this report, we present FY2014 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. LBNL’s work on the modeling of coupled THMC processes in salt was initiated in FY2012, focusing on exploring and demonstrating the capabilities of an existing LBNL modeling tool (TOUGH-FLAC) for simulating temperature-driven coupled flow and geomechanical processes in salt. This work includes development related to, and implementation of, essential capabilities, as well as testing the model against relevant information and published experimental data related to the fate and transport of water. we provide more details on the FY2014 work, first presenting updated tools and improvements made to the TOUGH-FLAC simulator, and the use of this updated tool in a new model simulation of long-term THM behavior within a generic repository in a salt formation. This is followed by the description of current benchmarking and validations efforts, including the TSDE experiment. We then present the current status in the development of constitutive relationships and the dual-continuum model for brine migration. We conclude with an outlook for FY2015, which will be much focused on model validation against field experiments and on the use of the model for the design studies related to a proposed heater experiment.

  19. Groundwater in the Regional Aquifer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Groundwater in the Regional Aquifer Groundwater in the Regional Aquifer LANL maintains an extensive groundwater monitoring and surveillance program through sampling. August 1, 2013 Conceptual model of water movement and geology at Los Alamos National Laboratory Conceptual model of water movement and geology at Los Alamos National Laboratory RELATED IMAGES http://farm4.staticflickr.com/3749/9827580556_473a91fd78_t.jpg Enlarge http://farm3.staticflickr.com/2856/9804364405_b25f74cbb2_t.jpg En

  20. /sup 234/U//sup 230/Th ratio as an indicator of redox state, and U, Th and Ra behavior in briney aquifers

    SciTech Connect (OSTI)

    Laul, J.C.; Smith, M.R.; Hubbard, N.

    1985-06-01

    The /sup 234/U//sup 230/Th ratio serves as an in-situ indicator of the redox state in groundwater aquifers. The higher this ratio, the more U there is in the +6 state and thus a lesser reducing environment. Radium is retarded in the shallow aquifer and its sorption is dependent on the CaSO/sub 4/ content and redox state. Relative to Ra, U and Th are highly sorbed. The total retardation factor for Th is approx.1400 and mean sorption time for /sup 228/Th is approx.10 days in the shallow zone. The desorption rate of Ra is significantly slower in the shallow than in the deep aquifer. There is no effect of colloids in brines. 6 refs., 5 figs., 2 tabs.

  1. /sup 234/U//sup 230/Th ratio as an indicator of redox state, and U/sub 2/, Th, and Ra behavior in Briney aquifers

    SciTech Connect (OSTI)

    Laul, J.C.; Smith, M.R.; Hubbard, N.

    1986-01-01

    The /sup 234/U//sup 230/Th ratio serves as an in-situ indicator of the redox state in groundwater aquifers. The higher this ratio, the more U there is in the +6 valance state and thus a less reducing environment. Radium sorption is retarded in the shallow aquifer and is dependent on the CaSO/sub 4/ content and the redox state. Relative to Ra, U and Th are highly sorbed. The total retardation factor for Th is approx. 1400 and mean sorption time for /sup 228/Th is approx. 10 days in the shallow zone. The desorption rate of Ra is significantly slower in the shallow than in the deep aquifer. There is no effect of colloids in brines.

  2. Benefits and Costs of Brine Extraction for Increasing Injection Efficiency In geologic CO2 Sequestration

    SciTech Connect (OSTI)

    Davidson, Casie L.; Watson, David J.; Dooley, James J.; Dahowski, Robert T.

    2014-12-31

    Pressure increases attendant with CO2 injection into the subsurface drive many of the risk factors associated with commercial-scale CCS projects, impacting project costs and liabilities in a number of ways. The area of elevated pressure defines the area that must be characterized and monitored; pressure drives fluid flow out of the storage reservoir along higher-permeability pathways that might exist through the caprock into overlying aquifers or hydrocarbon reservoirs; and pressure drives geomechanical changes that could potentially impact subsurface infrastructure or the integrity of the storage system itself. Pressure also limits injectivity, which can increase capital costs associated with installing additional wells to meet a given target injection rate. The ability to mitigate pressure increases in storage reservoirs could have significant value to a CCS project, but these benefits are offset by the costs of the pressure mitigation technique itself. Of particular interest for CO2 storage operators is the lifetime cost of implementing brine extraction at a CCS project site, and the relative value of benefits derived from the extraction process. This is expected to vary from site to site and from one implementation scenario to the next. Indeed, quantifying benefits against costs could allow operators to optimize their return on project investment by calculating the most effective scenario for pressure mitigation. This work builds on research recently submitted for publication by the authors examining the costs and benefits of brine extraction across operational scenarios to evaluate the effects of fluid extraction on injection rate to assess the cost effectiveness of several options for reducing the number of injection wells required. Modeling suggests that extracting at 90% of the volumetric equivalent of injection rate resulted in a 1.8% improvement in rate over a non-extraction base case; a four-fold increase in extraction rate results in a 7.6% increase in

  3. Benefits and Costs of Brine Extraction for Increasing Injection Efficiency In geologic CO2 Sequestration

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Davidson, Casie L.; Watson, David J.; Dooley, James J.; Dahowski, Robert T.

    2014-12-31

    Pressure increases attendant with CO2 injection into the subsurface drive many of the risk factors associated with commercial-scale CCS projects, impacting project costs and liabilities in a number of ways. The area of elevated pressure defines the area that must be characterized and monitored; pressure drives fluid flow out of the storage reservoir along higher-permeability pathways that might exist through the caprock into overlying aquifers or hydrocarbon reservoirs; and pressure drives geomechanical changes that could potentially impact subsurface infrastructure or the integrity of the storage system itself. Pressure also limits injectivity, which can increase capital costs associated with installing additionalmore » wells to meet a given target injection rate. The ability to mitigate pressure increases in storage reservoirs could have significant value to a CCS project, but these benefits are offset by the costs of the pressure mitigation technique itself. Of particular interest for CO2 storage operators is the lifetime cost of implementing brine extraction at a CCS project site, and the relative value of benefits derived from the extraction process. This is expected to vary from site to site and from one implementation scenario to the next. Indeed, quantifying benefits against costs could allow operators to optimize their return on project investment by calculating the most effective scenario for pressure mitigation. This work builds on research recently submitted for publication by the authors examining the costs and benefits of brine extraction across operational scenarios to evaluate the effects of fluid extraction on injection rate to assess the cost effectiveness of several options for reducing the number of injection wells required. Modeling suggests that extracting at 90% of the volumetric equivalent of injection rate resulted in a 1.8% improvement in rate over a non-extraction base case; a four-fold increase in extraction rate results in a 7

  4. Targeted Pressure Management During CO2 Sequestration: Optimization of Well Placement and Brine Extraction

    SciTech Connect (OSTI)

    Cihan, Abdullah; Birkholzer, Jens; Bianchi, Marco

    2014-12-31

    Large-scale pressure increases resulting from carbon dioxide (CO2) injection in the subsurface can potentially impact caprock integrity, induce reactivation of critically stressed faults, and drive CO2 or brine through conductive features into shallow groundwater. Pressure management involving the extraction of native fluids from storage formations can be used to minimize pressure increases while maximizing CO2 storage. However, brine extraction requires pumping, transportation, possibly treatment, and disposal of substantial volumes of extracted brackish or saline water, all of which can be technically challenging and expensive. This paper describes a constrained differential evolution (CDE) algorithm for optimal well placement and injection/ extraction control with the goal of minimizing brine extraction while achieving predefined pressure contraints. The CDE methodology was tested for a simple optimization problem whose solution can be partially obtained with a gradient-based optimization methodology. The CDE successfully estimated the true global optimum for both extraction well location and extraction rate, needed for the test problem. A more complex example application of the developed strategy was also presented for a hypothetical CO2 storage scenario in a heterogeneous reservoir consisting of a critically stressed fault nearby an injection zone. Through the CDE optimization algorithm coupled to a numerical vertically-averaged reservoir model, we successfully estimated optimal rates and locations for CO2 injection and brine extraction wells while simultaneously satisfying multiple pressure buildup constraints to avoid fault activation and caprock fracturing. The study shows that the CDE methodology is a very promising tool to solve also other optimization problems related to GCS, such as reducing Area of Review, monitoring design, reducing risk of leakage and increasing storage capacity and trapping.

  5. Understanding Long-Term Solute Transport in Sedimentary Basins: Simulating Brine Migration in the Alberta Basin. Final Report

    SciTech Connect (OSTI)

    Alicia M. Wilson

    2009-11-30

    Mass transport in deep sedimentary basins places important controls on ore formation, petroleum migration, CO2 sequestration, and geochemical reactions that affect petroleum reservoir quality, but large-scale transport in this type of setting remains poorly understood. This lack of knowledge is highlighted in the resource-rich Alberta Basin, where geochemical and hydrogeologic studies have suggested residence times ranging from hundreds of millions of years to less than 5 My, respectively. Here we developed new hydrogeologic models that were constrained by geochemical observations to reconcile these two very different estimates. The models account for variable-density fluid flow, heat transport, solute transport, sediment deposition and erosion, sediment compressibility, and dissolution of salt deposits, including Cl/Br systematics. Prior interpretations of Cl/Br ratios in the Alberta Basin concluded that the brines were derived from evaporatively-concentrated brines that were subsequently diluted by seawater and freshwater; models presented here show that halite dissolution must have contributed strongly as well, which implies significantly greater rates of mass transport. This result confirms that Cl/Br ratios are subject to significant non-uniqueness and thus do not provide good independent indicators of the origin of brines. Salinity and Cl/Br ratios provided valuable new constraints for basin-scale models, however. Sensitivity studies revealed that permeabilities obtained from core- and field-scale tests were appropriate for basin-scale models, despite the differences in scale between the tests and the models. Simulations of groundwater age show that the residence time of porefluids in much of the basin is less than 100 My. Groundwater age increases with depth and approaches 200 My in the deepest part of the basin, but brines are significantly younger than their host rocks throughout the basin.

  6. Brine-in-crude-oil emulsions at the Strategic Petroleum Reserve.

    SciTech Connect (OSTI)

    Nemer, Martin B.; Lord, David L.; MacDonald, Terry L.

    2013-10-01

    Metastable water-in-crude-oil emulsion formation could occur in a Strategic Petroleum Reserve (SPR) cavern if water were to flow into the crude-oil layer at a sufficient rate. Such a situation could arise during a drawdown from a cavern with a broken-hanging brine string. A high asphaltene content (> 1.5 wt %) of the crude oil provides the strongest predictor of whether a metastable water-in-crude-oil emulsion will form. However there are many crude oils with an asphaltene content > 1.5 wt % that don't form stable emulsions, but few with a low asphaltene content that do form stable emulsions. Most of the oils that form stable emulsions are %E2%80%9Csour%E2%80%9D by SPR standards indicating they contain total sulfur > 0.50 wt %.

  7. Modeling acid-gas generation from boiling chloride brines

    SciTech Connect (OSTI)

    Zhang, Guoxiang; Spycher, Nicolas; Sonnenthal, Eric; Steefel, Carl

    2009-11-16

    This study investigates the generation of HCl and other acid gases from boiling calcium chloride dominated waters at atmospheric pressure, primarily using numerical modeling. The main focus of this investigation relates to the long-term geologic disposal of nuclear waste at Yucca Mountain, Nevada, where pore waters around waste-emplacement tunnels are expected to undergo boiling and evaporative concentration as a result of the heat released by spent nuclear fuel. Processes that are modeled include boiling of highly concentrated solutions, gas transport, and gas condensation accompanied by the dissociation of acid gases, causing low-pH condensate. Simple calculations are first carried out to evaluate condensate pH as a function of HCl gas fugacity and condensed water fraction for a vapor equilibrated with saturated calcium chloride brine at 50-150 C and 1 bar. The distillation of a calcium-chloride-dominated brine is then simulated with a reactive transport model using a brine composition representative of partially evaporated calcium-rich pore waters at Yucca Mountain. Results show a significant increase in boiling temperature from evaporative concentration, as well as low pH in condensates, particularly for dynamic systems where partial condensation takes place, which result in enrichment of HCl in condensates. These results are in qualitative agreement with experimental data from other studies. The combination of reactive transport with multicomponent brine chemistry to study evaporation, boiling, and the potential for acid gas generation at the proposed Yucca Mountain repository is seen as an improvement relative to previously applied simpler batch evaporation models. This approach allows the evaluation of thermal, hydrological, and chemical (THC) processes in a coupled manner, and modeling of settings much more relevant to actual field conditions than the distillation experiment considered. The actual and modeled distillation experiments do not represent

  8. Intermediate Scale Laboratory Testing to Understand Mechanisms of Capillary and Dissolution Trapping during Injection and Post-Injection of CO2 in Heterogeneous Geological Formations

    SciTech Connect (OSTI)

    Illangasekare, Tissa; Trevisan, Luca; Agartan, Elif; Mori, Hiroko; Vargas-Johnson, Javier; Gonzalez-Nicolas, Ana; Cihan, Abdullah; Birkholzer, Jens; Zhou, Quanlin

    2015-03-31

    Carbon Capture and Storage (CCS) represents a technology aimed to reduce atmospheric loading of CO2 from power plants and heavy industries by injecting it into deep geological formations, such as saline aquifers. A number of trapping mechanisms contribute to effective and secure storage of the injected CO2 in supercritical fluid phase (scCO2) in the formation over the long term. The primary trapping mechanisms are structural, residual, dissolution and mineralization. Knowledge gaps exist on how the heterogeneity of the formation manifested at all scales from the pore to the site scales affects trapping and parameterization of contributing mechanisms in models. An experimental and modeling study was conducted to fill these knowledge gaps. Experimental investigation of fundamental processes and mechanisms in field settings is not possible as it is not feasible to fully characterize the geologic heterogeneity at all relevant scales and gathering data on migration, trapping and dissolution of scCO2. Laboratory experiments using scCO2 under ambient conditions are also not feasible as it is technically challenging and cost prohibitive to develop large, two- or three-dimensional test systems with controlled high pressures to keep the scCO2 as a liquid. Hence, an innovative approach that used surrogate fluids in place of scCO2 and formation brine in multi-scale, synthetic aquifers test systems ranging in scales from centimeter to meter scale developed used. New modeling algorithms were developed to capture the processes controlled by the formation heterogeneity, and they were tested using the data from the laboratory test systems. The results and findings are expected to contribute toward better conceptual models, future improvements to DOE numerical codes, more accurate assessment of storage capacities, and optimized placement strategies. This report presents the experimental and modeling methods

  9. Maximization of permanent trapping of CO{sub 2} and co-contaminants in the highest-porosity formations of the Rock Springs Uplift (Southwest Wyoming): experimentation and multi-scale modeling

    SciTech Connect (OSTI)

    Piri, Mohammad

    2014-03-31

    Under this project, a multidisciplinary team of researchers at the University of Wyoming combined state-of-the-art experimental studies, numerical pore- and reservoir-scale modeling, and high performance computing to investigate trapping mechanisms relevant to geologic storage of mixed scCO{sub 2} in deep saline aquifers. The research included investigations in three fundamental areas: (i) the experimental determination of two-­‐phase flow relative permeability functions, relative permeability hysteresis, and residual trapping under reservoir conditions for mixed scCO{sub 2}-­‐brine systems; (ii) improved understanding of permanent trapping mechanisms; (iii) scientifically correct, fine grid numerical simulations of CO{sub 2} storage in deep saline aquifers taking into account the underlying rock heterogeneity. The specific activities included: (1) Measurement of reservoir-­‐conditions drainage and imbibition relative permeabilities, irreducible brine and residual mixed scCO{sub 2} saturations, and relative permeability scanning curves (hysteresis) in rock samples from RSU; (2) Characterization of wettability through measurements of contact angles and interfacial tensions under reservoir conditions; (3) Development of physically-­‐based dynamic core-­‐scale pore network model; (4) Development of new, improved high-­‐ performance modules for the UW-­‐team simulator to provide new capabilities to the existing model to include hysteresis in the relative permeability functions, geomechanical deformation and an equilibrium calculation (Both pore-­‐ and core-­‐scale models were rigorously validated against well-­‐characterized core-­‐ flooding experiments); and (5) An analysis of long term permanent trapping of mixed scCO{sub 2} through high-­‐resolution numerical experiments and analytical solutions. The analysis takes into account formation heterogeneity, capillary trapping, and relative permeability hysteresis.

  10. Simulation and economic evaluation of a solar evaporation system for concentrating sodium chloride brines

    SciTech Connect (OSTI)

    Smith, M.K.; Newell, T.A. )

    1991-01-01

    An hourly simulation program has been developed for detailed modelin of an evaporation surface (ES) and an evaporation pond (EP) for reconcentration of a solar pond's (SP's) surface brine. The results are relavant to other systems in which it is desirable to concentrate a brine. The simulation results are used in three ways: first, for general comparison of brine reconcentration performance for a variety of locations; second, development of an ES design method based on long term monthly averaged weather data; and third, an economic comparison between ESs and EPs. The results show that regions with moderate to high precipitation favor ESs over EPs. Dry climates will generally favor EPs for brine reconcentration.

  11. Comparison of Caprock Mineral Characteristics at Field Demonstration Sites for Saline Aquifer Sequestration of Carbon Dioxide

    SciTech Connect (OSTI)

    Griffith, C.A.; Lowry, G. (Carnegie Mellon University); Dzombak, D. (Carnegie Mellon University); Soong, Yee; Hedges, S.W.

    2008-10-01

    In 2003 the U.S Department of Energy initiated regional partnership programs to address the concern for rising atmospheric CO2. These partnerships were formed to explore regional and economical means for geologically sequestering CO2 across the United States and to set the stage for future commercial applications. Several options exist for geological sequestration and among these sequestering CO2 into deep saline aquifers is one of the most promising. This is due, in part, to the possibility of stabilized permanent storage through mineral precipitation from chemical interactions of the injected carbon dioxide with the brine and reservoir rock. There are nine field demonstration sites for saline sequestration among the regional partnerships in Phase II development to validate the overall commercial feasibility for CO2 geological sequestration. Of the nine sites considered for Phase II saline sequestration demonstration, seven are profiled in this study for their caprock lithologic and mineral characteristics.

  12. An evaluation of aquifer intercommunication between the unconfined and Rattlesnake Ridge aquifers on the Hanford Site

    SciTech Connect (OSTI)

    Jensen, E.J.

    1987-10-01

    During 1986, Pacific Northwest Laboratory conducted a study of a portion of the Rattlesnake Ridge aquifer (confined aquifer) that lies beneath the B Pond - Gable Mountain Pond area of the Hanford Site. The purpose was to determine the extent of intercommunication between the unconfined aquifer and the uppermost regionally extensive confined aquifer, referred to as the Rattlesnake Ridge aquifer. Hydraulic head data and chemical data were collected from the ground water in the study area during December 1986. The hydraulic head data were used to determine the effects caused by water discharged to the ground from B Pond on both the water table of the unconfined aquifer and the potentiometric surface of the confined aquifer. The chemical data were collected to determine the extent of chemical constituents migrating from the unconfined aquifer to the confined aquifer. Analysis of chemical constituents in the Rattlesnake Ridge aquifer demonstrated that communication between the unconfined and confined aquifers had occurred. However, the levels of contaminants found in the Rattlesnake Ridge aquifer during this study were below the DOE Derived Concentration Guides.

  13. Community Geothermal Technology Program: Electrodeposition of minerals in geothermal brine

    SciTech Connect (OSTI)

    Not Available

    1990-12-31

    Objective was to study the materials electrodeposited from geothermal brine, from the HGP-A well in Puna, Hawaii. Due to limitations, only one good set of electrodeposited material was obtained; crystallography indicates that vaterite forms first, followed by calcite and then perhaps aragonite as current density is increased. While the cost to weight ratio is reasonable, the deposition rate is very slow. More research is needed, such as reducing the brittleness. The electrodeposited material possibly could be used as building blocks, tables, benches, etc. 49 figs, 4 tabs, 7 refs.

  14. EIA - Natural Gas Pipeline Network - Aquifer Storage Reservoir

    U.S. Energy Information Administration (EIA) Indexed Site

    Configuration Aquifer Storage Reservoir Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Aquifer Underground Natural Gas Storage Reservoir Configuration Aquifer Underground Natural Gas Well

  15. Evaporite Caprock Integrity. An experimental study of reactive mineralogy and pore-scale heterogeneity during brine-CO2 exposure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Smith, Megan M.; Sholokhova, Yelena; Hao, Yue; Carroll, Susan A.

    2012-07-25

    Characterization and geochemical data are presented from a core-flooding experiment on a sample from the Three Fingers evaporite unit forming the lower extent of caprock at the Weyburn-Midale reservoir, Canada. This low-permeability sample was characterized in detail using X-ray computed microtomography before and after exposure to CO 2-acidified brine, allowing mineral phase and voidspace distributions to be quantified in three dimensions. Solution chemistry indicated that CO 2-acidified brine preferentially dissolved dolomite until saturation was attained, while anhydrite remained unreactive. Dolomite dissolution contributed to increases in bulk permeability through the formation of a localized channel, guided by microfractures as well asmore » porosity and reactive phase distributions aligned with depositional bedding. An indirect effect of carbonate mineral reactivity with CO 2-acidified solution is voidspace generation through physical transport of anhydrite freed from the rock matrix following dissolution of dolomite. The development of high permeability fast pathways in this experiment highlights the role of carbonate content and potential fracture orientations in evaporite caprock formations considered for both geologic carbon sequestration and CO 2-enhanced oil recovery operations.« less

  16. Numerical Modeling of CO2 Sequestration in Geologic Formations -Recent Results and Open Challenges

    SciTech Connect (OSTI)

    Pruess, Karsten

    2006-03-08

    Rising atmospheric concentrations of CO2, and their role inglobal warming, have prompted efforts to reduce emissions of CO2 fromburning of fossil fuels. An attractive mitigation option underconsideration in many countries is the injection of CO2 from stationarysources, such as fossil-fueled power plants, into deep, stable geologicformations, where it would be stored and kept out of the atmosphere fortime periods of hundreds to thousands of years or more. Potentialgeologic storage reservoirs include depleted or depleting oil and gasreservoirs, unmineable coal seams, and saline formations. While oil andgas reservoirs may provide some attractive early targets for CO2 storage,estimates for geographic regions worldwide have suggested that onlysaline formations would provide sufficient storage capacity tosubstantially impact atmospheric releases. This paper will focus on CO2storage in saline formations.Injection of CO2 into a saline aquifer willgive rise to immiscible displacement of brine by the advancing CO2. Thelower viscosity of CO2 relative to aqueous fluids provides a potentialfor hydrodynamic instabilities during the displacement process. Attypical subsurface conditions of temperature and pressure, CO2 is lessdense than aqueous fluids and is subject to upward buoyancy force inenvironments where pressures are controlled by an ambient aqueous phase.Thus CO2 would tend to rise towards the top of a permeable formation andaccumulate beneath the caprock. Some CO2 will also dissolve in theaqueous phase, while the CO2-rich phase may dissolve some formationwaters, which would tend to dry out the vicinity of the injection wells.CO2 will make formation waters more acidic, and will induce chemicalrections that may precipitate and dissolve mineral phases (Xu et al.,2004). As a consequence of CO2 injection, significant pressurization offormation fluids would occur over large areas. These pressurizationeffects will change effective stresses, and may cause movement alongfaults

  17. EIA - Natural Gas Pipeline Network - Aquifer Storage Reservoir...

    U.S. Energy Information Administration (EIA) Indexed Site

    Aquifer Storage Reservoir Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Aquifer Underground ...

  18. Effect of Oxygen Co-Injected with Carbon Dioxide on Gothic Shale Caprock-CO2-Brine Interaction during Geologic Carbon Sequestration

    SciTech Connect (OSTI)

    Jung, Hun Bok; Um, Wooyong; Cantrell, Kirk J.

    2013-09-16

    Co-injection of oxygen, a significant component in CO2 streams produced by the oxyfuel combustion process, can cause a significant alteration of the redox state in deep geologic formations during geologic carbon sequestration. The potential impact of co-injected oxygen on the interaction between synthetic CO2-brine (0.1 M NaCl) and shale caprock (Gothic shale from the Aneth Unit in Utah) and mobilization of trace metals was investigated at ~10 MPa and ~75 °C. A range of relative volume percentages of O2 to CO2 (0, 1, 4 and 8%) were used in these experiments to address the effect of oxygen on shale-CO2-brine interaction under various conditions. Major mineral phases in Gothic shale are quartz, calcite, dolomite, montmorillonite, and pyrite. During Gothic shale-CO2-brine interaction in the presence of oxygen, pyrite oxidation occurred extensively and caused enhanced dissolution of calcite and dolomite. Pyrite oxidation and calcite dissolution subsequently resulted in the precipitation of Fe(III) oxides and gypsum (CaSO4•2H2O). In the presence of oxygen, dissolved Mn and Ni were elevated because of oxidative dissolution of pyrite. The mobility of dissolved Ba was controlled by barite (BaSO4) precipitation in the presence of oxygen. Dissolved U in the experimental brines increased to ~8–14 g/L, with concentrations being slightly higher in the absence of oxygen than in the presence of oxygen. Experimental and modeling results indicate the interaction between shale caprock and oxygen co-injected with CO2 during geologic carbon sequestration can exert significant impacts on brine pH, solubility of carbonate minerals, stability of sulfide minerals, and mobility of trace metals. The major impact of oxygen is most likely to occur in the zone near CO2 injection wells where impurity gases can accumulate. Oxygen in CO2-brine migrating away from the injection well will be continually consumed through the reactions with sulfide minerals in deep geologic formations.

  19. Strontium isotope quantification of siderite, brine and acid mine drainage contributions to abandoned gas well discharges in the Appalachian Plateau

    SciTech Connect (OSTI)

    Chapman, Elizabeth C.; Capo, Rosemary C.; Stewart, Brian W.; Hedin, Robert S.; Weaver, Theodore J.; Edenborn, Harry M.

    2013-04-01

    Unplugged abandoned oil and gas wells in the Appalachian region can serve as conduits for the movement of waters impacted by fossil fuel extraction. Strontium isotope and geochemical analysis indicate that artesian discharges of water with high total dissolved solids (TDS) from a series of gas wells in western Pennsylvania result from the infiltration of acidic, low Fe (Fe < 10 mg/L) coal mine drainage (AMD) into shallow, siderite (iron carbonate)-cemented sandstone aquifers. The acidity from the AMD promotes dissolution of the carbonate, and metal- and sulfate-contaminated waters rise to the surface through compromised abandoned gas well casings. Strontium isotope mixing models suggest that neither upward migration of oil and gas brines from Devonian reservoirs associated with the wells nor dissolution of abundant nodular siderite present in the mine spoil through which recharge water percolates contribute significantly to the artesian gas well discharges. Natural Sr isotope composition can be a sensitive tool in the characterization of complex groundwater interactions and can be used to distinguish between inputs from deep and shallow contamination sources, as well as between groundwater and mineralogically similar but stratigraphically distinct rock units. This is of particular relevance to regions such as the Appalachian Basin, where a legacy of coal, oil and gas exploration is coupled with ongoing and future natural gas drilling into deep reservoirs.

  20. Relationship of regional water quality to aquifer thermal energy storage

    SciTech Connect (OSTI)

    Allen, R.D.

    1983-11-01

    Ground-water quality and associated geologic characteristics may affect the feasibility of aquifer thermal energy storage (ATES) system development in any hydrologic region. This study sought to determine the relationship between ground-water quality parameters and the regional potential for ATES system development. Information was collected from available literature to identify chemical and physical mechanisms that could adversely affect an ATES system. Appropriate beneficiation techniques to counter these potential geochemical and lithologic problems were also identified through the literature search. Regional hydrology summaries and other sources were used in reviewing aquifers of 19 drainage regions in the US to determine generic geochemical characteristics for analysis. Numerical modeling techniques were used to perform geochemical analyses of water quality from 67 selected aquifers. Candidate water resources regions were then identified for exploration and development of ATES. This study identified six principal mechanisms by which ATES reservoir permeability may be impaired: (1) particulate plugging, (2) chemical precipitation, (3) liquid-solid reactions, (4) formation disaggregation, (5) oxidation reactions, and (6) biological activity. Specific proven countermeasures to reduce or eliminate these effects were found. Of the hydrologic regions reviewed, 10 were identified as having the characteristics necessary for ATES development: (1) Mid-Atlantic, (2) South-Atlantic Gulf, (3) Ohio, (4) Upper Mississippi, (5) Lower Mississippi, (6) Souris-Red-Rainy, (7) Missouri Basin, (8) Arkansas-White-Red, (9) Texas-Gulf, and (10) California.

  1. Chemical-equilibrium calculations for aqueous geothermal brines

    SciTech Connect (OSTI)

    Kerrisk, J.F.

    1981-05-01

    Results from four chemical-equilibrium computer programs, REDEQL.EPAK, GEOCHEM, WATEQF, and SENECA2, have been compared with experimental solubility data for some simple systems of interest with geothermal brines. Seven test cases involving solubilities of CaCO/sub 3/, amorphous SiO/sub 2/, CaSO/sub 4/, and BaSO/sub 4/ at various temperatures from 25 to 300/sup 0/C and in NaCl or HCl solutions of 0 to 4 molal have been examined. Significant differences between calculated results and experimental data occurred in some cases. These differences were traced to inaccuracies in free-energy or equilibrium-constant data and in activity coefficients used by the programs. Although currently available chemical-equilibrium programs can give reasonable results for these calculations, considerable care must be taken in the selection of free-energy data and methods of calculating activity coefficients.

  2. Wetting behavior of selected crude oil/brine/rock systems. Topical report, March 1, 1995--March 31, 1996

    SciTech Connect (OSTI)

    Zhou, X.; Morrow, N.R.; Ma, S.

    1996-12-31

    Previous studies of crude oil/brine/rock (COBR) and related ensembles showed that wettability and its effect on oil recovery depend on numerous complex interactions. In the present work, the wettability of COBR ensembles prepared using Prudhoe Bay crude oil, a synthetic formation brine, and Berea Sandstone was varied by systematic change in initial water saturation and length of aging time at reservoir temperature (88 C). All displacement tests were run at ambient temperature. Various degrees of water wetness were achieved and quantified by a modified Amott wettability index to water, the relative pseudo work of imbibition, and a newly defined apparent advancing dynamic contact angle. Pairs of spontaneous imbibition (oil recovery by spontaneous imbibition of water) and waterflood (oil recovery vs. pore volumes of water injected) curves were measured for each of the induced wetting states. Several trends were observed. Imbibition rate, and hence water wetness, decreased with increase in aging time and with decrease in initial water saturation. Breakthrough recoveries and final oil recovery by waterflooding increased with decrease in water wetness. Correlations between water wetness and oil recovery by waterflooding and spontaneous imbibition are presented.

  3. Optimization of Geological Environments for Carbon Dioxide Disposan in Saline Aquifers in the United States

    SciTech Connect (OSTI)

    Hovorka, Susan

    1999-02-01

    Recent research and applications have demonstrated technologically feasible methods, defined costs, and modeled processes needed to sequester carbon dioxide (CO{sub 2}) in saline-water-bearing formations (aquifers). One of the simplifying assumptions used in previous modeling efforts is the effect of real stratigraphic complexity on transport and trapping in saline aquifers. In this study we have developed and applied criteria for characterizing saline aquifers for very long-term sequestration of CO{sub 2}. The purpose of this pilot study is to demonstrate a methodology for optimizing matches between CO{sub 2} sources and nearby saline formations that can be used for sequestration. This project identified 14 geologic properties used to prospect for optimal locations for CO{sub 2} sequestration in saline-water-bearing formations. For this demonstration, we digitized maps showing properties of saline formations and used analytical tools in a geographic information system (GIS) to extract areas that meet variably specified prototype criteria for CO{sub 2} sequestration sites. Through geologic models, realistic aquifer properties such as discontinuous sand-body geometry are determined and can be used to add realistic hydrologic properties to future simulations. This approach facilitates refining the search for a best-fit saline host formation as our understanding of the most effective ways to implement sequestration proceeds. Formations where there has been significant drilling for oil and gas resources as well as extensive characterization of formations for deep-well injection and waste disposal sites can be described in detail. Information to describe formation properties can be inferred from poorly known saline formations using geologic models in a play approach. Resulting data sets are less detailed than in well-described examples but serve as an effective screening tool to identify prospects for more detailed work.

  4. Evaluation of experimentally measured and model-calculated pH for rock-brine-CO2 systems under geologic CO2 sequestration conditions

    SciTech Connect (OSTI)

    Shao, Hongbo; Thompson, Christopher J.; Cantrell, Kirk J.

    2013-11-14

    pH is an essential parameter for understanding the geochemical reactions that occur in rock-brine-CO2 systems when CO2 is injected into deep geologic formations for long-term storage. Due to a lack of reliable experimental methods, most laboratory studies conducted under geological CO2 sequestration (GCS) conditions have relied on thermodynamic modeling to estimate pH. The accuracy of these model predictions is typically uncertain. In our previous work, we have developed a method for pH determination by in-situ spectrophotometry. In the present work, we expanded the applicable pH range for this method and measured the pH of several rock-brine-CO2 systems at GCS conditions for five rock samples collected from ongoing GCS demonstration projects. Experimental measurements were compared with pH values calculated using several geochemical modeling approaches. The effect of different thermodynamic databases on the accuracy of model prediction was evaluated. Results indicate that the accuracy of model calculations is rock-dependent. For rocks comprised of carbonate and sandstone, model results generally agreed well with experimentally measured pH; however, for basalt, significant differences were observed. These discrepancies may be due to the models’ failure to fully account for certain reaction occurring between the basalt minerals the CO2-saturated brine solutions.

  5. Using Pressure and Volumetric Approaches to Estimate CO2 Storage Capacity in Deep Saline Aquifers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thibeau, Sylvain; Bachu, Stefan; Birkholzer, Jens; Holloway, Sam; Neele, Filip; Zhou, Quanlin

    2014-12-31

    Various approaches are used to evaluate the capacity of saline aquifers to store CO2, resulting in a wide range of capacity estimates for a given aquifer. The two approaches most used are the volumetric “open aquifer” and “closed aquifer” approaches. We present four full-scale aquifer cases, where CO2 storage capacity is evaluated both volumetrically (with “open” and/or “closed” approaches) and through flow modeling. These examples show that the “open aquifer” CO2 storage capacity estimation can strongly exceed the cumulative CO2 injection from the flow model, whereas the “closed aquifer” estimates are a closer approximation to the flow-model derived capacity. Anmore » analogy to oil recovery mechanisms is presented, where the primary oil recovery mechanism is compared to CO2 aquifer storage without producing formation water; and the secondary oil recovery mechanism (water flooding) is compared to CO2 aquifer storage performed simultaneously with extraction of water for pressure maintenance. This analogy supports the finding that the “closed aquifer” approach produces a better estimate of CO2 storage without water extraction, and highlights the need for any CO2 storage estimate to specify whether it is intended to represent CO2 storage capacity with or without water extraction.« less

  6. Calculation of brine properties. [Above 80/sup 0/F and for salt...

    Office of Scientific and Technical Information (OSTI)

    Brine saturation pressure is calculated as a percentage of the pure water saturation ... temperature and pressure and are obtained from the ASME equation-of-state for pure water. ...

  7. Study of thermal-gradient-induced migration of brine inclusions in salt. Final report

    SciTech Connect (OSTI)

    Olander, D.R.

    1984-08-01

    Natural salt deposits, which are being considered for high-level waste disposal, contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine (the all-liquid inclusions) migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms, which is undesirable. Therefore it is important to consider the migration of brine inclusions in salt under imposed temperature gradients to properly evaluate the performance of a future salt repository for nuclear wastes. The migration velocities of the inclusions were found to be dependent on temperature, temperature gradient, and inclusion shape and size. The velocities were also dictated by the interfacial mass transfer resistance at brine/solid interface. This interfacial resistance depends on the dislocation density in the crystal, which in turn, depends on the axial compressive loading of the crystal. At low axial loads, the dependence between the velocity and temperature gradient is nonlinear. At high axial loads, the interfacial resistance is reduced and the migration velocity depends linearly on the temperature gradient. All-liquid inclusions filled with mixed brines were also studied. For gas-liquid inclusions, helium, air and argon were compared. Migration studies were also conducted on single crystallites of natural salt as well as in polycrystalline natural salt samples. The behavior of the inclusions at large-ange grain boundaries was observed.

  8. Recovery of energy from geothermal brine and other hot water sources

    DOE Patents [OSTI]

    Wahl, III, Edward F.; Boucher, Frederic B.

    1981-01-01

    Process and system for recovery of energy from geothermal brines and other hot water sources, by direct contact heat exchange between the brine or hot water, and an immiscible working fluid, e.g. a hydrocarbon such as isobutane, in a heat exchange column, the brine or hot water therein flowing countercurrent to the flow of the working fluid. The column can be operated at subcritical, critical or above the critical pressure of the working fluid. Preferably, the column is provided with a plurality of sieve plates, and the heat exchange process and column, e.g. with respect to the design of such plates, number of plates employed, spacing between plates, area thereof, column diameter, and the like, are designed to achieve maximum throughput of brine or hot water and reduction in temperature differential at the respective stages or plates between the brine or hot water and the working fluid, and so minimize lost work and maximize efficiency, and minimize scale deposition from hot water containing fluid including salts, such as brine. Maximum throughput approximates minimum cost of electricity which can be produced by conversion of the recovered thermal energy to electrical energy.

  9. Evaluating Impacts of CO2 and CH4 Gas Intrusion into an Unconsolidated Aquifer: Fate of As and Cd

    SciTech Connect (OSTI)

    Lawter, Amanda R.; Qafoku, Nikolla; Shao, Hongbo; Bacon, Diana H.; Brown, Christopher F.

    2015-07-10

    Abstract The sequestration of carbon dioxide (CO2) in deep underground reservoirs has been identified as an important strategy to decrease atmospheric CO2 levels and mitigate global warming, but potential risks on overlying aquifers currently lack a complete evaluation. In addition to CO2, other gases such as methane (CH4) may be present in storage reservoirs. This paper explores for the first time the combined effect of leaking CO2 and CH4 gasses on the fate of major, minor and trace elements in an aquifer overlying a potential sequestration site. Emphasis is placed on the fate of arsenic (As) and cadmium (Cd) released from the sediments or present as soluble constituents in the leaking brine. Results from macroscopic batch and column experiments show that the presence of CH4 (at a concentration of 1 % in the mixture CO2/CH4) does not have a significant effect on solution pH or the concentrations of most major elements (such as Ca, Ba, and Mg). However, the concentrations of Mn, Mo, Si and Na are inconsistently affected by the presence of CH4 (i.e., in at least one sediment tested in this study). Cd is not released from the sediments and spiked Cd is mostly removed from the aqueous phase most likely via adsorption. The fate of sediment associated As [mainly sorbed arsenite or As(III) in minerals] and spiked As [i.e., As5+] is complex. Possible mechanisms that control the As behavior in this system are discussed in this paper. Results are significant for CO2 sequestration risk evaluation and site selection and demonstrate the importance of evaluating reservoir brine and gas stream composition during site selection to ensure the safest site is being chosen.

  10. West Hackberry Strategic Petroleum Reserve site brine-disposal monitoring, Year I report. Volume III. Biological oceanography. Final report

    SciTech Connect (OSTI)

    DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C.; Lascara, V.J.

    1983-02-01

    The Department of Energy's Strategic Petroleum Reserve Program began discharging brine into the Gulf of Mexico from its West Hackberry site near Cameron, Louisiana in May 1981. The brine originates from underground salt domes being leached with water from the Intracoastal Waterway, making available vast underground storage caverns for crude oil. The effects of brine discharge on aquatic organisms are presented in this volume. The topics covered are: benthos; nekton; phytoplankton; zooplankton; and data management.

  11. 30 TAC 213 - Edwards Aquifer | Open Energy Information

    Open Energy Info (EERE)

    13 - Edwards Aquifer Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: 30 TAC 213 - Edwards AquiferLegal Published NA Year...

  12. Summary Results for Brine Migration Modeling Performed by LANL, LBNL and SNL for the Used Fuel Disposition Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    The report summarizes laboratory and field observations and numerical modeling related to coupledprocesses involving brine and vapor migration in geologic salt, focusing on recent developments and...

  13. Aquifer thermal energy storage. International symposium: Proceedings

    SciTech Connect (OSTI)

    1995-05-01

    Aquifers have been used to store large quantities of thermal energy to supply process cooling, space cooling, space heating, and ventilation air preheating, and can be used with or without heat pumps. Aquifers are used as energy sinks and sources when supply and demand for energy do not coincide. Aquifer thermal energy storage may be used on a short-term or long-term basis; as the sole source of energy or as a partial storage; at a temperature useful for direct application or needing upgrade. The sources of energy used for aquifer storage are ambient air, usually cold winter air; waste or by-product energy; and renewable energy such as solar. The present technical, financial and environmental status of ATES is promising. Numerous projects are operating and under development in several countries. These projects are listed and results from Canada and elsewhere are used to illustrate the present status of ATES. Technical obstacles have been addressed and have largely been overcome. Cold storage in aquifers can be seen as a standard design option in the near future as it presently is in some countries. The cost-effectiveness of aquifer thermal energy storage is based on the capital cost avoidance of conventional chilling equipment and energy savings. ATES is one of many developments in energy efficient building technology and its success depends on relating it to important building market and environmental trends. This paper attempts to provide guidance for the future implementation of ATES. Individual projects have been processed separately for entry onto the Department of Energy databases.

  14. Geochemical Triggers of Arsenic Mobilization during Managed Aquifer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recharge | Stanford Synchrotron Radiation Lightsource Geochemical Triggers of Arsenic Mobilization during Managed Aquifer Recharge Monday, February 29, 2016 Managed aquifer recharge (MAR) is an increasingly used water enhancement strategy, which involves subsurface storage of water supplies in groundwater aquifers. While MAR projects have the potential to alleviate water deficits, they can also adversely impact groundwater quality by altering the native geochemistry of the aquifer and

  15. Preliminary formation analysis for compressed air energy storage in depleted natural gas reservoirs : a study for the DOE Energy Storage Systems Program.

    SciTech Connect (OSTI)

    Gardner, William Payton

    2013-06-01

    The purpose of this study is to develop an engineering and operational understanding of CAES performance for a depleted natural gas reservoir by evaluation of relative permeability effects of air, water and natural gas in depleted natural gas reservoirs as a reservoir is initially depleted, an air bubble is created, and as air is initially cycled. The composition of produced gases will be evaluated as the three phase flow of methane, nitrogen and brine are modeled. The effects of a methane gas phase on the relative permeability of air in a formation are investigated and the composition of the produced fluid, which consists primarily of the amount of natural gas in the produced air are determined. Simulations of compressed air energy storage (CAES) in depleted natural gas reservoirs were carried out to assess the effect of formation permeability on the design of a simple CAES system. The injection of N2 (as a proxy to air), and the extraction of the resulting gas mixture in a depleted natural gas reservoir were modeled using the TOUGH2 reservoir simulator with the EOS7c equation of state. The optimal borehole spacing was determined as a function of the formation scale intrinsic permeability. Natural gas reservoir results are similar to those for an aquifer. Borehole spacing is dependent upon the intrinsic permeability of the formation. Higher permeability allows increased injection and extraction rates which is equivalent to more power per borehole for a given screen length. The number of boreholes per 100 MW for a given intrinsic permeability in a depleted natural gas reservoir is essentially identical to that determined for a simple aquifer of identical properties. During bubble formation methane is displaced and a sharp N2methane boundary is formed with an almost pure N2 gas phase in the bubble near the borehole. During cycling mixing of methane and air occurs along the boundary as the air bubble boundary moves. The extracted gas mixture changes as a

  16. Silica separation from reinjection brines at Monte Amiata geothermal plants, Italy

    SciTech Connect (OSTI)

    Vitolo, S.; Cialdella, M.L. . Dipartimento di Ingegneria Chimica)

    1994-06-01

    A process for the separation of silica from geothermal reinjection brines is reported, in which the phases of coagulation, sedimentation and filtration of silica are involved. The effectiveness of lime and calcium chloride as coagulating agents has been investigated and the separating operations have been set out. Attention has been focused on Monte Amiata reinjection geothermal brines, whose scaling effect causes serious problems in the operation and maintenance of reinjection facilities. The study has been conducted using different amounts of added coagulants and at different temperatures, to determine optimal operating conditions. Though calcium chloride was revealed to be effective as a coagulant of the polymeric silica fraction, lime has also proved capable of removing monomeric dissolved silica at high dosages. Investigation on the behavior of coagulated brine has revealed the feasibility of separating the coagulated silica by sedimentation and filtration.

  17. ASSESSMENT OF TECHNETIUM LEACHABILITY IN CEMENT STABILIZED BASIN 43 GROUNDWATER BRINE

    SciTech Connect (OSTI)

    COOKE GA; DUNCAN JB; LOCKREM LL

    2008-09-30

    This report is an initial report on the laboratory effort executed under RPP-PLAN-33338, Test Plan for the Assessment of Technetium Leachability in Cement-Stabilized Basin 43 Groundwater Brine. This report delineates preliminary data obtained under subcontract 21065, release 30, from the RJ Lee Group, Inc., Center for Laboratory Sciences. The report is predicated on CLS RPT-816, Draft Report: Assessment of Technetium Leachability in Cement Stabilized Basin 43 Groundwater Brine. This document will be revised on receipt of the final RJ Lee Group, Inc., Center for Laboratory Sciences report, which will contain data subjected to quality control and quality assurance criteria.

  18. Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures

    SciTech Connect (OSTI)

    Rutqvist, Jonny; Blanco-Martin, Laura; Molins, Sergi; Trebotich, David; Birkholzer, Jens

    2015-09-01

    In this report, we present FY2015 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This is a combined milestone report related to milestone Salt R&D Milestone “Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures” (M3FT-15LB0818012) and the Salt Field Testing Milestone (M3FT-15LB0819022) to support the overall objectives of the salt field test planning.

  19. Performance of CRA in concentrated brines at 130 to 180 C -- Effect of H{sub 2}S, elemental sulfur and brine composition

    SciTech Connect (OSTI)

    Schmitt, G.; Pankoke, U.; Klemp, G.; Bruckhoff, W.; Siegmund, G.

    1997-08-01

    Failure analysis of localized corrosion at 28Cr32Ni (Alloy 28) tubing in a sour gas well prompted systematic investigations on the performance of relevant corrosion resistant alloys (CRA) in synthetic high salinity brines at high H{sub 2}S partial pressures in the absence and presence of elemental sulfur at 130 to 180 C. The CRAs included superaustenitic steels, nickel and nickel-cobalt base alloys and titanium alloys. CRAs with pitting resistance equivalents (PRE) of 39 and lower (including 28Cr32Ni) suffered in unbuffered brines from pitting and crevice corrosion already at 130 C. Alloy C276 and Ti Beta-C alloys proved complete resistance in all media tested up to 180 C. The effect of medium composition on CRA performance was studied at 130 C with respect to the presence of elemental sulfur, H{sub 2}S, iron sulfide, and CaCo{sub 3} in NaCl/CaCl{sub 2} brines with a total of 160 g/l chloride.

  20. The geochemistry of formation waters in the Molasse basin of upper Austria

    SciTech Connect (OSTI)

    Andrews, J.N.; Youngman, M.J. ); Goldbrunner, J.E. ); Darling, W.G. )

    1987-01-01

    The geochemistry of formation waters in the Molasse basin of Upper Austria has been investigated to ascertain the extent of meteoric water replacement of the connate interstitial fluids in these sediments. The chemistry, isotopic composition, and dissolved gas contents of the groundwaters and of oil and gas associated brines have been determined. The most superficial sediments of the basin, the Innviertel (Miocene), have been completely flushed by meteoric waters within the last 200 ka. The underlying Hall and Puchkirchen formations (Miocene/Oligocene) form gas reservoirs for biogenic methane, and the associated formation water are chemically and isotopically modified connate brines of the original marine deposition. In the northeastern part of the basin, the connate brines of the deeper sediments (Cretaceous/Jurassic) have been partially or completely replaced by meteoric waters, whereas in the south of the basin these sediments contain high salinity fluids which are substantially of connate origin. These conclusions are supported by the stable isotope composition of the various brines. Oil-associated brines from the Eocene sediments contain large amounts of dissolved radiogenic {sup 40}Ar, which suggests that the oils have migrated from high-temperature environments. The overall geochemical situation confirms the existence of separate hydraulic systems with little interconnection in the several overlying geological horizons.

  1. Total Reducing Capacity in Aquifer Minerals and Sediments: Quantifying the Potential to Attenuate Cr(VI) in Groundwater

    SciTech Connect (OSTI)

    Sisman, S. Lara

    2015-07-20

    Hexavalent chromium, Cr(VI), is present in the environment as a byproduct of industrial processes. Due to its mobility and toxicity, it is crucial to attenuate or remove Cr(VI) from the environment. The objective of this investigation was to quantify potential natural attenuation, or reduction capacity, of reactive minerals and aquifer sediments. Samples of reduced-iron containing minerals such as ilmenite, as well as Puye Formation sediments representing a contaminated aquifer in New Mexico, were reacted with chromate. The change in Cr(VI) during the reaction was used to calculate reduction capacity. This study found that minerals that contain reduced iron, such as ilmenite, have high reducing capacities. The data indicated that sample history may impact reduction capacity tests due to surface passivation. Further, this investigation identified areas for future research including: a) refining the relationships between iron content, magnetic susceptibility and reduction capacity, and b) long term kinetic testing using fresh aquifer sediments.

  2. Shaker Table Experiments with Rare Earth Elements Sorption from Geothermal Brine

    SciTech Connect (OSTI)

    Gary Garland

    2015-07-21

    This dataset described shaker table experiments ran with sieved -50 +100 mesh media #1 in brine #1 that have 2ppm each of the 7 REE metals at different starting pH's of 3.5, 4.5, and 5.5. The experimental conditions are 2g media to 150mL of REE solution, at 70C.

  3. Colloid formation study of U, Th, Ra, Pb, Po, Sr, Rb, and Cs in briny (high ionic strength) groundwaters

    SciTech Connect (OSTI)

    Maiti, T.C.; Smith, M.R.; Laul, J.C.

    1989-01-01

    Colloid formation of uranium, thorium, radium, lead, polonium, strontium, rubidium, and cesium in briny (high ionic strength) groundwaters is studied to predict their capability as vectors for transporting radionuclides. This knowledge is essential in developing models to infer the transport of radionuclides from the source region to the surrounding environment. Except polonium, based on the experimental results, colloid formation of uranium, thorium, radium, lead, strontium, rubidium, and cesium is unlikely in brines with compositions similar to the synthetic Palo Duro Basin brine. This observation of no colloid formation is explained by electrokinetic theory and inorganic solution chemistry.

  4. RealGasBrine v1.0 option of TOUGH+ v1.5

    SciTech Connect (OSTI)

    Moridis, George

    2015-02-27

    RealGasBrine v1.0 is a numerical code that for the simulation of the behavior of gas-bearing porous and/fractured geologic media. It is an option of TOUGH+ v1.5 [Moridis, 2014], a successor to the TOUGH2 [Pruess et al., 1999; 2012] family of codes for multi-component, multiphase ?uid and heat ?ow developed at the Lawrence Berkeley National Laboratory. RealGasBrine v1.0 needs the TOUGH+ v1.5 core code in order to compile and execute. It is written in standard FORTRAN 95/2003, and can be run on any computational platform (workstation, PC, Macintosh) for which such compilers are available. RealGasBrine v1.0 describes the non-isothermal two- (for pure water) or three-phase (for brine) flow of an aqueous phase and a real gas mixture in a gas-bearing medium, with a particular focus in ultra-tight (such as tight-sand and shale gas) systems. Up to 12 individual real gases can be tracked, and salt can precipitate as solid halite. The capabilities of the code include coupled flow and thermal effects, real gas behavior, Darcy and non-Darcy flow, several isotherm options of gas sorption onto the grains of the porous media, complex fracture descriptions, gas solubility into water, and geomechanical effects on flow properties. RealGasBrine v1.0 allows the study of flow and transport of fluids and heat over a wide range of time frames and spatial scales not only in gas reservoirs, but also in any problem involving the flow of gases in geologic media, including the geologic storage of greenhouse gas mixtures, the behavior of geothermal reservoirs with multi-component condensable (H2O and CO2) and non-condensable gas mixtures, the transport of water and released H2 in nuclear waste storage applications, etc.

  5. Disposal/recovery options for brine waters from oil and gas production in New York State. Final report

    SciTech Connect (OSTI)

    Matsumoto, M.R.; Atkinson, J.F.; Bunn, M.D.; Hodge, D.S.

    1996-03-01

    Produced water from oil and gas operations, or brine as it is typically referred, may be characterized as being highly saline, with total dissolved solids greater than 100 g/L. If these bribes are disposed improperly there may be severe adverse environmental effects. Thus, it is important that brine be disposed using environmentally sound methods. Unfortunately, costs for the disposal of brine water are a significant burden to oil and gas producers in New York State. These costs and the relatively low market price of oil and natural gas have contributed to the decline in gas and oil production in New York State during the past 10 years. The objectives of this study were to evaluate new and existing options for brine disposal in New York State, examine the technical and economic merits of these options, and assess environmental impacts associated with each option. Two new disposal options investigated for New York State oil and gas producers included construction of a regional brine treatment facility to treat brine prior to discharge into a receiving water and a salt production facility that utilizes produced water as a feed stock. Both options are technically feasible; however, their economic viability depends on facility size and volume of brine treated.

  6. GEOCHEMICAL INVESTIGATIONS OF CO₂-BRINE-ROCK INTERACTIONS OF THE KNOX GROUP IN THE ILLINOIS BASIN

    SciTech Connect (OSTI)

    Yoksoulian, Lois; Berger, Peter; Freiburg, Jared; Butler, Shane; Leetaru, Hannes

    2014-09-30

    Increased output of greenhouse gases, particularly carbon dioxide (CO₂), into the atmosphere from anthropogenic sources is of great concern. A potential technology to reduce CO₂ emissions is geologic carbon sequestration. This technology is currently being evaluated in the United States and throughout the world. The geology of the Illinois Basin exhibits outstanding potential as a carbon sequestration target, as demonstrated by the ongoing Illinois Basin – Decatur Project that is using the Mt. Simon Sandstone reservoir and Eau Claire Shale seal system to store and contain 1 million tonnes of CO₂. The Knox Group-Maquoketa Shale reservoir and seal system, located stratigraphically above the Mt. Simon Sandstone-Eau Claire Shale reservoir and seal system, has little economic value as a resource for fossil fuels or as a potable water source, making it ideal as a potential carbon sequestration target. In order for a reservoir-seal system to be effective, it must be able to contain the injected CO₂ without the potential for the release of harmful contaminants liberated by the reaction between CO₂-formation fluids and reservoir and seal rocks. This study examines portions of the Knox Group (Potosi Dolomite, Gunter Sandstone, New Richmond Sandstone) and St. Peter Sandstone, and Maquoketa Shale from various locations around the Illinois Basin. A total of 14 rock and fluid samples were exposed to simulated sequestration conditions (9101–9860 kPa [1320–1430 psi] and 32°–42°C [90°– 108°F]) for varying amounts of time (6 hours to 4 months). Knox Group reservoir rocks exhibited dissolution of dolomite in the presence of CO₂ as indicated by petrographic examination, X-ray diffraction analysis, and fluid chemistry analysis. These reactions equilibrated rapidly, and geochemical modeling confirmed that these reactions reached equilibrium within the time frames of the experiments. Pre-reaction sample mineralogy and postreaction fluid geochemistry from this

  7. On parameterization of the inverse problem for estimating aquifer...

    Office of Scientific and Technical Information (OSTI)

    Title: On parameterization of the inverse problem for estimating aquifer properties using tracer data Authors: Kowalsky, M. B. ; Finsterle, S. ; Commer, M. ; Williams, K. H. ; ...

  8. Sole Source Aquifer Demonstration Program | Open Energy Information

    Open Energy Info (EERE)

    Demonstration Program Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Sole Source Aquifer Demonstration ProgramLegal...

  9. Chemical and Isotopic Prediction of Aquifer Temperatures in the...

    Open Energy Info (EERE)

    of Aquifer Temperatures in the Geothermal System at Long Valley, California Authors R.O. Fournier, Michael L. Sorey, Robert H. Mariner and Alfred H. Truesdell Published Journal...

  10. Aquifer thermal energy (heat and chill) storage

    SciTech Connect (OSTI)

    Jenne, E.A.

    1992-11-01

    As part of the 1992 Intersociety Conversion Engineering Conference, held in San Diego, California, August 3--7, 1992, the Seasonal Thermal Energy Storage Program coordinated five sessions dealing specifically with aquifer thermal energy storage technologies (ATES). Researchers from Sweden, The Netherlands, Germany, Switzerland, Denmark, Canada, and the United States presented papers on a variety of ATES related topics. With special permission from the Society of Automotive Engineers, host society for the 1992 IECEC, these papers are being republished here as a standalone summary of ATES technology status. Individual papers are indexed separately.

  11. Simulation of Coupled Processes of Flow, Transport, and Storage of CO2 in Saline Aquifers

    SciTech Connect (OSTI)

    Wu, Yu-Shu; Chen, Zizhong; Kazemi, Hossein; Yin, Xiaolong; Pruess, Karsten; Oldenburg, Curt; Winterfeld, Philip; Zhang, Ronglei

    2014-09-30

    This report is the final scientific one for the award DE- FE0000988 entitled “Simulation of Coupled Processes of Flow, Transport, and Storage of CO2 in Saline Aquifers.” The work has been divided into six tasks. In task, “Development of a Three-Phase Non-Isothermal CO2 Flow Module,” we developed a fluid property module for brine-CO2 mixtures designed to handle all possible phase combinations of aqueous phase, sub-critical liquid and gaseous CO2, supercritical CO2, and solid salt. The thermodynamic and thermophysical properties of brine-CO2 mixtures (density, viscosity, and specific enthalpy of fluid phases; partitioning of mass components among the different phases) use the same correlations as an earlier fluid property module that does not distinguish between gaseous and liquid CO2-rich phases. We verified the fluid property module using two leakage scenarios, one that involves CO2 migration up a blind fault and subsequent accumulation in a secondary “parasitic” reservoir at shallower depth, and another investigating leakage of CO2 from a deep storage reservoir along a vertical fault zone. In task, “Development of a Rock Mechanical Module,” we developed a massively parallel reservoir simulator for modeling THM processes in porous media brine aquifers. We derived, from the fundamental equations describing deformation of porous elastic media, a momentum conservation equation relating mean stress, pressure, and temperature, and incorporated it alongside the mass and energy conservation equations from the TOUGH2 formulation, the starting point for the simulator. In addition, rock properties, namely permeability and porosity, are functions of effective stress and other variables that are obtained from the literature. We verified the simulator formulation and numerical implementation using analytical solutions and example problems from the literature. For the former, we matched a one-dimensional consolidation problem and a two-dimensional simulation of

  12. Recovery Act: Molecular Simulation of Dissolved Inorganic Carbons for Underground Brine CO2 Sequestration

    SciTech Connect (OSTI)

    Goddard, William

    2012-11-30

    To further our understanding and develop the method for measuring the DICs under geological sequestration conditions, we studied the infrared spectra of DICs under high pressure and temperature conditions. First principles simulations of DICs in brine conditions were performed using a highly optimized ReaxFF-DIC forcefield. The thermodynamics stability of each species were determined using the 2PT method, and shown to be consistent with the Reax simulations. More importantly, we have presented the IR spectra of DIC in real brine conditions as a function of temperature and pressure. At near earth conditions, we find a breaking of the O-C-O bending modes into asymmetric and symmetric modes, separated by 100cm{sup -1} at 400K and 5 GPa. These results can now be used to calibrate FTIR laser measurements.

  13. West Hackberry Brine Disposal Project pre-discharge characterization. Final report

    SciTech Connect (OSTI)

    DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C.

    1982-01-01

    The physical, chemical and biological attributes are described for: (1) a coastal marine environment centered about a Department of Energy Strategic Petroleum Reserve (SPR) brine disposal site 11.4 km off the southwest coast of Louisiana; and (2) the lower Calcasieu and Sabine estuarine systems that provide leach waters for the SPR project. A three month sampling effort, February through April 1981, and previous investigations from the study area are integrated to establish baseline information for evaluation of impacts from brine disposal in the nearshore marine waters and from freshwater withdrawal from the coastal marsh of the Chenier Plain. January data are included for some tasks that sampled while testing and mobilizing their instruments prior to the February field effort. The study addresses the areas of physical oceanography, estuarine hydrology and hydrography, water and sediment quality, benthos, nekton, phytoplankton, zooplankton, and data management.

  14. Comparison of selected oil-field brines from fields in the Permian basin, West Texas-southeast New Mexico

    SciTech Connect (OSTI)

    White, H.G. III

    1992-04-01

    Stiff diagrams of oil-field brines from the west Texas Permian basin are identifiable within the geological framework. Plotted from a simple analysis of three cations and three anions, older Paleozoic waters can be categorized as either 'pristine' or modified, usually by a later influx of Permian or early Pennsylvanian water. These different plots can be segregated by geologic province. The Permian brines differ by age and also by environment (shelf, basin, etc.).

  15. Aquifer Sampling Tube Results for Fiscal Year 2003

    SciTech Connect (OSTI)

    Hartman, Mary J.; Peterson, Robert E.

    2003-10-27

    This report presents and discusses results of the fiscal year 2003 sampling event associated with aquifer tubes along the Columbia River in the northern Hanford Site. Aquifer tube data help define the extent of groundwater contamination near the river, determine vertical variations in contamination, monitor the performance of interim remedial actions near the river, and support impact studies.

  16. Biochemical solubilization of toxic salts from residual geothermal brines and waste waters

    DOE Patents [OSTI]

    Premuzic, Eugene T.; Lin, Mow S.

    1994-11-22

    A method of solubilizing metal salts such as metal sulfides in a geothermal sludge using mutant Thiobacilli selected for their ability to metabolize metal salts at high temperature is disclosed, The method includes the introduction of mutated Thiobacillus ferrooxidans and Thiobacillus thiooxidans to a geothermal sludge or brine. The microorganisms catalyze the solubilization of metal salts, For instance, in the case of metal sulfides, the microorganisms catalyze the solubilization to form soluble metal sulfates.

  17. Biochemical solubilization of toxic salts from residual geothermal brines and waste waters

    DOE Patents [OSTI]

    Premuzic, E.T.; Lin, M.S.

    1994-11-22

    A method of solubilizing metal salts such as metal sulfides in a geothermal sludge using mutant Thiobacilli selected for their ability to metabolize metal salts at high temperature is disclosed. The method includes the introduction of mutated Thiobacillus ferrooxidans and Thiobacillus thiooxidans to a geothermal sludge or brine. The microorganisms catalyze the solubilization of metal salts. For instance, in the case of metal sulfides, the microorganisms catalyze the solubilization to form soluble metal sulfates. 54 figs.

  18. Metabolic interdependencies between phylogenetically novel fermenters and respiratory organisms in an unconfined aquifer

    SciTech Connect (OSTI)

    Wrighton, Kelly C.; Castelle, Cindy; Wilkins, Michael J.; Hug, Laura A.; Sharon, I.; Thomas, Brian C.; Handley, Kim M.; Mullin, Sean W.; Nicora, Carrie D.; Singh, Andrea; Lipton, Mary S.; Long, Philip E.; Williams, Kenneth H.; Banfield, Jillian F.

    2014-07-08

    Fermentation-based metabolism is an important ecosystem function often associated with environments rich in organic carbon, such as wetlands, sewage sludge, and the mammalian gut. The diversity of microorganisms and pathways involved in carbon and hydrogen cycling in sediments and aquifers and the impacts of these processes on other biogeochemical cycles remain poorly understood. Here we used metagenomics and proteomics to characterize microbial communities sampled from an aquifer adjacent to the Colorado River at Rifle, Colorado, USA, and document interlinked microbial roles in geochemical cycling. The organic carbon content in the aquifer was elevated via two acetate-based biostimulation treatments. Samples were collected at three time points, with the objective of extensive genome recovery to enable metabolic reconstruction of the community. Fermentative community members include genomes from a new phylum (ACD20), phylogenetically novel members of the Chloroflexi and Bacteroidetes, as well as candidate phyla genomes (OD1, BD1-5, SR1, WWE3, ACD58, TM6, PER, and OP11). These organisms have the capacity to produce hydrogen, acetate, formate, ethanol, butyrate, and lactate, activities supported by proteomic data. The diversity and expression of hydrogenases suggests the importance of hydrogen currency in the subsurface. Our proteogenomic data further indicate the consumption of fermentation intermediates by Proteobacteria can be coupled to nitrate, sulfate, and iron reduction. Thus, fermentation carried out by previously unstudied members of sediment microbial communities may be an important driver of diverse subsurface biogeochemical cycles.

  19. Method for isolating two aquifers in a single borehole

    DOE Patents [OSTI]

    Burklund, Patrick W.

    1985-10-22

    A method for isolating and individually instrumenting separate aquifers within a single borehole. A borehole is first drilled from the ground surface, through an upper aquifer, and into a separating confining bed. A casing, having upper and lower sections separated by a coupling collar, is lowered into the borehole. The borehole is grouted in the vicinity of the lower section of the casing. A borehole is then drilled through the grout plug and into a lower aquifer. After the lower aquifer is instrumented, the borehole is grouted back into the lower portion of the casing. Then the upper section of the casing is unscrewed via the coupling collar and removed from the borehole. Finally, instrumentation is added to the upper aquifer and the borehole is appropriately grouted. The coupling collar is designed to have upper right-hand screw threads and lower left-hand screw thread, whereby the sections of the casing can be readily separated.

  20. Method for isolating two aquifers in a single borehole

    DOE Patents [OSTI]

    Burklund, P.W.

    1984-01-20

    A method for isolating and individually instrumenting separate aquifers within a single borehole is disclosed. A borehole is first drilled from the ground surface, through an upper aquifer, and into a separating confining bed. A casing, having upper and lower sections separated by a coupling collar, is lowered into the borehole. The borehole is grouted in the vicinity of the lower section of the casing. A borehole is then drilled through the grout plug and into a lower aquifer. After the lower aquifer is instrumented, the borehole is grouted back into the lower portion of the casing. Then the upper section of the casing is unscrewed via the coupling collar and removed from the borehole. Finally, instrumentation is added to the upper aquifer and the borehole is appropriately grouted. The coupling collar is designed to have upper right-hand screw threads and lower left-hand screw thread, whereby the sections of the casing can be readily separated.

  1. Tracer advection by steady groundwater flow in a stratified aquifer

    SciTech Connect (OSTI)

    Sposito, Garrison; Weeks, Scott W.

    1997-01-02

    The perfectly stratified aquifer has often been investigated as a simple, tractable model for exploring new theoretical issues in subsurface hydrology. Adopting this approach, we show that steady groundwater flows in the perfectly stratified aquifer are always confined to a set of nonintersecting permanent surfaces, on which both streamlines and vorticity lines lie. This foliation of the flow domain exists as well for steady groundwater flows in any isotropic, spatially heterogeneous aquifer. In the present model example it is a direct consequence of the existence of a stream function, we then demonstrate that tracer plume advection by steady groundwater flow in a perfectly stratified aquifer is never ergodic, regardless of the initial size of the tracer plume. This nonergodicity, which holds also for tracer advection in any isotropic, spatially heterogeneous aquifer, implies that stochastic theories of purely advective tracer plume movement err in assuming ergodic behavior to simplify probabilistic calculations of plume spatial concentration moments.

  2. Optimizing multiphase aquifer remediation using ITOUGH2

    SciTech Connect (OSTI)

    Finsterle, S.; Pruess, K.

    1994-06-01

    The T2VOC computer model for simulating the transport of organic chemical contaminants in non-isothermal multiphase systems has been coupled to the ITOUGH2 code which solves parameter optimization problems. This allows one to use nonlinear programming and simulated annealing techniques to solve groundwater management problems, i.e. the optimization of multiphase aquifer remediation. This report contains three illustrative examples to demonstrate the optimization of remediation operations by means of simulation-minimization techniques. The code iteratively determines an optimal remediation strategy (e.g. pumping schedule) which minimizes, for instance, pumping and energy costs, the time for cleanup, and residual contamination. While minimizing the objective function is straightforward, the relative weighting of different performance measures--e.g. pumping costs versus cleanup time versus residual contaminant content--is subject to a management decision process. The intended audience of this report is someone who is familiar with numerical modeling of multiphase flow of contaminants, and who might actually use T2VOC in conjunction with ITOUGH2 to optimize the design of aquifer remediation operations.

  3. Mineral dissolution and precipitation during CO2 injection at the Frio-I Brine Pilot: Geochemical modeling and uncertainty analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ilgen, A. G.; Cygan, R. T.

    2015-12-07

    During the Frio-I Brine Pilot CO2 injection experiment in 2004, distinct geochemical changes in response to the injection of 1600 tons of CO2 were recorded in samples collected from the monitoring well. Previous geochemical modeling studies have considered dissolution of calcite and iron oxyhydroxides, or release of adsorbed iron, as the most likely sources of the increased ion concentrations. We explore in this modeling study possible alternative sources of the increasing calcium and iron, based on the data from the detailed petrographic characterization of the Upper Frio Formation “C”. Particularly, we evaluate whether dissolution of pyrite and oligoclase (anorthitemore » component) can account for the observed geochemical changes. Due to kinetic limitations, dissolution of pyrite and anorthite cannot account for the increased iron and calcium concentrations on the time scale of the field test (10 days). However, dissolution of these minerals is contributing to carbonate and clay mineral precipitation on the longer time scales (1000 years). The one-dimensional reactive transport model predicts carbonate minerals, dolomite and ankerite, as well as clay minerals kaolinite, nontronite and montmorillonite, will precipitate in the Frio Formation “C” sandstone as the system progresses towards chemical equilibrium during a 1000-year period. Cumulative uncertainties associated with using different thermodynamic databases, activity correction models (Pitzer vs. B-dot), and extrapolating to reservoir temperature, are manifested in the difference in the predicted mineral phases. Furthermore, these models are consistent with regards to the total volume of mineral precipitation and porosity values which are predicted to within 0.002%.« less

  4. Estimating Plume Volume for Geologic Storage of CO2 in Saline Aquifers

    SciTech Connect (OSTI)

    Doughty, Christine

    2008-07-11

    Typically, when a new subsurface flow and transport problem is first being considered, very simple models with a minimal number of parameters are used to get a rough idea of how the system will evolve. For a hydrogeologist considering the spreading of a contaminant plume in an aquifer, the aquifer thickness, porosity, and permeability might be enough to get started. If the plume is buoyant, aquifer dip comes into play. If regional groundwater flow is significant or there are nearby wells pumping, these features need to be included. Generally, the required parameters tend to be known from pre-existing studies, are parameters that people working in the field are familiar with, and represent features that are easy to explain to potential funding agencies, regulators, stakeholders, and the public. The situation for geologic storage of carbon dioxide (CO{sub 2}) in saline aquifers is quite different. It is certainly desirable to do preliminary modeling in advance of any field work since geologic storage of CO{sub 2} is a novel concept that few people have much experience with or intuition about. But the parameters that control CO{sub 2} plume behavior are a little more daunting to assemble and explain than those for a groundwater flow problem. Even the most basic question of how much volume a given mass of injected CO{sub 2} will occupy in the subsurface is non-trivial. However, with a number of simplifying assumptions, some preliminary estimates can be made, as described below. To make efficient use of the subsurface storage volume available, CO{sub 2} density should be large, which means choosing a storage formation at depths below about 800 m, where pressure and temperature conditions are above the critical point of CO{sub 2} (P = 73.8 bars, T = 31 C). Then CO{sub 2} will exist primarily as a free-phase supercritical fluid, while some CO{sub 2} will dissolve into the aqueous phase.

  5. Advanced Membrane Filtration Technology for Cost Effective Recovery of Fresh Water from Oil & Gas Produced Brine

    SciTech Connect (OSTI)

    David B. Burnett

    2005-09-29

    This study is developing a comprehensive study of what is involved in the desalination of oil field produced brine and the technical developments and regulatory changes needed to make the concept a commercial reality. It was originally based on ''conventional'' produced water treatment and reviewed (1) the basics of produced water management, (2) the potential for desalination of produced brine in order to make the resource more useful and available in areas of limited fresh water availability, and (3) the potential beneficial uses of produced water for other than oil production operations. Since we have begun however, a new area of interest has appeared that of brine water treatment at the well site. Details are discussed in this technical progress report. One way to reduce the impact of O&G operations is to treat produced brine by desalination. The main body of the report contains information showing where oil field brine is produced, its composition, and the volume available for treatment and desalination. This collection of information all relates to what the oil and gas industry refers to as ''produced water management''. It is a critical issue for the industry as produced water accounts for more than 80% of all the byproducts produced in oil and gas exploration and production. The expense of handling unwanted waste fluids draws scarce capital away for the development of new petroleum resources, decreases the economic lifetimes of existing oil and gas reservoirs, and makes environmental compliance more expensive to achieve. More than 200 million barrels of produced water are generated worldwide each day; this adds up to more than 75 billion barrels per year. For the United States, the American Petroleum Institute estimated about 18 billion barrels per year were generated from onshore wells in 1995, and similar volumes are generated today. Offshore wells in the United States generate several hundred million barrels of produced water per year. Internationally

  6. RealGasBrine v1.0 option of TOUGH+ v1.5

    Energy Science and Technology Software Center (OSTI)

    2015-02-27

    RealGasBrine v1.0 is a numerical code that for the simulation of the behavior of gas-bearing porous and/fractured geologic media. It is an option of TOUGH+ v1.5 [Moridis, 2014], a successor to the TOUGH2 [Pruess et al., 1999; 2012] family of codes for multi-component, multiphase ?uid and heat ?ow developed at the Lawrence Berkeley National Laboratory. RealGasBrine v1.0 needs the TOUGH+ v1.5 core code in order to compile and execute. It is written in standard FORTRANmore » 95/2003, and can be run on any computational platform (workstation, PC, Macintosh) for which such compilers are available. RealGasBrine v1.0 describes the non-isothermal two- (for pure water) or three-phase (for brine) flow of an aqueous phase and a real gas mixture in a gas-bearing medium, with a particular focus in ultra-tight (such as tight-sand and shale gas) systems. Up to 12 individual real gases can be tracked, and salt can precipitate as solid halite. The capabilities of the code include coupled flow and thermal effects, real gas behavior, Darcy and non-Darcy flow, several isotherm options of gas sorption onto the grains of the porous media, complex fracture descriptions, gas solubility into water, and geomechanical effects on flow properties. RealGasBrine v1.0 allows the study of flow and transport of fluids and heat over a wide range of time frames and spatial scales not only in gas reservoirs, but also in any problem involving the flow of gases in geologic media, including the geologic storage of greenhouse gas mixtures, the behavior of geothermal reservoirs with multi-component condensable (H2O and CO2) and non-condensable gas mixtures, the transport of water and released H2 in nuclear waste storage applications, etc.« less

  7. Modeling cross-hole slug tests in an unconfined aquifer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Malama, Bwalya; Kuhlman, Kristopher L.; Brauchler, Ralf; Bayer, Peter

    2016-06-28

    Cross-hole slug test date are analyzed with an extended version of a recently published unconfined aquifer model accounting for waterable effects using the linearized kinematic condition. The use of cross-hole slug test data to characterize aquifer heterogeneity and source/observation well oscillation parameters is evaluated. The data were collected in a series of multi-well and multi-level pneumatic slug tests conducted at a site in Widen, Switzerland. Furthermore, the tests involved source and observation well pairs separated by distances of up to 4 m, and instrumented with pressure transducers to monitor aquifer response in discrete intervals.

  8. EXPERIMENTAL EVALUATION OF CHEMICAL SEQUESTRATION OF CARBON DIOXIDE IN DEEP AQUIFER MEDIA - PHASE II

    SciTech Connect (OSTI)

    Neeraj Gupta; Bruce Sass; Jennifer Ickes

    2000-11-28

    In 1998 Battelle was selected by the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) under a Novel Concepts project grant to continue Phase II research on the feasibility of carbon dioxide (CO{sub 2}) sequestration in deep saline formations. The focus of this investigation is to conduct detailed laboratory experiments to examine factors that may affect chemical sequestration of CO{sub 2} in deep saline formations. Reactions between sandstone and other geologic media from potential host reservoirs, brine solutions, and CO{sub 2} are being investigated under high-pressure conditions. Some experiments also include sulfur dioxide (SO{sub 2}) gases to evaluate the potential for co-injection of CO{sub 2} and SO{sub 2} related gases in the deep formations. In addition, an assessment of engineering and economic aspects is being conducted. This current Technical Progress Report describes the status of the project as of September 2000. The major activities undertaken during the quarter included several experiments conducted to investigate the effects of pressure, temperature, time, and brine composition on rock samples from potential host reservoirs. Samples (both powder and slab) were taken from the Mt. Simon Sandstone, a potential CO{sub 2} host formation in the Ohio, the Eau Claire Shale, and Rome Dolomite samples that form the caprock for Mt. Simon Sandstone. Also, a sample with high calcium plagioclase content from Frio Formation in Texas was used. In addition, mineral samples for relatively pure Anorthite and glauconite were experimented on with and without the presence of additional clay minerals such as kaolinite and montmorillonite. The experiments were run for one to two months at pressures similar to deep reservoirs and temperatures set at 50 C or 150 C. Several enhancements were made to the experimental equipment to allow for mixing of reactants and to improve sample collection methods. The resulting fluids (gases and liquids) as

  9. PILOT TESTING: PRETREATMENT OPTIONS TO ALLOW RE-USE OF FRAC FLOWBACK AND PRODUCED BRINE FOR GAS SHALE RESOURCE DEVELOPMENT

    SciTech Connect (OSTI)

    Burnett, David

    2012-12-31

    The goal of the A&M DOE NETL Project No. DE-FE0000847 was to develop a mobile, multifunctional water treatment capability designed specifically for “pre-treatment” of field waste brine. The project consisted of constructing s mobile “field laboratory” incorporating new technology for treating high salinity produced water and using the lab to conduct a side-by-side comparison between this new technology and that already existing in field operations. A series of four field trials were performed utilizing the mobile unit to demonstrate the effectiveness of different technology suitable for use with high salinity flow back brines and produced water. The design of the mobile unit was based on previous and current work at the Texas A&M Separation Sciences Pilot Plant. The several treatment techniques which have been found to be successful in both pilot plant and field tests had been tested to incorporate into a single multifunctional process train. Eight different components were evaluated during the trials, two types of oil and grease removal, one BTEX removal step, three micro-filters, and two different nanofilters. The performance of each technique was measured by its separation efficiency, power consumption, and ability to withstand fouling. The field trials were a success. Four different field brines were evaluated in the first trial in New York. Over 16,000 gallons of brine were processed. Using a power cost of $.10 per kWh, media pretreatment power use averaged $0.004 per barrel, solids removal $.04 per barrel and brine “softening” $.84 per barrel. Total power cost was approximately $1.00 per barrel of fluid treated. In Pennsylvania, brines collected from frac ponds were tested in two additional trials. Each of the brines was converted to an oil-free, solids-free brine with no biological activity. Brines were stable over time and would be good candidates for use as a make-up fluid in a subsequent fracturing fluid design. Reports on all of the field

  10. The sup 36 Cl ages of the brines in the Magadi-Natron basin, east Africa

    SciTech Connect (OSTI)

    Kaufman, A.; Margaritz, M.A.; Hollos, G. ); Paul, M.; Boaretto, E. ); Hillaire-Marcel, C. ); Taieb, M. )

    1990-10-01

    The depression in the East African Rift which includes both Lake Magadi and Lake Natron forms a closed basin within which almost all the dissolved chloride originates in precipitation, since there is no important source of very ancient sedimentary chloride. This provides an ideal setting for the evaluation of the {sup 36}Cl methodology as a geochemical and hydrological tracer. The main source of recent water, as represented by the most dilute samples measured, is characterized by a {sup 36}Cl/Cl ratio of 2.5 {times} 10{sup {minus}14}, in agreement with the calculated value expected in precipitation. Surface evaporation increases the chlorinity of the local freshwater inflow by about a factor of 110 without changing the isotopic ratio, indicating that little chloride enters the system in the form of sediment leachate. A second type of brine found in the basin occurs in a hot deep groundwater reservoir and is characterized by lower {sup 36}Cl/Cl ratios (<1.2 {times} 10{sup {minus}14}). By comparing this value with the 2.5 {times} 10{sup {minus}14} in recent recharge, one obtains an approximate salt accumulation age of 760 Ka which is consistent with thee time of the first appearance of the lake. These older brines also have lower {sup 18}O and {sup 2}H values which indicate that they were recharged during a climatically different era. The {sup 36}Cl/Cl ratios in the inflowing waters and in the accumulated brine, together with the known age of the Lake Magadi basin, may be used to estimate the importance of the hypogene and epigene, as opposed to the meteoric, mode of {sup 36}Cl production. Such a calculation shows that the hypogene and epigene processes together contribute less than 6% of the total {sup 36}Cl present in the lake.

  11. Brine migration test for Asse Mine, Federal Republic of Germany: final test plan

    SciTech Connect (OSTI)

    Not Available

    1983-07-01

    The United States and the Federal Republic of Germany (FRG) will conduct a brine migration test in the Asse Salt Mine in the FRG as part of the US/FRG Cooperative Radioactive Waste Management Agreement. Two sets of two tests each will be conducted to study both liquid inclusion migration and vapor migration in the two salt types chosen for the experiments: (1) pure salt, for its characteristics similar to the salt that might occur in potential US repositories, and (2) transitional salt, for its similarity to the salt that might occur in potential repositories in Germany.

  12. Appendix B Surface Infiltration and Aquifer Test Data

    Office of Legacy Management (LM)

    B Surface Infiltration and Aquifer Test Data This page intentionally left blank ... 1000 1100 1200 1300 1400 TIME (MIN) INF-8 TEST I 300 400 TIME (MIN) INF-8 TEST 2 200 250 ...

  13. Underground helium travels to the Earth's surface via aquifers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tweet EmailPrint Before it can put the party in party balloons, helium is carried from deep within the Earth's crust to the surface via aquifers, according to new research...

  14. Simulation analysis of the unconfined aquifer, Raft River Geothermal...

    Open Energy Info (EERE)

    analysis of the unconfined aquifer, Raft River Geothermal Area, Idaho-Utah Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Simulation analysis of the...

  15. Sole Source Aquifer Protection Program (EPA) | Department of...

    Office of Environmental Management (EM)

    Sole Source Aquifer Protection Program (EPA) Section 1424(e) of the Safe Drinking Water Act of 1974 (Public Law 93-523, 42 U.S.C. 300 et. seq) authorizes the U.S. Environmental ...

  16. Fluid sampling and chemical modeling of geopressured brines containing methane. Final report, March 1980-February 1981

    SciTech Connect (OSTI)

    Dudak, B.; Galbraith, R.; Hansen, L.; Sverjensky, D.; Weres, O.

    1982-07-01

    The development of a flowthrough sampler capable of obtaining fluid samples from geopressured wells at temperatures up to 400/sup 0/F and pressures up to 20,000 psi is described. The sampler has been designed, fabricated from MP35N alloy, laboratory tested, and used to obtain fluid samples from a geothermal well at The Geysers, California. However, it has not yet been used in a geopressured well. The design features, test results, and operation of this device are described. Alternative sampler designs are also discussed. Another activity was to review the chemistry and geochemistry of geopressured brines and reservoirs, and to evaluate the utility of available computer codes for modeling the chemistry of geopressured brines. The thermodynamic data bases for such codes are usually the limiting factor in their application to geopressured systems, but it was concluded that existing codes can be updated with reasonable effort and can usefully explain and predict the chemical characteristics of geopressured systems, given suitable input data.

  17. Advanced Membrane Filtration Technology for Cost Effective Recovery of Fresh Water from Oil & Gas Produced Brine

    SciTech Connect (OSTI)

    David B. Burnett

    2004-09-29

    Produced water is a major waste generated at the oil and natural gas wells in the state of Texas. This water could be a possible source of new fresh water to meet the growing demands of the state after treatment and purification. Treatment of brine generated in oil fields or produced water with an ultrafiltration membranes were the subject of this thesis. The characterization of ultrafiltration membranes for oil and suspended solids removal of produced water, coupled with the reverse osmosis (RO) desalination of brine were studied on lab size membrane testing equipment and a field size testing unit to test whether a viable membrane system could be used to treat produced water. Oil and suspended solids were evaluated using turbidity and oil in water measurements taken periodically. The research considered the effect of pressure and flow rate on membrane performance of produced water treatment of three commercially available membranes for oily water. The study also analyzed the flux through the membrane and any effect it had on membrane performance. The research showed that an ultrafiltration membrane provided turbidity removal of over 99% and oil removal of 78% for the produced water samples. The results indicated that the ultrafiltration membranes would be asset as one of the first steps in purifying the water. Further results on selected RO membranes showed that salt rejection of greater than 97% could be achieved with satisfactory flux and at reasonable operating cost.

  18. Brine migration test report: Asse Salt Mine, Federal Republic of Germany: Technical report

    SciTech Connect (OSTI)

    Coyle, A.J.; Eckert, J.; Kalia, H.

    1987-01-01

    This report presents a summary of Brine Migration Tests which were undertaken at the Asse mine of the Federal Republic of Germany (FRG) under a bilateral US/FRG agreement. This experiment simulates a nuclear waste repository at the 800-m (2624-ft) level of the Asse salt mine in the Federal Republic of Germany. This report describes the Asse salt mine, the test equipment, and the pretest properties of the salt in the mine and in the vicinity of the test area. Also included are selected test data (for the first 28 months of operation) on the following: brine migration rates, thermomechaical behavior of the salt (including room closure, stress reading, and thermal profiles), borehole gas pressures, and borehole gas analyses. In addition to field data, laboratory analyses of pretest salt properties are included in this report. The operational phase of these experiments was completed on October 4, 1985, with the commencement of cooldown and the start of posttest activities. 7 refs., 68 figs., 48 tabs.

  19. Use of data obtained from core tests in the design and operation of spent brine injection wells in geopressured or geothermal systems

    SciTech Connect (OSTI)

    Jorda, R.M.

    1980-03-01

    The effects of formation characteristics on injection well performance are reviewed. Use of data acquired from cores taken from injection horizons to predict injectivity is described. And methods for utilizing data from bench scale testing of brine and core samples to optimize injection well design are presented. Currently available methods and equipment provide data which enable the optimum design of injection wells through analysis of cores taken from injection zones. These methods also provide a means of identifying and correcting well injection problems. Methods described in this report are: bulk density measurement; porosity measurement; pore size distribution analysis; permeability measurement; formation grain size distribution analysis; core description (lithology) and composition; amount, type and distribution of clays and shales; connate water analysis; consolidatability of friable reservoir rocks; grain and pore characterization by scanning electron microscopy; grain and pore characterization by thin section analysis; permeability damage and enhancement tests; distribution of water-borne particles in porous media; and reservoir matrix acidizing effectiveness. The precise methods of obtaining this information are described, and their use in the engineering of injection wells is illustrated by examples, where applicable. (MHR)

  20. Oil Recovery Increases by Low-Salinity Flooding: Minnelusa and Green River Formations

    SciTech Connect (OSTI)

    Eric P. Robertson

    2010-09-01

    Waterflooding is by far the most widely used method in the world to increase oil recovery. Historically, little consideration has been given in reservoir engineering practice to the effect of injection brine composition on waterflood displacement efficiency or to the possibility of increased oil recovery through manipulation of the composition of the injected water. However, recent work has shown that oil recovery can be significantly increased by modifying the injection brine chemistry or by injecting diluted or low salinity brine. This paper reports on laboratory work done to increase the understanding of improved oil recovery by waterflooding with low salinity injection water. Porous media used in the studies included outcrop Berea sandstone (Ohio, U.S.A.) and reservoir cores from the Green River formation of the Uinta basin (Utah, U.S.A.). Crude oils used in the experimental protocols were taken from the Minnelusa formation of the Powder River basin (Wyoming, U.S.A.) and from the Green River formation, Monument Butte field in the Uinta basin. Laboratory corefloods using Berea sandstone, Minnelusa crude oil, and simulated Minnelusa formation water found a significant relationship between the temperature at which the oil- and water-saturated cores were aged and the oil recovery resulting from low salinity waterflooding. Lower aging temperatures resulted in very little to no additional oil recovery, while cores aged at higher temperatures resulted in significantly higher recoveries from dilute-water floods. Waterflood studies using reservoir cores and fluids from the Green River formation of the Monument Butte field also showed significantly higher oil recoveries from low salinity waterfloods with cores flooded with fresher water recovering 12.4% more oil on average than those flooded with undiluted formation brine.

  1. Sleuthing the Fate of Water in Ancient Aquifers and Ice Cores...

    Office of Science (SC) Website

    Sleuthing the Fate of Water in Ancient Aquifers and Ice Cores Nuclear Physics (NP) NP Home ... Sleuthing the Fate of Water in Ancient Aquifers and Ice Cores Precision analytical ...

  2. Evaluation of materials for systems using cooled, treated geothermal or high-saline brines

    SciTech Connect (OSTI)

    Suciu, D.F.; Wikoff, P.M.

    1982-09-01

    Lack of adequate quantities of clean surface water for use in wet (evaporative) cooling systems indicates the use of high-salinity waste waters, or cooled geothermal brines, for makeup purposes. High-chloride, aerated water represents an extremely corrosive environment. In order to determine metals suitable for use in such an environment, metal coupons were exposed to aerated, treated geothermal brine salted to a chloride concentration of 10,000 and 50,000 ppM (mg/L) for periods of up to 30 days. The exposed coupons were evaluated to determine the general, pitting, and crevice corrosion characteristics of the metals. The metals exhibiting corrosion resistance at 50,000 ppM chloride were then evaluated at 100,000 and 200,000 ppM chloride. Since these were screening tests to select materials for components to be used in a cooling system, with primary emphasis on condenser tubing, several materials were exposed for 4 to 10 months in pilot cooling tower test units with heat transfer for further corrosion evaluation. The results of the screening tests indicate that ferritic stainless steels (29-4-2 and SEA-CURE) exhibit excellent corrosion resistance at all levels of chloride concentration. Copper-nickel alloys (70/30 and Monel 400) exhibited excellent corrosion resistance in the high-saline water. The 70/30 copper-nickel alloy, which showed excellent resistance to general corrosion, exhibited mild pitting in the 30-day tests. This pitting was not apparent, however, after 6 months of exposure in the pilot cooling tower tests. The nickel-base alloys exhibited excellent corrosion resistance, but their high cost prevents their use unless no other material is found feasible. Other materials tested, although unsuitable for condenser tubing material, would be suitable as tube sheet material.

  3. Up-Scaling Geochemical Reaction Rates for Carbon Dioxide (CO2) in Deep Saline Aquifers

    SciTech Connect (OSTI)

    Peters, Catherine A

    2013-02-28

    Geochemical reactions in deep subsurface environments are complicated by the consolidated nature and mineralogical complexity of sedimentary rocks. Understanding the kinetics of these reactions is critical to our ability to make long-term predictions about subsurface processes such as pH buffering, alteration in rock structure, permeability changes, and formation of secondary precipitates. In this project, we used a combination of experiments and numerical simulation to bridge the gap between our knowledge of these reactions at the lab scale and rates that are meaningful for modeling reactive transport at core scales. The focus is on acid-driven mineral dissolution, which is specifically relevant in the context of CO2-water-rock interactions in geological sequestration of carbon dioxide. The project led to major findings in three areas. First, we modeled reactive transport in pore-network systems to investigate scaling effects in geochemical reaction rates. We found significant scaling effects when CO2 concentrations are high and reaction rates are fast. These findings indicate that the increased acidity associated with geological sequestration can generate conditions for which proper scaling tools are yet to be developed. Second, we used mathematical modeling to investigate the extent to which SO2, if co-injected with CO2, would acidify formation brines. We found that there exist realistic conditions in which the impact on brine acidity will be limited due to diffusion rate-limited SO2 dissolution from the CO2 phase, and the subsequent pH shift may also be limited by the lack of availability of oxidants to produce sulfuric acid. Third, for three Viking sandstones (Alberta sedimentary basin, Canada), we employed backscattered electron microscopy and energy dispersive X-ray spectroscopy to statistically characterize mineral contact with pore space. We determined that for reactive minerals in sedimentary consolidated rocks, abundance alone is not a good predictor of

  4. Anaerobic biodegradation of BTEX in aquifer material. Environmental research brief

    SciTech Connect (OSTI)

    Borden, R.C.; Hunt, M.J.; Shafer, M.B.; Barlaz, M.A.

    1997-08-01

    Laboratory and field experiments were conducted in two petroleum-contaminated aquifers to examine the anaerobic biodegradation of benzene, toluene, ethylbenzene and xylene isomers (BTEX) under ambient conditions. Aquifer material was collected from locations at the source, mid-plume and end-plume at both sites, incubated under ambient conditions, and monitored for disappearance of the test compounds. In the mid-plume location at the second site, in-situ column experiments were also conducted for comparison with the laboratory microscosm and field-scale results. In the end-plume microcosms, biodegradation was variable with extensive biodegradation in some microcosms and little or no biodegradation in others.

  5. Legal and regulatory issues affecting aquifer thermal energy storage

    SciTech Connect (OSTI)

    Hendrickson, P.L.

    1981-10-01

    This document updates and expands the report with a similar title issued in October 1980. This document examines a number of legal and regulatory issues that potentially can affect implementation of the aquifer thermal energy storage (ATES) concept. This concept involves the storage of thermal energy in an underground aquifer until a later date when it can be effectively utilized. Either heat energy or chill can be stored. Potential end uses of the energy include district space heating and cooling, industrial process applications, and use in agriculture or aquaculture. Issues are examined in four categories: regulatory requirements, property rights, potential liability, and issues related to heat or chill delivery.

  6. REE Sorption Study on sieved -50 +100 mesh fraction of Media #1 in Brine #1 with Different Starting pH's at 70C

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Gary Garland

    2015-09-29

    This is a continuation of the REE sorption study for shaker bath tests on 2g media #1 in 150mL brine #1 with different starting pH's at 70C. In a previous submission we reported data for shaker bath tests for brine #1 with starting pH's of 3.5, 4.5 and 5.5. In this submission we these pH's compared to starting brine #1 pH's of 6, and 7.

  7. The deep hydrogeologic flow system underlying the Oak Ridge Reservation -- Assessing the potential for active groundwater flow and origin of the brine

    SciTech Connect (OSTI)

    Nativ, R.; Halleran, A.; Hunley, A.

    1997-08-01

    The deep hydrogeologic system underlying the Oak Ridge Reservation (ORR) contains contaminants such as radionuclides, heavy metals, nitrates, and organic compounds. The groundwater in the deep system is saline and has been considered to be stagnant in previous studies. This study was designed to address the following questions: is groundwater in the deep system stagnant; is contaminant migration controlled by diffusion only or is advection a viable mechanism; where are the potential outlet points? On the basis of existing and newly collected data, the nature of saline groundwater flow and potential discharge into shallow, freshwater systems was assessed. Data used for this purpose included (1) spatial and temporal pressures and hydraulic heads measured in the deep system, (2) hydraulic parameters of the formations in question, (3) spatial and temporal temperature variations at depth, and (4) spatial and temporal chemical and isotopic composition of the saline groundwater. The observations suggest that the saline water contained at depth is old but not isolated (in terms of recharge and discharge) from the overlying active, freshwater-bearing units. Influx of recent water does occur. Groundwater volumes involved in this flow are likely to be small. The origin of the saline groundwater was assessed by using existing and newly acquired chemical and isotopic data. The proposed model that best fits the data is modification of residual brine from which halite has been precipitated. Other models, such as ultrafiltration and halite dissolution, were also evaluated.

  8. Geochemical detection of carbon dioxide in dilute aquifers

    SciTech Connect (OSTI)

    Carroll, S; Hao, Y; Aines, R

    2009-03-27

    Carbon storage in deep saline reservoirs has the potential to lower the amount of CO{sub 2} emitted to the atmosphere and to mitigate global warming. Leakage back to the atmosphere through abandoned wells and along faults would reduce the efficiency of carbon storage, possibly leading to health and ecological hazards at the ground surface, and possibly impacting water quality of near-surface dilute aquifers. We use static equilibrium and reactive transport simulations to test the hypothesis that perturbations in water chemistry associated with a CO{sub 2} gas leak into dilute groundwater are important measures for the potential release of CO{sub 2} to the atmosphere. Simulation parameters are constrained by groundwater chemistry, flow, and lithology from the High Plains aquifer. The High Plains aquifer is used to represent a typical sedimentary aquifer overlying a deep CO{sub 2} storage reservoir. Specifically, we address the relationships between CO{sub 2} flux, groundwater flow, detection time and distance. The CO{sub 2} flux ranges from 10{sup 3} to 2 x 10{sup 6} t/yr (0.63 to 1250 t/m{sup 2}/yr) to assess chemical perturbations resulting from relatively small leaks that may compromise long-term storage, water quality, and surface ecology, and larger leaks characteristic of short-term well failure.

  9. AUTOMATED WATER LEVEL MEASUREMENTS IN SMALL-DIAMETER AQUIFER TUBES

    SciTech Connect (OSTI)

    PETERSEN SW; EDRINGTON RS; MAHOOD RO; VANMIDDLESWORTH PE

    2011-01-14

    Groundwater contaminated with hexavalent chromium, strontium-90, and uranium discharges into the Columbia River along approximately 16 km (10 mi) of the shoreline. Various treatment systems have and will continue to be implemented to eliminate the impact of Hanford Site contamination to the river. To optimize the various remediation strategies, it is important to understand interactions between groundwater and the surface water of the Columbia River. An automated system to record water levels in aquifer sampling tubes installed in the hyporheic zone was designed and tested to (1) gain a more complete understanding of groundwater/river water interactions based on gaining and losing conditions ofthe Columbia River, (2) record and interpret data for consistent and defensible groundwater/surface water conceptual models that may be used to better predict subsurface contaminant fate and transport, and (3) evaluate the hydrodynamic influence of extraction wells in an expanded pump-and-treat system to optimize the treatment system. A system to measure water levels in small-diameter aquifer tubes was designed and tested in the laboratory and field. The system was configured to allow manual measurements to periodically calibrate the instrument and to permit aquifer tube sampling without removing the transducer tube. Manual measurements were collected with an e-tape designed and fabricated especially for this test. Results indicate that the transducer system accurately records groundwater levels in aquifer tubes. These data are being used to refine the conceptual and numeric models to better understand interactions in the hyporheic zone of the Columbia River and the adjacent river water and groundwater, and changes in hydrochemistry relative to groundwater flux as river water recharges the aquifer and then drains back out in response to changes in the river level.

  10. Evaluation of brine disposal from the Bryan Mound site of the strategic petroleum reserve program. Final report

    SciTech Connect (OSTI)

    Case, Robert J.; Chittenden, Jr, Mark E.; Harper, Jr, Donald E.; Kelly, Jr, Francis J.; Loeblich, Laurel A.; McKinney, Larry D.; Minello, Thomas J.; Park, E. Taisoo; Randall, Robert E.; Slowey, J. Frank

    1981-01-01

    On March 10, 1980, the Department of Energy's Strategic Petroleum Reserve Program began leaching the Bryan Mound salt dome and discharging the resulting brine into the coastal waters off Freeport, Texas. During the months of March and April, a team of scientists and engineers from Texas A and M University conducted an intensive environmental study of the area surrounding the diffuser site. A pipeline has been laid from the Bryan Mound site to a location 12.5 statute miles (20 km) offshore. The last 3060 ft (933 m) of this pipeline is a 52-port diffuser through which brine can be discharged at a maximum rate of 680,000 barrels per day. Initially, 16 ports were open which permitted a maximum discharge rate of 350,000 barrels per day and a continuous brine discharge was achieved on March 13, 1980. The purpose of this report is to describe the findings of the project team during the intensive postdisposal study period of March and April, 1980. The major areas of investigation are physical oceanography, analysis of the discharge plume, water and sediment quality, nekton, benthos, phytoplankton, zooplankton, and data management.

  11. Method for formation of subsurface barriers using viscous colloids

    DOE Patents [OSTI]

    Apps, J.A.; Persoff, P.; Moridis, G.; Pruess, K.

    1998-11-17

    A method is described for formation of subsurface barriers using viscous liquids where a viscous liquid solidifies at a controlled rate after injection into soil and forms impermeable isolation of the material enclosed within the subsurface barriers. The viscous liquid is selected from the group consisting of polybutenes, polysiloxanes, colloidal silica and modified colloidal silica of which solidification is controlled by gelling, cooling or cross-linking. Solidification timing is controlled by dilution, addition of brines, coating with alumina, stabilization with various agents and by temperature. 17 figs.

  12. Method for formation of subsurface barriers using viscous colloids

    DOE Patents [OSTI]

    Apps, John A.; Persoff, Peter; Moridis, George; Pruess, Karsten

    1998-01-01

    A method for formation of subsurface barriers using viscous liquids where a viscous liquid solidifies at a controlled rate after injection into soil and forms impermeable isolation of the material enclosed within the subsurface barriers. The viscous liquid is selected from the group consisting of polybutenes, polysilotanes, colloidal silica and modified colloidal silica of which solidification is controlled by gelling, cooling or cross-linking. Solidification timing is controlled by dilution, addition of brines, coating with alumina, stabilization with various agents and by temperature.

  13. Mineral dissolution and precipitation during CO2 injection at the Frio-I Brine Pilot: Geochemical modeling and uncertainty analysis

    SciTech Connect (OSTI)

    Ilgen, A. G.; Cygan, R. T.

    2015-12-07

    During the Frio-I Brine Pilot CO2 injection experiment in 2004, distinct geochemical changes in response to the injection of 1600 tons of CO2 were recorded in samples collected from the monitoring well. Previous geochemical modeling studies have considered dissolution of calcite and iron oxyhydroxides, or release of adsorbed iron, as the most likely sources of the increased ion concentrations. We explore in this modeling study possible alternative sources of the increasing calcium and iron, based on the data from the detailed petrographic characterization of the Upper Frio Formation “C”. Particularly, we evaluate whether dissolution of pyrite and oligoclase (anorthite component) can account for the observed geochemical changes. Due to kinetic limitations, dissolution of pyrite and anorthite cannot account for the increased iron and calcium concentrations on the time scale of the field test (10 days). However, dissolution of these minerals is contributing to carbonate and clay mineral precipitation on the longer time scales (1000 years). The one-dimensional reactive transport model predicts carbonate minerals, dolomite and ankerite, as well as clay minerals kaolinite, nontronite and montmorillonite, will precipitate in the Frio Formation “C” sandstone as the system progresses towards chemical equilibrium during a 1000-year period. Cumulative uncertainties associated with using different thermodynamic databases, activity correction models (Pitzer vs. B-dot), and extrapolating to reservoir temperature, are manifested in the difference in the predicted mineral phases. Furthermore, these models are consistent with regards to the total volume of mineral precipitation and porosity values which are predicted to within 0.002%.

  14. Experiments and modeling of variably permeable carbonate reservoir samples in contact with CO₂-acidified brines

    SciTech Connect (OSTI)

    Smith, Megan M.; Hao, Yue; Mason, Harris E.; Carroll, Susan A.

    2014-12-31

    Reactive experiments were performed to expose sample cores from the Arbuckle carbonate reservoir to CO₂-acidified brine under reservoir temperature and pressure conditions. The samples consisted of dolomite with varying quantities of calcite and silica/chert. The timescales of monitored pressure decline across each sample in response to CO₂ exposure, as well as the amount of and nature of dissolution features, varied widely among these three experiments. For all samples cores, the experimentally measured initial permeability was at least one order of magnitude or more lower than the values estimated from downhole methods. Nondestructive X-ray computed tomography (XRCT) imaging revealed dissolution features including “wormholes,” removal of fracture-filling crystals, and widening of pre-existing pore spaces. In the injection zone sample, multiple fractures may have contributed to the high initial permeability of this core and restricted the distribution of CO₂-induced mineral dissolution. In contrast, the pre-existing porosity of the baffle zone sample was much lower and less connected, leading to a lower initial permeability and contributing to the development of a single dissolution channel. While calcite may make up only a small percentage of the overall sample composition, its location and the effects of its dissolution have an outsized effect on permeability responses to CO₂ exposure. The XRCT data presented here are informative for building the model domain for numerical simulations of these experiments but require calibration by higher resolution means to confidently evaluate different porosity-permeability relationships.

  15. Stormwater runoff policy on the Spokane/Rathdrum Prairie Aquifer

    SciTech Connect (OSTI)

    Hale, E.O.

    1990-01-01

    The Panhandle Health District, in conjunction with the Idaho Department of Water Resources, is developing a stormwater runoff control program under the US EPA Wellhead Protection Program. The goal of the project is to protect the Spokane Valley/Rathdrum Prairie Aquifer from widespread subsurface disposal of stormwater runoff via shallow injection wells. Studies conducted by the health district in 1976 and 1977 established that areas downgradient from urban land uses had elevated nitrate level sand that the aquifer is vulnerable to contamination from surface activities. The stormwater runoff controls are being developed in conjunction with similar programs, such as chemical storage and use, solid waste and subsurface sewage disposal. The expected result will be a groundwater management system that protects the resource by preventing contamination rather than a program that responds to poor water quality with costly remedial action.

  16. In Situ Biological Uranium Remediation within a Highly Contaminated Aquifer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In Situ Biological Uranium Remediation within a Highly Contaminated Aquifer Matthew Ginder-Vogel1, Wei-Min Wu1, Jack Carley2, Phillip Jardine2, Scott Fendorf1 and Craig Criddle1 1Stanford University, Stanford, CA 2Oak Ridge National Laboratory, Oak Ridge, TN Microbial Respiration Figure 1. Uranium(VI) reduction is driven by microbial respiration resulting in the precipitation of uraninite. Uranium contamination of ground and surface waters has been detected at numerous sites throughout the

  17. Recovery of Fresh Water Resources from Desalination of Brine Produced During Oil and Gas Production Operations

    SciTech Connect (OSTI)

    David B. Burnett; Mustafa Siddiqui

    2006-12-29

    Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large volumes of brine water along with the petroleum resource. Currently, produced water is treated as a waste and is not available for any beneficial purposes for the communities where oil and gas is produced. Produced water contains different contaminants that must be removed before it can be used for any beneficial surface applications. Arid areas like west Texas produce large amount of oil, but, at the same time, have a shortage of potable water. A multidisciplinary team headed by researchers from Texas A&M University has spent more than six years is developing advanced membrane filtration processes for treating oil field produced brines The government-industry cooperative joint venture has been managed by the Global Petroleum Research Institute (GPRI). The goal of the project has been to demonstrate that treatment of oil field waste water for re-use will reduce water handling costs by 50% or greater. Our work has included (1) integrating advanced materials into existing prototype units and (2) operating short and long-term field testing with full size process trains. Testing at A&M has allowed us to upgrade our existing units with improved pre-treatment oil removal techniques and new oil tolerant RO membranes. We have also been able to perform extended testing in 'field laboratories' to gather much needed extended run time data on filter salt rejection efficiency and plugging characteristics of the process train. The Program Report describes work to evaluate the technical and economical feasibility of treating produced water with a combination of different separation processes to obtain water of agricultural water quality standards. Experiments were done for the pretreatment of produced water using a new liquid-liquid centrifuge, organoclay and microfiltration and ultrafiltration membranes for the

  18. Use of natural radionuclides to predict the behavior of radwaste radionuclides in far-field aquifers

    SciTech Connect (OSTI)

    Hubbard, N.; Laul, J.C.; Perkins, R.W.

    1984-01-01

    In appropriate aquifers the natural radionuclides of the U and Th decay series are important sources of information about the behavior of radwaste radionuclides in far-field aquifers. The Wolfcamp Carbonate, Pennsylvanian Carbonate and Granite Wash aquifers in the Palo Duro Basin of the Texas Panhandle are prime examples of such aquifers. Sampling and analysis for key radionuclides in the ground waters of these aquifers are quite feasible and have been accomplished. Key early results are: (1) Ra does not appear to be retarded by sorption, (2) Th appears to be strongly sorbed, (3) kinetics seem to be different on time scales of days to months than on ones of hundreds of thousands of years, and (4) U and Th behave similarly when the time scales (half-lives) are similar, leading to the suggestion that uranium is in the +4 valence state in these aquifers. 10 references, 3 figures.

  19. Experiments and modeling of variably permeable carbonate reservoir samples in contact with CO₂-acidified brines

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Smith, Megan M.; Hao, Yue; Mason, Harris E.; Carroll, Susan A.

    2014-12-31

    Reactive experiments were performed to expose sample cores from the Arbuckle carbonate reservoir to CO₂-acidified brine under reservoir temperature and pressure conditions. The samples consisted of dolomite with varying quantities of calcite and silica/chert. The timescales of monitored pressure decline across each sample in response to CO₂ exposure, as well as the amount of and nature of dissolution features, varied widely among these three experiments. For all samples cores, the experimentally measured initial permeability was at least one order of magnitude or more lower than the values estimated from downhole methods. Nondestructive X-ray computed tomography (XRCT) imaging revealed dissolution featuresmore » including “wormholes,” removal of fracture-filling crystals, and widening of pre-existing pore spaces. In the injection zone sample, multiple fractures may have contributed to the high initial permeability of this core and restricted the distribution of CO₂-induced mineral dissolution. In contrast, the pre-existing porosity of the baffle zone sample was much lower and less connected, leading to a lower initial permeability and contributing to the development of a single dissolution channel. While calcite may make up only a small percentage of the overall sample composition, its location and the effects of its dissolution have an outsized effect on permeability responses to CO₂ exposure. The XRCT data presented here are informative for building the model domain for numerical simulations of these experiments but require calibration by higher resolution means to confidently evaluate different porosity-permeability relationships.« less

  20. Modeling CO2 Sequestration in Saline Aquifer and Depleted Oil Reservoir To Evaluate Regional CO2 Sequestration Potential of Ozark Plateau Aquifer System, South-Central Kansas

    SciTech Connect (OSTI)

    Watney, W. Lynn; Rush, Jason; Raney, Jennifer

    2014-09-30

    1. Drilled, cored, and logged three wells to the basement and collecting more than 2,700 ft of conventional core; obtained 20 mi2 of multicomponent 3D seismic imaging and merged and reprocessed more than 125 mi2 of existing 3D seismic data for use in modeling CO2- EOR oil recovery and CO2 storage in five oil fields in southern Kansas. 2. Determined the technical feasibility of injecting and sequestering CO2 in a set of four depleted oil reservoirs in the Cutter, Pleasant Prairie South, Eubank, and Shuck fields in southwest Kansas; of concurrently recovering oil from those fields; and of quantifying the volumes of CO2 sequestered and oil recovered during the process. 3. Formed a consortium of six oil operating companies, five of which own and operate the four fields. The consortium became part of the Southwest Kansas CO2-EOR Initiative for the purpose of sharing data, knowledge, and interest in understanding the potential for CO2-EOR in Kansas. 4. Built a regional well database covering 30,000 mi2 and containing stratigraphic tops from ~90,000 wells; correlated 30 major stratigraphic horizons; digitized key wells, including wireline logs and sample logs; and analyzed more than 3,000 drill stem tests to establish that fluid levels in deep aquifers below the Permian evaporites are not connected to the surface and therefore pressures are not hydrostatic. Connectivity with the surface aquifers is lacking because shale aquitards and impermeable evaporite layers consist of both halite and anhydrite. 5. Developed extensive web applications and an interactive mapping system that do the following: a. Facilitate access to a wide array of data obtained in the study, including core descriptions and analyses, sample logs, digital (LAS) well logs, seismic data, gravity and magnetics maps, structural and stratigraphic maps, inferred fault traces, earthquakes, Class I and II disposal wells, and

  1. Formation dry-out from CO2 injection into saline aquifers: Part...

    Office of Scientific and Technical Information (OSTI)

    conditions is simulated in 1-D radial geometry, to resolve multiscale processes by ... DISSOLUTION; EVAPORATION; FRESH WATER; GEOMETRY; INJECTION WELLS; MITIGATION; ...

  2. Preliminary potentiometric map and flow dynamic characteristics for the upper-basalt confined aquifer system

    SciTech Connect (OSTI)

    Spane, F.A. Jr.; Raymond, R.G.

    1993-09-01

    This report presents the first comprehensive Hanford Site-wide potentiometric map for the upper-basalt confined aquifer system (i.e., the upper Saddle Mountains Basalt). In constructing the potentiometric map, over forty on-site and off-site monitoring wells and boreholes were used. The potentiometric map developed for the upper-basalt confined aquifer is consistent with the areal head pattern indicated for the Mabton interbed, which is a deeper and more areally extensive confined aquifer underlying the Hanford Site. Salient features for the upper-basalt confined aquifer system potentiometric map are described.

  3. {gamma}-Radiolysis of NaCl Brine in the Presence of UO{sub 2}(s): Effects of Hydrogen and Bromide

    SciTech Connect (OSTI)

    Metz, Volker; Bohnert, Elke; Kelm, Manfred; Schild, Dieter; Kienzler, Bernhard

    2007-07-01

    A concentrated NaCl solution was {gamma}-irradiated in autoclaves under a pressure of 25 MPa. A set of experiments were conducted in 6 mol (kg H{sub 2}O){sup -1} NaCl solution in the presence of UO{sub 2}(s) pellets; in a second set of experiments, {gamma}-radiolysis of the NaCl brine was studied without UO{sub 2}(s). Hydrogen, oxygen and chlorate were formed as long-lived radiolysis products. Due to the high external pressure, all radiolysis products remained dissolved. H{sub 2} and O{sub 2} reached steady state concentrations in the range of 5.10{sup -3} to 6.10{sup -2} mol (kg H{sub 2}O){sup -1} corresponding to a partial gas pressure of {approx}2 to {approx}20 MPa. Radiolytic formation of hydrogen and oxygen increased with the concentration of bromide added to solution. Both, in the presence of bromide, resulting in a relatively high radiolytic yield, and in the absence of bromide surfaces of the UO{sub 2}(s) samples were oxidized, and concentration of dissolved uranium reached the solubility limit of the schoepite / NaUO{sub 2}O(OH)(cr) transition. At the end of the experiments, the pellets were covered by a surface layer of a secondary solid phase having a composition close to Na{sub 2}U{sub 2}O{sub 7}. The experimental results demonstrate that bromide counteracts an H{sub 2} inhibition effect on radiolysis gas production, even at a concentration ratio of [H{sub 2}] / [Br{sup -}] > 100. The present observations are related to the competitive reactions of OH radicals with H{sub 2}, Br{sup -} and Cl{sup -}. A similar competition of hydrogen and bromide, controlling the yield of {gamma}-radiolysis products, is expected for solutions of lower Cl{sup -} concentration. (authors)

  4. Evaluation of brine disposal from the Bryan Mound site of the Strategic Petroleum Reserve Program. Final report

    SciTech Connect (OSTI)

    Hann, R.W. Jr.; Randall, R.E.

    1980-12-01

    The purpose of this report is to describe the environmental conditions found by the principal investigators during the predisposal study conducted from September 1977 through February 1980 prior to the start of brine discharge in March 1980. The major areas of investigation are physical oceanography, analysis of the discharge plume, water and sediment quality, nekton, benthos, phytoplankton, zooplankton, and data management. Volume 1 describes the results of the predisposal study, and it is divided into eight chapters entitled: Physical Oceanography, Analysis of the Discharge Plume, Water and Sediment Quality, Nekton, Benthos, Zooplankton, Phytoplankton, and Data Management. Volume 2 consists of appendices which contain additional supporting data in the form of figures and tables.

  5. Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations: Data used in Geosphere Journal Article

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thomas A. Buscheck

    2015-06-01

    This data submission is for Phase 2 of Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations, which focuses on multi-fluid (CO2 and brine) geothermal energy production and diurnal bulk energy storage in geologic settings that are suitable for geologic CO2 storage. This data submission includes all data used in the Geosphere Journal article by Buscheck et al (2016). All assumptions are discussed in that article.

  6. Modifications of Carbonate Fracture Hydrodynamic Properties by CO{sub 2}-Acidified Brine Flow

    SciTech Connect (OSTI)

    Deng, Hang; Ellis, Brian R.; Peters, Catherine A.; Fitts, Jeffrey P.; Crandall, Dustin; Bromhal, Grant S.

    2013-08-01

    Acidic reactive flow in fractures is relevant in subsurface activities such as CO{sub 2} geological storage and hydraulic fracturing. Understanding reaction-induced changes in fracture hydrodynamic properties is essential for predicting subsurface flows such as leakage, injectability, and fluid production. In this study, x-ray computed tomography scans of a fractured carbonate caprock were used to create three dimensional reconstructions of the fracture before and after reaction with CO{sub 2}-acidified brine (Ellis et al., 2011, Greenhouse Gases: Sci. Technol., 1:248-260). As expected, mechanical apertures were found to increase substantially, doubling and even tripling in some places. However, the surface geometry evolved in complex ways including ‘comb-tooth’ structures created from preferential dissolution of calcite in transverse sedimentary bands, and the creation of degraded zones, i.e. porous calcite-depleted areas on reacted fracture surfaces. These geometric alterations resulted in increased fracture roughness, as measured by surface Z{sub 2} parameters and fractal dimensions D{sub f}. Computational fluid dynamics (CFD) simulations were conducted to quantify the changes in hydraulic aperture, fracture transmissivity and permeability. The results show that the effective hydraulic apertures are smaller than the mechanical apertures, and the changes in hydraulic apertures are nonlinear. Overestimation of flow rate by a factor of two or more would be introduced if fracture hydrodynamic properties were based on mechanical apertures, or if hydraulic aperture is assumed to change proportionally with mechanical aperture. The differences can be attributed, in part, to the increase in roughness after reaction, and is likely affected by contiguous transverse sedimentary features. Hydraulic apertures estimated by the 1D statistical model and 2D local cubic law (LCL) model are consistently larger than those calculated from the CFD simulations. In addition, a novel

  7. Potential Risks of Freshwater Aquifer Contamination with Geosequestration

    SciTech Connect (OSTI)

    Jackson, Robert

    2013-09-30

    Substantial leakage of CO{sub 2} from deep geological strata to shallow potable aquifers is likely to be rare, but chemical detection of potential leakage nonetheless remains an integral component of any safe carbon capture and storage system. CO{sub 2} that infiltrates an unconfined freshwater aquifer will have an immediate impact on water chemistry by lowering pH in most cases and by altering the concentration of total dissolved solids. Chemical signatures in affected waters provide an important opportunity for early detection of leaks. In the presence of CO{sub 2}, trace elements such as Mn, Fe, and Ca can increase by an order of magnitude or more above control concentrations within 100 days. Therefore, these and other elements should be monitored along with pH as geochemical markers of potential CO{sub 2} leaks. Dissolved inorganic carbon and alkalinity can also be rapidly responsive to CO{sub 2} and are stable indicators of a leak. Importantly, such changes may be detectable long before direct changes in CO{sub 2} are observed. The experimental results also suggest that the relative severity of the impact of leaks on overlying drinking-water aquifers should be considered in the selection of CO{sub 2} sequestration sites. One primary selection criteria should be metal and metalloid availability, such as uranium and arsenic abundance, to carefully monitor chemical species that could trigger changes above maximum contaminant levels (MCLs). Overall, the risks of leakage from underground CO{sub 2} storage are real but appear to be manageable if systems are closely monitored.

  8. Environmental assessment of the brine pipeline replacement for the Strategic Petroleum Reserve Bryan Mound Facility in Brazoria County, Texas

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0804, for the proposed replacement of a deteriorated brine disposal pipeline from the Strategic Petroleum Reserve (SPR) Bryan Mound storage facility in Brazoria County, Texas, into the Gulf of Mexico. In addition, the ocean discharge outfall would be moved shoreward by locating the brine diffuser at the end of the pipeline 3.5 miles offshore at a minimum depth of 30 feet. The action would occur in a floodplain and wetlands; therefore, a floodplain/wetlands assessment has been prepared in conjunction with this EA. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969 (42 USC. 4321, et seg.). Therefore, the preparation of an Environmental Impact Statement (EIS) is not required, and the Department is issuing this Finding of No Significant Impact (FONSI). This FONSI also includes a Floodplain Statement of Findings in accordance with 10 CFR Part 1022.

  9. REE Sorption Study for Media #1 and Media #2 in Brine #1 and #2 at different Liquid to Solid Ratio's at Ambient Temperature

    SciTech Connect (OSTI)

    Gary Garland

    2015-03-27

    This data set shows the different loading capacities of Media #1 and Media #2 in a high and low salt content brine matrix at different liquid to solid ratio's. These data sets are shaker bath tests on media #1 and media #2 in brine's #1 and #2 at 500mL-.5g(1000-1 ratio), 150mL-.75g(200-1 ratio), and 150mL-2.5g(60-1 ratio) at ambient temperature.

  10. Regional assessment of aquifers for thermal-energy storage. Volume 2. Regions 7 through 12

    SciTech Connect (OSTI)

    Not Available

    1981-06-01

    This volume contains information on the geologic and hydrologic framework, major aquifers, aquifers which are suitable and unsuitable for annual thermal energy storage (ATES) and the ATES potential of the following regions of the US: Unglaciated Central Region; Glaciated Appalachians, Unglaciated Appalachians; Coastal Plain; Hawaii; and Alaska. (LCL)

  11. Regional assessment of aquifers for thermal energy storage. Volume 1. Regions 1 through 6

    SciTech Connect (OSTI)

    Not Available

    1981-06-01

    This volume contains information on the geologic and hydrologic framework, major aquifers, aquifers which are suitable and unsuitable for annual thermal energy storage (ATES) and the ATES potential of the following regions of the US: the Western Mountains; Alluvial Basins; Columbia LAVA Plateau; Colorado Plateau; High Plains; and Glaciated Central Region. (LCL)

  12. Effects of surfactants on the desorption of organic contaminants from aquifer materials. Doctoral thesis

    SciTech Connect (OSTI)

    Brickell, J.L.

    1989-08-01

    The efficiency of removing organic contaminants from groundwater aquifers by the pump and treat process is adversely affected by the retardation of the contaminant's mobility due to adsorption onto aquifer material. The use of surfactants in conjunction with the pump and treat process has the potential for improving contaminant mobility by solubilizing the adsorbed contaminant.

  13. REE Sorption Study of Sieved -50 +100 mesh Media #1 in Brine #1 with Different Starting pH's at 70C

    SciTech Connect (OSTI)

    Gary Garland

    2015-07-21

    This dataset described shaker table experiments ran with sieved -50 +100 mesh media #1 in brine #1 that have 2ppm each of the 7 REE metals at different starting pH's of 3.5, 4.5, and 5.5. The experimental conditions are 2g media to 150mL of REE solution, at 70C.

  14. Particulate Formation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Formation - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  15. Formation testers

    SciTech Connect (OSTI)

    Brieger, E.

    1980-07-01

    A description is given of a method for use in obtaining multiple pressure tests of an earth formation traversed by a well bore by use of a sidewall fluid sampler well tool which has a fluid pressure sampling chamber in the well tool in open fluid communication with a pad sealing means, comprising the steps of: for one selected level in a well bore, moving a pad sealing means on the well tool into engagement with the wall of a well bore and isolating a wall segment of the earth formation; after the pad sealing means engges the wall segment of the earth formation, generating a hydraulic pressure in the well tool and applying said hydraulic pressure to said fluid pressure sampling chamber for increasing the volume of said fluid pressure sampling chamber thereby to dray a fluid sample from the earth formation engaged by the pad sealing means into the fluid pressure sampling chamber, sensing the pressure of said fluid sample as it is drawn into the fluid pressure sampling chamber while the volume of the sampling chamber is being increased, relieving the hydraulic pressure in the well tool with respect to said fluid pressur sampling chamber for decreasing the volume of said fluid pressure sampling chamber thereby to contact the sampling chamber to dischrge the fluid sample through the pad sealing means; retracting the sealing pad means and, after retrction of sealing pad means from engagement from the wall of the well bore, moving the well tool to a second location at another level in the well bore and, at the second location, repeating the steps of the method performed at the one selected level for obtaining another fluid sample and pressure sensing at said second location.

  16. The University of Minnesota aquifer thermal energy storage (ATES) field test facility -- system description, aquifer characterization, and results of short-term test cycles

    SciTech Connect (OSTI)

    Walton, M.; Hoyer, M.C.; Eisenreich, S.J.; Holm, N.L.; Holm, T.R.; Kanivetsky, R.; Jirsa, M.A.; Lee, H.C.; Lauer, J.L.; Miller, R.T.; Norton, J.L.; Runke, H. )

    1991-06-01

    Phase 1 of the Aquifer Thermal Energy Storage (ATES) Project at the University of Minnesota was to test the feasibility, and model, the ATES concept at temperatures above 100{degrees}C using a confined aquifer for the storage and recovery of hot water. Phase 1 included design, construction, and operation of a 5-MW thermal input/output field test facility (FTF) for four short-term ATES cycles (8 days each of heat injection, storage, and heat recover). Phase 1 was conducted from May 1980 to December 1983. This report describes the FTF, the Franconia-Ironton-Galesville (FIG) aquifer used for the test, and the four short-term ATES cycles. Heat recovery; operational experience; and thermal, chemical, hydrologic, and geologic effects are all included. The FTF consists of monitoring wells and the source and storage well doublet completed in the FIG aquifer with heat exchangers and a fixed-bed precipitator between the wells of the doublet. The FIG aquifer is highly layered and a really anisotropic. The upper Franconia and Ironton-Galesville parts of the aquifer, those parts screened, have hydraulic conductivities of {approximately}0.6 and {approximately}1.0 m/d, respectively. Primary ions in the ambient ground water are calcium and magnesium bicarbonate. Ambient temperature FIG ground water is saturated with respect to calcium/magnesium bicarbonate. Heating the ground water caused most of the dissolved calcium to precipitate out as calcium carbonate in the heat exchanger and precipitator. Silica, calcium, and magnesium were significantly higher in recovered water than in injected water, suggesting dissolution of some constituents of the aquifer during the cycles. Further work on the ground water chemistry is required to understand water-rock interactions.

  17. Formation testers

    SciTech Connect (OSTI)

    Brieger, E.F.

    1981-09-08

    A formation tester apparatus is disclosed for use in a well bore for multiple testing of pressures of earth formation fluids and the taking of a fluid sample. Pad and shoe means are selectively operable for sealingly engaging a well bore. Upon sealing engagement of the pad with the wall of a well bore, a fluid sample is ingested into an expanding chamber while its pressure is sensed. Upon completion of the pressure test, the pad is retracted from the wall of a well bore, and the expanding chamber contracts to expel the fluid sample. The pressure test may be repeated any number of times. The expanding chamber includes a piston operated with fluid pressure used to actuate the pad. A choke delays the application of pressure to the piston until after the pad seals on the wall of the well bore. When a fluid sample is desired, the fluid pressure used to actuate the pad is increased to operate a first valve which connects the pad of a water cushion sampling chamber. After a fluid sample is collected, the fluid pressure is further increased to operate a second valve which closes off the sampling chamber. When the formations are unconsolidated a slidable probe in the pad extends outwardly into the wall and forms a mechanical filter. When the probe retracts the filter is self-cleaning.

  18. DILUTE SURFACTANT METHODS FOR CARBONATE FORMATIONS

    SciTech Connect (OSTI)

    Kishore K. Mohanty

    2003-01-01

    There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. We have acquired field oil and core samples and field brine compositions from Marathon. We have conducted preliminary adsorption and wettability studies. Addition of Na{sub 2}CO{sub 3} decreases anionic surfactant adsorption on calcite surface. Receding contact angles increase with surfactant adsorption. Plans for the next quarter include conducting adsorption, phase behavior and wettability studies.

  19. Dilute Surfactant Methods for Carbonate Formations

    SciTech Connect (OSTI)

    Kishore K. Mohanty

    2005-10-01

    There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the best hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. Laboratory-scale surfactant brine imbibition experiments give high oil recovery (35-62% OOIP) for initially oil-wet cores through wettability alteration and IFT reduction. Core-scale simulation results match those of the experiments. Initial capillarity-driven imbibition gives way to a final gravity-driven process. As the matrix block height increases, surfactant alters wettability to a lesser degree, or permeability decreases, oil production rate decreases. The scale-up to field scale will be further studied in the next quarter.

  20. Rare-earth elements in hot brines (165 to 190 degree C) from the Salton Sea geothermal field

    SciTech Connect (OSTI)

    Lepel, E.A.; Laul, J.C.; Smith, M.R.

    1988-01-01

    Rare-earth element (REE) concentrations are important indicators for revealing various chemical fractionation processes (water/rock interactions) and source region geochemistry. Since the REE patterns are characteristic of geologic materials (basalt, granite, shale, sediments, etc.) and minerals (K-feldspar, calcite, illite, epidote, etc.), their study in geothermal fluids may serve as a geothermometer. The REE study may also enable us to address the issue of groundwater mixing. In addition, the behavior of the REE can serve as analogs of the actinides in radioactive waste (e.g., neodymium is an analog of americium and curium). In this paper, the authors port the REE data for a Salton Sea Geothermal Field (SSGF) brine (two aliquots: port 4 at 165{degree}C and port 5 at 190{degree}C) and six associated core samples.

  1. Ground-Water Table and Chemical Changes in an Alluvial Aquifer...

    Office of Environmental Management (EM)

    Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells Ground-Water Table and Chemical ...

  2. REE Sorption Study of Seived -50 +100 Mesh Fraction of Media #1 in Brine #1 at Different Concentrations of REE at 70C

    SciTech Connect (OSTI)

    Gary Garland

    2015-06-29

    This dataset shows the sorption capacities of smaller grain size (-50 +100 mesh) of media #1 in brine #1 at different starting concentrations of REE's at elevated temperature of 70C. The experimental conditions are 2g of -50 +100 mesh media #1 to 150mL of REE solution at concentartions of .2ppm each, 2ppm each, and 20ppm each. The pH of the solution is 5.5, and the temperature was at 70C.

  3. Preliminary analyses of scenarios for potential human interference for repositories in three salt formations

    SciTech Connect (OSTI)

    Not Available

    1985-10-01

    Preliminary analyses of scenarios for human interference with the performance of a radioactive waste repository in a deep salt formation are presented. The following scenarios are analyzed: (1) the U-Tube Connection Scenario involving multiple connections between the repository and the overlying aquifer system; (2) the Single Borehole Intrusion Scenario involving penetration of the repository by an exploratory borehole that simultaneously connects the repository with overlying and underlying aquifers; and (3) the Pressure Release Scenario involving inflow of water to saturate any void space in the repository prior to creep closure with subsequent release under near lithostatic pressures following creep closure. The methodology to evaluate repository performance in these scenarios is described and this methodology is applied to reference systems in three candidate formations: bedded salt in the Palo Duro Basin, Texas; bedded salt in the Paradox Basin, Utah; and the Richton Salt Dome, Mississippi, of the Gulf Coast Salt Dome Basin.

  4. Mechanisms of formation damage in matrix-permeability geothermal wells

    SciTech Connect (OSTI)

    Bergosh, J.L.; Wiggins, R.B.; Enniss, D.O.

    1982-04-01

    Tests were conducted to determine mechanisms of formation damage that can occur in matrix permeability geothermal wells. Two types of cores were used in the testing, actual cores from the East Mesa Well 78-30RD and cores from a fairly uniform generic sandstone formation. Three different types of tests were run. The East Mesa cores were used in the testing of the sensitivity of core to filtrate chemistry. The tests began with the cores exposed to simulated East Mesa brine and then different filtrates were introduced and the effects of the fluid contrast on core permeability were measured. The East Mesa cores were also used in the second series of tests which tested formation sandstone cores were used in the third test series which investigated the effects of different sizes of entrained particles in the fluid. Tests were run with both single-particle sizes and distributions of particle mixes. In addition to the testing, core preparation techniques for simulating fracture permeability were evaluated. Three different fracture formation mechanisms were identified and compared. Measurement techniques for measuring fracture size and permeability were also developed.

  5. Elucidating geochemical response of shallow heterogeneous aquifers to CO2 leakage using high-performance computing: Implications for monitoring of CO2 sequestration

    SciTech Connect (OSTI)

    Navarre-Sitchler, Alexis K.; Maxwell, Reed M.; Siirila, Erica R.; Hammond, Glenn E.; Lichtner, Peter C.

    2013-03-01

    Predicting and quantifying impacts of potential carbon dioxide (CO2) leakage into shallow aquifers that overlie geologic CO2 storage formations is an important part of developing reliable carbon storage techniques. Leakage of CO2 through fractures, faults or faulty wellbores can reduce groundwater pH, inducing geochemical reactions that release solutes into the groundwater and pose a risk of degrading groundwater quality. In order to help quantify this risk, predictions of metal concentrations are needed during geologic storage of CO2. Here, we present regional-scale reactive transport simulations, at relatively fine-scale, of CO2 leakage into shallow aquifers run on the PFLOTRAN platform using high-performance computing. Multiple realizations of heterogeneous permeability distributions were generated using standard geostatistical methods. Increased statistical anisotropy of the permeability field resulted in more lateral and vertical spreading of the plume of impacted water, leading to increased Pb2+ (lead) concentrations and lower pH at a well down gradient of the CO2 leak. Pb2+ concentrations were higher in simulations where calcite was the source of Pb2+ compared to galena. The low solubility of galena effectively buffered the Pb2+ concentrations as galena reached saturation under reducing conditions along the flow path. In all cases, Pb2+ concentrations remained below the maximum contaminant level set by the EPA. Results from this study, compared to natural variability observed in aquifers, suggest that bicarbonate (HCO3) concentrations may be a better geochemical indicator of a CO2 leak under the conditions simulated here.

  6. Evaluating impacts of CO2 gas intrusion into a confined sandstone aquifer: Experimental results

    SciTech Connect (OSTI)

    Qafoku, Nikolla; Lawter, Amanda R.; Shao, Hongbo; Wang, Guohui; Brown, Christopher F.

    2014-12-31

    Deep subsurface storage and sequestration of CO2 has been identified as a potential mitigation technique for rising atmospheric CO2 concentrations. Sequestered CO2 represents a potential risk to overlying aquifers if the CO2 leaks from the deep storage reservoir. Experimental and modeling work is required to evaluate potential risks to groundwater quality and develop a systematic understanding of how CO2 leakage may cause important changes in aquifer chemistry and mineralogy by promoting dissolution/precipitation, adsorption/desorption, and redox reactions. Sediments from the High Plains aquifer in Kansas, United States, were used in this investigation, which is part of the National Risk Assessment Partnership Program sponsored by the US Department of Energy. This aquifer was selected to be representative of consolidated sand and gravel/sandstone aquifers overlying potential CO2 sequestration repositories within the continental US. In this paper, we present results from batch experiments conducted at room temperature and atmospheric pressure with four High Plains aquifer sediments. Batch experiments simulate sudden, fast, and short-lived releases of the CO2 gas as would occur in the case of well failure during injection. Time-dependent release of major, minor, and trace elements were determined by analyzing the contacting solutions. Characterization studies demonstrated that the High Plains aquifer sediments were abundant in quartz and feldspars, and contained about 15 to 20 wt% montmorillonite and up to 5 wt% micas. Some of the High Plains aquifer sediments contained no calcite, while others had up to about 7 wt% calcite. The strong acid extraction tests confirmed that in addition to the usual elements present in most soils, rocks, and sediments, the High Plains aquifer sediments had appreciable amounts of As, Cd, Pb, Cu, and occasionally Zn, which potentially may be mobilized from the solid to the aqueous phase during or after exposure to CO2. However, the

  7. Evaluating Impacts of CO2 Gas Intrusion Into a Confined Sandstone aquifer: Experimental Results

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Qafoku, Nikolla; Lawter, Amanda R.; Shao, Hongbo; Wang, Guohui; Brown, Christopher F.

    2014-12-31

    Deep subsurface storage and sequestration of CO2 has been identified as a potential mitigation technique for rising atmospheric CO2 concentrations. Sequestered CO2 represents a potential risk to overlying aquifers if the CO2 leaks from the deep storage reservoir. Experimental and modeling work is required to evaluate potential risks to groundwater quality and develop a systematic understanding of how CO2 leakage may cause important changes in aquifer chemistry and mineralogy by promoting dissolution/precipitation, adsorption/desorption, and redox reactions. Sediments from the High Plains aquifer in Kansas, United States, were used in this investigation, which is part of the National Risk Assessment Partnershipmore » Program sponsored by the US Department of Energy. This aquifer was selected to be representative of consolidated sand and gravel/sandstone aquifers overlying potential CO2 sequestration repositories within the continental US. In this paper, we present results from batch experiments conducted at room temperature and atmospheric pressure with four High Plains aquifer sediments. Batch experiments simulate sudden, fast, and short-lived releases of the CO2 gas as would occur in the case of well failure during injection. Time-dependent release of major, minor, and trace elements were determined by analyzing the contacting solutions. Characterization studies demonstrated that the High Plains aquifer sediments were abundant in quartz and feldspars, and contained about 15 to 20 wt% montmorillonite and up to 5 wt% micas. Some of the High Plains aquifer sediments contained no calcite, while others had up to about 7 wt% calcite. The strong acid extraction tests confirmed that in addition to the usual elements present in most soils, rocks, and sediments, the High Plains aquifer sediments had appreciable amounts of As, Cd, Pb, Cu, and occasionally Zn, which potentially may be mobilized from the solid to the aqueous phase during or after exposure to CO2. However

  8. Evaluating Impacts of CO2 Gas Intrusion Into a Confined Sandstone aquifer: Experimental Results

    SciTech Connect (OSTI)

    Qafoku, Nikolla; Lawter, Amanda R.; Shao, Hongbo; Wang, Guohui; Brown, Christopher F.

    2014-12-31

    Deep subsurface storage and sequestration of CO2 has been identified as a potential mitigation technique for rising atmospheric CO2 concentrations. Sequestered CO2 represents a potential risk to overlying aquifers if the CO2 leaks from the deep storage reservoir. Experimental and modeling work is required to evaluate potential risks to groundwater quality and develop a systematic understanding of how CO2 leakage may cause important changes in aquifer chemistry and mineralogy by promoting dissolution/precipitation, adsorption/desorption, and redox reactions. Sediments from the High Plains aquifer in Kansas, United States, were used in this investigation, which is part of the National Risk Assessment Partnership Program sponsored by the US Department of Energy. This aquifer was selected to be representative of consolidated sand and gravel/sandstone aquifers overlying potential CO2 sequestration repositories within the continental US. In this paper, we present results from batch experiments conducted at room temperature and atmospheric pressure with four High Plains aquifer sediments. Batch experiments simulate sudden, fast, and short-lived releases of the CO2 gas as would occur in the case of well failure during injection. Time-dependent release of major, minor, and trace elements were determined by analyzing the contacting solutions. Characterization studies demonstrated that the High Plains aquifer sediments were abundant in quartz and feldspars, and contained about 15 to 20 wt% montmorillonite and up to 5 wt% micas. Some of the High Plains aquifer sediments contained no calcite, while others had up to about 7 wt% calcite. The strong acid extraction tests confirmed that in addition to the usual elements present in most soils, rocks, and sediments, the High Plains aquifer sediments had appreciable amounts of As, Cd, Pb, Cu, and occasionally Zn, which potentially may be mobilized from the solid to the aqueous phase during or after exposure to CO2. However, the

  9. Water Influx, and Its Effect on Oil Recovery: Part 1. Aquifer Flow, SUPRI TR-103

    SciTech Connect (OSTI)

    Brigham, William E.

    1999-08-09

    Natural water encroachment is commonly seen in many oil and gas reservoirs. In fact, overall, there is more water than oil produced from oil reservoirs worldwide. Thus it is clear that an understanding of reservoir/aquifer interaction can be an important aspect of reservoir management to optimize recovery of hydrocarbons. Although the mathematics of these processes are difficult, they are often amenable to analytical solution and diagnosis. Thus this will be the ultimate goal of a series of reports on this subject. This first report deals only with aquifer behavior, so it does not address these important reservoir/aquifer issues. However, it is an important prelude to them, for the insight gained gives important clues on how to address reservoir/aquifer problems. In general when looking at aquifer flow, there are two convenient inner boundary conditions that can be considered; constant pressure or constant flow rate. There are three outer boundary conditions that are convenient to consider; infinite, closed and constant pressure. And there are three geometries that can be solved reasonably easily; linear, radial and spherical. Thus there are a total of eighteen different solutions that can be analyzed.

  10. Field testing of a high-temperature aquifer thermal energy storage system

    SciTech Connect (OSTI)

    Sterling, R.L.; Hoyer, M.C.

    1989-03-01

    The University of Minnesota Aquifer Thermal Energy Storage (ATES) System has been operated as a field test facility for the past six years. Four short-term and two long-term cycles have been completed to data providing a greatly increased understanding of the efficiency and geochemical effects of high-temperature aquifer thermal energy storage. A third long-term cycle is currently being planned to operate the ATES system in conjunction with a real heating load and to further study the geochemical impact on the aquifer from heated waste storage cycles. The most critical activities in the preparation for the next cycle have proved to be the applications for the various permits and variances necessary to conduct the third cycle and the matching of the characteristics of the ATES system during heat recovery with a suitable adjacent building thermal load.

  11. Apparatus and method for extraction of chemicals from aquifer remediation effluent water

    DOE Patents [OSTI]

    McMurtrey, Ryan D.; Ginosar, Daniel M.; Moor, Kenneth S.; Shook, G. Michael; Moses, John M.; Barker, Donna L.

    2002-01-01

    An apparatus and method for extraction of chemicals from an aquifer remediation aqueous effluent are provided. The extraction method utilizes a critical fluid for separation and recovery of chemicals employed in remediating aquifers contaminated with hazardous organic substances, and is particularly suited for separation and recovery of organic contaminants and process chemicals used in surfactant-based remediation technologies. The extraction method separates and recovers high-value chemicals from the remediation effluent and minimizes the volume of generated hazardous waste. The recovered chemicals can be recycled to the remediation process or stored for later use.

  12. Computer simulation of production from geothermal-geopressured aquifers. Final report, October 1, 1978 through January 31, 1983

    SciTech Connect (OSTI)

    Doherty, M.G.; Poonawala, N.A.

    1983-07-01

    The effort utilized a computer to interpret the results of well tests and compile data on gas solubility in brine and the viscosity of brine. A detailed computer reservoir study of a geopressured test well that had been abandoned as a dry hole but became a commercial producer of hydrocarbons is presented. A number of special topical reports pertaining to test activities performed on Department of Energy test wells (MG-T/DOE Amoco Fee No. 1 Well, Leroy Sweezy No. 1 Well, and Pleasant Bayou No. 2 Well) are appended. A referenced article written under this study that appeared in the Journal of Petroleum Technology is also reproduced.

  13. Analysis of Hydraulic Responses from the ER-6-1 Multiple-Well Aquifer Test, Yucca Flat FY 2004 Testing Program, Nevada Test Site, Nye County, Nevada, Rev. No.: 0

    SciTech Connect (OSTI)

    Greg Ruskauff

    2005-06-01

    This report documents the interpretation and analysis of the hydraulic data collected for the Fiscal Year (FY) 2004 Multiple-Well Aquifer Test-Tracer Test (MWAT-TT) conducted at the ER-6-1 Well Cluster in Yucca Flat Corrective Action Unit (CAU) 97, on the Nevada Test Site (NTS). The MWAT-TT was performed to investigate CAU-scale groundwater flow and transport processes related to the transport of radionuclides from sources on the NTS through the Lower Carbonate Aquifer (LCA) Hydrostratigraphic Unit (HSU). The ER-6-1 MWAT-TT was planned and executed by contractor participants for the Underground Test Area (UGTA) Project of the Environmental Restoration (ER) program of the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Participants included Stoller-Navarro Joint Venture (SNJV), the Environmental Engineering Services Contractor; Bechtel Nevada (BN); the Desert Research Institute (DRI); Los Alamos National Laboratory; and the University of Nevada, Las Vegas-Harry Reid Center. The SNJV team consists of the S.M. Stoller Corporation, Navarro Research and Engineering, Battelle Memorial Institute, INTERA Inc., and Weston Solutions, Inc. The MWAT-TT was implemented according to the ''Underground Test Area Project, ER-6-1 Multi-Well Aquifer Test - Tracer Test Plan'' (SNJV, 2004a) issued in April 2004. The objective of the aquifer test was to determine flow processes and local hydraulic properties for the LCA through long-term constant-rate pumping at the well cluster. This objective was to be achieved in conjunction with detailed sampling of the composite tracer breakthrough at the pumping well, as well as with depth-specific sampling and logging at multiple wells, to provide information for the depth-discrete analysis of formation hydraulic properties, particularly with regard to fracture properties.

  14. Methods and apparatus for measurement of the resistivity of geological formations from within cased boreholes

    DOE Patents [OSTI]

    Vail, III, William B.

    1989-01-01

    Methods and apparatus are disclosed which allow measurement of the resistivity of a geological formation through borehole casing which may be surrounded by brine saturated cement. A.C. current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. The A.C. voltage difference is measured between two additional vertically disposed electrodes on the interior of the casing which provides a measure of the resistivity of the geological formation. A calibration and nulling procedure is presented which minimizes the influence of variations in the thickness of the casing. The procedure also minimizes the influence of inaccurate placements of the additional vertically disposed electrodes.

  15. Methods and apparatus for measurement of the resistivity of geological formations from within cased boreholes

    DOE Patents [OSTI]

    Vail, W.B. III.

    1989-04-11

    Methods and apparatus are disclosed which allow measurement of the resistivity of a geological formation through borehole casing which may be surrounded by brine saturated cement. A.C. current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. The A.C. voltage difference is measured between two additional vertically disposed electrodes on the interior of the casing which provides a measure of the resistivity of the geological formation. A calibration and nulling procedure is presented which minimizes the influence of variations in the thickness of the casing. The procedure also minimizes the influence of inaccurate placements of the additional vertically disposed electrodes. 3 figs.

  16. Accident Investigation of the February 7, 2013, Scissor Lift Accident in the West Hackberry Brine Tank-14 Resulting in Injury, Strategic Petroleum Reserve West Hackberry, LA

    Broader source: Energy.gov [DOE]

    On February 15, 2013, an Accident Investigation Board (the Board) was appointed to investigate an accident that resulted in serious injuries caused when a scissor lift tipped over in Brine Tank-14 (WHT-14) at the Strategic Petroleum Reserve, West Hackberry, Louisiana, site on February 7, 2013. The Board’s responsibilities have been completed with respect to this investigation. The analysis and the identification of the direct cause, root causes, contributing causes, and judgments of need resulting from this investigation were performed in accordance with the Department of Energy (DOE) Order 225.1B, Accident Investigations.

  17. Evaluating the impact of aquifer layer properties on geomechanical response during CO2 geological sequestration

    SciTech Connect (OSTI)

    Bao, Jie; Xu, Zhijie; Lin, Guang; Fang, Yilin

    2013-04-01

    Numerical models play an essential role in understanding the facts of carbon dioxide (CO2) geological sequestration in the life cycle of a storage reservoir. We present a series of test cases that reflect a broad and realistic range of aquifer reservoir properties to systematically evaluate and compare the impacts on the geomechanical response to CO2 injection. In this study, a coupled hydro-mechanical model was introduced to simulate the sequestration process, and a quasi-Monte Carlo sampling method was introduced to efficiently sample the value of aquifer properties and geometry parameters. Aquifer permeability was found to be of significant importance to the geomechanical response to the injection. To study the influence of uncertainty of the permeability distribution in the aquifer, an additional series of tests is presented, based on a default permeability distribution site sample with various distribution deviations generated by the Monte Carlo sampling method. The results of the test series show that different permeability distributions significantly affect the displacement and possible failure zone.

  18. Modeling the Impact of Carbon Dioxide Leakage into an Unconfined, Oxidizing Carbonate Aquifer

    SciTech Connect (OSTI)

    Bacon, Diana H.; Qafoku, Nikolla; Dai, Zhenxue; Keating, Elizabeth; Brown, Christopher F.

    2016-01-01

    Multiphase, reactive transport modeling was used to identify the mechanisms controlling trace metal release under elevated CO2 conditions from a well-characterized carbonate aquifer. Modeling was conducted for two experimental scenarios: batch experiments to simulate sudden, fast, and short-lived release of CO2 as would occur in the case of well failure during injection, and column experiments to simulate more gradual leaks such as those occurring along undetected faults, fractures, or well linings. Observed and predicted trace metal concentrations are compared to groundwater concentrations from this aquifer to determine the potential for leaking CO2 to adversely impact drinking water quality. Finally, a three-dimensional multiphase flow and reactive-transport simulation of CO2 leakage from an abandoned wellbore into a generalized model of the shallow, unconfined portion of the aquifer is used to determine potential impacts on groundwater quality. As a measure of adverse impacts on groundwater quality, both the EPAs MCL limits and the maximum trace metal concentration observed in the aquifer were used as threshold values.

  19. A quantitative analysis of hydraulic interaction processes in stream-aquifer systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Wenke; Dai, Zhenxue; Zhao, Yaqian; Li, Junting; Duan, Lei; Wang, Zhoufeng; Zhu, Lin

    2016-01-28

    The hydraulic relationship between the stream and aquifer can be altered from hydraulic connection to disconnection when the pumping rate exceeds the maximum seepage flux of the streambed. This study proposes to quantitatively analyze the physical processes of stream-aquifer systems from connection to disconnection. A free water table equation is adopted to clarify under what conditions a stream starts to separate hydraulically from an aquifer. Both the theoretical analysis and laboratory tests have demonstrated that the hydraulic connectedness of the stream-aquifer system can reach a critical disconnection state when the horizontal hydraulic gradient at the free water surface is equalmore » to zero and the vertical is equal to 1. A boundary-value problem for movement of the critical point of disconnection is established for an analytical solution of the inverted water table movement beneath the stream. The result indicates that the maximum distance or thickness of the inverted water table is equal to the water depth in the stream, and at a steady state of disconnection, the maximum hydraulic gradient at the streambed center is 2. In conclusion, this study helps us to understand the hydraulic phenomena of water flow near streams and accurately assess surface water and groundwater resources.« less

  20. Geochemical Impacts of Leaking CO2 from Subsurface Storage Reservoirs to Unconfined and Confined Aquifers

    SciTech Connect (OSTI)

    Qafoku, Nikolla; Brown, Christopher F.; Wang, Guohui; Sullivan, E. C.; Lawter, Amanda R.; Harvey, Omar R.; Bowden, Mark

    2013-04-15

    Experimental research work has been conducted and is undergoing at Pacific Northwest National Laboratory (PNNL) to address a variety of scientific issues related with the potential leaks of the carbon dioxide (CO2) gas from deep storage reservoirs. The main objectives of this work are as follows: • Develop a systematic understanding of how CO2 leakage is likely to influence pertinent geochemical processes (e.g., dissolution/precipitation, sorption/desorption and redox reactions) in the aquifer sediments. • Identify prevailing environmental conditions that would dictate one geochemical outcome over another. • Gather useful information to support site selection, risk assessment, policy-making, and public education efforts associated with geological carbon sequestration. In this report, we present results from experiments conducted at PNNL to address research issues related to the main objectives of this effort. A series of batch and column experiments and solid phase characterization studies (quantitative x-ray diffraction and wet chemical extractions with a concentrated acid) were conducted with representative rocks and sediments from an unconfined, oxidizing carbonate aquifer, i.e., Edwards aquifer in Texas, and a confined aquifer, i.e., the High Plains aquifer in Kansas. These materials were exposed to a CO2 gas stream simulating CO2 gas leaking scenarios, and changes in aqueous phase pH and chemical composition were measured in liquid and effluent samples collected at pre-determined experimental times. Additional research to be conducted during the current fiscal year will further validate these results and will address other important remaining issues. Results from these experimental efforts will provide valuable insights for the development of site-specific, generation III reduced order models. In addition, results will initially serve as input parameters during model calibration runs and, ultimately, will be used to test model predictive capability and

  1. Evaluating Impacts of CO2 Intrusion into an Unconsolidated Aquifer. I. Experimental Data

    SciTech Connect (OSTI)

    Lawter, Amanda R.; Qafoku, Nikolla; Wang, Guohui; Shao, Hongbo; Brown, Christopher F.

    2015-08-04

    Capture and deep subsurface sequestration of CO2 has been identified as a potential mitigation technique for rising atmospheric CO2 concentrations. Sequestered CO2 represents a potential risk to overlying aquifers if the CO2 leaks from the deep storage reservoir. Batch and column experiments combined with wet chemical extractions were conducted to evaluate these risks to groundwater quality and to understand effects of CO2 leakage on aquifer chemistry and mineralogy. Sediments from the High Plains aquifer in Kansas, a confined sandstone aquifer, were used to study time-dependent release of major, minor and trace elements when exposed to CO2 gas. Results showed that Ca, Ba, Si, Mg, Sr, Na, and K increased either instantaneously or followed nonlinear increasing trends with time, indicating dissolution and/or desorption reactions controlled their release. Other elements, such as Mn and Fe, were also released from all sediments, creating a potential for redox reactions to occur. Results from acid extractions confirmed sediments had appreciable amounts of contaminants that may potentially be released into the aqueous phase. However, results from the batch and column experiments demonstrated that only a few trace elements (e.g., As, Cu, Cr, Pb) were released, indicating the risk of groundwater quality degradation due to exposure to leakage of sequestered CO2 is low. Concentrations of Mo were consistently higher in the control experiments (absence of CO2) and were below detection in the presence of CO2 indicating a possible benefit of CO2 in groundwater aquifers. These investigations will provide useful information to support site selection, risk assessment, and public education efforts associated with geological CO2 storage and sequestration.

  2. Batteries from Brine

    Broader source: Energy.gov [DOE]

    Low-temp geothermal technologies are meeting a growing demand for strategic materials in clean manufacturing.

  3. Estimates of the solubilities of waste element radionuclides in waste isolation pilot plant brines: A report by the expert panel on the source term

    SciTech Connect (OSTI)

    Hobart, D.E.; Bruton, C.J.; Millero, F.J.; Chou, I.M.; Trauth, K.M.; Anderson, D.R.

    1996-05-01

    Evaluation of the long-term performance of the WIPP includes estimation of the cumulative releases of radionuclide elements to the accessible environment. Nonradioactive lead is added because of the large quantity expected in WIPP wastes. To estimate the solubilities of these elements in WIPP brines, the Panel used the following approach. Existing thermodynamic data were used to identify the most likely aqueous species in solution through the construction of aqueous speciation diagrams. Existing thermodynamic data and expert judgment were used to identify potential solubility-limiting solid phases. Thermodynamic data were used to calculate the activities of the radionuclide aqueous species in equilibrium with each solid. Activity coefficients of the radionuclide-bearing aqueous species were estimated using Pitzer`s equations. These activity coefficients were then used to calculate the concentration of each radionuclide at the 0.1 and 0.9 fractiles. The 0.5 fractile was chosen to represent experimental data with activity coefficient corrections as described above. Expert judgment was used to develop the 0.0, 0.25, 0.75, and 1.0 fractiles by considering the sensitivity of solubility to the potential variability in the composition of brine and gas, and the extent of waste contaminants, and extending the probability distributions accordingly. The results were used in the 1991 and 1992 performance assessment calculations. 68 refs.

  4. In Situ Reduction of Aquifer Sediments to Create a Permeable Reactive Barrier to Remediate Chromate (CrO4 2-): BenchScale Tests to Determine Barrier Longevity

    SciTech Connect (OSTI)

    Szecsody, Jim E.; Fruchter, Jonathan S.; Vermeul, Vince R.; Williams, Mark D.; Devary, Brooks J.

    2005-01-02

    Laboratory tests were conducted to determine sediment geochemical properties needed to develop a design for implementation of the in-situ oxidation–reduction (redox) manipulation (ISRM) technology for chromate (CrO42–) remediation at a Superfund site and three other sites. A generalized hydrogeologic description of the Superfund site consist of a silty clay upper confining layer to a depth of ~6.71 m, the A1 unit from ~6.71 m to ~8.23 m, the A2 unit from ~8.23 m to ~10.67 m, and the A3 unit from ~10.67 m to ~12.19 m below ground surface. The A/B aquitard was encountered at a depth of ~12.19 m. The A1, A2, and A3 hydrostratigraphic units are all sandy gravels, but with considerable difference in fines content and subsequently, hydraulic conductivity. Hydraulic tests conducted in pilot test site monitoring wells indicate that the A1 unit has a 10 times lower hydraulic conductivity than the A2 unit, while the A3 unit hydraulic conductivity is significantly higher than that observed in the A2 unit (i.e., a trend of increasing permeability with depth). Calculated hydraulic conductivities, based on sieve analysis, show this same spatial trend. Results from a tracer injection test and electromagnetic borehole flow meter tests conducted at the site indicate a relatively high degree of formation heterogeneity. Laboratory experiments showed that chemical reduction yielded a redox capacity (0.26% iron(II)) that falls within the range of values observed in sediments analyzed from sites where field-scale deployment of the ISRM technology is currently in progress or being considered (0.1% Hanford 100D area, 0.24% Ft Lewis, 0.4% Moffett Federal Airfield). There was relatively little spatial variability in reducible iron (Fe) content between the three aquifer units. This mass of reducible Fe represents a sufficient quantity for a treatment zone emplaced to remain anoxic for 430 pore volumes, which would be expected to last tens of years, depending on aquifer flow rates and the

  5. Determination of the original-gas-in-place and aquifer properties in a water-drive reservoir by optimization technique

    SciTech Connect (OSTI)

    Chen, T.L.; Lin, Z.S.; Chen, Y.L.

    1995-10-01

    The purpose of this study was to estimate the original-gas-in-place (OGIP) of a water-drive reservoir using optimization algorithm for Port Arthur field, Texas, US. The properties of the associate aquifer were also obtained. The good agreement, between the results from this study and those from simulation study, would be demonstrated in this paper. In this study, material balance equation for a gas reservoir and van Everdingen-Hurst model for an aquifer were solved simultaneously to calculate cumulative gas production. The result was then compared with cumulative gas production measured in the field that observed at each pressure. The following parameters were manually adjusted to obtain: OGIP, thickness of the aquifer, water encroachment angle, ratio of aquifer to reservoir radius, and aquifer`s permeability. The procedure was then applied with simplex technique, an optimization algorithm, to adjust parameters automatically. When the difference between cumulative gas production calculated and observed was minimal, the parameters used in the model would be the results obtained. A water-drive gas reservoir, ``C`` sand gas reservoir in Port Arthur field, which had produced for about 12 years, was analyzed successfully. The results showed that the OGIP of 60.6 BCF estimated in this study was favorably compared with 56.2 BCF obtained by a numerical simulator in other study. In addition, the aquifer properties that were unavailable from the conventional plotting method can be estimated from this study. The estimated aquifer properties from this study were compared favorably with the core data.

  6. Dilute Surfactant Methods for Carbonate Formations

    SciTech Connect (OSTI)

    Kishore K. Mohanty

    2006-02-01

    There are many fractured carbonate reservoirs in US (and the world) with light oil. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). The process of using dilute anionic surfactants in alkaline solutions has been investigated in this work for oil recovery from fractured oil-wet carbonate reservoirs both experimentally and numerically. This process is a surfactant-aided gravity drainage where surfactant diffuses into the matrix, lowers IFT and contact angle, which decrease capillary pressure and increase oil relative permeability enabling gravity to drain the oil up. Anionic surfactants have been identified which at dilute concentration of 0.05 wt% and optimal salinity can lower the interfacial tension and change the wettability of the calcite surface to intermediate/water-wet condition as well or better than the cationic surfactant DTAB with a West Texas crude oil. The force of adhesion in AFM of oil-wet regions changes after anionic surfactant treatment to values similar to those of water-wet regions. The AFM topography images showed that the oil-wetting material was removed from the surface by the anionic surfactant treatment. Adsorption studies indicate that the extent of adsorption for anionic surfactants on calcite minerals decreases with increase in pH and with decrease in salinity. Surfactant adsorption can be minimized in the presence of Na{sub 2}CO{sub 3}. Laboratory-scale surfactant brine imbibition experiments give high oil recovery (20-42% OOIP in 50 days; up to 60% in 200 days) for initially oil-wet cores through wettability alteration and IFT reduction. Small (<10%) initial gas saturation does not affect significantly the rate of oil recovery in the imbibition process, but larger gas saturation decreases the oil recovery rate. As the core permeability decreases, the rate of oil recovery reduces

  7. Geostatistical Simulation of Hydrofacies Heterogeneity of the West Thessaly Aquifer Systems in Greece

    SciTech Connect (OSTI)

    Modis, K. Sideri, D.

    2013-06-15

    Integrating geological properties, such as relative positions and proportions of different hydrofacies, is of highest importance in order to render realistic geological patterns. Sequential indicator simulation (SIS) and Plurigaussian simulation (PS) are alternative methods for conceptual and deterministic modeling for the characterization of hydrofacies distribution. In this work, we studied the spatial differentiation of hydrofacies in the alluvial aquifer system of West Thessaly basin in Greece. For this, we applied both SIS and PS techniques to an extensive set of borehole data from that basin. Histograms of model versus experimental hydrofacies proportions and indicative cross sections were plotted in order to validate the results. The PS technique was shown to be more effective in reproducing the spatial characteristics of the different hydrofacies and their distribution across the study area. In addition, the permeability differentiations reflected in the PS model are in accordance to known heterogeneities of the aquifer capacity.

  8. Summary of three dimensional pump testing of a fractured rock aquifer in the western Siberian Basin

    SciTech Connect (OSTI)

    Nichols, R.L.; Looney, B.B.; Eddy-Dilek, C.A.; Drozhko, E.G.; Glalolenko, Y.V.; Mokrov, Y.G.; Ivanov, I.A.; Glagolev, A.V.; Vasil`kova, N.A.

    1996-10-30

    A group of scientists from the Savannah River Technology Center and Russia successfully completed a 17 day field investigation of a fractured rock aquifer at the MAYAK PA nuclear production facility in Russia. The test site is located in the western Siberian Basin near the floodplain of the Mishelyak river. The fractured rock aquifer is composed of orphyrites, tuff, tuffbreccia and lava and is overlain by 0.5--12 meters of elluvial and alluvial sediments. A network of 3 uncased wells (176, 1/96, and 2/96) was used to conduct the tests. Wells 176 and 2/96 were used as observation wells and the centrally located well 1/96 was used as the pumping well. Six packers were installed and inflated in each of the observation wells at a depth of up to 85 meters. The use of 6 packers in each well resulted in isolating 7 zones for monitoring. The packers were inflated to different pressures to accommodate the increasing hydrostatic pressure. A straddle packer assembly was installed in the pumping well to allow testing of each of the individual zones isolated in the observation wells. A constant rate pumping test was run on each of the 7 zones. The results of the pumping tests are included in Appendix A. The test provided new information about the nature of the fractured rock aquifers in the vicinity of the Mishelyak river and will be key information in understanding the behavior of contaminants originating from process wastes discharged to Lake Karachi. Results from the tests will be analyzed to determine the hydraulic properties of different zones within the fractured rock aquifer and to determine the most cost effective clean-up approach for the site.

  9. Surfactant-enhanced aquifer remediation at the Portsmouth Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Jackson, R.E.; Londergan, J.T.; Pickens, J.F.

    1995-10-01

    Many DOE facilities are situated in areas of sand and gravel which have become polluted with dense, non-aqueous phase liquids or DNAPLs, such as chlorinated solvents, from the various industrial operations at these facilities. The presence of such DNAPLs in sand and gravel aquifers is now recognized as the principal factor in the failure of standard ground-water remediation methods. The principal objective of this study, as stated in the Statement of Work of the contract (DE-AC21-92MC29111), is to demonstrate that multi-component DNAPLs can be readily solubilized in sand and gravel aquifers by dilute surfactant solutions. The specific objectives of the contract are: to identify dilute surfactants or blends of surfactants in the laboratory that will efficiently extract multi-component DNAPLs from sand and gravel aquifers by micellar solubilization (Phase 1); 2. to test the efficacy of the identified surfactants or blends of surfactants to solubilize in situ perchloroethylene (PCE) and trichloroethylene (TCE) DNAPLs by the injection and the subsequent extraction through an existing well or wells at a government-owned contaminated site (Phase 1); and 3. to demonstrate the full-scale operation of this remedial technology at a government-owned contaminated site (Phase 2). Specific objective number 1 has been completed and reported to DOE. However, the results of the test referred to in specific objective number 2, conducted at Paducah Gaseous Diffusion Plant in 1994, were inconclusive. Following this first test, it was decided by DOE and INTERA to move the test site elsewhere due to difficulties with obtaining core samples of the sand and gravel aquifer containing the DNAPL and with ascertaining the location of the DNAPL relative to the injection well. The solubilization test at the Portsmouth Gaseous Diffusion Plant (PORTS) will constitute the second test of Phase 1 of this contract.

  10. Water-supply potential of the Upper Floridan aquifer in the vicinity of Savannah, Georgia

    SciTech Connect (OSTI)

    Garza, R.; Krause, R.E. )

    1993-03-01

    The Upper Floridan aquifer is the primary source of freshwater in coastal Georgia. Groundwater withdrawal in the area of Savannah and in the adjacent coastal areas in Georgia and South Carolina has resulted in large regional water-level declines and a reversal of the hydraulic gradient that existed prior to development. Changes in gradient and decreasing water levels are causing lateral encroachment of seawater into the Upper Floridan aquifer at the northern end of Hilton Head Island, SC, and vertical intrusion of saltwater into the Upper and Lower Floridan aquifers in the Brunswick, GA., area. Concerns about future water-supply demands prompted the US Geological Survey and the Chatham County-Savannah Metropolitan Planning Commission to undertake a cooperative study to evaluate the ground-water resources in the Savannah, GA, area. A numerical ground-water flow model was developed and used in conjunction with other previously calibrated models in the coastal areas of Georgia and South Carolina to simulate the effects of additional ground-water withdrawal on water levels. Based on model simulations and the constraint of preventing additional water-level declines at the locations of encroachment and intrusion, the potential of the Upper Floridan aquifer to supply additional water in the Savannah area is limited under present hydrologic conditions. The potential for additional withdrawal in the vicinity of Savannah, GA, ranges from less than 1 million gallons per day (Mgal/d) to about 5 Mgal/d. Because of the limited water-supply potential, hypothetical alternatives of ground-water withdrawal were simulated to determine the effects on water levels. These simulations indicate that reduction and redistribution of ground-water withdrawal would not adversely affect water levels at the locations of encroachment and intrusion.

  11. Flow and Transport in the Hanford 300 Area Vadose Zone-Aquifer-River System

    SciTech Connect (OSTI)

    Waichler, Scott R.; Yabusaki, Steven B.

    2005-07-13

    Contaminant migration in the 300 Area unconfined aquifer is strongly coupled to fluctuations in the Columbia River stage. To better understand the interaction between the river, aquifer, and vadose zone, a 2-D saturated-unsaturated flow and transport model was developed for a vertical cross-section aligned west-east across the Hanford Site 300 Area, nearly perpendicular to the river. The model was used to investigate water flow and tracer transport in the vadose zone-aquifer-river flow system, in support of the ongoing study of the 300 Area uranium plume. The STOMP simulator was used to model 1-year from 3/1/92 to 2/28/93, a period when hourly data were available for both groundwater and river levels. Net water flow to the river (per 1-meter width of shoreline) was 182 m3/y in the base case, but the cumulative exchange or total flow back and forth across the riverbed was 30 times greater. The low river case had approximately double the net water and Groundwater tracer flux into the river as compared to the base case.

  12. Exposure of a food crop to trichloroethylene from a contaminated aquifer. Master's thesis

    SciTech Connect (OSTI)

    Baringer, R.G.

    1994-09-01

    This research developed a methodology for assessment of the exposure of a mature corn crop to trichloroethylene from a contaminated aquifer. The methodology was then applied to the case of Hill AFB to determine the ability of the methodology to provide information about a specific exposure. Current procedures sample for food contamination but do not attempt to predict exposure problems. A review of the potential exposure pathways from the aquifer to the crop was conducted. Based on this review, the exposures due to soil gas and irrigation were modeled. Empirical estimated were used to approximate the expected flux of soil gas vaporizing directly from the aquifer. On the basis of this approximation, the exposure the air of the crop canopy was mathematically estimated. Analytical models were developed to simulate the amount of the contaminant reaching the crop from two different means of irrigation. The subsequent exposure once the contaminated irrigation water had reached the crop was modeled both in the air of the crop canopy and the soil phase near the root system. The methodology provided insights into which exposure pathways are more important than others and which environmental parameters most influence the amount of exposure.

  13. Silicate grout curtains behaviour for the protection of coastal aquifers

    SciTech Connect (OSTI)

    Elektorowicz, M.; Chifrina, R.; Hesnawi, R.

    1997-12-31

    Tests were performed to evaluate the behaviour of silicate grout with different reagents (ethylacetate - formamide SA and calcium chloride SC) in pure silica sand and natural soils from coastal areas containing organic matter, clayey soil and silica sand. The grouted specimens were tested with simulated fresh and salt water. The setting process during chemical grouting in the soil and sand was studied. The grouting of soil and sand with SA caused a transfer to the environment of some compounds: sodium formate, sodium acetate, ammonia and part of the initial ethylacetate and formamide. This process had a tendency to decrease for approximately 4 months. The stability of specimens was low. The grouting of soil and sand with SC caused no significant contamination of the environment. The increase of pH of environmental water was even less than with SA grouting. Also, the stability of specimens is higher in comparison with SA grouting. Salt water protected the specimens grouted with SA and SC from destruction and prevented contamination.

  14. An objective rapid screening tool for surfactants used in foam-like dispersions of CO{sub 2} into Permian Basin brines

    SciTech Connect (OSTI)

    Horton, R.L.; Wicks, J.P.; Prieditis, J.; Turbeville, J.B.

    1995-11-01

    Foam-like dispersions of CO{sub 2} into brines can reduce the mobility of drive fluids in CO{sub 2} floods. To evaluate the effectiveness of such foam-like dispersions, time-consuming laboratory coreflood tests are routinely used. Because of the costliness of such coreflood tests, simple qualitative tests have long been employed to screen potential surfactants. Then only a few of the better candidates are subsequently evaluated in coreflood tests. There are a number of disadvantages of such qualitative tests; therefore the authors developed, instead, a quantitative screening process. Their quantitative process is based on two simple, quick laboratory tests and a neural network interpretation of the test data. The neural network predicted CO{sub 2} mobility reduction values which correlated well with the mobility reductions seen in coreflood tests.

  15. Preliminary performance assessment for the Waste Isolation Pilot Plant, December 1992. Volume 5, Uncertainty and sensitivity analyses of gas and brine migration for undisturbed performance

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    Before disposing of transuranic radioactive waste in the Waste Isolation Pilot Plant (WIPP), the United States Department of Energy (DOE) must evaluate compliance with applicable long-term regulations of the United States Environmental Protection Agency (EPA). Sandia National Laboratories is conducting iterative performance assessments (PAs) of the WIPP for the DOE to provide interim guidance while preparing for a final compliance evaluation. This volume of the 1992 PA contains results of uncertainty and sensitivity analyses with respect to migration of gas and brine from the undisturbed repository. Additional information about the 1992 PA is provided in other volumes. Volume 1 contains an overview of WIPP PA and results of a preliminary comparison with 40 CFR 191, Subpart B. Volume 2 describes the technical basis for the performance assessment, including descriptions of the linked computational models used in the Monte Carlo analyses. Volume 3 contains the reference data base and values for input parameters used in consequence and probability modeling. Volume 4 contains uncertainty and sensitivity analyses with respect to the EPA`s Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR 191, Subpart B). Finally, guidance derived from the entire 1992 PA is presented in Volume 6. Results of the 1992 uncertainty and sensitivity analyses indicate that, conditional on the modeling assumptions and the assigned parameter-value distributions, the most important parameters for which uncertainty has the potential to affect gas and brine migration from the undisturbed repository are: initial liquid saturation in the waste, anhydrite permeability, biodegradation-reaction stoichiometry, gas-generation rates for both corrosion and biodegradation under inundated conditions, and the permeability of the long-term shaft seal.

  16. The CPA Equation of State and an Activity Coefficient Model for Accurate Molar Enthalpy Calculations of Mixtures with Carbon Dioxide and Water/Brine

    SciTech Connect (OSTI)

    Myint, P. C.; Hao, Y.; Firoozabadi, A.

    2015-03-27

    Thermodynamic property calculations of mixtures containing carbon dioxide (CO2) and water, including brines, are essential in theoretical models of many natural and industrial processes. The properties of greatest practical interest are density, solubility, and enthalpy. Many models for density and solubility calculations have been presented in the literature, but there exists only one study, by Spycher and Pruess, that has compared theoretical molar enthalpy predictions with experimental data [1]. In this report, we recommend two different models for enthalpy calculations: the CPA equation of state by Li and Firoozabadi [2], and the CO2 activity coefficient model by Duan and Sun [3]. We show that the CPA equation of state, which has been demonstrated to provide good agreement with density and solubility data, also accurately calculates molar enthalpies of pure CO2, pure water, and both CO2-rich and aqueous (H2O-rich) mixtures of the two species. It is applicable to a wider range of conditions than the Spycher and Pruess model. In aqueous sodium chloride (NaCl) mixtures, we show that Duan and Suns model yields accurate results for the partial molar enthalpy of CO2. It can be combined with another model for the brine enthalpy to calculate the molar enthalpy of H2O-CO2-NaCl mixtures. We conclude by explaining how the CPA equation of state may be modified to further improve agreement with experiments. This generalized CPA is the basis of our future work on this topic.

  17. Simulation of CO2 Sequestration at Rock Spring Uplift, Wyoming: Heterogeneity and Uncertainties in Storage Capacity, Injectivity and Leakage

    SciTech Connect (OSTI)

    Deng, Hailin; Dai, Zhenxue; Jiao, Zunsheng; Stauffer, Philip H.; Surdam, Ronald C.

    2011-01-01

    Many geological, geochemical, geomechanical and hydrogeological factors control CO{sub 2} storage in subsurface. Among them heterogeneity in saline aquifer can seriously influence design of injection wells, CO{sub 2} injection rate, CO{sub 2} plume migration, storage capacity, and potential leakage and risk assessment. This study applies indicator geostatistics, transition probability and Markov chain model at the Rock Springs Uplift, Wyoming generating facies-based heterogeneous fields for porosity and permeability in target saline aquifer (Pennsylvanian Weber sandstone) and surrounding rocks (Phosphoria, Madison and cap-rock Chugwater). A multiphase flow simulator FEHM is then used to model injection of CO{sub 2} into the target saline aquifer involving field-scale heterogeneity. The results reveal that (1) CO{sub 2} injection rates in different injection wells significantly change with local permeability distributions; (2) brine production rates in different pumping wells are also significantly impacted by the spatial heterogeneity in permeability; (3) liquid pressure evolution during and after CO{sub 2} injection in saline aquifer varies greatly for different realizations of random permeability fields, and this has potential important effects on hydraulic fracturing of the reservoir rock, reactivation of pre-existing faults and the integrity of the cap-rock; (4) CO{sub 2} storage capacity estimate for Rock Springs Uplift is 6614 {+-} 256 Mt at 95% confidence interval, which is about 36% of previous estimate based on homogeneous and isotropic storage formation; (5) density profiles show that the density of injected CO{sub 2} below 3 km is close to that of the ambient brine with given geothermal gradient and brine concentration, which indicates CO{sub 2} plume can sink to the deep before reaching thermal equilibrium with brine. Finally, we present uncertainty analysis of CO{sub 2} leakage into overlying formations due to heterogeneity in both the target saline

  18. Geochemical Impacts of Leaking CO2 from Subsurface Storage Reservoirs to an Unconfined Oxidizing Carbonate Aquifer

    SciTech Connect (OSTI)

    Wang, Guohui; Qafoku, Nikolla; Lawter, Amanda R.; Bowden, Mark E.; Harvey, Omar; Sullivan, E. C.; Brown, Christopher F.

    2015-07-15

    A series of batch and column experiments combined with solid phase characterization studies (i.e., quantitative x-ray diffraction and wet chemical extractions) were conducted to address a variety of scientific issues and evaluate the impacts of the potential leakage of carbon dioxide (CO2) from deep subsurface storage reservoirs. The main objective was to gain an understanding of how CO2 gas influences: 1) the aqueous phase pH; and 2) mobilization of major, minor, and trace elements from minerals present in an aquifer overlying potential CO2 sequestration subsurface repositories. Rocks and slightly weathered rocks representative of an unconfined, oxidizing carbonate aquifer within the continental US, i.e., the Edwards aquifer in Texas, were used in these studies. These materials were exposed to a CO2 gas stream or were leached with a CO2-saturated influent solution to simulate different CO2 gas leakage scenarios, and changes in aqueous phase pH and chemical composition were measured in the liquid samples collected at pre-determined experimental times (batch experiments) or continuously (column experiments). The results from the strong acid extraction tests confirmed that in addition to the usual elements present in most soils, rocks, and sediments, the Edward aquifer samples contain As, Cd, Pb, Cu, and occasionally Zn, which may potentially be mobilized from the solid to the aqueous phase during or after exposure to CO2. The results from the batch and column experiments confirmed the release of major chemical elements into the contacting aqueous phase (such as Ca, Mg, Ba, Sr, Si, Na, and K); the mobilization and possible rapid immobilization of minor elements (such as Fe, Al, and Mn), which are able to form highly reactive secondary phases; and sporadic mobilization of only low concentrations of trace elements (such as As, Cd, Pb, Cu, Zn, Mo, etc.). The results from this experimental research effort will help in developing a systematic understanding of how CO2

  19. University of Minnesota aquifer thermal energy storage (ATES) project report on the third long-term cycle

    SciTech Connect (OSTI)

    Hoyer, M.C.; Hallgren, J.P.; Uebel, M.H.; Delin, G.N.; Eisenreich, S.J.; Sterling, R.L.

    1994-12-01

    The University of Minnesota aquifer thermal energy storage (ATES) system has been operated as a field test facility (FTF) since 1982. The objectives were to design, construct, and operate the facility to study the feasibility of high-temperature ATES in a confined aquifer. Four short-term and two long-term cycles were previously conducted, which provided a greatly increased understanding of the efficiency and geochemical effects of high-temperature aquifer thermal energy storage. The third long-term cycle (LT3) was conducted to operate the ATES system in conjunction with a real heating load and to further study the geochemical impact that heated water storage had on the aquifer. For LT3, the source and storage wells were modified so that only the most permeable portion, the Ironton-Galesville part, of the Franconia-Ironton-Galesville aquifer was used for storage. This was expected to improve storage efficiency by reducing the surface area of the heated volume and simplify analysis of water chemistry results by reducing the number of aquifer-related variables which need to be considered. During LT3, a total volume of 63.2 {times} 10{sup 3} m {sup 3} of water was injected at a rate of 54.95 m{sup 3}/hr into the storage well at a mean temperature of 104.7{degrees}C. Tie-in to the reheat system of the nearby Animal Sciences Veterinary Medicine (ASVM) building was completed after injection was completed. Approximately 66 percent (4.13 GWh) of the energy added to the aquifer was recovered. Approximately 15 percent (0.64 GWh) of the usable (10 building. Operations during heat recovery with the ASVM building`s reheat system were trouble-free. Integration into more of the ASVM (or other) building`s mechanical systems would have resulted in significantly increasing the proportion of energy used during heat recovery.

  20. Computer simulation of production from geothermal-geopressured aquifers. Final report, October 1, 1978-January 31, 1983

    SciTech Connect (OSTI)

    Doherty, M.G.; Poonawala, N.A.

    1983-07-01

    This is the final report on research conducted to improve the technical and scientific understanding of geopressured and geothermal resources. The effort utilized a computer to interpret the results of well tests and compile data on gas solubility in brine and the viscosity of brine. A detailed computer reservoir study of a geopressured test well that had been abandoned as a dry hole but became a commercial producer of hydrocarbons is presented. A number of special topical reports pertaining to test activities performed on Department of Energy test wells (MG-T/DOE Amoco Fee No. 1 Well, Leroy Sweezy No. 1 Well, and Pleasant Bayou No. 2 Well) are appended to the report. A referenced article written under this study that appeared in the Journal of Petroleum Technology is also reproduced.

  1. Extreme [delta][sup 37]Cl variations in formation water and its possible relation to the migration from source to trap

    SciTech Connect (OSTI)

    Eggenkamp, H.G.M. ); Colemam, M.L. Univ. of Reading )

    1993-09-01

    Stable chlorine isotopes are very conservative tracers, their values almost unchanged by chemical reactions making them excellent indicators of physical processes. Despite availability of methods for measurement for a number of years, only small variations have been described. We have measured recently the largest ever ranges of values of [delta][sup 37]Cl recorded for waters. In Forties Field (North Sea) and Westland (Netherlands) there is a positive correlation between Cl content and [delta][sup 37]Cl, while Paris basin (France) shows a negative correlation. In all cases, [delta][sup 37]Cl ranges from near zero to negative values (-4.3%, -18%, and -1.9% for Forties, Westland, and Paris basin, respectively). Forties data are interpreted as mixtures between saline formation water, resulting from dissolution of deep Zechstein evaporite, and a less saline component. Diffusion from shale (probably oil source rock) caused negative values in the dilute brine, but the exact process cannot be defined yet. Aqueous fluids would follow the same migration paths as petroleum. Although in a different environment, the Westland samples resulted from a similar process. Waters in the Paris basin Upper Keuper sandstone reservoir facies again are mixtures but on basin-scale dimensions. The chloride source for both components is underlying Keuper halite, separated from the reservoir by shale. Basin-margin fluids are dilute brines, originally meteoric water, which probably accessed the salt via basin-margin faults. The concentrated brine of the basin center probably was overpressured, and its negative values resulted either from ultrafiltration or diffusion during cross-formational flow.

  2. Bicarbonate Impact on U(VI) Bioreduction in a Shallow Alluvial Aquifer

    SciTech Connect (OSTI)

    Long, Philip E.; Williams, Kenneth H.; Davis, James A.; Fox, Patricia M.; Wilkins, Michael J.; Yabusaki, Steven B.; Fang, Yilin; Waichler, Scott R.; Berman, Elena S.; Gupta, Manish; Chandler, Darrell P.; Murray, Christopher J.; Peacock, Aaron D.; Giloteaux, L.; Handley, Kim M.; Lovley, Derek R.; Banfield, Jillian F.

    2015-02-01

    Field-scale biostimulation and desorption tracer experiments conducted in a uranium (U) contaminated, shallow alluvial aquifer have provided insight into the coupling of microbiology, biogeochemistry, and hydrogeology that control U mobility in the subsurface. Initial experiments successfully tested the concept that Fe-reducing bacteria such as Geobacter sp. could enzymatically reduce soluble U(VI) to insoluble U(IV) during in situ electron donor amendment (Anderson et al. 2003, Williams et al. 2011). In parallel, in situ desorption tracer tests using bicarbonate amendment demonstrated rate-limited U(VI) desorption (Fox et al. 2012). These results and prior laboratory studies underscored the importance of enzymatic U(VI)-reduction and suggested the ability to combine desorption and bioreduction of U(VI). Here we report the results of a new field experiment in which bicarbonate-promoted uranium desorption and acetate amendment were combined and compared to an acetate amendment-only experiment in the same experimental plot. Results confirm that bicarbonate amendment to alluvial aquifer desorbs U(VI) and increases the abundance of Ca-uranyl-carbonato complexes. At the same time, that the rate of acetate-promoted enzymatic U(VI) reduction was greater in the presence of added bicarbonate in spite of the increased dominance of Ca-uranyl-carbonato aqueous complexes. A model-simulated peak rate of U(VI) reduction was ~3.8 times higher during acetate-bicarbonate treatment than under acetate-only conditions. Lack of consistent differences in microbial community structure between acetate-bicarbonate and acetate-only treatments suggest that a significantly higher rate of U(VI) reduction the bicarbonate-impacted sediment may be due to a higher intrinsic rate of microbial reduction induced by elevated concentrations of the bicarbonate oxyanion. The findings indicate that bicarbonate amendment may be useful in improving the engineered bioremediation of uranium in aquifers.

  3. Electrodic voltages accompanying stimulated bioremediation of a uranium-contaminated aquifer

    SciTech Connect (OSTI)

    Williams, K.H.; N'Guessan, A.L.; Druhan, J.; Long, P.E.; Hubbard, S.S.; Lovley, D.R.; Banfield, J.F.

    2009-11-15

    The inability to track the products of subsurface microbial activity during stimulated bioremediation has limited its implementation. We used spatiotemporal changes in electrodic potentials (EP) to track the onset and persistence of stimulated sulfate-reducing bacteria in a uranium-contaminated aquifer undergoing acetate amendment. Following acetate injection, anomalous voltages approaching -900 mV were measured between copper electrodes within the aquifer sediments and a single reference electrode at the ground surface. Onset of EP anomalies correlated in time with both the accumulation of dissolved sulfide and the removal of uranium from groundwater. The anomalies persisted for 45 days after halting acetate injection. Current-voltage and current-power relationships between measurement and reference electrodes exhibited a galvanic response, with a maximum power density of 10 mW/m{sup 2} during sulfate reduction. We infer that the EP anomalies resulted from electrochemical differences between geochemically reduced regions and areas having higher oxidation potential. Following the period of sulfate reduction, EP values ranged from -500 to -600 mV and were associated with elevated concentrations of ferrous iron. Within 10 days of the voltage decrease, uranium concentrations rebounded from 0.2 to 0.8 {mu}M, a level still below the background value of 1.5 {mu}M. These findings demonstrate that EP measurements provide an inexpensive and minimally invasive means for monitoring the products of stimulated microbial activity within aquifer sediments and are capable of verifying maintenance of redox conditions favorable for the stability of bioreduced contaminants, such as uranium.

  4. Thermophysical behavior of St. Peter sandstone: application to compressed air energy storage in an aquifer

    SciTech Connect (OSTI)

    Erikson, R.L.

    1983-12-01

    The long-term stability of a sandstone reservoir is of primary importance to the success of compressed air energy storage (CAES) in aquifers. The purpose of this study was to: develop experimental techniques for the operation of the CAES Porous Media Flow Loop (PMFL), an apparatus designed to study the stability of porous media in subsurface geologic environments, conduct experiments in the PMFL designed to determine the effects of temperature, stress, and humidity on the stability of candidate CAES reservoir materials, provide support for the CAES field demonstration project in Pittsfield, Illinois, by characterizing the thermophysical stability of Pittsfield reservoir sandstone under simulated field conditions.

  5. Geostatistical analysis of potentiometric data in Wolfcamp aquifer of the Palo Duro Basin, Texas

    SciTech Connect (OSTI)

    Harper, W.V.; Furr, J.M.

    1986-04-01

    This report details a geostatistical analysis of potentiometric data from the Wolfcamp aquifer in the Palo Duro Basin, Texas. Such an analysis is a part of an overall uncertainty analysis for a high-level waste repository in salt. Both an expected potentiometric surface and the associated standard error surface are produced. The Wolfcamp data are found to be well explained by a linear trend with a superimposed spherical semivariogram. A cross-validation of the analysis confirms this. In addition, the cross-validation provides a point-by-point check to test for possible anomalous data.

  6. Application of three aquifer test methods for estimating hydraulic properties within the 100-N Area

    SciTech Connect (OSTI)

    Gilmore, T.J.; Spane, F.A. Jr.; Newcomer, D.R.; Sherwood, C.R.

    1992-12-01

    The purpose if this study was to better define the range of saturated horizontal hydraulic conductivities in the 100-N Area of the Hanford Site in southeastern Washington for use in a numerical groundwater model. Three methods were used for determining aquifer properties and are discussed within this report (1) reanalysis of past pumping test data using a pressure derivative method to identify the data in the radial flow regime for analysis by traditional graphical techniques, (2) sinusoidal analysis techniques described in Ferris that utilize water-table responses to river-level variations, and (3) the basic flow equation for groundwater.

  7. Groundwaters of Florence (Italy): Trace element distribution and vulnerability of the aquifers

    SciTech Connect (OSTI)

    Bencini, A.; Ercolanelli, R.; Sbaragli, A.

    1993-11-01

    Geochemical and hydrogeological research has been carried out in Florence, to evaluate conductivity and main chemistry of groundwaters, the pattern of some possible pollutant chemical species (Fe, Mn, Cr, Cu, Pb, Zn, NO{sub 2}, NO{sub 3}), and the vulnerability of the aquifers. The plain is made up of Plio-Quaternary alluvial and lacustrine sediments for a maximum thickness of 600 m. Silts and clays, sometimes with lenses of sandy gravels, are dominant, while considerable deposits of sands, pebbles, and gravels occur along the course of the Arno river and its tributary streams, and represent the most important aquifer of the plain. Most waters show conductivity values around 1000-1200 {mu}S, and almost all of them have an alkaline-earth-bicarbonate chemical character. In western areas higher salt content of the groundwaters is evident. Heavy metal and NO{sub 2}, NO{sub 3} analyses point out that no important pollution phenomena affect the groundwaters; all mean values are below the maximum admissible concentration (MAC) for drinkable waters. Some anomalies of NO{sub 2}, NO{sub 3}, Fe, Mn, and Zn are present. The most plausible causes can be recognized in losses of the sewage system; use of nitrate compounds in agriculture; oxidation of well pipes. All the observations of Cr, Cu, and Pb are below the MAC; the median values of <3, 3.9, and 1.1 {mu}g/l, respectively, could be considered reference concentrations for groundwaters in calcareous lithotypes, under undisturbed natural conditions. Finally, a map of vulnerability shows that the areas near the Arno river are highly vulnerable, for the minimum thickness (or lacking) of sediments covering the aquifer. On the other hand, in the case of pollution, several factors not considered could significantly increase the self-purification capacity of the aquifer, such asdilution of groundwaters, bacteria oxidation of nitrogenous species, and sorption capacity of clay minerals and organic matter. 31 refs., 6 figs., 5 tabs.

  8. Prickett and Lonnquist aquifer simulation program for the Apple II minicomputer

    SciTech Connect (OSTI)

    Hull, L.C.

    1983-02-01

    The Prickett and Lonnquist two-dimensional groundwater model has been programmed for the Apple II minicomputer. Both leaky and nonleaky confined aquifers can be simulated. The model was adapted from the FORTRAN version of Prickett and Lonnquist. In the configuration presented here, the program requires 64 K bits of memory. Because of the large number of arrays used in the program, and memory limitations of the Apple II, the maximum grid size that can be used is 20 rows by 20 columns. Input to the program is interactive, with prompting by the computer. Output consists of predicted lead values at the row-column intersections (nodes).

  9. Disequilibrium study of natural radionuclides of uranium and thorium series in cores and briny groundwaters from Palo Duro Basin, Texas

    SciTech Connect (OSTI)

    Laul, J.C.; Smith, M.R.

    1988-05-01

    The concentrations of natural radionuclides of the /sup 238/U and /232/Th series are reported in several cores and in ten deep and five shallow briny groundwaters from various formations in the Palo Duro Basin. The formations include Granite Wash, Pennsylvanian Granite Wash, Wolfcamp Carbonate, Pennsylvanian Carbonate, Seven River, Queen Grayburg, San Andres, Yates and Salado. The natural radionuclide data in cores suggest that the radionuclides have not migrated or been leached for at least a period of about 1 million years. Relative to the U and Th concentrations in cores, the brines are depleted by a factor of 10/sup 4/ to 10/sup 5/, indicating extremely low solubility of U and Th in brines. The natural radionuclide data in brines suggest that radium is not sorbed significantly and thus not retarded in nine deep brines. Radium is somewhat sorbed in one deep brine of Wolfcamp Carbonate and significantly sorbed in shallow brines. Relative to radium, the U, Th, Pb, Bi, and Po radionuclides are highly retarded by sorption. The retardation factors for /sup 228/Th range from 10/sup 2/ to 10/sup 3/, whereas those for /sup 230/Th and /sup 234/U range from 10/sup 3/ to 10/sup 5/, depending on the formation. The /sup 234/U//sup 238/U ratios in these brines are constant at about 1.5. The magnitude of the /sup 234/U//sup 230/Th ratio appears to reflect the degree of redox state of the aquifer's environment. The /sup 234/U//sup 230/Th ratio in nine deep brines is about unity, suggesting that U, like Th/sup +4/, is in the +4 state, which in turn suggests a reduced environment. 49 refs., 23 figs., 18 tabs.

  10. Level Diagram Format Choice

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Which format should I use? There is no clear-cut answer to this question -- different solutions work better in different situations. In an effort to help you decide which will work best for you, we provide a discussion of the advantages and disadvantages of the three available formats. GIF: GIF stands for Graphic Interchange Format. It was developed by CompuServe as a device-independent way to store pictures. The files are well-compressed, so download time is relatively short. Most web browsers

  11. Sparse Image Format

    Energy Science and Technology Software Center (OSTI)

    2007-04-12

    The Sparse Image Format (SIF) is a file format for storing spare raster images. It works by breaking an image down into tiles. Space is savid by only storing non-uniform tiles, i.e. tiles with at least two different pixel values. If a tile is completely uniform, its common pixel value is stored instead of the complete tile raster. The software is a library in the C language used for manipulating files in SIF format. Itmore » supports large files (> 2GB) and is designed to build in Windows and Linux environments.« less

  12. I/O Formats

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Formats I/O Formats Software I/O continues to be one of the main bottlenecks for scientific applications. Here are two software packages that many application developers use to manage input/output of heterogeneous types of binary application data used on many different platforms. HDF5 and NETCDF are both implemented on top of MPI-IO and have gained popularity as alternatives to basic POSIX API. HDF5 is a machine-independent and self-documenting file format. Each HDF5 file "looks" like

  13. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    Reduced Order Model for the Geochemical Impacts of Carbon Dioxide Brine and Trace Metal Leakage into an Unconfined Oxidizing Carbonate Aquifer Version Bacon Diana H carbon...

  14. Reduced-Order Model for the Geochemical Impacts of Carbon Dioxide...

    Office of Scientific and Technical Information (OSTI)

    Reduced-Order Model for the Geochemical Impacts of Carbon Dioxide, Brine and Trace Metal Leakage into an Unconfined, Oxidizing Carbonate Aquifer, Version 2.1 Citation Details...

  15. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    Reduced-Order Model for the Geochemical Impacts of Carbon Dioxide, Brine and Trace Metal Leakage into an Unconfined, Oxidizing Carbonate Aquifer, Version 2.1","Bacon, Diana...

  16. Analysis of temperatures and water levels in wells to estimatealluvial aquifer hydraulic conductivities

    SciTech Connect (OSTI)

    Su, Grace W.; Jasperse, James; Seymour, Donald; Constantz, Jim

    2003-06-19

    Well water temperatures are often collected simultaneously with water levels; however, temperature data are generally considered only as a water quality parameter and are not utilized as an environmental tracer. In this paper, water levels and seasonal temperatures are used to estimate hydraulic conductivities in a stream-aquifer system. To demonstrate this method, temperatures and water levels are analyzed from six observation wells along an example study site, the Russian River in Sonoma County, California. The range in seasonal ground water temperatures in these wells varied from <0.28C in two wells to {approx}88C in the other four wells from June to October 2000. The temperature probes in the six wells are located at depths between 3.5 and 7.1 m relative to the river channel. Hydraulic conductivities are estimated by matching simulated ground water temperatures to the observed ground water temperatures. An anisotropy of 5 (horizontal to vertical hydraulic conductivity) generally gives the best fit to the observed temperatures. Estimated conductivities vary over an order of magnitude in the six locations analyzed. In some locations, a change in the observed temperature profile occurred during the study, most likely due to deposition of fine-grained sediment and organic matter plugging the streambed. A reasonable fit to this change in the temperature profile is obtained by decreasing the hydraulic conductivity in the simulations. This study demonstrates that seasonal ground water temperatures monitored in observation wells provide an effective means of estimating hydraulic conductivities in alluvial aquifers.

  17. Chlorinated degreasing solvents: Physical-chemical properties affecting aquifer contamination and remediation

    SciTech Connect (OSTI)

    Jackson, R.E.; Dwarakanath, V.

    1999-09-30

    Chlorinated degreasing solvents are multicomponent liquids containing not only the chlorinated hydrocarbons with which their name is associated (e.g., trichloroethylene or [TCE], perchloroethylene or [PCE], 1,1,1-trichloroethane [TCA]) but also a number of organic additives included as corrosion inhibitors and antioxidants. The additives, such as 1,4-dioxane, are likely to be of significant public-health importance as ground water contaminants due to their toxicity, solubility, and mobility. Following their use in vapor degreasing systems by industry, chlorinated degreasing solvents will also contain about 25% solubilized oil and grease. A number of physical-chemical properties become especially important in the light of the multicomponent nature of these solvents. First, the higher aqueous solubility and lower sorption of the additives makes it reasonable to expect that faster moving plumes of these solvent additives will precede plumes of the chlorinated hydrocarbons. Second, due to high losses of chlorinated hydrocarbons by volatilization from vapor degreasers during years in the middle of the century, it is probable that background concentrations of these hydrocarbons are present in ground water flow systems due to their downwind washout. Finally, the solubilized oil and grease may cause profound changes to the wettability of aquifer materials contacted by the solvents during their subsurface migration. It is argued, therefore, that the wettability of aquifer materials contaminated by chlorinated degreasing solvents needs to be experimentally determined before remediation of DNAPL at each site, rather than being simply assumed as water wet.

  18. West Hackberry Strategic Petroleum Reserve site brine disposal monitoring, Year I report. Volume V. Supporting data for estuarine hydrology, discharge plume analysis, chemical oceanography, biological oceanography, and data management. Final report

    SciTech Connect (OSTI)

    DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C.; Lascara, V.J.

    1983-02-01

    This project centers around the Strategic Petroleum Site (SPR) known as the West Hackberry salt dome which located in southwestern Louisiana, and which is designed to store 241 million barrels of crude oil. Oil storage caverns are formed by injecting water into salt deposits, and pumping out the resulting brine. Studies described in this report were designed as follow-on studies to three months of pre-discharge characterization work, and include data collected during the first year of brine leaching operations. The objectives were to: (1) characterize the environment in terms of physical, chemical and biological attributes; (2) determine if significant adverse changes in ecosystem productivity and stability of the biological community are occurring as a result of brine discharge; and (3) determine the magnitude of any change observed. Volume V contains appendices for the following: supporting data for estuarine hydrology and hydrography; supporting data analysis of discharge plume; supporting data for water and sediment chemistry; CTD/DO and pH profiles during biological monitoring; supporting data for nekton; and supporting data for data management.

  19. Alteration Behavior of High Burnup Spent Fuel in Salt Brine Under Hydrogen Overpressure and in Presence of Bromide

    SciTech Connect (OSTI)

    Loida, Andreas; Metz, Volker; Kienzler, Bernhard

    2007-07-01

    Recent studies have shown that in the presence of H2 overpressure, which forms due to the corrosion of the Fe based container, the dissolution rate of the spent fuel matrix is slowed down by a factor of about 10, associated with a distinct decrease of concentrations of important radionuclides. However, in a natural salt environment as well as in geological formations with chloride rich groundwater the presence of radiation chemically active impurities such as bromide must be taken in consideration. Bromide is known to react with {beta}/{gamma} radiolysis products, thus counteracting the protective H{sub 2} effect. In the present experiments using high burnup spent fuel, it is observed that during 212 days the matrix dissolution rate was enhanced by a factor of about 10 in the presence of up to 10{sup -3} M bromide and 3.2 bar H{sub 2} overpressure. However, concentrations of matrix bound actinides were found at the same level or below as found under identical conditions, but in the absence of bromide. In the long-term it is expected that the effect of bromide becomes less important, because the decrease of {beta}/{gamma}-activity results in a decrease of oxidative radicals, which react with bromide, while a-activity will dominate the radiation field. (authors)

  20. Building Conceptual Models of Field-Scale Uranium Reactive Transport in a Dynamic Vadose Zone-Aquifer-River System

    SciTech Connect (OSTI)

    Yabusaki, Steven B.; Fang, Yilin; Waichler, Scott R.

    2008-12-04

    Subsurface simulation is being used to build, test, and couple conceptual process models to better understand controls on a 0.4 km by 1.0 km uranium plume that has persisted above the drinking water standard in the groundwater of the Hanford 300 Area over the last 15 years. At this site, uranium-contaminated sediments in the vadose zone and aquifer are subject to significant variations in water levels and velocities driven by the diurnal, weekly, seasonal, and episodic Columbia River stage dynamics. Groundwater flow reversals typically occur twice a day with significant exchange of river water and groundwater in the near-river aquifer. Mixing of the dilute solution chemistry of the river with the groundwater complicates the uranium sorption behavior as the mobility of U(VI) has been shown experimentally to be a function of pH, carbonate, calcium, and uranium. Furthermore, uranium mass transfer between solid and aqueous phases has been observed to be rate-limited in the context of the high groundwater velocities resulting from the river stage fluctuations and the highly transmissive sediments (hydraulic conductivities ~1500 m/d). One- and two-dimensional vertical cross-sectional simulations of variably-saturated flow and reactive transport, based on laboratory-derived models of distributed rate mass transfer and equilibrium multicomponent surface complexation, are used to assess uranium transport at the dynamic vadose zone aquifer interface as well as changes to uranium mobility due to incursions of river water into the aquifer.

  1. Possible Impacts of Global Warming on Hydrology of the Ogallala Aquifer Region

    SciTech Connect (OSTI)

    Rosenberg, Norman J. ); Epstein, Daniel J. ); Wang, Dahong; Vail, Lance W. ); Srinivasan, Ragahvan; Arnold, J G.

    1998-12-01

    The Ogallala or High Plains aquifer provides water for about 20% of the irrigated land in the United States. About 20 km{sup 3} (16.6 million acre-feet) of water are withdrawn annually from this aquifer. In general, recharge has not compensated for withdrawals since major irrigation development began in this region in the 1940s. The mining of the Ogallala has been pictured as an analogue to climate change in that many GCMs predict a warmer and drier future for this region. We anticipate the possible impacts of climate change on the sustainability of the aquifer as a source of water for irrigation and other purposes in the region. We have applied HUMUS, the Hydrologic Unit Model of the U.S. to the Missouri and Arkansas-White-Red water resource regions that overlie the Ogallala. We have imposed three general circulation model (GISS, UKTR and BMRC) projections of future climate change on this region and simulated the changes that may be induced in water yields (runoff plus lateral flow) and ground water recharge. Each GCM was applied to HUMUS at three levels of global mean temperature (GMT) to represent increasing severity of climate change (a surrogate for time). HUMUS was also run at three levels of atmospheric CO2 concentration (hereafter denoted by[CO2]) in order to estimate the impacts of direct CO2 effects on photosynthesis and evapotranspiration. Since the UKTR and GISS GCMs project increased precipitation in the Missouri basin, water yields increase there. The BMRC GCM predicts sharply decreased precipitation and, hence, reduced water yields. Precipitation reductions are even greater in the Arkansas basin under BMRC as are the consequent water yield losses. GISS and UKTR climates lead to only moderate yield losses in the Arkansas. CO2-fertilization reverses these losses and yields increase slightly. CO2 fertilization increases recharge in the base (no climate change) case in both basins. Recharge is reduced under all three GCMs and severities of climate change.

  2. formatting | OpenEI Community

    Open Energy Info (EERE)

    formatting Home Jweers's picture Submitted by Jweers(88) Contributor 7 August, 2013 - 18:23 New Robust References citation citing developer formatting reference Semantic Mediawiki...

  3. Gaussian entanglement of formation

    SciTech Connect (OSTI)

    Wolf, M.M.; Giedke, G.; Krueger, O.; Werner, R. F.; Cirac, J.I.

    2004-05-01

    We introduce a Gaussian version of the entanglement of formation adapted to bipartite Gaussian states by considering decompositions into pure Gaussian states only. We show that this quantity is an entanglement monotone under Gaussian operations and provide a simplified computation for states of arbitrary many modes. For the case of one mode per site the remaining variational problem can be solved analytically. If the considered state is in addition symmetric with respect to interchanging the two modes, we prove additivity of the considered entanglement measure. Moreover, in this case and considering only a single copy, our entanglement measure coincides with the true entanglement of formation.

  4. Aquifer Characteristics Data Report for the Weldon Spring Site chemical plant/raffinate pits and vicinity properties for the Weldon Spring Site Remedial Action Project, Weldon Spring, Missouri

    SciTech Connect (OSTI)

    Not Available

    1990-11-01

    This report describes the procedures and methods used, and presents the results of physical testing performed, to characterize the hydraulic properties of the shallow Mississippian-Devonian aquifer beneath the Weldon Spring chemical plant, raffinate pits, and vicinity properties. The aquifer of concern is composed of saturated rocks of the Burlington-Keokuk Limestone which constitutes the upper portion of the Mississippian-Devonian aquifer. This aquifer is a heterogeneous anisotropic medium which can be described in terms of diffuse Darcian flow overlain by high porosity discrete flow zones and conduits. Average hydraulic conductivity for all wells tested is 9.6E-02 meters/day (3.1E-01 feet/day). High hydraulic conductivity values are representative of discrete flow in the fractured and weathered zones in the upper Burlington-Keokuk Limestone. They indicate heterogeneities within the Mississippian-Devonian aquifer. Aquifer heterogeneity in the horizontal plane is believed to be randomly distributed and is a function of fracture spacing, solution voids, and preglacial weathering phenomena. Relatively high hydraulic conductivities in deeper portions of the aquifer are though to be due to the presence of widely spaced fractures. 44 refs., 27 figs., 9 tabs.

  5. Determining flow, recharge, and vadose zonedrainage in anunconfined aquifer from groundwater strontium isotope measurements, PascoBasin, WA

    SciTech Connect (OSTI)

    mjsingleton@lbl.gov

    2004-06-29

    Strontium isotope compositions (87Sr/86Sr) measured in groundwater samples from 273 wells in the Pasco Basin unconfined aquifer below the Hanford Site show large and systematic variations that provide constraints on groundwater recharge, weathering rates of the aquifer host rocks, communication between unconfined and deeper confined aquifers, and vadose zone-groundwater interaction. The impact of millions of cubic meters of wastewater discharged to the vadose zone (103-105 times higher than ambient drainage) shows up strikingly on maps of groundwater 87Sr/86Sr. Extensive access through the many groundwater monitoring wells at the site allows for an unprecedented opportunity to evaluate the strontium geochemistry of a major aquifer, hosted primarily in unconsolidated sediments, and relate it to both long term properties and recent disturbances. Groundwater 87Sr/86Sr increases systematically from 0.707 to 0.712 from west to east across the Hanford Site, in the general direction of groundwater flow, as a result of addition of Sr from the weathering of aquifer sediments and from diffuse drainage through the vadose zone. The lower 87Sr/86Sr groundwater reflects recharge waters that have acquired Sr from Columbia River Basalts. Based on a steady-state model of Sr reactive transport and drainage, there is an average natural drainage flux of 0-1.4 mm/yr near the western margin of the Hanford Site, and ambient drainage may be up to 30 mm/yr in the center of the site assuming an average bulk rock weathering rate of 10-7.5 g/g/yr.

  6. Computed solid phases limiting the concentration of dissolved constituents in basalt aquifers of the Columbia Plateau in eastern Washington. Geochemical modeling and nuclide/rock/groundwater interaction studies

    SciTech Connect (OSTI)

    Deutsch, W.J.; Jenne, E.A.; Krupka, K.M.

    1982-08-01

    A speciation-solubility geochemical model, WATEQ2, was used to analyze geographically-diverse, ground-water samples from the aquifers of the Columbia Plateau basalts in eastern Washington. The ground-water samples compute to be at equilibrium with calcite, which provides both a solubility control for dissolved calcium and a pH buffer. Amorphic ferric hydroxide, Fe(OH)/sub 3/(A), is at saturation or modestly oversaturated in the few water samples with measured redox potentials. Most of the ground-water samples compute to be at equilibrium with amorphic silica (glass) and wairakite, a zeolite, and are saturated to oversaturated with respect to allophane, an amorphic aluminosilicate. The water samples are saturated to undersaturated with halloysite, a clay, and are variably oversaturated with regard to other secondary clay minerals. Equilibrium between the ground water and amorphic silica presumably results from the dissolution of the glassy matrix of the basalt. The oversaturation of the clay minerals other than halloysite indicates that their rate of formation lags the dissolution rate of the basaltic glass. The modeling results indicate that metastable amorphic solids limit the concentration of dissolved silicon and suggest the same possibility for aluminum and iron, and that the processes of dissolution of basaltic glass and formation of metastable secondary minerals are continuing even though the basalts are of Miocene age. The computed solubility relations are found to agree with the known assemblages of alteration minerals in the basalt fractures and vesicles. Because the chemical reactivity of the bedrock will influence the transport of solutes in ground water, the observed solubility equilibria are important factors with regard to chemical-retention processes associated with the possible migration of nuclear waste stored in the earth's crust.

  7. Contaminant transport in unconfined aquifer, input to low-level tank waste interim performance assessment

    SciTech Connect (OSTI)

    Lu, A.H., Westinghouse Hanford

    1996-08-14

    This report describes briefly the Hanford sitewide groundwater model and its application to the Low-Level Tank Waste Disposal (LLTWD) interim Performance Assessment (PA). The Well Intercept Factor (WIF) or dilution factor from a given areal flux entering the aquifer released from the LLTWD site are calculated for base case and various sensitivity cases. In conjunction with the calculation for released fluxes through vadose zone transport,the dose at the compliance point can be obtained by a simple multiplication. The relative dose contribution from the upstream sources was also calculated and presented in the appendix for an equal areal flux at the LLTWD site. The results provide input for management decisions on remediation action needed for reduction of the released fluxes from the upstream facilities to the allowed level to meet the required dose criteria.

  8. Abiotic/Biotic Degradation and Mineralization of N-Nitrosodimethylamine in Aquifer Sediments

    SciTech Connect (OSTI)

    Szecsody, James E.; McKinley, James P.; Breshears, Andrew T.; Crocker, Fiona H.

    2008-10-14

    The N-nitrosodimethylamine (NDMA) degradation rate and mineralization rate were measured in two aquifer sediments that received treatments to create oxic, reducing, and sequential reducing/oxic environments. Chemically reduced sediments rapidly abiotically degraded NDMA to nontoxic dimethylamine (DMA) to parts per trillion levels, then degraded to further products. NDMA was partially mineralized in reduced sediments (6 to 28 percent) at a slow rate (half-life 3,460 h) by an unknown abiotic/biotic pathway. In contrast, NDMA was mineralized more rapidly (half-life 342 h) and to a greater extent (30 to 81 percent) in oxic sediments with propane addition, likely by a propane monooxygenase pathway. NDMA mineralization in sequential reduced sediment followed by oxic sediment treatment did result in slightly more rapid mineralization and a greater mineralization extent relative to reduced systems. These increases were minor, so aerobic NDMA mineralization with oxygen and propane addition was the most viable in situ NDMA mineralization strategy.

  9. Aquifer thermal energy storage reference manual: seasonal thermal energy storage program

    SciTech Connect (OSTI)

    Prater, L.S.

    1980-01-01

    This is the reference manual of the Seasonal Thermal Energy Storage (STES) Program, and is the primary document for the transfer of technical information of the STES Program. It has been issued in preliminary form and will be updated periodically to include more technical data and results of research. As the program progresses and new technical data become available, sections of the manual will be revised to incorporate these data. This primary document contains summaries of: the TRW, incorporated demonstration project at Behtel, Alaska, Dames and Moore demonstration project at Stony Brook, New York, and the University of Minnesota demonstration project at Minneapolis-St. Paul, Minnesota; the technical support programs including legal/institutional assessment; economic assessment; environmental assessment; field test facilities; a compendia of existing information; numerical simulation; and non-aquifer STES concepts. (LCL)

  10. H. R. 1476: A bill to amend the Internal Revenue Code of 1986 to clarify the application of the credit for producing fuel from a nonconventional source with respect to gas produced from a tight formation and to make such credit permanent with respect to such gas and gas produced from Devonian shale. Introduced in the House of Representatives, One Hundredth First Congress, First Session, March 16, 1989

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    The determination of whether gas is produced from geopressured brines, Devonian shales, coal seams, or a tight formation is made from section 503 of the Natural Gas Policy Act of 1978. Permanent credit is for gas produced from a tight formation or Devonian shale only and applies to gas sold after July 1, 1987. The credit allowed for any taxable year shall not exceed the sum of the regular tax reduced by the sum of other credits allowable under other subsections of the Internal Revenue Code.

  11. Geophysical Monitoring of Ground Surface Deformation Associated with a Confined Aquifer Storage and Recovery Operation

    SciTech Connect (OSTI)

    Bonneville, Alain; Heggy, Essam; Strickland, Christopher E.; Normand, Jonathan; Dermond, Jeffrey A.; Fang, Yilin; Sullivan, E. C.

    2015-08-11

    A main issue in the storage of large volumes of fluids, mainly water and CO2, in the deep subsurface is to determine their field-scale-induced displacements and consequences on the mechanical behavior of the storage reservoir and surroundings. A quantifiable estimation of displacement can be made by combining the robust, cost-effective, and repeatable geophysical techniques of micro-gravimetry, differential global positioning system (DGPS), and differential synthetic aperture radar interferometry (DInSAR). These techniques were field tested and evaluated in an active large-volume aquifer storage and recovery (ASR) project in Pendleton, Oregon, USA, where three ASR wells are injecting up to 1.9 million m3/yr-1 into basalt aquifers to a depth of about 150 m. Injection and recovery of water at the wells was accompanied by significant gravity anomalies and vertical deformation of the ground surface localized to the immediate surroundings of the injection wells as evidenced by DGPS and gravity measurements collected in 2011. At a larger scale, and between 2011 and 2013, DInSAR monitoring of the Pendleton area suggests the occurrence of sub-centimetric deformation in the western part of the city and close to the injection locations associated with the ASR cycle. A numerical simulation of the effect of the water injection gives results in good agreement with the observations and confirms the validity of the approach, which could be deployed in similar geological contexts to look at the mechanical effects of water and gas injections. The gravity signal reflects deep phenomena and gives additional insight into the repartition of fluids in the subsurface.

  12. Geophysical Monitoring of Ground Surface Deformation Associated with a Confined Aquifer Storage and Recovery Operation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bonneville, Alain; Heggy, Essam; Strickland, Christopher E.; Normand, Jonathan; Dermond, Jeffrey A.; Fang, Yilin; Sullivan, E. C.

    2015-08-11

    A main issue in the storage of large volumes of fluids, mainly water and CO2, in the deep subsurface is to determine their field-scale-induced displacements and consequences on the mechanical behavior of the storage reservoir and surroundings. A quantifiable estimation of displacement can be made by combining the robust, cost-effective, and repeatable geophysical techniques of micro-gravimetry, differential global positioning system (DGPS), and differential synthetic aperture radar interferometry (DInSAR). These techniques were field tested and evaluated in an active large-volume aquifer storage and recovery (ASR) project in Pendleton, Oregon, USA, where three ASR wells are injecting up to 1.9 million m3/yr-1more » into basalt aquifers to a depth of about 150 m. Injection and recovery of water at the wells was accompanied by significant gravity anomalies and vertical deformation of the ground surface localized to the immediate surroundings of the injection wells as evidenced by DGPS and gravity measurements collected in 2011. At a larger scale, and between 2011 and 2013, DInSAR monitoring of the Pendleton area suggests the occurrence of sub-centimetric deformation in the western part of the city and close to the injection locations associated with the ASR cycle. A numerical simulation of the effect of the water injection gives results in good agreement with the observations and confirms the validity of the approach, which could be deployed in similar geological contexts to look at the mechanical effects of water and gas injections. The gravity signal reflects deep phenomena and gives additional insight into the repartition of fluids in the subsurface.« less

  13. Formate-assisted pyrolysis

    SciTech Connect (OSTI)

    DeSisto, William Joseph; Wheeler, Marshall Clayton; van Heiningen, Adriaan R. P.

    2015-03-17

    The present invention provides, among other thing, methods for creating significantly deoxygenated bio-oils form biomass including the steps of providing a feedstock, associating the feedstock with an alkali formate to form a treated feedstock, dewatering the treated feedstock, heating the dewatered treated feedstock to form a vapor product, and condensing the vapor product to form a pyrolysis oil, wherein the pyrolysis oil contains less than 30% oxygen by weight.

  14. Feasibility of Geophysical Monitoring of Carbon-Sequestrated Deep Saline Aquifers

    SciTech Connect (OSTI)

    Mallick, Subhashis; Alvarado, Vladimir

    2013-09-30

    As carbon dioxide (CO{sub 2}) is sequestered from the bottom of a brine reservoir and allowed to migrate upward, the effects of the relative permeability hysteresis due to capillary trapping and buoyancy driven migration tend to make the reservoir patchy saturated with different fluid phases over time. Seismically, such a patchy saturated reservoir induces an effective anisotropic behavior whose properties are primarily dictated by the nature of the saturation of different fluid phases in the pores and the elastic properties of the rock matrix. By combining reservoir flow simulation and modeling with seismic modeling, it is possible to derive these effective anisotropic properties, which, in turn, could be related to the saturation of CO{sub 2} within the reservoir volume any time during the post-injection scenario. Therefore, if time-lapse seismic data are available and could be inverted for the effective anisotropic properties of the reservoir, they, in combination with reservoir simulation could potentially predict the CO{sub 2} saturation directly from the time-lapse seismic data. It is therefore concluded that the time-lapse seismic data could be used to monitor the carbon sequestrated saline reservoirs. But for its successful implementation, seismic modeling and inversion methods must be integrated with the reservoir simulations. In addition, because CO{sub 2} sequestration induces an effective anisotropy in the sequestered reservoir and anisotropy is best detected using multicomponent seismic data compared to single component (P-wave) data, acquisition, processing, and analysis is multicomponent seismic data is recommended for these time-lapse studies. Finally, a successful implementation of using time-lapse seismic data for monitoring the carbon sequestrated saline reservoirs will require development of a robust methodology for inverting multicomponent seismic data for subsurface anisotropic properties.

  15. Optimal pulsed pumping for aquifer remediation when contaminant transport is affected by rate-limited sorption: A calculus of variation approach. Master's thesis

    SciTech Connect (OSTI)

    Hartman, R.T.

    1994-09-01

    The remediation of groundwater contamination continues to persist as a social and economic problem due to increased governmental regulations and public health concerns. Additionally, the geochemistry of the aquifer and the contaminant transport within the aquifer complicates the remediation process to restore contaminated aquifers to conditions compatible with health-based standards. Currently, the preferred method for aquifer cleanup (pump-and-treat) has several limitations including, the persistence of sorbed chemicals on soil matrix and the long term operation and maintenance expense. The impetus of this research was to demonstrate that a calculus of variations approach could be applied to a pulsed pumping aquifer remediation problem where contaminant transport was affected by rate-limited sorption and generalized to answer several management objectives. The calculus of variation approach produced criteria for when the extraction pump is turned on and off. Additionally, the analytic solutions presented in this research may be useful in verifying numerical codes developed to solve optimal pulsed pumping aquifer remediation problems under conditions of rate-limited sorption.

  16. Water geochemistry and hydrogeology of the shallow aquifer at Roosevelt Hot Springs, southern Utah: A hot dry rock prospect

    SciTech Connect (OSTI)

    Vuataz, F.D.; Goff, F.

    1987-12-01

    On the western edge of the geothermal field, three deep holes have been drilled that are very hot but mostly dry. Two of them (Phillips 9-1 and Acord 1-26 wells) have been studied by Los Alamos National Laboratory for the Hot Dry Rock (HDR) resources evaluation program. A review of data and recommendations have been formulated to evaluate the HDR geothermal potential at Roosevelt. The present report is directed toward the study of the shallow aquifer of the Milford Valley to determine if the local groundwater would be suitable for use as make-up water in an HDR system. This investigation is the result of a cooperative agreement between Los Alamos and Phillips Petroleum Co., formerly the main operator of the Roosevelt Hot Springs Unit. The presence of these hot dry wells and the similar setting of the Roosevelt area to the prototype HDR site at Fenton Hill, New Mexico, make Roosevelt a very good candidate site for creation of another HDR geothermal system. This investigation has two main objectives: to assess the water geochemistry of the valley aquifer, to determine possible problems in future make-up water use, such as scaling or corrosion in the wells and surface piping, and to assess the hydrogeology of the shallow groundwaters above the HDR zone, to characterize the physical properties of the aquifer. These two objectives are linked by the fact that the valley aquifer is naturally contaminated by geothermal fluids leaking out of the hydrothermal reservoir. In an arid region where good-quality fresh water is needed for public water supply and irrigation, nonpotable waters would be ideal for an industrial use such as injection into an HDR energy extraction system. 50 refs., 10 figs., 10 tabs.

  17. Tribal Utility Formation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    I L L E P O W E R A D M I N I S T R A T I O N Tribal Utility Formation in the Bonneville Power Administration Service Territory Ken Johnston Acting Tribal Affairs Manager BPA TRIBAL AFFAIRS DEPARTMENT JULY 2015 B O N N E V I L L E P O W E R A D M I N I S T R A T I O N 2 The Basics  BPA markets power from 31 Federal dams, the Columbia Generating Station Nuclear Plant, and several small non- Federal power plants  About 80% of the power BPA sells is hydroelectric  BPA accounts for about

  18. In situ treatment of arsenic contaminated groundwater by aquifer iron coating: Experimental Study

    SciTech Connect (OSTI)

    Xie, Xianjun; Wang, Yanxin; Pi, Kunfu; Liu, Chongxuan; Li, Junxia; Liu, Yaqing; Wang, Zhiqiang; Duan, Mengyu

    2015-09-15

    In situ arsenic removal from groundwater by an iron coating method has great potential to be a cost effective and simple groundwater remediation technique, especially in rural and remote areas where groundwater is used as the main source of drinking water. The in situ arsenic removal technique was first optimized by simulating arsenic removal in various quartz sand columns under anoxic conditions., Its effectiveness was then evaluated in an actual high-arsenic groundwater environment. The mechanism of arsenic removal by the iron coating was investigated under different conditions using scanning electron microscopy (SEM)/X-ray absorption spectroscopy, an electron microprobe, and Fourier transformation infrared spectroscopy. A 4-step alternative cycle aquifer iron coating method was developed. A continuous injection of 5 mmol/L FeSO4 and 2.5 mmol/L NaClO for 96 hours can create a uniform coating of crystalline goethite on the surface of quartz sand in the columns without causing clogging. At a flow rate of 0.45 cm/min of the injection reagents (vi), the time for arsenic (as Na2HAsO4) to pass through the iron-coated quartz sand column was approximately 35 hours, which was much longer than that for tracer fluorescein sodium (approximately 2 hours). The retardation factor of arsenic was 23, and its adsorption capacity was 0.11 mol As per mol Fe, leading to an excellent arsenic removal. In situ arsenic removal from groundwater in an aquifer was achieved by simultaneous injections of As (V) and Fe (II) reagents. When the arsenic content in the groundwater was 233 ?g/L, the aqueous phase arsenic was completely removed with an arsenic adsorption of 0.05 mol As per mol Fe. Arsenic fixation resulted from a process of adsorption/co-precipitation, in which arsenic and iron likely formed the arsenic-bearing iron mineral phases with poor crystallinity by way of bidentate binuclear complexes. Thus, the high arsenic removal efficiency of the technique likely resulted from the

  19. A controlled in situ field evaluation of a new dynamic vacuum slug test method in unconfined aquifers

    SciTech Connect (OSTI)

    Lauctes, B.A.; Schleyer, C.A.

    1995-09-01

    Most ground water site characterizations require initial estimates of the ground water flow velocity and potential downgradient extent of ground water contamination. The fundamental aquifer property, hydraulic conductivity, must be determined to make these essential estimates. Highly contaminated ground water often precludes conducting multi-well aquifer tests to evaluate hydraulic conductivity due to potential human health risks and ground water storage/treatment/disposal costs and logistics. Consequently, single-well slug tests are often sued, but the widely used pressure slug test method is not suitable for water table monitoring wells. As a result, a new slug test method was developed by GCL for unconfined aquifers. The new method was benchmarked against the widely used solid slug test method in a series of rising-head and falling-head slug tests. A statistical evaluation indicated no statistical difference (alpha = 0.05) between hydraulic conductivity values calculated from each method. The new dynamic vacuum method, designed specifically for use in water table monitoring wells, uses a continuous vacuum to draw air through the well screen exposed above the water table. The vacuum induces upwelling as air pressure inside the well casing drops below atmospheric pressure. Once upwelling equilibrates with the applied vacuum, the vacuum is released allowing the water to recover and the air pressure inside the casing to return to atmospheric pressure.

  20. Death Valley Lower Carbonate Aquifer Monitoring Program Wells Down gradient of the Proposed Yucca Mountain Nuclear Waste Repository

    SciTech Connect (OSTI)

    Inyo County

    2006-07-26

    Inyo County has participated in oversight activities associated with the Yucca Mountain Nuclear Waste Repository since 1987. The overall goal of these studies are the evaluation of far-field issues related to potential transport, by ground water, or radionuclides into Inyo County, including Death Valley, and the evaluation of a connection between the Lower Carbonate Aquifer (LCA) and the biosphere. Our oversight and completed Cooperative Agreement research, and a number of other investigators research indicate that there is groundwater flow between the alluvial and carbonate aquifers both at Yucca Mountain and in Inyo County. In addition to the potential of radionuclide transport through the LCA, Czarnecki (1997), with the US Geological Survey, research indicate potential radionuclide transport through the shallower Tertiary-age aquifer materials with ultimate discharge into the Franklin Lake Playa in Inyo County. The specific purpose of this Cooperative Agreement drilling program was to acquire geological, subsurface geology, and hydrologic data to: (1) establish the existence of inter-basin flow between the Amargosa Basin and Death Valley Basin; (2) characterize groundwater flow paths in the LCA through Southern Funeral Mountain Range, and (3) Evaluation the hydraulic connection between the Yucca Mountain repository and the major springs in Death Valley through the LCA.

  1. Uncertainty analyses of CO2 plume expansion subsequent to wellbore CO2 leakage into aquifers

    SciTech Connect (OSTI)

    Hou, Zhangshuan; Bacon, Diana H.; Engel, David W.; Lin, Guang; Fang, Yilin; Ren, Huiying; Fang, Zhufeng

    2014-08-01

    In this study, we apply an uncertainty quantification (UQ) framework to CO2 sequestration problems. In one scenario, we look at the risk of wellbore leakage of CO2 into a shallow unconfined aquifer in an urban area; in another scenario, we study the effects of reservoir heterogeneity on CO2 migration. We combine various sampling approaches (quasi-Monte Carlo, probabilistic collocation, and adaptive sampling) in order to reduce the number of forward calculations while trying to fully explore the input parameter space and quantify the input uncertainty. The CO2 migration is simulated using the PNNL-developed simulator STOMP-CO2e (the water-salt-CO2 module). For computationally demanding simulations with 3D heterogeneity fields, we combined the framework with a scalable version module, eSTOMP, as the forward modeling simulator. We built response curves and response surfaces of model outputs with respect to input parameters, to look at the individual and combined effects, and identify and rank the significance of the input parameters.

  2. Evaluating Impacts of CO2 Intrusion into an Unconsolidated Aquifer: II. Modeling Results

    SciTech Connect (OSTI)

    Zheng, Liange; Qafoku, Nikolla; Lawter, Amanda R.; Wang, Guohui; Shao, Hongbo; Brown, Christopher F.

    2015-08-04

    Large scale deployment of CO2 geological sequestration requires the assessment of the risks. One of the potential risks is the impact of CO2 leakage on shallow groundwater overlying the sequestration site.The understanding of the key chemical processes and parameters are critical for building numerical models for risk assessment. Model interpretation of laboratory and field tests is an effective way to enhance such understanding. Column experiments in which CO2 charged synthetic groundwater flowed through a column packed with material from High Plains aquifer was conducted and concentration of several constituents in the effluent water was analyzed. In this paper, reactive transport model was developed to interpret the observed concentration changes, attempting to shed light on the chemical reactions and key parameters that control the concentration changes of these constituents. The reactive transport model catches the concentration changes of pH, Ca, Mg, Ba, Sr, Cs, As and Pb fairly well. Calcite dissolution and Ca-driven cation exchange reactions are the major drivers for the concentration changes of Ca, Ba, Sr, and Cs. The pH-driven adsorption/desorption reactions lead to a concentration increase of As and Pb. The volume fraction and reactive surface area of calcite, CEC and sorption capacity are key parameters in determining the magnitude of concentration increase. Model results also show that the dissolution of calcite with Ba impurity could be an alternative explanation of the increase in Ba concentration.

  3. Fractured rock aquifer tests in the Western Siberian Basin, Ozyorsk, Russia

    SciTech Connect (OSTI)

    Nichols, R.L.; Looney, B.B.; Eddy-Dilek, C.A.

    1997-10-01

    A series of multi-zone pumping tests was conducted in a contaminated fractured rock aquifer in the Western Siberian Basin, Ozyorsk, Russia. The tests were conducted adjacent to the Mishelyak River floodplain in fractured Paleozoic porphyrites, tufts, tuff breccia, and lava typical of the Ural mountain complex. Geophysical logs, borehole photography, core samples, and results from previous borehole contamination studies were used to identify the zones to be tested. A network of three uncased wells was tested using a system of inflatable packers, pressure transducers and data loggers. Seven zones were isolated and monitored in two of the uncased wells. A straddle packer assembly was used to isolate individual zones within the pumping well. Eight constant rate pumping tests were conducted. Results of the testing indicate that shallow groundwater migrates primarily in two intervals that are separated by an interval with low lateral conductivity. The water bearing intervals have moderate to high specific capacities (1.3 and 30 L/min/m). Several processes are responsible for fracturing present in the lower interval. The network of compound fractures produced a complex array of fracture intersections yielding a fractured media with hydraulic behavior similar to porous media. Models used for the analysis of pumping tests in porous media provide a good estimation of the hydraulic response of the lower interval to pumping. Future work will include more complex analysis of the data to determine hydraulic conductivity ellipses.

  4. Single-cell genomics reveal metabolic strategies for microbial growth and survival in an oligotrophic aquifer

    SciTech Connect (OSTI)

    Wilkins, Michael J.; Kennedy, David W.; Castelle, Cindy; Field, Erin; Stepanauskas, Ramunas; Fredrickson, Jim K.; Konopka, Allan

    2014-02-01

    Bacteria from the genus Pedobacter are a major component of microbial assemblages at Hanford Site and have been shown to significantly change in abundance in response to the subsurface intrusion of Columbia River water. Here we employed single cell genomics techniques to shed light on the physiological niche of these microorganisms. Analysis of four Pedobacter single amplified genomes (SAGs) from Hanford Site sediments revealed a chemoheterotrophic lifestyle, with the potential to exist under both aerobic and microaerophilic conditions via expression of both aa3?type and cbb3-type cytochrome c oxidases. These SAGs encoded a wide-range of both intra-and extra-cellular carbohydrate-active enzymes, potentially enabling the degradation of recalcitrant substrates such as xylan and chitin, and the utilization of more labile sugars such as mannose and fucose. Coupled to these enzymes, a diversity of transporters and sugar-binding molecules were involved in the uptake of carbon from the extracellular local environment. The SAGs were enriched in TonB-dependent receptors (TBDRs), which play a key role in uptake of substrates resulting from degradation of recalcitrant carbon. CRISPR-Cas mechanisms for resisting viral infections were identified in all SAGs. These data demonstrate the potential mechanisms utilized for persistence by heterotrophic microorganisms in a carbon-limited aquifer, and hint at potential linkages between observed Pedobacter abundance shifts within the 300 Area subsurface and biogeochemical shifts associated with Columbia River water intrusion.

  5. Guidelines for conceptual design and evaluation of aquifer thermal energy storage

    SciTech Connect (OSTI)

    Meyer, C.F.; Hauz, W.

    1980-10-01

    Guidelines are presented for use as a tool by those considering application of a new technology, aquifer thermal energy storage (ATES). The guidelines will assist utilities, municipalities, industries, and other entities in the conceptual design and evaluation of systems employing ATES. The potential benefits of ATES are described, an overview is presented of the technology and its applications, and rules of thumb are provided for quickly judging whether a proposed project has sufficient promise to warrant detailed conceptual design and evaluation. The characteristics of sources and end uses of heat and chill which are seasonally mismatched and may benefit from ATES (industrial waste heat, cogeneration, solar heat, and winter chill, for space heating and air conditioning) are discussed. Storage and transport subsystems and their expected performance and cost are described. A 10-step methodology is presented for conceptual design of an ATES system and evaluation of its technical and economic feasibility in terms of energy conservation, cost savings, fuel substitution, improved dependability of supply, and abatement of pollution, with examples, and the methodology is applied to a hypothetical proposed ATES system, to illustrate its use.

  6. Mobilization of trace elements in aquifers by biodegradation of hydrocarbon contaminants. Master Thesis

    SciTech Connect (OSTI)

    Kearney, S.L.

    1997-12-01

    This study had two objectives: (1) to determine the extent of metal mobility within petroleum-contaminated aquifers, (2) to determine if biodegradation of petroleum hydrocarbons can explain metal mobility. The approach reviewed analytical results from 2305 groundwater sampling events, taken from 958 wells, located at 136 sites found at 53 Air Force installations. The study showed that high levels of metals are present at petroleum hydrocarbon sites where metals would not generally be expected. Of the metals with drinking water maximum contaminant levels (MCLs), mercury and silver were detected the least frequently. Barium and copper were detected at the sites, but fewer than 2.5 percent of the samples exceeded their MCLs. All other metals exceeded their MCLs in at least 2.5 percent of the samples, with antimony and lead exceeding their MCLs in 19 percent and 10 percent of samples, respectively. Higher concentrations of barium and manganese were most strongly correlated with petroleum hydrocarbon contamination, and relatively strong correlations also existed for aluminum, arsenic, iron, and lead. Major cations such as calcium, magnesium, sodium and potassium were least affected by petroleum hydrocarbons concentrations.

  7. Thermal modeling of Bakken Formation of Williston basin

    SciTech Connect (OSTI)

    Anderson, D.

    1986-08-01

    Organic geochemical analyses provide a quantitative basis on which conceptual models of thermal maturation may be built. Contour maps of maturation indices of the Mississippian-Devonian Bakken Formation of the Williston basin show anomalous patterns that are not dependent on burial depth. One such area is on the western side of the Nesson anticline. One-dimensional modeling incorporating a uniform, constant heat flow, lithology-dependent thermal conductivities, and decompaction factors indicates that these areas are less mature than surrounding regions. This is due primarily to decreasing burial depth and thinning of low-thermal-conductivity Tertiary and Cretaceous shales. Additional heat transfer to these regions may be due in part to heat transfer by fluid movement through aquifers or vertical fractures. The influence of these fluid systems is simulated through the use of a two-dimensional finite difference program. Basic assumptions are made concerning heat flow, thermal properties, and ground-water flow rates through time. Modeling of the time-temperature history is simplified by restricting the study to the time of greatest maturation, the post-Jurassic.

  8. Occurrence and significance of magnesite in Upper Permian (Guadalupian) Tansill and Yates Formations, Delaware Basin, New Mexico

    SciTech Connect (OSTI)

    Garber, R.A.; Harris, P.M.; Borer, J.M. )

    1990-02-01

    Magnesite (MgCO{sub 3}) occurs pervasively in a 270-ft (82-m) cored interval of Upper Permian (Guadalupian) shelf deposits from the northern rim of the Delaware basin portion of the Permian basin, New Mexico. In their core example, magnesite is found in tidal flat/lagoon and pisolite shoal dolomites and siltstones of the Tansill and uppermost Yates formations. The interval is overlain by magnesite-bearing anhydrite and a thick halite section of the (Ochoan) Salado Formation. The basinwide extent of magnesite is unknown. Magnesite may have formed either (1) during Ochoan deposition or thereafter, after burial of the Tansill and Yates formations, from dense brines originating from the overlying Salado evaporites; or less likely, (2) syndepositionally with the Tansill and Yates sediments. Preliminary measurements of stable carbon and oxygen isotopes for magnesite yield normal Permian values for {delta}{sup 13}C averaging + 6.84% (PDB) and slightly evaporitic values for {delta}{sup 18}O averaging + 1.04% (PDB); corrected {sup 87}Sr/{sup 86}Sr isotope composition averages 0.70687. Because a high content of associated uranium in the magnesite-rich part of the core causes large gamma-ray deflections similar to those for shale, and because the density of magnesite is close to that of anhydrite, the presence of magnesite could lead to improper evaluation of lithology and porosity from logs and could ultimately result in failure to recognize potential reservoir zones. 14 figs., 1 tab.

  9. Risk Assessment of Geologic Formation Sequestration in The Rocky Mountain Region, USA

    SciTech Connect (OSTI)

    Lee, Si-Yong; McPherson, Brian

    2013-08-01

    The purpose of this report is to describe the outcome of a targeted risk assessment of a candidate geologic sequestration site in the Rocky Mountain region of the USA. Specifically, a major goal of the probabilistic risk assessment was to quantify the possible spatiotemporal responses for Area of Review (AoR) and injection-induced pressure buildup associated with carbon dioxide (CO₂) injection into the subsurface. Because of the computational expense of a conventional Monte Carlo approach, especially given the likely uncertainties in model parameters, we applied a response surface method for probabilistic risk assessment of geologic CO₂ storage in the Permo-Penn Weber formation at a potential CCS site in Craig, Colorado. A site-specific aquifer model was built for the numerical simulation based on a regional geologic model.

  10. Ordovician carbonate formation waters in the Illinois Basin: Chemical and isotopic evolution beneath a regional aquitard

    SciTech Connect (OSTI)

    Stueber, A.M. ); Walter, L.M. . Dept. of Geological Sciences)

    1992-01-01

    Formation waters from carbonate reservoirs in the upper Ordovician Galena Group of the Illinois Basin have been analyzed geochemically to study origin of salinity, chemical and isotopic evolution, and relation to paleohydrologic flow systems. These carbonate reservoirs underlie the Maquoketa Shale Group of Cincinnatian age, which forms a regional aquitard. Cl-Br relations and Na/Br-Cl/Br systematics indicate that initial brine salinity resulted from subaerial evaporation of seawater to a point not significantly beyond halite saturation. Subsequent dilution in the subsurface by meteoric waters is supported by delta D-delta O-18 covariance. Systematic relations between Sr-87/Sr-86 and 1/Sr suggest two distinct mixing events: introduction of a Sr-87 enriched fluid from a siliciclastic source, and a later event which only affected reservoir waters from the western shelf of the basin. The second mixing event is supported by covariance between Sr-87/Sr-86 and concentrations of cations and anions; covariance between Sr and O-D isotopes suggests that the event is related to meteoric water influx. Systematic geochemical relations in ordovician Galena Group formation waters have been preserved by the overlying Maquoketa shale aquitard. Comparison with results from previous studies indicates that waters from Silurian-Devonian carbonate strata evolved in a manner similar to yet distinct from that of the Ordovician carbonate waters, whereas waters from Mississippian-Pennsylvanian strata that overlie the New Albany Shale Group regional aquitard are marked by fundamentally different Cl-Br-Na and Sr isotope systematics. Evolution of these geochemical formation-water regimes apparently has been influenced significantly by paleohydrologic flow systems.

  11. Help:Formatting | Open Energy Information

    Open Energy Info (EERE)

    it in two single quotes like ''this'' Contents 1 Text formatting markup 2 Paragraphs 3 HTML 4 Other formatting Text formatting markup Description You type You get character...

  12. A preliminary sub-basin scale evaluation framework of site suitability for onshore aquifer-based CO{sub 2} storage in China

    SciTech Connect (OSTI)

    Wei, Ning; Li, Xiaochun; Wang, Ying; Dahowski, Robert T; Davidson, Casie L; Bromhal, Grant S

    2013-01-01

    Development of a reliable, broadly applicable framework for the identification and suitability evaluation of potential CO{sub 2} storage sites is essential before large-scale deployment of carbon dioxide capture and geological storage (CCS) can commence. In this study, a sub-basin scale evaluation framework was developed to assess the suitability of potential onshore deep saline aquifers for CO{sub 2} storage in China. The methodology, developed in consultation with experts from the academia and the petroleum industry in China, is based on a multi-criteria analysis (MCA) framework that considers four objectives: (1) storage optimization, in terms of storage capacity and injectivity; (2) risk minimization and storage security; (3) environmental restrictions regarding surface and subsurface use; and (4) economic considerations. The framework is designed to provide insights into both the suitability of potential aquifer storage sites as well as the priority for early deployment of CCS with existing CO{sub 2} sources. Preliminary application of the framework, conducted using GIS-based evaluation tools revealed that 18% of onshore aquifer sites with a combined CO{sub 2} storage capacity of 746 gigatons are considered to exhibit very high suitability, and 11% of onshore aquifer sites with a total capacity of 290 gigatons exhibit very high priority opportunities for implementation. These onshore aquifer sites may provide promising opportunities for early large-scale CCS deployment and contribute to CO{sub 2} mitigation in China for many decades.

  13. A preliminary sub-basin scale evaluation framework of site suitability for onshore aquifer-based CO2 storage in China

    SciTech Connect (OSTI)

    Wei, Ning; Li, Xiaochun; Wang, Ying; Dahowski, Robert T.; Davidson, Casie L.; Bromhal, Grant

    2013-01-30

    Development of a reliable, broadly applicable framework for the identification and suitability evaluation of potential CO2 storage sites is essential before large scale deployment of carbon dioxide capture and geological storage (CCS) can commence. In this study, a sub-basin scale evaluation framework was developed to assess the suitability of potential onshore deep saline aquifers for CO2 storage in China. The methodology, developed in consultation with experts from the academia and the petroleum industry in China, is based on a multi-criteria analysis (MCA) framework that considers four objectives: (1) storage optimization, in terms of storage capacity and injectivity; (2) risk minimization and storage security; (3) environmental restrictions regarding surface and subsurface use; and (4) economic considerations. The framework is designed to provide insights into both the suitability of potential aquifer storage sites as well as the priority for early deployment of CCS with existing CO2 sources. Preliminary application of the framework, conducted using GIS-based evaluation tools revealed that 18% of onshore aquifer sites with a combined CO2 storage capacity of 746 gigatons are considered to exhibit very high suitability, and 11% of onshore aquifer sites with a total capacity of 290 gigatons exhibit very high priority opportunities for implementation. These onshore aquifer sites may provide promising opportunities for early large-scale CCS deployment and contribute to CO2 mitigation in China for many decades.

  14. Formatting PDFs for the Web

    Office of Energy Efficiency and Renewable Energy (EERE)

    After you've created or have a PDF, follow these steps to format it according to Office of Energy Efficiency and Renewable Energy (EERE) standards.

  15. Geopressured Geothermal Resource and Recoverable Energy Estimate for the Wilcox and Frio Formations, Texas (Presentation)

    SciTech Connect (OSTI)

    Esposito, A.; Augustine, C.

    2011-10-01

    An estimate of the total and recoverable geopressured geothermal resource of the fairways in the Wilcox and Frio formations is made using the current data available. The flow rate of water and methane for wells located in the geopressured geothermal fairways is simulated over a 20-year period utilizing the TOUGH2 Reservoir Simulator and research data. The model incorporates relative permeability, capillary pressure, rock compressibility, and leakage from the bounding shale layers. The simulations show that permeability, porosity, pressure, sandstone thickness, well spacing, and gas saturation in the sandstone have a significant impact on the percent of energy recovered. The results also predict lower average well production flow rates and a significantly higher production of natural gas relative to water than in previous studies done from 1975 to 1980. Previous studies underestimate the amount of methane produced with hot brine. Based on the work completed in this study, multiphase flow processes and reservoir boundary conditions greatly influence the total quantity of the fluid produced as well as the ratio of gas and water in the produced fluid.

  16. Geochemical, mineralogical and microbiological characteristics of sediment from a naturally reduced zone in a uranium-contaminated aquife

    SciTech Connect (OSTI)

    Campbell, K M; K Kukkadapu, R K; Qafoku, N P; Peacock, A D; Lesher, E; Williams, K H; Bargar, J R; Wilkins, M J; Figueroa, L; Ranville, J; Davis, J A; Long, P E

    2012-05-23

    Localized zones or lenses of naturally reduced sediments have the potential to play a significant role in the fate and transport of redox-sensitive metals and metalloids in aquifers. To assess the mineralogy, microbiology and redox processes that occur in these zones, several cores from a region of naturally occurring reducing conditions in a U-contaminated aquifer (Rifle, CO) were examined. Sediment samples from a transect of cores ranging from oxic/suboxic Rifle aquifer sediment to naturally reduced sediment were analyzed for U and Fe content, oxidation state, and mineralogy; reduced S phases; and solid-phase organic C content using a suite of analytical and spectroscopic techniques on bulk sediment and size fractions. Solid-phase U concentrations were higher in the naturally reduced zone, with a high proportion of the U present as U(IV). The sediments were also elevated in reduced S phases and Fe(II), indicating it is very likely that U(VI), Fe(III), and SO4 reduction has occurred or is occurring in the sediment. The microbial community was assessed using lipid- and DNA-based techniques, and statistical redundancy analysis was performed to determine correlations between the microbial community and the geochemistry. Increased concentrations of solid-phase organic C and biomass in the naturally reduced sediment suggests that natural bioreduction is stimulated by a zone of increased organic C concentration associated with fine-grained material and lower permeability to groundwater flow. Characterization of the naturally bioreduced sediment provides an understanding of the natural processes that occur in the sediment under reducing conditions and how they may impact natural attenuation of radionuclides and other redox sensitive materials. Results also suggest the importance of recalcitrant organic C for maintaining reducing conditions and U immobilization.

  17. Using complex resistivity imaging to infer biogeochemical processes associated with bioremediation of a uranium-contaminated aquifer

    SciTech Connect (OSTI)

    Orozco, A. Flores; Williams, K.H.; Long, P.E.; Hubbard, S.S.; Kemna, A.

    2011-04-01

    Experiments at the Department of Energy's Rifle Integrated Field Research Challenge (IFRC) site near Rifle, Colorado (USA) have demonstrated the ability to remove uranium from groundwater by stimulating the growth and activity of Geobacter species through acetate amendment. Prolonging the activity of these strains in order to optimize uranium bioremediation has prompted the development of minimally-invasive and spatially-extensive monitoring methods diagnostic of their in situ activity and the end products of their metabolism. Here we demonstrate the use of complex resistivity imaging for monitoring biogeochemical changes accompanying stimulation of indigenous aquifer microorganisms during and after a prolonged period (100+ days) of acetate injection. A thorough raw-data statistical analysis of discrepancies between normal and reciprocal measurements and incorporation of a new power-law phase-error model in the inversion were used to significantly improve the quality of the resistivity phase images over those obtained during previous monitoring experiments at the Rifle IRFC site. The imaging results reveal spatiotemporal changes in the phase response of aquifer sediments, which correlate with increases in Fe(II) and precipitation of metal sulfides (e.g., FeS) following the iterative stimulation of iron and sulfate reducing microorganism. Only modest changes in resistivity magnitude were observed over the monitoring period. The largest phase anomalies (>40 mrad) were observed hundreds of days after halting acetate injection, in conjunction with accumulation of Fe(II) in the presence of residual FeS minerals, reflecting preservation of geochemically reduced conditions in the aquifer - a prerequisite for ensuring the long-term stability of immobilized, redox-sensitive contaminants, such as uranium.

  18. Using complex resistivity imaging to infer biogeochemical processes associated with bioremediation of a uranium-contaminated aquifer

    SciTech Connect (OSTI)

    Flores-Orozco, Adrian; Williams, Kenneth H.; Long, Philip E.; Hubbard, Susan S.; Kemna, Andreas

    2011-07-07

    Experiments at the Department of Energys Rifle Integrated Field Research Challenge (IFRC) site near Rifle, Colorado (USA) have demonstrated the ability to remove uranium from groundwater by stimulating the growth and activity of Geobacter species through acetate amendment. Prolonging the activity of these strains in order to optimize uranium bioremediation has prompted the development of minimally-invasive and spatially-extensive monitoring methods diagnostic of their in situ activity and the end products of their metabolism. Here we demonstrate the use of complex resistivity imaging for monitoring biogeochemical changes accompanying stimulation of indigenous aquifer microorganisms during and after a prolonged period (100+ days) of acetate injection. A thorough raw-data statistical analysis of discrepancies between normal and reciprocal measurements and incorporation of a new power-law phase-error model in the inversion were used to significantly improve the quality of the resistivity phase images over those obtained during previous monitoring experiments at the Rifle IRFC site. The imaging results reveal spatiotemporal changes in the phase response of aquifer sediments, which correlate with increases in Fe(II) and precipitation of metal sulfides (e.g., FeS) following the iterative stimulation of iron and sulfate reducing microorganism. Only modest changes in resistivity magnitude were observed over the monitoring period. The largest phase anomalies (>40 mrad) were observed hundreds of days after halting acetate injection, in conjunction with accumulation of Fe(II) in the presence of residual FeS minerals, reflecting preservation of geochemically reduced conditions in the aquifer a prerequisite for ensuring the long-term stability of immobilized, redox-sensitive contaminants, such as uranium.

  19. Coalbed Methane Procduced Water Treatment Using Gas Hydrate Formation at the Wellhead

    SciTech Connect (OSTI)

    BC Technologies

    2009-12-30

    Water associated with coalbed methane (CBM) production is a significant and costly process waste stream, and economic treatment and/or disposal of this water is often the key to successful and profitable CBM development. In the past decade, advances have been made in the treatment of CBM produced water. However, produced water generally must be transported in some fashion to a centralized treatment and/or disposal facility. The cost of transporting this water, whether through the development of a water distribution system or by truck, is often greater than the cost of treatment or disposal. To address this economic issue, BC Technologies (BCT), in collaboration with Oak Ridge National Laboratory (ORNL) and International Petroleum Environmental Consortium (IPEC), proposed developing a mechanical unit that could be used to treat CBM produced water by forming gas hydrates at the wellhead. This process involves creating a gas hydrate, washing it and then disassociating hydrate into water and gas molecules. The application of this technology results in three process streams: purified water, brine, and gas. The purified water can be discharged or reused for a variety of beneficial purposes and the smaller brine can be disposed of using conventional strategies. The overall objectives of this research are to develop a new treatment method for produced water where it could be purified directly at the wellhead, to determine the effectiveness of hydrate formation for the treatment of produced water with proof of concept laboratory experiments, to design a prototype-scale injector and test it in the laboratory under realistic wellhead conditions, and to demonstrate the technology under field conditions. By treating the water on-site, producers could substantially reduce their surface handling costs and economically remove impurities to a quality that would support beneficial use. Batch bench-scale experiments of the hydrate formation process and research conducted at ORNL

  20. Field Evaluation of the Restorative Capacity of the Aquifer Downgradient of a Uranium In-Situ Recovery Mining Site

    SciTech Connect (OSTI)

    Reimus, Paul William

    2015-05-22

    A two-part field study was conducted in Smith Ranch-Highland in-situ recovery (ISR) near Douglas, Wyoming, to evaluate the restorative capacity of the aquifer downgradient (i.e., hydrologically downstream) of a Uranium ISR mining site with respect to the transport of uranium and other potential contaminants in groundwater after mining has ceased. The study was partially conducted by checking the Uranium content and the alkalinity of separate wells, some wells had been restored and others had not. A map and in-depth procedures of the study are included.

  1. Permeability, geochemical, and water quality tests in support of an aquifer thermal energy storage site in Minnesota

    SciTech Connect (OSTI)

    Blair, S.C.; Deutsch, W.J.; Mitchell, P.J.

    1985-04-01

    This report describes the Underground Energy Storage Program's efforts to characterize physicochemical processes at DOE's ATES Field Test Facility (FTF) located on the University of Minnesota campus at St. Paul, Minnesota. Experimental efforts include: field tests at the St. Paul FTF to characterize fluid injectability and to evaluate the effectiveness of fluid-conditioning equipment, geochemical studies to investigate chemical reactions resulting from alterations to the aquifer's thermal regime, and laboratory tests on sandstone core from the site. Each experimental area is discussed and results obtained thus far are reported. 23 refs., 39 figs., 12 tabs.

  2. Stratigraphy of the unsaturated zone and the Snake River Plain aquifer at and near the Idaho National Engineering Laboratory, Idaho

    SciTech Connect (OSTI)

    Anderson, S.R.; Liszewski, M.J.

    1997-08-01

    The unsaturated zone and the Snake River Plain aquifer at and near the Idaho National Engineering Laboratory (INEL) are made up of at least 178 basalt-flow groups, 103 sedimentary interbeds, 6 andesite-flow groups, and 4 rhyolite domes. Stratigraphic units identified in 333 wells in this 890-mile{sup 2} area include 121 basalt-flow groups, 102 sedimentary interbeds, 6 andesite-flow groups, and 1 rhyolite dome. Stratigraphic units were identified and correlated using the data from numerous outcrops and 26 continuous cores and 328 natural-gamma logs available in December 1993. Basalt flows make up about 85% of the volume of deposits underlying the area.

  3. Portable File Format (PFF) specifications.

    SciTech Connect (OSTI)

    Dolan, Daniel H.,

    2015-02-01

    Created at Sandia National Laboratories, the Portable File Format (PFF) allows binary data transfer across computer platforms. Although this capability is supported by many other formats, PFF files are still in use at Sandia, particularly in pulsed power research. This report provides detailed PFF specifications for accessing data without relying on legacy code.

  4. Physical Constraints on Geologic CO2 Sequestration in Low-Volume Basalt Formations

    SciTech Connect (OSTI)

    Ryan M. Pollyea; Jerry P. Fairley; Robert K. Podgorney; Travis L. McLing

    2014-03-01

    Deep basalt formations within large igneous provinces have been proposed as target reservoirs for carbon capture and sequestration on the basis of favorable CO2-water-rock reaction kinetics that suggest carbonate mineralization rates on the order of 102103 d. Although these results are encouraging, there exists much uncertainty surrounding the influence of fracture-controlled reservoir heterogeneity on commercial-scale CO2 injections in basalt formations. This work investigates the physical response of a low-volume basalt reservoir to commercial-scale CO2 injections using a Monte Carlo numerical modeling experiment such that model variability is solely a function of spatially distributed reservoir heterogeneity. Fifty equally probable reservoirs are simulated using properties inferred from the deep eastern Snake River Plain aquifer in southeast Idaho, and CO2 injections are modeled within each reservoir for 20 yr at a constant mass rate of 21.6 kg s1. Results from this work suggest that (1) formation injectivity is generally favorable, although injection pressures in excess of the fracture gradient were observed in 4% of the simulations; (2) for an extensional stress regime (as exists within the eastern Snake River Plain), shear failure is theoretically possible for optimally oriented fractures if Sh is less than or equal to 0.70SV; and (3) low-volume basalt reservoirs exhibit sufficient CO2 confinement potential over a 20 yr injection program to accommodate mineral trapping rates suggested in the literature.

  5. Analysis of Aquifer Response, Groundwater Flow, and PlumeEvolution at Site OU 1, Former Fort Ord, California

    SciTech Connect (OSTI)

    Jordan, Preston D.; Oldenburg, Curtis M.; Su, Grace W.

    2005-02-24

    This report presents a continuation from Oldenburg et al. (2002) of analysis of the hydrogeology, In-Situ Permeable Flow Sensor (ISPFS) results, aquifer response, and changes in the trichloroethylene (TCE) groundwater plume at Operational Unit 1 (OU 1) adjacent to the former Fritzsche Army Airfield at the former Fort Ord Army Base, located on Monterey Bay in northern Monterey County. Fuels and solvents were burned on a portion of OU 1 called the Fire Drill Area (FDA) during airport fire suppression training between 1962 and 1985. This activity resulted in soil and groundwater contamination in the unconfined A-aquifer. In the late 1980's, soil excavation and bioremediation were successful in remediating soil contamination at the site. Shortly thereafter, a groundwater pump, treat, and recharge system commenced operation. This system has been largely successful at remediating groundwater contamination at the head of the groundwater plume. However, a trichloroethylene (TCE) groundwater plume extends approximately 3000 ft (900 m) to the northwest away from the FDA. In the analyses presented here, we augment our prior work (Oldenburg et al., 2002) with new information including treatment-system totalizer data, recent water-level and chemistry data, and data collected from new wells to discern trends in contaminant migration and groundwater flow that may be useful for ongoing remediation efforts. Some conclusions from the prior study have been modified based on these new analyses, and these are pointed out clearly in this report.

  6. Expanding the potential for saline formations : modeling carbon dioxide storage, water extraction and treatment for power plant cooling.

    SciTech Connect (OSTI)

    Not Available

    2011-04-01

    The National Water, Energy and Carbon Sequestration simulation model (WECSsim) is being developed to address the question, 'Where in the current and future U.S. fossil fuel based electricity generation fleet are there opportunities to couple CO{sub 2} storage and extracted water use, and what are the economic and water demand-related impacts of these systems compared to traditional power systems?' The WECSsim collaborative team initially applied this framework to a test case region in the San Juan Basin, New Mexico. Recently, the model has been expanded to incorporate the lower 48 states of the U.S. Significant effort has been spent characterizing locations throughout the U.S. where CO{sub 2} might be stored in saline formations including substantial data collection and analysis efforts to supplement the incomplete brine data offered in the NatCarb database. WECSsim calculates costs associated with CO{sub 2} capture and storage (CCS) for the power plant to saline formation combinations including parasitic energy costs of CO{sub 2} capture, CO{sub 2} pipelines, water treatment options, and the net benefit of water treatment for power plant cooling. Currently, the model can identify the least-cost deep saline formation CO{sub 2} storage option for any current or proposed coal or natural gas-fired power plant in the lower 48 states. Initial results suggest that additional, cumulative water withdrawals resulting from national scale CCS may range from 676 million gallons per day (MGD) to 30,155 MGD depending on the makeup power and cooling technologies being utilized. These demands represent 0.20% to 8.7% of the U.S. total fresh water withdrawals in the year 2000, respectively. These regional and ultimately nation-wide, bottom-up scenarios coupling power plants and saline formations throughout the U.S. can be used to support state or national energy development plans and strategies.

  7. Ground-water geochemistry and radionuclide activity in the Cambrian-Ordovician aquifer of Dodge and Fond du Lac counties, Wisconsin. Technical report

    SciTech Connect (OSTI)

    Weaver, T.R.; Bahr, J.M.; Anderson, M.P.

    1990-01-01

    Analyses of groundwater from wells in the Cambrian-Ordovician aquifer of eastern Wisconsin indicate that regions of the aquifer contain elevated concentrations of dissolved solids, chloride and sulfate. Groundwater from several wells in the area also approach or exceed the current drinking water standard for combined radium activity. Significant changes in groundwater chemistry occur where the aquifer becomes confined by the Maquoketa shale. Concentrations of Cl(-), SO4(2-) and Na(+) increase in the confined region, and the highest combined radium activities are typically observed in the area. Geochemical modeling implies that the observed changes in major ion groundwater chemistry occur in response to the presence of the confining unit which may act as a source of SO4(2-), through gypsum dissolution, and Na(+), through cation exchange. A finite difference groundwater flow model was linked to a particle tracking routine to determine groundwater flow paths and residence times in the aquifer near the boundary between unconfined and confined conditions. Results suggest that the presence of the confining unit produces a vertically stratified flow regime in the confined region.

  8. Treating tar sands formations with karsted zones

    DOE Patents [OSTI]

    Vinegar, Harold J.; Karanikas, John Michael

    2010-03-09

    Methods for treating a tar sands formation are described herein. The tar sands formation may have one or more karsted zones. Methods may include providing heat from one or more heaters to one or more karsted zones of the tar sands formation to mobilize fluids in the formation. At least some of the mobilized fluids may be produced from the formation.

  9. Impact of sedimentary provenance and weathering on arsenic distribution in aquifers of the Datong basin, China: Constraints from elemental geochemistry

    SciTech Connect (OSTI)

    Xie, Xianjun; Wang, Yanxin; Ellis, Andre; Liu, Chongxuan; Duan, Mengyu; Li, Junxia

    2014-11-01

    Arsenic (As)-contaminated aquifer sediments from Datong basin, China have been analyzed to infer the provenance and depositional environment related to As distribution in the aquifer sediments. The As content in the sediments ranged from 2.45 to 27.38 mg/kg with an average value of 9.54 mg/kg, which is comparable to the average value in modern unconsolidated sediments. However, minor variation in As concentration with depth has been observed in the core. There was a significant correlation between Fe, and Al and As, which was attributed to the adsorption or co-precipitation of As onto/with Fe oxides/hydroxides and/or Fe-coated clay minerals. Post-Archean Australian Shale (PAAS)-normalized REEs patterns of sediment samples along the borehole were constant, and the sediments had a notably restricted range of La-N/Yb-N ratios from 0.7 to 1.0. These results suggested that the provenance of the Datong basin remained similar throughout the whole depositional period. The analysis of major geochemical compositions confirmed that all core sediments were from the same sedimentary source and experienced significant sedimentary recycling. The co-variation of As, V/Al, Ni/Al and chemical index of alteration (CIA) values in the sediments along the borehole suggested that As distribution in the sediments was primarily controlled by weathering processes. The calculated CIA values of the sediments along the borehole indicate that a relative strong chemical weathering occurred during the deposition of sediments at depths of similar to 35 to 88 m, which was corresponding to the depth at which high As groundwater was observed at the site. Strong chemical weathering favored the deposition of Fe-bearing minerals including poorly crystalline and crystalline Fe oxide mineral phases and concomitant co-precipitation of As with these minerals in the sediments. Subsequent reductive dissolution of As-bearing poorly crystalline and crystalline Fe oxides would result in the enrichment of As in

  10. HYDROGEL TRACER BEADS: THE DEVELOPMENT, MODIFICATION, AND TESTING OF AN INNOVATIVE TRACER FOR BETTER UNDERSTANDING LNAPL TRANSPORT IN KARST AQUIFERS

    SciTech Connect (OSTI)

    Amanda Laskoskie, Harry M. Edenborn, and Dorothy J. Vesper

    2012-01-01

    The goal of this specific research task is to develop proxy tracers that mimic contaminant movement to better understand and predict contaminant fate and transport in karst aquifers. Hydrogel tracer beads are transported as a separate phase than water and can used as a proxy tracer to mimic the transport of non-aqueous phase liquids (NAPL). They can be constructed with different densities, sizes & chemical attributes. This poster describes the creation and optimization of the beads and the field testing of buoyant beads, including sampling, tracer analysis, and quantitative analysis. The buoyant beads are transported ahead of the dissolved solutes, suggesting that light NAPL (LNAPL) transport in karst may occur faster than predicted from traditional tracing techniques. The hydrogel beads were successful in illustrating this enhanced transport.

  11. SW New Mexico Oil Well Formation Tops

    SciTech Connect (OSTI)

    Shari Kelley

    2015-10-21

    Rock formation top picks from oil wells from southwestern New Mexico from scout cards and other sources. There are differing formation tops interpretations for some wells, so for those wells duplicate formation top data are presented in this file.

  12. T-F and S/DOE Gladys McCall No. 1 well, Cameron Parish, Louisiana. Geopressured-geothermal well report, Volume II. Well workover and production testing, February 1982-October 1985. Final report. Part 1

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    The T-F and S/DOE Gladys McCall No. 1 well was the fourth in a series of wells in the DOE Design Wells Program that were drilled into deep, large geopressured-geothermal brine aquifers in order to provide basic data with which to determine the technological and economic viability of producing energy from these unconventional resources. This brine production well was spudded on May 27, 1981 and drilling operations were completed on November 2, 1981 after using 160 days of rig time. The well was drilled to a total depth of 16,510 feet. The target sands lie at a depth of 14,412 to 15,860 feet in the Fleming Formation of the lower Miocene. This report covers well production testing operations and necessary well workover operations during the February 1982 to October 1985 period. The primary goals of the well testing program were: (1) to determine reservoir size, shape, volume, drive mechanisms, and other reservoir parameters, (2) to determine and demonstrate the technological and economic viability of producing energy from a geopressured-geothermal brine aquifer through long-term production testing, and (3) to determine problem areas associated with such long-term production, and to develop solutions therefor.

  13. Natural Recharge to the Unconfined Aquifer System on the Hanford Site from the Greater Cold Creek Watershed: Progress Report 2004

    SciTech Connect (OSTI)

    Waichler, Scott R.; Wigmosta, Mark S.; Coleman, Andre M.

    2004-09-14

    Movement of contaminants in groundwater at the Hanford Site is heavily dependent on recharge to the unconfined aquifer. As the effects of past artificial discharges dissipate, the water table is expected to return to more natural conditions, and natural recharge will become the driving force when evaluating future groundwater flow conditions and related contaminant transport. Previous work on the relationship of natural recharge to groundwater movement at the Hanford Site has focused on direct recharge from infiltrating rainfall and snowmelt within the area represented by the Sitewide Groundwater Model (SGM) domain. However, part of the groundwater recharge at Hanford is provided by flow from Greater Cold Creek watershed (GCC), a large drainage area on the western boundary of the Hanford Site that includes Cold Creek Valley, Dry Creek Valley, and the Hanford side of Rattlesnake Mountain. This study was undertaken to estimate the recharge from GCC, which is believed to enter the unconfined aquifer as both infiltrating streamflow and shallow subsurface flow. To estimate recharge, the Distributed Hydrology-Soil-Vegetation Model (DHSVM) was used to simulate a detailed water balance of GCC from 1956 to 2001 at a spatial resolution of 200~m and a temporal resolution of one hour. For estimating natural recharge to Hanford from watersheds along its western and southwestern boundaries, the most important aspects that need to be considered are 1)~distribution and relative magnitude of precipitation and evapotranspiration over the watershed, 2)~streamflow generation at upper elevations and infiltration at lower elevations during rare runoff events, and 3)~permeability of the basalt bedrock surface underlying the soil mantle.

  14. Investigating Processes of Nanocrystal Formation and Transformation...

    Office of Scientific and Technical Information (OSTI)

    Investigating Processes of Nanocrystal Formation and Transformation via Liquid Cell TEM Citation Details In-Document Search Title: Investigating Processes of Nanocrystal Formation...

  15. Macroscale superlubricity enabled by graphene nanoscroll formation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Macroscale superlubricity enabled by graphene nanoscroll formation Title Macroscale superlubricity enabled by graphene nanoscroll formation Publication Type Journal Article Year of...

  16. Modeling CO{sub 2}-Brine-Rock Interaction Including Mercury and H{sub 2}S Impurities in the Context of CO{sub 2} Geologic Storage

    SciTech Connect (OSTI)

    Spycher, N.; Oldenburg, C.M.

    2014-01-01

    This study uses modeling and simulation approaches to investigate the impacts on injectivity of trace amounts of mercury (Hg) in a carbon dioxide (CO{sub 2}) stream injected for geologic carbon sequestration in a sandstone reservoir at ~2.5 km depth. At the range of Hg concentrations expected (7-190 ppbV, or ~ 0.06-1.6 mg/std.m{sup 3}CO{sub 2}), the total volumetric plugging that could occur due to complete condensation of Hg, or due to complete precipitation of Hg as cinnabar, results in a very small porosity change. In addition, Hg concentration much higher than the concentrations considered here would be required for Hg condensation to even occur. Concentration of aqueous Hg by water evaporation into CO{sub 2} is also unlikely because the higher volatility of Hg relative to H{sub 2}O at reservoir conditions prevents the Hg concentration from increasing in groundwater as dry CO{sub 2} sweeps through, volatilizing both H{sub 2}O and Hg. Using a model-derived aqueous solution to represent the formation water, batch reactive geochemical modeling show that the reaction of the formation water with the CO{sub 2}-Hg mixture causes the pH to drop to about 4.7 and then become buffered near 5.2 upon reaction with the sediments, with a negligible net volume change from mineral dissolution and precipitation. Cinnabar (HgS(s)) is found to be thermodynamically stable as soon as the Hg-bearing CO{sub 2} reacts with the formation water which contains small amounts of dissolved sulfide. Liquid mercury (Hg(l)) is not found to be thermodynamically stable at any point during the simulation. Two-dimensional radial reactive transport simulations of CO{sub 2} injection at a rate of 14.8 kg/s into a 400 m-thick formation at isothermal conditions of 106°C and average pressure near 215 bar, with varying amounts of Hg and H{sub 2}S trace gases, show generally that porosity changes only by about ±0.05% (absolute, i.e., new porosity = initial porosity ±0.0005) with Hg predicted to readily

  17. EFFECT OF QUARTZ/MULLITE BLEND CERAMIC ADDITIVE ON IMPROVING RESISTANCE TO ACID OF SODIUM SILICATE-ACTIVATED SLAG CEMENT. CELCIUS BRINE.

    SciTech Connect (OSTI)

    SUGAMA, T.; BROTHERS, L.E.; VAN DE PUTTE, T.R.

    2006-06-01

    We evaluated the usefulness of manufactured quartz/mullite blend (MQMB) ceramic powder in increasing the resistance to acid of sodium silicate-activated slag (SSAS) cementitious material for geothermal wells. A 15-day exposure to 90{sup o} CO{sub 2}-laden H{sub 2}SO{sub 4} revealed that the MQMB had high potential as an acid-resistant additive for SSAS cement. Two factors, the appropriate ratio of slag/MQMB and the autoclave temperature, contributed to better performance of MQMB-modified SSAS cement in abating its acid erosion. The most effective slag/MQMB ratio in minimizing the loss in weight by acid erosion was 70/30 by weight. For autoclave temperature, the loss in weight of 100 C autoclaved cement was a less than 2%, but at 300 C it was even lower. Before exposure to acid, the cement autoclaved at 100 C was essentially amorphous; increasing the temperature to 200 C led to the formation of crystalline analcime in the zeolitic mineral family during reactions between the mullite in MQMB and the Na from sodium silicate. In addition, at 300 C, crystal of calcium silicate hydrate (1) (CSH) was generated in reactions between the quartz in MQMB and the activated slag. These two crystalline phases (CSH and analcime) were responsible for densifying the autoclaved cement, conveying improved compressive strength and minimizing water permeability. The CSH was susceptible to reactions with H{sub 2}SO{sub 4}, forming two corrosion products, bassanite and ionized monosilicic acid. However, the uptake of ionized monosilicic acid by Mg dissociated from the activated slag resulted in the formation of lizardite as magnesium silicate hydrate. On the other hand, the analcime was barely susceptible to acid if at all. Thus, the excellent acid resistance of MQMB-modified SSAS cement was due to the combined phases of lizardite and analcime.

  18. The EPRDATA Format: A Dialogue

    SciTech Connect (OSTI)

    Hughes, III, Henry Grady

    2015-08-18

    Recently the Los Alamos Nuclear Data Team has communicated certain issues of concern in relation to the new electron/photon/relaxation ACE data format as released in the eprdata12 library. In this document those issues are parsed, analyzed, and answered.

  19. Site characterization of the highest-priority geologic formations for CO2 storage in Wyoming

    SciTech Connect (OSTI)

    Surdam, Ronald C.; Bentley, Ramsey; Campbell-Stone, Erin; Dahl, Shanna; Deiss, Allory; Ganshin, Yuri; Jiao, Zunsheng; Kaszuba, John; Mallick, Subhashis; McLaughlin, Fred; Myers, James; Quillinan, Scott

    2013-12-07

    This study, funded by U.S. Department of Energy National Energy Technology Laboratory award DE-FE0002142 along with the state of Wyoming, uses outcrop and core observations, a diverse electric log suite, a VSP survey, in-bore testing (DST, injection tests, and fluid sampling), a variety of rock/fluid analyses, and a wide range of seismic attributes derived from a 3-D seismic survey to thoroughly characterize the highest-potential storage reservoirs and confining layers at the premier CO2 geological storage site in Wyoming. An accurate site characterization was essential to assessing the following critical aspects of the storage site: (1) more accurately estimate the CO2 reservoir storage capacity (Madison Limestone and Weber Sandstone at the Rock Springs Uplift (RSU)), (2) evaluate the distribution, long-term integrity, and permanence of the confining layers, (3) manage CO2 injection pressures by removing formation fluids (brine production/treatment), and (4) evaluate potential utilization of the stored CO2

  20. Trace Metal Source Terms in Carbon Sequestration Environments

    SciTech Connect (OSTI)

    Karamalidis, Athanasios K; Torres, Sharon G; Hakala, J Alexandra; Shao, Hongbo; Cantrell, Kirk J; Carroll, Susan

    2012-02-05

    Carbon dioxide sequestration in deep saline and depleted oil geologic formations is feasible and promising, however, possible CO₂ or CO₂-saturated brine leakage to overlying aquifers may pose environmental and health impacts. The purpose of this study was to experimentally define trace metal source terms from the reaction of supercritical CO₂, storage reservoir brines, reservoir and cap rocks. Storage reservoir source terms for trace metals are needed to evaluate the impact of brines leaking into overlying drinking water aquifers. The trace metal release was measured from sandstones, shales, carbonates, evaporites, basalts and cements from the Frio, In Salah, Illinois Basin – Decatur, Lower Tuscaloosa, Weyburn-Midale, Bass Islands and Grand Ronde carbon sequestration geologic formations. Trace metal dissolution is tracked by measuring solution concentrations over time under conditions (e.g. pressures, temperatures, and initial brine compositions) specific to the sequestration projects. Existing metrics for Maximum Contaminant Levels (MCLs) for drinking water as defined by the U.S. Environmental Protection Agency (U.S. EPA) were used to categorize the relative significance of metal concentration changes in storage environments due to the presence of CO₂. Results indicate that Cr and Pb released from sandstone reservoir and shale cap rock exceed the MCLs by an order of magnitude while Cd and Cu were at or below drinking water thresholds. In carbonate reservoirs As exceeds the MCLs by an order of magnitude, while Cd, Cu, and Pb were at or below drinking water standards. Results from this study can be used as a reasonable estimate of the reservoir and caprock source term to further evaluate the impact of leakage on groundwater quality.

  1. Method of fracturing a geological formation

    DOE Patents [OSTI]

    Johnson, James O.

    1990-01-01

    An improved method of fracturing a geological formation surrounding a well bore is disclosed. A relatively small explosive charge is emplaced in a well bore and the bore is subsequently hydraulically pressurized to a pressure less than the formation breakdown pressure and preferably greater than the fracture propagation pressure of the formation. The charge is denoted while the bore is so pressurized, resulting in the formation of multiple fractures in the surrounding formation with little or no accompanying formation damage. Subsequent hydraulic pressurization can be used to propagate and extend the fractures in a conventional manner. The method is useful for stimulating production of oil, gas and possibly water from suitable geologic formations.

  2. Treating tar sands formations with dolomite

    DOE Patents [OSTI]

    Vinegar, Harold J.; Karanikas, John Michael

    2010-06-08

    Methods for treating a tar sands formation are described herein. The tar sands formation may include dolomite and hydrocarbons. Methods may include providing heat at less than the decomposition temperature of dolomite from one or more heaters to at least a portion of the formation. At least some of the hydrocarbon fluids are mobilized in the formation. At least some of the hydrocarbon fluids may be produced from the formation.

  3. Rapid gas hydrate formation process

    DOE Patents [OSTI]

    Brown, Thomas D.; Taylor, Charles E.; Unione, Alfred J.

    2013-01-15

    The disclosure provides a method and apparatus for forming gas hydrates from a two-phase mixture of water and a hydrate forming gas. The two-phase mixture is created in a mixing zone which may be wholly included within the body of a spray nozzle. The two-phase mixture is subsequently sprayed into a reaction zone, where the reaction zone is under pressure and temperature conditions suitable for formation of the gas hydrate. The reaction zone pressure is less than the mixing zone pressure so that expansion of the hydrate-forming gas in the mixture provides a degree of cooling by the Joule-Thompson effect and provides more intimate mixing between the water and the hydrate-forming gas. The result of the process is the formation of gas hydrates continuously and with a greatly reduced induction time. An apparatus for conduct of the method is further provided.

  4. Laser beam pulse formatting method

    DOE Patents [OSTI]

    Daly, Thomas P.; Moses, Edward I.; Patterson, Ralph W.; Sawicki, Richard H.

    1994-01-01

    A method for formatting a laser beam pulse (20) using one or more delay loops (10). The delay loops (10) have a partially reflective beam splitter (12) and a plurality of highly reflective mirrors (14) arranged such that the laser beam pulse (20) enters into the delay loop (10) through the beam splitter (12) and circulates therein along a delay loop length (24) defined by the mirrors (14). As the laser beam pulse (20) circulates within the delay loop (10) a portion thereof is emitted upon each completed circuit when the laser beam pulse (20) strikes the beam splitter (12). The laser beam pulse (20) is thereby formatted into a plurality of sub-pulses (50, 52, 54 and 56). The delay loops (10) are used in combination to produce complex waveforms by combining the sub-pulses (50, 52, 54 and 56) using additive waveform synthesis.

  5. The geomechanics of CO{sub 2} storage in deep sedimentary formations

    SciTech Connect (OSTI)

    Rutqvist, J.

    2011-11-01

    This paper provides a review of the geomechanics and modeling of geomechanics associated with geologic carbon storage (GCS), focusing on storage in deep sedimentary formations, in particular saline aquifers. The paper first introduces the concept of storage in deep sedimentary formations, the geomechanical processes and issues related with such an operation, and the relevant geomechanical modeling tools. This is followed by a more detailed review of geomechanical aspects, including reservoir stress-strain and microseismicity, well integrity, caprock sealing performance, and the potential for fault reactivation and notable (felt) seismic events. Geomechanical observations at current GCS field deployments, mainly at the In Salah CO2 storage project in Algeria, are also integrated into the review. The In Salah project, with its injection into a relatively thin, low-permeability sandstone is an excellent analogue to the saline aquifers that might be used for large scale GCS in parts of Northwest Europe, the U.S. Midwest, and China. Some of the lessons learned at In Salah related to geomechanics are discussed, including how monitoring of geomechanical responses is used for detecting subsurface geomechanical changes and tracking fluid movements, and how such monitoring and geomechanical analyses have led to preventative changes in the injection parameters. Recently, the importance of geomechanics has become more widely recognized among GCS stakeholders, especially with respect to the potential for triggering notable (felt) seismic events and how such events could impact the long-term integrity of a CO{sub 2} repository (as well as how it could impact the public perception of GCS). As described in the paper, to date, no notable seismic event has been reported from any of the current CO{sub 2} storage projects, although some unfelt microseismic activities have been detected by geophones. However, potential future commercial GCS operations from large power plants will

  6. THE BLACK HOLE FORMATION PROBABILITY

    SciTech Connect (OSTI)

    Clausen, Drew; Piro, Anthony L.; Ott, Christian D.

    2015-02-01

    A longstanding question in stellar evolution is which massive stars produce black holes (BHs) rather than neutron stars (NSs) upon death. It has been common practice to assume that a given zero-age main sequence (ZAMS) mass star (and perhaps a given metallicity) simply produces either an NS or a BH, but this fails to account for a myriad of other variables that may effect this outcome, such as spin, binarity, or even stochastic differences in the stellar structure near core collapse. We argue that instead a probabilistic description of NS versus BH formation may be better suited to account for the current uncertainties in understanding how massive stars die. We present an initial exploration of the probability that a star will make a BH as a function of its ZAMS mass, P {sub BH}(M {sub ZAMS}). Although we find that it is difficult to derive a unique P {sub BH}(M {sub ZAMS}) using current measurements of both the BH mass distribution and the degree of chemical enrichment by massive stars, we demonstrate how P {sub BH}(M {sub ZAMS}) changes with these various observational and theoretical uncertainties. We anticipate that future studies of Galactic BHs and theoretical studies of core collapse will refine P {sub BH}(M {sub ZAMS}) and argue that this framework is an important new step toward better understanding BH formation. A probabilistic description of BH formation will be useful as input for future population synthesis studies that are interested in the formation of X-ray binaries, the nature and event rate of gravitational wave sources, and answering questions about chemical enrichment.

  7. Field-Derived Hydraulic Properties for Perched-Water Aquifer Wells 299-E33-350 and 299-E33-351, Hanford Site B-Complex Area

    SciTech Connect (OSTI)

    Newcomer, Darrell R.

    2014-07-01

    During February and March 2014, Pacific Northwest National Laboratory conducted hydraulic (slug) tests at 200-DV-1 Operable Unit wells 299-E33-350 (C8914) and 299-E33-351 (C8915) as part of B-Complex Area Perched-Water characterization activities at the Hanford Site 200-East Area. During the construction/completion phase of each well, two overlapping depth intervals were tested within the unconfined perched-water aquifer contained in the silty-sand subunit of the Cold Creek Unit. The purpose of the slug-test characterization was to provide estimates of transmissivity and hydraulic conductivity for the perched-water aquifer at these selected well locations.

  8. Water-quality data for aquifers, streams, and lakes in the vicinity of Keechi, Mount Sylvan, Oakwood, and Palestine salt domes, northeast Texas salt-dome basin

    SciTech Connect (OSTI)

    Carr, J.E.; Halasz, S.J.; Liscum, F.

    1980-11-01

    This report contains water-quality data for aquifers, streams, and lakes in the vicinity of Keechi, Mount Sylvan, Oakwood, and Palestine Salt Domes in the northeast Texas salt-dome basin. Water-quality data were compiled for aquifers in the Wilcox Group, the Carrizo Sand, and the Queen City Sand. The data include analyses for dissolved solids, pH, temperature, hardness, calcium, magnesium, sodium, bicarbonate, chloride, and sulfate. Water-quality and streamflow data were obtained from 63 surface-water sites in the vicinity of the domes. These data include water discharge, specific conductance, pH, water temperature, and dissolved oxygen. Samples were collected at selected sites for analysis of principal and selected minor dissolved constituents.

  9. Subsurface Biogeochemical Heterogeneity (Field-scale removal of U(VI) from groundwater in an alluvial aquifer by electron donor amendment)

    SciTech Connect (OSTI)

    Long, Philip E.; Lovley, Derek R.; N'Guessan, A. L.; Nevin, Kelly; Resch, C. T.; Arntzen, Evan; Druhan, Jenny; Peacock, Aaron; Baldwin, Brett; Dayvault, Dick; Holmes, Dawn; Williams, Ken; Hubbard, Susan; Yabusaki, Steve; Fang, Yilin; White, D. C.; Komlos, John; Jaffe, Peter

    2006-06-01

    Determine if biostimulation of alluvial aquifers by electron donor amendment can effectively remove U(VI) from groundwater at the field scale. Uranium contamination in groundwater is a significant problem at several DOE sites. In this project, the possibility of accelerating bioreduction of U(VI) to U(IV) as a means of decreasing U(VI) concentrations in groundwater is directly addressed by conducting a series of field-scale experiments. Scientific goals include demonstrating the quantitative linkage between microbial activity and U loss from groundwater and relating the dominant terminal electron accepting processes to the rate of U loss. The project is currently focused on understanding the mechanisms for unexpected long-term ({approx}2 years) removal of U after stopping electron donor amendment. Results obtained in the project successfully position DOE and others to apply biostimulation broadly to U contamination in alluvial aquifers.

  10. Stratigraphy of the unsaturated zone and uppermost part of the Snake River Plain aquifer at test area north, Idaho National Engineering Laboratory, Idaho

    SciTech Connect (OSTI)

    Anderson, S.R.; Bowers, B.

    1995-06-01

    A complex sequence of basalt flows and sedimentary interbeds underlies Test Area North (TAN) at the Idaho National Engineering Laboratory in eastern Idaho. Wells drilled to depths of at least 500 feet penetrate 10 basalt-flow groups and 5 to 10 sedimentary interbeds that range in age from about 940,000 to 1.4 million years. Each basalt-flow group consists of one or more basalt flows from a brief, single or compound eruption. All basalt flows of each group erupted from the same vent, and have similar ages, paleomagnetic properties, potassium contents, and natural-gamma emissions. Sedimentary interbeds consist of fluvial, lacustrine, and eolian deposits of clay, silt, sand, and gravel that accumulated for hundreds to hundreds of thousands of years during periods of volcanic quiescence. Basalt and sediment are elevated by hundreds of feet with respect to rocks of equivalent age south and cast of the area, a relation that is attributed to past uplift at TAN. Basalt and sediment are unsaturated to a depth of about 200 feet below land surface. Rocks below this depth are saturated and make up the Snake River Plain aquifer. The effective base of the aquifer is at a depth of 885 feet below land surface. Detailed stratigraphic relations for the lowermost part of the aquifer in the depth interval from 500 to 885 feet were not determined because of insufficient data. The stratigraphy of basalt-flow groups and sedimentary interbeds in the upper 500 feet of the unsaturated zone and aquifer was determined from natural-gamma logs, lithologic logs, and well cores. Basalt cores were evaluated for potassium-argon ages, paleomagnetic properties, petrographic characteristics, and chemical composition. Stratigraphic control was provided by differences in ages, paleomagnetic properties, potassium content, and natural-gamma emissions of basalt-flow groups and sedimentary interbeds.

  11. Transient Inverse Calibration of Site-Wide Groundwater Model to Hanford Operational Impacts from 1943 to 1996--Alternative Conceptual Model Considering Interaction with Uppermost Basalt Confined Aquifer

    SciTech Connect (OSTI)

    Vermeul, Vincent R.; Cole, Charles R.; Bergeron, Marcel P.; Thorne, Paul D.; Wurstner, Signe K.

    2001-08-29

    The baseline three-dimensional transient inverse model for the estimation of site-wide scale flow parameters, including their uncertainties, using data on the transient behavior of the unconfined aquifer system over the entire historical period of Hanford operations, has been modified to account for the effects of basalt intercommunication between the Hanford unconfined aquifer and the underlying upper basalt confined aquifer. Both the baseline and alternative conceptual models (ACM-1) considered only the groundwater flow component and corresponding observational data in the 3-Dl transient inverse calibration efforts. Subsequent efforts will examine both groundwater flow and transport. Comparisons of goodness of fit measures and parameter estimation results for the ACM-1 transient inverse calibrated model with those from previous site-wide groundwater modeling efforts illustrate that the new 3-D transient inverse model approach will strengthen the technical defensibility of the final model(s) and provide the ability to incorporate uncertainty in predictions related to both conceptual model and parameter uncertainty. These results, however, indicate that additional improvements are required to the conceptual model framework. An investigation was initiated at the end of this basalt inverse modeling effort to determine whether facies-based zonation would improve specific yield parameter estimation results (ACM-2). A description of the justification and methodology to develop this zonation is discussed.

  12. Modeling of ground water aquifer remediation by pulsed pumping when contaminant transport is affected by physical, non-equilibrium sorption and desorption. Master's thesis

    SciTech Connect (OSTI)

    Caspers, J.L.

    1994-08-12

    This research postulates and demonstrates incorporating rate-limited sorption effects in the USGS SUTRA code for cleanup of a hypothetical sandy aquifer by pump-and-treat remediation methods. Contaminant transport is assumed to be affected by advection, dispersion, and rate-limited sorption/desorption. Sorption is assumed to be either equilibrium or rate-limited, with the rate-limitation described by either a first-order law, or by Fickian diffusion of contaminant through a spherical immobile pore region. Solutions are arrived at by split operator methods for the transport and one-dimensional Galerkin solutions for the solute concentration equations. The resulting model is tested against an analytical Laplace transform model for both first-order and Fickian diffusion methods in a radial pumping simulation. Model simulations are used to evaluate equilibrium, first-order and Fickian diffusion effects for pulsed and continuous pumping solutions within a hypothetical sandy aquifer. These show that equilibrium methods under-predicted rebound while first-order methods may both under and over predict rebound within the matrix for certain regions and may be equivalent to Fickian diffusion in equilibrium regimes for cleanup time prediction. Model simulations are then used to show the efficiency of pulsed pumping methods in cleanup mass extraction per pumped volume for a contaminated aquifer pump-and-treat remediation activity versus more conventional, continuous pumping methods.

  13. A comparative evaluation of conceptual models for the Snake River Plain aquifer at the Idaho Chemical Processing Plant, INEL

    SciTech Connect (OSTI)

    Prahl, C.J.

    1992-01-01

    Geologic and hydrologic data collected by the United States Geological Survey (USGS) are used to evaluate the existing ground water monitoring well network completed in the upper portion of the Snake River Plain aquifer (SRPA) beneath the Idaho Chemical Processing Plant (ICPP). The USGS data analyzed and compared in this study include: (a) lithologic, geophysical, and stratigraphic information, including the conceptual geologic models intrawell, ground water flow measurement (Tracejector tests) and (c) dedicated, submersible, sampling group elevations. Qualitative evaluation of these data indicate that the upper portion of the SRPA is both heterogeneous and anisotropic at the scale of the ICPP monitoring well network. Tracejector test results indicate that the hydraulic interconnection and spatial configuration of water-producing zones is extremely complex within the upper portion of the SRPA. The majority of ICPP monitoring wells currently are equipped to sample ground water only the upper lithostratigraphic intervals of the SRPA, primarily basalt flow groups E, EF, and F. Depth-specific hydrogeochemical sampling and analysis are necessary to determine if ground water quality varies significantly between the various lithostratigraphic units adjacent to individual sampling pumps.

  14. Environmental Controls on the Activity of Aquifer Microbial Communities in the 300 Area of the Hanford Site

    SciTech Connect (OSTI)

    Konopka, Allan; Plymale, Andrew E.; Carvajal, Denny A.; Lin, Xueju; McKinley, James P.

    2013-11-06

    Aquifer microbes in the 300 Area of the Hanford Site in southeastern Washington State, USA are periodically exposed to U(VI) concentrations that can range up to 10 ?M in small sediment fractures. Assays of 35 H-leucine incorporation indicated that both sediment-associated and planktonic microbes were metabolically active, and that organic C was growth-limiting in the sediments. Although bacteria suspended in native groundwater retained high activity when exposed to 100 ?M U(VI), they were inhibited by U(VI) < 1 ?M in synthetic groundwater that lacked added bicarbonate. Chemical speciation modeling suggested that positively-charged species and particularly (UO2)3(OH)5+ rose in concentration as more U(VI) was added to synthetic groundwater, but that carbonate complexes dominated U(VI) speciation in natural groundwater. U toxicity was relieved when increasing amounts of bicarbonate were added to synthetic groundwater containing 4.5 ?M U(VI). Pertechnetate, an oxyanion that is another contaminant of concern at the Hanford Site, was not toxic to groundwater microbes at concentrations up to 125 ?M.

  15. A sedimentological approach to hydrologic characterization: A detailed three-dimensional study of an outcrop of the Sierra Ladrones Formation, Albuquerque basin

    SciTech Connect (OSTI)

    Lohmann, R.C.

    1992-01-01

    Three-dimensional geologic outcrop studies which quantitatively describe the geologic architecture of deposits of a specific depositional environment are a necessary requirement for characterization of the permeability structure of an aquifer. The objective of this study is to address this need for quantitative, three-dimensional outcrop studies. For this study, a 10,000 m{sup 2} by 25 m high outcrop of Pliocene-Pleistocene Sierra Ladrones Formation located near Belen, New Mexico was mapped in detail, and the geologic architecture was quantified using geostatistical variogram analysis. In general, the information contained in this study should be useful for hydrologists working on the characterization of aquifers from similar depositional environments such as this one. However, for the permeability correlation study to be truly useful, the within-element correlation structure needs to be superimposed on the elements themselves instead of using mean log (k) values, as was done for this study. Such information is derived from outcrop permeability sampling such as the work of Davis (1990) and Goggin et al. (1988).

  16. EXPERIMENTAL DESIGN APPLICATIONS FOR MODELING AND ASSESSING CARBON DIOXIDE SEQUESTRATION IN SALINE AQUIFERS

    SciTech Connect (OSTI)

    Rogers, John

    2014-08-31

    This project was a computer modeling effort to couple reservoir simulation and ED/RSM using Sensitivity Analysis, Uncertainty Analysis, and Optimization Methods, to assess geologic, geochemical, geomechanical, and rock-fluid effects and factors on CO2 injectivity, capacity, and plume migration. The project objective was to develop proxy models to simplify the highly complex coupled geochemical and geomechanical models in the utilization and storage of CO2 in the subsurface. The goals were to investigate and prove the feasibility of the ED/RSM processes and engineering development, and bridge the gaps regarding the uncertainty and unknowns of the many geochemical and geomechanical interacting parameters in the development and operation of anthropogenic CO2 sequestration and storage sites. The bottleneck in this workflow is the high computational effort of reactive transport simulation models and large number of input variables to optimize with ED/RSM techniques. The project was not to develop the reactive transport, geomechanical, or ED/RSM software, but was to use what was commercially and/or publically available as a proof of concept to generate proxy or surrogate models. A detailed geologic and petrographic mineral assemblage and geologic structure of the doubly plunging anticline was defined using the USDOE RMOTC formations of interest data (e.g., Lower Sundance, Crow Mountain, Alcova Limestone, and Red Peak). The assemblage of 23 minerals was primarily developed from literature data and petrophysical (well log) analysis. The assemblage and structure was input into a commercial reactive transport simulator to predict the effects of CO2 injection and complex reactions with the reservoir rock. Significant impediments were encountered during the execution phase of the project. The only known commercial reactive transport simulator was incapable of simulating complex geochemistry modeled in this project. Significant effort and project funding was expended to

  17. Electrochemical formation of field emitters

    DOE Patents [OSTI]

    Bernhardt, Anthony F.

    1999-01-01

    Electrochemical formation of field emitters, particularly useful in the fabrication of flat panel displays. The fabrication involves field emitting points in a gated field emitter structure. Metal field emitters are formed by electroplating and the shape of the formed emitter is controlled by the potential imposed on the gate as well as on a separate counter electrode. This allows sharp emitters to be formed in a more inexpensive and manufacturable process than vacuum deposition processes used at present. The fabrication process involves etching of the gate metal and the dielectric layer down to the resistor layer, and then electroplating the etched area and forming an electroplated emitter point in the etched area.

  18. Petrophysical evaluation of subterranean formations

    DOE Patents [OSTI]

    Klein, James D; Schoderbek, David A; Mailloux, Jason M

    2013-05-28

    Methods and systems are provided for evaluating petrophysical properties of subterranean formations and comprehensively evaluating hydrate presence through a combination of computer-implemented log modeling and analysis. Certain embodiments include the steps of running a number of logging tools in a wellbore to obtain a variety of wellbore data and logs, and evaluating and modeling the log data to ascertain various petrophysical properties. Examples of suitable logging techniques that may be used in combination with the present invention include, but are not limited to, sonic logs, electrical resistivity logs, gamma ray logs, neutron porosity logs, density logs, NRM logs, or any combination or subset thereof.

  19. Formation Flying and Deformable Instruments

    SciTech Connect (OSTI)

    Rio, Yvon

    2009-05-11

    Astronomers have always attempted to build very stable instruments. They fight all that can cause mechanical deformation or image motion. This has led to well established technologies (autoguide, active optics, thermal control, tip/tilt correction), as well as observing methods based on the use of controlled motion (scanning, micro scanning, shift and add, chopping and nodding). Formation flying disturbs this practice. It is neither possible to reduce the relative motion to very small amplitudes, nor to control it at will. Some impacts on Simbol-X instrument design, and operation are presented.

  20. Interpretation of Flow Logs from Nevada Test Site Boreholes to Estimate Hydraulic conductivity Using Numerical Simulations Constrained by Single-Well Aquifer Tests

    SciTech Connect (OSTI)

    Garcia, C. Amanda; Halford, Keith J.; Laczniak, Randell J.

    2010-02-12

    Hydraulic conductivities of volcanic and carbonate lithologic units at the Nevada Test Site were estimated from flow logs and aquifer-test data. Borehole flow and drawdown were integrated and interpreted using a radial, axisymmetric flow model, AnalyzeHOLE. This integrated approach is used because complex well completions and heterogeneous aquifers and confining units produce vertical flow in the annular space and aquifers adjacent to the wellbore. AnalyzeHOLE simulates vertical flow, in addition to horizontal flow, which accounts for converging flow toward screen ends and diverging flow toward transmissive intervals. Simulated aquifers and confining units uniformly are subdivided by depth into intervals in which the hydraulic conductivity is estimated with the Parameter ESTimation (PEST) software. Between 50 and 150 hydraulic-conductivity parameters were estimated by minimizing weighted differences between simulated and measured flow and drawdown. Transmissivity estimates from single-well or multiple-well aquifer tests were used to constrain estimates of hydraulic conductivity. The distribution of hydraulic conductivity within each lithology had a minimum variance because estimates were constrained with Tikhonov regularization. AnalyzeHOLE simulated hydraulic-conductivity estimates for lithologic units across screened and cased intervals are as much as 100 times less than those estimated using proportional flow-log analyses applied across screened intervals only. Smaller estimates of hydraulic conductivity for individual lithologic units are simulated because sections of the unit behind cased intervals of the wellbore are not assumed to be impermeable, and therefore, can contribute flow to the wellbore. Simulated hydraulic-conductivity estimates vary by more than three orders of magnitude across a lithologic unit, indicating a high degree of heterogeneity in volcanic and carbonate-rock units. The higher water transmitting potential of carbonate-rock units relative

  1. XML Format for SESAME and LEOS

    SciTech Connect (OSTI)

    Durrenberger, J K; Neely, J R; Sterne, P A

    2009-04-29

    The objective of this document is to describe the XML format used by LLNL and LANL to represent the equation-of-state and related material information in the LEOS and SESAME data libraries. The primary purpose of this document is to describe a specific XML format for representing EOS data that is tailored to the nature of the underlying data and is amenable to conversion to both legacy SESAME and LEOS binary formats. The secondary purpose is to describe an XML format that lends itself to a 'natural' representation in a binary file format of the SESAME, pdb or hdf5 form so that this format and related tools can be used for the rapid and efficient development and implementation of prototype data structures. This document describes the XML format only. A working knowledge of LEOS and SESAME formats is assumed.

  2. Coring in deep hardrock formations

    SciTech Connect (OSTI)

    Drumheller, D.S.

    1988-08-01

    The United States Department of Energy is involved in a variety of scientific and engineering feasibility studies requiring extensive drilling in hard crystalline rock. In many cases well depths extend from 6000 to 20,000 feet in high-temperature, granitic formations. Examples of such projects are the Hot Dry Rock well system at Fenton Hill, New Mexico and the planned exploratory magma well near Mammoth Lakes, California. In addition to these programs, there is also continuing interest in supporting programs to reduce drilling costs associated with the production of geothermal energy from underground sources such as the Geysers area near San Francisco, California. The overall progression in these efforts is to drill deeper holes in higher temperature, harder formations. In conjunction with this trend is a desire to improve the capability to recover geological information. Spot coring and continuous coring are important elements in this effort. It is the purpose of this report to examine the current methods used to obtain core from deep wells and to suggest projects which will improve existing capabilities. 28 refs., 8 figs., 2 tabs.

  3. Coke formation in visbreaking process

    SciTech Connect (OSTI)

    Yan, T.Y. )

    1987-04-01

    Visbreaking is a mild cracking process primarily used to reduce residual oil viscosity and thus decrease the amount of cutter stock required for blending to heavy fuels specification. It can also be used to produce incremental quantities of gasoline, middle distillates and catalytic cracker feeds. This process was widely used in the 1930s and 1940s and became obsolete until a few years ago. When the need for increased conversion of residues to light products became desirable, visbreaking offered economic advantages to many refining schemes - especially in Western Europe. Between 1978-1981, Exxon brought on stream seven visbreakers ranging from 1900 to 9100 tons/SD capacity. In January 1983, the world-wide visbreaking capacity was over 2 MM B/SD. The visbreaking process and its application in refinery operations have been well described. In general, the process economics improve as the process severity is increased but it is limited by coke formation in the process. For this reason, they have studied the kinetics of coke formation in the visbreaking process.

  4. BAR FORMATION FROM GALAXY FLYBYS

    SciTech Connect (OSTI)

    Lang, Meagan; Holley-Bockelmann, Kelly; Sinha, Manodeep E-mail: k.holley@vanderbilt.edu

    2014-08-01

    Recently, both simulations and observations have revealed that flybysfast, one-time interactions between two galaxy halosare surprisingly common, nearing/comparable to galaxy mergers. Since these are rapid, transient events with the closest approach well outside the galaxy disk, it is unclear if flybys can transform the galaxy in a lasting way. We conduct collisionless N-body simulations of three coplanar flyby interactions between pure-disk galaxies to take a first look at the effects flybys have on disk structure, with particular focus on stellar bar formation. We find that some flybys are capable of inciting a bar with bars forming in both galaxies during our 1:1 interaction and in the secondary during our 10:1 interaction. The bars formed have ellipticities ? 0.5, sizes on the order of the host disk's scale length, and persist to the end of our simulations, ?5Gyr after pericenter. The ability of flybys to incite bar formation implies that many processes associated with secular bar evolution may be more closely tied with interactions than previously thought.

  5. Reduced-Order Model for the Geochemical Impacts of Carbon Dioxide...

    Office of Scientific and Technical Information (OSTI)

    Reduced-Order Model for the Geochemical Impacts of Carbon Dioxide, Brine and Trace Metal Leakage into an Unconfined, Oxidizing Carbonate Aquifer, Version 2.1 Bacon, Diana H. carbon...

  6. Treating nahcolite containing formations and saline zones

    DOE Patents [OSTI]

    Vinegar, Harold J

    2013-06-11

    A method for treating a nahcolite containing subsurface formation includes removing water from a saline zone in or near the formation. The removed water is heated using a steam and electricity cogeneration facility. The heated water is provided to the nahcolite containing formation. A fluid is produced from the nahcolite containing formation. The fluid includes at least some dissolved nahcolite. At least some of the fluid is provided to the saline zone.

  7. Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Buscheck, Thomas A.

    2012-01-01

    Active Management of Integrated Geothermal–CO2 Storage Reservoirs in Sedimentary Formations: An Approach to Improve Energy Recovery and Mitigate Risk : FY1 Final Report The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the producers with the need to manage reservoir overpressure to reduce the risks associated with overpressure, such as induced seismicity and CO2 leakage to overlying aquifers. This submittal contains input and output files of the reservoir model analyses. A reservoir-model "index-html" file was sent in a previous submittal to organize the reservoir-model input and output files according to sections of the FY1 Final Report to which they pertain. The recipient should save the file: Reservoir-models-inputs-outputs-index.html in the same directory that the files: Section2.1.*.tar.gz files are saved in.

  8. Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Buscheck, Thomas A.

    2000-01-01

    Active Management of Integrated Geothermal–CO2 Storage Reservoirs in Sedimentary Formations: An Approach to Improve Energy Recovery and Mitigate Risk: FY1 Final Report The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the producers with the need to manage reservoir overpressure to reduce the risks associated with overpressure, such as induced seismicity and CO2 leakage to overlying aquifers. This submittal contains input and output files of the reservoir model analyses. A reservoir-model "index-html" file was sent in a previous submittal to organize the reservoir-model input and output files according to sections of the FY1 Final Report to which they pertain. The recipient should save the file: Reservoir-models-inputs-outputs-index.html in the same directory that the files: Section2.1.*.tar.gz files are saved in.

  9. Electrochemical formation of field emitters

    DOE Patents [OSTI]

    Bernhardt, A.F.

    1999-03-16

    Electrochemical formation of field emitters, particularly useful in the fabrication of flat panel displays is disclosed. The fabrication involves field emitting points in a gated field emitter structure. Metal field emitters are formed by electroplating and the shape of the formed emitter is controlled by the potential imposed on the gate as well as on a separate counter electrode. This allows sharp emitters to be formed in a more inexpensive and manufacturable process than vacuum deposition processes used at present. The fabrication process involves etching of the gate metal and the dielectric layer down to the resistor layer, and then electroplating the etched area and forming an electroplated emitter point in the etched area. 12 figs.

  10. Engineering Model for Ash Formation

    Energy Science and Technology Software Center (OSTI)

    1994-12-02

    Ash deposition is controlled by the impaction and sticking of individual ash particles to heat transfer surfaces. Prediction of deposition therefore requires that the important factors in this process be predictable from coal and operational parameters. Coal combustion, boiler heat transfer, ash formation, ash particle aerodynamic, and ash particle sticking models are all essential steps in this process. The model described herein addresses the prediction of ash particle size and composition distributions based upon combustionmore » conditions and coal parameters. Key features of the model include a mineral redistribution routine to invert CCSEM mineralogical data, and a mineral interaction routine that simulates the conversion of mineral matter into ash during coal burning and yields ash particle size and composition distributions.« less

  11. Heating tar sands formations while controlling pressure

    DOE Patents [OSTI]

    Stegemeier, George Leo [Houston, TX; Beer, Gary Lee [Houston, TX; Zhang, Etuan [Houston, TX

    2010-01-12

    Methods for treating a tar sands formation are described herein. Methods may include heating at least a section of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. A pressure in the majority of the section may be maintained below a fracture pressure of the formation. The pressure in the majority of the section may be reduced to a selected pressure after the average temperature reaches a temperature that is above 240.degree. C. and is at or below pyrolysis temperatures of hydrocarbons in the section. At least some hydrocarbon fluids may be produced from the formation.

  12. Influence of Carbon and Microbial Community Priming on the Attenuation of Uranium in a Contaminated Floodplain Aquifer

    SciTech Connect (OSTI)

    Mouser, Paula J.; N'Guessan, A. Lucie; Qafoku, Nikolla; Sinha, M.; Williams, K. H.; Dangelmayr, M.; Resch, Charles T.; Peacock, Aaron D.; Wang, Zheming; Figueroa, Linda A.; Long, P. E.

    2015-07-01

    The capacity for subsurface sediments to sequester metal contaminants, such as uranium (U), and retain them after bioremediation efforts are completed is critical to site stewardship. Sediments enriched in natural organic matter are capable of sequestering significant quantities of U, but may also serve as sources to the aquifer, contributing to plume persistence. Two types of sediments were compared to better understand the mechanisms contributing to the sequestration and release of U in the presence of organic matter. Artificially bioreduced sediments were retrieved from a field experimental plot previously stimulated with acetate while naturally bioreduced sediments were collected from a location enriched in organic matter but never subject to acetate amendment. Batch incubations demonstrated that the artificially bioreduced sediments were primed to rapidly remove uranium from the groundwater whereas naturally bioreduced sediments initially released a sizeable portion of sediment U before U(VI)-removal commenced. Column experiments confirmed that U release persisted for 65 pore volumes in naturally bioreduced sediments, demonstrating the sink-source behavior of this sediment. Acetate addition to artificially bioreduced sediments shifted the microbial community from one dominated by sulfate-reducing bacteria within Desulfobacteraceae to the iron-reducing family Geobacteraceae and Firmicutes during U(VI) reduction. In contrast, initial Geobacteraceae communities innaturally reduced sediments were replaced by clone sequences with similarity to opportunistic Pseudomonas spp. during U release, while U(VI) removal occurred concurrent with enrichment of Firmicutes. These investigations stress the importance of characterizing zones with heterogeneous carbon pools at U contaminated sites prior to the determination of a remedial strategy.

  13. Dynamics of Microbial Community Composition and Function during In Situ Bioremediation of a Uranium-Contaminated Aquifer

    SciTech Connect (OSTI)

    Van Nostrand, Dr. Joy D.; Wu, Liyou; Wu, Weimin; Huang, Zhijian; Gentry, Terry J; Deng, Ye; Carley, Jack M; Carroll, Sue L; He, Zhili; Gu, Baohua; Luo, Jian; Criddle, Craig; Watson, David B; Jardine, Philip M; Marsh, Terence; Tiedje, James; Hazen, Terry; Zhou, Jizhong

    2011-01-01

    A pilot-scale system was established to examine the feasibility of in situ U(VI) immobilization at a highly contaminated aquifer (U.S. DOE Integrated Field Research Challenge site, Oak Ridge, TN). Ethanol was injected intermittently as an electron donor to stimulate microbial U(VI) reduction, and U(VI) concentrations fell to below the Environmental Protection Agency drinking water standard (0.03 mg liter 1). Microbial communities from three monitoring wells were examined during active U(VI) reduction and maintenance phases with GeoChip, a high-density, comprehensive functional gene array. The overall microbial community structure exhibited a considerable shift over the remediation phases examined. GeoChip-based analysis revealed that Fe(III)-reducing bacterial (FeRB), nitrate-reducing bacterial (NRB), and sulfate-reducing bacterial (SRB) functional populations reached their highest levels during the active U(VI) reduction phase (days 137 to 370), in which denitrification and Fe(III) and sulfate reduction occurred sequentially. A gradual decrease in these functional populations occurred when reduction reactions stabilized, suggesting that these functional populations could play an important role in both active U(VI) reduction and maintenance of the stability of reduced U(IV). These results suggest that addition of electron donors stimulated the microbial community to create biogeochemical conditions favorable to U(VI) reduction and prevent the reduced U(IV) from reoxidation and that functional FeRB, SRB, and NRB populations within this system played key roles in this process.

  14. Dynamics of microbial community composition and function during in-situ bioremediation of a uranium-contaminated aquifer

    SciTech Connect (OSTI)

    Nostrand, J.D. Van; Wu, L.; Wu, W.M.; Huang, A.; Gentry, T.J.; Deng, Y.; Carley, J.; Carrol, S.; He, Z.; Gu, B.; Luo, J.; Criddle, C.S.; Watson, D.B.; Jardine, P.M.; Marsh, T.L.; Tiedje, J.M.; Hazen, T.C.; Zhou, J.

    2010-08-15

    A pilot-scale system was established to examine the feasibility of in situ U(VI) immobilization at a highly contaminated aquifer (U.S. DOE Integrated Field Research Challenge site, Oak Ridge, TN). Ethanol was injected intermittently as an electron donor to stimulate microbial U(VI) reduction, and U(VI) concentrations fell to below the Environmental Protection Agency drinking water standard (0.03 mg liter{sup -1}). Microbial communities from three monitoring wells were examined during active U(VI) reduction and maintenance phases with GeoChip, a high-density, comprehensive functional gene array. The overall microbial community structure exhibited a considerable shift over the remediation phases examined. GeoChip-based analysis revealed that Fe(III)-reducing bacterial (FeRB), nitrate-reducing bacterial (NRB), and sulfate-reducing bacterial (SRB) functional populations reached their highest levels during the active U(VI) reduction phase (days 137 to 370), in which denitrification and Fe(III) and sulfate reduction occurred sequentially. A gradual decrease in these functional populations occurred when reduction reactions stabilized, suggesting that these functional populations could play an important role in both active U(VI) reduction and maintenance of the stability of reduced U(IV). These results suggest that addition of electron donors stimulated the microbial community to create biogeochemical conditions favorable to U(VI) reduction and prevent the reduced U(IV) from reoxidation and that functional FeRB, SRB, and NRB populations within this system played key roles in this process.

  15. Approaches to Quantify Potential Contaminant Transport in the Lower Carbonate Aquifer from Underground Nuclear Testing at Yucca Flat, Nevada National Security Site, Nye County, Nevada - 12434

    SciTech Connect (OSTI)

    Andrews, Robert W.; Birdie, Tiraz; Wilborn, Bill; Mukhopadhyay, Bimal

    2012-07-01

    Quantitative modeling of the potential for contaminant transport from sources associated with underground nuclear testing at Yucca Flat is an important part of the strategy to develop closure plans for the residual contamination. At Yucca Flat, the most significant groundwater resource that could potentially be impacted is the Lower Carbonate Aquifer (LCA), a regionally extensive aquifer that supplies a significant portion of the water demand at the Nevada National Security Site, formerly the Nevada Test Site. Developing and testing reasonable models of groundwater flow in this aquifer is an important precursor to performing subsequent contaminant transport modeling used to forecast contaminant boundaries at Yucca Flat that are used to identify potential use restriction and regulatory boundaries. A model of groundwater flow in the LCA at Yucca Flat has been developed. Uncertainty in this model, as well as other transport and source uncertainties, is being evaluated as part of the Underground Testing Area closure process. Several alternative flow models of the LCA in the Yucca Flat/Climax Mine CAU have been developed. These flow models are used in conjunction with contaminant transport models and source term models and models of contaminant transport from underground nuclear tests conducted in the overlying unsaturated and saturated alluvial and volcanic tuff rocks to evaluate possible contaminant migration in the LCA for the next 1,000 years. Assuming the flow and transport models are found adequate by NNSA/NSO and NDEP, the models will undergo a peer review. If the model is approved by NNSA/NSO and NDEP, it will be used to identify use restriction and regulatory boundaries at the start of the Corrective Action Decision Document Corrective Action Plan (CADD/CAP) phase of the Corrective Action Strategy. These initial boundaries may be revised at the time of the Closure Report phase of the Corrective Action Strategy. (authors)

  16. Floating insulated conductors for heating subsurface formations

    DOE Patents [OSTI]

    Burns, David; Goodwin, Charles R.

    2014-07-29

    A heating system for a subsurface formation includes a conduit located in a first opening in the subsurface formation. Three electrical conductors are located in the conduit. A return conductor is located inside the conduit. The return conductor is electrically coupled to the ends of the electrical conductors distal from the surface of the formation. Insulation is located inside the conduit. The insulation electrically insulates the three electrical conductors, the return conductor, and the conduit from each other.

  17. Heating tar sands formations to visbreaking temperatures

    DOE Patents [OSTI]

    Karanikas, John Michael; Colmenares, Tulio Rafael; Zhang, Etuan; Marino, Marian; Roes, Augustinus Wilhelmus Maria; Ryan, Robert Charles; Beer, Gary Lee; Dombrowski, Robert James; Jaiswal, Namit

    2009-12-22

    Methods for treating a tar sands formation are described herein. Methods may include heating at least a section of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. The heat may be controlled so that at least a majority of the section reaches an average temperature of between 200.degree. C. and 240.degree. C., which results in visbreaking of at least some hydrocarbons in the section. At least some visbroken hydrocarbon fluids may be produced from the formation.

  18. Treating tar sands formations with dolomite

    SciTech Connect (OSTI)

    Vinegar, Harold J.; Karanikas, John Michael

    2013-10-15

    A method for treating a karsted formation containing heavy hydrocarbons and dolomite includes providing heat to at least part of one or more karsted layers in the formation from one or more heaters located in the karsted layers. A temperature in at least one of the karsted layers is allowed to reach a decomposition temperature of dolomite in the formation. The dolomite is allowed to decompose and at least some hydrocarbons are produced from at least one of the karsted layers of the formation.

  19. REGULATORY COOPERATION COUNCIL - WORK PLANNING FORMAT: Natural...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    COUNCIL - WORK PLANNING FORMAT: Natural Gas Use in Transportation PDF icon RCC Workplan NGV.PDF More Documents & Publications REGULATORY COOPERATION COUNCIL - WORK PLANNING ...

  20. Hydrogen Adsorption Induces Interlayer Carbon Bond Formation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Adsorption Induces Interlayer Carbon Bond Formation in Supported Few-Layer ... that only a sub-monolayer amount of hydrogen adsorption on the topmost layer results ...

  1. Standard Format and Content for Emergency Plans

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21

    This volume addresses recommended emergency plan format and content for Operational Emergency Base Programs and Operational Emergency Hazardous Material Programs. Canceled by DOE G 151.1-3.

  2. Heating systems for heating subsurface formations

    DOE Patents [OSTI]

    Nguyen, Scott Vinh; Vinegar, Harold J.

    2011-04-26

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  3. Formation Testing Techniques | Open Energy Information

    Open Energy Info (EERE)

    Testing Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Formation Testing Techniques Details Activities (0) Areas (0) Regions (0)...

  4. Format requirements of thermal neutron scattering data in a nuclear data format to succeed the ENDF format

    SciTech Connect (OSTI)

    Brown, D.

    2014-03-31

    In November 2012, the Working Party on Evaluation Cooperation Subgroup 38 (WPEC-SG38) began with the task of developing a nuclear data format and supporting infrastructure to replace the now nearly 50 year old ENDF format. The first step in this process is to develop requirements for the new format and infrastructure. In this talk, I will review the status of ENDF's Thermal Scattering Law (TSL) formats as well as support for this data in the GND format (from which the new format is expected to evolve). Finally, I hope to begin a dialog with members of the thermal neutron scattering community so that their data needs can be accurately and easily accommodated by the new format and tools, as captured by the requirements document. During this discussion, we must keep in mind that the new tools and format must; Support what is in existing data files; Support new things we want to put in data files; and Be flexible enough for us to adapt it to future unanticipated challenges.

  5. Rock-brine chemical interactions. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-02-01

    The results of experimental interaction of powdered volcanic rock with aqueous solutions are presented at temperatures from 200 to 400/sup 0/C, 500 to 1000 bars fluid pressure, with reaction durations of approximately 30 days under controlled laboratory conditions. The aim of this research is to develop data on the kinetics and equilibria of rock solution interactions that will provide insight into the complex geochemical processes attending geothermal reservoir development, stimulation, and reinjection. The research was done in the Stanford Hydrothermal Lab using gold cell equipment of the Dickson design. This equipment inverts the solution rock mixture several times a minute to ensure thorough mixing. Solution samples were periodically withdrawn without interruption of the experimental conditions. The data from these experiments suggests a path dependent series of reactions by which geothermal fluids might evolve from meteoric or magmatic sources.

  6. Development Operations Hypersaline Geothermal Brine Utilization...

    Open Energy Info (EERE)

    Abstract NA Authors Whitescarver and Olin D. Published U.S. Department of Energy, 1984 Report Number NA DOI Not Provided Check for DOI availability: http:crossref.org...

  7. Advanced Technologies for Monitoring CO2 Saturation and Pore Pressure in Geologic Formations: Linking the Chemical and Physical Effects to Elastic and Transport Properties

    SciTech Connect (OSTI)

    Mavko, G.; Vanorio, T.; Vialle, S.; Saxena, N.

    2014-03-31

    advection: because of an efficient mass transfer of reactants and products, the fluid remains acidic, far from thermodynamical equilibrium and the dissolution of calcite is important. These conclusions are consistent with the lab observations. Sandstones from the Tuscaloosa formation in Mississippi were also subjected to injection under representative in situ stress and pore pressure conditions. Again, both P- and S-wave velocities decreased with injection. Time-lapse SEM images indicated permanent changes induced in the sandstone microstructure by chamosite dissolution upon injection of CO2-rich brine. After injection, the sandstone showed an overall cleaner microstructure. Two main changes are involved: (a) clay dissolution between grains and at the grain contact and (b) rearrangement of grains due to compaction under pressure Theoretical and empirical models were developed to quantify the elastic changes associated with injection. Permanent changes to the rock frame resulted in seismic velocity-porosity trends that mimic natural diagenetic changes. Hence, when laboratory measurments are not available for a candidate site, these trends can be estimated from depth trends in well logs. New theoretical equations were developed to predict the changes in elastic moduli upon substitution of pore-filling material. These equations reduce to Gassmann’s equations for the case of constant frame properties, low seismic frequencies, and fluid changes in the pore space. The new models also predict the change dissolution or precipitation of mineral, which cannot be described with the conventional Gassmann theory.

  8. Methods for forming wellbores in heated formations

    DOE Patents [OSTI]

    Guimerans, Rosalvina Ramona; Mansure, Arthur James

    2012-09-25

    A method for forming a wellbore in a heated formation includes flowing liquid cooling fluid to a bottom hole assembly in a wellbore in a heated formation. At least a portion of the liquid cooling fluid is vaporized at or near a region to be cooled. Vaporizing the liquid cooling fluid absorbs heat from the region to be cooled.

  9. Potential Impacts of Leakage from Black Rock Reservoir on the Hanford Site Unconfined Aquifer: Initial Hypothetical Simulations of Flow and Contaminant Transport

    SciTech Connect (OSTI)

    Freedman, Vicky L.

    2008-01-30

    Initial scoping calculations of the unconfined aquifer at the Hanford Site were carried out for the U.S. Bureau of Reclamation (USBR) to investigate the potential impacts on the Hanford unconfined aquifer that would result from leakage from the proposed Black Rock Reservoir to the west. Although impacts on groundwater flow and contaminant transport were quantified based on numerical simulation results, the investigation represented a qualitative assessment of the potential lateral recharge that could result in adverse effects on the aquifer. Because the magnitude of the potential leakage is unknown, hypothetical bounding calculations were performed. When a quantitative analysis of the magnitude of the potential recharge from Black Rock Reservoir is obtained, the hydrologic impacts analysis will be revisited. The analysis presented in this report represents initial bounding calculations. A maximum lateral recharge (i.e., upland flux) was determined in the first part of this study by executing steady-state flow simulations that raised the water table no higher than the elevation attained in the Central Plateau during the Hanford operational period. This metric was selected because it assumed a maximum remobilization of contaminants that existed under previous fully saturated conditions. Three steady-state flow fields were then used to analyze impacts to transient contaminant transport: a maximum recharge (27,000 acre-ft/yr), a no additional flux (365 acre-ft/yr), and an intermediate recharge case (16,000 acre-ft/yr). The transport behavior of four radionuclides was assessed for a 300 year simulation period with the three flow fields. The four radionuclides are tritium, iodine-129, technetium-99, and uranium-238. Transient flow and transport simulations were used to establish hypothetical concentration distributions in the subsurface. Using the simulated concentration distributions in 2005 as initial conditions for steady-state flow runs, simulations were executed to

  10. Potential Impacts of Leakage from Black Rock Reservoir on the Hanford Site Unconfined Aquifer: Initial Hypothetical Simulations of Flow and Contaminant Transport

    SciTech Connect (OSTI)

    Freedman, Vicky L.

    2007-03-09

    Initial scoping calculations of the unconfined aquifer at the Hanford Site were carried out for the U.S. Bureau of Reclamation (USBR) to investigate the potential impacts on the Hanford unconfined aquifer that would result from leakage from the proposed Black Rock Reservoir to the west. Although impacts on groundwater flow and contaminant transport were quantified based on numerical simulation results, the investigation represented a qualitative assessment of the potential lateral recharge that could result in adverse effects on the aquifer. Because the magnitude of the potential leakage is unknown, hypothetical bounding calculations were performed. When a quantitative analysis of the magnitude of the potential recharge from Black Rock Reservoir is obtained, the hydrologic impacts analysis will be revisited. The analysis presented in this report represent initial bounding calculations. A maximum lateral recharge (i.e., upland flux) was determined in the first part of this study by executing steady-state flow simulations that raised the water table no higher than the elevation attained in the Central Plateau during the Hanford operational period. This metric was selected because it assumed a maximum remobilization of contaminants that existed under previous fully saturated conditions. Three steady-state flow fields were then used to analyze impacts to transient contaminant transport: a maximum recharge (27,000 acre-ft/yr), a no additional flux (365 acre-ft/yr), and an intermediate recharge case (16,000 acre-ft/yr). The transport behavior of four radionuclides was assessed for a 300 year simulation period with the three flow fields. The four radionuclides are current contaminants of concern (COCs) in the Central Plateau and include tritium, iodine-129, technetium-99, and uranium-238. Transient flow and transport simulations were used to establish hypothetical concentration distributions in the subsurface. Using the simulated concentration distributions in 2005 as

  11. Method for laser drilling subterranean earth formations

    DOE Patents [OSTI]

    Shuck, Lowell Z.

    1976-08-31

    Laser drilling of subterranean earth formations is efficiently accomplished by directing a collimated laser beam into a bore hole in registry with the earth formation and transversely directing the laser beam into the earth formation with a suitable reflector. In accordance with the present invention, the bore hole is highly pressurized with a gas so that as the laser beam penetrates the earth formation the high pressure gas forces the fluids resulting from the drilling operation into fissures and pores surrounding the laser-drilled bore so as to inhibit deleterious occlusion of the laser beam. Also, the laser beam may be dynamically programmed with some time dependent wave form, e.g., pulsed, to thermally shock the earth formation for forming or enlarging fluid-receiving fissures in the bore.

  12. Microbial and Chemical Enhancement of In-Situ Carbon Mineralization in Geological Formation

    SciTech Connect (OSTI)

    Matter, J.; Chandran, K.

    2013-05-31

    Predictions of global energy usage suggest a continued increase in carbon emissions and rising concentrations of CO{sub 2} in the atmosphere unless major changes are made to the way energy is produced and used. Various carbon capture and storage (CCS) technologies are currently being developed, but unfortunately little is known regarding the fundamental characteristics of CO{sub 2}-mineral reactions to allow a viable in-situ carbon mineralization that would provide the most permanent and safe storage of geologically-injected CO{sub 2}. The ultimate goal of this research project was to develop a microbial and chemical enhancement scheme for in-situ carbon mineralization in geologic formations in order to achieve long-term stability of injected CO{sub 2}. Thermodynamic and kinetic studies of CO{sub 2}-mineral-brine systems were systematically performed to develop the in-situ mineral carbonation process that utilizes organic acids produced by a microbial reactor. The major participants in the project are three faculty members and their graduate and undergraduate students at the School of Engineering and Applied Science and at the Lamont-Doherty Earth Observatory at Columbia University: Alissa Park in Earth and Environmental Engineering & Chemical Engineering (PI), Juerg Matter in Earth and Environmental Science (Co-PI), and Kartik Chandran in Earth and Environmental Engineering (Co-PI). Two graduate students, Huangjing Zhao and Edris Taher, were trained as a part of this project as well as a number of graduate students and undergraduate students who participated part-time. Edris Taher received his MS degree in 2012 and Huangjing Zhao will defend his PhD on Jan. 15th, 2014. The interdisciplinary training provided by this project was valuable to those students who are entering into the workforce in the United States. Furthermore, the findings from this study were and will be published in referred journals to disseminate the results. The list of the papers is given at

  13. Natural Tracers and Multi-Scale Assessment of Caprock Sealing Behavior: A Case Study of the Kirtland Formation, San Juan Basin

    SciTech Connect (OSTI)

    Jason Heath; Brian McPherson; Thomas Dewers

    2011-03-15

    The assessment of caprocks for geologic CO{sub 2} storage is a multi-scale endeavor. Investigation of a regional caprock - the Kirtland Formation, San Juan Basin, USA - at the pore-network scale indicates high capillary sealing capacity and low permeabilities. Core and wellscale data, however, indicate a potential seal bypass system as evidenced by multiple mineralized fractures and methane gas saturations within the caprock. Our interpretation of {sup 4}He concentrations, measured at the top and bottom of the caprock, suggests low fluid fluxes through the caprock: (1) Of the total {sup 4}He produced in situ (i.e., at the locations of sampling) by uranium and thorium decay since deposition of the Kirtland Formation, a large portion still resides in the pore fluids. (2) Simple advection-only and advection-diffusion models, using the measured {sup 4}He concentrations, indicate low permeability ({approx}10-20 m{sup 2} or lower) for the thickness of the Kirtland Formation. These findings, however, do not guarantee the lack of a large-scale bypass system. The measured data, located near the boundary conditions of the models (i.e., the overlying and underlying aquifers), limit our testing of conceptual models and the sensitivity of model parameterization. Thus, we suggest approaches for future studies to better assess the presence or lack of a seal bypass system at this particular site and for other sites in general.

  14. Photogeneration of active formate decomposition catalysts to produce hydrogen from formate and water

    DOE Patents [OSTI]

    King, Jr., Allen D.; King, Robert B.; Sailers, III, Earl L.

    1983-02-08

    A process for producing hydrogen from formate and water by photogenerating an active formate decomposition catalyst from transition metal carbonyl precursor catalysts at relatively low temperatures and otherwise mild conditions is disclosed. Additionally, this process may be expanded to include the generation of formate from carbon monoxide and hydroxide such that the result is the water gas shift reaction.

  15. Trace Metal Source Terms in Carbon Sequestration Environments

    SciTech Connect (OSTI)

    Karamalidis, Athanasios; Torres, Sharon G.; Hakala, Jacqueline A.; Shao, Hongbo; Cantrell, Kirk J.; Carroll, Susan A.

    2013-01-01

    ABSTRACT: Carbon dioxide sequestration in deep saline and depleted oil geologic formations is feasible and promising; however, possible CO2 or CO2-saturated brine leakage to overlying aquifers may pose environmental and health impacts. The purpose of this study was to experimentally define to provide a range of concentrations that can be used as the trace element source term for reservoirs and leakage pathways in risk simulations. Storage source terms for trace metals are needed to evaluate the impact of brines leaking into overlying drinking water aquifers. The trace metal release was measured from cements and sandstones, shales, carbonates, evaporites, and basalts from the Frio, In Salah, Illinois Basin, Decatur, Lower Tuscaloosa, Weyburn-Midale, Bass Islands, and Grand Ronde carbon sequestration geologic formations. Trace metal dissolution was tracked by measuring solution concentrations over time under conditions (e.g., pressures, temperatures, and initial brine compositions) specific to the sequestration projects. Existing metrics for maximum contaminant levels (MCLs) for drinking water as defined by the U.S. Environmental Protection Agency (U.S. EPA) were used to categorize the relative significance of metal concentration changes in storage environments because of the presence of CO2. Results indicate that Cr and Pb released from sandstone reservoir and shale cap rocks exceed the MCLs byan order of magnitude, while Cd and Cu were at or below drinking water thresholds. In carbonate reservoirs As exceeds the MCLs by an order of magnitude, while Cd, Cu, and Pb were at or below drinking water standards. Results from this study can be used as a reasonable estimate of the trace element source term for reservoirs and leakage pathways in risk simulations to further evaluate the impact of leakage on groundwater quality.

  16. Magnetic fields and galactic star formation rates

    SciTech Connect (OSTI)

    Loo, Sven Van; Tan, Jonathan C.; Falle, Sam A. E. G.

    2015-02-10

    The regulation of galactic-scale star formation rates (SFRs) is a basic problem for theories of galaxy formation and evolution: which processes are responsible for making observed star formation rates so inefficient compared to maximal rates of gas content divided by dynamical timescale? Here we study the effect of magnetic fields of different strengths on the evolution of giant molecular clouds (GMCs) within a kiloparsec patch of a disk galaxy and resolving scales down to ?0.5 pc. Including an empirically motivated prescription for star formation from dense gas (n{sub H}>10{sup 5} cm{sup ?3}) at an efficiency of 2% per local free-fall time, we derive the amount of suppression of star formation by magnetic fields compared to the nonmagnetized case. We find GMC fragmentation, dense clump formation, and SFR can be significantly affected by the inclusion of magnetic fields, especially in our strongest investigated B-field case of 80 ?G. However, our chosen kiloparsec-scale region, extracted from a global galaxy simulation, happens to contain a starbursting cloud complex that is only modestly affected by these magnetic fields and likely requires internal star formation feedback to regulate its SFR.

  17. Carbon nanotube formation by laser direct writing

    SciTech Connect (OSTI)

    Wu, Y.-T.; Su, H.-C.; Tsai, C.-M.; Liu, K.-L.; Chen, G.-D.; Huang, R.-H.; Yew, T.-R.

    2008-07-14

    This letter presents carbon nanotube (CNT) formation by laser direct writing using 248 nm KrF excimer pulsed laser in air at room temperature, which was applied to irradiate amorphous carbon (a-C) assisted by Ni catalysts underneath for the transformation of carbon species into CNTs. The CNTs were synthesized under appropriate combination of laser energy density and a-C thickness. The growth mechanism and key parameters to determine the success of CNT formation were also discussed. The demonstration of the CNT growth by laser direct writing in air at room temperature opens an opportunity of in-position CNT formation at low temperatures.

  18. Help:FormattingResults | Open Energy Information

    Open Energy Info (EERE)

    them, including the format declaration. UL BioPower Atlas and BioFuels Atlas Biomass Energy Data Book CLIMWAT 2.0 CROPWAT 8.0 ... further results ask:Category:Tools...

  19. The NeXus data format

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Könnecke, Mark; Akeroyd, Frederick A.; Bernstein, Herbert J.; Brewster, Aaron S.; Campbell, Stuart I.; Clausen, Björn; Cottrell, Stephen; Hoffmann, Jens Uwe; Jemian, Pete R.; Männicke, David; et al

    2015-01-30

    NeXus is an effort by an international group of scientists to define a common data exchange and archival format for neutron, X-ray and muon experiments. NeXus is built on top of the scientific data format HDF5 and adds domain-specific rules for organizing data within HDF5 files, in addition to a dictionary of well defined domain-specific field names. The NeXus data format has two purposes. First, it defines a format that can serve as a container for all relevant data associated with a beamline. This is a very important use case. Second, it defines standards in the form of application definitionsmore » for the exchange of data between applications. NeXus provides structures for raw experimental data as well as for processed data.« less

  20. The NeXus data format

    SciTech Connect (OSTI)

    Könnecke, Mark; Akeroyd, Frederick A.; Bernstein, Herbert J.; Brewster, Aaron S.; Campbell, Stuart I.; Clausen, Björn; Cottrell, Stephen; Hoffmann, Jens Uwe; Jemian, Pete R.; Männicke, David; Osborn, Raymond; Peterson, Peter F.; Richter, Tobias; Suzuki, Jiro; Watts, Benjamin; Wintersberger, Eugen; Wuttke, Joachim

    2015-01-30

    NeXus is an effort by an international group of scientists to define a common data exchange and archival format for neutron, X-ray and muon experiments. NeXus is built on top of the scientific data format HDF5 and adds domain-specific rules for organizing data within HDF5 files, in addition to a dictionary of well defined domain-specific field names. The NeXus data format has two purposes. First, it defines a format that can serve as a container for all relevant data associated with a beamline. This is a very important use case. Second, it defines standards in the form of application definitions for the exchange of data between applications. NeXus provides structures for raw experimental data as well as for processed data.

  1. Resonance formation in photon-photon collisions

    SciTech Connect (OSTI)

    Gidal, G.

    1988-08-01

    Recent experimental progress on resonance formation in photon-photon collisions is reviewed with particular emphasis on the pseudoscalar and tensor nonents and on the ..gamma gamma..* production of spin-one resonances. 37 refs., 17 figs., 5 tabs.

  2. Extragalactic Background Light from Hierarchical Galaxy Formation...

    Office of Scientific and Technical Information (OSTI)

    APA Chicago Bibtex Export Metadata Endnote Excel CSV XML Save to My Library Send to Email Send to Email Email address: Content: Close Send Cite: MLA Format Close Cite: APA ...

  3. result formats | OpenEI Community

    Open Energy Info (EERE)

    queries developer Google maps maps multicolor result formats results Semantic Mediawiki Hi all, Recently, a couple of people on OpenEI have asked me how to do compound (or...

  4. Extragalactic Background Light from Hierarchical Galaxy Formation...

    Office of Scientific and Technical Information (OSTI)

    Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...

  5. Situ microbial plugging process for subterranean formations

    DOE Patents [OSTI]

    McInerney, Michael J.; Jenneman, Gary E.; Knapp, Roy M.; Menzie, Donald E.

    1985-12-17

    Subterranean paths of water flow are impeded or changed by the facilitation of microbial growth therein. Either indigenous bacterial growth may be stimulated with nutrients or the formation may be first seeded with bacteria or their spores which inhibit fluid flow after proliferation. These methods and bacteria are usable to alter the flow of water in a waterflooded oil formation and to impede the outflow of contaminated water.

  6. Extragalactic Background Light from Hierarchical Galaxy Formation:

    Office of Scientific and Technical Information (OSTI)

    Gamma-ray Attenuation up to the Epoch of Cosmic Reionization and the First Stars (Journal Article) | SciTech Connect Journal Article: Extragalactic Background Light from Hierarchical Galaxy Formation: Gamma-ray Attenuation up to the Epoch of Cosmic Reionization and the First Stars Citation Details In-Document Search Title: Extragalactic Background Light from Hierarchical Galaxy Formation: Gamma-ray Attenuation up to the Epoch of Cosmic Reionization and the First Stars Authors: Inoue,

  7. Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Buscheck, Thomas A.

    2012-01-01

    Active Management of Integrated Geothermal–CO2 Storage Reservoirs in Sedimentary Formations: An Approach to Improve Energy Recovery and Mitigate Risk: FY1 Final Report The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the producers with the need to manage reservoir overpressure to reduce the risks associated with overpressure, such as induced seismicity and CO2 leakage to overlying aquifers. Based on a range of well schemes, techno-economic analyses of the levelized cost of electricity (LCOE) are conducted to determine the economic benefits of integrating GCS with geothermal energy production. In addition to considering CO2 injection, reservoir analyses are conducted for nitrogen (N2) injection to investigate the potential benefits of incorporating N2 injection with integrated geothermal-GCS, as well as the use of N2 injection as a potential pressure-support and working-fluid option. Phase 1 includes preliminary environmental risk assessments of integrated geothermal-GCS, with the focus on managing reservoir overpressure. Phase 1 also includes an economic survey of pipeline costs, which will be applied in Phase 2 to the analysis of CO2 conveyance costs for techno-economics analyses of integrated geothermal-GCS reservoir sites. Phase 1 also includes a geospatial GIS survey of potential integrated geothermal-GCS reservoir sites, which will be used in Phase 2 to conduct sweet-spot analyses that determine where promising geothermal resources are co-located in sedimentary settings conducive to safe CO2 storage, as well as being in adequate proximity to large stationary CO2 sources.

  8. Star formation relations in nearby molecular clouds

    SciTech Connect (OSTI)

    Evans, Neal J. II; Heiderman, Amanda; Vutisalchavakul, Nalin

    2014-02-20

    We test some ideas for star formation relations against data on local molecular clouds. On a cloud by cloud basis, the relation between the surface density of star formation rate and surface density of gas divided by a free-fall time, calculated from the mean cloud density, shows no significant correlation. If a crossing time is substituted for the free-fall time, there is even less correlation. Within a cloud, the star formation rate volume and surface densities increase rapidly with the corresponding gas densities, faster than predicted by models using the free-fall time defined from the local density. A model in which the star formation rate depends linearly on the mass of gas above a visual extinction of 8 mag describes the data on these clouds, with very low dispersion. The data on regions of very massive star formation, with improved star formation rates based on free-free emission from ionized gas, also agree with this linear relation.

  9. Baseline Mapping Study of the Steed Pond Aquifer and Crouch Branch Confining Unit Beneath A/M Area, Savannah River Site, Aiken, South Carolina

    SciTech Connect (OSTI)

    JACKSON, DENNISG.

    1998-09-01

    This report presents the results of a baseline mapping project conducted for the Environmental Restoration Department at Savannah River Site. The purpose of this report is to map the distribution of mud (clay and silt-sized material) within each hydrogeologic unit from the surface down to the top of the Crouch Branch aquifer beneath the A/M Area. The distribution of mud layers and variations in the percentage of clay and silt within the strata is extremely important in order to fully characterize the extent of DNAPL beneath the A/M Area and determine the geometry of the contaminant plumes emanating from them. Precision mapping of these layers can aid in locating areas where contamination is most likely to have migrated into the saturated zone. In addition, this information can be used to refine the current remediation systems or assist in designing new remedial systems.

  10. Geologic Controls of Hydraulic Conductivity in the Snake River Plain Aquifer At and Near the Idaho National Engineering and Environmental Laboratory, Idaho

    SciTech Connect (OSTI)

    S. R. Anderson; M. A. Kuntz; L. C. Davis

    1999-02-01

    The effective hydraulic conductivity of basalt and interbedded sediment that compose the Snake River Plain aquifer at and near the Idaho National Engineering and Environmental Laboratory (INEEL) ranges from about 1.0x10 -2 to 3.2x10 4 feet per day (ft/d). This six-order-of-magnitude range of hydraulic conductivity was estimated from single-well aquifer tests in 114 wells, and is attributed mainly to the physical characteristics and distribution of basalt flows and dikes. Hydraulic conductivity is greatest in thin pahoehoe flows and near-vent volcanic deposits. Hydraulic conductivity is least in flows and deposits cut by dikes. Estimates of hydraulic conductivity at and near the INEEL are similar to those measured in similar volcanic settings in Hawaii. The largest variety of rock types and the greatest range of hydraulic conductivity are in volcanic rift zones, which are characterized by numerous aligned volcanic vents and fissures related to underlying dikes. Three broad categories of hydraulic conductivity corresponding to six general types of geologic controls can be inferred from the distribution of wells and vent corridors. Hydraulic conductivity of basalt flows probably is increased by localized fissures and coarse mixtures of interbedded sediment, scoria, and basalt rubble. Hydraulic conductivity of basalt flows is decreased locally by abundant alteration minerals of probable hydrothermal origin. Hydraulic conductivity varies as much as six orders of magnitude in a single vent corridor and varies from three to five orders of magnitude within distances of 500 to 1,000 feet. Abrupt changes in hydraulic conductivity over short distances suggest the presence of preferential pathways and local barriers that may greatly affect the movement of ground water and the dispersion of radioactive and chemical wastes downgradient from points of waste disposal.

  11. Integrated reservoir characterization to define a hydrodynamic model in the Misoa formation, Eocene, Center Lake Field, Maracaibo Basin, Venezuela

    SciTech Connect (OSTI)

    Azuaje, V.; Gil, J.

    1996-08-01

    The Center Lake Field is one of the most important light oil reservoirs in the Maracaibo Basin. Field production of {open_quotes}C{close_quotes} sandstones, Misoa formation, Eocene, started in 1968. Actual cumulative production is 630 MMBls, which represents 23% of the original oil in place. Flank water injection programs have been executed since 1976; however, reservoirs within this field still have shown pressure and production declination. A multidisciplinary study has been conducted to produce an updated hydrodynamic model which matches the static and dynamic behavior of the reservoirs. An integrated interpretation team has merged geological, geophysical and engineering data and criteria to generate an updated and consistent interpretation of today`s performance of reservoirs. The integration of a 3D seismic survey with a sequence- stratigraphy analysis, petrophysical and production data allowed us to determine a new structural and stratigraphic framework. The first important conclusion is that active aquifer is not located at the flanks of the structure, as traditionally worked out. Instead, a water-bottom drive system was interpreted and validated with production data so a different strategy for water injection was recommended. The latter interpretation restricted the injection to those areas where rock volume calculation, permeability, porosity and depositional environment make it suitable and profitable. A pattern injection program is going to be developed in C-4-X.46 reservoir and 21.6 MMBls additional recovery is expected in respect to the old production scheme.

  12. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... in the Parachute Creek Member of the Green River Formation, as the most promising ... This new and complete understanding the aquifer?s areal extent, thickness, water chemistry...

  13. Elimination of formate production in Clostridium thermocellum

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rydzak, Thomas; Lynd, Lee R.; Guss, Adam M.

    2015-07-11

    We study the ability of Clostridium thermocellum to rapidly degrade cellulose and ferment resulting hydrolysis products into ethanol makes it a promising platform organism for cellulosic biofuel production via consolidated bioprocessing. Currently, however, ethanol yield are far below theoretical maximum due to branched product pathways that divert carbon and electrons towards formate, H2, lactate, acetate, and secreted amino acids. To redirect carbon and electron flux away from formate, pyruvate:formate lyase (pfl) and respective PFL-activating enzyme were deleted. Formate production in the resulting Δpfl strain was eliminated and acetate production decreased by 50% on both complex and defined medium. Growth ratemore » of Δpfl decreased by 2.9-fold on defined medium and diauxic growth was observed on complex medium. Supplementation of defined medium with 2 mM formate restored Δpfl growth rate to 80% of the parent strain. Finally, we discuss the role of pfl in metabolic engineering strategies and C1 metabolism.« less

  14. TEMPORAL SELF-ORGANIZATION IN GALAXY FORMATION

    SciTech Connect (OSTI)

    Cen, Renyue

    2014-04-20

    We report on the discovery of a relation between the number of star formation (SF) peaks per unit time, ?{sub peak}, and the size of the temporal smoothing window function, ?t, used to define the peaks: ?{sub peak}??t {sup 1} {sup } {sup ?} (? ? 1.618). This relation holds over the range of ?t = 10-1000Myr that can be reliably computed here, using a large sample of galaxies obtained from a state-of-the-art cosmological hydrodynamic simulation. This means that the temporal distribution of SF peaks in galaxies as a population is fractal with a Hausdorff fractal dimension equal to ? 1. This finding reveals, for the first time, that the superficially chaotic process of galaxy formation is underlined by temporal self-organization up to at least one gigayear. It is tempting to suggest that, given the known existence of spatial fractals (such as the power-law two-point function of galaxies), there is a joint spatio-temporal self-organization in galaxy formation. From an observational perspective, it will be urgent to devise diagnostics to probe the SF histories of galaxies with good temporal resolution to facilitate a test of this prediction. If confirmed, it would provide unambiguous evidence for a new picture of galaxy formation that is interaction driven, cooperative, and coherent in and between time and space. Unravelling its origin may hold the key to understanding galaxy formation.

  15. Creating and maintaining a gas cap in tar sands formations

    DOE Patents [OSTI]

    Vinegar, Harold J. (Bellaire, TX); Karanikas, John Michael (Houston, TX); Dinkoruk, Deniz Sumnu (Houston, TX); Wellington, Scott Lee (Bellaire, TX)

    2010-03-16

    Methods for treating a tar sands formation are disclosed herein. Methods for treating a tar sands formation may include providing heat to at least part of a hydrocarbon layer in the formation from one or more heaters located in the formation. Pressure may be allowed to increase in an upper portion of the formation to provide a gas cap in the upper portion. At least some hydrocarbons are produced from a lower portion of the formation.

  16. Inhibition of coke formation in pyrolysis furnaces

    SciTech Connect (OSTI)

    Tong, Y.; Poindexter, M.K.; Rowe, C.T.

    1995-12-31

    Coke formation in pyrolysis furnaces, which thermally convert hydrocarbons to ethylene as well as other useful products, adversely affects product yields, causes furnace down time for coke removal, and shortens furnace coil life. A phosphorus-based chemical treatment program was developed to inhibit the coke formation. The anticoking performance of the phosphorus-based treatment program was studied using a bench scale coking rate measurement apparatus. The programs`s influence on coke morphology and reactor surface was addressed using SEM/EDX surface characterization techniques. For comparison, similar studies were carried out with sulfur-containing species which are conventionally used in industrial practice as furnace additives. The present work demonstrated that the phosphorus-based treatment program provided an efficient and durable surface passivation against coke formation.

  17. In situ oxidation of subsurface formations

    DOE Patents [OSTI]

    Beer, Gary Lee; Mo, Weijian; Li, Busheng; Shen, Chonghui

    2011-01-11

    Methods and systems for treating a hydrocarbon containing formation described herein include providing heat to a first portion of the formation from a plurality of heaters in the first portion, producing produced through one or more production wells in a second portion of the formation, reducing or turning off heat provided to the first portion after a selected time, providing an oxidizing fluid through one or more of the heater wells in the first portion, providing heat to the first portion and the second portion through oxidation of at least some hydrocarbons in the first portion, and producing fluids through at least one of the production wells in the second portion. The produced fluids may include at least some oxidized hydrocarbons produced in the first portion.

  18. STAR FORMATION IN TWO LUMINOUS SPIRAL GALAXIES

    SciTech Connect (OSTI)

    Hunter, Deidre A.; Ashburn, Allison; Wright, Teresa; Elmegreen, Bruce G.; Rubin, Vera C.; Jzsa, Gyula I. G.; Struve, Christian

    2013-10-01

    We examined star formation in two very luminous (M{sub V} = 22 to 23) Sc-type spiral galaxies, NGC 801 and UGC 2885, using ultra-deep H? images. We combine these H? images with UBV and Two-Micron All-Sky Survey JHK images and H I maps to explore the star formation characteristics of disk galaxies at high luminosity. H? traces star formation in these galaxies to 4-6 disk scale lengths, but the lack of detection of H? further out is likely due to the loss of Lyman continuum photons. Considering gravitational instabilities alone, we find that the gas and stars in the outer regions are marginally stable in an average sense, but considering dissipative gas and radial and azimuthal forcing, the outer regions are marginally unstable to forming spiral arms. Star formation is taking place in spiral arms, which are regions of locally higher gas densities. Furthermore, we have traced smooth exponential stellar disks over four magnitudes in V-band surface brightness and 4-6 disk scale lengths, in spite of a highly variable gravitational instability parameter. Thus, gravitational instability thresholds do not seem relevant to the stellar disk. One possibility for creating an exponential disk is that the molecular cloud densities and star formation rates have exponential profiles and this fact forces the stellar disk to build up such a profile. Another possibility is that the stellar disk is continuously adjusted to an exponential shape regardless of the star formation profile, for example, through global dynamical processes that scatter stars. However, such scattering processes are only known to operate in spiral systems, in which case they cannot explain the same dilemma of smooth exponential disks observed in dwarf irregular galaxies.

  19. Density Functional Theory Study of Surface Carbonate Formation...

    Office of Scientific and Technical Information (OSTI)

    Density Functional Theory Study of Surface Carbonate Formation on BaO(001) Citation Details In-Document Search Title: Density Functional Theory Study of Surface Carbonate Formation ...

  20. Raman and FTIR Studies on Nanostructure Formation on Silicon...

    Office of Scientific and Technical Information (OSTI)

    Raman and FTIR Studies on Nanostructure Formation on Silicon Carbide Citation Details In-Document Search Title: Raman and FTIR Studies on Nanostructure Formation on Silicon Carbide ...

  1. Mixed-mode diesel HCCI with External Mixture Formation: Preliminary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mixed-mode diesel HCCI with External Mixture Formation: Preliminary Results Mixed-mode diesel HCCI with External Mixture Formation: Preliminary Results 2003 DEER Conference ...

  2. Microbial-mediated method for metal oxide nanoparticle formation...

    Office of Scientific and Technical Information (OSTI)

    MLA APA Chicago Bibtex Export Metadata Endnote Excel CSV XML Send to Email Send to Email Email address: Content: Close Send Cite: MLA Format Close Cite: APA Format ...

  3. Signals from dark atom formation in halos (Journal Article) ...

    Office of Scientific and Technical Information (OSTI)

    Signals from dark atom formation in halos Prev Next Title: Signals from dark atom formation in halos Authors: Pearce, Lauren ; Petraki, Kalliopi ; Kusenko, Alexander ...

  4. A study on chemical interactions between waste fluid, formation...

    Office of Scientific and Technical Information (OSTI)

    formation water, and host rock during deep well injection Citation Details In-Document Search Title: A study on chemical interactions between waste fluid, formation water, and host ...

  5. Category:Formation Testing Techniques | Open Energy Information

    Open Energy Info (EERE)

    Formation Testing Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Formation Testing Techniques page? For detailed...

  6. Multifunctional, Inorganic-Filled Separators for Large Format...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Multifunctional, Inorganic-Filled Separators for Large Format, Li-ion Batteries Multifunctional, Inorganic-Filled Separators for Large Format, Li-ion Batteries...

  7. Formation of Compact Clusters from High Resolution Hybrid Cosmological...

    Office of Scientific and Technical Information (OSTI)

    Formation of Compact Clusters from High Resolution Hybrid Cosmological Simulations Citation Details In-Document Search Title: Formation of Compact Clusters from High Resolution ...

  8. Bowing of the defect formation energy in semiconductor alloys...

    Office of Scientific and Technical Information (OSTI)

    Bowing of the defect formation energy in semiconductor alloys Prev Next Title: Bowing of the defect formation energy in semiconductor alloys Authors: Ma, Jie ; Wei, Su-Huai ...

  9. Metal Nanostructure Formation on Graphene: Weak versus Strong...

    Office of Scientific and Technical Information (OSTI)

    Metal Nanostructure Formation on Graphene: Weak versus Strong Bonding Citation Details In-Document Search Title: Metal Nanostructure Formation on Graphene: Weak versus Strong...

  10. Formation of Hard Power Laws in the Energetic Particle Spectra...

    Office of Scientific and Technical Information (OSTI)

    Formation of Hard Power Laws in the Energetic Particle Spectra Resulting from Relativistic Magnetic Reconnection Citation Details In-Document Search Title: Formation of Hard Power ...

  11. The Formation of Pioneer Plant Projects in Chemical Processing...

    Office of Environmental Management (EM)

    The Formation of Pioneer Plant Projects in Chemical Processing Firms The Formation of Pioneer Plant Projects in Chemical Processing Firms This report should provide DOE and the ...

  12. Tribal Utility Formation Forum | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility Formation Forum Tribal Utility Formation Forum July 27, 2015 Pueblo Cultural Center 2401 12th St. NW Albuquerque, NM 87104 The 11th in a series of planned U.S. Department of Energy (DOE) Office of Indian Energy-sponsored strategic energy development forums, this Tribal Leader Forum focused on the tribal utility as a structure for long-term economic growth and meeting the needs of tribal communities. The forum gave tribal leaders and staff an opportunity to interact with other Tribes,

  13. Induction heaters used to heat subsurface formations

    DOE Patents [OSTI]

    Nguyen, Scott Vinh; Bass, Ronald M.

    2012-04-24

    A heating system for a subsurface formation includes an elongated electrical conductor located in the subsurface formation. The electrical conductor extends between at least a first electrical contact and a second electrical contact. A ferromagnetic conductor at least partially surrounds and at least partially extends lengthwise around the electrical conductor. The electrical conductor, when energized with time-varying electrical current, induces sufficient electrical current flow in the ferromagnetic conductor such that the ferromagnetic conductor resistively heats to a temperature of at least about 300.degree. C.

  14. Creating fluid injectivity in tar sands formations

    DOE Patents [OSTI]

    Stegemeier, George Leo; Beer, Gary Lee; Zhang, Etuan

    2012-06-05

    Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons including mobilized hydrocarbons are produced from the portion.

  15. Creating fluid injectivity in tar sands formations

    DOE Patents [OSTI]

    Stegemeier, George Leo; Beer, Gary Lee; Zhang, Etuan

    2010-06-08

    Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons are produced from the portion.

  16. Aromatics oxidation and soot formation in flames

    SciTech Connect (OSTI)

    Howard, J.B.; Pope, C.J.; Shandross, R.A.; Yadav, T.

    1993-12-01

    This project is concerned with the kinetics and mechanisms of aromatics oxidation and soot and fullerenes formation in flames. The scope includes detailed measurements of profiles of stable and radical species concentrations in low-pressure one-dimensional premixed flames. Intermediate species identifications and mole fractions, fluxes, and net reaction rates calculated from the measured profiles are used to test postulated reaction mechanisms. Particular objectives are to identify and to determine or confirm rate constants for the main benzene oxidation reactions in flames, and to characterize fullerenes and their formation mechanisms and kinetics.

  17. Parallel heater system for subsurface formations

    DOE Patents [OSTI]

    Harris, Christopher Kelvin (Houston, TX); Karanikas, John Michael (Houston, TX); Nguyen, Scott Vinh (Houston, TX)

    2011-10-25

    A heating system for a subsurface formation is disclosed. The system includes a plurality of substantially horizontally oriented or inclined heater sections located in a hydrocarbon containing layer in the formation. At least a portion of two of the heater sections are substantially parallel to each other. The ends of at least two of the heater sections in the layer are electrically coupled to a substantially horizontal, or inclined, electrical conductor oriented substantially perpendicular to the ends of the at least two heater sections.

  18. RAPID/Roadmap/19-CO-h | Open Energy Information

    Open Energy Info (EERE)

    and Laramie-Fox Hills aquifers) is a geologic formation in which aquifers lie on top of each other in layers with confining layers separating the aquifers. The ground...

  19. RAPID/Roadmap/19-CO-b | Open Energy Information

    Open Energy Info (EERE)

    and Laramie-Fox Hills aquifers) is a geologic formation in which aquifers lie on top of each other in layers with confining layers separating the aquifers. The ground...

  20. Low temperature synthesis of methyl formate

    DOE Patents [OSTI]

    Mahajan, Devinder; Slegeir, William A.; Sapienza, Richard S.; O'Hare, Thomas E.

    1986-01-01

    A gas reaction process for the preferential production of methyl formate over the co-production of methanol wherein the reactant ratio of CO/H.sub.2 is upgraded and this reaction takes place at low temperatures of 50.degree.-150.degree. C. and moderate pressures of .gtoreq.100 psi.

  1. Formation of magnetic discontinuities through viscous relaxation

    SciTech Connect (OSTI)

    Kumar, Sanjay; Bhattacharyya, R.; Smolarkiewicz, P. K.

    2014-05-15

    According to Parker's magnetostatic theorem, tangential discontinuities in magnetic field, or current sheets (CSs), are generally unavoidable in an equilibrium magnetofluid with infinite electrical conductivity and complex magnetic topology. These CSs are due to a failure of a magnetic field in achieving force-balance everywhere and preserving its topology while remaining in a spatially continuous state. A recent work [Kumar, Bhattacharyya, and Smolarkiewicz, Phys. Plasmas 20, 112903 (2013)] demonstrated this CS formation utilizing numerical simulations in terms of the vector magnetic field. The magnetohydrodynamic simulations presented here complement the above work by demonstrating CS formation by employing a novel approach of describing the magnetofluid evolution in terms of magnetic flux surfaces instead of the vector magnetic field. The magnetic flux surfaces being the possible sites on which CSs develop, this approach provides a direct visualization of the CS formation, helpful in understanding the governing dynamics. The simulations confirm development of tangential discontinuities through a favorable contortion of magnetic flux surfaces, as the magnetofluid undergoes a topology-preserving viscous relaxation from an initial non-equilibrium state with twisted magnetic field. A crucial finding of this work is in its demonstration of CS formation at spatial locations away from the magnetic nulls.

  2. Cu(II) promotes amyloid pore formation

    SciTech Connect (OSTI)

    Zhang, Hangyu; Rochet, Jean-Christophe; Stanciu, Lia A.

    2015-08-14

    The aggregation of α-synuclein is associated with dopamine neuron death in Parkinson's disease. There is controversy in the field over the question of which species of the aggregates, fibrils or protofibrils, are toxic. Moreover, compelling evidence suggested the exposure to heavy metals to be a risk of PD. Nevertheless, the mechanism of metal ions in promoting PD remains unclear. In this research, we investigated the structural basis of Cu(II) induced aggregation of α-synuclein. Using transmission electron microscopy experiments, Cu(II) was found to promote in vitro aggregation of α-synuclein by facilitating annular protofibril formation rather than fibril formation. Furthermore, neuroprotective baicalein disaggregated annular protofibrils accompanied by considerable decrease of β-sheet content. These results strongly support the hypothesis that annular protofibrils are the toxic species, rather than fibrils, thereby inspiring us to search novel therapeutic strategies for the suppression of the toxic annular protofibril formation. - Highlights: • Cu(II) promoted the annular protofibril formation of α-synuclein in vitro. • Cu(II) postponed the in vitro fibrillization of α-synuclein. • Neuroprotective baicalein disaggregated annular protofibrils.

  3. ACOUSTIC FORMING FOR ENHANCED DEWATERING AND FORMATION

    SciTech Connect (OSTI)

    Cyrus K Aidun

    2007-11-30

    The next generation of forming elements based on acoustic excitation to increase drainage and enhances formation both with on-line control and profiling capabilities has been investigated in this project. The system can be designed and optimized based on the fundamental experimental and computational analysis and investigation of acoustic waves in a fiber suspension flow and interaction with the forming wire.

  4. TIME-VARYING DYNAMICAL STAR FORMATION RATE

    SciTech Connect (OSTI)

    Lee, Eve J.; Chang, Philip; Murray, Norman

    2015-02-10

    We present numerical evidence of dynamic star formation in which the accreted stellar mass grows superlinearly with time, roughly as t {sup 2}. We perform simulations of star formation in self-gravitating hydrodynamic and magnetohydrodynamic turbulence that is continuously driven. By turning the self-gravity of the gas in the simulations on or off, we demonstrate that self-gravity is the dominant physical effect setting the mass accretion rate at early times before feedback effects take over, contrary to theories of turbulence-regulated star formation. We find that gravitational collapse steepens the density profile around stars, generating the power-law tail on what is otherwise a lognormal density probability distribution function. Furthermore, we find turbulent velocity profiles to flatten inside collapsing regions, altering the size-line width relation. This local flattening reflects enhancements of turbulent velocity on small scales, as verified by changes to the velocity power spectra. Our results indicate that gas self-gravity dynamically alters both density and velocity structures in clouds, giving rise to a time-varying star formation rate. We find that a substantial fraction of the gas that forms stars arrives via low-density flows, as opposed to accreting through high-density filaments.

  5. IMPACTS OF BIOFILM FORMATION ON CELLULOSE FERMENTATION

    SciTech Connect (OSTI)

    Leschine, Susan

    2009-10-31

    This project addressed four major areas of investigation: i) characterization of formation of Cellulomonas uda biofilms on cellulose; ii) characterization of Clostridium phytofermentans biofilm development; colonization of cellulose and its regulation; iii) characterization of Thermobifida fusca biofilm development; colonization of cellulose and its regulation; and iii) description of the architecture of mature C. uda, C. phytofermentans, and T. fusca biofilms. This research is aimed at advancing understanding of biofilm formation and other complex processes involved in the degradation of the abundant cellulosic biomass, and the biology of the microbes involved. Information obtained from these studies is invaluable in the development of practical applications, such as the single-step bioconversion of cellulose-containing residues to fuels and other bioproducts. Our results have clearly shown that cellulose-decomposing microbes rapidly colonize cellulose and form complex structures typical of biofilms. Furthermore, our observations suggest that, as cells multiply on nutritive surfaces during biofilms formation, dramatic cell morphological changes occur. We speculated that morphological changes, which involve a transition from rod-shaped cells to more rounded forms, might be more apparent in a filamentous microbe. In order to test this hypothesis, we included in our research a study of biofilm formation by T. fusca, a thermophilic cellulolytic actinomycete commonly found in compost. The cellulase system of T. fusca has been extensively detailed through the work of David Wilson and colleagues at Cornell, and also, genome sequence of a T. fusca strain has been determine by the DOE Joint Genome Institute. Thus, T. fusca is an excellent subject for studies of biofilm development and its potential impacts on cellulose degradation. We also completed a study of the chitinase system of C. uda. This work provided essential background information for understanding how C. uda

  6. The in-situ decontamination of sand and gravel aquifers by chemically enhanced solubilization of multiple-compound DNAPLs with surfactant solutions: Phase 1 -- Laboratory and pilot field-scale testing and Phase 2 -- Solubilization test and partitioning and interwell tracer tests. Final report

    SciTech Connect (OSTI)

    1997-10-24

    Laboratory, numerical simulation, and field studies have been conducted to assess the potential use of micellar-surfactant solutions to solubilize chlorinated solvents contaminating sand and gravel aquifers. Ninety-nine surfactants were screened for their ability to solubilize trichloroethene (TCE), perchloroethylene (PCE), and carbon tetrachloride (CTET). The field test was conducted in the alluvial aquifer which is located 20 to 30 meters beneath a vapor degreasing operation at Paducah Gaseous Diffusion Plant. This aquifer has become contaminated with TCE due to leakage of perhaps 40,000 liters of TCE, which has generated a plume of dissolved TCE extending throughout an area of approximately 3 km{sup 2} in the aquifer. Most of the TCE is believed to be present in the overlying lacustrine deposits and in the aquifer itself as a dense, non-aqueous phase liquid, or DNAPL. The objective of the field test was to assess the efficacy of the surfactant for in situ TCE solubilization. Although the test demonstrated that sorbitan monooleate was unsuitable as a solubilizer in this aquifer, the single-well test was demonstrated to be a viable method for the in situ testing of surfactants or cosolvents prior to proceeding to full-scale remediation.

  7. Power systems utilizing the heat of produced formation fluid

    DOE Patents [OSTI]

    Lambirth, Gene Richard

    2011-01-11

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method includes treating a hydrocarbon containing formation. The method may include providing heat to the formation; producing heated fluid from the formation; and generating electricity from at least a portion of the heated fluid using a Kalina cycle.

  8. Varying heating in dawsonite zones in hydrocarbon containing formations

    DOE Patents [OSTI]

    Vinegar, Harold J.; Xie, Xueying; Miller, David Scott

    2009-07-07

    A method for treating an oil shale formation comprising dawsonite includes assessing a dawsonite composition of one or more zones in the formation. Heat from one or more heaters is provided to the formation such that different amounts of heat are provided to zones with different dawsonite compositions. The provided heat is allowed to transfer from the heaters to the formation. Fluids are produced from the formation.

  9. Low voltage arc formation in railguns

    DOE Patents [OSTI]

    Hawke, R.S.

    1985-08-05

    A low voltage plasma arc is first established across the rails behind the projectile by switching a low voltage high current source across the rails to establish a plasma arc by vaporizing a fuse mounted on the back of the projectile, maintaining the voltage across the rails below the railgun breakdown voltage to prevent arc formation ahead of the projectile. After the plasma arc has been formed behind the projectile a discriminator switches the full energy bank across the rails to accelerate the projectile. A gas gun injector may be utilized to inject a projectile into the breech of a railgun. The invention permits the use of a gas gun or gun powder injector and an evacuated barrel without the risk of spurious arc formation in front of the projectile.

  10. Low voltage arc formation in railguns

    DOE Patents [OSTI]

    Hawke, Ronald S.

    1987-01-01

    A low voltage plasma arc is first established across the rails behind the projectile by switching a low voltage high current source across the rails to establish a plasma arc by vaporizing a fuse mounted on the back of the projectile, maintaining the voltage across the rails below the railgun breakdown voltage to prevent arc formation ahead of the projectile. After the plasma arc has been formed behind the projectile a discriminator switches the full energy bank across the rails to accelerate the projectile. A gas gun injector may be utilized to inject a projectile into the breech of a railgun. The invention permits the use of a gas gun or gun powder injector and an evacuated barrel without the risk of spurious arc formation in front of the projectile.

  11. Low voltage arc formation in railguns

    DOE Patents [OSTI]

    Hawke, R.S.

    1987-11-17

    A low voltage plasma arc is first established across the rails behind the projectile by switching a low voltage high current source across the rails to establish a plasma arc by vaporizing a fuse mounted on the back of the projectile, maintaining the voltage across the rails below the railgun breakdown voltage to prevent arc formation ahead of the projectile. After the plasma arc has been formed behind the projectile a discriminator switches the full energy bank across the rails to accelerate the projectile. A gas gun injector may be utilized to inject a projectile into the breech of a railgun. The invention permits the use of a gas gun or gun powder injector and an evacuated barrel without the risk of spurious arc formation in front of the projectile. 2 figs.

  12. Nanodot formation induced by femtosecond laser irradiation

    SciTech Connect (OSTI)

    Abere, M. J.; Kang, M.; Goldman, R. S.; Yalisove, S. M. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Chen, C. [Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109 (United States); Rittman, D. R. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Phillips, J. D. [Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109 (United States); Torralva, B. [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2014-10-20

    The femtosecond laser generation of ZnSe nanoscale features on ZnSe surfaces was studied. Irradiation with multiple exposures produces 10100?nm agglomerations of nanocrystalline ZnSe while retaining the original single crystal structure of the underlying material. The structure of these nanodots was verified using a combination of scanning transmission electron microscopy, scanning electron microscopy, and atomic force microscopy. The nanodots continue to grow hours after irradiation through a combination of bulk and surface diffusion. We suggest that in nanodot formation the result of ultrafast laser induced point defect formation is more than an order of magnitude below the ZnSe ultrafast melt threshold fluence. This unique mechanism of point defect injection will be discussed.

  13. Carboxylic acid accelerated formation of diesters

    DOE Patents [OSTI]

    Tustin, Gerald Charles; Dickson, Todd Jay

    1998-01-01

    This invention pertains to accelerating the rate of formation of 1,1-dicarboxylic esters from the reaction of an aldehyde with a carboxylic acid anhydride or a ketene in the presence of a non-iodide containing a strong Bronsted acid catalyst by the addition of a carboxylic acid at about one bar pressure and between about 0.degree. and 80.degree. C. in the substantial absence of a hydrogenation or carbonylation catalyst.

  14. Carboxylic acid accelerated formation of diesters

    DOE Patents [OSTI]

    Tustin, G.C.; Dickson, T.J.

    1998-04-28

    This invention pertains to accelerating the rate of formation of 1,1-dicarboxylic esters from the reaction of an aldehyde with a carboxylic acid anhydride or a ketene in the presence of a non-iodide containing a strong Bronsted acid catalyst by the addition of a carboxylic acid at about one bar pressure and between about 0 and 80 C in the substantial absence of a hydrogenation or carbonylation catalyst.

  15. Enthalpy of formation of gallium nitride

    SciTech Connect (OSTI)

    Ranade, M.R.; Tessier, F.; Navrotsky, A.; Leppert, V.J.; Risbud, S.H.; DiSalvo, F.J.; Balkas, C.M.

    2000-05-04

    A major discrepancy in the literature concerning the enthalpy of formation of GaN has been resolved using oxidative oxide melt solution calorimetry. Four samples of differing nitrogen contents were measured by dropping them into molten 3Na{sub 2}O{center_dot}4MoO{sub 3} in a calorimeter at 975 K with oxygen gas bubbling through the solvent. The samples were characterized by X-ray diffraction, chemical analysis, transmission electron microscopy, particle size analysis, and BET measurements. The enthalpy of drop solution (kJ/g) varied approximately linearly with nitrogen content. Extrapolated to stoichiometric GaN, the data yield a value of {minus}156.8 {+-} 16.0 kJ/mol for the standard enthalpy of formation from the elements at 298 K. The relatively large error reflects the deviation of individual points from the straight line rather than uncertainties in each set of data for a given sample. This new directly measured enthalpy of formation is in excellent agreement with that obtained from the temperature dependence of the equilibrium pressure of nitrogen over GaN, {minus}157.7 kJ/mol, measured by Madar et al. and Karpinski and Porowski. This value of {minus}156.8 kJ/mol should replace the commonly tabulated value of {minus}110 kJ/mol determined by Hahn and Juza using combustion calorimetry on an uncharacterized sample over 50 years ago.

  16. Single trip completion of spaced formations

    SciTech Connect (OSTI)

    Vann, R.R.; Brieger, E.F.

    1986-09-23

    A method is described of perforating two spaced-apart formations, which consists of: positioning a first perforating gun in a borehole adjacent to a first formation and a second perforating gun in the borehole adjacent to a second formation; detonating the charges of the first gun to create a pressure shock wave, the pressure shock wave being generated by application of the explosive force from firing the first gun to a movable wall closing one end of a column of fluid; directing the pressure shock wave to means for detonating the charges of the second gun; and detonating the charges of the second gun in response to the pressure shock wave. An apparatus is described for completing a well, comprising; first perforating means for perforating one portion of the well; second perforating means for perforating another portion of the well; means for transmitting a fluid pulse upon detonation of the first perforating means; and means for receiving the fluid pulse to actuate the detonation of the second perforating means.

  17. The in-situ decontamination of sand and gravel aquifers by chemically enhanced solubilization of multiple-component DNAPLS with surfactant solutions. Topical report

    SciTech Connect (OSTI)

    1995-01-01

    Laboratory, numerical simulation, and field studies have been conducted to assess the potential use of micellar-surfactant solutions to solubilize chlorinated solvents contaminating sand and gravel aquifers. Laboratory studies were conducted at the State University of New York at Buffalo (SUNY) while numerical simulation and field work were undertaken by INTERA Inc. in collaboration with Martin Marietta Energy Systems Inc. at the Paducah Gaseous Diffusion Plant (PGDP) in Kentucky. Ninety-nine surfactants were screened for their ability to solubilize trichloroethene (TCE), perchloroethylene (PCE), and carbon tetrachloride (CTET). Ten of these were capable of solubilizing TCE to concentrations greater than 15,000 mg/L, compared to its aqueous solubility of 1,100 mg/L. Four surfactants were identified as good solubilizers of all three chlorinated solvents. Of these, a secondary alcohol ethoxylate was the first choice for in situ testing because of its excellent solubilizing ability and its low propensity to sorb. However, this surfactant did not meet the Commonwealth of Kentucky`s acceptance criteria. Consequently, it was decided to use a surfactant approved for use by the Food and Drug Administration as a food-grade additive. As a 1% micellar-surfactant solution, this sorbitan monooleate has a solubilization capacity of 16,000 mg TCE/L, but has a higher propensity to sorb to clays than has the alcohol ethoxylate.

  18. User manual for AQUASTOR: a computer model for cost analysis of aquifer thermal energy storage coupled with district heating or cooling systems. Volume I. Main text

    SciTech Connect (OSTI)

    Huber, H.D.; Brown, D.R.; Reilly, R.W.

    1982-04-01

    A computer model called AQUASTOR was developed for calculating the cost of district heating (cooling) using thermal energy supplied by an aquifer thermal energy storage (ATES) system. The AQUASTOR model can simulate ATES district heating systems using stored hot water or ATES district cooling systems using stored chilled water. AQUASTOR simulates the complete ATES district heating (cooling) system, which consists of two principal parts: the ATES supply system and the district heating (cooling) distribution system. The supply system submodel calculates the life-cycle cost of thermal energy supplied to the distribution system by simulating the technical design and cash flows for the exploration, development, and operation of the ATES supply system. The distribution system submodel calculates the life-cycle cost of heat (chill) delivered by the distribution system to the end-users by simulating the technical design and cash flows for the construction and operation of the distribution system. The model combines the technical characteristics of the supply system and the technical characteristics of the distribution system with financial and tax conditions for the entities operating the two systems into one techno-economic model. This provides the flexibility to individually or collectively evaluate the impact of different economic and technical parameters, assumptions, and uncertainties on the cost of providing district heating (cooling) with an ATES system. This volume contains the main text, including introduction, program description, input data instruction, a description of the output, and Appendix H, which contains the indices for supply input parameters, distribution input parameters, and AQUASTOR subroutines.

  19. Field Test Report: Preliminary Aquifer Test Characterization Results for Well 299-W15-225: Supporting Phase I of the 200-ZP-1 Groundwater Operable Unit Remedial Design

    SciTech Connect (OSTI)

    Spane, Frank A.; Newcomer, Darrell R.

    2009-09-23

    This report examines the hydrologic test results for both local vertical profile characterization and large-scale hydrologic tests associated with a new extraction well (well 299-W15-225) that was constructed during FY2009 for inclusion within the future 200-West Area Groundwater Treatment System that is scheduled to go on-line at the end of FY2011. To facilitate the analysis of the large-scale hydrologic test performed at newly constructed extraction well 299-W15-225 (C7017; also referred to as EW-1 in some planning documents), the existing 200-ZP-1 interim pump-and-treat system was completely shut-down ~1 month before the performance of the large-scale hydrologic test. Specifically, this report 1) applies recently developed methods for removing barometric pressure fluctuations from well water-level measurements to enhance the detection of hydrologic test and pump-and-treat system effects at selected monitor wells, 2) analyzes the barometric-corrected well water-level responses for a preliminary determination of large-scale hydraulic properties, and 3) provides an assessment of the vertical distribution of hydraulic conductivity in the vicinity of newly constructed extraction well 299-W15-225. The hydrologic characterization approach presented in this report is expected to have universal application for meeting the characterization needs at other remedial action sites located within unconfined and confined aquifer systems.

  20. Production from multiple zones of a tar sands formation

    DOE Patents [OSTI]

    Karanikas, John Michael; Vinegar, Harold J

    2013-02-26

    A method for treating a tar sands formation includes providing heat to at least part of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. The heat is allowed to transfer from the heaters to at least a portion of the formation. Fluids are produced from the formation through at least one production well that is located in at least two zones in the formation. The first zone has an initial permeability of at least 1 darcy. The second zone has an initial of at most 0.1 darcy. The two zones are separated by a substantially impermeable barrier.

  1. RAPID DUST FORMATION IN NOVAE: THE SPEED CLASSFORMATION TIMESCALE CORRELATION EXPLAINED

    SciTech Connect (OSTI)

    Williams, S. C.; Bode, M. F.; Darnley, M. J.; Evans, A.; Zubko, V.; Shafter, A. W.

    2013-11-10

    Observations show that the time of onset of dust formation in classical novae depends strongly on their speed class, with dust typically taking longer to form in slower novae. Using empirical relationships between speed class, luminosity and ejection velocity, it can be shown that dust formation timescale is expected to be essentially independent of speed class. However, following a nova outburst the spectrum of the central hot source evolves, with an increasing proportion of the radiation being emitted short-ward of the Lyman limit. The rate at which the spectrum evolves also depends on the speed class. We have therefore refined the simple model by assuming photons at energies higher than the Lyman limit are absorbed by neutral hydrogen gas internal to the dust formation sites, therefore preventing these photons reaching the nucleation sites. With this refinement the dust formation timescale is theoretically dependent on speed class and the results of our theoretical modification agree well with the observational data. We consider two types of carbon-based dust, graphite and amorphous carbon, with both types producing similar relationships. Our results can be used to predict when dust will form in a nova of a given speed class and hence when observations should optimally be taken to detect the onset of dust formation.

  2. Bistatic SAR: Signal Processing and Image Formation.

    SciTech Connect (OSTI)

    Wahl, Daniel E.; Yocky, David A.

    2014-10-01

    This report describes the significant processing steps that were used to take the raw recorded digitized signals from the bistatic synthetic aperture RADAR (SAR) hardware built for the NCNS Bistatic SAR project to a final bistatic SAR image. In general, the process steps herein are applicable to bistatic SAR signals that include the direct-path signal and the reflected signal. The steps include preprocessing steps, data extraction to for a phase history, and finally, image format. Various plots and values will be shown at most steps to illustrate the processing for a bistatic COSMO SkyMed collection gathered on June 10, 2013 on Kirtland Air Force Base, New Mexico.

  3. Solar cell contact formation using laser ablation

    DOE Patents [OSTI]

    Harley, Gabriel; Smith, David D.; Cousins, Peter John

    2014-07-22

    The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline materiat layer; and forming conductive contacts in the plurality of contact holes.

  4. Method For Screening Microcrystallizations For Crystal Formation

    DOE Patents [OSTI]

    Santarsiero, Bernard D. , Stevens, Raymond C. , Schultz, Peter G. , Jaklevic, Joseph M. , Yegian, Derek T. , Cornell, Earl W. , Nordmeyer, Robert A.

    2003-10-07

    A method is provided for performing array microcrystallizations to determine suitable crystallization conditions for a molecule, the method comprising: forming an array of microcrystallizations, each microcrystallization comprising a drop comprising a mother liquor solution whose composition varies within the array and a molecule to be crystallized, the drop having a volume of less than 1 microliter; storing the array of microcrystallizations under conditions suitable for molecule crystals to form in the drops in the array; and detecting molecule crystal formation in the drops by taking images of the drops.

  5. Solar cell contact formation using laser ablation

    DOE Patents [OSTI]

    Harley, Gabriel; Smith, David; Cousins, Peter

    2012-12-04

    The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline material layer; and forming conductive contacts in the plurality of contact holes.

  6. Solar cell contact formation using laser ablation

    SciTech Connect (OSTI)

    Harley, Gabriel; Smith, David D.; Cousins, Peter John

    2015-07-21

    The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline material layer; and forming conductive contacts in the plurality of contact holes.

  7. Interoperability format translation and transformation between IFC architectural design file and simulation file formats

    DOE Patents [OSTI]

    Chao, Tian-Jy; Kim, Younghun

    2015-01-06

    Automatically translating a building architecture file format (Industry Foundation Class) to a simulation file, in one aspect, may extract data and metadata used by a target simulation tool from a building architecture file. Interoperability data objects may be created and the extracted data is stored in the interoperability data objects. A model translation procedure may be prepared to identify a mapping from a Model View Definition to a translation and transformation function. The extracted data may be transformed using the data stored in the interoperability data objects, an input Model View Definition template, and the translation and transformation function to convert the extracted data to correct geometric values needed for a target simulation file format used by the target simulation tool. The simulation file in the target simulation file format may be generated.

  8. Interoperability format translation and transformation between IFC architectural design file and simulation file formats

    DOE Patents [OSTI]

    Chao, Tian-Jy; Kim, Younghun

    2015-02-03

    Automatically translating a building architecture file format (Industry Foundation Class) to a simulation file, in one aspect, may extract data and metadata used by a target simulation tool from a building architecture file. Interoperability data objects may be created and the extracted data is stored in the interoperability data objects. A model translation procedure may be prepared to identify a mapping from a Model View Definition to a translation and transformation function. The extracted data may be transformed using the data stored in the interoperability data objects, an input Model View Definition template, and the translation and transformation function to convert the extracted data to correct geometric values needed for a target simulation file format used by the target simulation tool. The simulation file in the target simulation file format may be generated.

  9. Development of Large Format Lithium Ion Cells with Higher Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Large Format Lithium Ion Cells with Higher Energy Density Exceeding 500WhL Development of Large Format Lithium Ion Cells with Higher Energy Density Exceeding 500WhL 2012 DOE ...

  10. Upper Bound on the First Star Formation History (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Upper Bound on the First Star Formation History Citation Details In-Document Search Title: Upper Bound on the First Star Formation History You are accessing a document from the ...

  11. OSTIblog Articles in the Green River Formation Topic | OSTI,...

    Office of Scientific and Technical Information (OSTI)

    Green River Formation Topic Out of the past and into the future by Kathy Chambers 17 May, ... The Green River Formation in the United States records 6 million years of Eocene ...

  12. On the Lack of Evolution in Galaxy Star Formation Efficiency...

    Office of Scientific and Technical Information (OSTI)

    On the Lack of Evolution in Galaxy Star Formation Efficiency Citation Details In-Document Search Title: On the Lack of Evolution in Galaxy Star Formation Efficiency You are ...

  13. An amorphous phase formation at palladium / silicon oxide (Pd...

    Office of Scientific and Technical Information (OSTI)

    An amorphous phase formation at palladium silicon oxide (PdSiOsub x) interface ... Title: An amorphous phase formation at palladium silicon oxide (PdSiOsub x) interface ...

  14. A Nano Surface Icephobic Coating Delays Ice Formation | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nano Surface Icephobic Coating Delays Ice Formation Click to email this to a friend (Opens ... A Nano Surface Icephobic Coating Delays Ice Formation Azar Alizadeh 2012.03.08 Hi folks, ...

  15. Spontaneous Formation of a Nonuniform Chiral Spin Liquid in a...

    Office of Scientific and Technical Information (OSTI)

    Spontaneous Formation of a Nonuniform Chiral Spin Liquid in a Moat-Band Lattice Citation Details In-Document Search Title: Spontaneous Formation of a Nonuniform Chiral Spin Liquid ...

  16. Signals from dark atom formation in halos (Journal Article) ...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Journal Article: Signals from dark atom formation in halos Citation Details In-Document Search Title: Signals from dark atom formation in halos ...

  17. Reversible Sigma C-C Bond Formation Between Phenanthroline Ligands...

    Office of Scientific and Technical Information (OSTI)

    Reversible Sigma C-C Bond Formation Between Phenanthroline Ligands Activated by (C5Me5)2Yb Citation Details In-Document Search Title: Reversible Sigma C-C Bond Formation Between ...

  18. Age of the Coso Formation Inyo County California | Open Energy...

    Open Energy Info (EERE)

    the Coso indicates that the Coso Formation contains strata at least as old as 6.0 m.y. (million years) and no younger than 2.5 m.y. Within the Coso Formation, Blancan fossils...

  19. REVISITING JOVIAN-RESONANCE INDUCED CHONDRULE FORMATION

    SciTech Connect (OSTI)

    Nagasawa, M.; Tanaka, K. K.; Tanaka, H.; Nakamoto, T.; Miura, H.; Yamamoto, T.

    2014-10-10

    It is proposed that planetesimals perturbed by Jovian mean-motion resonances are the source of shock waves that form chondrules. It is considered that this shock-induced chondrule formation requires the velocity of the planetesimal relative to the gas disk to be on the order of ? 7 km s{sup 1} at 1AU. In previous studies on planetesimal excitation, the effects of Jovian mean-motion resonance together with the gas drag were investigated, but the velocities obtained were at most 8 km s{sup 1} in the asteroid belt, which is insufficient to account for the ubiquitous existence of chondrules. In this paper, we reexamine the effect of Jovian resonances and take into account the secular resonance in the asteroid belt caused by the gravity of the gas disk. We find that the velocities relative to the gas disk of planetesimals a few hundred kilometers in size exceed 12 km s{sup 1}, and that this is achieved around the 3:1 mean-motion resonance. The heating region is restricted to a relatively narrowband between 1.5AU and 3.5AU. Our results suggest that chondrules were produced effectively in the asteroid region after Jovian formation. We also find that many planetesimals are scattered far beyond Neptune. Our findings can explain the presence of crystalline silicate in comets if the scattered planetesimals include silicate dust processed by shock heating.

  20. Magnetic Fields in Population III Star Formation

    SciTech Connect (OSTI)

    Turk, Matthew J.; Oishi, Jeffrey S.; Abel, Tom; Bryan, Greg

    2012-02-22

    We study the buildup of magnetic fields during the formation of Population III star-forming regions, by conducting cosmological simulations from realistic initial conditions and varying the Jeans resolution. To investigate this in detail, we start simulations from identical initial conditions, mandating 16, 32 and 64 zones per Jeans length, and studied the variation in their magnetic field amplification. We find that, while compression results in some amplification, turbulent velocity fluctuations driven by the collapse can further amplify an initially weak seed field via dynamo action, provided there is sufficient numerical resolution to capture vortical motions (we find this requirement to be 64 zones per Jeans length, slightly larger than, but consistent with previous work run with more idealized collapse scenarios). We explore saturation of amplification of the magnetic field, which could potentially become dynamically important in subsequent, fully-resolved calculations. We have also identified a relatively surprising phenomena that is purely hydrodynamic: the higher-resolved simulations possess substantially different characteristics, including higher infall-velocity, increased temperatures inside 1000 AU, and decreased molecular hydrogen content in the innermost region. Furthermore, we find that disk formation is suppressed in higher-resolution calculations, at least at the times that we can follow the calculation. We discuss the effect this may have on the buildup of disks over the accretion history of the first clump to form as well as the potential for gravitational instabilities to develop and induce fragmentation.

  1. Dilute Surfactant Methods for Carbonate Formations

    SciTech Connect (OSTI)

    Kishore K. Mohanty

    2004-03-31

    There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. Anionic surfactants (Alfoterra 35, 38) recover more than 40% of the oil in about 50 days by imbibition driven by wettability alteration in the core-scale. Anionic surfactant, Alfoterra-68, recovers about 28% of the oil by lower tension aided gravity-driven imbibition in the core-scale. Residual oil saturation showed little capillary number dependence between 10{sup -5} and 10{sup -2}. Wettability alteration increases as the number of ethoxy groups increases in ethoxy sulfate surfactants. Plans for the next quarter include conducting mobilization, and imbibition studies.

  2. DILUTE SURFACTANT METHODS FOR CARBONATE FORMATIONS

    SciTech Connect (OSTI)

    Kishore K. Mohanty

    2005-07-01

    There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. Laboratory imbibition tests show that imbibition rate is not very sensitive to the surfactant concentration (in the range of 0.05-0.2 wt%) and small amounts of trapped gas saturation. It is however very sensitive to oil permeability and water-oil-ratio. Less than 0.5 M Na2CO3 is needed for in situ soap generation and low adsorption; NaCl can be added to reach the necessary total salinity. The simulation result matches the laboratory imbibition experimental data. Small fracture spacing and high permeability would be needed for high rate of recovery.

  3. DILUTE SURFACTANT METHODS FOR CARBONATE FORMATIONS

    SciTech Connect (OSTI)

    Kishore K. Mohanty

    2004-01-01

    There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. Anionic surfactants (SS-6656, Alfoterra 35, 38, 63,65,68) have been identified which can change the wettability of the calcite surface to intermediate/water-wet condition as well or better than the cationic surfactant DTAB with a West Texas crude oil in the presence of Na{sub 2}CO{sub 3}. All the carbonate surfaces (Lithographic Limestone, Marble, Dolomite and Calcite) show similar behavior with respect to wettability alteration with surfactant 4-22. Anionic surfactants (5-166, Alfoterra-33 and Alfoterra-38 and Alfoterra-68), which lower the interfacial tension with a West Texas crude oil to very low values (<10{sup -2} nM/m), have also been identified. Plans for the next quarter include conducting wettability, mobilization, and imbibition studies.

  4. DILUTE SURFACTANT METHODS FOR CARBONATE FORMATIONS

    SciTech Connect (OSTI)

    Kishore K. Mohanty

    2003-10-01

    There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. We have conducted adsorption, phase behavior, interfacial tension (IFT) and wettability studies. Alfoterra-38 (0.05 wt%), Alfoterra-35 (0.05 wt%), SS-6656 (0.05 wt%), and DTAB (1 wt%) altered the wettability of the initially oil-wet calcite plate to an intermediate/water-wet state. Low IFT ({approx}10{sup -3} dynes/cm) is obtained with surfactants 5-166, Alfoterra-33 and Alfoterra-38. Plans for the next quarter include conducting wettability and mobilization studies.

  5. DILUTE SURFACTANT METHODS FOR CARBONATE FORMATIONS

    SciTech Connect (OSTI)

    Kishore K. Mohanty

    2003-07-01

    There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. We have conducted adsorption, phase behavior, interfacial tension (IFT) and wettability studies. Addition of Na{sub 2}CO{sub 3} decreases IFT with a minimum at about 0.2 M. Addition of surfactant decreases IFT further. In the absence of surfactant the minerals are oil-wet after aging with crude oil. Addition of surfactant solution decreases the contact angle to intermediate-wet for many surfactants and water-wet for one surfactant. Addition of Na{sub 2}CO{sub 3} decreases anionic surfactant adsorption on calcite surface. Plans for the next quarter include conducting core adsorption, phase behavior, wettability and mobilization studies.

  6. DILUTE SURFACTANT METHODS FOR CARBONATE FORMATIONS

    SciTech Connect (OSTI)

    Kishore K. Mohanty

    2003-07-01

    There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. We have conducted adsorption, phase behavior and wettability studies. Addition of Na{sub 2}CO{sub 3} decreases IFT with a minimum at about 0.2 M. Addition of surfactant decreases IFT further. In the absence of surfactant the minerals are oil wet after aging with crude oil. Addition of surfactant solution decreases the contact angle to intermediate wettability. Addition of Na{sub 2}CO{sub 3} decreases anionic surfactant adsorption on calcite surface. Plans for the next quarter include conducting adsorption, phase behavior and wettability studies.

  7. DILUTE SURFACTANT METHODS FOR CARBONATE FORMATIONS

    SciTech Connect (OSTI)

    Kishore K. Mohanty

    2005-01-01

    There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. Imbibition in an originally oil-wet 2D capillary is the fastest in the case of Alf-38 and slowest in the case of DTAB (among the surfactants studied). Force of adhesion studies and contact angle measurements show that greater wettability alteration is possible with these anionic surfactants than the cationic surfactant studied. The water imbibition rate does not increase monotonically with an increase in the surfactant concentration. A numerical model has been developed that fits the rate of imbibition. Plans for the next quarter include conducting simulation and imbibition studies.

  8. DILUTE SURFACTANT METHODS FOR CARBONATE FORMATIONS

    SciTech Connect (OSTI)

    Kishore K. Mohanty

    2004-10-01

    There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. Simulation studies indicate that both wettability alteration and gravity-driven flow play significant role in oil recovery from fractured carbonates. Anionic surfactants (Alfoterra 35, 38) recover about 55% of the oil in about 150 days by imbibition driven by wettability alteration and low tension in the core-scale. Anionic surfactant, Alfoterra-68, recovers about 40% of the oil by lower tension aided gravity-driven imbibition in the core-scale. Cationic surfactant, DTAB recovers about 35% of the oil. Plans for the next quarter include conducting simulation and imbibition studies.

  9. DILUTE SURFACTANT METHODS FOR CARBONATE FORMATIONS

    SciTech Connect (OSTI)

    Kishore K. Mohanty

    2005-04-01

    There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. Laboratory imbibition tests show about 61% oil recovery in the case of Alf-38 and 37% in the case of DTAB. A numerical model has been developed that fits the rate of imbibition of the laboratory experiment. Field-scale fracture block simulation shows that as the fracture spacing increases, so does the time of recovery. Plans for the next quarter include simulation studies.

  10. Controls on Gas Hydrate Formation and Dissociation

    SciTech Connect (OSTI)

    Miriam Kastner; Ian MacDonald

    2006-03-03

    The main objectives of the project were to monitor, characterize, and quantify in situ the rates of formation and dissociation of methane hydrates at and near the seafloor in the northern Gulf of Mexico, with a focus on the Bush Hill seafloor hydrate mound; to record the linkages between physical and chemical parameters of the deposits over the course of one year, by emphasizing the response of the hydrate mound to temperature and chemical perturbations; and to document the seafloor and water column environmental impacts of hydrate formation and dissociation. For these, monitoring the dynamics of gas hydrate formation and dissociation was required. The objectives were achieved by an integrated field and laboratory scientific study, particularly by monitoring in situ formation and dissociation of the outcropping gas hydrate mound and of the associated gas-rich sediments. In addition to monitoring with the MOSQUITOs, fluid flow rates and temperature, continuously sampling in situ pore fluids for the chemistry, and imaging the hydrate mound, pore fluids from cores, peepers and gas hydrate samples from the mound were as well sampled and analyzed for chemical and isotopic compositions. In order to determine the impact of gas hydrate dissociation and/or methane venting across the seafloor on the ocean and atmosphere, the overlying seawater was sampled and thoroughly analyzed chemically and for methane C isotope ratios. At Bush hill the pore fluid chemistry varies significantly over short distances as well as within some of the specific sites monitored for 440 days, and gas venting is primarily focused. The pore fluid chemistry in the tub-warm and mussel shell fields clearly documented active gas hydrate and authigenic carbonate formation during the monitoring period. The advecting fluid is depleted in sulfate, Ca Mg, and Sr and is rich in methane; at the main vent sites the fluid is methane supersaturated, thus bubble plumes form. The subsurface hydrology exhibits both

  11. The plate is not available in electronic format

    Office of Legacy Management (LM)

    The plate is not available in electronic format. Please email lm.records@lm.doe.gov to request the plate.

  12. 17β-Estradiol regulates cell proliferation, colony formation...

    Office of Scientific and Technical Information (OSTI)

    ... Subject: 60 APPLIED LIFE SCIENCES; APOPTOSIS; CARCINOMAS; CELL PROLIFERATION; COLONY FORMATION; CONCENTRATION RATIO; CONNECTIVE TISSUE CELLS; DOSES; ESTRADIOL; LUNGS; METASTASES; ...

  13. REGULATORY COOPERATION COUNCIL - WORK PLANNING FORMAT | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy COOPERATION COUNCIL - WORK PLANNING FORMAT REGULATORY COOPERATION COUNCIL - WORK PLANNING FORMAT REGULATORY COOPERATION COUNCIL - WORK PLANNING FORMAT RCC Workplan PDF EN FR.PDF (67.81 KB) More Documents & Publications REGULATORY COOPERATION COUNCIL: Annual Workplan for Energy Efficiency Standards, July 2016 REGULATORY COOPERATION COUNCIL: Annual Workplan for Energy Efficiency Standards REGULATORY PARTNERSHIP STATEMENT

  14. Heating subsurface formations by oxidizing fuel on a fuel carrier

    DOE Patents [OSTI]

    Costello, Michael; Vinegar, Harold J.

    2012-10-02

    A method of heating a portion of a subsurface formation includes drawing fuel on a fuel carrier through an opening formed in the formation. Oxidant is supplied to the fuel at one or more locations in the opening. The fuel is combusted with the oxidant to provide heat to the formation.

  15. System-Scale Model of Aquifer, Vadose Zone, and River Interactions for the Hanford 300 Area - Application to Uranium Reactive Transport

    SciTech Connect (OSTI)

    Rockhold, Mark L.; Bacon, Diana H.; Freedman, Vicky L.; Parker, Kyle R.; Waichler, Scott R.; Williams, Mark D.

    2013-10-01

    This report represents a synthesis and integration of basic and applied research into a system-scale model of the Hanford 300 Area groundwater uranium plume, supported by the U.S. Department of Energy’s Richland Operations (DOE-RL) office. The report integrates research findings and data from DOE Office of Science (DOE-SC), Office of Environmental Management (DOE-EM), and DOE-RL projects, and from the site remediation and closure contractor, Washington Closure Hanford, LLC (WCH). The three-dimensional, system-scale model addresses water flow and reactive transport of uranium for the coupled vadose zone, unconfined aquifer, and Columbia River shoreline of the Hanford 300 Area. The system-scale model of the 300 Area was developed to be a decision-support tool to evaluate processes of the total system affecting the groundwater uranium plume. The model can also be used to address “what if” questions regarding different remediation endpoints, and to assist in design and evaluation of field remediation efforts. For example, the proposed cleanup plan for the Hanford 300 Area includes removal, treatment, and disposal of contaminated sediments from known waste sites, enhanced attenuation of uranium hot spots in the vadose and periodically rewetted zone, and continued monitoring of groundwater with institutional controls. Illustrative simulations of polyphosphate infiltration were performed to demonstrate the ability of the system-scale model to address these types of questions. The use of this model in conjunction with continued field monitoring is expected to provide a rigorous basis for developing operational strategies for field remediation and for defining defensible remediation endpoints.

  16. Numerical simulation studies of the long-term evolution of a CO2 plume in a saline aquifer with a sloping caprock

    SciTech Connect (OSTI)

    Pruess, K.; Nordbotten, J.

    2010-12-28

    We have used the TOUGH2-MP/ECO2N code to perform numerical simulation studies of the long-term behavior of CO{sub 2} stored in an aquifer with a sloping caprock. This problem is of great practical interest, and is very challenging due to the importance of multi-scale processes. We find that the mechanism of plume advance is different from what is seen in a forced immiscible displacement, such as gas injection into a water-saturated medium. Instead of pushing the water forward, the plume advances because the vertical pressure gradients within the plume are smaller than hydrostatic, causing the groundwater column to collapse ahead of the plume tip. Increased resistance to vertical flow of aqueous phase in anisotropic media leads to reduced speed of updip plume advancement. Vertical equilibrium models that ignore effects of vertical flow will overpredict the speed of plume advancement. The CO{sub 2} plume becomes thinner as it advances, yet the speed of advancement remains constant over the entire simulation period of up to 400 years, with migration distances of more than 80 km. Our simulations include dissolution of CO{sub 2} into the aqueous phase and associated density increase, and molecular diffusion. However, no convection develops in the aqueous phase because it is suppressed by the relatively coarse (sub-) horizontal gridding required in a regional-scale model. A first crude sub-grid-scale model was developed to represent convective enhancement of CO{sub 2} dissolution. This process is found to greatly reduce the thickness of the CO{sub 2} plume, but, for the parameters used in our simulations, does not affect the speed of plume advancement.

  17. User manual for AQUASTOR: a computer model for cost analysis of aquifer thermal-energy storage oupled with district-heating or cooling systems. Volume II. Appendices

    SciTech Connect (OSTI)

    Huber, H.D.; Brown, D.R.; Reilly, R.W.

    1982-04-01

    A computer model called AQUASTOR was developed for calculating the cost of district heating (cooling) using thermal energy supplied by an aquifer thermal energy storage (ATES) system. the AQUASTOR Model can simulate ATES district heating systems using stored hot water or ATES district cooling systems using stored chilled water. AQUASTOR simulates the complete ATES district heating (cooling) system, which consists of two prinicpal parts: the ATES supply system and the district heating (cooling) distribution system. The supply system submodel calculates the life-cycle cost of thermal energy supplied to the distribution system by simulating the technical design and cash flows for the exploration, development, and operation of the ATES supply system. The distribution system submodel calculates the life-cycle cost of heat (chill) delivered by the distribution system to the end-users by simulating the technical design and cash flows for the construction and operation of the distribution system. The model combines the technical characteristics of the supply system and the technical characteristics of the distribution system with financial and tax conditions for the entities operating the two systems into one techno-economic model. This provides the flexibility to individually or collectively evaluate the impact of different economic and technical parameters, assumptions, and uncertainties on the cost of providing district heating (cooling) with an ATES system. This volume contains all the appendices, including supply and distribution system cost equations and models, descriptions of predefined residential districts, key equations for the cooling degree-hour methodology, a listing of the sample case output, and appendix H, which contains the indices for supply input parameters, distribution input parameters, and AQUASTOR subroutines.

  18. Corrosion Resistances of Iron-Based Amorphous Metals with Yttrium and Tungsten Additions in Hot Calcium Chloride Brine & Natural Seawater: Fe48Mo14Cr15Y2C15B6 and W-Containing Variants

    SciTech Connect (OSTI)

    Farmer, J C; Haslam, J; Day, S; Lian, T; Saw, C; Hailey, P; Choi, J; Yang, N; Blue, C; Peter, W; Payer, J; Branagan, D J

    2006-10-20

    Yttrium-containing SAM1651 (Fe{sub 48.0}Cr{sub 15.0}Mo{sub 14.0}B{sub 6.0}C{sub 15.0}Y{sub 2.0}), has a critical cooling rate (CCR) of approximately 80 Kelvin per second, while SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) with no yttrium has a higher critical cooling rate of approximately 600 Kelvin per second. SAM1651's low CCR enables it to be rendered as a completely amorphous material in practical materials processes. Chromium (Cr), molybdenum (Mo) and tungsten (W) provide corrosion resistance; boron (B) enables glass formation; and rare earths such as yttrium (Y) lower critical cooling rate (CCR). The passive film stability of these Fe-based amorphous metal formulations have been found to be superior to that of conventional stainless steels, and comparable to that of Ni-based alloys, based on electrochemical measurements of the passive film breakdown potential and general corrosion rates.

  19. Formation of nanofilament field emission devices

    DOE Patents [OSTI]

    Morse, Jeffrey D.; Contolini, Robert J.; Musket, Ronald G.; Bernhardt, Anthony F.

    2000-01-01

    A process for fabricating a nanofilament field emission device. The process enables the formation of high aspect ratio, electroplated nanofilament structure devices for field emission displays wherein a via is formed in a dielectric layer and is self-aligned to a via in the gate metal structure on top of the dielectric layer. The desired diameter of the via in the dielectric layer is on the order of 50-200 nm, with an aspect ratio of 5-10. In one embodiment, after forming the via in the dielectric layer, the gate metal is passivated, after which a plating enhancement layer is deposited in the bottom of the via, where necessary. The nanofilament is then electroplated in the via, followed by removal of the gate passification layer, etch back of the dielectric, and sharpening of the nanofilament. A hard mask layer may be deposited on top of the gate metal and removed following electroplating of the nanofilament.

  20. Mental Representations Formed From Educational Website Formats

    SciTech Connect (OSTI)

    Elizabeth T. Cady; Kimberly R. Raddatz; Tuan Q. Tran; Bernardo de la Garza; Peter D. Elgin

    2006-10-01

    The increasing popularity of web-based distance education places high demand on distance educators to format web pages to facilitate learning. However, limited guidelines exist regarding appropriate writing styles for web-based distance education. This study investigated the effect of four different writing styles on readers mental representation of hypertext. Participants studied hypertext written in one of four web-writing styles (e.g., concise, scannable, objective, and combined) and were then administered a cued association task intended to measure their mental representations of the hypertext. It is hypothesized that the scannable and combined styles will bias readers to scan rather than elaborately read, which may result in less dense mental representations (as identified through Pathfinder analysis) relative to the objective and concise writing styles. Further, the use of more descriptors in the objective writing style will lead to better integration of ideas and more dense mental representations than the concise writing style.

  1. Inhibition of star formation in Sa galaxies

    SciTech Connect (OSTI)

    Pompea, S.M.; Rieke, G.H. )

    1989-07-01

    Only 4 percent of Sas in the Revised Shapley-Ames Catalog with B(T) less than 12 have an infrared luminosity greater than 10 to the 10th solar. This proportion is about one-sixth of the corresponding one for Sbs and Scs. Although the infrared luminosities of most Sa galaxies are dominated by disk emission, the same trend appears in the incidence of nuclear starbursts. IRAS measurements indicate that no more than three Sas out of the entire RSA sample of 166 galaxies have nuclear starbursts that cannot be associated with interactions or active nuclei. Plots of H I fluxes do not strongly correlate with infrared fluxes. Similarly, for at least the infrared selected Sas, the trend of IR flux with CO flux is similar to that of later type spiral galaxies. This would imply that molecular cloud formation is inhibited in Sas, leading to the lack of infrared activity. 38 refs.

  2. Fibrillar dimer formation of islet amyloid polypeptides

    SciTech Connect (OSTI)

    Chiu, Chi -cheng; de Pablo, Juan J.

    2015-05-08

    Amyloid deposits of human islet amyloid polypeptide (hIAPP), a 37-residue hormone co-produced with insulin, have been implicated in the development of type 2 diabetes. Residues 20 – 29 of hIAPP have been proposed to constitute the amyloidogenic core for the aggregation process, yet the segment is mostly unstructured in the mature fibril, according to solid-state NMR data. Here we use molecular simulations combined with bias-exchange metadynamics to characterize the conformational free energies of hIAPP fibrillar dimer and its derivative, pramlintide. We show that residues 20 – 29 are involved in an intermediate that exhibits transient β-sheets, consistent with recent experimental and simulation results. By comparing the aggregation of hIAPP and pramlintide, we illustrate the effects of proline residues on inhibition of the dimerization of IAPP. The mechanistic insights presented here could be useful for development of therapeutic inhibitors of hIAPP amyloid formation.

  3. Formation of Plasmoid Chains in Magnetic Reconnection

    SciTech Connect (OSTI)

    Samtaney, R.; Loureiro, N. F.; Uzdensky, D. A.; Schekochihin, A. A.; Cowley, S. C.

    2009-09-09

    A detailed numerical study of magnetic reconnection in resistive MHD for very large, previously inaccessible, Lundquist numbers (104 ≤ S ≤ 108) is reported. Large-aspect-ratio Sweet-Parker current sheets are shown to be unstable to super-Alfvenically fast formation of plasmoid (magnetic-island) chains. The plasmoid number scales as S3/8 and the instability growth rate in the linear stage as S1/4, in agreement with the theory by Loureiro et al. [Phys. Plasmas 14, 100703 (2007)]. In the nonlinear regime, plasmoids continue to grow faster than they are ejected and completely disrupt the reconnection layer. These results suggest that high-Lundquist-number reconnection is inherently time-dependent and hence call for a substantial revision of the standard Sweet-Parker quasistationary picture for S>104.

  4. Observations of solute effects on bubble formation

    SciTech Connect (OSTI)

    Hofmeier, U.; Yaminsky, V.V.; Christenson, H.K.

    1995-09-01

    The authors have studied the effects of solute, in particular aqueous electrolyte, on bubble formation at capillary orifices and frits at varying gas flow rates. Using a stroboscope, video microscope, and rotating mirror, they have obtained pictures which show how bubble formation involves the interaction of bubbles at the orifice. These interactions depend on the value of the surface elasticity E due to positively (ethanol) or negatively (NaCl) adsorbed solute. At low flow rates consecutive bubbles do not interact. Each bubble detaches and leaves the orifice region before the next one starts forming. A intermediate flow rates the more closely spaced, consecutive bubbles begin to interact. In pure liquids there is no barrier to bubble coalescence and the detached bubble is fed by the subsequent bubble as this starts to grow. The process may be repeated several times before the original bubble has risen out of range. In solutions where E is large enough bubble coalescence is inhibited. Instead of feeding into the detached bubble the following bubble pushes it aside, and the bubbles appear to bounce off each other. Bouncing may give rise to a characteristic sequence of larger and smaller bubbles if the emerging bubbles break off prematurely from the orifice due to the inertia of the original bubble. The transition from feeding to bouncing depends critically on E of the solution and leads to a smaller average bubble size for large E values. At high flow rates detached bubbles are invariably fed by several subsequent ones. At very high flow rates the bubbling becomes chaotic, but the interaction of bubbles after leaving the orifice area produces smaller bubbles in solutions. Bouncing is more likely to occur with narrow and irregular capillaries. The dramatically different appearance of gas-sparged columns in salt water and freshwater has its origin in the difference between assemblies of pores showing mainly feeding (freshwater) or bouncing (salt water).

  5. SUPPRESSION OF STAR FORMATION IN NGC 1266

    SciTech Connect (OSTI)

    Alatalo, Katherine; Lanz, Lauranne; Bitsakis, Theodoros; Appleton, Philip N.; Ogle, Patrick M.; Lacy, Mark; Lonsdale, Carol J.; Nyland, Kristina; Meier, David S.; Cales, Sabrina L.; Chang, Philip; Davis, Timothy A.; De Zeeuw, P. T.; Martn, Sergio

    2015-01-01

    NGC 1266 is a nearby lenticular galaxy that harbors a massive outflow of molecular gas powered by the mechanical energy of an active galactic nucleus (AGN). It has been speculated that such outflows hinder star formation (SF) in their host galaxies, providing a form of feedback to the process of galaxy formation. Previous studies, however, indicated that only jets from extremely rare, high-power quasars or radio galaxies could impart significant feedback on their hosts. Here we present detailed observations of the gas and dust continuum of NGC 1266 at millimeter wavelengths. Our observations show that molecular gas is being driven out of the nuclear region at M-dot {sub out}?110 M{sub ?} yr{sup 1}, of which the vast majority cannot escape the nucleus. Only 2 M {sub ?} yr{sup 1} is actually capable of escaping the galaxy. Most of the molecular gas that remains is very inefficient at forming stars. The far-infrared emission is dominated by an ultra-compact (? 50 pc) source that could either be powered by an AGN or by an ultra-compact starburst. The ratio of the SF surface density (?{sub SFR}) to the gas surface density (?{sub H{sub 2}}) indicates that SF is suppressed by a factor of ?50 compared to normal star-forming galaxies if all gas is forming stars, and ?150 for the outskirt (98%) dense molecular gas if the central region is powered by an ultra-compact starburst. The AGN-driven bulk outflow could account for this extreme suppression by hindering the fragmentation and gravitational collapse necessary to form stars through a process of turbulent injection. This result suggests that even relatively common, low-power AGNs are able to alter the evolution of their host galaxies as their black holes grow onto the M-? relation.

  6. Star formation and cosmic massive black hole formation, a universal process organized by angular momenta

    SciTech Connect (OSTI)

    Colgate, S. A.

    2004-01-01

    It is suggested that star formation is organized following the same principles as we have applied in a recent explanation of galaxy and massive black hole formation. In this scenario angular momentum is randomly distributed by tidal torquing among condensations, Lyman-{alpha} clouds or cores for star formation during the initial non-linear phase of collapse. This angular momentum is characterized by the parameter, {lambda}, the ratio of the angular momentum of the cloud to that of a Keplerian orbit with the same central mass and radius. This parameter is calculated in very many simulations of structure formation of the universe as well as core formation and appears to be universal and independent of any scale. The specific angular momentum during the collapse of every cloud is locally conserved and universally produces a near flat rotation curve M{sub formation of a flat rotation curve (protostellar) disk of mass M{sub dsk} {sup -}30 M{sub o} of radius R{sub dsk} {approx_equal} 1100 AU or 5.4 x 10{sup -3} pc. In such a disk {Sigma} {proportional_to} 1/R and reaches the RVI condition at R{sub crit} {approx_equal} 40 AU where M{sub

  7. Natural radionuclides in groundwaters

    SciTech Connect (OSTI)

    Laul, J.C.

    1990-01-01

    The U-234 and Th-230 radionuclides are highly retarded by factors of 10{sup 4} to 10{sup 5} in basalt groundwater (Hanford) and briny groundwaters from Texas and geothermal brine from the Salton Sea Geothermal Field (SSGF). In basalt groundwaters (low ionic strength), Ra is highly sorbed, while in brines (high ionic strength), Ra is soluble. This is probably because the sorption sites are saturated with Na{sup +} and Cl{sup {minus}} ions and RaCl{sub 2} is soluble in brines. Pb-210 is soluble in SSGF brine, probably as a chloride complex. The U-234/Th-230 ratios in basalt groundwaters and brines from Texas and SSGF are nearly unity, indicating that U is in the +4 state, suggesting a reducing environment for these aquifers. 19 refs., 3 figs.

  8. Formation and retention of methane in coal

    SciTech Connect (OSTI)

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

  9. Porosity reduction in Monterey Formation, California

    SciTech Connect (OSTI)

    Compton, J.S.

    1987-05-01

    Porosity and grain density were determined for different lithologies from throughout a 1.2-km thick section of the Monterey and Sisquoc formations in the Santa Maria basin area, California. Porosity reduction by physical and chemical compaction in the predominantly siliceous sediment is controlled largely by the bulk sediment composition and silica phase transformations. Physical compaction of sediment grains from increasing overburden pressure is responsible for most of the gradual porosity reduction with increasing burial depth in opal-A siliceous ooze and diatomite. The porous, incompressible diatom frustule maintains a high porosity relative to clayey and calcareous sediment. Therefore, a positive correlation exists between porosity and biogenic silica (diatom) content of the sediment. During the opal-A to opal-CT silica phase transformation, solution of the porous diatom frustule and precipitation of cryptocrystalline opal-CT results in a porosity reduction that roughly correlates with the biogenic silica content of the sediment. Local porosity reduction occurs in pore-filling dolomite and chert nodules. Dry bulk density as well as porosity reduction tend to increase with sediment depth. Dolomite and organic matter have the most significant influence on the bulk density because of their respective high and low density. The maximum burial depth of the uplifted and eroded section is estimated by overlapping the porosity-depth relation of average deep-sea siliceous ooze.

  10. Constructing Hydraulic Barriers in Deep Geologic Formations

    SciTech Connect (OSTI)

    Carter, E.E.; Carter, P.E. [Technologies Co, Texas (United States); Cooper, D.C. [Ph.D. Idaho National Laboratory, Idaho Falls, ID (United States)

    2008-07-01

    Many construction methods have been developed to create hydraulic barriers to depths of 30 to 50 meters, but few have been proposed for depths on the order of 500 meters. For these deep hydraulic barriers, most methods are potentially feasible for soil but not for hard rock. In the course of researching methods of isolating large subterranean blocks of oil shale, the authors have developed a wax thermal permeation method for constructing hydraulic barriers in rock to depths of over 500 meters in competent or even fractured rock as well as soil. The technology is similar to freeze wall methods, but produces a permanent barrier; and is potentially applicable in both dry and water saturated formations. Like freeze wall barriers, the wax thermal permeation method utilizes a large number of vertical or horizontal boreholes around the perimeter to be contained. However, instead of cooling the boreholes, they are heated. After heating these boreholes, a specially formulated molten wax based grout is pumped into the boreholes where it seals fractures and also permeates radially outward to form a series of columns of wax-impregnated rock. Rows of overlapping columns can then form a durable hydraulic barrier. These barriers can also be angled above a geologic repository to help prevent influx of water due to atypical rainfall events. Applications of the technique to constructing containment structures around existing shallow waste burial sites and water shutoff for mining are also described. (authors)

  11. Fibrillar dimer formation of islet amyloid polypeptides

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chiu, Chi -cheng; de Pablo, Juan J.

    2015-05-08

    Amyloid deposits of human islet amyloid polypeptide (hIAPP), a 37-residue hormone co-produced with insulin, have been implicated in the development of type 2 diabetes. Residues 20 – 29 of hIAPP have been proposed to constitute the amyloidogenic core for the aggregation process, yet the segment is mostly unstructured in the mature fibril, according to solid-state NMR data. Here we use molecular simulations combined with bias-exchange metadynamics to characterize the conformational free energies of hIAPP fibrillar dimer and its derivative, pramlintide. We show that residues 20 – 29 are involved in an intermediate that exhibits transient β-sheets, consistent with recent experimentalmore » and simulation results. By comparing the aggregation of hIAPP and pramlintide, we illustrate the effects of proline residues on inhibition of the dimerization of IAPP. The mechanistic insights presented here could be useful for development of therapeutic inhibitors of hIAPP amyloid formation.« less

  12. Surface coating for prevention of crust formation

    DOE Patents [OSTI]

    Kronberg, James W.

    1994-01-01

    A flexible surface coating which promotes the removal of deposits as they reach the surface by preventing adhesion and crust formation. Flexible layers are attached to each side of a flexible mesh substrate comprising of a plurality of zones composed of one or more neighboring cells, each zone having a different compressibility than its adjacent zones. The substrate is composed of a mesh made of strands and open cells. The cells may be filled with foam. Studs or bearings may also be positioned in the cells to increase the variation in compressibility and thus the degree of flexing of the coating. Surface loading produces varying amounts of compression from point to point causing the coating to flex as deposits reach it, breaking up any hardening deposits before a continuous crust forms. Preferably one or more additional layers are also used, such as an outer layer of a non-stick material such as TEFLON, which may be pigmented, and an inner, adhesive layer to facilitate applying the coating to a surface.

  13. Star formation and substructure in galaxy clusters

    SciTech Connect (OSTI)

    Cohen, Seth A.; Hickox, Ryan C.; Wegner, Gary A.; Einasto, Maret; Vennik, Jaan

    2014-03-10

    We investigate the relationship between star formation (SF) and substructure in a sample of 107 nearby galaxy clusters using data from the Sloan Digital Sky Survey. Several past studies of individual galaxy clusters have suggested that cluster mergers enhance cluster SF, while others find no such relationship. The SF fraction in multi-component clusters (0.228 0.007) is higher than that in single-component clusters (0.175 0.016) for galaxies with M{sub r}{sup 0.1}

  14. Multimodel Predictive System for Carbon Dioxide Solubility in Saline Formation Waters

    SciTech Connect (OSTI)

    Wang, Zan; Small, Mitchell J.; Karamalidis, Athanasios K.

    2013-02-05

    The prediction of carbon dioxide solubility in brine at conditions relevant to carbon sequestration (i.e., high temperature, pressure, and salt concentration (T-P-X)) is crucial when this technology is applied. Eleven mathematical models for predicting CO{sub 2} solubility in brine are compared and considered for inclusion in a multimodel predictive system. Model goodness of fit is evaluated over the temperature range 304433 K, pressure range 74500 bar, and salt concentration range 07 m (NaCl equivalent), using 173 published CO{sub 2} solubility measurements, particularly selected for those conditions. The performance of each model is assessed using various statistical methods, including the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). Different models emerge as best fits for different subranges of the input conditions. A classification tree is generated using machine learning methods to predict the best-performing model under different T-P-X subranges, allowing development of a multimodel predictive system (MMoPS) that selects and applies the model expected to yield the most accurate CO{sub 2} solubility prediction. Statistical analysis of the MMoPS predictions, including a stratified 5-fold cross validation, shows that MMoPS outperforms each individual model and increases the overall accuracy of CO{sub 2} solubility prediction across the range of T-P-X conditions likely to be encountered in carbon sequestration applications.

  15. ON STAR FORMATION RATES AND STAR FORMATION HISTORIES OF GALAXIES OUT TO z {approx} 3

    SciTech Connect (OSTI)

    Wuyts, Stijn; Foerster Schreiber, Natascha M.; Lutz, Dieter; Nordon, Raanan; Berta, Stefano; Genzel, Reinhard; Magnelli, Benjamin; Poglitsch, Albrecht; Altieri, Bruno; Andreani, Paola; Aussel, Herve; Daddi, Emanuele; Elbaz, David; Cimatti, Andrea; Koekemoer, Anton M.; Maiolino, Roberto; McGrath, Elizabeth J.

    2011-09-01

    We compare multi-wavelength star formation rate (SFR) indicators out to z {approx} 3 in the GOODS-South field. Our analysis uniquely combines U to 8 {mu}m photometry from FIREWORKS, MIPS 24 {mu}m and PACS 70, 100, and 160 {mu}m photometry from the PEP, and H{alpha} spectroscopy from the SINS survey. We describe a set of conversions that lead to a continuity across SFR indicators. A luminosity-independent conversion from 24 {mu}m to total infrared luminosity yields estimates of L{sub IR} that are in the median consistent with the L{sub IR} derived from PACS photometry, albeit with significant scatter. Dust correction methods perform well at low-to-intermediate levels of star formation. They fail to recover the total amount of star formation in systems with large SFR{sub IR}/SFR{sub UV} ratios, typically occuring at the highest SFRs (SFR{sub UV+IR} {approx}> 100 M{sub sun} yr{sup -1}) and redshifts (z {approx}> 2.5) probed. Finally, we confirm that H{alpha}-based SFRs at 1.5 < z < 2.6 are consistent with SFR{sub SED} and SFR{sub UV+IR} provided extra attenuation toward H II regions is taken into account (A{sub V,neb} = A{sub V,continuum}/0.44). With the cross-calibrated SFR indicators in hand, we perform a consistency check on the star formation histories inferred from spectral energy distribution (SED) modeling. We compare the observed SFR-M relations and mass functions at a range of redshifts to equivalents that are computed by evolving lower redshift galaxies backward in time. We find evidence for underestimated stellar ages when no stringent constraints on formation epoch are applied in SED modeling. We demonstrate how resolved SED modeling, or alternatively deep UV data, may help to overcome this bias. The age bias is most severe for galaxies with young stellar populations and reduces toward older systems. Finally, our analysis suggests that SFHs typically vary on timescales that are long (at least several 100 Myr) compared to the galaxies' dynamical time.

  16. Cogeneration systems and processes for treating hydrocarbon containing formations

    DOE Patents [OSTI]

    Vinegar, Harold J.; Fowler, Thomas David; Karanikas, John Michael

    2009-12-29

    A system for treating a hydrocarbon containing formation includes a steam and electricity cogeneration facility. At least one injection well is located in a first portion of the formation. The injection well provides steam from the steam and electricity cogeneration facility to the first portion of the formation. At least one production well is located in the first portion of the formation. The production well in the first portion produces first hydrocarbons. At least one electrical heater is located in a second portion of the formation. At least one of the electrical heaters is powered by electricity from the steam and electricity cogeneration facility. At least one production well is located in the second portion of the formation. The production well in the second portion produces second hydrocarbons. The steam and electricity cogeneration facility uses the first hydrocarbons and/or the second hydrocarbons to generate electricity.

  17. Recombinant human bone morphogenetic protein induces bone formation

    SciTech Connect (OSTI)

    Wang, E.A.; Rosen, V.; D'Alessandro, J.S.; Bauduy, M.; Cordes, P.; Harada, T.; Israel, D.I.; Hewick, R.M.; Kerns, K.M.; LaPan, P.; Luxenberg, D.P.; McQuaid, D.; Moutsatsos, I.K.; Nove, J.; Wozney, J.M. )

    1990-03-01

    The authors have purified and characterized active recombinant human bone morphogenetic protein (BMP) 2A. Implantation of the recombinant protein in rats showed that a single BMP can induce bone formation in vivo. A dose-response and time-course study using the rat ectopic bone formation assay revealed that implantation of 0.5-115 {mu}g of partially purified recombinant human BMP-2A resulted in cartilage by day 7 and bone formation by day 14. The time at which bone formation occurred was dependent on the amount of BMP-2A implanted; at high doses bone formation could be observed at 5 days. The cartilage- and bone-inductive activity of the recombinant BMP-2A is histologically indistinguishable from that of bone extracts. Thus, recombinant BMP-2A has therapeutic potential to promote de novo bone formation in humans.

  18. STAR FORMATION AROUND SUPERGIANT SHELLS IN THE LARGE MAGELLANIC CLOUD

    SciTech Connect (OSTI)

    Book, Laura G.; Chu Youhua; Gruendl, Robert A.; Fukui, Yasuo

    2009-03-15

    We examine the recent star formation associated with four supergiant shells in the Large Magellanic Cloud (LMC): LMC 1, 4, 5, and 6, which have been shown to have simple expanding-shell structures. H II regions and OB associations are used to infer star formation in the last few Myr, while massive young stellar objects reveal the current ongoing star formation. Distributions of ionized H I and molecular components of the interstellar gas are compared with the sites of recent and current star formation to determine whether triggering has taken place. We find that a great majority of the current star formation has occurred in gravitationally unstable regions, and that evidence of triggered star formation is prevalent at both large and local scales.

  19. New Catalyst Boosts Selective Formation of Olefins from Syngas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Catalyst Boosts Selective Formation of Olefins from Syngas New Catalyst Boosts Selective Formation of Olefins from Syngas Print Wednesday, 10 August 2016 00:00 Experiments at the ALS have helped to explain how a new catalyst significantly boosts the formation of light olefin molecules-important building blocks in the petrochemical industry-from a basic gas mixture called syngas (synthesis gas). A research team from China recently developed the nanocomposite catalyst and used ambient-pressure

  20. Method and apparatus for vibrating a substrate during material formation

    DOE Patents [OSTI]

    Bailey, Jeffrey A. [Richland, WA; Roger, Johnson N. [Richland, WA; John, Munley T. [Benton City, WA; Walter, Park R. [Benton City, WA

    2008-10-21

    A method and apparatus for affecting the properties of a material include vibrating the material during its formation (i.e., "surface sifting"). The method includes the steps of providing a material formation device and applying a plurality of vibrations to the material during formation, which vibrations are oscillations having dissimilar, non-harmonic frequencies and at least two different directions. The apparatus includes a plurality of vibration sources that impart vibrations to the material.