Powered by Deep Web Technologies
Note: This page contains sample records for the topic "aqueous electrolyte modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Aqueous electrolyte modeling in ASPEN PLUS{trademark}  

SciTech Connect (OSTI)

The presence of electrolytes in aqueous solutions has long been recognized as contributing to significant departures from thermodynamic ideality. The presence of ions in process streams can greatly add to the difficulty of predicting process behavior. The difficulties are increased as temperatures and pressures within a process are elevated. Because many chemical companies now model their processes with chemical process simulators it is important that such codes be able to accurately model electrolyte behavior under a variety of conditions. Here the authors examine the electrolyte modeling capability of ASPEN PLUS{trademark}, a widely used simulator. Specifically, efforts to model alkali metal halide and sulfate systems are presented. The authors show conditions for which the models within the code work adequately and how they might be improved for conditions where the simulator models fail.

Bloomingburg, G.F. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemical Engineering]|[Oak Ridge National Lab., TN (United States); Simonson, J.M.; Moore, R.C.; Mesmer, R.E.; Cochran, H.D. [Oak Ridge National Lab., TN (United States)

1995-02-01T23:59:59.000Z

2

Physical property parameter set for modeling ICPP aqueous wastes with ASPEN electrolyte NRTL model  

SciTech Connect (OSTI)

The aqueous waste evaporators at the Idaho Chemical Processing Plant (ICPP) are being modeled using ASPEN software. The ASPEN software calculates chemical and vapor-liquid equilibria with activity coefficients calculated using the electrolyte Non-Random Two Liquid (NRTL) model for local excess Gibbs free energies of interactions between ions and molecules in solution. The use of the electrolyte NRTL model requires the determination of empirical parameters for the excess Gibbs free energies of the interactions between species in solution. This report covers the development of a set parameters, from literature data, for the use of the electrolyte NRTL model with the major solutes in the ICPP aqueous wastes.

Schindler, R.E.

1996-09-01T23:59:59.000Z

3

A model of vapor-liquid equilibria in acid gas: Aqueous alkanolamine systems using the electrolyte-NRTL equation  

SciTech Connect (OSTI)

In this paper a thermodynamically-consistent model is developed for representing vapor-liquid equilibria in the acid gas (H/sub 2/S, CO/sub 2/)-alkanolamine-water system. The model accounts for chemical equilibria in a rigorous manner. Activity coefficients are represented with the Electrolyte-NRTL equation, treating both long-range ion-ion interactions and short-range interactions between all true liquid phase species. Both water and alkanolamine are treated as solvents. Adjustable parameters of the Electrolyte-NRTL equation, representing short-range binary interactions, are fitted primarily on binary and ternary system VLE data. Calculated vapor pressures of H/sub 2/S or CO/sub 2/ over aqueous solutions of monoethanolamine or diethanolamine generally agree with published experimental data within 10 percent over the temperature range 25-120{sup 0}C. No more than two additional parameters are adjusted on quartenary system VLE data to provide a good representation of H/sub 2/S and CO/sub 2/ vapor pressures over the same alkanolamine solutions.

Austgen, D.M.; Rochelle, G.T. (Univ. of Texas at Austin, TX (US)); (Peng, X. (Sinopen Beijing Design Institute (US)); Chen, C.C. (Aspen Technology, Inc. TX (US)))

1988-01-01T23:59:59.000Z

4

Representing vapor-liquid equilibrium for an aqueous MEA-CO{sub 2} system using the electrolyte nonrandom-two-liquid model  

SciTech Connect (OSTI)

Following the work of Austgen et al., the electrolyte nonrandom-two-liquid (NRTL) model was applied in a thermodynamically consistent manner to represent the vapor-liquid equilibrium (VLE) of the aqueous monoethanolamine (MEA)-CO{sub 2} system with rigorous chemical equilibrium consideration. Special attention was given to the accurate VLE description of the system at both absorbing and stripping conditions relevant to most aqueous MEA absorption/stripping processes for CO{sub 2} removal. The influence from chemical equilibrium constants, Henry`s constant, experimental data, and data regression on the representation of the VLE of the system was discussed in detail. The equilibrium constant of the carbamate reversion reaction as well as important interaction parameters of the electrolyte NRTL model were carefully fitted to experimental data. A good agreement between the calculated values and the experimental data was achieved. Moreover, the model with newly fitted parameters was successfully applied to simulate three industrial cases for CO{sub 2} removal using a rate-based approach. The results from this work were compared with those using the model by Austgen et al.

Liu, Y.; Zhang, L.; Watanasiri, S. [Aspen Technology, Inc., Cambridge, MA (United States)] [Aspen Technology, Inc., Cambridge, MA (United States)

1999-05-01T23:59:59.000Z

5

Representing Vapor-Liquid Equilibrium for an Aqueous MEA-CO2 System Using the Electrolyte Nonrandom-Two-Liquid Model  

E-Print Network [OSTI]

, Massachusetts 02141 Following the work of Austgen et al., the electrolyte nonrandom-two-liquid (NRTL) model reaction as well as important interaction parameters of the electrolyte NRTL model were carefully fitted

Zhang, Luzheng

6

Phenyl boron-based compounds as anion receptors for non-aqueous battery electrolytes  

DOE Patents [OSTI]

Novel fluorinated boronate-based compounds which act as anion receptors in non-aqueous battery electrolytes are provided. When added to non-aqueous battery electrolytes, the fluorinated boronate-based compounds of the invention enhance ionic conductivity and cation transference number of non-aqueous electrolytes. The fluorinated boronate-based anion receptors include different fluorinated alkyl and aryl groups.

Lee, Hung Sui (East Setauket, NY); Yang, Xiao-Qing (Port Jefferson Station, NY); McBreen, James (Bellport, NY); Sun, Xuehui (Middle Island, NY)

2002-01-01T23:59:59.000Z

7

Highly Quantitative Electrochemical Characterization of Non-Aqueous Electrolytes & Solid Electrolyte Interphases  

SciTech Connect (OSTI)

The methods to measure solid electrolyte interphase (SEI) electrochemical properties and SEI formation capability of non-aqueous electrolyte solutions are not adequately addressed in the literature. And yet, there is a strong demand in new electrolyte generations that promote stabilized SEIs and have an influence to resolve safety, calendar life and other limitations of Li-ion batteries. To fill this gap, in situ electrochemical approach with new descriptive criteria for highly quantitative characterization of SEI and electrolytes is proposed. These criteria are: SEI formation capacity, SEI corrosion rate, SEI maintenance rate, and SEI kinetic stability. These criteria are associated with battery parameters like irreversible capacity, self-discharge, shelf-life, power, etc. Therefore, they are especially useful for electrolyte development and standard fast screening, allowing a skillful approach to narrow down the search for the best electrolyte. The characterization protocol also allows retrieving information on interfacial resistance for SEI layers and the electrochemical window of electrolytes, the other important metrics of characterization. The method validation was done on electrolyte blends containing phosphazenes, developed at Idaho National Laboratory, as 1.2M LiPF6 [80 % EC-MEC (2:8) (v/v) + 20% Phosphazene variety] (v/v), which were targeted for safer electrolyte variations.

Sergiy V. Sazhin; Kevin L. Gering; Mason K. Harrup; Harry W. Rollins

2012-10-01T23:59:59.000Z

8

E-Print Network 3.0 - aqueous rare-earth electrolyte Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

rare-earth electrolyte Search Powered by Explorit Topic List Advanced Search Sample search results for: aqueous rare-earth electrolyte Page: << < 1 2 3 4 5 > >> 1 SUSTAINABILITY...

9

Electrolyte Model Helps Researchers Develop Better Batteries...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electrolyte Model Helps Researchers Develop Better Batteries, Wins R&D 100 Award Electrolyte Model Helps Researchers Develop Better Batteries, Wins R&D 100 Award October 15, 2014 -...

10

Predicting the surface tension of aqueous 1-1 electrolyte solutions at high salinity  

E-Print Network [OSTI]

Predicting the surface tension of aqueous 1-1 electrolyte solutions at high salinity Philippe Leroy 74, 19 (2010) p. 5427-5442" DOI : 10.1016/j.gca.2010.06.012 #12;2 ABSTRACT The surface tension to predict, under isothermal and isobaric conditions, the surface tension of 1:1 electrolytes at high

Boyer, Edmond

11

Microscopic Insights into the Electrochemical Behavior of Non-aqueous Electrolytes in Supercapacitors  

SciTech Connect (OSTI)

Electric double-layer capacitors (EDLC) are electrical devices that store energy by adsorption of ionic species at the inner surface of porous electrodes. Compared with aqueous electrolytes, ionic liquid and organic electrolytes have the advantage of larger potential windows, making them attractive for the next generation of EDLC with superior energy and power densities. The performance of both ionic liquid and organic electrolyte EDLC hinges on the judicious selection of the electrode pore size and the electrolyte composition that requires a comprehension of the charging behavior from a microscopic view. In this perspective, we discuss predictions from the classical density functional theory (CDFT) on the dependence of the capacitance on the pore size for ionic-liquid and organic-electrolyte EDLC. CDFT is applicable to electrodes with the pore size ranging from that below the ionic dimensionality to mesoscopic scales, thus unique for investigating the electrochemical behavior of the confined electrolytes for EDLC applications.

Jiang, Deen [ORNL; Wu, Jianzhong [ORNL

2013-01-01T23:59:59.000Z

12

Electroneutrality Breakdown and Specific Ion Effects in Nanoconfined Aqueous Electrolytes Observed by NMR  

E-Print Network [OSTI]

Ion distribution in aqueous electrolytes near the interface plays critical roles in electrochemical, biological and colloidal systems and is expected to be particularly significant inside nanoconfined regions. Electroneutrality of the total charge inside nanoconfined regions is commonly assumed a priori in solving ion distribution of aqueous electrolytes nanoconfined by uncharged hydrophobic surfaces with no direct experimental validation. Here, we use a quantitative nuclear magnetic resonance approach to investigate the properties of aqueous electrolytes nanoconfined in graphitic-like nanoporous carbon. Substantial electroneutrality breakdown in nanoconfined regions and very asymmetric responses of cations and anions to the charging of nanoconfining surfaces are observed. The electroneutrality breakdown is shown to depend strongly on the propensity of anions toward the water-carbon interface and such ion-specific response follows generally the anion ranking of the Hofmeister series. The experimental observat...

Luo, Zhi-Xiang; Ling, Yan-Chun; Kleinhammes, Alfred; Wu, Yue

2015-01-01T23:59:59.000Z

13

Electroneutrality Breakdown and Specific Ion Effects in Nanoconfined Aqueous Electrolytes Observed by NMR  

E-Print Network [OSTI]

Ion distribution in aqueous electrolytes near the interface plays critical roles in electrochemical, biological and colloidal systems and is expected to be particularly significant inside nanoconfined regions. Electroneutrality of the total charge inside nanoconfined regions is commonly assumed a priori in solving ion distribution of aqueous electrolytes nanoconfined by uncharged hydrophobic surfaces with no direct experimental validation. Here, we use a quantitative nuclear magnetic resonance approach to investigate the properties of aqueous electrolytes nanoconfined in graphitic-like nanoporous carbon. Substantial electroneutrality breakdown in nanoconfined regions and very asymmetric responses of cations and anions to the charging of nanoconfining surfaces are observed. The electroneutrality breakdown is shown to depend strongly on the propensity of anions toward the water-carbon interface and such ion-specific response follows generally the anion ranking of the Hofmeister series. The experimental observations are further supported by numerical evaluation using the generalized Poisson-Boltzmann equation

Zhi-Xiang Luo; Yun-Zhao Xing; Yan-Chun Ling; Alfred Kleinhammes; Yue Wu

2015-02-24T23:59:59.000Z

14

Non-aqueous electrolyte for lithium-ion battery  

DOE Patents [OSTI]

The present technology relates to stabilizing additives and electrolytes containing the same for use in electrochemical devices such as lithium ion batteries and capacitors. The stabilizing additives include triazinane triones and bicyclic compounds comprising succinic anhydride, such as compounds of Formulas I and II described herein.

Zhang, Lu; Zhang, Zhengcheng; Amine, Khalil

2014-04-15T23:59:59.000Z

15

Electrodeposited Manganese Oxides on Three-Dimensional Carbon Nanotube Substrate: Supercapacitive Behaviour in Aqueous and Organic Electrolytes  

SciTech Connect (OSTI)

Thin amorphous manganese oxide layers with a thickness of 3-5nm are electrodeposited on a carbon nanotube (CNT) film substrate that has a three-dimensional nanoporous structure (denoted asMnO2/CNT electrode). For the purpose of comparison, manganese oxide films are also electrodeposited on a flat Pt-coated Si wafer substrate (denoted as MnO2 film electrode). The pseudocapacitive properties of the MnO2 film and MnO2/CNT electrodes are examined in both aqueous electrolyte (1.0M KCl) and nonaqueousorganic electrolyte (1.0M LiClO4 in propylene carbonate). While both types of electrode showpseudocapacitive behaviour in the aqueous electrolyte, only the MnO2/CNT electrode does so in the organic electrolyte, due to its high oxide/electrolyte interfacial area and improved electron conduction through the CNT substrate. Compared with the MnO2 film electrode, the MnO2/CNT electrode shows a much higher specific capacitance and better high-rate capability, regardless of the electrolyte used.Use of the organic electrolyte results in a ?6 times higher specific energy compared with that obtained with the aqueous electrolyte, while maintaining a similar specific power. The construction of a threedimensional nanoporous network structure consisting of a thin oxide layer on a CNT film substrate at the nm scale and the use of an organic electrolyte are promising approaches to improving the specific energyof supercapacitors.

Nam,K.W.; Yang,X.

2009-03-01T23:59:59.000Z

16

Quantitative Chromatographic Determination of Dissolved Elemental Sulfur in the Non-aqueous Electrolyte for Lithium-Sulfur Batteries  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

A fast and reliable analytical method is reported for the quantitative determination of dissolved elemental sulfur in non-aqueous electrolytes for Li-S batteries. By using high performance liquid chromatography with a UV detector, the solubility of S in 12 different pure solvents and in 22 different electrolytes was determined. It was found that the solubility of elemental sulfur is dependent on the Lewis basicity, the polarity of solvents and the salt concentration in the electrolytes. In addition, the S content in the electrolyte recovered from a discharged Li-S battery was successfully determined by the proposed HPLC/UV method. Thus, the feasibility of the method to the online analysis for a Li-S battery is demonstrated. Interestingly, the S was found super-saturated in the electrolyte recovered from a discharged Li-S cell.

Zheng, Dong [Univ. of Massachusetts, Boston, MA (United States). Dept. of Chemistry; Yang, Xiao-Qing [Brookhaven National Laboratory (BNL), Upton, NY (United States). Chemistry Dept.; Zhang, Xuran [Wuhan Univ. of Technology, Hubei (China); Dept. of Chemistry; Li, Chao [Univ. of Massachusetts, Boston, MA (United States). Dept. of Chemistry; McKinnon, Meaghan E. [Univ. of Massachusetts, Boston, MA (United States). Dept. of Chemistry; Sadok, Rachel G. [Univ. of Massachusetts, Boston, MA (United States). Dept. of Chemistry; Qu, Deyu [Wuhan Univ. of Technology, Hubei (China); Dept. of Chemistry; Yu, Xiqian [Brookhaven National Laboratory (BNL), Upton, NY (United States). Chemistry Dept.; Lee, Hung-Sui [Brookhaven National Laboratory (BNL), Upton, NY (United States). Chemistry Dept.; Qu, Deyang [Univ. of Massachusetts, Boston, MA (United States). Dept. of Chemistry

2014-11-01T23:59:59.000Z

17

Salt Effect Model for Aqueous Solubility of TBP in a 5 to 100% TBP/n-Dodecane-Nitric Acid-Water Biphasic System at 298.2 K  

SciTech Connect (OSTI)

The solubilities of nonelectrolytes in aqueous electrolyte solutions have traditionally been modeled by using the Setschenow equation for salt effect. The aqueous solubility of tri-n-butyl phosphate (TBP) during operating conditions of the Purex process is an important parameter for safety considerations. Use of the Setschenow equation for aqueous solubility of TBP under limited conditions has been reported in the literature. However, there is no general model available to account for the presence of the diluent and for the case of multicomponent electrolyte solutions in which only some electrolytes are solvated and extracted by TBP. An extended salt effect model is proposed for predicting the aqueous solubility of TBP in a 5 to 100% TBP/n-dodecane-nitric acid-water biphasic system at 298.2 K. The literature data on TBP solubility were correlated to aqueous acid concentration, diluent concentration in the solvents, and an interaction parameter for electrolytic solutes (extracted or not extracted by TBP)

Kumar, Shekhar; Koganti, Sudhir Babu [Indira Gandhi Centre for Atomic Research (India)

2000-02-15T23:59:59.000Z

18

Structure and transport of aqueous electrolytes: From simple halides to radionuclide ions  

SciTech Connect (OSTI)

Molecular simulations are used to compare the structure and dynamics of conventional and radioactive aqueous electrolytes: chloride solutions with sodium, potassium, cesium, calcium, and strontium. The study of Cs{sup +} and Sr{sup 2+} is important because these radioactive ions can be extremely harmful and are often confused by living organisms for K{sup +} and Ca{sup 2+}, respectively. Na{sup +}, Ca{sup 2+}, and Sr{sup 2+} are strongly bonded to their hydration shell because of their large charge density. We find that the water molecules in the first hydration shell around Na{sup +} form hydrogen bonds between each other, whereas molecules in the first hydration shell around Ca{sup 2+} and Sr{sup 2+} predominantly form hydrogen bonds with water molecules in the second shell. In contrast to these three ions, K{sup +} and Cs{sup +} have low charge densities so that they are weakly bonded to their hydration shell. Overall, the structural differences between Ca{sup 2+} and Sr{sup 2+} are small, but the difference between their coordination numbers relative to their surface areas could potentially be used to separate these ions. Moreover, the different decays of the velocity-autocorrelation functions corresponding to these ions indicates that the difference in mass could be used to separate these cations. In this work, we also propose a new definition of the pairing time that is easy to calculate and of physical significance regardless of the problem at hand.

Hartkamp, Remco, E-mail: hartkamp@mit.edu; Coasne, Benoit, E-mail: benoit.coasne@enscm.fr [Institut Charles Gerhardt Montpellier, CNRS (UMR 5253), Université Montpellier 2, ENSCM, 8 rue de l’Ecole Normale, 34296 Montpellier Cedex 05 (France); MultiScale Material Science for Energy and Environment, CNRS/MIT (UMI 3466), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States)

2014-09-28T23:59:59.000Z

19

Update on Electrolyte Modeling with Emphasis on Low Temperature...  

Energy Savers [EERE]

performance) Molecular dynamics simulation studies of electrolytes and electrolyteelectrode interfaces Linking Ion Solvation and Lithium Battery Electrolyte Properties...

20

Marcus Douglas Hilliard Thermodynamics of Aqueous Piperazine/Potassium  

E-Print Network [OSTI]

/Potassium Carbonate/Carbon Dioxide Characterized by the Electrolyte NRTL Model within Aspen Plus® by Marcus Douglas Characterized by the Electrolyte NRTL Model within Aspen Plus® APPROVED BY SUPERVISING COMMITTEE of Aqueous Piperazine/Potassium Carbonate/Carbon Dioxide Characterized by the Electrolyte NRTL Model within

Rochelle, Gary T.

Note: This page contains sample records for the topic "aqueous electrolyte modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Inverse hydrochemical models of aqueous extracts tests  

SciTech Connect (OSTI)

Aqueous extract test is a laboratory technique commonly used to measure the amount of soluble salts of a soil sample after adding a known mass of distilled water. Measured aqueous extract data have to be re-interpreted in order to infer porewater chemical composition of the sample because porewater chemistry changes significantly due to dilution and chemical reactions which take place during extraction. Here we present an inverse hydrochemical model to estimate porewater chemical composition from measured water content, aqueous extract, and mineralogical data. The model accounts for acid-base, redox, aqueous complexation, mineral dissolution/precipitation, gas dissolution/ex-solution, cation exchange and surface complexation reactions, of which are assumed to take place at local equilibrium. It has been solved with INVERSE-CORE{sup 2D} and been tested with bentonite samples taken from FEBEX (Full-scale Engineered Barrier EXperiment) in situ test. The inverse model reproduces most of the measured aqueous data except bicarbonate and provides an effective, flexible and comprehensive method to estimate porewater chemical composition of clays. Main uncertainties are related to kinetic calcite dissolution and variations in CO2(g) pressure.

Zheng, L.; Samper, J.; Montenegro, L.

2008-10-10T23:59:59.000Z

22

H+ diffusion and electrochemical stability of Li1+x+yAlxTi2-xSiyP3-yO12 glass in aqueous Li/air battery electrolytes  

SciTech Connect (OSTI)

It is well known that LATP (Li1+x+y AlxTi2?x SiyP3?yO12) glass is a good lithium ion conductor. However, the interaction between LATP glass and H+ ions (including its diffusion and surface adsorption) needs to be well understood before the long-term application of LATP glass in an aqueous electrolyte based Li-air batteries where H+ always present. In this work, we investigate the H+ ion diffusion properties in LATP glass and their surface interactions using both experimental and modeling approaches. Our analysis indicates that the apparent H+ related current observed in the initial cyclic voltammetry scan should be attributed to the adsorption of H+ ions on the LATP glass rather than the bulk diffusion of H+ ions in the glass. Furthermore, the density functional theory calculations indicate that the H+ ion diffusion energy barrier (3.21 eV) is much higher than that of Li+ ion (0.79 eV) and Na+ ion (0.79 eV) in NASICON type LiTi2(PO4)3 material. As a result, the H+ ion conductivity in LATP glass is negligible at room temperature. However, significant surface corrosion was found after the LATP glass was soaked in strong alkaline electrolyte for extended time. Therefore, appropriate electrolytes have to be developed to prevent the corrosion of LATP glass before its practical application for Li-air batteries using aqueous electrolyte.

Ding, Fei; Xu, Wu; Shao, Yuyan; Chen, Xilin; Wang, Zhiguo; Gao, Fei; Liu, Xingjiang; Zhang, Jiguang

2012-09-15T23:59:59.000Z

23

THERMODYNAMIC MODELLING OF GAS SEMI-CLATHRATE HYDRATES USING THE ELECTROLYTE NRTL MODEL  

E-Print Network [OSTI]

THERMODYNAMIC MODELLING OF GAS SEMI-CLATHRATE HYDRATES USING THE ELECTROLYTE NRTL MODEL Matthias phase non-idealities, the electrolyte NRTL (eNRTL)-GE -model has been incorporated in our modified model of the eNRTL-interaction energy parameters has been neglected and instead, ENRTL-coefficients at 298.15 K

Paris-Sud XI, Université de

24

Investigation of the Rechargeability of Li-O2 Batteries in Non-aqueous Electrolyte  

SciTech Connect (OSTI)

In order to understand the nature of the limited cycle life and poor energy efficiency associated with the secondary Li-O¬2 batteries the discharge products of primary Li-O2 cells at different depth of discharge (DOD) are systematically analyzed in this work. It is revealed that if discharged to 2.0 V a small amount of Li2O2 coexist with Li2CO3 and RO-(C=O)-OLi) in alkyl carbonate-based electrolyte. Further discharging the air electrodes to below 2.0 V the amount of Li2CO3 and LiRCO3 increases significantly due to the severe electrolyte decomposition. There is no Li2O detected in this alkyl carbonate electrolyte regardless of DOD. It is also found that the alkyl carbonate based electrolyte begins to decompose at 4.0 V during charging under the combined influences from the high surface area carbon, the nickel metal current collector and the oxygen atmosphere. Accordingly the impedance of the Li-O2 cell continues to increase after each discharge and recharge process indicating a repeated plating of insoluble lithium salts on the carbon surface. Therefore the whole carbon electrode becomes completely insulated only after a few cycles and loses the function of providing active tri-phase regions for the Li-oxygen batteries.

Xiao, Jie; Hu, Jian Z.; Wang, Deyu; Hu, Dehong; Xu, Wu; Graff, Gordon L.; Nie, Zimin; Liu, Jun; Zhang, Jiguang

2011-07-01T23:59:59.000Z

25

Liquid Water Dynamics in a Model Polymer Electrolyte Fuel Cell Flow Channel  

E-Print Network [OSTI]

Liquid Water Dynamics in a Model Polymer Electrolyte Fuel Cell Flow Channel by Chris Miller in a Model Polymer Electrolyte Fuel Cell Flow Channel by Chris Miller Bachelors of Engineering, University in a polymer electrolyte fuel cell is a critical issue in ensuring high cell performance. The water production

Victoria, University of

26

Aqueous Electrolyte Modeling in Aspen Plus G. E  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmesApplication2 (CRAC 2 period)Office2

27

A Universal Model for Nanoporous Carbon Supercapacitors Applicable to Diverse Pore Regimes, Carbons, and Electrolyte  

SciTech Connect (OSTI)

Supercapacitors, commonly called electric double-layer capacitors (EDLCs), are emerging as a novel type of energy storage device with the potential to substitute batteries in applications requiring high power densities. In response to the latest experimental breakthrough in nanoporous carbon supercapacitors, we propose a heuristic theoretical model that takes pore curvature into account as a replacement for the EDLC model which is based on a traditional parallel-plate capacitor. When the pore size is in the mesopore regime (2-50 nm), counterions enter mesoporous carbons and approach the pore wall to form an electric double-cylinder capacitor (EDCC); in the micropore regime (< 2 nm), solvated/desolvated counterions line up along the pore axis to form an electric wire-in-cylinder capacitor (EWCC). In the macropore regime (> 50 nm) where pores are large enough so that the pore curvature is no longer significant, the EDCC model can be reduced naturally to the EDLC model. We present density functional theory calculations and detailed analyses of available experimental data in various pore regimes, showing the significant effects of pore curvature on the supercapacitor properties of nanoporous carbons. It is shown that the EDCC/EWCC model is universal to carbon supercapacitors with diverse carbon materials including activated carbons, template carbons, and novel carbide-derived carbons, and with diverse electrolytes including organic electrolytes such as tetraethylammonium tetrafluoroborate (TEABF4), tetraethylammonium methyl-sulfonate (TEAMS) in acetonitrile, aqueous H2SO4 and KOH electrolytes, and even ionic liquid electrolyte such as 1-ethyl-3-methylimmidazolium bis(trifluromethane-sulfonyl)imide (EMI-TFSI). The EDCC/EWCC model allows the supercapacitor properties to be correlated with pore size, specific surface area, Debye length, electrolyte concentration and dielectric constant, and solute ion size, and may lend a support for the systematic optimization of the properties of carbon supercapacitors via experiments. On the basis of the insight obtained from the new model, we also discuss the effects of the kinetic solvation/desolvation process, multimodal (versus unimodal) pore size distribution, and exohedral (versus endohedral) capacitors on the electrochemical properties of supercapacitors.

Sumpter, Bobby G [ORNL; Huang, Jingsong [ORNL; Meunier, Vincent [ORNL

2008-01-01T23:59:59.000Z

28

Modeling Cold Start in a Polymer-Electrolyte Fuel Cell  

E-Print Network [OSTI]

conditions used for fuel—cell simulations. 3.12 Values usedin Polymer Electrolyte Fuel Cells — II. Parametric Study,”of Polymer Electrolyte Fuel Cells,” Electrochimica Acta, 53,

Balliet, Ryan

2010-01-01T23:59:59.000Z

29

Modeling Liquid-Liquid Equilibrium of Ionic Liquid Systems with NRTL, Electrolyte-NRTL, and UNIQUAC  

E-Print Network [OSTI]

Modeling Liquid-Liquid Equilibrium of Ionic Liquid Systems with NRTL, Electrolyte-NRTL, and UNIQUAC different excess Gibbs free energy models are evaluated: the NRTL, UNIQUAC and electrolyte- NRTL (eNRTL) models. In the case of eNRTL, a new formulation of the model is used, based on a symmetric reference

Stadtherr, Mark A.

30

On a Pioneering Polymer Electrolyte Fuel Cell Model  

SciTech Connect (OSTI)

"Polymer Electrolyte Fuel Cell Model" is a seminal work that continues to form the basis for modern modeling efforts, especially models concerning the membrane and its behavior at the continuum level. The paper is complete with experimental data, modeling equations, model validation, and optimization scenarios. While the treatment of the underlying phenomena is limited to isothermal, single-phase conditions, and one-dimensional flow, it represents the key interactions within the membrane at the center of the PEFC. It focuses on analyzing the water balance within the cell and clearly demonstrates the complex interactions of water diffusion and electro-osmotic flux. Cell-level and system-level water balance are key to the development of efficient PEFCs going forward, particularly as researchers address the need to simplify humidification and recycle configurations while increasing the operating temperature of the stack to minimize radiator requirements.

Weber, Adam Z.; Meyers, Jeremy P.

2010-07-07T23:59:59.000Z

31

Modeling Cold Start in a Polymer-Electrolyte Fuel Cell  

E-Print Network [OSTI]

Boundary conditions used for fuel—cell simulations. 3.12to the Problem of Cold Start 1.1 Polymer—Electrolyte Fuelin Polymer Electrolyte Fuel Cells — II. Parametric Study,”

Balliet, Ryan

2010-01-01T23:59:59.000Z

32

The model of stress distribution in polymer electrolyte membrane  

E-Print Network [OSTI]

An analytical model of mechanical stress in a polymer electrolyte membrane (PEM) of a hydrogen/air fuel cell with porous Water Transfer Plates (WTP) is developed in this work. The model considers a mechanical stress in the membrane is a result of the cell load cycling under constant oxygen utilization. The load cycling causes the cycling of the inlet gas flow rate, which results in the membrane hydration/dehydration close to the gas inlet. Hydration/dehydration of the membrane leads to membrane swelling/shrinking, which causes mechanical stress in the constrained membrane. Mechanical stress results in through-plane crack formation. Thereby, the mechanical stress in the membrane causes mechanical failure of the membrane, limiting fuel cell lifetime. The model predicts the stress in the membrane as a function of the cell geometry, membrane material properties and operation conditions. The model was applied for stress calculation in GORE-SELECT.

Atrazhev, Vadim V; Dmitriev, Dmitry V; Erikhman, Nikolay S; Sultanov, Vadim I; Patterson, Timothy; Burlatsky, Sergei F

2014-01-01T23:59:59.000Z

33

The model of stress distribution in polymer electrolyte membrane  

E-Print Network [OSTI]

An analytical model of mechanical stress in a polymer electrolyte membrane (PEM) of a hydrogen/air fuel cell with porous Water Transfer Plates (WTP) is developed in this work. The model considers a mechanical stress in the membrane is a result of the cell load cycling under constant oxygen utilization. The load cycling causes the cycling of the inlet gas flow rate, which results in the membrane hydration/dehydration close to the gas inlet. Hydration/dehydration of the membrane leads to membrane swelling/shrinking, which causes mechanical stress in the constrained membrane. Mechanical stress results in through-plane crack formation. Thereby, the mechanical stress in the membrane causes mechanical failure of the membrane, limiting fuel cell lifetime. The model predicts the stress in the membrane as a function of the cell geometry, membrane material properties and operation conditions. The model was applied for stress calculation in GORE-SELECT.

Vadim V. Atrazhev; Tatiana Yu. Astakhova; Dmitry V. Dmitriev; Nikolay S. Erikhman; Vadim I. Sultanov; Timothy Patterson; Sergei F. Burlatsky

2014-01-17T23:59:59.000Z

34

Modeling Cold Start in a Polymer-Electrolyte Fuel Cell  

E-Print Network [OSTI]

conditions used for fuel—cell simulations. 3.12 Values usedin Polymer Electrolyte Fuel Cells — II. Parametric Study,”Fuel Cells . . . . . . . . . . . . . . . . . . . . . . 1.1.1

Balliet, Ryan

2010-01-01T23:59:59.000Z

35

Modeling water content effects in polymer electrolyte fuel cells  

SciTech Connect (OSTI)

Water content and transport is the key factor in the one-dimensional, steady-state model of a complete polymer electrolyte fuel cell (PEFC) described here. Water diffusion coefficients, electroosmotic drag coefficients, water sorption isotherms, and membrane conductivities, all measured in our laboratory as functions of membrane water content, were used in the model. The model predicts a net-water-per-proton flux ratio of 0.2 H{sub 2}O/H{sup +} under typical operating conditions, which is much less than the measured electroosmotic drag coefficient for a fully hydrated membrane. It also predicts an increase in membrane resistance with increased current density and demonstrates the great advantage of thinner membranes in alleviating this resistance problem. Both of these predictions were verified experimentally under certain conditions. We also describe the sensitivity of the water concentration profile and associated observables to variations in the values of some of the transport parameters in anticipation of applying the model to fuel cells employing other membranes. 16 refs., 9 figs.

Springer, T.E.; Zawodzinski, T.A.; Gottesfeld, S.

1991-01-01T23:59:59.000Z

36

Chemical Models for Aqueous Biodynamical Processes  

E-Print Network [OSTI]

The proton inventory method was applied to the study of three processes: the viscous flow of water, the neutral hydrolysis of esters, and the exchange reaction between aqueous sodium ion and the carboxylic exchanger Amberlite ...

Mata-Segreda, Julio F.

1975-05-01T23:59:59.000Z

37

MODELLING GAS HYDRATE EQUILIBRIA USING THE ELECTROLYTE NON-RANDOM TWO-LIQUID (ENRTL) MODEL  

E-Print Network [OSTI]

SAINT- ETIENNE, FRANCE ABSTRACT The semi-empirical electrolyte NRTL (eNRTL) model [1,2,3,4], also-Debye-Hückel (PDH) equation [5]. A modified version of the Non-Random-Two-Liquid (NRTL) local composition model in their immediate neighbourhood. The most general form of the eNRTL activity coefficient expressions for both

Paris-Sud XI, Université de

38

Ceramic electrolyte coating and methods  

DOE Patents [OSTI]

Aqueous coating slurries useful in depositing a dense coating of a ceramic electrolyte material (e.g., yttrium-stabilized zirconia) onto a porous substrate of a ceramic electrode material (e.g., lanthanum strontium manganite or nickel/zirconia) and processes for preparing an aqueous suspension of a ceramic electrolyte material and an aqueous spray coating slurry including a ceramic electrolyte material. The invention also includes processes for depositing an aqueous spray coating slurry including a ceramic electrolyte material onto pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.

Seabaugh, Matthew M. (Columbus, OH); Swartz, Scott L. (Columbus, OH); Dawson, William J. (Dublin, OH); McCormick, Buddy E. (Dublin, OH)

2007-08-28T23:59:59.000Z

39

Computer Modeling of crystalline electrolytes Lithium Thiophosphates and Phophosphates a  

E-Print Network [OSTI]

th ECS Meeting ­ Montr´eal 2011 1 #12;Solid vs liquid electrolytes in Li ion batteries Solid;Example of solid electrolyte ­ thin film battery technology 219th ECS Meeting ­ Montr´eal 2011 3 #12;Li/3; ceramic · Li+ conductivity 10-3 S/cm; thermal activation energies 0.1-0.3 eV. 1 Bates et al, Solid State

Holzwarth, Natalie

40

Phosphorous Computer Modeling of Crystalline Electrolytes: Lithium Thiophosphates and Phosphates  

E-Print Network [OSTI]

-search algorithm · Minimum-energy migration paths were determined via the construction of a weighted graph Results: Abstract Recently, lithium thiophosphate materials suitable for usage as solid electrolytes with PAW functionals generated using atompaw, and used in pwscf and abinit) · Formation energies

Holzwarth, Natalie

Note: This page contains sample records for the topic "aqueous electrolyte modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Anomalous pH Dependent Stability Behavior of Surfactant-Free Nonpolar Oil Drops in Aqueous Electrolyte Solutions  

E-Print Network [OSTI]

. In this study, we investigated the interaction across an aqueous thin film between fluorocarbon with a higher refractive index than water, and a fluorocarbon oil (perfluoropentane, C5F12), a liquid will be attractive for the hydrocarbon oil and repulsive for the fluorocarbon oil. Traditional methods

Chan, Derek Y C

42

Mathematical Properties of Pump-Leak Models of Cell Volume Control and Electrolyte Balance  

E-Print Network [OSTI]

Mathematical Properties of Pump-Leak Models of Cell Volume Control and Electrolyte Balance Yoichiro using pump-leak models, a system of differential algebraic equations that de- scribes the balance and stability of steady states for a general class of pump-leak models. We treat two cases. When the ion channel

Weinberger, Hans

43

Kinetic investigation of catalytic disproportionation of superoxide ions in the non-aqueous electrolyte used in Li-air batteries  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

Superoxide reacts with carbonate solvents in Li–air batteries. Tris(pentafluorophenyl)borane is found to catalyze a more rapid superoxide (O2–) disproportionation reaction than the reaction between superoxide and propylene carbonate (PC). With this catalysis, the negative impact of the reaction between the electrolyte and O2– produced by the O2 reduction can be minimized. A simple kinetic study using ESR spectroscopy was reported to determine reaction orders and rate constants for the reaction between PC and superoxide, and the disproportionation of superoxide catalyzed by Tris(pentafluorophenyl)borane and Li ions. The reactions are found to be first order and the rate constants are 0.033 s–1 M–1, 0.020 s–1 M–1 and 0.67 s–1 M–1 for reactions with PC, Li ion and Tris(pentafluorophenyl)borane, respectively.

Wang, Qiang [Univ. of Massachusetts at Boston, Boston, MA (United States); Yang, Xiao -Qing [Brookhaven National Laboratory (BNL), Upton, NY (United States); Zheng, Doug [Univ. of Massachusetts at Boston, Boston, MA (United States); McKinnon, Meaghan E. [Univ. of Massachusetts at Boston, Boston, MA (United States); Qu, Deyang [Univ. of Massachusetts at Boston, Boston, MA (United States)

2015-01-01T23:59:59.000Z

44

Stochastic Modeling and Direct Simulation of the Diffusion Media for Polymer Electrolyte Fuel Cells  

E-Print Network [OSTI]

Cells Yun Wang* and Xuhui Feng Renewable Energy Resources Lab (RERL) and National Fuel Cell Research the stochastic-model-based reconstruction of the gas diffusion layer (GDL) of polymer electrolyte fuel cells on pore-level transport and scrutinize the macroscopic approach vastly adopted in current fuel cell

Schmidt, Volker

45

Computational Fluid Dynamics Modeling of a Lithium/Thionyl Chloride Battery with Electrolyte Flow  

E-Print Network [OSTI]

Computational Fluid Dynamics Modeling of a Lithium/Thionyl Chloride Battery with Electrolyte Flow W.B. Gu and C.Y. Wang GATE Center of Excellence for Advanced Energy Storage Department of Mechanical are performed using a finite volume method of computational fluid dynamics. The predicted discharge curves

Wang, Chao-Yang

46

Computational Modeling of Electrolyte/Cathode Interfaces in Proton Exchange Membrane Fuel Cells  

E-Print Network [OSTI]

Computational Modeling of Electrolyte/Cathode Interfaces in Proton Exchange Membrane Fuel Cells Dr Proton exchange membrane fuel cells (PEMFCs) are alternative energy conversion devices that efficiently. The fundamental relationship between operating conditions and device performance will help to optimize the device

Bjørnstad, Ottar Nordal

47

Modeling of activity coefficients of aqueous solutions of quaternary ammonium salts with the  

E-Print Network [OSTI]

with the electrolyte-NRTL equation Lionel S. Belvčze, Joan F. Brennecke* and Mark A. Stadtherr Department of Chemical-liquid (NRTL) model proposed by Chen et al.,1 can be applied to model activity coefficients of quaternary

Stadtherr, Mark A.

48

E-Print Network 3.0 - acidic sulfate electrolyte Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

solution. A partially... -ion batteries that use aqueous electrolytes offer safety and cost advantages when compared to today's commercial... cells that use organic electrolytes....

49

Transport Phenomena in Polymer Electrolyte Membranes I. Modeling Framework  

E-Print Network [OSTI]

and optimization of fuel cells in a design and development environment. Kreuer et al.19 recently presented of ongoing efforts to develop more comprehensive compu- tational fuel cell model14-18 that allow analysis of the fundamental transport mechanisms. In the context of multidimensional fuel cell modeling, practical

Struchtrup, Henning

50

Using a Quasipotential Transformation for Modeling Diffusion Media inPolymer-Electrolyte Fuel Cells  

SciTech Connect (OSTI)

In this paper, a quasipotential approach along with conformal mapping is used to model the diffusion media of a polymer-electrolyte fuel cell. This method provides a series solution that is grid independent and only requires integration along a single boundary to solve the problem. The approach accounts for nonisothermal phenomena, two-phase flow, correct placement of the electronic potential boundary condition, and multilayer media. The method is applied to a cathode diffusion medium to explore the interplay between water and thermal management and performance, the impact of the rib-to-channel ratio, and the existence of diffusion under the rib and flooding phenomena.

Weber, Adam Z.; Newman, John

2008-08-29T23:59:59.000Z

51

Dynamic Thermal Model of Polymer Electrolyte Membrane (PEM) Fuel Cell Budi Hadisujoto, Rehan Refai, Dongmei Chen, Tess J. Moon  

E-Print Network [OSTI]

Dynamic Thermal Model of Polymer Electrolyte Membrane (PEM) Fuel Cell Budi Hadisujoto, Rehan Refai to improve the performance of a PEM fuel cell Simulation Results Advanced Power Systems and Controls (GDL) to reduce water saturation · Model water transport in PEM fuel cell Contribution: · Dynamic

Ben-Yakar, Adela

52

Phase Behavior of Aqueous NA-K-MG-CA-CI-NO3 Mixtures: Isopiestic Measurements and Thermodynamic Modeling  

SciTech Connect (OSTI)

A comprehensive model has been established for calculating thermodynamic properties of multicomponent aqueous systems containing the Na{sup +}, K{sup +}, Mg{sup 2+}, Ca{sup 2+}, Cl{sup -}, and NO{sub 3}{sup -} ions. The thermodynamic framework is based on a previously developed model for mixed-solvent electrolyte solutions. The framework has been designed to reproduce the properties of salt solutions at temperatures ranging from the freezing point to 300 C and concentrations ranging from infinite dilution to the fused salt limit. The model has been parameterized using a combination of an extensive literature database and new isopiestic measurements for thirteen salt mixtures at 140 C. The measurements have been performed using Oak Ridge National Laboratory's (ORNL) previously designed gravimetric isopiestic apparatus, which makes it possible to detect solid phase precipitation. Water activities are reported for mixtures with a fixed ratio of salts as a function of the total apparent salt mole fraction. The isopiestic measurements reported here simultaneously reflect two fundamental properties of the system, i.e., the activity of water as a function of solution concentration and the occurrence of solid-liquid transitions. The thermodynamic model accurately reproduces the new isopiestic data as well as literature data for binary, ternary and higher-order subsystems. Because of its high accuracy in calculating vapor-liquid and solid-liquid equilibria, the model is suitable for studying deliquescence behavior of multicomponent salt systems.

M.S. Gruszkiewiez; D.A. Palmer; R.D. Springer; P. Wang; A. Anderko

2006-09-14T23:59:59.000Z

53

Electrolytes - Advanced Electrolyte and Electrolyte Additives  

Broader source: Energy.gov (indexed) [DOE]

Co 13 O 2 , LiNi 0.5 Mn 1.5 O 4 Anode: MCMB, LTO Electrolyte-1: 1.2M LiPF 6 ECEMC 37 with or without additive Electrolyte-2: fully or partially fluorinated...

54

Using a Quasipotential Transformation for Modeling Diffusion Media in Polymer-Electrolyte Fuel Cells  

E-Print Network [OSTI]

Proton Exchange Membrane Fuel Cell , Numerical Heat Transferof Polymer Electrolyte Fuel Cells Using a Two-EquationExchange Membrane Fuel Cells 2. Absolute Permeability ,

Weber, Adam Z.

2008-01-01T23:59:59.000Z

55

Osmotic Pressure of Aqueous Chondroitin Sulfate Solution: A Molecular Modeling Investigation  

E-Print Network [OSTI]

The osmotic pressure of chondroitin sulfate (CS) solution in contact with an aqueous 1:1 salt reservoir of fixed ionic strength is studied using a recently developed coarse-grained molecular model. The effects of sulfation ...

Bathe, Mark

56

E-Print Network 3.0 - aqueous solutions affected Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Aqueous Lithium... -ion batteries that use aqueous electrolytes offer safety and cost advantages when compared to ... Source: Cui, Yi - Department of Materials Science and...

57

E-Print Network 3.0 - aqueous solution-gel syntheses Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Aqueous Lithium... -ion batteries that use aqueous electrolytes offer safety and cost advantages when compared to ... Source: Cui, Yi - Department of Materials Science and...

58

A Flow-Through High-Pressure Electrical Conductance Cell for Determining of Ion Association of Aqueous Electrolyte Solutions at High Temperature and Pressure  

SciTech Connect (OSTI)

A flow-through high-pressure electrical conductance cell was designed and constructed to measure limiting molar conductances and ion association constants of dilute aqueous solutions with high precision at high temperatures and pressures. The basic concept of the cell employs the principle developed at the University of Delaware in 1995, but overall targets higher temperatures (to 600 C) and pressures (to 300 MPa). At present the cell has been tested by measuring aqueous NaCl and LiOH solutions (10{sup {minus}3} to 10{sup {minus}5} mol.kg{sup {minus}1}) to 405 C and 33 MPa with good results.

Bianchi, H.; Ho, P.C.; Palmer, D.A.; Wood, R.H.

1999-09-12T23:59:59.000Z

59

Electrolytes - Advanced Electrolyte and Electrolyte Additives  

Broader source: Energy.gov (indexed) [DOE]

testing Cathode: LiNi13Mn13Co13O2 Anode: MCMB Electrolyte: 1.2M LiPF6 ECEMC 37 with or without additive - Separator: Celgard 2325 Voltage for cycling:...

60

THERMAL CONDUCTIVITY OF AQUEOUS NaCl SOLUTIONS  

Office of Scientific and Technical Information (OSTI)

aqueous electrolyte solutions are required in the development and uti1 ization of geothermal energy, petroleum recovery, desalination of sea water, and other energy systems...

Note: This page contains sample records for the topic "aqueous electrolyte modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

aqueous food model: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

approaches to the understanding of food webs. After an overview of the available food web data, we discuss three different classes of models. The first class comprise static...

62

Multi-scale First-Principles Modeling of Three-Phase System of Polymer Electrolyte Membrane Fuel Cel  

SciTech Connect (OSTI)

The three-phase system consisting of Nafion, graphite and platinum in the presence of water is studied using molecule dynamics simulation. The force fields describing the molecular interaction between the components in the system are developed to reproduce the energies calculated from density functional theory modeling. The configuration of such complicated three-phase system is predicted through MD simulations. The nanophase-segregation and transport properties are investigated from the equilibrium state. The coverage of the electrolyte on the platinum surface and the dissolution of oxygen are analyzed.

Brunello, Giuseppe; Choi, Ji; Harvey, David; Jang, Seung

2012-07-01T23:59:59.000Z

63

Electrolytic orthoborate salts for lithium batteries  

DOE Patents [OSTI]

Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

Angell, Charles Austen [Mesa, AZ; Xu, Wu [Tempe, AZ

2009-05-05T23:59:59.000Z

64

Electrolytic orthoborate salts for lithium batteries  

DOE Patents [OSTI]

Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

Angell, Charles Austen (Mesa, AZ); Xu, Wu (Tempe, AZ)

2008-01-01T23:59:59.000Z

65

Quasi-steady model for predicting temperature of aqueous foams circulating in geothermal wellbores  

SciTech Connect (OSTI)

A quasi-steady model has been developed for predicting the temperature profiles of aqueous foams circulating in geothermal wellbores. The model assumes steady one-dimensional incompressible flow in the wellbore; heat transfer by conduction from the geologic formation to the foam is one-dimensional radially and time-dependent. The vertical temperature distribution in the undisturbed geologic formation is assumed to be composed of two linear segments. For constant values of the convective heat-transfer coefficient, a closed-form analytical solution is obtained. It is demonstrated that the Prandtl number of aqueous foams is large (1000 to 5000); hence, a fully developed temperature profile may not exist for representative drilling applications. Existing convective heat-transfer-coefficient solutions are adapted to aqueous foams. The simplified quasi-steady model is successfully compared with a more-sophisticated finite-difference computer code. Sample temperature-profile calculations are presented for representative values of the primary parameters. For a 5000-ft wellbore with a bottom hole temperature of 375{sup 0}F, the maximum foam temperature can be as high as 300{sup 0}F.

Blackwell, B.F.; Ortega, A.

1983-01-01T23:59:59.000Z

66

Electrolyte salts for nonaqueous electrolytes  

DOE Patents [OSTI]

Metal complex salts may be used in lithium ion batteries. Such metal complex salts not only perform as an electrolyte salt in a lithium ion batteries with high solubility and conductivity, but also can act as redox shuttles that provide overcharge protection of individual cells in a battery pack and/or as electrolyte additives to provide other mechanisms to provide overcharge protection to lithium ion batteries. The metal complex salts have at least one aromatic ring. The aromatic moiety may be reversibly oxidized/reduced at a potential slightly higher than the working potential of the positive electrode in the lithium ion battery. The metal complex salts may also be known as overcharge protection salts.

Amine, Khalil; Zhang, Zhengcheng; Chen, Zonghai

2012-10-09T23:59:59.000Z

67

Pseudo-capacitor device for aqueous electrolytes  

DOE Patents [OSTI]

A pseudo-capacitor having a high energy storage capacity develops a double layer capacitance as well as a Faradaic or battery-like redox reaction, also referred to as pseudo-capacitance. The Faradaic reaction gives rise to a capacitance much greater than that of the typical ruthenate oxide ultracapacitor which develops only charge separation-based double layer capacitance. The capacitor employs a lead and/or bismuth/ruthenate and/or iridium system having the formula A.sub.2 ›B.sub.2-x Pb.sub.x !O.sub.7-y, where A=Pb, Bi, and B=Ru, Ir, and O

Prakash, Jai (3849 NW. 65th Ave., Gainesville, FL 32653); Thackeray, Michael M. (1763 Cliffside Ct., Naperville, IL 60565); Dees, Dennis W. (6224 Middaugh Ave., Downers Grove, IL 60516); Vissers, Donald R. (611 Clover Ct., Naperville, IL 60540); Myles, Kevin M. (1231 60th Pl., Downers Grove, IL 60516-1856)

1998-01-01T23:59:59.000Z

68

Pseudo-capacitor device for aqueous electrolytes  

DOE Patents [OSTI]

A pseudo-capacitor having a high energy storage capacity develops a double layer capacitance as well as a Faradaic or battery-like redox reaction, also referred to as pseudo-capacitance. The Faradaic reaction gives rise to a capacitance much greater than that of the typical ruthenate oxide ultracapacitor which develops only charge separation-based double layer capacitance. The capacitor employs a lead and/or bismuth/ruthenate and/or iridium system having the formula A{sub 2}[B{sub 2{minus}x}Pb{sub x}]O{sub 7{minus}y}, where A=Pb, Bi, and B=Ru, Ir, and O

Prakash, J.; Thackeray, M.M.; Dees, D.W.; Vissers, D.R.; Myles, K.M.

1998-11-24T23:59:59.000Z

69

Understanding Aqueous Electrolyte Stability through Combined Computational  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof2014National Nuclear23, 2014 Meetingsays |

70

Cathode for the electrolytic production of hydrogen  

SciTech Connect (OSTI)

The invention relates to a cathode for the electrolytic production of hydrogen. The cathode comprises an active surface consisting of a metal oxide obtained by the thermal decomposition of a thermally decomposable compound of a metal chosen from amongst cobalt, iron, manganese or nickel. The cathode is particularly suitable for the electrolysis of aqueous sodium chloride solutions in cells with a permeable diaphragm.

Nicolas, E.

1983-07-19T23:59:59.000Z

71

E-Print Network 3.0 - aqueous solution rationalizations Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mixtures of Water, Poly(ethylene oxide) and Electrolytes (Or Dextran) Summary: the formation of aqueous two-phase systems was investigated by calorimetry measuring...

72

E-Print Network 3.0 - atomics international aqueous carbonate...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

44 Topic T4 Claudia Hildenbrand 274 EDLC electrodes from cellulose-based carbon aerogels: influence of Summary: in aqueous electrolyte (cyclic voltammetry and galvanostatic...

73

Electrolytes - Advanced Electrolyte and Electrolyte Additives  

Broader source: Energy.gov (indexed) [DOE]

energies, continuum model for solvation effects, periodic calculations, high performance computing including massively parallel codes Exoerimental methods: cell testing, CVs,...

74

E-Print Network 3.0 - aqueous model system Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

been shown that aqueous humor is able to obstructflowthrough Nuclepore ... Source: Johnson, Mark - Biomedical Engineering Department, Northwestern University Collection:...

75

Nanocomposite polymer electrolyte for rechargeable magnesium batteries  

SciTech Connect (OSTI)

Nanocomposite polymer electrolytes present new opportunities for rechargeable magnesium batteries. However, few polymer electrolytes have demonstrated reversible Mg deposition/dissolution and those that have still contain volatile liquids such as tetrahydrofuran (THF). In this work, we report a nanocomposite polymer electrolyte based on poly(ethylene oxide) (PEO), Mg(BH4)2 and MgO nanoparticles for rechargeable Mg batteries. Cells with this electrolyte have a high coulombic efficiency of 98% for Mg plating/stripping and a high cycling stability. Through combined experiment-modeling investigations, a correlation between improved solvation of the salt and solvent chain length, chelation and oxygen denticity is established. Following the same trend, the nanocomposite polymer electrolyte is inferred to enhance the dissociation of the salt Mg(BH4)2 and thus improve the electrochemical performance. The insights and design metrics thus obtained may be used in nanocomposite electrolytes for other multivalent systems.

Shao, Yuyan; Rajput, Nav Nidhi; Hu, Jian Z.; Hu, Mary Y.; Liu, Tianbiao L.; Wei, Zhehao; Gu, Meng; Deng, Xuchu; Xu, Suochang; Han, Kee Sung; Wang, Jiulin; Nie, Zimin; Li, Guosheng; Zavadil, K.; Xiao, Jie; Wang, Chong M.; Henderson, Wesley A.; Zhang, Jiguang; Wang, Yong; Mueller, Karl T.; Persson, Kristin A.; Liu, Jun

2014-12-28T23:59:59.000Z

76

HANFORD RIVER PROTECTION PROJECT ENHANCED MISSION PLANNING THROUGH INNOVATIVE TOOLS LIFECYCLE COST MODELING AND AQUEOUS THERMODYNAMIC MODELING - 12134  

SciTech Connect (OSTI)

Two notable modeling efforts within the Hanford Tank Waste Operations Simulator (HTWOS) are currently underway to (1) increase the robustness of the underlying chemistry approximations through the development and implementation of an aqueous thermodynamic model, and (2) add enhanced planning capabilities to the HTWOS model through development and incorporation of the lifecycle cost model (LCM). Since even seemingly small changes in apparent waste composition or treatment parameters can result in large changes in quantities of high-level waste (HLW) and low-activity waste (LAW) glass, mission duration or lifecycle cost, a solubility model that more accurately depicts the phases and concentrations of constituents in tank waste is required. The LCM enables evaluation of the interactions of proposed changes on lifecycle mission costs, which is critical for decision makers.

PIERSON KL; MEINERT FL

2012-01-26T23:59:59.000Z

77

On the modeling and simulation of reaction-transfer dynamics in semiconductor-electrolyte solar cells  

E-Print Network [OSTI]

-performance semiconductor-liquid junction solar cells. We propose in this work a macroscopic mathematical model, a sys- tem-liquid junction, solar cell simulation, naso-scale device modeling. 1 Introduction The mathematical modeling by the increasing need of simulation tools for designing efficient solar cells to harvest sunlight for clean energy

Ren, Kui

78

Fuel cell having electrolyte  

DOE Patents [OSTI]

A fuel cell having an electrolyte control volume includes a pair of porous opposed electrodes. A maxtrix is positioned between the pair of electrodes for containing an electrolyte. A first layer of backing paper is positioned adjacent to one of the electrodes. A portion of the paper is substantially previous to the acceptance of the electrolyte so as to absorb electrolyte when there is an excess in the matrix and to desorb electrolyte when there is a shortage in the matrix. A second layer of backing paper is positioned adjacent to the first layer of paper and is substantially impervious to the acceptance of electrolyte.

Wright, Maynard K. (Bethel Park, PA)

1989-01-01T23:59:59.000Z

79

Nonlinear modelling of polymer electrolyte membrane fuel cell stack using nonlinear cancellation technique  

SciTech Connect (OSTI)

Fuel cells are promising new energy conversion devices that are friendly to the environment. A set of control systems are required in order to operate a fuel cell based power plant system optimally. For the purpose of control system design, an accurate fuel cell stack model in describing the dynamics of the real system is needed. Currently, linear model are widely used for fuel cell stack control purposes, but it has limitations in narrow operation range. While nonlinear models lead to nonlinear control implemnetation whos more complex and hard computing. In this research, nonlinear cancellation technique will be used to transform a nonlinear model into a linear form while maintaining the nonlinear characteristics. The transformation is done by replacing the input of the original model by a certain virtual input that has nonlinear relationship with the original input. Then the equality of the two models is tested by running a series of simulation. Input variation of H2, O2 and H2O as well as disturbance input I (current load) are studied by simulation. The error of comparison between the proposed model and the original nonlinear model are less than 1 %. Thus we can conclude that nonlinear cancellation technique can be used to represent fuel cell nonlinear model in a simple linear form while maintaining the nonlinear characteristics and therefore retain the wide operation range.

Barus, R. P. P., E-mail: rismawan.ppb@gmail.com [Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung and Centre for Material and Technical Product, Jalan Sangkuriang No. 14 Bandung (Indonesia); Tjokronegoro, H. A.; Leksono, E. [Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung (Indonesia); Ismunandar [Chemistry Study, Faculty of Mathematics and Science, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung (Indonesia)

2014-09-25T23:59:59.000Z

80

A Carbon Corrosion Model to Evaluate the Effect of Steady State and Transient Operation of a Polymer Electrolyte Membrane Fuel Cell  

E-Print Network [OSTI]

A carbon corrosion model is developed based on the formation of surface oxides on carbon and platinum of the polymer electrolyte membrane fuel cell electrode. The model predicts the rate of carbon corrosion under potential hold and potential cycling conditions. The model includes the interaction of carbon surface oxides with transient species like OH radicals to explain observed carbon corrosion trends under normal PEM fuel cell operating conditions. The model prediction agrees qualitatively with the experimental data supporting the hypothesis that the interplay of surface oxide formation on carbon and platinum is the primary driver of carbon corrosion.

Pandy, Arun; Gummalla, Mallika; Atrazhev, Vadim V; Kuzminyh, Nikolay Yu; Sultanov, Vadim I; Burlatsky, Sergei F

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aqueous electrolyte modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Crown Ethers in Nonaqueous Electrolytes for Lithium/Air Batteries  

SciTech Connect (OSTI)

The effects of three crown ethers, 12-crown-4, 15-crown-5, and 18-crown-6, as additives and co-solvents in non-aqueous electrolytes on the cell performance of primary Li/air batteries operated in a dry air environment were investigated. Crown ethers have large effects on the discharge performance of non-aqueous electrolytes in Li/air batteries. A small amount (normally less than 10% by weight or volume in electrolytes) of 12-Crown-4 and 15-crown-5 reduces the battery performance and a minimum discharge capacity appears at the crown ether content of ca. 5% in the electrolytes. However, when the content increases to about 15%, both crown ethers improve the capacity of Li/air cells by about 28% and 16%, respectively. 15-Crown-5 based electrolytes even show a maximum discharge capacity in the crown ether content range from 10% to 15%. On the other hand, the increase of 18-crown-6 amount in the electrolytes continuously lowers of the cell performance. The different battery performances of these three crown ethers in electrolytes are explained by the combined effects from the electrolytes’ contact angle, oxygen solubility, viscosity, ionic conductivity, and the stability of complexes formed between crown ether molecules and lithium ions.

Xu, Wu; Xiao, Jie; Wang, Deyu; Zhang, Jian; Zhang, Jiguang

2010-02-04T23:59:59.000Z

82

Novel Nonflammable Electrolytes for Secondary Magnesium Batteries and High Voltage Electrolytes for Electrochemcial Supercapacitors  

SciTech Connect (OSTI)

Magnesium has been used successfully in primary batteries, but its use in rechargeable cells has been stymied by the lack of suitable non-aqueous electrolyte that can conduct Mg+2 species, combined with poor stripping and plating properties. The development of a suitable cathode material for rechargeable magnesium batteries has also been a roadblock, but a nonflammable electrolyte is key. Likewise, the development of safe high voltage electrochemical supercapaitors has been stymied by the use of flammable solvents in the liquid electrolyte; to wit, acetonitrile. The purpose of the research conducted in this effort was to identify useful compositions of magnesium salts and polyphosphate solvents that would enable magnesium ions to be cycled within a secondary battery design. The polyphosphate solvents would provide the solvent for the magnesium salts while preventing the electrolyte from being flammable. This would enable these novel electrolytes to be considered as an alternative to THF-based electrolytes. In addition, we explored several of these solvents together with lithium slats for use as high voltage electrolytes for carbon-based electrochemical supercapacitors. The research was successful in that: 1) Magnesium imide dissolved in a phosphate ester solvent that contains a halogented phosphate ester appears to be the preferred electrolyte for a rechargeable Mg cell. 2) A combination of B-doped CNTs and vanadium phosphate appear to be the cathode of choice for a rechargeable Mg cell by virtue of higher voltage and better reversibility. 3) Magnesium alloys appear to perform better than pure magnesium when used in combination with the novel polyphosphate electrolytes. Also, this effort has established that Phoenix Innovationâ??s family of phosphonate/phosphate electrolytes together with specific lithium slats can be used in supercapacitor systems at voltages of greater than 10V.

Dr. Brian Dixon

2008-12-30T23:59:59.000Z

83

Novel Electrolytes and Additives  

Broader source: Energy.gov (indexed) [DOE]

7 Point of Reference - Electrode and Electrolyte Chemistries Gen 2 electrolyte EC:EMC (3:7 by wt.) + 1.2M LiPF 6 Cu (-) Al (+) Mag-10 graphite Particle size 5 m Celgard...

84

Anion exchange polymer electrolytes  

DOE Patents [OSTI]

Solid anion exchange polymer electrolytes include chemical compounds comprising a polymer backbone with side chains that include guanidinium cations.

Kim, Yu Seung; Kim, Dae Sik

2013-09-10T23:59:59.000Z

85

Solid polymer electrolyte compositions  

DOE Patents [OSTI]

An electrolyte composition is featured that includes a solid, ionically conductive polymer, organically modified oxide particles that include organic groups covalently bonded to the oxide particles, and an alkali metal salt. The electrolyte composition is free of lithiated zeolite. The invention also features cells that incorporate the electrolyte composition.

Garbe, James E. (Stillwater, MN); Atanasoski, Radoslav (Edina, MN); Hamrock, Steven J. (St. Paul, MN); Le, Dinh Ba (St. Paul, MN)

2001-01-01T23:59:59.000Z

86

Lithium ion conducting electrolytes  

DOE Patents [OSTI]

The present invention relates generally to highly conductive alkali-metal ion non-crystalline electrolyte systems, and more particularly to novel and unique molten (liquid), rubbery, and solid electrolyte systems which are especially well suited for use with high current density electrolytic cells such as primary and secondary batteries.

Angell, Charles Austen (Mesa, AZ); Liu, Changle (Midland, MI); Xu, Kang (Montgomery Village, MD); Skotheim, Terje A. (Tucson, AZ)

1999-01-01T23:59:59.000Z

87

Improved Modeling and Understanding of Diffusion-Media Wettability on Polymer-Electrolyte-Fuel-Cell Performance  

SciTech Connect (OSTI)

A macroscopic-modeling methodology to account for the chemical and structural properties of fuel-cell diffusion media is developed. A previous model is updated to include for the first time the use of experimentally measured capillary pressure -- saturation relationships through the introduction of a Gaussian contact-angle distribution into the property equations. The updated model is used to simulate various limiting-case scenarios of water and gas transport in fuel-cell diffusion media. Analysis of these results demonstrate that interfacial conditions are more important than bulk transport in these layers, where the associated mass-transfer resistance is the result of higher capillary pressures at the boundaries and the steepness of the capillary pressure -- saturation relationship. The model is also used to examine the impact of a microporous layer, showing that it dominates the response of the overall diffusion medium. In addition, its primary mass-transfer-related effect is suggested to be limiting the water-injection sites into the more porous gas-diffusion layer.

Weber, Adam

2010-03-05T23:59:59.000Z

88

Predicting viscosities of aqueous salt mixtures  

SciTech Connect (OSTI)

Viscosity plays an important role in quantifying heat and mass transfer rates as depicted in theoretical and semi-empirical correlations. In practical problems where extreme temperatures and solute concentrations are encountered, viscosity data is usually unavailable. At these conditions, no dependable correlation appears to exist in the literature. This paper uses the hole type model to predict the viscosity of aqueous electrolytes containing single and mixed salts up to the molten salt regime. This model needs two parameters which can be evaluated from sparse data. For LiBr/water and (Li, K, na) NO[sub 3]/water mixtures, it is shown that the agreement between predicted and experimental values is very good over wide temperature and concentration ranges. The deviation between these two values was found to be less than 9%.

Zaltash, A.; Ally, M.R.

1992-01-01T23:59:59.000Z

89

Predicting viscosities of aqueous salt mixtures  

SciTech Connect (OSTI)

Viscosity plays an important role in quantifying heat and mass transfer rates as depicted in theoretical and semi-empirical correlations. In practical problems where extreme temperatures and solute concentrations are encountered, viscosity data is usually unavailable. At these conditions, no dependable correlation appears to exist in the literature. This paper uses the hole type model to predict the viscosity of aqueous electrolytes containing single and mixed salts up to the molten salt regime. This model needs two parameters which can be evaluated from sparse data. For LiBr/water and (Li, K, na) NO{sub 3}/water mixtures, it is shown that the agreement between predicted and experimental values is very good over wide temperature and concentration ranges. The deviation between these two values was found to be less than 9%.

Zaltash, A.; Ally, M.R.

1992-12-01T23:59:59.000Z

90

Process and economic model of in-field heavy oil upgrading using aqueous pyrolysis  

SciTech Connect (OSTI)

A process and economic model for aqueous pyrolysis in-field upgrading of heavy oil has been developed. The model has been constructed using the ASPEN PLUS chemical process simulator. The process features cracking of heavy oil at moderate temperatures in the presence of water to increase oil quality and thus the value of the oil. Calculations with the model indicate that for a 464 Mg/day (3,000 bbl/day) process, which increases the oil API gravity of the processed oil from 13.5{degree} to 22.4{degree}, the required value increase of the oil would need to be at least $2.80/Mg{center_dot}{degree}API($0.40/bbl{center_dot}{degree}API) to make the process economically attractive. This level of upgrading has been demonstrated in preliminary experiments with candidate catalysts. For improved catalysts capable of having the coke make and increasing the pyrolysis rate, a required price increase for the oil as low as $1.34/Mg{center_dot}{degree}API ($0.21/bbl{center_dot}{degree}API)has been calculated.

Thorsness, C. B., LLNL

1997-01-21T23:59:59.000Z

91

Electrolyte vapor condenser  

DOE Patents [OSTI]

A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well. 3 figs.

Sederquist, R.A.; Szydlowski, D.F.; Sawyer, R.D.

1983-02-08T23:59:59.000Z

92

Electrolyte vapor condenser  

DOE Patents [OSTI]

A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well.

Sederquist, Richard A. (Newington, CT); Szydlowski, Donald F. (East Hartford, CT); Sawyer, Richard D. (Canton, CT)

1983-01-01T23:59:59.000Z

93

Nanoporous polymer electrolyte  

DOE Patents [OSTI]

A nanoporous polymer electrolyte and methods for making the polymer electrolyte are disclosed. The polymer electrolyte comprises a crosslinked self-assembly of a polymerizable salt surfactant, wherein the crosslinked self-assembly includes nanopores and wherein the crosslinked self-assembly has a conductivity of at least 1.0.times.10.sup.-6 S/cm at 25.degree. C. The method of making a polymer electrolyte comprises providing a polymerizable salt surfactant. The method further comprises crosslinking the polymerizable salt surfactant to form a nanoporous polymer electrolyte.

Elliott, Brian (Wheat Ridge, CO); Nguyen, Vinh (Wheat Ridge, CO)

2012-04-24T23:59:59.000Z

94

Computational modeling of structure and OH-anion diffusion in quaternary ammonium polysulfone hydroxide Polymer electrolyte for application  

E-Print Network [OSTI]

. Introduction Despite the significant progress made in reducing cost of Polymer Electrolyte Membrane Fuel Cells further progress in commercializa- tion of the fuel cell technology, the focus should be moved to other types of fuel cells which do not require expensive Pt as catalysts. Alkaline fuel cells (AFCs) are more

Goddard III, William A.

95

Structure and dynamics of electrical double layers in organic electrolytes  

SciTech Connect (OSTI)

The organic electrolyte of tetraethylammonium tetrafluoroborate (TEABF{sub 4}) in the aprotic solvent of acetonitrile (ACN) is widely used in electrochemical systems such as electrochemical capacitors. In this paper, we examine the solvation of TEA{sup +} and BF{sub 4}{sup -} in ACN, and the structure, capacitance, and dynamics of the electrical double layers (EDLs) in the TEABF{sub 4}-ACN electrolyte using molecular dynamics simulations complemented with quantum density functional theory calculations. The solvation of TEA+ and BF4- ions is found to be much weaker than that of small inorganic ions in aqueous solutions, and the ACN molecules in the solvation shell of both types of ions show only weak packing and orientational ordering. These solvation characteristics are caused by the large size, charge delocalization, and irregular shape (in the case of TEA+ cation) of the ions. Near neutral electrodes, the double-layer structure in the organic electrolyte exhibits a rich organization: the solvent shows strong layering and orientational ordering, ions are significantly contact-adsorbed on the electrode, and alternating layers of cations/anions penetrate ca. 1.1 nm into the bulk electrolyte. The significant contact adsorption of ions and the alternating layering of cation/anion are new features found for EDLs in organic electrolytes. These features essentially originate from the fact that van der Waals interactions between organic ions and the electrode are strong and the partial desolvation of these ions occurs easily, as a result of the large size of the organic ions. Near charged electrodes, distinct counter-ion concentration peaks form, and the ion distribution cannot be described by the Helmholtz model or the Helmholtz + Poisson-Boltzmann model. This is because the number of counter-ions adsorbed on the electrode exceeds the number of electrons on the electrode, and the electrode is over-screened in parts of the EDL. The computed capacitances of the EDLs are in good agreement with that inferred from experimental measurements. Both the rotations (ACN only) and translations of interfacial ACN and ions are found to slow down as the electrode is electrified. We also observe an asymmetrical dependence of these motions on the sign of the electrode charge. The rotation/diffusion of ACN and the diffusion of ions in the region beyond the first ACN or ion layer differ only weakly from those in the bulk

Huang, Jingsong [ORNL; Sumpter, Bobby G [ORNL; Meunier, Vincent [ORNL; Qiao, Rui [ORNL; Feng, Guang [Clemson University

2010-01-01T23:59:59.000Z

96

Solid Electrolyte Batteries  

Broader source: Energy.gov (indexed) [DOE]

Kim Texas Materials Institute The University of Texas at Austin Solid Electrolyte Batteries This presentation does not contain any proprietary or confidential information. DOE...

97

Electrolytes for power sources  

DOE Patents [OSTI]

Electrolytes are disclosed for power sources, particularly alkaline and acidic power sources, comprising benzene polysulfonic acids and benzene polyphosphonic acids or salts of such acids. 7 figures.

Doddapaneni, N.; Ingersoll, D.

1995-01-03T23:59:59.000Z

98

Novel Electrolytes and Additives  

Broader source: Energy.gov (indexed) [DOE]

Objectives - Relevance Performance, calendar-life, and safety characteristics of Li-ion cells are dictated by the nature and stability of the electrolyte and the...

99

Molecular Simulations of Electrolytes and Electrolyte/Electrode...  

Broader source: Energy.gov (indexed) [DOE]

Simulations of Electrolytes and ElectrolyteElectrode Interfaces Grant D. Smith and Oleg Borodin Department of Materials Science & Engineering University of Utah 02182008 "This...

100

Thermodynamic model for mineral solubility in aqueous fluids: theory, calibration and application to model  

E-Print Network [OSTI]

describes the energetics of solvation more accurately than does the Born electrostatic theory and can be extended beyond the limits of experimental measurements of the dielectric constant of H2O. The new model, their dissolution energet- ics involve a relatively small contribution from the solvent volumetric properties

Manning, Craig

Note: This page contains sample records for the topic "aqueous electrolyte modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Molten salt electrolyte separator  

DOE Patents [OSTI]

The patent describes a molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication. 5 figs.

Kaun, T.D.

1996-07-09T23:59:59.000Z

102

Modeling the Removal of Uranium U(VI) from Aqueous Solutions in the  

E-Print Network [OSTI]

include natural U deposits, mining, milling, and tailing operations and U.S. Department of Energy (DOEModeling the Removal of Uranium U(VI) from Aqueous Solutions in the Presence of Sulfate Reducing The reduction kinetics of soluble hexavalent uranium (U(VI)) to insoluble tetravalent U(IV) by both a mixed

103

Andrey G. Kalinichev Molecular Modeling of Aqueous Solutions and Substrate-Solution Interfaces  

E-Print Network [OSTI]

(RDFs) o Mean square displacement (MSD) and self-diffusion coefficients o Velocity autocorrelation;2 · Hydrogen bonding in aqueous systems o Geometric, energetic and other criteria of H-bonding o Donating and accepting H-bonds; local tetrahedrality of water structure o Statistical analysis of H-bonding o Variations

Kalinichev, Andrey G.

104

Electric current-producing device having sulfone-based electrolyte  

DOE Patents [OSTI]

Electrolytic solvents and applications of such solvents including electric current-producing devices. For example, a solvent can include a sulfone compound of R1--SO2--R2, with R1 being an alkyl group and R2 a partially oxygenated alkyl group, to exhibit high chemical and thermal stability and high oxidation resistance. For another example, a battery can include, between an anode and a cathode, an electrolyte which includes ionic electrolyte salts and a non-aqueous electrolyte solvent which includes a non-symmetrical, non-cyclic sulfone. The sulfone has a formula of R1--SO2--R2, wherein R1 is a linear or branched alkyl or partially or fully fluorinated linear or branched alkyl group having 1 to 7 carbon atoms, and R2 is a linear or branched or partially or fully fluorinated linear or branched oxygen containing alkyl group having 1 to 7 carbon atoms. The electrolyte can include an electrolyte co-solvent and an electrolyte additive for protective layer formation.

Angell, Charles Austen (Mesa, AZ); Sun, Xiao-Guang (Tempe, AZ)

2010-11-16T23:59:59.000Z

105

SOLID ELECTROLYTE BATTERIES  

Broader source: Energy.gov (indexed) [DOE]

(+) Would allow a lithium anode Would block dendrites from a lithium anode or a Lisolid- electrolyte interface Would allow alternative cathodes, e.g. air, S 8 , or Fe 3+...

106

Molecular dynamics study of interfacial confinement effects of aqueous NaCl brines in nanoporous carbon  

SciTech Connect (OSTI)

In this paper, studies of aqueous electrolyte solutions in contact with a family of porous carbon geometries using classical molecular dynamics simulations are presented. These simulations provide an atomic scale depiction of ion transport dynamics in different environments to elucidate power of aqueous electrolyte supercapacitors. The electrolyte contains alkali metal and halide ions, which allow for the examination of size trends within specific geometries as well as trends in concentration. The electrode pores are modeled as planar graphite sheets and carbon nanotubes with interstices ranging from one to four nanometers. Ordered layers form parallel to the carbon surface, which facilitates focused ion motion under slightly confining conditions. As a result, the ion’s diffusivities are enhanced in the direction of the slit or pore. Further confining the system leads to decreased ion diffusivities. The ions are fully hydrated in all but the smallest slits and pores with those sizes showing increased ion pairing. There is strong evidence of charge separation perpendicular to the surface at all size scales, concentrations, and ion types, providing a useful baseline for examining differential capacitance behavior and future studies on energy storage. These systems show promise as high-power electrical energy storage devices.

Wander, M. C.F.; Shuford, K. L.

2010-01-01T23:59:59.000Z

107

Microscopic Insights into the Electrochemical Behavior of Nonaqueous Electrolytes in Electric Double-Layer Capacitors  

SciTech Connect (OSTI)

Electric double-layer capacitors (EDLCs) are electrical devices that store energy by adsorption of ionic species at the inner surface of porous electrodes. Compared with aqueous electrolytes, ionic liquid and organic electrolytes have the advantage of larger potential windows, making them attractive for the next generation of EDLCs with superior energy and power densities. The performance of both ionic liquid and organic electrolyte EDLCs hinges on the judicious selection of the electrode pore size and the electrolyte composition, which requires a comprehension of the charging behavior from a microscopic view. In this Perspective, we discuss predictions from the classical density functional theory (CDFT) on the dependence of the capacitance on the pore size for ionic liquid and organic electrolyte EDLCs. CDFT is applicable to electrodes with the pore size ranging from that below the ionic dimensionality to mesoscopic scales, thus unique for investigating the electrochemical behavior of the confined electrolytes for EDLC applications.

Jiang, Deen [ORNL; Wu, Jianzhong [University of California, Riverside

2013-01-01T23:59:59.000Z

108

Random Forest Models To Predict Aqueous Solubility David S. Palmer, Noel M. O'Boyle, Robert C. Glen, and John B. O. Mitchell*  

E-Print Network [OSTI]

be calculated by models such as those of Hamlin et al.2 Solubility is defined as the concentration of soluteRandom Forest Models To Predict Aqueous Solubility David S. Palmer, Noel M. O'Boyle, Robert C. Glen, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom Received May 5, 2006 Random Forest

de Gispert, AdriĂ 

109

Batteries using molten salt electrolyte  

DOE Patents [OSTI]

An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

Guidotti, Ronald A. (Albuquerque, NM)

2003-04-08T23:59:59.000Z

110

Novel electrolyte chemistries for Mg-Ni rechargeable batteries.  

SciTech Connect (OSTI)

Commercial hybrid electric vehicles (HEV) and battery electric vehicles (BEV) serve as means to reduce the nation's dependence on oil. Current electric vehicles use relatively heavy nickel metal hydride (Ni-MH) rechargeable batteries. Li-ion rechargeable batteries have been developed extensively as the replacement; however, the high cost and safety concerns are still issues to be resolved before large-scale production. In this study, we propose a new highly conductive solid polymer electrolyte for Mg-Ni high electrochemical capacity batteries. The traditional corrosive alkaline aqueous electrolyte (KOH) is replaced with a dry polymer with conductivity on the order of 10{sup -2} S/cm, as measured by impedance spectroscopy. Several potential novel polymer and polymer composite candidates are presented with the best-performing electrolyte results for full cell testing and cycling.

Garcia-Diaz, Brenda (Savannah River National Laboratory); Kane, Marie; Au, Ming (Savannah River National Laboratory)

2010-10-01T23:59:59.000Z

111

POLYMER ELECTROLYTE FUEL CELLS  

E-Print Network [OSTI]

POLYMER ELECTROLYTE FUEL CELLS: The Gas Diffusion Layer Johannah Itescu Princeton University PRISM REU #12;PEM FUEL CELLS: A little background information I. What do fuel cells do? Generate electricity through chemical reaction #12;PEM FUEL CELLS: A little background information -+ + eHH 442 2 0244 22 He

Petta, Jason

112

Spin coating of electrolytes  

DOE Patents [OSTI]

Methods for spin coating electrolytic materials onto substrates are disclosed. More particularly, methods for depositing solid coatings of ion-conducting material onto planar substrates and onto electrodes are disclosed. These spin coating methods are employed to fabricate electrochemical sensors for use in measuring, detecting and quantifying gases and liquids.

Stetter, Joseph R. (Naperville, IL); Maclay, G. Jordan (Maywood, IL)

1989-01-01T23:59:59.000Z

113

Gel polymer electrolytes for batteries  

DOE Patents [OSTI]

Nanostructured gel polymer electrolytes that have both high ionic conductivity and high mechanical strength are disclosed. The electrolytes have at least two domains--one domain contains an ionically-conductive gel polymer and the other domain contains a rigid polymer that provides structure for the electrolyte. The domains are formed by block copolymers. The first block provides a polymer matrix that may or may not be conductive on by itself, but that can soak up a liquid electrolyte, thereby making a gel. An exemplary nanostructured gel polymer electrolyte has an ionic conductivity of at least 1.times.10.sup.-4 S cm.sup.-1 at 25.degree. C.

Balsara, Nitash Pervez; Eitouni, Hany Basam; Gur, Ilan; Singh, Mohit; Hudson, William

2014-11-18T23:59:59.000Z

114

On the modeling and simulation of of reaction-transfer dynamics in semiconductor-electrolyte solar cells  

E-Print Network [OSTI]

-performance semiconductor-liquid junction solar cells. We propose in this work a macroscopic mathematical model, a sys- tem-liquid junction, solar cell simulation, naso-scale device modeling. 1 Introduction The mathematical modeling by the increasing need of simulation tools for designing efficient solar cells to harvest sunlight for clean energy

115

Consequence analysis of aqueous ammonia spills using an improved liquid pool evaporation model  

E-Print Network [OSTI]

of Acrolein released into air.................................................................98 x LIST OF TABLES Page Table 1. Assumptions for modeling scenarios...

Raghunathan, Vijay

2005-02-17T23:59:59.000Z

116

Computational Study of Copper(II) Complexation and Hydrolysis in Aqueous Solutions Using Mixed Cluster/Continuum Models  

E-Print Network [OSTI]

Computational Study of Copper(II) Complexation and Hydrolysis in Aqueous Solutions Using Mixed and thermodynamic properties of Cu(II) species in aqueous solution. 1. Introduction Copper is a key component evidence that copper may be involved in the pathogenesis of atherosclerosis, Alzheimer's diseases

Goddard III, William A.

117

Coupled Proton and Water Transport Modelling in Polymer Electrolyte J. Fimrite, B. Carnes, H. Struchtrup and N. Djilali*  

E-Print Network [OSTI]

-15 that allow analysis and optimization of fuel cells in a design and development environment. Kreuer et al.16 with a fuel cell model. The simulations highlight the predictive abilities of the model, particularly under low hydration conditions characteristic of ambient air- breathing fuel cells. 1 INTRODUCTION Solid

Struchtrup, Henning

118

Carbon nanotubes and graphene in aqueous surfactant solutions : molecular simulations and theoretical modeling  

E-Print Network [OSTI]

This thesis describes combined molecular simulations and theoretical modeling studies, supported by experimental observations, on properties and applications of carbon nanotubes (CNTs) and graphene sheets dispersed in ...

Lin, Shangchao

2012-01-01T23:59:59.000Z

119

Solid polymer electrolytes  

DOE Patents [OSTI]

This invention relates to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF.sub.3 SO.sub.2).sub.2, LiAsF.sub.6, and LiClO.sub.4.

Abraham, Kuzhikalail M. (Needham, MA); Alamgir, Mohamed (Dedham, MA); Choe, Hyoun S. (Waltham, MA)

1995-01-01T23:59:59.000Z

120

Ice electrode electrolytic cell  

DOE Patents [OSTI]

This invention relates to a method and apparatus for removing heavy metals from waste water, soils, or process streams by electrolytic cell means. The method includes cooling a cell cathode to form an ice layer over the cathode and then applying an electric current to deposit a layer of the heavy metal over the ice. The metal is then easily removed after melting the ice. In a second embodiment, the same ice-covered electrode can be employed to form powdered metals.

Glenn, David F. (Idaho Falls, ID); Suciu, Dan F. (Idaho Falls, ID); Harris, Taryl L. (Idaho Falls, ID); Ingram, Jani C. (Idaho Falls, ID)

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aqueous electrolyte modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Ice electrode electrolytic cell  

DOE Patents [OSTI]

This invention relates to a method and apparatus for removing heavy metals from waste water, soils, or process streams by electrolytic cell means. The method includes cooling a cell cathode to form an ice layer over the cathode and then applying an electric current to deposit a layer of the heavy metal over the ice. The metal is then easily removed after melting the ice. In a second embodiment, the same ice-covered electrode can be employed to form powdered metals.

Glenn, D.F.; Suciu, D.F.; Harris, T.L.; Ingram, J.C.

1993-04-06T23:59:59.000Z

122

Solid polymer electrolytes  

DOE Patents [OSTI]

This invention relates to Li ion (Li{sup +}) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF{sub 3}SO{sub 2}){sub 2}, LiAsF{sub 6}, and LiClO{sub 4}. 2 figs.

Abraham, K.M.; Alamgir, M.; Choe, H.S.

1995-12-12T23:59:59.000Z

123

Thin film composite electrolyte  

DOE Patents [OSTI]

The invention is a thin film composite solid (and a means for making such) suitable for use as an electrolyte, having a first layer of a dense, non-porous conductive material; a second layer of a porous ionic conductive material; and a third layer of a dense non-porous conductive material, wherein the second layer has a Coefficient of thermal expansion within 5% of the coefficient of thermal expansion of the first and third layers.

Schucker, Robert C. (The Woodlands, TX)

2007-08-14T23:59:59.000Z

124

Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

Polymer Electrolyte Fuel Cell Model, J. Electrochem. Soc. ,in Polymer Electrolyte Fuel Cells, J. Electrochem. Soc. ,Solid-Polymer- Electrolyte Fuel Cell, J. Electrochem. Soc. ,

Zhao, Hengbing; Burke, Andy

2008-01-01T23:59:59.000Z

125

Lithium ion conducting electrolytes  

DOE Patents [OSTI]

A liquid, predominantly lithium-conducting, ionic electrolyte is described having exceptionally high conductivity at temperatures of 100 C or lower, including room temperature, and comprising the lithium salts selected from the group consisting of the thiocyanate, iodide, bromide, chloride, perchlorate, acetate, tetrafluoroborate, perfluoromethane sulfonate, perfluoromethane sulfonamide, tetrahaloaluminate, and heptahaloaluminate salts of lithium, with or without a magnesium-salt selected from the group consisting of the perchlorate and acetate salts of magnesium. Certain of the latter embodiments may also contain molecular additives from the group of acetonitrile (CH{sub 3}CN), succinnonitrile (CH{sub 2}CN){sub 2}, and tetraglyme (CH{sub 3}--O--CH{sub 2}--CH{sub 2}--O--){sub 2} (or like solvents) solvated to a Mg{sup +2} cation to lower the freezing point of the electrolyte below room temperature. Other particularly useful embodiments contain up to about 40, but preferably not more than about 25, mol percent of a long chain polyether polymer dissolved in the lithium salts to provide an elastic or rubbery solid electrolyte of high ambient temperature conductivity and exceptional 100 C conductivity. Another embodiment contains up to about but not more than 10 mol percent of a molecular solvent such as acetone. 2 figs.

Angell, C.A.; Liu, C.

1996-04-09T23:59:59.000Z

126

Lithium ion conducting electrolytes  

DOE Patents [OSTI]

A liquid, predominantly lithium-conducting, ionic electrolyte having exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature, and comprising the lithium salts selected from the group consisting of the thiocyanate, iodide, bromide, chloride, perchlorate, acetate, tetrafluoroborate, perfluoromethane sulfonate, perfluoromethane sulfonamide, tetrahaloaluminate, and heptahaloaluminate salts of lithium, with or without a magnesium-salt selected from the group consisting of the perchlorate and acetate salts of magnesium. Certain of the latter embodiments may also contain molecular additives from the group of acetonitrile (CH.sub.3 CN) succinnonitrile (CH.sub.2 CN).sub.2, and tetraglyme (CH.sub.3 --O--CH.sub.2 --CH.sub.2 --O--).sub.2 (or like solvents) solvated to a Mg.sup.+2 cation to lower the freezing point of the electrolyte below room temperature. Other particularly useful embodiments contain up to about 40, but preferably not more than about 25, mol percent of a long chain polyether polymer dissolved in the lithium salts to provide an elastic or rubbery solid electrolyte of high ambient temperature conductivity and exceptional 100.degree. C. conductivity. Another embodiment contains up to about but not more than 10 mol percent of a molecular solvent such as acetone.

Angell, C. Austen (Tempe, AZ); Liu, Changle (Tempe, AZ)

1996-01-01T23:59:59.000Z

127

Integrated environmental degradation model for Fe-Ni-Cr alloys in irradiated aqueous solutions  

E-Print Network [OSTI]

An integrated model has been developed to evaluate the effect of reactor flux, fluence, and other operating conditions on crack growth rates in austenitic stainless steels in boiling water reactor (BWR) environments. The ...

Pleune, Thomas Todd, 1974-

1999-01-01T23:59:59.000Z

128

aqueous electrolyte solutions: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

swelling with a water content beyond 80%. Isotope exchange studies using ZNa, K, and aeCl indicated the existence of an intermediate rate constant and compartment which varied...

129

aqueous electrolyte solution: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

swelling with a water content beyond 80%. Isotope exchange studies using ZNa, K, and aeCl indicated the existence of an intermediate rate constant and compartment which varied...

130

UV Second-Harmonic Studies of Concentrated Aqueous Electrolyte Interfaces  

E-Print Network [OSTI]

Probed by UV Second Harmonic Generation, in Department ofby UV Second Harmonic Generation Spectroscopy," 114, 13746with Femtosecond Second Harmonic Generation Spectroscopy,"

Otten, Dale Edward

2010-01-01T23:59:59.000Z

131

Fluorinated Arylboron Oxalate for Non-Aqueous Battery Electrolytes - Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds" |beam damage in

132

DOE workshop: Sedimentary systems, aqueous and organic geochemistry  

SciTech Connect (OSTI)

A DOE workshop on sedimentary systems, aqueous and organic geochemistry was held July 15-16, 1993 at Lawrence Berkeley Laboratory. Papers were organized into several sections: Fundamental Properties, containing papers on the thermodynamics of brines, minerals and aqueous electrolyte solutions; Geochemical Transport, covering 3-D imaging of drill core samples, hydrothermal geochemistry, chemical interactions in hydrocarbon reservoirs, fluid flow model application, among others; Rock-Water Interactions, with presentations on stable isotope systematics of fluid/rock interaction, fluid flow and petotectonic evolution, grain boundary transport, sulfur incorporation, tracers in geologic reservoirs, geothermal controls on oil-reservoir evolution, and mineral hydrolysis kinetics; Organic Geochemistry covered new methods for constraining time of hydrocarbon migration, kinetic models of petroleum formation, mudstones in burial diagenesis, compound-specific carbon isotope analysis of petroleums, stability of natural gas, sulfur in sedimentary organic matter, organic geochemistry of deep ocean sediments, direct speciation of metal by optical spectroscopies; and lastly, Sedimentary Systems, covering sequence stratigraphy, seismic reflectors and diagenetic changes in carbonates, geochemistry and origin of regional dolomites, and evidence of large comet or asteroid impacts at extinction boundaries.

Not Available

1993-07-01T23:59:59.000Z

133

Computation of liquid-liquid equilibrium in multicomponent electrolyte systems  

SciTech Connect (OSTI)

A computational algorithm for predicting liquid-liquid equilibrium (LLE) data, based on a generalization of the maximum likelihood method applied to implicit constraints, is presented. The algorithm accepts multicomponent data and binary interaction parameters. A comparative study of the models NRTL and electrolyte-NRTL, used for estimating activity coefficients in a quaternary electrolyte system, is presented and discussed. Results show that both models give accurate predictions and the algorithm presents a good performance without convergence or initialization problems. This suggests that the basic NRTL model can be used for describing phase behavior in weak electrolyte systems and the procedure can be of great use for design and optimization of processes involving multicomponent electrolyte systems. 9 refs., 1 fig., 1 tab.

Vianna, R.F.; d`Avila, S.G. [Universidade Estadual de Campinas (Brazil)

1996-12-31T23:59:59.000Z

134

Coordination Chemistry in magnesium battery electrolytes: how...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemistry in magnesium battery electrolytes: how ligands affect their performance. Coordination Chemistry in magnesium battery electrolytes: how ligands affect their performance....

135

Thin film polymeric gel electrolytes  

DOE Patents [OSTI]

Novel hybrid thin film electrolyte, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities .apprxeq.10.sup.-3 .OMEGA..sup.-1 cm.sup.-1 are useful as electrolytes for rechargeable lithium batteries.

Derzon, Dora K. (1554 Rosalba St. NE., Albuquerque, Bernalillo County, NM 87112); Arnold, Jr., Charles (3436 Tahoe, NE., Albuquerque, Bernalillo County, NM 87111); Delnick, Frank M. (9700 Fleming Rd., Dexter, MI 48130)

1996-01-01T23:59:59.000Z

136

Thin film polymeric gel electrolytes  

DOE Patents [OSTI]

Novel hybrid thin film electrolytes, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities {approx_equal}10{sup {minus}3}{Omega}{sup {minus}1} cm{sup {minus}1} are useful as electrolytes for rechargeable lithium batteries. 1 fig.

Derzon, D.K.; Arnold, C. Jr.; Delnick, F.M.

1996-12-31T23:59:59.000Z

137

Electrolytes - Technology review  

SciTech Connect (OSTI)

Safety, lifetime, energy density, and costs are the key factors for battery development. This generates the need for improved cell chemistries and new, advanced battery materials. The components of an electrolyte are the solvent, in which a conducting salt and additives are dissolved. Each of them plays a specific role in the overall mechanism of a cell: the solvent provides the host medium for ionic conductivity, which originates in the conductive salt. Furthermore, additives can be used to optimize safety, performance, and cyclability. By understanding the tasks of the individual components and their optimum conditions of operation, the functionality of cells can be improved from a holistic point of view. This paper will present the most important technological features and requirements for electrolytes in lithium-ion batteries. The state-of-the-art chemistry of each component is presented, as well as different approaches for their modification. Finally, a comparison of Li-cells with lithium-based technologies currently under development is conducted.

Meutzner, Falk; Ureńa de Vivanco, Mateo [Institut für Experimentelle Physik, Technische Universität Bergakademie Freiberg, Leipziger Straße 23, 09596 Freiberg (Germany)

2014-06-16T23:59:59.000Z

138

Electrolyte treatment for aluminum reduction  

DOE Patents [OSTI]

A method of treating an electrolyte for use in the electrolytic reduction of alumina to aluminum employing an anode and a cathode, the alumina dissolved in the electrolyte, the treating improving wetting of the cathode with molten aluminum during electrolysis. The method comprises the steps of providing a molten electrolyte comprised of ALF.sub.3 and at least one salt selected from the group consisting of NaF, KF and LiF, and treating the electrolyte by providing therein 0.004 to 0.2 wt. % of a transition metal or transition metal compound for improved wettability of the cathode with molten aluminum during subsequent electrolysis to reduce alumina to aluminum.

Brown, Craig W. (Seattle, WA); Brooks, Richard J. (Seattle, WA); Frizzle, Patrick B. (Seattle, WA); Juric, Drago D. (Bulleen, AU)

2002-01-01T23:59:59.000Z

139

Electrolyte paste for molten carbonate fuel cells  

DOE Patents [OSTI]

The electrolyte matrix and electrolyte reservoir plates in a molten carbonate fuel cell power plant stack are filled with electrolyte by applying a paste of dry electrolyte powder entrained in a dissipatable carrier to the reactant flow channels in the current collector plate. The stack plates are preformed and solidified to final operating condition so that they are self sustaining and can be disposed one atop the other to form the power plant stack. Packing the reactant flow channels with the electrolyte paste allows the use of thinner electrode plates, particularly on the anode side of the cells. The use of the packed electrolyte paste provides sufficient electrolyte to fill the matrix and to entrain excess electrolyte in the electrode plates, which also serve as excess electrolyte reservoirs. When the stack is heated up to operating temperatures, the electrolyte in the paste melts, the carrier vaporizes, or chemically decomposes, and the melted electrolyte is absorbed into the matrix and electrode plates.

Bregoli, Lawrance J. (Southwick, MA); Pearson, Mark L. (New London, CT)

1995-01-01T23:59:59.000Z

140

Refinement of the Kansas City Plant site conceptual model with respect to dense non-aqueous phase liquids (DNAPL)  

SciTech Connect (OSTI)

This document presents a refinement of the site conceptual model with respect to dense non-aqueous phase liquid (DNAPL) at the US Department of Energy Kansas City Plant (KCP). This refinement was prompted by a review of the literature and the results of a limited study that was conducted to evaluate whether pools of DNAPL were present in contaminated locations at the KCP. The field study relied on the micropurge method of sample collection. This method has been demonstrated as a successful approach for obtaining discrete samples within a limited aquifer zone. Samples were collected at five locations across 5-ft well screens located at the base of the alluvial aquifer at the KCP. The hypothesis was that if pools of DNAPL were present, the dissolved concentration would increase with depth. Four wells with highly contaminated groundwater were selected for the test. Three of the wells were located in areas where DNAPL was suspected, and one where no DNAPL was believed to be present. The results demonstrated no discernible pattern with depth for the four wells tested. A review of the data in light of the available technical literature suggests that the fine-grained nature of the aquifer materials precludes the formation of pools. Instead, DNAPL is trapped as discontinuous ganglia that are probably widespread throughout the aquifer. The discontinuous nature of the DNAPL distribution prevents the collection of groundwater samples with concentrations approaching saturation. Furthermore, the results indicate that attempts to remediate the aquifer with conventional approaches will not result in restoration to pristine conditions because the tortuous groundwater flow paths will inhibit the efficiency of fluid-flow-based treatments.

Korte, N.E.; Hall, S.C. [Oak Ridge National Lab., TN (United States); Baker, J.L. [AlliedSignal Corp., Kansas City, MO (United States). Dept. of Environmental Protection

1995-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "aqueous electrolyte modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Novel electrolytes and electrolyte additives for PHEV applications  

Broader source: Energy.gov (indexed) [DOE]

diagnostics. Some of these electrolytes contained the following: - Solvents: EC, PC, EMC, etc. - Salts: LiPF 6 , LiBF 4 , LiB(C 2 O 4 ) 2 , LiF 2 BC 2 O 4 , etc. - Additives:...

142

Lithium ion conducting ionic electrolytes  

DOE Patents [OSTI]

A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors.

Angell, C. Austen (Mesa, AZ); Xu, Kang (Tempe, AZ); Liu, Changle (Tulsa, OK)

1996-01-01T23:59:59.000Z

143

The rheology of oxide dispersions and the role of concentrated electrolyte solutions  

SciTech Connect (OSTI)

Stability control of particulate dispersions is critical to a wide range of industrial processes. In the UK nuclear industry, significant volumes of waste materials arising from the corrosion products of Magnox fuel rods currently require treatment and storage. The majority of this waste is present as aqueous dispersions of oxide particulates. Treatment of these dispersions will require a variety of unit operations including mobilisation, transport and solid- liquid separation. Typically these processes must operate across a narrow optimal range of pH and the dispersions are, almost without exception, found in complex electrolyte conditions of high overall concentration. Knowledge of the behaviour of oxides in various electrolyte conditions and over a large pH range is essential for the efficient design and control of any waste processing approach. The transport properties of particle dispersions are characterised by the rheological properties. It is well known that particle dispersion rheology is strongly influenced by particle-particle interaction forces, and that particle-particle interactions are strongly influenced by adsorbed ions on the particle surfaces. Here we correlate measurements of the shear yield stress and the particle zeta potentials to provide insight as to the role of ions in moderating particle interactions. The zeta potential of model TiO{sub 2} suspensions were determined (Colloidal Dynamics Zeta Probe) over a range of pH for a series of alkali metal halides and quaternary ammonium halides at a range of solution concentrations (0.001 M - 1 M). The results show some surprising co-ion effects at high electrolyte concentrations (>0.5 M) and indicate that even ions generally considered to be indifferent induce a shift in iso-electric point (i.e.p.) which is inferred as being due to specific adsorption of ions. The shear yield stress values of concentrated titania dispersions were measured using a Bohlin C-VOR stress controlled rheometer. The shear yield stress of a material is defined as the minimum applied shear stress required to induce flow. The yield stress vs. pH curves obtained reflected the shifts in i.e.p. seen in the zeta potential results. Interestingly, specific ion adsorption results in an unexplained increase in the value of the yield stress over that expected for simple systems with no such interfacial ion adsorption. Possible reasons for this effect such as ion-ion correlation effects are discussed. The importance of this increased attraction for the mobilisation of settled solids in an aqueous environment and especially the likely effects on the treatment of Magnox fuel waste materials is discussed. (authors)

Biggs, Simon; Tindley, Amy [Leeds University/Nexis Solutions URA in Particle Science and Technology, Institute of Particle Science and Engineering, School of Process, Environmental and Materials Engineering, The University of Leeds, Leeds LS2 9JT (United Kingdom)

2007-07-01T23:59:59.000Z

144

High cation transport polymer electrolyte  

DOE Patents [OSTI]

A solid state ion conducting electrolyte and a battery incorporating same. The electrolyte includes a polymer matrix with an alkali metal salt dissolved therein, the salt having an anion with a long or branched chain having not less than 5 carbon or silicon atoms therein. The polymer is preferably a polyether and the salt anion is preferably an alkyl or silyl moiety of from 5 to about 150 carbon/silicon atoms.

Gerald, II, Rex E. (Brookfield, IL); Rathke, Jerome W. (Homer Glen, IL); Klingler, Robert J. (Westmont, IL)

2007-06-05T23:59:59.000Z

145

Electrolytes for lithium ion batteries  

DOE Patents [OSTI]

A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

2014-08-05T23:59:59.000Z

146

Solid polymer electrolyte lithium batteries  

DOE Patents [OSTI]

This invention pertains to Lithium batteries using Li ion (Li[sup +]) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride). 3 figures.

Alamgir, M.; Abraham, K.M.

1993-10-12T23:59:59.000Z

147

Solid polymer electrolyte lithium batteries  

DOE Patents [OSTI]

This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

Alamgir, Mohamed (Dedham, MA); Abraham, Kuzhikalail M. (Needham, MA)

1993-01-01T23:59:59.000Z

148

Electrolytes - R&D for Advanced Lithium Batteries. Interfacial...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

es089kerr2011o.pdf More Documents & Publications Electrolytes - R&D for Advanced Lithium Batteries. Interfacial Behavior of Electrolytes Interfacial Behavior of Electrolytes...

149

Electrolytes - R&D for Advanced Lithium Batteries. Interfacial...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

- Interfacial and Bulk Properties and Stability Electrolytes - R&D for Advanced Lithium Batteries. Interfacial Behavior of Electrolytes Interfacial Behavior of Electrolytes...

150

Non-aqueous solution preparation of doped and undoped lixmnyoz  

DOE Patents [OSTI]

A method for generation of phase-pure doped and undoped Li.sub.x Mn.sub.y O.sub.z precursors. The method of this invention uses organic solutions instead of aqueous solutions or nonsolution ball milling of dry powders to produce phase-pure precursors. These precursors can be used as cathodes for lithium-polymer electrolyte batteries. Dopants may be homogeneously incorporated to alter the characteristics of the powder.

Boyle, Timothy J. (5801 Eubank, N.E., Apt. #97, Albuquerque, NM 87111); Voigt, James A. (187 Aaramar La., Corrales, NM 87048)

1997-01-01T23:59:59.000Z

151

A Techno-Economic Analysis of Decentralized Electrolytic Hydrogen Production for Fuel Cell Vehicles  

E-Print Network [OSTI]

A Techno-Economic Analysis of Decentralized Electrolytic Hydrogen Production for Fuel Cell Vehicles-Economic Analysis of Decentralized Electrolytic Hydrogen Production for Fuel Cell Vehicles by SĂ©bastien Prince options considered for future fuel cell vehicles. In this thesis, a model is developed to determine

Victoria, University of

152

High elastic modulus polymer electrolytes  

DOE Patents [OSTI]

A polymer that combines high ionic conductivity with the structural properties required for Li electrode stability is useful as a solid phase electrolyte for high energy density, high cycle life batteries that do not suffer from failures due to side reactions and dendrite growth on the Li electrodes, and other potential applications. The polymer electrolyte includes a linear block copolymer having a conductive linear polymer block with a molecular weight of at least 5000 Daltons, a structural linear polymer block with an elastic modulus in excess of 1.times.10.sup.7 Pa and an ionic conductivity of at least 1.times.10.sup.-5 Scm.sup.-1. The electrolyte is made under dry conditions to achieve the noted characteristics.

Balsara, Nitash Pervez; Singh, Mohit; Eitouni, Hany Basam; Gomez, Enrique Daniel

2013-10-22T23:59:59.000Z

153

Anion exchange polymer electrolytes  

DOE Patents [OSTI]

Solid anion exchange polymer electrolytes and compositions comprising chemical compounds comprising a polymeric core, a spacer A, and a guanidine base, wherein said chemical compound is uniformly dispersed in a suitable solvent and has the structure: ##STR00001## wherein: i) A is a spacer having the structure O, S, SO.sub.2, --NH--, --N(CH.sub.2).sub.n, wherein n=1-10, --(CH.sub.2).sub.n--CH.sub.3--, wherein n=1-10, SO.sub.2-Ph, CO-Ph, ##STR00002## wherein R.sub.5, R.sub.6, R.sub.7 and R.sub.8 each are independently --H, --NH.sub.2, F, Cl, Br, CN, or a C.sub.1-C.sub.6 alkyl group, or any combination of thereof; ii) R.sub.9, R.sub.10, R.sub.11, R.sub.12, or R.sub.13 each independently are --H, --CH.sub.3, --NH.sub.2, --NO, --CH.sub.nCH.sub.3 where n=1-6, HC.dbd.O--, NH.sub.2C.dbd.O--, --CH.sub.nCOOH where n=1-6, --(CH.sub.2).sub.n--C(NH.sub.2)--COOH where n=1-6, --CH--(COOH)--CH.sub.2--COOH, --CH.sub.2--CH(O--CH.sub.2CH.sub.3).sub.2, --(C.dbd.S)--NH.sub.2, --(C.dbd.NH)--N--(CH.sub.2).sub.nCH.sub.3, where n=0-6, --NH--(C.dbd.S)--SH, --CH.sub.2--(C.dbd.O)--O--C(CH.sub.3).sub.3, --O--(CH.sub.2).sub.n--CH--(NH.sub.2)--COOH, where n=1-6, --(CH.sub.2).sub.n--CH.dbd.CH wherein n=1-6, --(CH.sub.2).sub.n--CH--CN wherein n=1-6, an aromatic group such as a phenyl, benzyl, phenoxy, methylbenzyl, nitrogen-substituted benzyl or phenyl groups, a halide, or halide-substituted methyl groups; and iii) wherein the composition is suitable for use in a membrane electrode assembly.

Kim, Yu Seung; Kim, Dae Sik; Lee, Kwan-Soo

2013-07-23T23:59:59.000Z

154

Block copolymer electrolytes for lithium batteries  

E-Print Network [OSTI]

interface in the Li-ion battery. Electrochimica Acta 50,K. The role of Li-ion battery electrolyte reactivity inK. The role of Li-ion battery electrolyte reactivity in

Hudson, William Rodgers

2011-01-01T23:59:59.000Z

155

LOWER TEMPERATURE ELECTROLYTE AND ELECTRODE MATERIALS  

SciTech Connect (OSTI)

A thorough literature survey on low-temperature electrolyte and electrode materials for SOFC is given in this report. Thermodynamic stability of selected electrolyte and its chemical compatibility with cathode substrate were evaluated. Preliminary electrochemical characterizations were conducted on symmetrical cells consisting of the selected electrolyte and various electrode materials. Feasibility of plasma spraying new electrolyte material thin-film on cathode substrate was explored.

Keqin Huang

2003-04-30T23:59:59.000Z

156

Multi-Sourced Electricity for Electrolytic Hydrogen  

E-Print Network [OSTI]

$/tonne (the DOE's centralized plant #12;Page 8 Electrolytic Hydrogen · Focus on low-cost electrolysis - 300 US Americas DOE Hydrogen Electrolysis-Utility Integration Workshop Boulder, Colorado 2004 September 22 & 23Multi-Sourced Electricity for Electrolytic Hydrogen Multi-Sourced Electricity for Electrolytic

157

Solid lithium-ion electrolyte  

DOE Patents [OSTI]

The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li{sub 2}O--CeO{sub 2}--SiO{sub 2} system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications. 12 figs.

Zhang, J.G.; Benson, D.K.; Tracy, C.E.

1998-02-10T23:59:59.000Z

158

Solid lithium-ion electrolyte  

DOE Patents [OSTI]

The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li.sub.2 O--CeO.sub.2 --SiO.sub.2 system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications.

Zhang, Ji-Guang (Golden, CO); Benson, David K. (Golden, CO); Tracy, C. Edwin (Golden, CO)

1998-01-01T23:59:59.000Z

159

Interfacial Behavior of Electrolytes  

Broader source: Energy.gov (indexed) [DOE]

Barriers InteractionsCollaborations *M.M.Doeff, R. Kostecki, V. Battaglia, John Newman(LBNL) - electrodes, surface analysis, cell building, electrochemical system modeling. *Grant...

160

Solid-polymer-electrolyte fuel cells  

SciTech Connect (OSTI)

A transport model for polymer electrolytes is presented, based on concentrated solution theory and irreversible thermodynamics. Thermodynamic driving forces are developed, transport properties are identified and experiments devised. Transport number of water in Nafion 117 membrane is determined using a concentration cell. It is 1.4 for a membrane equilibrated with saturated water vapor at 25{degrees}C, decreases slowly as the membrane is dehydrated, and falls sharply toward zero as the water content approaches zero. The relation between transference number, transport number, and electroosmotic drag coefficient is presented, and their relevance to water-management is discussed. A mathematical model of transport in a solid-polymer-electrolyte fuel cell is presented. A two-dimensional membrane-electrode assembly is considered. Water management, thermal management, and utilization of fuel are examined in detail. The membrane separators of these fuel cells require sorbed water to maintain conductivity; therefore it is necessary to manage the water content in membranes to ensure efficient operation. Water and thermal management are interrelated. Rate of heat removal is shown to be a critical parameter in the operation of these fuel cells. Current-voltage curves are presented for operation on air and reformed methanol. Equations for convective diffusion to a rotating disk are solved numerically for a consolute point between the bulk concentration and the surface. A singular-perturbation expansion is presented for the condition where the bulk concentration is nearly equal to the consolute-point composition. Results are compared to Levich's solution and analysis.

Fuller, T.F.

1992-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "aqueous electrolyte modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Fuel cell with electrolyte feed system  

DOE Patents [OSTI]

A fuel cell having a pair of electrodes at the sites of electrochemical reactions of hydrogen and oxygen and a phosphoric acid electrolyte provided with an electrolyte supporting structure in the form of a laminated matrix assembly disposed between the electrodes. The matrix assembly is formed of a central layer disposed between two outer layers, each being permeable to the flow of the electrolyte. The central layer is provided with relatively large pores while the outer layers are provided with relatively small pores. An external reservoir supplies electrolyte via a feed means to the central layer to compensate for changes in electrolyte volume in the matrix assembly during the operation of fuel cell.

Feigenbaum, Haim (Highland Park, NJ)

1984-01-01T23:59:59.000Z

162

Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Advanced Electrolyte Additives for PHEVEV Lithium-ion Battery Development of Advanced Electrolytes and Electrolyte Additives...

163

Composite electrode/electrolyte structure  

DOE Patents [OSTI]

Provided is an electrode fabricated from highly electronically conductive materials such as metals, metal alloys, or electronically conductive ceramics. The electronic conductivity of the electrode substrate is maximized. Onto this electrode in the green state, a green ionic (e.g., electrolyte) film is deposited and the assembly is co-fired at a temperature suitable to fully densify the film while the substrate retains porosity. Subsequently, a catalytic material is added to the electrode structure by infiltration of a metal salt and subsequent low temperature firing. The invention allows for an electrode with high electronic conductivity and sufficient catalytic activity to achieve high power density in ionic (electrochemical) devices such as fuel cells and electrolytic gas separation systems.

Visco, Steven J. (Berkeley, CA); Jacobson, Craig P. (El Cerrito, CA); DeJonghe, Lutgard C. (Lafayette, CA)

2004-01-27T23:59:59.000Z

164

Film Growth and Surface Roughness with Fluctuating Covalent Bonds in Evaporating Aqueous Solution of Reactive Hydrophobic and Polar Groups: A Computer Simulation Model  

E-Print Network [OSTI]

A computer simulation model is proposed to study film growth and surface roughness in aqueous ($A$) solution of hydrophobic ($H$) and hydrophilic ($P$) groups on a simple three dimensional lattice of size $L_x \\times L_y \\times L_z$ with an adsorbing substrate. Each group is represented by a particle with appropriate characteristics occupying a unit cube (i.e., eight sites). The Metropolis algorithm is used to move each particle stochastically. The aqueous constituents are allowed to evaporate while the concentration of $H$ and $P$ is constant. Reactions proceed from the substrate and bonded particles can hop within a fluctuating bond length. The film thickness ($h$) and its interface width ($W$) are examined for hard-core and interacting particles for a range of temperature ($T$). Simulation data show a rapid increase in $h$ and $W$ is followed by its non-monotonic growth and decay before reaching steady-state equilibrium ($h_s, W_s$) in asymptotic time step limit. The growth can be described by power-laws, e.g., $h \\propto t^{\\gamma}, W \\propto t^{\\beta}$ with a typical value of $\\gamma \\approx 2, \\beta \\approx 1$ in initial time regime followed by $\\gamma \\approx 1.5, \\beta \\approx 0.8$ at $T = 0.5$. For hard-core system, the equilibrium film thickness ($h_s$) and surface roughness ($w_s$) seem to scale linearly with the temperature, i.e., $h_s = 6.206 + 0.302 T, W_s = 1,255 + 0.425 T$ at low $T$ and $h_s = 6.54 + 0.198 T, W_s = 1.808 + 0.202 T$ at higher $T$. For interacting functional groups in contrast, $h_s$ and $W_s$ decay rapidly followed by a slow increase on raising the temperature.

Shihai Yang; Adam Seyfarth; Sam Bateman; Ras B. Pandey

2005-09-08T23:59:59.000Z

165

Entropy of electrolytes  

E-Print Network [OSTI]

is given by kB (a)9 ZaZf3 ~ modeled as a structureless continuum with dielectric constant €, here taken to be that of water at 25 ·C, €=78....358€0. The energy parameter B and the ionic diameter a are set equal to 5377.75 I ZaZa I A K and 2.8428 A, respectively. These values are chosen to facilitate comparison with earlier work. Note that the cation and anion are assumed to be of equal size...

Laird, Brian Bostian; Haymet, A. D. J.

1994-01-01T23:59:59.000Z

166

The H2O2+OH ? HO2+H2O reaction in aqueous solution from a charge-dependent continuum model of solvation  

SciTech Connect (OSTI)

We applied our recently developed protocol of the conductor-like continuum model of solvation to describe the title reaction in aqueous solution. The model has the unique feature of the molecular cavity being dependent on the atomic charges in the solute, and can be extended naturally to transition states and reaction pathways. It was used to calculate the reaction energetics and reaction rate in solution for the title reaction. The rate of reaction calculated using canonical variational transition state theory CVT in the context of the equilibrium solvation path (ESP) approximation, and including correction for tunneling through the small curvature approximation (SCT) was found to be 3.6 106 M-1 s-1, in very good agreement with experiment, These results suggest that the present protocol of the conductor-like continuum model of solvation with the charge-dependent cavity definition captures accurately the solvation effects at transition states and allows for quantitative estimates of reaction rates in solutions. This work was supported by the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Chemical Sciences program. The Pacific Northwest National Laboratory is operated by Battelle for DOE.

Ginovska, Bojana; Camaioni, Donald M.; Dupuis, Michel

2008-07-07T23:59:59.000Z

167

Study of the dehydrochlorination of DDT in basic media in sulfobetaine aqueous micellar solutions  

SciTech Connect (OSTI)

The reaction of dehydrochlorination of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane, DDT, with hydroxide ions has been studied in aqueous micellar solutions of N-tetradecyl-N,N-dimethyl-3-ammino-1-propane-sulfonate, SB3-14, and N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate, SB3-16. A simple expression for the observed rate constant, k{sub obs}, based on the pseudophase model, could explain the influence of changes in the surfactant concentration on k{sub obs}. The kinetic effects of added electrolytes (NaF, NaCl, NaBr, and NaNO{sub 3}) on the reaction rate in SB3-14 micellar media have also been studied. They were rationalized by considering the binding of the anions, which come from the added salt, to the sulfobetaine micelles and their competition with the reactive hydroxide ions for the micellar surface. Conductivity measurements have been a helpful tool in the discussion of the kinetic effects of added salts and permitted the estimation of equilibrium constants for the distribution of the anions between the zwitterionic micelles and the aqueous phase.

Rodriguez, A.; Mar Graciani, M. del; Guinda, A.; Munoz, M.; Moya, M.L.

2000-04-04T23:59:59.000Z

168

Novel Electrolytes for Lithium Ion Batteries  

SciTech Connect (OSTI)

We have been investigating three primary areas related to lithium ion battery electrolytes. First, we have been investigating the thermal stability of novel electrolytes for lithium ion batteries, in particular borate based salts. Second, we have been investigating novel additives to improve the calendar life of lithium ion batteries. Third, we have been investigating the thermal decomposition reactions of electrolytes for lithium-oxygen batteries.

Lucht, Brett L

2014-12-12T23:59:59.000Z

169

Electrolyte Solvation and Ionic Association. V. Acetonitrile-Lithium Bis(fluorosulfonyl)imide (LiFSI) Mixtures  

SciTech Connect (OSTI)

Electrolytes with the salt lithium bis(fluorosulfonyl)imide (LiFSI) have been evaluated relative to comparable electrolytes with other lithium salts. Acetonitrile (AN) has been used as a model electrolyte solvent. The information obtained from the thermal phase behavior, solvation/ionic association interactions, quantum chemical (QC) calculations and molecular dynamics (MD) simulations (with an APPLE&P many-body polarizable force field for the LiFSI salt) of the (AN)n-LiFSI mixtures provides detailed insight into the coordination interactions of the FSI- anions and the wide variability noted in the electrolyte transport property (i.e., viscosity and ionic conductivity).

Han, Sang D.; Borodin, Oleg; Seo, D. M.; Zhou, Zhi B.; Henderson, Wesley A.

2014-09-30T23:59:59.000Z

170

Electrolytic process for preparing uranium metal  

DOE Patents [OSTI]

An electrolytic process for making uranium from uranium oxide using Cl.sub.2 anode product from an electrolytic cell to react with UO.sub.2 to form uranium chlorides. The chlorides are used in low concentrations in a melt comprising fluorides and chlorides of potassium, sodium and barium in the electrolytic cell. The electrolysis produces Cl.sub.2 at the anode that reacts with UO.sub.2 in the feed reactor to form soluble UCl.sub.4, available for a continuous process in the electrolytic cell, rather than having insoluble UO.sub.2 fouling the cell.

Haas, Paul A. (Knoxville, TN)

1990-01-01T23:59:59.000Z

171

SOLID ELECTROLYTES FOR NEXT GENERATION BATTERIES  

Broader source: Energy.gov (indexed) [DOE]

Austin SOLID ELECTROLYTES FOR NEXT GENERATION BATTERIES PI: John B. Goodenough Presented by: Long Wang Texas Materials Institute The University of Texas at Austin DOE Vehicle...

172

Block copolymer electrolytes for lithium batteries  

E-Print Network [OSTI]

polymer electrolytes for lithium batteries. Nature 394, 456-facing rechargeable lithium batteries. Nature 414, 359-367 (vanadium oxides for lithium batteries. Journal of Materials

Hudson, William Rodgers

2011-01-01T23:59:59.000Z

173

LOWER TEMPERATURE ELECTROLYTE AND ELECTRODE MATERIALS  

SciTech Connect (OSTI)

LSGM electrolyte and LSCF cathode materials were synthesized via solid state reaction and wet-chemical method. From these materials, symmetrical cells were fabricated for electrochemical characterizations.

Keqin Huang

2002-04-30T23:59:59.000Z

174

Composite Electrolyte to Stabilize Metallic Lithium Anodes  

Broader source: Energy.gov (indexed) [DOE]

- Develop composites of electrolyte materials with requisite electrochemical and mechanical properties - Fabricate thin membranes to provide good power performance and long...

175

Rebalancing electrolytes in redox flow battery systems  

DOE Patents [OSTI]

Embodiments of redox flow battery rebalancing systems include a system for reacting an unbalanced flow battery electrolyte with a rebalance electrolyte in a first reaction cell. In some embodiments, the rebalance electrolyte may contain ferrous iron (Fe.sup.2+) which may be oxidized to ferric iron (Fe.sup.3+) in the first reaction cell. The reducing ability of the rebalance reactant may be restored in a second rebalance cell that is configured to reduce the ferric iron in the rebalance electrolyte back into ferrous iron through a reaction with metallic iron.

Chang, On Kok; Pham, Ai Quoc

2014-12-23T23:59:59.000Z

176

Simulation of Electrolyte Composition Effects on High Energy Lithium-Ion Cells  

SciTech Connect (OSTI)

An important feature of the DUALFOIL model for simulation of lithium-ion cells [1,2] is rigorous accounting for non-ideal electrolyte properties. Unfortunately, data are available on only a few electrolytes [3,4]. However, K. Gering has developed a model for estimation of electrolyte properties [5] and recently generated complete property sets (density, conductivity, activity coefficient, diffusivity, transport number) as a function of temperature and salt concentration. Here we use these properties in an enhanced version of the DUALFOIL model called DISTNP, available in Battery Design Studio [6], to examine the effect of different electrolytes on cell performance. Specifically, the behavior of a high energy LiCoO2/graphite 18650-size cell is simulated. The ability of Battery Design Studio to si

K. Gering

2014-09-01T23:59:59.000Z

177

AQUEOUS BIPHASE EXTRACTION FOR PROCESSING OF FINE COAL  

SciTech Connect (OSTI)

The objective of this research project is to develop an aqueous biphase extraction process for the treatment of fine coals. Aqueous biphase extraction is an advanced separation technology that relies on the ability of an aqueous system consisting of a water-soluble polymer and another component, e.g., another polymer, an inorganic salt, or a nonionic surfactant, to separate into two immiscible aqueous phases. The principle behind the partition of solid particles in aqueous biphase systems is the physicochemical interaction between the solid surface and the surrounding liquid solution. In order to remove sulfur and mineral matter from fine coal with aqueous biphasic extraction, it is necessary to know the partitioning behavior of coal, as well as the inorganic mineral components. Therefore, in this research emphasis was placed on the partitioning behavior of fine coal particles as well as model fine inorganic particles in aqueous biphase systems.

K. Osseo-Asare; X. Zeng

2002-01-01T23:59:59.000Z

178

Solid-polymer-electrolyte fuel cells  

SciTech Connect (OSTI)

A transport model for polymer electrolytes is presented, based on concentrated solution theory and irreversible thermodynamics. Thermodynamic driving forces are developed, transport properties are identified and experiments devised. Transport number of water in Nafion 117 membrane is determined using a concentration cell. It is 1.4 for a membrane equilibrated with saturated water vapor at 25{degrees}C, decreases slowly as the membrane is dehydrated, and falls sharply toward zero as the water content approaches zero. The relation between transference number, transport number, and electroosmotic drag coefficient is presented, and their relevance to water-management is discussed. A mathematical model of transport in a solid-polymer-electrolyte fuel cell is presented. A two-dimensional membrane-electrode assembly is considered. Water management, thermal management, and utilization of fuel are examined in detail. The membrane separators of these fuel cells require sorbed water to maintain conductivity; therefore it is necessary to manage the water content in membranes to ensure efficient operation. Water and thermal management are interrelated. Rate of heat removal is shown to be a critical parameter in the operation of these fuel cells. Current-voltage curves are presented for operation on air and reformed methanol. Equations for convective diffusion to a rotating disk are solved numerically for a consolute point between the bulk concentration and the surface. A singular-perturbation expansion is presented for the condition where the bulk concentration is nearly equal to the consolute-point composition. Results are compared to Levich`s solution and analysis.

Fuller, T.F.

1992-07-01T23:59:59.000Z

179

High performance electrolytes for MCFC  

DOE Patents [OSTI]

A carbonate electrolyte of the Li/Na or CaBaLiNa system is described. The Li/Na carbonate has a composition displaced from the eutectic composition to diminish segregation effects in a molten carbonate fuel cell. The CaBaLiNa system includes relatively small amounts of Ca{sub 2}CO{sub 3} and BaCO{sub 3}, and preferably of equimolar amounts. The presence of both Ca and BaCO{sub 3} enables lower temperature fuel cell operation. 15 figs.

Kaun, T.D.; Roche, M.F.

1999-08-24T23:59:59.000Z

180

Aqueous coal slurry  

DOE Patents [OSTI]

An aqueous slurry containing coal and dextrin as a dispersant. The slurry, in addition to containing dextrin, may contain a conventional dispersant or, alternatively, a pH controlling reagent.

Berggren, Mark H.; Smit, Francis J.; Swanson, Wilbur W.

1993-04-06T23:59:59.000Z

Note: This page contains sample records for the topic "aqueous electrolyte modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Aqueous coal slurry  

DOE Patents [OSTI]

An aqueous slurry containing coal and dextrin as a dispersant. The slurry, in addition to containing dextrin, may contain a conventional dispersant or, alternatively, a pH controlling reagent.

Berggren, Mark H. (Golden, CO); Smit, Francis J. (Arvada, CO); Swanson, Wilbur W. (Golden, CO)

1993-01-01T23:59:59.000Z

182

Novel Compounds for Enhancing Electrolyte Stability and Safety...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Compounds for Enhancing Electrolyte Stability and Safety of Lithium-ion Cells Novel Compounds for Enhancing Electrolyte Stability and Safety of Lithium-ion Cells 2010 DOE Vehicle...

183

Development of Novel Electrolytes for Use in High Energy Lithium...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Development of Novel Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range Development of Novel Electrolytes...

184

Linking Ion Solvation and Lithium Battery Electrolyte Properties...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Linking Ion Solvation and Lithium Battery Electrolyte Properties Linking Ion Solvation and Lithium Battery Electrolyte Properties 2010 DOE Vehicle Technologies and Hydrogen...

185

New lithium-based ionic liquid electrolytes that resist salt...  

Energy Savers [EERE]

lithium-based ionic liquid electrolytes that resist salt concentration polarization New lithium-based ionic liquid electrolytes that resist salt concentration polarization...

186

Ionic Liquid-Enhanced Solid State Electrolyte Interface (SEI...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Liquid-Enhanced Solid State Electrolyte Interface (SEI) for Lithium Sulfur Batteries. Ionic Liquid-Enhanced Solid State Electrolyte Interface (SEI) for Lithium Sulfur Batteries....

187

Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

15eswise2012p.pdf More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte...

188

Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

15eswise2011p.pdf More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte...

189

Nuclear Magnetic Resonance Studies on Vanadium(IV) Electrolyte...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Magnetic Resonance Studies on Vanadium(IV) Electrolyte Solutions for Vanadium Redox Flow Battery . Nuclear Magnetic Resonance Studies on Vanadium(IV) Electrolyte Solutions for...

190

Probing the Degradation Mechanisms in Electrolyte Solutions for...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Degradation Mechanisms in Electrolyte Solutions for Li-ion Batteries by In-Situ Transmission Electron Microscopy. Probing the Degradation Mechanisms in Electrolyte Solutions for...

191

Towards Understanding the Poor Thermal Stability of V5+ Electrolyte...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Poor Thermal Stability of V5+ Electrolyte Solution in Vanadium Redox Flow Batteries. Towards Understanding the Poor Thermal Stability of V5+ Electrolyte Solution in...

192

Development of Polymer Electrolytes for Advanced Lithium Batteries...  

Broader source: Energy.gov (indexed) [DOE]

Development of Polymer Electrolytes for Advanced Lithium Batteries Development of Polymer Electrolytes for Advanced Lithium Batteries 2013 DOE Hydrogen and Fuel Cells Program and...

193

Vehicle Technologies Office Merit Review 2014: Fluorinated Electrolyte...  

Broader source: Energy.gov (indexed) [DOE]

Fluorinated Electrolyte for 5-V Li-Ion Chemistry Vehicle Technologies Office Merit Review 2014: Fluorinated Electrolyte for 5-V Li-Ion Chemistry Presentation given by Argonne...

194

Molecular dynamics simulation and ab intio studies of electrolytes...  

Broader source: Energy.gov (indexed) [DOE]

Molecular dynamics simulation and ab intio studies of electrolytes and electrolyteelectrode interfaces Molecular dynamics simulation and ab intio studies of electrolytes and...

195

Molecular Dynamics Simulation of the AgCl/Electrolyte Interfacial...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Simulation of the AgClElectrolyte Interfacial Capacity. Molecular Dynamics Simulation of the AgClElectrolyte Interfacial Capacity. Abstract: Molecular dynamics simulation of the...

196

Process Development and Scale up of Advanced Electrolyte Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Scale up of Advanced Electrolyte Materials Process Development and Scale up of Advanced Electrolyte Materials 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies...

197

Surface and interfacial tensions of Hofmeister electrolytes  

E-Print Network [OSTI]

Surface and interfacial tensions of Hofmeister electrolytes Alexandre P. dos Santos and Yan Levin to account quantitatively for the surface and interfacial tensions of different electrolyte solutions can also be used to calculate the surface and the interfacial tensions of acid solutions, predicting

Levin, Yan

198

Solid composite electrolytes for lithium batteries  

DOE Patents [OSTI]

Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a ceramic-ceramic composite electrolyte is provided containing lithium nitride and lithium phosphate. The ceramic-ceramic composite is also preferably annealed and exhibits an activation energy of about 0.1 eV.

Kumar, Binod (Dayton, OH); Scanlon, Jr., Lawrence G. (Fairborn, OH)

2000-01-01T23:59:59.000Z

199

Solid polymer electrolyte from phosphorylated chitosan  

SciTech Connect (OSTI)

Recently, the need of secondary battery application continues to increase. The secondary battery which using a liquid electrolyte was indicated had some weakness. A solid polymer electrolyte is an alternative electrolytes membrane which developed in order to replace the liquid electrolyte type. In the present study, the effect of phosphorylation on to polymer electrolyte membrane which synthesized from chitosan and lithium perchlorate salts was investigated. The effect of the component’s composition respectively on the properties of polymer electrolyte, was carried out by analyzed of it’s characterization such as functional groups, ion conductivity, and thermal properties. The mechanical properties i.e tensile resistance and the morphology structure of membrane surface were determined. The phosphorylation processing of polymer electrolyte membrane of chitosan and lithium perchlorate was conducted by immersing with phosphoric acid for 2 hours, and then irradiated on a microwave for 60 seconds. The degree of deacetylation of chitosan derived from shrimp shells was obtained around 75.4%. Relative molecular mass of chitosan was obtained by viscometry method is 796,792 g/mol. The ionic conductivity of chitosan membrane was increase from 6.33 × 10{sup ?6} S/cm up to 6.01 × 10{sup ?4} S/cm after adding by 15 % solution of lithium perchlorate. After phosphorylation, the ionic conductivity of phosphorylated lithium chitosan membrane was observed 1.37 × 10{sup ?3} S/cm, while the tensile resistance of 40.2 MPa with a better thermal resistance. On the strength of electrolyte membrane properties, this polymer electrolyte membrane was suggested had one potential used for polymer electrolyte in field of lithium battery applications.

Fauzi, Iqbal, E-mail: arcana@chem.itb.ac.id; Arcana, I Made, E-mail: arcana@chem.itb.ac.id [Inorganic and Physical Chemistry Research Groups, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)

2014-03-24T23:59:59.000Z

200

New electrolytes and electrolyte additives to improve the low temperature performance of lithium-ion batteries  

SciTech Connect (OSTI)

In this program, two different approaches were undertaken to improve the role of electrolyte at low temperature performance - through the improvement in (i) ionic conductivity and (ii) interfacial behavior. Several different types of electrolytes were prepared to examine the feasibil.ity of using these new electrolytes in rechargeable lithium-ion cells in the temperature range of +40°C to -40°C. The feasibility studies include (a) conductivity measurements of the electrolytes, (b) impedance measurements of lithium-ion cells using the screened electrolytes with di.fferent electrochemical history such as [(i) fresh cells prior to formation cycles, (ii) after first charge, and (iii) after first discharge], (c) electrical performance of the cells at room temperatures, and (d) charge discharge behavior at various low temperatures. Among the different types of electrolytes investigated in Phase I and Phase II of this SBIR project, carbonate-based LiPF6 electrolytes with the proposed additives and the low viscous ester as a third component to the carbonate-based LiPF6 electrolytes show promising results at low temperatures. The latter electrolytes deliver over 80% of room temperature capacity at -20{degrees}C when the lithium-ion cells containing these electrolytes were charged at -20 °C. Also, there was no lithium plating when the lithium­-ion cells using C-C composite anode and LiPF{sub 6} in EC/EMC/MP electrolyte were charged at -20{degrees}C at C/5 rate. The studies of ionic conductivity and AC impedance of these new electrolytes, as well as the charge discharge characteristics of lithium-ion cells using these new electrolytes at various low temperatures provide new findings: The reduced capacity and power capability, as well as the problem of lithium plating at low temperatures charging of lithium-ion cells are primarily due to slow the lithium-ion intercalation/de-intercalation kinetics in the carbon structure.

Yang, Xiao-Qing

2008-08-31T23:59:59.000Z

Note: This page contains sample records for the topic "aqueous electrolyte modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Electrolyte for an electrochemical cell  

DOE Patents [OSTI]

Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte amorphous lithium phosphorus oxynitride which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between -15.degree. C. and 150.degree. C.

Bates, John B. (Oak Ridge, TN); Dudney, Nancy J. (Knoxville, TN)

1997-01-01T23:59:59.000Z

202

Electrolyte for an electrochemical cell  

DOE Patents [OSTI]

Described is a thin-film battery, especially a thin-film microbattery, and a method for making the same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte amorphous lithium phosphorus oxynitride which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between {minus}15 C and 150 C. 9 figs.

Bates, J.B.; Dudney, N.J.

1997-01-28T23:59:59.000Z

203

LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES  

SciTech Connect (OSTI)

This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and Testing of Planar Single Cells. During this time period substantial progress has been made in developing low temperature deposition techniques to produce dense, nanocrystalline yttrium-stabilized zirconia films on both dense oxide and polymer substrates. Progress has been made in the preparation and characterization of thin electrolytes and porous LSM substrates. Both of these tasks are essentially on or ahead of schedule. In our proposal, we suggested that the ZrO{sub 2}/Sc system needed to be considered as a candidate as a thin electrolyte. This was because microcrystalline ZrO{sub 2}/Sc has a significantly higher ionic conductivity than YSZ, particularly at the lower temperatures. As a result, some 0.5 micron thick film of ZrO{sub 2}/16% Sc on an alumina substrate (grain size 20nm) was prepared and the electrical conductivity measured as a function of temperature and oxygen activity. The Sc doped ZrO{sub 2} certainly has a higher conductivity that either 20nm or 2400nm YSZ, however, electronic conductivity dominates the conductivity for oxygen activities below 10{sup -15}. Whereas for YSZ, electronic conductivity is not a problem until the oxygen activity decreases below 10{sup -25}. These initial results show that the ionic conductivity of 20nm YSZ and 20nm ZrO{sub 2}/16% Sc are essentially the same and the enhanced conductivity which is observed for Sc doping in microcrystalline specimens is not observed for the same composition when it is nanocrystalline. In addition they show that the electronic conductivity of Sc doped ZrO{sub 2} is at least two orders of magnitude higher than that observed for YSZ. The conclusion one reaches is that for 0.5 to 1 micron thick nanocrystalline films, Sc doping of ZrO{sub 2} has no benefits compared to YSZ. As a result, electrolyte films of ZrO{sub 2}/Sc should not be considered as candidates. However, they have the potential of being useful as an interface on the anode side of the electrolyte. NexTech has focused much of its effort during the past few months on establishing tape casting methods for porous LSM substrates. This work, performed under a separate DOE-funded program, involved tape casting formulations comprising LSM powders with bi-modal particle size distributions and fugitive pore forming additives. Sintered LSM substrates with porosities in the 30 to 40 vol% range, and pore sizes of 10 {approx} 20 microns have been prepared. In addition, tape casting formulations involving composite mixtures of LSM and Sm-doped ceria (SDC) have been evaluated. The LSM/SDC cathode substrates are expected to provide better performance at low temperatures. Characterization of these materials is currently underway.

Harlan U. Anderson

2000-03-31T23:59:59.000Z

204

Nanoscale Imaging of Lithium Ion Distribution During In Situ Operation of Battery Electrode and Electrolyte  

E-Print Network [OSTI]

A major challenge in the development of new battery materials is understanding their fundamental mechanisms of operation and degradation. Their microscopically inhomogeneous nature calls for characterization tools that provide operando and localized information from individual grains and particles. Here we describe an approach that images the nanoscale distribution of ions during electrochemical charging of a battery in a transmission electron microscope liquid flow cell. We use valence energy-loss spectroscopy to track both solvated and intercalated ions, with electronic structure fingerprints of the solvated ions identified using an ab initio non-linear response theory. Equipped with the new electrochemical cell holder, nanoscale spectroscopy and theory, we have been able to determine the lithiation state of a LiFePO4 electrode and surrounding aqueous electrolyte in real time with nanoscale resolution during electrochemical charge and discharge. We follow lithium transfer between electrode and electrolyte a...

Holtz, Megan E; Gunceler, Deniz; Gao, Jie; Sundararaman, Ravishankar; Schwarz, Kathleen A; Arias, Tomás A; Abruńa, Héctor D; Muller, David A

2013-01-01T23:59:59.000Z

205

High conductivity electrolyte solutions and rechargeable cells incorporating such solutions  

DOE Patents [OSTI]

This invention relates generally to electrolyte solvents for use in liquid or rubbery polymer electrolyte solutions as are used, for example, in electrochemical devices. More specifically, this invention relates to sulfonyl/phospho-compound electrolyte solvents and sulfonyl/phospho-compound electrolyte solutions incorporating such solvents. 9 figs.

Angell, C.A.; Zhang, S.S.; Xu, K.

1998-10-20T23:59:59.000Z

206

Continuous aqueous tritium monitor  

DOE Patents [OSTI]

An apparatus for a selective on-line determination of aqueous tritium concentration is disclosed. A moist air stream of the liquid solution being analyzed is passed through a permeation dryer where the tritium and moisture and selectively removed to a purge air stream. The purge air stream is then analyzed for tritium concentration, humidity, and temperature, which allows computation of liquid tritium concentration.

McManus, Gary J. (Idaho Falls, ID); Weesner, Forrest J. (Idaho Falls, ID)

1989-05-30T23:59:59.000Z

207

Self-doped microphase separated block copolymer electrolyte  

DOE Patents [OSTI]

A polymer electrolyte includes a self-doped microphase separated block copolymer including at least one ionically conductive block and at least one second block that is immiscible in the ionically conductive block, an anion immobilized on the polymer electrolyte and a cationic species. The ionically conductive block provides a continuous ionically conductive pathway through the electrolyte. The electrolyte may be used as an electrolyte in an electrochemical cell.

Mayes, Anne M. (Waltham, MA); Sadoway, Donald R. (Waltham, MA); Banerjee, Pallab (Boston, MA); Soo, Philip (Cambridge, MA); Huang, Biying (Cambridge, MA)

2002-01-01T23:59:59.000Z

208

A disposable, self-administered electrolyte test  

E-Print Network [OSTI]

This thesis demonstrates the novel concept that it is possible to make a disposable, self-administered electrolyte test to be introduced to the general consumer market. Although ion specific electrodes have been used to ...

Prince, Ryan, 1977-

2003-01-01T23:59:59.000Z

209

Self-doped molecular composite battery electrolytes  

DOE Patents [OSTI]

This invention is in solid polymer-based electrolytes for battery applications. It uses molecular composite technology, coupled with unique preparation techniques to render a self-doped, stabilized electrolyte material suitable for inclusion in both primary and secondary batteries. In particular, a salt is incorporated in a nano-composite material formed by the in situ catalyzed condensation of a ceramic precursor in the presence of a solvated polymer material, utilizing a condensation agent comprised of at least one cation amenable to SPE applications. As such, the counterion in the condensation agent used in the formation of the molecular composite is already present as the electrolyte matrix develops. This procedure effectively decouples the cation loading levels required for maximum ionic conductivity from electrolyte physical properties associated with condensation agent loading levels by utilizing the inverse relationship discovered between condensation agent loading and the time domain of the aging step.

Harrup, Mason K.; Wertsching, Alan K.; Stewart, Frederick F.

2003-04-08T23:59:59.000Z

210

Fuel cell electrolyte membrane with acidic polymer  

DOE Patents [OSTI]

An electrolyte membrane is formed by an acidic polymer and a low-volatility acid that is fluorinated, substantially free of basic groups, and is either oligomeric or non-polymeric.

Hamrock, Steven J. (Stillwater, MN); Larson, James M. (Saint Paul, MN); Pham, Phat T. (Little Canada, MN); Frey, Matthew H. (Cottage Grove, MN); Haugen, Gregory M. (Edina, MN); Lamanna, William M. (Stillwater, MN)

2009-04-14T23:59:59.000Z

211

Thermally Nitrided Stainless Steels for Polymer Electrolyte Membrane Fuel Cell Bipolar Plates: Part 1 Model Ni-50Cr and Austenitic 349TM alloys  

SciTech Connect (OSTI)

Thermal nitridation of a model Ni-50Cr alloy at 1100 C for 2 h in pure nitrogen resulted in the formation of a continuous, protective CrN/Cr{sub 2}N surface layer with a low interfacial contact resistance. Application of similar nitridation parameters to an austenitic stainless steel, 349{sup TM}, however, resulted in a discontinuous mixture of discrete CrN, Cr{sub 2}N and (Cr,Fe){sub 2}N{sub 1-x} (x = 0--0.5) phase surface particles overlying an exposed {gamma} austenite-based matrix, rather than a continuous nitride surface layer. The interfacial contact resistance of the 349{sup TM} was reduced significantly by the nitridation treatment. However, in the simulated PEMFC environments (1 M H{sub 2}SO{sub 4} + 2 ppm F{sup -} solutions at 70 C sparged with either hydrogen or air), very high corrosion currents were observed under both anodic and cathodic conditions. This poor behavior was linked to the lack of continuity of the Cr-rich nitride surface formed on 349{sup TM} Issues regarding achieving continuous, protective Cr-nitride surface layers on stainless steel alloys are discussed.

Wang, Heli [National Renewable Energy Laboratory (NREL); Brady, Michael P [ORNL; Turner, John [National Renewable Energy Laboratory (NREL)

2004-01-01T23:59:59.000Z

212

Electrolytic recovery of reactor metal fuel  

DOE Patents [OSTI]

A new electrolytic process and apparatus are provided using sodium, cerium or a similar metal in alloy or within a sodium beta or beta"-alumina sodium ion conductor to electrolytically displace each of the spent fuel metals except for cesium and strontium on a selective basis from the electrolyte to an inert metal cathode. Each of the metals can be deposited separately. An electrolytic transfer of spent fuel into the electrolyte includes a sodium or cerium salt in the electrolyte with sodium or cerium alloy being deposited on the cathode during the transfer of the metals from the spent fuel. The cathode with the deposit of sodium or cerium alloy is then chanted to an anode and the reverse transfer is carried out on a selective basis with each metal being deposited separately at the cathode. The result is that the sodium or cerium needed for the process is regenerated in the first step and no additional source of these reactants is required.

Miller, William E. (Naperville, IL); Tomczuk, Zygmunt (Lockport, IL)

1994-01-01T23:59:59.000Z

213

Nonaqueous electrolyte for electrical storage devices  

DOE Patents [OSTI]

Improved nonaqueous electrolytes for application in electrical storage devices such as electrochemical capacitors or batteries are disclosed. The electrolytes of the invention contain salts consisting of alkyl substituted, cyclic delocalized aromatic cations, and their perfluoro derivatives, and certain polyatomic anions having a van der Waals volume less than or equal to 100 .ANG..sup.3, preferably inorganic perfluoride anions and most preferably PF.sub.6.sup.-, the salts being dissolved in organic liquids, and preferably alkyl carbonate solvents, or liquid sulfur dioxide or combinations thereof, at a concentration of greater than 0.5M and preferably greater than 1.0M. Exemplary electrolytes comprise 1-ethyl-3-methylimidazolium hexafluorophosphate dissolved in a cyclic or acylic alkyl carbonate, or methyl formate, or a combination therof. These improved electrolytes have useful characteristics such as higher conductivity, higher concentration, higher energy storage capabilities, and higher power characteristics compared to prior art electrolytes. Stacked capacitor cells using electrolytes of the invention permit high energy, high voltage storage.

McEwen, Alan B. (Melrose, MA); Yair, Ein-Eli (Waltham, MA)

1999-01-01T23:59:59.000Z

214

Electrolytic recovery of reactor metal fuel  

DOE Patents [OSTI]

A new electrolytic process and apparatus are provided using sodium, cerium or a similar metal in alloy or within a sodium beta or beta[double prime]-alumina sodium ion conductor to electrolytically displace each of the spent fuel metals except for cesium and strontium on a selective basis from the electrolyte to an inert metal cathode. Each of the metals can be deposited separately. An electrolytic transfer of spent fuel into the electrolyte includes a sodium or cerium salt in the electrolyte with sodium or cerium alloy being deposited on the cathode during the transfer of the metals from the spent fuel. The cathode with the deposit of sodium or cerium alloy is then shunted to an anode and the reverse transfer is carried out on a selective basis with each metal being deposited separately at the cathode. The result is that the sodium or cerium needed for the process is regenerated in the first step and no additional source of these reactants is required. 2 figs.

Miller, W.E.; Tomczuk, Z.

1994-09-20T23:59:59.000Z

215

Microscopic mechanisms of graphene electrolytic delamination from metal substrates  

SciTech Connect (OSTI)

In this paper, hydrogen bubbling delamination of graphene (Gr) from copper using a strong electrolyte (KOH) water solution was performed, focusing on the effect of the KOH concentration (C{sub KOH}) on the Gr delamination rate. A factor of ?10 decrease in the time required for the complete Gr delamination from Cu cathodes with the same geometry was found increasing C{sub KOH} from ?0.05?M to ?0.60?M. After transfer of the separated Gr membranes to SiO{sub 2} substrates by a highly reproducible thermo-compression printing method, an accurate atomic force microscopy investigation of the changes in Gr morphology as a function of C{sub KOH} was performed. Supported by these analyses, a microscopic model of the delamination process has been proposed, where a key role is played by graphene wrinkles acting as nucleation sites for H{sub 2} bubbles at the cathode perimeter. With this approach, the H{sub 2} supersaturation generated at the electrode for different electrolyte concentrations was estimated and the inverse dependence of t{sub d} on C{sub KOH} was quantitatively explained. Although developed in the case of Cu, this analysis is generally valid and can be applied to describe the electrolytic delamination of graphene from several metal substrates.

Fisichella, G. [CNR-IMM, Strada VIII, 5 – 95121 Catania (Italy); Department of Electronic Engineering, University of Catania, Viale A. Doria, 6 – 95125 Catania (Italy); Di Franco, S.; Roccaforte, F.; Giannazzo, F., E-mail: filippo.giannazzo@imm.cnr.it [CNR-IMM, Strada VIII, 5 – 95121 Catania (Italy); Ravesi, S. [STMicroelectronics, Stradale Primosole, 50 – 95121 Catania (Italy)

2014-06-09T23:59:59.000Z

216

LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES  

SciTech Connect (OSTI)

This report represents a summary of the work carried out on this project which started October 1999 and ended March 2003. A list of the publications resulting from the work are contained in Appendix A. The most significant achievements are: (1) Dense nanocrystalline zirconia and ceria films were obtained at temperatures < 400 C. (2) Nanocrystalline films of both ceria and zirconia were characterized. (3) We showed that under anodic conditions 0.5 to 1 micron thick nanocrystalline films of Sc doped zirconia have sufficient electronic conductivity to prevent them from being useful as an electrolyte. (4) We have developed a process by which dense 0.5 to 5 micron thick dense films of either YSZ or ceria can be deposited on sintered porous substrates which serve as either the cathode or anode at temperatures as low as 400 C. (5) The program has provided the research to produce two PhD thesis for students, one is now working in the solid oxide fuel cell field. (6) The results of the research have resulted in 69 papers published, 3 papers submitted or being prepared for publication, 50 oral presentations and 3 patent disclosures.

Harlan U. Anderson; Fatih Dogan; Vladimir Petrovsky

2003-03-31T23:59:59.000Z

217

E-Print Network 3.0 - additive-free sulphamate-based electrolyte...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

electrolytes reinforced by non... Composite electrolytes composed of a blend of polyethylene glycol diacrylate (PEGDA), poly... , the composite electrolyte has good integrity...

218

E-Print Network 3.0 - active electrolyte transport Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

electrolytes reinforced by non... Composite electrolytes composed of a blend of polyethylene glycol diacrylate (PEGDA), poly... , the composite electrolyte has good integrity...

219

Continuous aqueous tritium monitor  

DOE Patents [OSTI]

An apparatus for a selective on-line determination of aqueous tritium concentration is disclosed. A moist air stream of the liquid solution being analyzed is passed through a permeation dryer where the tritium and moisture are selectively removed to a purge air stream. The purge air stream is then analyzed for tritium concentration, humidity, and temperature, which allows computation of liquid tritium concentration. 2 figs.

McManus, G.J.; Weesner, F.J.

1987-10-19T23:59:59.000Z

220

Electrolyte for an electrochemical cell, and an electrochemical cell including the electrolyte  

SciTech Connect (OSTI)

An electrolyte for use in an electrochemical cell is disclosed of the alkali metal-aluminium-halide type. The electrolyte has a melting point below 140/sup 0/ C. At atmospheric pressure and conforms with the stoichiometric product MAlx4 wherein M represents lithium cations, a mixture of lithium and potassium cations or a mixture of sodium and potassium cations; and X represents a mixture of chloride and fluoride anions. A method of reducing the melting point of a sodium-aluminiumchloride or lithium-aluminium-chloride electrolyte by doping it with a potassium fluoride, sodium fluoride, or lithium fluoride, to obtain said electrolyte with a melting point below 140/sup 0/ C. Is disclosed, as are various electrochemical cells employing the product electrolyte.

Coetzer, J.; Nolte, M.J.; Steynberg, A.D.

1981-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "aqueous electrolyte modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Macroscopic Modeling of Polymer-Electrolyte Membranes  

E-Print Network [OSTI]

Therefore, the nonionic fluorocarbon matrix can be taken asmembrane, such as the fluorocarbon-rich skin on the surfacewhere the gray area is the fluorocarbon matrix, the black is

Weber, A.Z.; Newman, J.

2008-01-01T23:59:59.000Z

222

Advanced Electrolyte Model - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the Building TechnologiesS1!4TCombustion AdvancedAdvancedDataEnergy

223

Electrolytic Cell For Production Of Aluminum Employing Planar Anodes.  

DOE Patents [OSTI]

A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte, the method comprising providing a molten salt electrolyte having alumina dissolved therein in an electrolytic cell. A plurality of anodes and cathodes having planar surfaces are disposed in a generally vertical orientation in the electrolyte, the anodes and cathodes arranged in alternating or interleaving relationship to provide anode planar surfaces disposed opposite cathode planar surfaces, the anode comprised of carbon. Electric current is passed through anodes and through the electrolyte to the cathodes depositing aluminum at the cathodes and forming carbon containing gas at the anodes.

Barnett, Robert J. (Goldendale, WA); Mezner, Michael B. (Sandy, OR); Bradford, Donald R (Underwood, WA)

2004-10-05T23:59:59.000Z

224

Recovery of mercury from mercury compounds via electrolytic methods  

DOE Patents [OSTI]

A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

Grossman, Mark W. (Belmont, MA); George, William A. (Rockport, MA)

1989-01-01T23:59:59.000Z

225

Recovery of mercury from mercury compounds via electrolytic methods  

DOE Patents [OSTI]

A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figures.

Grossman, M.W.; George, W.A.

1991-06-18T23:59:59.000Z

226

Recovery of mercury from mercury compounds via electrolytic methods  

DOE Patents [OSTI]

A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

Grossman, Mark W. (Belmont, MA); George, William A. (Rockport, MA)

1988-01-01T23:59:59.000Z

227

Recovery of mercury from mercury compounds via electrolytic methods  

DOE Patents [OSTI]

A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

Grossman, Mark W. (Belmont, MA); George, William A. (Rockport, MA)

1991-01-01T23:59:59.000Z

228

Recovery of mercury from mercury compounds via electrolytic methods  

DOE Patents [OSTI]

A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figs.

Grossman, M.W.; George, W.A.

1989-11-07T23:59:59.000Z

229

Combination for electrolytic reduction of alumina  

DOE Patents [OSTI]

An electrolytic bath for use during the electrolytic reduction of alumina to aluminum. The bath comprises molten electrolyte having the following ingredients: AlF.sub.3 and at least one salt selected from the group consisting of NaF, KF, and LiF; and about 0.004 wt. % to about 0.2 wt. %, based on total weight of the molten electrolyte, of at least one transition metal or at least one compound of the metal or both. The compound is, a fluoride; oxide, or carbonate. The metal is nickel, iron, copper, cobalt, or molybdenum. The bath is employed in a combination including a vessel for containing the bath and at least one non-consumable anode and at least one dimensionally stable cathode in the bath. Employing the instant bath during electrolytic reduction of alumina to aluminum improves the wetting of aluminum on a cathode by reducing or eliminating the formation of non-metallic deposits on the cathode.

Brown, Craig W. (Seattle, WA); Brooks, Richard J. (Seattle, WA); Frizzle, Patrick B. (Lynnwood, WA); Juric, Drago D. (Bulleen, AU)

2002-04-30T23:59:59.000Z

230

Atomistic insights into aqueous corrosion of copper.  

SciTech Connect (OSTI)

Corrosion is a fundamental problem in electrochemistry and represents a mode of failure of technologically important materials. Understanding the basic mechanism of aqueous corrosion of metals such as Cu in presence of halide ions is hence essential. Using molecular dynamics simulations incorporating reactive force-field (ReaxFF), the interaction of copper substrates and chlorine under aqueous conditions has been investigated. These simulations incorporate effects of proton transfer in the aqueous media and are suitable for modeling the bond formation and bond breakage phenomenon that is associated with complex aqueous corrosion phenomena. Systematic investigation of the corrosion process has been carried out by simulating different chlorine concentration and solution states. The structural and morphological differences associated with metal dissolution in the presence of chloride ions are evaluated using dynamical correlation functions. The simulated atomic trajectories are used to analyze the charged states, molecular structure and ion density distribution which are utilized to understand the atomic scale mechanism of corrosion of copper substrates under aqueous conditions. Increased concentration of chlorine and higher ambient temperature were found to expedite the corrosion of copper. In order to study the effect of solution states on the corrosion resistance of Cu, partial fractions of proton or hydroxide in water were configured, and higher corrosion rate at partial fraction hydroxide environment was observed. When the Cl{sup -} concentration is low, oxygen or hydroxide ion adsorption onto Cu surface has been confirmed in partial fraction hydroxide environment. Our study provides new atomic scale insights into the early stages of aqueous corrosion of metals such as copper.

Jeon, B.; Sankaranarayanan, S. K. R. S.; van Duin, A. C. T.; Ramanathan, S. (Center for Nanoscale Materials); (Harvard Univ.); (Penn State Univ.)

2011-06-21T23:59:59.000Z

231

Transient current distributions in porous zinc electrodes in KOH electrolyte  

SciTech Connect (OSTI)

A zero-resistance ammeter circuit with a 10-channel operational amplifier was used to measure the current distribution during a discharge of 10 to 100 mA with simulated zinc porous electrodes in 7.24 M KOH saturated with ZnO. The reaction distribution was found to be highly nonuniform, with 70 to 78% of the charge transfer reaction completed in a depth of 0.01 cm. The high nonuniformity of the initial reaction profile was believed to be due to low conductivity of the electrolyte in the electrode pores. The current distribution changes during passivation of the electrode were experimentally obtained. A mathematical model based upon a macroscope averaging technique was used to predict the time dependence of charge transfer reaction profiles. With mathematical model, current distributions and overpotentials were predicted as a function of time for the segmented zinc electrode discharged at a current of 10 to 100 mA; for these predictions, assumed values of both precipitation rate constants for porous ZnO and diffusion coefficients for hydroxide and zincate ions were used. A gradual decrease in the specific conductivity of the pore electrolyte to 20% of the initial value during discharge yields predictions of current distributions and overpotentials in good agreement with the experimental data. The extent of reduction in the specific conductivity of the pore electrolyte implies a supersaturation of zincate of four times chemical saturation, which was been observed experimentally.At high discharge current (25 to 100 mA), the passivation behavior of the electrode has been simulated. The results of the experiments and mathematical model show that the effective reaction penetration depth is less than 0.02 cm.

Liu, M.B.; Yamazaki, Y.; Cook, G.M.; Yao, N.P.

1981-02-01T23:59:59.000Z

232

Lithium-ion batteries having conformal solid electrolyte layers  

DOE Patents [OSTI]

Hybrid solid-liquid electrolyte lithium-ion battery devices are disclosed. Certain devices comprise anodes and cathodes conformally coated with an electron insulating and lithium ion conductive solid electrolyte layer.

Kim, Gi-Heon; Jung, Yoon Seok

2014-05-27T23:59:59.000Z

233

Effects of additives on the stability of electrolytes for all...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Effects of additives on the stability of electrolytes for all-vanadium redox flow batteries. Effects of additives on the stability of electrolytes for all-vanadium redox flow...

234

Electrode/electrolyte interface. A status report  

SciTech Connect (OSTI)

This is a report of a workshop on the [open quotes]state of the art[close quotes] and potential future directions in the study of the electrode/electrolyte interface. Recent advances in experimental capabilities of characterizing the structure of the interface, e.g., through the use of such techniques as scanning tunneling microscopy and X-ray methods, are described. New approaches to studies of interfacial dynamics and materials aspects of the electrode/electrolyte interface are also discussed. 346 refs., 17 figs.

Bard, A.J. (Univ. of Texas, Austin (United States)); Abruna, H.D. (Cornell Univ., Ithaca, NY (United States)); Chidsey, C.E. (Stanford Univ., CA (United States)); Faulkner, L.R. (Univ. of Illinois, Urbana-Champaign (United States)); Feldberg, S.W. (Brookhaven National Lab., Upton, NY (United States)); Itaya, Kingo (Tohoku Univ., Sendai (Japan)); Majda, M. (Univ. of California, Berkeley (United States)); Melroy, O. (IBM Almaden Research Center, San Jose, CA (United States)); Murray, R.W. (Univ. of North Carolina, Chapel Hill (United States)); Porter, M.D. (Iowa State Univ., Ames (United States)); Soriaga, M.P. (Texas A M Univ., College Station (United States)); White, H.S. (Univ. of Utah, Salt Lake City (United States))

1993-07-15T23:59:59.000Z

235

Solid electrolytes strengthened by metal dispersions  

DOE Patents [OSTI]

An improvement in solid electrolytes of advanced secondary batteries of the sodium-sulfur, sodium-halogen, and like combinations is achieved by providing said battery with a cermet electrolyte containing a metal dispersion ranging from 0.1 to 10.0 vol. % of a substantially nonreactive metal selected from the group consisting essentially of Pt, Cr, Fe, Co, Ni, Nb, their alloys, and their physical mixtures in the elemental or uncombined state, the remainder of said cermet being an ion-conductive ceramic material.

Lauf, R.J.; Morgan, C.S.

1981-10-05T23:59:59.000Z

236

Solid electrolytes strengthened by metal dispersions  

DOE Patents [OSTI]

An improvement in solid electrolytes of advanced secondary batteries of the sodium-sulfur, sodium-halogen, and like combinations is achieved by providing said battery with a cermet electrolyte containing a metal dispersion ranging from 0.1 to 10.0 vol. % of a substantially nonreactive metal selected from the group consisting essentially of Pt, Cr, Fe, Co, Ni, Nb, their alloys, and their physical mixtures in the elemental or uncombined state, the remainder of said cermet being an ion-conductive ceramic material.

Lauf, Robert J. (Oak Ridge, TN); Morgan, Chester S. (Oak Ridge, TN)

1983-01-01T23:59:59.000Z

237

Solid composite electrolytes for lithium batteries  

DOE Patents [OSTI]

Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a polymer-ceramic composite electrolyte containing poly(ethylene oxide), lithium tetrafluoroborate and titanium dioxide is provided in the form of an annealed film having a room temperature conductivity of from 10.sup.-5 S cm.sup.-1 to 10.sup.-3 S cm.sup.-1 and an activation energy of about 0.5 eV.

Kumar, Binod (Dayton, OH); Scanlon, Jr., Lawrence G. (Fairborn, OH)

2001-01-01T23:59:59.000Z

238

2007 Status of Manufacturing: Polymer Electrolyte Membrane (PEM) Fuel Cells  

SciTech Connect (OSTI)

In this document we assess the North American industry's current ability to manufacture polymer electrolyte membrane (PEM) fuel cells.

Wheeler, D.; Sverdrup, G.

2008-03-01T23:59:59.000Z

239

Protective interlayer for high temperature solid electrolyte electrochemical cells  

DOE Patents [OSTI]

A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.

Isenberg, Arnold O. (Forest Hills Boro, PA); Ruka, Roswell J. (Churchill Boro, PA)

1986-01-01T23:59:59.000Z

240

Protective interlayer for high temperature solid electrolyte electrochemical cells  

DOE Patents [OSTI]

A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.

Isenberg, Arnold O. (Forest Hills Boro, PA); Ruka, Roswell J. (Churchill Boro, PA); Zymboly, Gregory E. (Penn Hills Township, Allegheny County, PA)

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aqueous electrolyte modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Protective interlayer for high temperature solid electrolyte electrochemical cells  

DOE Patents [OSTI]

A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.

Isenberg, Arnold O. (Forest Hills Boro, PA); Ruka, Roswell J. (Churchill Boro, PA)

1987-01-01T23:59:59.000Z

242

Electrolytic Cell For Production Of Aluminum From Alumina  

DOE Patents [OSTI]

An electrolytic cell for producing aluminum from alumina having a reservoir for collecting molten aluminum remote from the electrolysis.

Bradford, Donald R (Underwood, WA); Barnett, Robert J. (Goldendale, WA); Mezner, Michael B. (Sandy, OR)

2004-11-02T23:59:59.000Z

243

LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES  

SciTech Connect (OSTI)

This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and testing of Planar Single Cells. In this portion of study we have focused on producing YSZ films on porous LSM substrates. When using the polymer precursor there are a number of obstacles to overcome in order to form dense electrolyte layers on porous substrates (cathode or anode). Probably the most difficult problems are: (1) Extreme penetration of the polymer into the substrate must be prevented. (2) Shrinkage cracking must be avoided. (3) Film thickness in the 1 to 5{micro}m range must be achieved. We have demonstrated that cracking due to shrinkage involved during the elimination of solvents and organic matter and densification of the remaining oxide is not a problem as long as the resulting oxide film is < {approx} 0.15 {micro}m in thickness. We have also shown that we can make thicker films by making multiple depositions if the substrate is smooth (roughness {le} 0.1 {micro}m) and contains no surface pores > 0.2 {micro}m. The penetration of the polymer into the porous substrate can be minimized by increasing the viscosity of the polymer and reducing the largest pore at the surface of the substrate to {le} 0.2 {micro}m. We have shown that this can be done, but we have also shown that it is difficult to make dense films that are defect free with areas > 1 cm{sup 2}. This is because of the roughness of the substrate and the difficulty in making a substrate which does not have surface voids > 0.2 {micro}m. Thus the process works well for dense, smooth substrates for films < 1 {micro}m thick, but is difficult to apply to rough, porous surfaces and to make film thickness > 1 {micro}m. As a result of these problems, we have been addressing the issue of how to make dense films in the thickness range of 1 to 5 {micro}m on sintered porous substrates without introducing cracks and holes due to shrinkage and surface voids? These endeavors have lead us to a solution which we think is quite unique and should allow us to obtain flaw free dense films of thickness in the 0.5 to 5 {micro}m range at processing temperatures {le} 900{sup o}. The process involves the deposition of a slurry of nanocrystalline YSZ onto a presintered porous LSM substrate. The key element in the deposition is that the slurry contains sufficient YSZ polymer precursor to allow adhesion of the YSZ particles to each other and the surface after annealing at about 600 C. This allows the formation of a porous film of 0.5 to 5 {micro}m thick which adheres to the surface. After formation of this film, YSZ polymer precursor is allowed to impregnate the porous surface layer (capillary forces tend to confine the polymer solution in the nanoporous layer). After several impregnation/heat treatment cycles, a dense film results. Within the next few months, this process should be developed to the point that single cell measurements can be made on 0.5 to 5 {micro}m films on a LSM substrate. This type of processing allows the formation of essentially flaw free films over areas > 1 cm{sup 2}.

Harlan U. Anderson; Wayne Huebner; Igor Kosacki

2001-09-30T23:59:59.000Z

244

Fuel cell electrolyte membrane with basic polymer  

DOE Patents [OSTI]

The present invention is an electrolyte membrane comprising an acid and a basic polymer, where the acid is a low-volatile acid that is fluorinated and is either oligomeric or non-polymeric, and where the basic polymer is protonated by the acid and is stable to hydrolysis.

Larson, James M.; Pham, Phat T.; Frey, Matthew H.; Hamrock, Steven J.; Haugen, Gregory M.; Lamanna, William M.

2012-12-04T23:59:59.000Z

245

Fuel cell electrolyte membrane with basic polymer  

DOE Patents [OSTI]

The present invention is an electrolyte membrane comprising an acid and a basic polymer, where the acid is a low-volatile acid that is fluorinated and is either oligomeric or non-polymeric, and where the basic polymer is protonated by the acid and is stable to hydrolysis.

Larson, James M. (Saint Paul, MN); Pham, Phat T. (Little Canada, MN); Frey, Matthew H. (Cottage Grove, MN); Hamrock, Steven J. (Stillwater, MN); Haugen, Gregory M. (Edina, MN); Lamanna, William M. (Stillwater, MN)

2010-11-23T23:59:59.000Z

246

Computationally-guided Design of Polymer Electrolytes  

E-Print Network [OSTI]

of Polymer Electrolytes Global Significance While progress of sustainable energy- harvesting techniques is promising, tandem advancements in energy storage are required to maintain a stable energy supply be a valuable contribution to the emerging sustainable energy landscape. This project applies polymer physics

247

Ultrasonic hydrometer. [Specific gravity of electrolyte  

DOE Patents [OSTI]

The disclosed ultrasonic hydrometer determines the specific gravity (density) of the electrolyte of a wet battery, such as a lead-acid battery. The hydrometer utilizes a transducer that when excited emits an ultrasonic impulse that traverses through the electrolyte back and forth between spaced sonic surfaces. The transducer detects the returning impulse, and means measures the time t between the initial and returning impulses. Considering the distance d between the spaced sonic surfaces and the measured time t, the sonic velocity V is calculated with the equation V = 2d/t. The hydrometer also utilizes a thermocouple to measure the electrolyte temperature. A hydrometer database correlates three variable parameters including sonic velocity in and temperature and specific gravity of the electrolyte, for temperature values between 0 and 40/sup 0/C and for specific gravity values between 1.05 and 1.30. Upon knowing two parameters (the calculated sonic velocity and the measured temperature), the third parameter (specific gravity) can be uniquely found in the database. The hydrometer utilizes a microprocessor for data storage and manipulation.

Swoboda, C.A.

1982-03-09T23:59:59.000Z

248

Process for electrolytically preparing uranium metal  

DOE Patents [OSTI]

A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.

Haas, Paul A. (Knoxville, TN)

1989-01-01T23:59:59.000Z

249

Method and apparatus for storage battery electrolyte circulation  

DOE Patents [OSTI]

An electrolyte reservoir in fluid communication with the cell of a storage battery is intermittently pressurized with a pulse of compressed gas to cause a flow of electrolyte from the reservoir to the upper region of less dense electrolyte in the cell. Upon termination of the pressure pulse, more dense electrolyte is forced into the reservoir from the lower region of the cell by the differential pressure head between the cell and reservoir electrolyte levels. The compressed gas pulse is controlled to prevent the entry of gas from the reservoir into the cell.

Inkmann, Mark S. (Milwaukee, WI)

1980-09-09T23:59:59.000Z

250

Thermodynamics and phase transitions of electrolytes on lattices with different discretization parameters  

E-Print Network [OSTI]

Thermodynamics and phase transitions of electrolytes on lattices with different discretization February 2005; in final form 14 April 2005) Lattice models are crucial for studying thermodynamic thermodynamics and the nature of phase transitions in systems with charged particles. A discretization parameter

251

Resistance and polarization losses in aqueous buffermembrane electrolytes for water-splitting photoelectrochemical cells  

E-Print Network [OSTI]

the environmental consequences of increasing energy use. Hydrogen, which can be made from many different energy sources, is one of the most promising energy carriers for transportation applications. Hydrogen has a high be powered by several carbon-neutral energy sources including photovoltaic (PV)- coupled electrolyzers.2

252

Mixed reactant single chamber fuel cell, using products generated from the electrolysis of an aqueous electrolyte.  

E-Print Network [OSTI]

??A Mixed Reactant Single Chamber (MRSC) Fuel Cell is a relatively recent concept in the field of fuel cell engineering originally developed in the late… (more)

Jost, William C.

2008-01-01T23:59:59.000Z

253

Elaboration and Characterization of a Free Standing LiSICON Membrane for Aqueous Lithium-Air Battery  

E-Print Network [OSTI]

: Metal-air battery, Lithium anode, Li2O - Al2O3 - TiO2 - P2O5 system, LiPON, Solid electrolyte 1. Introduction Metal-air batteries are based on the use of a metal negative electrode in combination-sur-Loing, France Abstract In order to develop a LISICON separator for an aqueous lithium-air battery, a thin

Paris-Sud XI, Université de

254

Development of Advanced Electrolytes and Electrolyte Additives | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent Companya new high capacityofTechnologyDepartmentof

255

Electrolyte reservoir for carbonate fuel cells  

DOE Patents [OSTI]

An electrode for a carbonate fuel cell and method of making same are described wherein a substantially uniform mixture of an electrode-active powder and porous ceramic particles suitable for a carbonate fuel cell are formed into an electrode with the porous ceramic particles having pores in the range of from about 1 micron to about 3 microns, and a carbonate electrolyte is in the pores of the ceramic particles.

Iacovangelo, C.D.; Shores, D.A.

1984-05-23T23:59:59.000Z

256

Neutron activation analysis applied to perspiration electrolytes  

E-Print Network [OSTI]

) Member) (Eieisber) (Hie isbn r ) (Nc, . ib": ) J iniar ! Vl R P 3STR-'. CT Neutron ';ctivatior. Imalysis iipplied to Perspiration Electrolytes. (January 1969) Robert C. N Andrew:, B. S. , Norcester Poly' echnic Institut Directed by: Dr. James B... dlX II1 last Neutron Act ivsticn Cross-Eec!iona - - - 73 J Igf 0F TABL? S TABLE 1 TABLE 2 TABLE 3 TABLE 6! Nuclear Properties of Pertinent Elec!eats - - 6 Sodium Reactions Interfering Reactions - - - - - - ~ - - - - 13 Sodium Concentrations...

McAndrew, Robert Gavin

2012-06-07T23:59:59.000Z

257

Sandia National Laboratories: polymer electrolyte membrane  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbine bladelifetime ismobileparallelplantplasmapolymer electrolyte

258

Research papers Polymerization of aqueous silica in H2OK2O solutions at 25200 C and 1 bar  

E-Print Network [OSTI]

Research papers Polymerization of aqueous silica in H2O­K2O solutions at 25­200 °C and 1 bar to 20 Aqueous silica polymerization Diamond anvil cell Alkaline uids Ab initio calculation Understanding the polymerization of aqueous silica is important for modeling uid­rock interactions at high pressure and temperature

Manning, Craig

259

STABLE HIGH CONDUCTIVITY BILAYERED ELECTROLYTES FOR LOW TEMPERATURE SOLID OXIDE FUEL CELLS  

SciTech Connect (OSTI)

Solid oxide fuel cells (SOFCs) are the future of energy production in America. They offer great promise as a clean and efficient process for directly converting chemical energy to electricity while providing significant environmental benefits (they produce negligible CO, HC, or NOx and, as a result of their high efficiency, produce about one-third less CO{sub 2} per kilowatt hour than internal combustion engines). Unfortunately, the current SOFC technology, based on a stabilized zirconia electrolyte, must operate in the region of 1000 C to avoid unacceptably high ohmic losses. These high temperatures demand (a) specialized (expensive) materials for the fuel cell interconnects and insulation, (b) time to heat up to the operating temperature and (c) energy input to arrive at the operating temperature. Therefore, if fuel cells could be designed to give a reasonable power output at lower temperatures tremendous benefits may be accrued, not the least of which is reduced cost. The problem is, at lower temperatures the conductivity of the conventional stabilized zirconia electrolyte decreases to the point where it cannot supply electrical current efficiently to an external load. The primary objectives of the proposed research is to develop a stable high conductivity (>0.05 S cm{sup -1} at 550 C) electrolyte for lower temperature SOFCs. This objective is specifically directed toward meeting the lowest (and most difficult) temperature criteria for the 21st Century Fuel Cell Program. Meeting this objective provides a potential for future transportation applications of SOFCs, where their ability to directly use hydrocarbon fuels could permit refueling within the existing transportation infrastructure. In order to meet this objective we are developing a functionally gradient bilayer electrolyte comprised of bismuth oxide on the air side and ceria on the fuel side. Bismuth oxide and doped ceria are among the highest ionic conducting electrolytes and in fact bismuth oxide based electrolytes are the only known solid oxide electrolytes to have an ionic conductivity that meets the program conductivity goal. We have previously demonstrated that this concept works, that a bismuth oxide/ceria bilayer electrolyte provides near theoretical open circuit potential (OCP) and is stable for 1400 h of fuel cell operation under both open circuit and maximum power conditions. More recently, we developed a computer model to determine the defect transport in this bilayer and have found that a bilayer comprised primarily of the more conductive component (bismuth oxide) is stable for 500 C operation. In this first year of the project we are obtaining necessary thermochemical data to complete the computer model as well as initial SOFC results based on thick 1-2 mm single and bilayer ceria/bismuth oxide electrolytes. We will use the computer model to obtain the optimum relative layer thickness as a function of temperature and air/fuel conditions. SOFCs will be fabricated with 1-2 mm single and bilayer electrolytes based on the modeling results, tested for OCP, conductivity, and stability and compared against the predictions. The computer modeling is a continuation of previous work under support from GRI and the student was available at the inception of the contract. However, the experimental effort was delayed until the beginning of the Spring Semester because the contract was started in October, 2 months after the start of our Fall Semester, and after all of the graduate students were committed to other projects. The results from both of these efforts are described in the following two sections: (1) Experimental; and (2) Computer Modeling.

Eric D. Wachsman

2000-10-01T23:59:59.000Z

260

Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator  

DOE Patents [OSTI]

Alkali alcoholates, also called alkali alkoxides, are produced from alkali metal salt solutions and alcohol using a three-compartment electrolytic cell. The electrolytic cell includes an anolyte compartment configured with an anode, a buffer compartment, and a catholyte compartment configured with a cathode. An alkali ion conducting solid electrolyte configured to selectively transport alkali ions is positioned between the anolyte compartment and the buffer compartment. An alkali ion permeable separator is positioned between the buffer compartment and the catholyte compartment. The catholyte solution may include an alkali alcoholate and alcohol. The anolyte solution may include at least one alkali salt. The buffer compartment solution may include a soluble alkali salt and an alkali alcoholate in alcohol.

Joshi, Ashok V. (Salt Lake City, UT); Balagopal, Shekar (Sandy, UT); Pendelton, Justin (Salt Lake City, UT)

2011-12-13T23:59:59.000Z

Note: This page contains sample records for the topic "aqueous electrolyte modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

STABLE HIGH CONDUCTIVITY BILAYERED ELECTROLYTES FOR LOW TEMPERATURE SOLID OXIDE FUEL CELLS  

SciTech Connect (OSTI)

A bilayer electrolyte consisting of acceptor-doped ceria (on the fuel/reducing side) and cubic-stabilized bismuth oxide (on the oxidizing side) was developed. The bilayer electrolyte that was developed showed significant improvement in open-circuit potential versus a typical ceria based SOFC. Moreover, the OCP of the bilayer cells increased as the thickness of the bismuth oxide layer increased relative to the ceria layer. Thereby, verifying the bilayer concept. Although, because of the absence of a suitable cathode (a problem we are still working assiduously to solve), we were unable to obtain power density curves, our modeling work predicts a reduction in electrolyte area specific resistance of two orders of magnitude over cubic-stabilized zirconia and projects a maximum power density of 9 W/m{sup 2} at 800 C and 0.09 W/m{sup 2} at 500 C. Towards the development of the bilayer electrolyte other significant strides were made. Among these were, first, the development of a, bismuth oxide based, oxide ion conductor with the highest conductivity (0.56 S/cm at 800 C and 0.043 S/cm at 500 C) known to date. Second, a physical model of the defect transport mechanisms and the driving forces for the ordering phenomena in bismuth oxide and other fluorite systems was developed. Third, a model for point defect transport in oxide mixed ionic-electronic conductors was developed, without the typical assumption of a uniform distribution of ions and including the effect of variable loads on the transport properties of an SOFC (with either a single or bilayer electrolyte).

Eric D. Wachsman; Keith L. Duncan

2002-09-30T23:59:59.000Z

262

Electrolyte matrix in a molten carbonate fuel cell stack  

DOE Patents [OSTI]

A fuel cell stack is disclosed with modified electrolyte matrices for limiting the electrolytic pumping and electrolyte migration along the stack external surfaces. Each of the matrices includes marginal portions at the stack face of substantially greater pore size than that of the central body of the matrix. Consequently, these marginal portions have insufficient electrolyte fill to support pumping or wicking of electrolyte from the center of the stack of the face surfaces in contact with the vertical seals. Various configurations of the marginal portions include a complete perimeter, opposite edge portions corresponding to the air plenums and tab size portions corresponding to the manifold seal locations. These margins will substantially limit the migration of electrolyte to and along the porous manifold seals during operation of the electrochemical cell stack. 6 figs.

Reiser, C.A.; Maricle, D.L.

1987-04-21T23:59:59.000Z

263

Charge transport and charge clustering in polymer electrolytes: Results from simulations  

SciTech Connect (OSTI)

This paper reports results of molecular dynamics simulations on models for polymer electrolytes. These initial models use reasonable potentials, with proper thermal dynamics and appropriate treatment of boundary conditions. The solvents themselves range in complexity from simple Lennar-Jones spheres with embedded dipoles to constraint geometry models for small etheric solvents. The paper reports structural, transport and thermal dependences of these model electrolytes. The authors observe some important changes in the extent of clustering with temperature and with dielectric constant, as well as with concentration. Mechanistic interpretation, in terms of effective ion flows and charge transport characteristics, are reported. In particular, the authors find an analysis of pairing using the thermal dependence of the potential of mean force shows clearly that entropic effects, as well as reduced dielectric screening, result in cluster stabilization. In the extreme limit of oversaturation, such stabilization can actually lead to changes in the mechanism, in agreement with recent suggestions by Angell based on ionene materials.

Payne, V.A.; Forsyth, M.; Shriver, D.F.; DeLeeuw, S.W.; Ratner, M.A. [Northeastern Univ., Evanston, IL (United States)

1993-12-31T23:59:59.000Z

264

Polymer-electrolyte membrane, electrochemical fuel cell, and related method  

DOE Patents [OSTI]

A polymer-electrolyte membrane is presented. The polymer-electrolyte membrane comprises an acid-functional polymer, and an additive incorporated in at least a portion of the membrane. The additive comprises a fluorinated cycloaliphatic additive, a hydrophobic cycloaliphatic additive, or combinations thereof, wherein the additive has a boiling point greater than about 120.degree. C. An electrochemical fuel cell including the polymer-electrolyte membrane, and a related method, are also presented.

Krishnan, Lakshmi; Yeager, Gary William; Soloveichik, Grigorii Lev

2014-12-09T23:59:59.000Z

265

Electrolytes at Solid-Water Interfaces: Theoretical Studies for Practical Applications  

SciTech Connect (OSTI)

The goal of this research program was to determine how a solid substrate affects structure and dynamics of aqueous electrolyte solutions. From fundamental observations, we seek to improve practical applications. Of particular interest at the project inset were carbon nanotube separation, electric double layer capacitors, and water desalination. As time progresses, we became interested in sub-surface water transport and fate, and in hydraulic fracturing. We employed an arsenal of techniques based on atomistic molecular dynamics simulations. We validated our methods using experimental data, to propose practical improvements. Some experiments were conducted in house. We established valuable collaborations with experienced scientists at National Laboratories to provide information not attainable with our in-house resources.

Striolo, Alberto

2013-09-23T23:59:59.000Z

266

Application of Buckmaster Electrolyte Ion Leakage Test to Woody Biofuel Feedstocks  

SciTech Connect (OSTI)

In an earlier ASABE paper, Buckmaster reported that ion conductivity of biomass leachate in aqueous solution was directly correlated with activity access to plant nutrients within the biomass materials for subsequent biological or chemical processing. The Buckmaster test involves placing a sample of the particles in a beaker of constant-temperature deionized water and monitoring the change in electrical conductivity over time. We adapted the Buckmaster method to a range of woody biomass and other cellulosic bioenergy feedstocks. Our experimental results suggest differences of electrolyte leakage between differently processed woody biomass particles may be an indicator of their utility for conversion in bioenergy processes. This simple assay appears to be particularly useful to compare different biomass comminution techniques and particle sizes for biochemical preprocessing.

Broderick, Thomas F [Forest Concepts, LLC; Dooley, James H [Forest Concepts, LLC

2014-08-28T23:59:59.000Z

267

Method of preparing a sintered lithium aluminate structure for containing electrolyte  

DOE Patents [OSTI]

A porous sintered tile is formed of lithium aluminate for retaining molten lectrolyte within a fuel cell. The tile is prepared by reacting lithium hydroxide in aqueous solution with alumina particles to form beta lithium aluminate particles. The slurry is evaporated to dryness and the solids dehydrated to form a beta lithium aluminate powder. The powder is compacted into the desired shape and sintered at a temperature in excess of 1200 K. but less than 1900 K. to form a porous integral structure that is subsequently filled with molten electrolyte. A tile of this type is intended for use in containing molten alkali metal carbonates as electolyte for use in a fuel cell having porous metal or metal oxide electrodes for burning a fuel gas such as hydrogen and/or carbon monoxide with an oxidant gas containing oxygen.

Sim, James W. (Evergreen Park, IL); Kinoshita, Kimio (Cupertino, CA)

1981-01-01T23:59:59.000Z

268

Autogenous electrolyte, non-pyrolytically produced solid capacitor structure  

DOE Patents [OSTI]

A solid electrolytic capacitor having a solid electrolyte comprising manganese dioxide dispersed in an aromatic polyamide capable of further cure to form polyimide linkages, the solid electrolyte being disposed between a first electrode made of valve metal covered by an anodic oxide film and a second electrode opposite the first electrode. The electrolyte autogenously produces water, oxygen, and hydroxyl groups which act as healing substances and is not itself produced pyrolytically. Reduction of the manganese dioxide and the water molecules released by formation of imide linkages result in substantially improved self-healing of anodic dielectric layer defects.

Sharp, Donald J. (Albuquerque, NM); Armstrong, Pamela S. (Abingdon, MD); Panitz, Janda Kirk G. (Edgewood, NM)

1998-01-01T23:59:59.000Z

269

Autogenous electrolyte, non-pyrolytically produced solid capacitor structure  

DOE Patents [OSTI]

A solid electrolytic capacitor is described having a solid electrolyte comprising manganese dioxide dispersed in an aromatic polyamide capable of further cure to form polyimide linkages, the solid electrolyte being disposed between a first electrode made of valve metal covered by an anodic oxide film and a second electrode opposite the first electrode. The electrolyte autogenously produces water, oxygen, and hydroxyl groups which act as healing substances and is not itself produced pyrolytically. Reduction of the manganese dioxide and the water molecules released by formation of imide linkages result in substantially improved self-healing of anodic dielectric layer defects. 2 figs.

Sharp, D.J.; Armstrong, P.S.; Panitz, J.K.G.

1998-03-17T23:59:59.000Z

270

E-Print Network 3.0 - autohumidification polymer electrolyte...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Park Collection: Engineering ; Materials Science 18 Switchable window based on electrochromic polymers Chunye Xu,a) Summary: electrolyte, and a counterelectrode that replaces...

271

Electrolyte materials containing highly dissociated metal ion salts  

DOE Patents [OSTI]

The present invention relates to metal ion salts which can be used in electrolytes for producing electrochemical devices, including both primary and secondary batteries, photoelectrochemical cells and electrochromic displays. The salts have a low energy of dissociation and may be dissolved in a suitable polymer to produce a polymer solid electrolyte or in a polar aprotic liquid solvent to produce a liquid electrolyte. The anion of the salts may be covalently attached to polymer backbones to produce polymer solid electrolytes with exclusive cation conductivity.

Lee, Hung-Sui (East Setauket, NY); Geng, Lin (Coram, NY); Skotheim, Terje A. (Shoreham, NY)

1996-07-23T23:59:59.000Z

272

Electrolyte materials containing highly dissociated metal ion salts  

DOE Patents [OSTI]

The present invention relates to metal ion salts which can be used in electrolytes for producing electrochemical devices, including both primary and secondary batteries, photoelectrochemical cells and electrochromic displays. The salts have a low energy of dissociation and may be dissolved in a suitable polymer to produce a polymer solid electrolyte or in a polar aprotic liquid solvent to produce a liquid electrolyte. The anion of the salts may be covalently attached to polymer backbones to produce polymer solid electrolytes with exclusive cation conductivity. 2 figs.

Lee, H.S.; Geng, L.; Skotheim, T.A.

1996-07-23T23:59:59.000Z

273

Protection of Li Anodes Using Dual Phase Electrolytes  

Broader source: Energy.gov (indexed) [DOE]

cells with high energy anode and dual-phase electrolyte systems Partners BASF SE, Germany * Development of Li-S battery materials 3 Relevance. Project Objectives. * Develop a...

274

Accurate static and dynamic properties of liquid electrolytes...  

Office of Scientific and Technical Information (OSTI)

electrolytes. However, to date, almost all molecular-dynamics simulations of these fluids rely on classical force fields, while a complete description of the functionality of...

275

High Voltage Electrolytes for Li-ion Batteries  

Broader source: Energy.gov (indexed) [DOE]

or otherwise restricted information High Voltage Electrolytes for Li-ion Batteries Vehicle Technologies Program 2 Overview * Start: Sep 2008 * End: Sep 2011 * 20 %...

276

Hydrogen Production by Polymer Electrolyte Membrane (PEM)Electrolysis...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

on Giner and Proton Presentation slides and speaker biographies from the DOE Fuel Cell Technologies Office webinar "Hydrogen Production by Polymer Electrolyte Membrane...

277

Key Issues Regarding Electrolytes at Interfacial Regions (subtask...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

with Emphasis on Low Temperature Performance Vehicle Technologies Office: 2009 Energy Storage R&D Annual Progress Report Development of Electrolytes for Lithium-ion Batteries...

278

assisted electrolyte cell: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Highly Porous Catalytic Layers for Polymer Electrolyte Fuel Cell Based on Carbon Aerogels Physics Websites Summary: Synthesis of Highly Porous Catalytic Layers for Polymer...

279

Polymer Electrolytes for High Energy Density Lithium Batteries  

Broader source: Energy.gov (indexed) [DOE]

Electrolyte Channels 10 nm For ion conduction Li cathode Hard matrix For mechanical support Dendrite (1 m) Decouple the mechanical and electrical properties...

280

Method of synthesizing polymers from a solid electrolyte  

DOE Patents [OSTI]

A method of synthesizing electrically conductive polymers from a solvent-free solid polymer electrolyte is disclosed. An assembly of a substrate having an electrode thereon, a thin coating of solid electrolyte including a solution of PEO complexed with an alkali salt, and a thin transparent noble metal electrode are disposed in an evacuated chamber into which a selected monomer vapor is introduced while an electric potential is applied across the solid electrolyte to hold the thin transparent electrode at a positive potential relative to the electrode on the substrate, whereby a highly conductive polymer film is grown on the transparent electrode between it and the solid electrolyte.

Skotheim, T.A.

1984-10-19T23:59:59.000Z

Note: This page contains sample records for the topic "aqueous electrolyte modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Molecular dynamics simulation and ab intio studies of electrolytes...  

Broader source: Energy.gov (indexed) [DOE]

intio studies of electrolytes and electrolyteelectrode interfaces Grant D. Smith and Oleg Borodin University of Utah May 11, 2011 This presentation does not contain any...

282

Development of Electrolytes for Lithium-ion Batteries  

Broader source: Energy.gov (indexed) [DOE]

Battaglia & J. Kerr (LBNL) * M. Payne (Novolyte) * F. Puglia & B. Ravdel (Yardney) * G. Smith & O. Borodin (U. Utah) 3 3 Develop novel electrolytes for lithium ion batteries that...

283

Electrolytes - R&D for Advanced Lithium Batteries. Interfacial...  

Broader source: Energy.gov (indexed) [DOE]

* Marshal Smart (JPLABR), Brett Lucht (URI) - New Electrolyte evaluation. * DOE Fuel Cell Technologies Program - New polyelectrolyte material synthesis and Applied Science...

284

Thermodynamic model for the solubility of BaSeO4(cr) in the aqueous Ba2+-SeO42--Na+-H+-OH--H2O system: Extending to high selenate concentrations  

SciTech Connect (OSTI)

The solubility of Ba(SeO4, SO4) precipitates was determined as a function of the BaSeO4 mole fractions, ranging from 0.0015 to 0.3830, and time with an equilibration period extending to as long as 302 days. Equilibrium/steady state conditions in this system are reached in ? 65 days. Pitzer’s ion interaction model was used to calculate solid and aqueous phase activity coefficients. Thermodynamic analyses showed that the data do not satisfy Gibbs-Duhem equation, thereby demonstrating that a single-solid solution phase does not control both the selenate and sulfate concentrations. Our extensive data with log10 [Ba]) ranging from -3.6 to -5.9 mol.kg-1, log10 [SeO4]) ranging from -3.6 to -5.2 mol.kg-1, and log10 [SO4] ranging from -4.0 to -5.3 mol.kg-1 can be explained with the formation of an ideal BaSeO4 solid solution phase that controls the selenium concentrations and a slightly disordered/less-crystalline BaSO4(s) (log10 K0sp = -9.5 instead of -10.05 for barite) that controls the sulfate concentrations. In these experiments the BaSO4 component of the solid solution phase never reaches thermodynamic equilibrium with the aqueous phase. Thermodynamic interpretations of the data show that both the ideal BaSeO4 solid solution phase and less-crystalline BaSO4(s) phase are in equilibrium with each other in the entire range of BaSeO4 mole fractions investigated in this study.

Rai, Dhanpat; Felmy, Andrew R.; Moore, Dean A.; Kitamura, Akira; Yoshikawa, Hideki; Doi, Reisuke; Yoshida, Yasushi

2014-09-15T23:59:59.000Z

285

LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES  

SciTech Connect (OSTI)

This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and testing of Planar Single Cells. Substantial progress has been made on both characterizing thin films as well as developing methods to produce films on nanoporous substrates. The results of electrical conductivity measurements on ZrO{sub 2}:16%Sc nanocrystalline thin films under controlled oxygen partial pressure and temperature are presented. The experimental data have been interpreted using a defect model, which describes the interaction between Sc and oxygen vacancies resulting in the formation of donor - (Sc{sub Zr} - V{sub o} - e){sup x} and acceptor - (Sc{sub Zr}-h){sup x} levels. From this the electronic and ionic contribution to the electrical transport has been determined and correlated with the band structure. These results suggest that ZrO{sub 2}:16%Sc possesses higher electronic conductivity than ZrO{sub 2}:16%Y, which dominates the total conductivity in reducing atmospheres. This is an important result since it indicates that Sc-YSZ maybe useful in the anode regions of the cell. We have made important breakthroughs on depositing dense Ceria films on to porous LSM substrates. In previous studies we have found that in order to produce a surface which is smooth enough to coat with dense polymer precursor derived films, the required thickness of the colloidal film layer is determined by the maximum surface roughness. That is, if we wish to make 2 micron thick colloidal oxide layers, the roughness of the LSM surface can not exceed 2 microns. Currently, we are producing the composite CeO{sub 2}/LSM structures that can be coated with polymer precursor to produce 0.5 to 1.5 micron thickness dense YSZ films. In the next quarter, we will be testing SOFC's using these structures. YSZ/CeO{sub 2}/LSM composites have been formed by annealing at 800 C. Our studies show that the YSZ films are very dense with a 20 nm grain size. SOFC's using these composites are being fabricated and we expect to obtain cell data during the next quarter. As we reported in November 2000, we have had difficulties in making pore free films with larger areas that about 0.2cm{sup 2} which is due to problems in our clean room. Modifications have now been completed on the clean room and we should be approaching a class 100 in the film making area. This level of cleanliness is sufficient to obtain films without pores over areas up to 100cm{sup 2}.

Harlan U. Anderson; Wayne Huebner; Igor Kosacki

2001-03-31T23:59:59.000Z

286

SISGR: Linking Ion Solvation and Lithium Battery Electrolyte Properties  

SciTech Connect (OSTI)

The solvation and phase behavior of the model battery electrolyte salt lithium trifluoromethanesulfonate (LiCF3SO3) in commonly used organic solvents; ethylene carbonate (EC), gamma-butyrolactone (GBL), and propylene carbonate (PC) was explored. Data from differential scanning calorimetry (DSC), Raman spectroscopy, and X-ray diffraction were correlated to provide insight into the solvation states present within a sample mixture. Data from DSC analyses allowed the construction of phase diagrams for each solvent system. Raman spectroscopy enabled the determination of specific solvation states present within a solvent-Ă?Â?Ă?Â?salt mixture, and X-ray diffraction data provided exact information concerning the structure of a solvates that could be isolated Thermal analysis of the various solvent-salt mixtures revealed the phase behavior of the model electrolytes was strongly dependent on solvent symmetry. The point groups of the solvents were (in order from high to low symmetry): C2V for EC, CS for GBL, and C1 for PC(R). The low symmetry solvents exhibited a crystallinity gap that increased as solvent symmetry decreased; no gap was observed for EC-LiTf, while a crystallinity gap was observed spanning 0.15 to 0.3 mole fraction for GBL-LiTf, and 0.1 to 0.33 mole fraction for PC(R)-LiTf mixtures. Raman analysis demonstrated the dominance of aggregated species in almost all solvent compositions. The AGG and CIP solvates represent the majority of the species in solutions for the more concentrated mixtures, and only in very dilute compositions does the SSIP solvate exist in significant amounts. Thus, the poor charge transport characteristics of CIP and AGG account for the low conductivity and transport properties of LiTf and explain why is a poor choice as a source of Li+ ions in a Li-ion battery.

Trulove, Paul C; Foley, Matthew P

2013-03-14T23:59:59.000Z

287

Composite Polymer Electrolytes Based on Poly(ethylene glycol) and Hydrophobic Fumed Silica: Dynamic  

E-Print Network [OSTI]

utilized in electrolyte processing. Introduction Rechargeable lithium batteries employing solid elec electrolytes based on poly(ethylene oxide) (PEO).1 Solid polymer electrolytes can potentially eliminate battery* Department of Chemical Engineering, North Carolina State University, Raleigh, North Carolina 27695

Raghavan, Srinivasa

288

E-Print Network 3.0 - automotive polymer electrolyte Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Workshop Summary: on in market entry process 12;Mainstream Polymer Electrolyte Fuel Cell ( PEM) Cost Barriers 3 Graphite... and runs on: Ambient air No added electrolyte No...

289

Dr. Piotr Zelenay's Professional Bio Dr. Zelenay's expertise is in polymer electrolyte fuel cells, electrocatalysis, surface  

E-Print Network [OSTI]

Dr. Piotr Zelenay's Professional Bio Dr. Zelenay's expertise is in polymer electrolyte fuel cells of polymer electrolyte fuel cell science and technology, electrocatalysis, and electrode kinetics. Piotr

290

Preparation of ceramic matrix and alumina fiber composites for use as solid electrolytes  

DOE Patents [OSTI]

A process for making solid electrolytes using a fibrous stabilizing dispersed second phase for enhanced conductivity of the electrolyte after deformation and annealing. 1 tab.

Dudney, N.J.

1987-04-30T23:59:59.000Z

291

E-Print Network 3.0 - acid electrolyte fuel cells Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

electrolyte fuel cells Search Powered by Explorit Topic List Advanced Search Sample search results for: acid electrolyte fuel cells Page: << < 1 2 3 4 5 > >> 1 EERE Information...

292

Solid electrolytes for battery applications a theoretical perspective a  

E-Print Network [OSTI]

solid state batteries at the present time. · Several companies are involved in all solids state batterySolid electrolytes for battery applications ­ a theoretical perspective a Natalie Holzwarth ion batteries Solid electrolytes Advantages 1. Excellent chemical and physical stability. 2. Perform

Holzwarth, Natalie

293

Method of preparing thin film polymeric gel electrolytes  

DOE Patents [OSTI]

Novel hybrid thin film electrolyte, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities .apprxeq.10.sup.-3 .OMEGA..sup.-1 cm.sup.-1 are useful as electrolytes for rechargeable lithium batteries.

Derzon, Dora K. (Albuquerque, NM); Arnold, Jr., Charles (Albuquerque, NM)

1997-01-01T23:59:59.000Z

294

Membrane processes relevant for the polymer electrolyte fuel cell  

E-Print Network [OSTI]

Membrane processes relevant for the polymer electrolyte fuel cell Aleksander Kolstad Chemical. The important aspects concerning the Polymer Electrolyte Membrane Fuel Cell, more commonly known as Proton Exchange Membrane Fuel Cell (PEMFC), have been studied in two separate parts. Part 1 of the thesis

Kjelstrup, Signe

295

Method of preparing thin film polymeric gel electrolytes  

DOE Patents [OSTI]

Novel hybrid thin film electrolyte is described, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities {approx_equal}10{sup {minus}3}{Omega}{sup {minus}1}cm{sup {minus}1} are useful as electrolytes for rechargeable lithium batteries. 1 fig.

Derzon, D.K.; Arnold, C. Jr.

1997-11-25T23:59:59.000Z

296

EAF dust as an electrolytic zinc resource  

SciTech Connect (OSTI)

Two viable options are presently available to the electrolytic zinc producer to supplement the zinc production capability significantly by using electric arc furnace dust (EAFD) or leady ZnO products derived from EAFD: Integrated processing of the materials using the Modified Zincex Process and commingling the zinc sulfate solution from that process with the neutral solution from the calcine leaching circuit; Installing a completely separate circuit for treating the material using technologies such as the Modified Zincex or Esinex Processes. EAFD and halogen-bearing EAFD derived products are a zinc resource which is virtually untapped by new or existing electrolytic zinc producers and which offers them, with the advent of new technologies able to deal with halides, the opportunity to maintain or increase their zinc production from a relatively cheap, if not ``free``, and already mined zinc source. Such an approach would also provide the EAFD producer an alternative, perhaps lower cost, outlet for their material to the currently rather closely held EAFD processing industry.

Zunkel, A.D. [A.D. Zunkel Consultants Inc., Vancouver, WA (United States)

1995-12-31T23:59:59.000Z

297

Performance of capacitors using organic electrolytes  

SciTech Connect (OSTI)

Electric double-layer capacitors (EDLC) based on charge storage at the interface between a high surface area activated carbon electrode and an electrolyte solution are characterized by their long cycle life and high power density in comparison with batteries. However, energy density of electric double-layer capacitors obtained at present is at most 1Wh/kg at a power density of 600W/kg and smaller compared with that of batteries, which limits the applications of the capacitor. Therefore, new capacitors which show larger energy density than that of electric-double layer capacitors are proposed. The new capacitors are hybrid capacitors consisting of activated carbon cathode, Li-doped graphite anode and an organic electrolyte. Maximum voltage applicable to the cell becomes over 4.0V which is larger than that of the electric double-layer capacitor. As a result, discharged energy density of the cell becomes 4Wh/kg at a power density of 600W/kg.

Morimoto, T.; Tsushima, M.; Che, Y.

2000-07-01T23:59:59.000Z

298

PREPARATION AND CHARACTERIZATION OF SOLID ELECTROLYTES: FUEL CELL APPLICATIONS  

SciTech Connect (OSTI)

The intent of this project with Federal Energy Technology Center (FETC)/Morgantown Energy Technology Center (METC) is to develop research infrastructure conductive to Fuel Cell research at Southern University and A and M College, Baton Route. A state of the art research laboratory (James Hall No.123 and No.114) for energy conversion and storage devices was developed during this project duration. The Solid State Ionics laboratory is now fully equipped with materials research instruments: Arbin Battery Cycling and testing (8 channel) unit, Electrochemical Analyzer (EG and G PAR Model 273 and Solartron AC impedance analyzer), Fuel Cell test station (Globe Tech), Differential Scanning Calorimeter (DSC-10), Thermogravimetric Analyzer (TGA), Scanning Tunneling Microscope (STM), UV-VIS-NIR Absorption Spectrometer, Fluorescence Spectrometer, FT-IR Spectrometer, Extended X-ray Absorption Fine Structure (EXAFS) measurement capability at Center for Advanced Microstructure and Devices (CAMD- a multimillion dollar DOE facility), Glove Box, gas hood chamber, high temperature furnaces, hydraulic press and several high performance computers. IN particular, a high temperature furnace (Thermodyne 6000 furnace) and a high temperature oven were acquired through this project funds. The PI Dr. R Bobba has acquired additional funds from federal agencies include NSF-Academic Research Infrastructure program and other DOE sites. They have extensively used the multimillion dollar DOE facility ''Center'' for Advanced Microstructures and Devices (CAMD) for electrochemical research. The students were heavily involved in the experimental EXAFS measurements and made use of their DCM beamline for EXAFS research. The primary objective was to provide hands on experience to the selected African American undergraduate and graduate students in experimental energy research.The goal was to develop research skills and involve them in the Preparation and Characterization of Solid Electrolytes. Ionically conducting solid electrolytes are successfully used for battery, fuel cell and sensor applications.

Rambabu Bobba; Josef Hormes; T. Wang; Jaymes A. Baker; Donald G. Prier; Tommy Rockwood; Dinesha Hawkins; Saleem Hasan; V. Rayanki

1997-12-31T23:59:59.000Z

299

Solid polymer electrolyte composite membrane comprising laser micromachined porous support  

DOE Patents [OSTI]

A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 5 microns, are made by laser micromachining and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

Liu, Han (Waltham, MA); LaConti, Anthony B. (Lynnfield, MA); Mittelsteadt, Cortney K. (Natick, MA); McCallum, Thomas J. (Ashland, MA)

2011-01-11T23:59:59.000Z

300

Dynamical Fluctuating Charge Force Fields: The Aqueous Solvation of Amides  

E-Print Network [OSTI]

on the environment, is a convenient model for treating all of these effects: conformational changes, functional group/mol.3 The free energy difference between the two conformers in water,4,5 given by nuclear magnetic to the environment, is applied to the aqueous solvation of acetamide and trans- and cis- N-methylacetamide (NMA). Two

Berne, Bruce J.

Note: This page contains sample records for the topic "aqueous electrolyte modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Electrolyte matrix for molten carbonate fuel cells  

DOE Patents [OSTI]

A matrix for a carbonate electrolyte including a support material and an additive constituent having a relatively low melting temperature and a relatively high coefficient of thermal expansion. The additive constituent is from 3 to 45 weight percent of the matrix and is formed from raw particles whose diameter is in a range of 0.1 .mu.m to 20 .mu.m and whose aspect ratio is in a range of 1 to 50. High energy intensive milling is used to mix the support material and additive constituent during matrix formation. Also disclosed is the use of a further additive constituent comprising an alkaline earth containing material. The further additive is mixed with the support material using high energy intensive milling.

Huang, Chao M. (Danbury, CT); Yuh, Chao-Yi (New Milford, CT)

1999-01-01T23:59:59.000Z

302

Solid polymeric electrolytes for lithium batteries  

DOE Patents [OSTI]

Novel conductive polyanionic polymers and methods for their preparion are provided. The polyanionic polymers comprise repeating units of weakly-coordinating anionic groups chemically linked to polymer chains. The polymer chains in turn comprise repeating spacer groups. Spacer groups can be chosen to be of length and structure to impart desired electrochemical and physical properties to the polymers. Preferred embodiments are prepared from precursor polymers comprising the Lewis acid borate tri-coordinated to a selected ligand and repeating spacer groups to form repeating polymer chain units. These precursor polymers are reacted with a chosen Lewis base to form a polyanionic polymer comprising weakly coordinating anionic groups spaced at chosen intervals along the polymer chain. The polyanionic polymers exhibit high conductivity and physical properties which make them suitable as solid polymeric electrolytes in lithium batteries, especially secondary lithium batteries.

Angell, Charles A.; Xu, Wu; Sun, Xiaoguang

2006-03-14T23:59:59.000Z

303

Electrolyte matrix for molten carbonate fuel cells  

DOE Patents [OSTI]

A matrix is described for a carbonate electrolyte including a support material and an additive constituent having a relatively low melting temperature and a relatively high coefficient of thermal expansion. The additive constituent is from 3 to 45 weight percent of the matrix and is formed from raw particles whose diameter is in a range of 0.1 {micro}m to 20 {micro}m and whose aspect ratio is in a range of 1 to 50. High energy intensive milling is used to mix the support material and additive constituent during matrix formation. Also disclosed is the use of a further additive constituent comprising an alkaline earth containing material. The further additive is mixed with the support material using high energy intensive milling. 5 figs.

Huang, C.M.; Yuh, C.Y.

1999-02-09T23:59:59.000Z

304

Method of making a layered composite electrode/electrolyte  

DOE Patents [OSTI]

An electrode/electrolyte structure is prepared by a plurality of methods. An unsintered (possibly bisque fired) moderately catalytic electronically-conductive or homogeneous mixed ionic electronic conductive electrode material is deposited on a layer composed of a sintered or unsintered ionically-conductive electrolyte material prior to being sintered. A layer of particulate electrode material is deposited on an unsintered ("green") layer of electrolyte material and the electrode and electrolyte layers are sintered simultaneously, sometimes referred to as "co-firing," under conditions suitable to fully densify the electrolyte while the electrode retains porosity. Or, the layer of particulate electrode material is deposited on a previously sintered layer of electrolyte, and then sintered. Subsequently, a catalytic material is added to the electrode structure by infiltration of an electrolcatalyst precursor (e.g., a metal salt such as a transition metal nitrate). This may be followed by low temperature firing to convert the precursor to catalyst. The invention allows for an electrode with high electronic conductivity and sufficient catalytic activity to achieve high power density in an ionic (electrochemical) device such as fuel cells and electrolytic gas separation systems.

Visco, Steven J. (Berkeley, CA); Jacobson, Craig P. (El Cerrito, CA); DeJonghe, Lutgard C. (Lafayette, CA)

2005-01-25T23:59:59.000Z

305

Effects of O vacancies and N or Si substitutions on Li+ migration in Li3PO4 electrolytes  

E-Print Network [OSTI]

Effects of O vacancies and N or Si substitutions on Li+ migration in Li3PO4 electrolytes from first constructed realistic models of various types of isolated defects in crystalline Li3PO4 involving O vacancies on the production and migration of mobile Li ions. We find that mobile Li-ion vacancies are stabilized by removing

Holzwarth, Natalie

306

Electrowinning process with electrode compartment to avoid contamination of electrolyte  

DOE Patents [OSTI]

An electrolytic process and apparatus for reducing calcium oxide in a molten electrolyte of CaCl.sub.2 -CaF.sub.2 with a graphite anode in which particles or other contamination from the anode is restricted by the use of a porous barrier in the form of a basket surrounding the anode which may be removed from the electrolyte to burn the graphite particles, and wherein the calcium oxide feed is introduced to the anode compartment to increase the oxygen ion concentration at the anode.

Poa, Davis S. (Naperville, IL); Pierce, R. Dean (Naperville, IL); Mulcahey, Thomas P. (Downers Grove, IL); Johnson, Gerald K. (Downers Grove, IL)

1993-01-01T23:59:59.000Z

307

High temperature solid electrolyte fuel cell with ceramic electrodes  

DOE Patents [OSTI]

A solid oxide electrolyte fuel cell is described having a central electrolyte comprised of a HfO.sub.2 or ZrO.sub.2 ceramic stabilized and rendered ionically conductive by the addition of Ca, Mg, Y, La, Nd, Sm, Gd, Dy Er, or Yb. The electrolyte is sandwiched between porous electrodes of a HfO.sub.2 or ZrO.sub.2 ceramic stabilized by the addition of a rare earth and rendered electronically conductive by the addition of In.sub.2 O.sub.3. Alternatively, the anode electrode may be made of a metal such as Co, Ni, Ir Pt, or Pd.

Marchant, David D. (Richland, WA); Bates, J. Lambert (Richland, WA)

1984-01-01T23:59:59.000Z

308

Effect on the Pore-Size Dependence of an Organic Electrolyte Supercapacitor  

SciTech Connect (OSTI)

Organic electrolytes such as tetraethylammonium tetrafluoroborate dissolved in acetonitrile (TEA-BF{sub 4}/ACN) are widely used in commercial supercapacitors and academic research, but conflicting experimental results have been reported regarding the dependence of surface-area-normalized capacitance on the pore size. Here we show from a classical density functional theory the dependence of capacitance on the pore size from 0.5 to 3.0 nm for a model TEA-BF{sub 4}/ACN electrolyte. We find that the capacitance-pore size curve becomes roughly flat after the first peak around the ion diameter, and the peak capacitance is not significantly higher than the large-pore average. We attribute the invariance of capacitance with the pore size to the formation of an electric double-layer structure that consists of counterions and highly organized solvent molecules. This work highlights the role of the solvent molecules in modulating the capacitance and reconciles apparently conflicting experimental reports.

Jiang, Deen [ORNL; Jin, Zhehui [University of California, Riverside; Henderson, Douglous [Brigham Young University; Wu, Jianzhong [University of California, Riverside

2012-01-01T23:59:59.000Z

309

E-Print Network 3.0 - aluminum electrolytic capacitors Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

34 MMOODDUULLEE 1144 DDIISSCCRREETTEE CCOOMMPPOONNEENNTTSS Summary: include carbon film resistors, wirewound resistors, tantalum capacitors, aluminum electrolytic...

310

Uranyl fluoride luminescence in acidic aqueous solutions  

SciTech Connect (OSTI)

Luminescence emission spectra and decay rates are reported for uranyl species in acidic aqueous solutions containing HF or added NaF. The longest luminescence lifetime, 0.269 {+-} 0.006 ms, was observed from uranyl in 1 M HF + 1 M HClO{sub 4} at 296 K and decreased with increasing temperature. Based on a luminescence dynamics model that assumes equilibrium among electronically excited uranyl fluoride species and free fluoride ion, this long lived uranyl luminescence in aqueous solution is attributed primarily to UO{sub 2}F{sub 2}. Studies on the effect of added LiNO{sub 3} or Na{sub 2}WO{sub 4}{center_dot}2H{sub 2}O showed relatively weak quenching of uranyl fluoride luminescence which suggests that high sensitivity determination of the UF{sub 6} content of WF{sub 6} gas should be feasible via uranyl luminescence analysis of hydrolyzed gas samples of impure WF{sub 6}.

Beitz, J.V.; Williams, C.W. [Argonne National Lab., IL (United States). Chemistry Div.

1996-08-01T23:59:59.000Z

311

Thermodynamic Phase And Chemical Equilibrium At 0-110°C For The H+-K+-Na+-Cl--H2O System Up To 16 Molal And The HNO3-H2O System Up To 20 Molal Using An Association-Based Pitzer Model Compatible With ASPEN Plus  

SciTech Connect (OSTI)

A status is presented of the parameterization during FY2003 of an association-based Pitzer model to simulate chemical and phase equilibria of acid-chloride-nitrate-mercury aqueous electrolyte systems at 0-100° C within the industry-standard process simulator, ASPEN Plus. Compatibility with ASPEN Plus requires that the Pitzer model used be limited to the third virial coefficient and have the values of b and a1 as originally proposed by Pitzer. Two aqueous models for 0-110° C at atmospheric pressure were parameterized in FY03. The model for the aqueous H+-K+-Na+-Cl- system is applicable for 0-16 molal, and the HNO3-H2O for 0-20 molal. An association-based Pitzer activity coefficient model is combined with Henry.s law to predict activity/osmotic coefficient and VLE. The chloride model also predicts KCl and NaCl solubility, while the nitric acid model has the unique capability of predicting extent of dissociation with an average absolute deviation of 1.43%. The association-based approach presented here extends the utility of the molality-based Pitzer model past 6 molal to predict activity/osmotic coefficients up to 16-20 molal. The association-based approach offers the additional benefits of predicting extent of dissociation and of allowing the Pitzer model to be fully utilized in commercial simulators, such as ASPEN Plus, that require accounting for association to implement Henry’s law. The Pitzer models presented here provide the chemical process simulation engineer with a superior alternative to the Electrolyte NRTL model that can easily be used in ASPEN Plus.

Todd T. Nichols; Dean D. Taylor

2003-09-01T23:59:59.000Z

312

Thermodynamic Phase And Chemical Equilibrium At 0-110 C For The H+-K+-Na+-Cl--H2O System Up To 16 Molal And The HNO3-H2O System Up To 20 Molal Using An Association-Based Pitzer Model Compatible With ASPEN Plus  

SciTech Connect (OSTI)

A status is presented of the parameterization during FY2003 of an association-based Pitzer model to simulate chemical and phase equilibria of acid-chloride-nitrate-mercury aqueous electrolyte systems at 0-100 C within the industry-standard process simulator, ASPEN Plus. Compatibility with ASPEN Plus requires that the Pitzer model used be limited to the third virial coefficient and have the values of b and a1 as originally proposed by Pitzer. Two aqueous models for 0-110 C at atmospheric pressure were parameterized in FY03. The model for the aqueous H+-K+-Na+-Cl- system is applicable for 0-16 molal, and the HNO3-H2O for 0-20 molal. An association-based Pitzer activity coefficient model is combined with Henry's law to predict activity/osmotic coefficient and VLE. The chloride model also predicts KCl and NaCl solubility, while the nitric acid model has the unique capability of predicting extent of dissociation with an average absolute deviation of 1.43%. The association-based approach presented here extends the utility of the molality-based Pitzer model past 6 molal to predict activity/osmotic coefficients up to 16-20 molal. The association-based approach offers the additional benefits of predicting extent of dissociation and of allowing the Pitzer model to be fully utilized in commercial simulators, such as ASPEN Plus, that require accounting for association to implement Henry's law. The Pitzer models presented here provide the chemical process simulation engineer with a superior alternative to the Electrolyte NRTL model that can easily be used in ASPEN Plus.

Nichols,T.T.; Taylor,D.D.

2003-09-26T23:59:59.000Z

313

Solid-state Graft Copolymer Electrolytes for Lithium Battery Applications  

E-Print Network [OSTI]

Battery safety has been a very important research area over the past decade. Commercially available lithium ion batteries employ low flash point (<80 °C), flammable, and volatile organic electrolytes. These organic based ...

Hu, Qichao

314

Solid electrolyte material manufacturable by polymer processing methods  

DOE Patents [OSTI]

The present invention relates generally to electrolyte materials. According to an embodiment, the present invention provides for a solid polymer electrolyte material that is ionically conductive, mechanically robust, and can be formed into desirable shapes using conventional polymer processing methods. An exemplary polymer electrolyte material has an elastic modulus in excess of 1.times.10.sup.6 Pa at 90 degrees C. and is characterized by an ionic conductivity of at least 1.times.10.sup.-5 Scm-1 at 90 degrees C. An exemplary material can be characterized by a two domain or three domain material system. An exemplary material can include material components made of diblock polymers or triblock polymers. Many uses are contemplated for the solid polymer electrolyte materials. For example, the present invention can be applied to improve Li-based batteries by means of enabling higher energy density, better thermal and environmental stability, lower rates of self-discharge, enhanced safety, lower manufacturing costs, and novel form factors.

Singh, Mohit; Gur, Ilan; Eitouni, Hany Basam; Balsara, Nitash Pervez

2012-09-18T23:59:59.000Z

315

Lithium sulfide compositions for battery electrolyte and battery electrode coatings  

SciTech Connect (OSTI)

Method of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electrolytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

Liang, Chengdu; Liu, Zengcai; Fu, Wujun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

2014-10-28T23:59:59.000Z

316

High temperature solid electrolyte fuel cell configurations and interconnections  

DOE Patents [OSTI]

High temperature fuel cell configurations and interconnections are made including annular cells having a solid electrolyte sandwiched between thin film electrodes. The cells are electrically interconnected along an elongated axial outer surface.

Isenberg, Arnold O. (Forest Hills, PA)

1984-01-01T23:59:59.000Z

317

Ab-initio simulation of novel solid electrolytes  

E-Print Network [OSTI]

All solid-state batteries may be a solution to some of the problems facing conventional organic electrolytes in Li and Na-ion batteries, but typically conductivities are very low. Reports of fast lithium conduction in Li ...

Richards, William D. (William Davidson)

2014-01-01T23:59:59.000Z

318

Effects of Nonaqueous Electrolytes on Primary Li-Air Batteries  

SciTech Connect (OSTI)

The effects of nonaqueous electrolytes on the performance of primary Li-air batteries operated in dry air environment have been investigated. Organic solvents with low volatility and low moisture absorption are necessary to minimize the change of electrolyte compositions and the reaction between Li anode and water during the discharge process. The polarity of aprotic solvents outweighs the viscosity, ion conductivity and oxygen solubility on the performance of Li-air batteries once these latter properties attain certain reasonable level, because the solvent polarity significantly affects the number of tri-phase regions formed by oxygen, electrolyte, and active carbons (with catalyst) in the air electrode. The most feasible electrolyte formulation is the system of LiTFSI in PC/EC mixtures, whose performance is relatively insensitive to PC/EC ratio and salt concentration. The quantity of such electrolyte added to a Li-air cell has notably effects on the discharge performance of the Li-air battery as well, and a maximum in capacity is observed as a function of electrolyte amount. The coordination effect from the additives or co-solvents [tris(pentafluorophenyl)borane and crown ethers in this study] also greatly affects the discharge performance of a Li-air battery.

Xu, Wu; Xiao, Jie; Wang, Deyu; Zhang, Jian; Zhang, Jiguang

2010-06-14T23:59:59.000Z

319

Refractive indexes of aqueous LiBr solutions  

SciTech Connect (OSTI)

This paper reports that the refractive indexes of water-lithium bromide solutions were measured in the temperature range from 5.0 to 80.0 {degrees}C and in the range of salt concentrations from 0.00 (deionized water) to 58.90 mass %. An electrolyte solution of LlBr in water was chosen for study because of its wide use as an absorption chiller fluid. The concentration of LlBr aqueous solution was determined by argentimetric titration using tetrabromofluoresceln (Eosin) as an adsorption indicator and was checked at a few discrete concentrations (10.06, 20.30, and 58.90 mass % LlBr) against the values obtained by gravimetric analysis. The deviation between values obtained using these two techniques was found to be less than 0.27 mass %. The refractive indexes are shown to represent a reliable and convenient way of measuring the concentration of salt (or water) in LlBr solutions with accuracies of {plus minus}0.3 mass % salt.

Zaltash, A.; Ally, M.R. (Energy Div., Oak Ridge National Lab., Oak Ridge, TN (US))

1992-01-01T23:59:59.000Z

320

Cu--Ni--Fe anode for use in aluminum producing electrolytic cell  

DOE Patents [OSTI]

A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte, the method comprising the steps of providing a molten salt electrolyte at a temperature of less than 900.degree. C. having alumina dissolved therein in an electrolytic cell having a liner for containing the electrolyte, the liner having a bottom and walls extending upwardly from said bottom. A plurality of non-consumable Cu--Ni--Fe anodes and cathodes are disposed in a vertical direction in the electrolyte, the cathodes having a plate configuration and the anodes having a flat configuration to compliment the cathodes. The anodes contain apertures therethrough to permit flow of electrolyte through the apertures to provide alumina-enriched electrolyte between the anodes and the cathodes. Electrical current is passed through the anodes and through the electrolyte to the cathodes, depositing aluminum at the cathodes and producing gas at the anodes.

Bergsma, S. Craig; Brown, Craig W.; Bradford, Donald R; Barnett, Robert J.; Mezner, Michael B.

2006-07-18T23:59:59.000Z

Note: This page contains sample records for the topic "aqueous electrolyte modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Aqueous Enzymatic Extraction Of Wheat Germ Oil.  

E-Print Network [OSTI]

??The objective of this study is to investigate the aqueous enzymatic extraction of wheat germ oil. Four enzymes (Viscozyme L, Multifect CX 13l, Multifect CX… (more)

Xie, Meizhen

2009-01-01T23:59:59.000Z

322

Inverse hydrochemical models of aqueous extracts tests  

E-Print Network [OSTI]

Samper, J. , Yang, C. , Montenegro, L. , 2003. Users ManualSamper, J. , Vázquez, A. , Montenegro, L. , 2005. Inverse563. Samper, J. , Zhang, G. , Montenegro, L. , 2006. Coupled

Zheng, L.

2010-01-01T23:59:59.000Z

323

Dense gas dispersion modeling for aqueous releases  

E-Print Network [OSTI]

, and the intention of this work is to have a methodology flexible enough to be applied in very general cases. Wilson, NRTL, and UNIQUAC were also considered. Unlike Wilson's equation, NRTL and UNIQUAC equations are applicable to 25 both vapor-liquid and liquid...-liquid equilibria. While UNIQUAC is mathematically more complex than NRTL, it has four advantages; (1) it has only two adjustable parameters, (2) UNIQUAC's parameters have a smaller dependence on temperature, (3) UNIQUAC's parameters are more widely available, (4...

Lara, Armando

1999-01-01T23:59:59.000Z

324

E-Print Network 3.0 - aqueous processing material Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

aqueous humor. Collection and Processing of Aqueous Humor Aqueous humor... ... Source: Johnson, Mark - Biomedical Engineering Department, Northwestern University Collection:...

325

Development of three-dimensional site-site Smoluchowski-Vlasov equation and application to electrolyte solutions  

SciTech Connect (OSTI)

Site-site Smoluchowski-Vlasov (SSSV) equation enables us to directly calculate van Hove time correlation function, which describes diffusion process in molecular liquids. Recently, the theory had been extended to treat solute-solvent system by Iida and Sato [J. Chem. Phys. 137, 034506 (2012)]. Because the original framework of SSSV equation is based on conventional pair correlation function, time evolution of system is expressed in terms of one-dimensional solvation structure. Here, we propose a new SSSV equation to calculate time evolution of solvation structure in three-dimensional space. The proposed theory was applied to analyze diffusion processes in 1M NaCl aqueous solution and in lithium ion battery electrolyte solution. The results demonstrate that these processes are properly described with the theory, and the computed van Hove functions are in good agreement with those in previous works.

Kasahara, Kento [Department of Molecular Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); Sato, Hirofumi, E-mail: hirofumi@moleng.kyoto-u.ac.jp [Department of Molecular Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan)

2014-06-28T23:59:59.000Z

326

Solid polymer electrolyte composite membrane comprising plasma etched porous support  

DOE Patents [OSTI]

A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 0.1 to 5 microns, are made by plasma etching and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

Liu, Han (Waltham, MA); LaConti, Anthony B. (Lynnfield, MA)

2010-10-05T23:59:59.000Z

327

Bath for electrolytic reduction of alumina and method therefor  

DOE Patents [OSTI]

An electrolytic bath for use during the electrolytic reduction of alumina to aluminum. The bath comprises a molten electrolyte having the following ingredients: (a) AlF.sub.3 and at least one salt selected from the group consisting of NaF, KF, and LiF; and (b) about 0.004 wt. % to about 0.2 wt. %, based on total weight of the molten electrolyte, of at least one transition metal or at least one compound of the metal or both. The compound may be, for example, a fluoride, oxide, or carbonate. The metal can be nickel, iron, copper, cobalt, or molybdenum. The bath can be employed in a combination that includes a vessel for containing the bath and at least one non-consumable anode and at least one dimensionally stable cathode in the bath. Employing the bath of the present invention during electrolytic reduction of alumina to aluminum can improve the wetting of aluminum on a cathode by reducing or eliminating the formation of non-metallic deposits on the cathode. Removing sulfur from the bath can also minimize cathode deposits. Aluminum formed on the cathode can be removed directly from the cathode.

Brown, Craig W. (Seattle, WA); Brooks, Richard J. (Seattle, WA); Frizzle, Patrick B. (Lynnwood, WA); Juric, Drago D. (Bulleen, AU)

2002-11-26T23:59:59.000Z

328

Adsorption analysis of ammonia in an aqueous solution  

SciTech Connect (OSTI)

An analysis is carried out to determine the effects of the diffusional resistance on the rate of the adsorption of ammonia in an aqueous solution. A performance prediction model is developed to calculate the local rate of heat and mass transfer, including physical and thermodynamic property calculations of the mixture. An algorithm is developed for calculating the interfacial conditions. The local heat- and mass-transfer calculation is then incorporated into the performance prediction method for adsorption for a given geometry.

Arman, B.; Panchal, C.B.

1993-08-01T23:59:59.000Z

329

Lithium sulfide compositions for battery electrolyte and battery electrode coatings  

SciTech Connect (OSTI)

Methods of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electroytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one or .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

Liang, Chengdu; Liu, Zengcai; Fu, Wunjun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

2013-12-03T23:59:59.000Z

330

Electrolytic production of neodymium without perfluorinated carbon compounds on the offgases  

DOE Patents [OSTI]

A method is described for producing neodymium in an electrolytic cell without formation of perfluorinated carbon gases (PFCs), the method comprising the steps of providing an electrolyte in the electrolytic cell and providing an anode in an anode region of the electrolyte and providing a cathode in a cathode region of the electrolytic cell. Dissolving an oxygen-containing neodymium compound in the electrolyte in the anode region and maintaining a more intense electrolyte circulation in the anode region than in the cathode region. Passing an electrolytic current between said anode and said cathode and depositing neodymium metal at the cathode, preventing the formation of perfluorinated carbon gases by limiting anode over voltage. 4 figs.

Keller, R.; Larimer, K.T.

1998-09-22T23:59:59.000Z

331

Anodic polymerization of vinyl ethylene carbonate in Li-Ion battery electrolyte  

E-Print Network [OSTI]

Ethylene Carbonate in Li-Ion Battery Electrolyte Guoyingof a commercial Li-ion battery electrolyte containing 2 %are an important part of Li-ion battery technology yet their

Chen, Guoying; Zhuang, Guorong V.; Richardson, Thomas J.; Gao, Liu; Ross Jr., Philip N.

2005-01-01T23:59:59.000Z

332

Fuel cell system with separating structure bonded to electrolyte  

DOE Patents [OSTI]

A fuel cell assembly comprises a separating structure configured for separating a first reactant and a second reactant wherein the separating structure has an opening therein. The fuel cell assembly further comprises a fuel cell comprising a first electrode, a second electrode, and an electrolyte interposed between the first and second electrodes, and a passage configured to introduce the second reactant to the second electrode. The electrolyte is bonded to the separating structure with the first electrode being situated within the opening, and the second electrode being situated within the passage.

Bourgeois, Richard Scott (Albany, NY); Gudlavalleti, Sauri (Albany, NY); Quek, Shu Ching (Clifton Park, NY); Hasz, Wayne Charles (Pownal, VT); Powers, James Daniel (Santa Monica, CA)

2010-09-28T23:59:59.000Z

333

All-solid-state proton battery using gel polymer electrolyte  

SciTech Connect (OSTI)

A proton conducting gel polymer electrolyte system; PMMA+NH{sub 4}SCN+EC/PC, has been prepared. The highest ionic conductivity obtained from the system is 2.5 × 10?4 S cm{sup ?1}. The optimized composition of the gel electrolyte has been used to fabricate a proton battery with Zn/ZnSO{sub 4}?7H{sub 2}O anode and MnO{sub 2} cathode. The open circuit voltage of the battery is 1.4 V and the highest energy density is 5.7 W h kg?1 for low current drain.

Mishra, Kuldeep, E-mail: mishkuldeep@gmail.com [Department of Applied Science and Humanities, ABES Engineering College, Ghaziabad-201009, India and Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, Noida-201307 (India); Pundir, S. S.; Rai, D. K. [Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, Noida-201307 (India)

2014-04-24T23:59:59.000Z

334

Process to remove rare earth from IFR electrolyte  

DOE Patents [OSTI]

The invention is a process for the removal of rare earths from molten chloride electrolyte salts used in the reprocessing of integrated fast reactor fuel (IFR). The process can be used either continuously during normal operation of the electrorefiner or as a batch process. The process consists of first separating the actinide values from the salt before purification by removal of the rare earths. After replacement of the actinides removed in the first step, the now-purified salt electrolyte has the same uranium and plutonium concentration and ratio as when the salt was removed from the electrorefiner. 1 fig.

Ackerman, J.P.; Johnson, T.R.

1994-08-09T23:59:59.000Z

335

Decoupling of Ionic Trasport from Segmental Relaxation in Polymer Electrolytes  

SciTech Connect (OSTI)

We present detailed studies of the relationship between ionic conductivity and segmental relaxation in polymer electrolytes. The analysis shows that the ionic conductivity can be decoupled from segmental dynamics and the strength of the decoupling correlates with the fragility but not with the glass transition temperature. These results call for a revision of the current picture of ionic transport in polymer electrolytes. We relate the observed decoupling phenomenon to frustration in packing of rigid polymers, where the loose local structure is also responsible for the increase in their fragility.

Wang, Yangyang [ORNL; Agapov, Alexander L [ORNL; Fan, Fei [ORNL; Hong, Kunlun [ORNL; Yu, Xiang [ORNL; Mays, Jimmy [ORNL; Sokolov, Alexei P [ORNL

2012-01-01T23:59:59.000Z

336

Process to remove rare earth from IFR electrolyte  

DOE Patents [OSTI]

The invention is a process for the removal of rare earths from molten chloride electrolyte salts used in the reprocessing of integrated fast reactor fuel (IFR). The process can be used either continuously during normal operation of the electrorefiner or as a batch process. The process consists of first separating the actinide values from the salt before purification by removal of the rare earths. After replacement of the actinides removed in the first step, the now-purified salt electrolyte has the same uranium and plutonium concentration and ratio as when the salt was removed from the electrorefiner.

Ackerman, J.P.; Johnson, T.R.

1992-01-01T23:59:59.000Z

337

Behavior of lithium alloy electrodes in organic electrolyte solutions  

SciTech Connect (OSTI)

The electrochemical behavior of lithium (Li) alloy electrodes, Li-aluminum (Al) and Li-tin (Sn), has been investigated in propylene carbonate (PC)-based electrolyte containing lithium perchlorate (LiClO{sub 4}). The content of Al or Sn in the Li-based alloy was in the range of 0.1 to 2.0 wt.%. The interfacial behavior between the alloy electrode/electrolyte was discussed on the basis of the results of an ac impedance analysis and charge-discharge cycling tests.

Matsuda, Yoshiharu; Ishikawa, Masashi; Morita, Masayuki; Otani, Kenya [Yamaguchi Univ., Ube (Japan)

1995-07-01T23:59:59.000Z

338

Process to remove rare earth from IFR electrolyte  

DOE Patents [OSTI]

The invention is a process for the removal of rare earths from molten chloride electrolyte salts used in the reprocessing of integrated fast reactor fuel (IFR). The process can be used either continuously during normal operation of the electrorefiner or as a batch process. The process consists of first separating the actinide values from the salt before purification by removal of the rare earths. After replacement of the actinides removed in the first step, the now-purified salt electrolyte has the same uranium and plutonium concentration and ratio as when the salt was removed from the electrorefiner.

Ackerman, John P. (Downers Grove, IL); Johnson, Terry R. (Wheaton, IL)

1994-01-01T23:59:59.000Z

339

Aqueous NaCl and CsCl Solutions Confined in Crystalline Slit-Shaped Silica Nanopores of Varying Degrees of Protonation  

SciTech Connect (OSTI)

All-atom molecular dynamics simulations were conducted to study the dynamics of aqueous electrolyte solutions confined in slit-shaped silica nanopores of various degrees of protonation. Five degrees of protonation were prepared by randomly removing surface hydrogen atoms from fully protonated crystalline silica surfaces. Aqueous electrolyte solutions containing NaCl or CsCl salt were simulated at ambient conditions. In all cases, the ionic concentration was 1 M. The results were quantified in terms of atomic density distributions within the pores, and the self-diffusion coefficient along the direction parallel to the pore surface. We found evidence for ion-specific properties that depend on ion surface, water ion, and only in some cases ion ion correlations. The degree of protonation strongly affects the structure, distribution, and the dynamic behavior of confined water and electrolytes. Cl ions adsorb on the surface at large degrees of protonation, and their behavior does not depend significantly on the cation type (either Na+ or Cs+ ions are present in the systems considered). The cations show significant ion-specific behavior. Na+ ions occupy different positions within the pore as the degree of protonation changes, while Cs+ ions mainly remain near the pore center at all conditions considered. For a given degree of protonation, the planar self-diffusion coefficient of Cs+ is always greater than that of Na+ ions. The results are useful for better understanding transport under confinement, including brine behavior in the subsurface, with important applications such as environmental remediation.

Ho, Thomas [ORNL; Argyris, Dr. Dimitrios [University of Oklahoma; Cole, David [Ohio State University; Striolo, Alberto [Oklahoma University

2012-01-01T23:59:59.000Z

340

Structure, Kinetics, and Thermodynamics of the Aqueous Uranyl...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Kinetics, and Thermodynamics of the Aqueous Uranyl(VI) Cation. Structure, Kinetics, and Thermodynamics of the Aqueous Uranyl(VI) Cation. Abstract: Molecular simulation techniques...

Note: This page contains sample records for the topic "aqueous electrolyte modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Coordination and Hydrolysis of Plutonium Ions in Aqueous Solution...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrolysis of Plutonium Ions in Aqueous Solution using Car-Parrinello Molecular Dynamics Free Energy Coordination and Hydrolysis of Plutonium Ions in Aqueous Solution using...

342

Anomalous diffusivity and electric conductivity for low concentration electrolytes in nanopores S. K. Lai1,  

E-Print Network [OSTI]

in the properties of confined electrolytes has been directed to finding an optimized performance of fuel cells

343

Densities and refractive indexes of aqueous (Li,K,Na) NO[sub 3] mixtures  

SciTech Connect (OSTI)

This paper describes experimental procedures and techniques for measuring densities and/or refractive indexes of aqueous salt solutions between 25 and 200 [degrees]C and with 18.90-90.50 wt % mixed salt (LINO[sub 3], KNO[sub 3], and NaNO[sub 3]). An electrolyte solution of (LI, K, Na) NO[sub 3] slats in water was chosen for study because of its recent development as a potential high-temperature heat pump fluid, but any other appropriate fluid may be accommodated for study in the apparatus. The densities and refractive indexes are shown to represent a convenient way to measuring the concentration of salt (or water), and accuracies of [plus minus]0.8 and [plus minus]0.3 wt % total mixed salt were achieved by using the above two methods, respectively.

Ally, M.R.; Zaltash, A.; Linkous, R.L. (Oak Ridge National Lab., TN (United States). Energy Div.); Klatt, L.N. (Oak Ridge National Lab., TN (United States). Analytical Chemistry Div.)

1991-04-01T23:59:59.000Z

344

Modeling and simulation for a PEM fuel cell with catalyst layers in finite thickness.  

E-Print Network [OSTI]

??A detailed non-isothermal computational fluid dynamics (CFD) model for proton electrolyte membrane (PEM) fuel cells is developed in this thesis. This model consists of the… (more)

Yin, Jianghui (Author)

2007-01-01T23:59:59.000Z

345

Three steps in the anode reaction of the polymer electrolyte membrane fuel cell. Effect of CO  

E-Print Network [OSTI]

Three steps in the anode reaction of the polymer electrolyte membrane fuel cell. Effect of CO Anne in the polymer electrolyte membrane fuel cell (PEMFC) using electrochemical impedance spectroscopy (EIS mechanism 1. Introduction In the polymer electrolyte membrane fuel cell (PEMFC), the largest overpotential

Kjelstrup, Signe

346

First-principles simulations of extended structures in the lithium phosphorous oxynitride electrolytes  

E-Print Network [OSTI]

electrolytes The structure of thin film battery2 Solid state electrolytes that are physically and chemically+xPO4-yNz with x = 3z -2y has been developed as a solid state electrolyte for Li ion batteries., J. of Solid State Chemistry 115, 313 (1995). 2. http://www.ms.ornl.gov/researchgroups/Functional/Battery

Holzwarth, Natalie

347

ELSEVIER Solid State Ionics 94 (1997) 17-25 Ceramic solid electrolytes  

E-Print Network [OSTI]

ELSEVIER Solid State Ionics 94 (1997) 17-25 SOLID STATE IoMcs Ceramic solid electrolytes John B electrolytes are best suited for solid reactants, as are found in most battery systems. Ceramic solid 78712-106.3. USA Abstract Strategies for the design of ceramic solid electrolytes are reviewed. Problems

Gleixner, Stacy

348

Carbonate fuel cell and components thereof for in-situ delayed addition of carbonate electrolyte  

DOE Patents [OSTI]

An apparatus and method in which a delayed carbonate electrolyte is stored in the storage areas of a non-electrolyte matrix fuel cell component and is of a preselected content so as to obtain a delayed time release of the electrolyte in the storage areas in the operating temperature range of the fuel cell.

Johnsen, Richard (Waterbury, CT); Yuh, Chao-Yi (New Milford, CT); Farooque, Mohammad (Danbury, CT)

2011-05-10T23:59:59.000Z

349

Molecular Simulations of Aqueous Electrolyte Solubility: 1. The Expanded-Ensemble Osmotic Molecular Dynamics Method for the Solution Phase  

E-Print Network [OSTI]

+, and Cl-); undissociated molecular units (HgCl2) are the predominant solution solute species.1 such as mercury(II) chloride (HgCl2), only a small fraction of the atoms dissociate into free ions (HgCl+, Hg2 Dynamics Method for the Solution Phase Martin Li´sal,*,, William R. Smith,§ and Jiri´ Kolafa| E. Ha

Lisal, Martin

350

Water Visualization and Flooding in Polymer Electrolyte Membrane Fuel Cells  

E-Print Network [OSTI]

Water Visualization and Flooding in Polymer Electrolyte Membrane Fuel Cells Brian Holsclaw West- 2H2O e- e- e- e- e- H+ H+ H+ Membrane + Schematic of a PEMFC Operation #12;PFR PEM Fuel Cell Plug for membrane Two-phase flow in channels #12;CSTR PEM Fuel Cell Continuous Stirred-Tank Reactor (CSTR) "Perfect

Petta, Jason

351

Membranes and separators for flowing electrolyte batteries-a review  

SciTech Connect (OSTI)

Flowing electrolyte batteries are rechargeable electrochemical storage devices in which externally stored electrolytes are circulated through the cell stack during charge or discharge. The potential advantages that flow batteries offer compared to other secondary batteries include: 1) ease of thermal and electrolyte management, 2) simple electrochemistry, 3) deep cycling capability, and 4) minimal loss of capacity with cycling. However, flow batteries are more complex than other secondary batteries and consequently may cost more and may be less reliable. Flow batteries are being developed for utility load leveling, electric vehicles, solar photovoltaic and wind turbine application. The status of flow batteries has recently been reviewed by Clark et al. The flowing electrolyte batteries place rigorous demands on the performance of separators and membranes. The operating characteristics of the iron/chromium redox battery were changed in order to accommodate the limitations in membrane performance. Low cost alternatives to the presently used membrane must be found before the zinc/ferricyanide battery can be economically feasible. The zinc/bromine battery's efficiency could be improved if a suitably selective membrane were available. It is anticipated that better and less costly membranes to meet these needs will be developed as more is learned about their preparation and performance.

Arnold, C.; Assink, R.A.

1983-01-01T23:59:59.000Z

352

Coated powder for electrolyte matrix for carbonate fuel cell  

DOE Patents [OSTI]

A plurality of electrolyte carbonate-coated ceramic particle which does not differ significantly in size from that of the ceramic particle and wherein no significant portion of the ceramic particle is exposed is fabricated into a porous tape comprised of said coated-ceramic particles bonded together by the coating for use in a molten carbonate fuel cell.

Iacovangelo, Charles D. (Schenectady, NY); Browall, Kenneth W. (Schenectady, NY)

1985-01-01T23:59:59.000Z

353

Design and optimization of polymer electrolyte membrane (PEM) fuel cells  

E-Print Network [OSTI]

Design and optimization of polymer electrolyte membrane (PEM) fuel cells M. Grujicic* , K optimization algorithm to determine an optimum design of the fuel cell with respect to the operation difference has the largest effect on the predicted polarization curve of the fuel cell. However, the optimal

Grujicic, Mica

354

Electrospun nanocomposite fibrous polymer electrolyte for secondary lithium battery applications  

SciTech Connect (OSTI)

Hybrid nanocomposite [poly(vinylidene fluoride -co- hexafluoropropylene) (PVdF-co-HFP)/magnesium aluminate (MgAl{sub 2}O{sub 4})] fibrous polymer membranes were prepared by electrospinning method. The prepared pure and nanocomposite fibrous polymer electrolyte membranes were soaked into the liquid electrolyte 1M LiPF{sub 6} in EC: DEC (1:1,v/v). XRD and SEM are used to study the structural and morphological studies of nanocomposite electrospun fibrous polymer membranes. The nanocomposite fibrous polymer electrolyte membrane with 5 wt.% of MgAl{sub 2}O{sub 4} exhibits high ionic conductivity of 2.80 × 10{sup ?3} S/cm at room temperature. The charge-discharge capacity of Li/LiCoO{sub 2} coin cells composed of the newly prepared nanocomposite [(16 wt.%) PVdF-co-HFP+(5 wt.%) MgAl{sub 2}O{sub 4}] fibrous polymer electrolyte membrane was also studied and compared with commercial Celgard separator.

Padmaraj, O.; Rao, B. Nageswara; Jena, Paramananda; Satyanarayana, N., E-mail: nallanis2011@gmail.com [Department of Physics, Pondicherry University, Pondicherry-605014 (India); Venkateswarlu, M. [R and D, Amaraja batteries, Thirupathi-517501 (India)

2014-04-24T23:59:59.000Z

355

Water Management in Polymer Electrolyte Membrane (PEM) Fuel Cells  

E-Print Network [OSTI]

Water Management in Polymer Electrolyte Membrane (PEM) Fuel Cells Catherine Chan & Lauren Isbell objectives Important variables that lead to results Conclusion #12;Basic Operation of a PEM Fuel Cell fuel cell? A flow channel? The importance of water management Experimental setup and methods Project

Petta, Jason

356

Integrated photoelectrochemical cell and system having a liquid electrolyte  

DOE Patents [OSTI]

An integrated photoelectrochemical (PEC) cell generates hydrogen and oxygen from water while being illuminated with radiation. The PEC cell employs a liquid electrolyte, a multi-junction photovoltaic electrode, and a thin ion-exchange membrane. A PEC system and a method of making such PEC cell and PEC system are also disclosed.

Deng, Xunming (Sylvania, OH); Xu, Liwei (Sylvania, OH)

2010-07-06T23:59:59.000Z

357

Electrolytic production of high purity aluminum using ceramic inert anodes  

DOE Patents [OSTI]

A method of producing commercial purity aluminum in an electrolytic reduction cell comprising ceramic inert anodes is disclosed. The method produces aluminum having acceptable levels of Fe, Cu and Ni impurities. The ceramic inert anodes used in the process may comprise oxides containing Fe and Ni, as well as other oxides, metals and/or dopants.

Ray, Siba P. (Murrysville, PA); Liu, Xinghua (Monroeville, PA); Weirauch, Douglas A. (Murrysville, PA); DiMilia, Robert A. (Baton Rouge, LA); Dynys, Joseph M. (New Kensington, PA); Phelps, Frankie E. (Apollo, PA); LaCamera, Alfred F. (Trafford, PA)

2002-01-01T23:59:59.000Z

358

Electrolytic production of high purity aluminum using inert anodes  

DOE Patents [OSTI]

A method of producing commercial purity aluminum in an electrolytic reduction cell comprising inert anodes is disclosed. The method produces aluminum having acceptable levels of Fe, Cu and Ni impurities. The inert anodes used in the process preferably comprise a cermet material comprising ceramic oxide phase portions and metal phase portions.

Ray, Siba P. (Murrysville, PA); Liu, Xinghua (Monroeville, PA); Weirauch, Jr., Douglas A. (Murrysville, PA)

2001-01-01T23:59:59.000Z

359

EXPERIMENTAL STUDY OF ELECTROLYTE DEPENDENCE OF AC ELECTROOSMOTIC PUMPS  

E-Print Network [OSTI]

EXPERIMENTAL STUDY OF ELECTROLYTE DEPENDENCE OF AC ELECTROOSMOTIC PUMPS Kapil Subramanian1 , John Abstract: Recent studies indicate increased efficiency of microfluidic ac electro-osmotic pumps of ac electroosmosis in microchannels on solution chemistry for the new fast aceo stepped pumps

Bazant, Martin Z.

360

Purification of aqueous cellulose ethers  

SciTech Connect (OSTI)

Manufacture of cellulose ethers usually involves high amounts of salt by-products. For application of the product, salt must be removed. In this work, we have studied the injection of high-pressure CO{sub 2} into an aqueous polymer-salt solution; we find that upon addition of isopropanol in addition to CO{sub 2}, the solution separates into two phases. One phase is rich in polymer and water, and the other phase contains mostly isopropanol, water and CO{sub 2}. The salt distributes between the two phases, thereby offering interesting possibilities for development of a new purification process for water-soluble polymers. This work presents experimental phase-equilibrium data for hydroxyethyl cellulose and sodium carboxymethyl cellulose with sodium acetate and potassium sulfate, respectively, in the region 40{degree}C and 30 to 80 bar. Based on these data, we suggest a process for the manufacture and purification of water-soluble cellulose ethers. 15 refs., 14 figs., 9 tabs.

Bartscherer, K.A.; de Pablo, J.J.; Bonnin, M.C.; Prausnitz, J.M.

1990-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "aqueous electrolyte modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Method for processing aqueous wastes  

DOE Patents [OSTI]

A method is presented for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply. 4 figures.

Pickett, J.B.; Martin, H.L.; Langton, C.A.; Harley, W.W.

1993-12-28T23:59:59.000Z

362

Method for processing aqueous wastes  

DOE Patents [OSTI]

A method for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply.

Pickett, John B. (3922 Wood Valley Dr., Aiken, SC 29803); Martin, Hollis L. (Rt. 1, Box 188KB, McCormick, SC 29835); Langton, Christine A. (455 Sumter St. SE., Aiken, SC 29801); Harley, Willie W. (110 Fairchild St., Batesburg, SC 29006)

1993-01-01T23:59:59.000Z

363

Concentrating aqueous acetate solutions with tertiary amines  

E-Print Network [OSTI]

Water may be extracted from aqueous calcium acetate or sodium acetate solutions using low miscibility, low molecular weight tertiary amines, e.g. triethylamine (TEA) and N,N- dietliylmethylaniine (DEMA). This novel extraction technology...

Lee, Champion

1993-01-01T23:59:59.000Z

364

Process for reducing aqueous nitrate to ammonia  

DOE Patents [OSTI]

Powdered aluminum is added to a nitrate-containing alkaline, aqueous solution to reduce the nitrate and/or nitrite to ammonia and co-produce a sinterable ceramic product.

Mattus, Alfred J. (Oak Ridge, TN)

1993-01-01T23:59:59.000Z

365

Aqueous foam toxicology evaluation and hazard review  

SciTech Connect (OSTI)

Aqueous foams are aggregates of bubbles mechanically generated by passing air or other gases through a net, screen, or other porous medium that is wetted by an aqueous solution of surface-active foaming agents (surfactants). Aqueous foams are important in modem fire-fighting technology, as well as for military uses for area denial and riot or crowd control. An aqueous foam is currently being developed and evaluated by Sandia National Laboratories (SNL) as a Less-Than-Lethal Weapon for the National Institute of Justice (NIJ). The purpose of this study is to evaluate the toxicity of the aqueous foam developed for the NIJ and to determine whether there are any significant adverse health effects associated with completely immersing individuals without protective equipment in the foam. The toxicity of the aqueous foam formulation developed for NIJ is determined by evaluating the toxicity of the individual components of the foam. The foam is made from a 2--5% solution of Steol CA-330 surfactant in water generated at expansion ratios ranging from 500:1 to 1000:1. SteoI CA-330 is a 35% ammonium laureth sulfate in water and is produced by Stepan Chemical Company and containing trace amounts (<0.1%) of 1,4-dioxane. The results of this study indicate that Steol CA-330 is a non-toxic, mildly irritating, surfactant that is used extensively in the cosmetics industry for hair care and bath products. Inhalation or dermal exposure to this material in aqueous foam is not expected to produce significant irritation or systemic toxicity to exposed individuals, even after prolonged exposure. The amount of 1,4-dioxane in the surfactant, and subsequently in the foam, is negligible and therefore, the toxicity associated with dioxane exposure is not significant. In general, immersion in similar aqueous foams has not resulted in acute, immediately life-threatening effects, or chronic, long-term, non-reversible effects following exposure.

Archuleta, M.M.

1995-10-01T23:59:59.000Z

366

Modeling Cold Start in a Polymer-Electrolyte Fuel Cell  

E-Print Network [OSTI]

current collection and load follow—up functions are combinedwith the axial— load follow—up system (which holds the cell

Balliet, Ryan

2010-01-01T23:59:59.000Z

367

Modeling Cold Start in a Polymer-Electrolyte Fuel Cell  

E-Print Network [OSTI]

The second reason why the Vim, ?t is better is that, becauseuntil the predicted value of Vim, matched the experimental

Balliet, Ryan

2010-01-01T23:59:59.000Z

368

Modeling Water Management in Polymer-Electrolyte Fuel Cells  

E-Print Network [OSTI]

149 (2004). A. Bazylak, D. Sinton, Z. S. Liu and N. Djilali,7, A408 S. Litster, D. Sinton and N. Djilali, J. Power

Weber, Adam; Department of Chemical Engineering, University of California, Berkeley

2008-01-01T23:59:59.000Z

369

Modeling Cold Start in a Polymer-Electrolyte Fuel Cell  

E-Print Network [OSTI]

PEFCs to that of Li—ion batteries. Parameter values used inenergy relative to current batteries. Figure 1.1 is a Ragoneof PEFCS relative to batteries is their overall energy 1 I I

Balliet, Ryan

2010-01-01T23:59:59.000Z

370

Multidimensional Modelling of Polymer Electrolyte Fuel Cells under a  

E-Print Network [OSTI]

Condition H. Meng1 , and C.-Y. Wang1 * 1 Electrochemical Engine Center (ECEC), and Department of Mechanical efficiency, low emissions, and low noise. However, before its commercialisation, a few obstacles need to integrate transport phenomena, electrochemical processes, and water/proton co-transport in the polymer

371

Modeling Cold Start in a Polymer-Electrolyte Fuel Cell  

E-Print Network [OSTI]

of Platinum Movement In PEM Fuel Cells,” Journal of theKinetics in Subfreezing PEM Fuel Cells,” Journal of theGu, and H. A. Gasteiger, “PEM Fuel Cell Op- eration at -20

Balliet, Ryan

2010-01-01T23:59:59.000Z

372

Modeling Cold Start in a Polymer-Electrolyte Fuel Cell  

E-Print Network [OSTI]

expense of decreased energy. For applications requiring energy storage with zero emissions and a renewable source of energy,

Balliet, Ryan

2010-01-01T23:59:59.000Z

373

Update on Electrolyte Modeling with Emphasis on Low Temperature Performance  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of EnergyofProject is on Track|Solar Decathlon |EnergyPotomac| Department of

374

Electrolyte effects in a model system for mesoporous carbon electrodes...  

Office of Scientific and Technical Information (OSTI)

changes in water hydration behavior and, specifically, by variations in the number of hydrogen bonds per water molecule. Both the cation and the anion sequences demonstrate that...

375

Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li-O$_2$ battery capacity  

E-Print Network [OSTI]

Among the 'beyond Li-ion' battery chemistries, nonaqueous Li-O$_2$ batteries have the highest theoretical specific energy and as a result have attracted significant research attention over the past decade. A critical scientific challenge facing nonaqueous Li-O$_2$ batteries is the electronically insulating nature of the primary discharge product, lithium peroxide, which passivates the battery cathode as it is formed, leading to low ultimate cell capacities. Recently, strategies to enhance solubility to circumvent this issue have been reported, but rely upon electrolyte formulations that further decrease the overall electrochemical stability of the system, thereby deleteriously affecting battery rechargeability. In this study, we report that a significant enhancement (greater than four-fold) in Li-O$_2$ cell capacity is possible by appropriately selecting the salt anion in the electrolyte solution. Using $^7$Li nuclear magnetic resonance and modeling, we confirm that this improvement is a result of enhanced Li...

Burke, Colin M; Khetan, Abhishek; Viswanathan, Venkatasubramanian; McCloskey, Bryan D

2015-01-01T23:59:59.000Z

376

AQUEOUS HOMOGENEOUS REACTORTECHNICAL PANEL REPORT  

SciTech Connect (OSTI)

Considerable interest has been expressed for developing a stable U.S. production capacity for medical isotopes and particularly for molybdenum- 99 (99Mo). This is motivated by recent re-ductions in production and supply worldwide. Consistent with U.S. nonproliferation objectives, any new production capability should not use highly enriched uranium fuel or targets. Conse-quently, Aqueous Homogeneous Reactors (AHRs) are under consideration for potential 99Mo production using low-enriched uranium. Although the Nuclear Regulatory Commission (NRC) has guidance to facilitate the licensing process for non-power reactors, that guidance is focused on reactors with fixed, solid fuel and hence, not applicable to an AHR. A panel was convened to study the technical issues associated with normal operation and potential transients and accidents of an AHR that might be designed for isotope production. The panel has produced the requisite AHR licensing guidance for three chapters that exist now for non-power reactor licensing: Reac-tor Description, Reactor Coolant Systems, and Accident Analysis. The guidance is in two parts for each chapter: 1) standard format and content a licensee would use and 2) the standard review plan the NRC staff would use. This guidance takes into account the unique features of an AHR such as the fuel being in solution; the fission product barriers being the vessel and attached systems; the production and release of radiolytic and fission product gases and their impact on operations and their control by a gas management system; and the movement of fuel into and out of the reactor vessel.

Diamond, D.J.; Bajorek, S.; Bakel, A.; Flanagan, G.; Mubayi, V.; Skarda, R.; Staudenmeier, J.; Taiwo, T.; Tonoike, K.; Tripp, C.; Wei, T.; Yarsky, P.

2010-12-03T23:59:59.000Z

377

Lithium Ion Transport Mechanism in Ternary Polymer Electrolyte-Ionic Liquid Mixtures - A Molecular Dynamics Simulation Study  

E-Print Network [OSTI]

The lithium transport mechanism in ternary polymer electrolytes, consisting of PEO/LiTFSI and various fractions of the ionic liquid N-methyl-N-propylpyrrolidinium bis(trifluoromethane)sulfonimide, are investigated by means of MD simulations. This is motivated by recent experimental findings [Passerini et al., Electrochim. Acta 2012, 86, 330-338], which demonstrated that these materials display an enhanced lithium mobility relative to their binary counterpart PEO/LiTFSI. In order to grasp the underlying microscopic scenario giving rise to these observations, we employ an analytical, Rouse-based cation transport model [Maitra at al., PRL 2007, 98, 227802], which has originally been devised for conventional polymer electrolytes. This model describes the cation transport via three different mechanisms, each characterized by an individual time scale. It turns out that also in the ternary electrolytes essentially all lithium ions are coordinated by PEO chains, thus ruling out a transport mechanism enhanced by the presence of ionic-liquid molecules. Rather, the plasticizing effect of the ionic liquid contributes to the increased lithium mobility by enhancing the dynamics of the PEO chains and consequently also the motion of the attached ions. Additional focus is laid on the prediction of lithium diffusion coefficients from the simulation data for various chain lengths and the comparison with experimental data, thus demonstrating the broad applicability of our approach.

Diddo Diddens; Andreas Heuer

2013-02-20T23:59:59.000Z

378

Study of anion adsorption at the gold--aqueous solution interface by atomic force microscopy  

SciTech Connect (OSTI)

The forces between a gold coated colloidal silica sphere and a pure gold plate have been measured in aqueous solution as a function of electrolyte concentration using an atomic force microscope (AFM). Forces in the presence of gold(III) chloride (HAuCl[sub 4]), sodium chloride, and trisodium citrate were recorded as a function of concentration. Each of these anion species is present during the formation of colloidal gold by the reduction of gold(III) chloride with trisodium citrate. In pure water the force between the gold surfaces was exclusively attractive. In sodium chloride or trisodium citrate solution a repulsive interaction was observed which is attributed to the adsorption of these anions at the gold/water interface. The observed interaction force in gold(III) chloride solution was always attractive, the surface potential never exceeding 20 mV. Data taken in aqueous solutions of citrate and chloride ions together suggested that the citrate ions were preferentially adsorbed to the surface of the gold. Addition of gold(III) chloride to the AFM liquid cell after the pre-adsorption of citrate anions caused the force of interaction to change from a repulsvie force to an attractive one initially as the gold(III) chloride was reduced to gold by the citrate anions. 33 refs., 11 figs.

Biggs, S.; Mulvaney, P.; Grieser, F. (Univ. of Melbourne (Australia)); Zukoski, C.F. (Univ. of Illinois, Urbana, IL (United States))

1994-10-05T23:59:59.000Z

379

Characterization of ?-carrageenan and its derivative based green polymer electrolytes  

SciTech Connect (OSTI)

The new types of green polymer electrolytes based on ?-carrageenan derivative have been prepared. ?-carrageenan act as precursor was reacted with monochloroacetic acid to produce carboxymethyl ?-carrageenan. The powders were characterized by Attenuated Total Reflection Fourier Transform infrared (ATR-FTIR) spectroscopy and {sup 1}H nuclear magnetic resonance (NMR) to confirm the substitution of targeted functional group in ?-carrageenan. The green polymer electrolyte based on ?-carrageenan and carboxymethyl ?-carrageenan was prepared by solution-casting technique. The films were characterized by electrochemical impedance spectroscopy to determine the ionic conductivity. The ionic conductivity ?-carrageenan film were higher than carboxymethyl ?-carrageenan which 4.87 ×10{sup ?6} S cm{sup ?1} and 2.19 ×10{sup ?8} S cm{sup ?1}, respectively.

Jumaah, Fatihah Najirah; Mobaraka, Nadhratun Naiim; Ahmad, Azizan; Ramli, Nazaruddin [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan (Malaysia)

2013-11-27T23:59:59.000Z

380

A van der Waals free energy in electrolytes revisited  

E-Print Network [OSTI]

A system of three electrolytes separated by two parallel planes is considered. Each region is described by a dielectric constant and a Coulomb fluid in the Debye-H\\"uckel regime. In their book Dispersion Forces, Mahanty and Ninham have given the van der Waals free energy of this system. We rederive this free energy by a different method, using linear response theory and the electrostatic Maxwell stress tensor for obtaining the dispersion force.

B. Jancovici

2006-02-15T23:59:59.000Z

Note: This page contains sample records for the topic "aqueous electrolyte modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Solid lithium ion conducting electrolytes and methods of preparation  

DOE Patents [OSTI]

A composition comprised of nanoparticles of lithium ion conducting solid oxide material, wherein the solid oxide material is comprised of lithium ions, and at least one type of metal ion selected from pentavalent metal ions and trivalent lanthanide metal ions. Solution methods useful for synthesizing these solid oxide materials, as well as precursor solutions and components thereof, are also described. The solid oxide materials are incorporated as electrolytes into lithium ion batteries.

Narula, Chaitanya K; Daniel, Claus

2013-05-28T23:59:59.000Z

382

Electrolytic recovery of mercury enriched in isotopic abundance  

DOE Patents [OSTI]

The present invention is directed to a method of electrolytically extracting liquid mercury from HgO or Hg.sub.2 Cl.sub.2. Additionally there are disclosed two related techniques associated with the present invention, namely (1) a technique for selectively removing product from different regions of a long photochemical reactor (photoreactor) and (2) a method of accurately measuring the total quantity of mercury formed as either HgO or Hg.sub.2 Cl.sub.2.

Grossman, Mark W. (Belmont, MA)

1991-01-01T23:59:59.000Z

383

Aluminum Solubility in Complex Electrolytes - 13011  

SciTech Connect (OSTI)

Predicting aluminum solubility for Hanford and Savannah River waste liquids is very important for their disposition. It is a key mission goal at each Site to leach as much aluminum as practical from sludges in order to minimize the amount of vitrified high level waste. And it is correspondingly important to assure that any soluble aluminum does not precipitate during subsequent decontamination of the liquid leachates with ion exchange. This report shows a very simple and yet thermodynamic model for aluminum solubility that is consistent with a wide range of Al liquors, from simple mixtures of hydroxide and aluminate to over 300 Hanford concentrates and to a set of 19 Bayer liquors for temperatures from 20-100 deg. C. This dimer-dS{sub mix} (DDS) model incorporates an ideal entropy of mixing along with previous reports for the Al dimer, water activities, gibbsite, and bayerite thermodynamics. We expect this model will have broad application for nuclear wastes as well as the Bayer gibbsite process industry. (authors)

Agnew, S.F. [Columbia Energy and Environmental Services, Inc., 1806 Terminal Dr., Richland, WA 99354 (United States)] [Columbia Energy and Environmental Services, Inc., 1806 Terminal Dr., Richland, WA 99354 (United States); Johnston, C.T. [Dept. of Crop, Soil, and Environmental Sciences, Purdue University, West Lafayette, IN 47907 (United States)] [Dept. of Crop, Soil, and Environmental Sciences, Purdue University, West Lafayette, IN 47907 (United States)

2013-07-01T23:59:59.000Z

384

E-Print Network 3.0 - aqueous media treatment Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

aqueous heterogeneous porous media. Proceedings... . Dickenson, E. and Rashidi, M. 1996. Small scale flow processes in aqueous heterogeneous porous media... in aqueous...

385

Method of making chalcogen catalysts for polymer electrolyte fuel cells  

DOE Patents [OSTI]

A method of making an electrode catalyst material using aqueous solutions. The electrode catalyst material includes a support comprising at least one transition metal and at least one chalcogen disposed on a surface of the transition metal. The method includes reducing a metal powder, mixing the metal powder with an aqueous solution containing at least one inorganic compound of the chalcogen to form a mixture, and providing a reducing agent to the mixture to form nanoparticles of the electrode catalyst. The electrode catalyst may be used in a membrane electrode assembly for a fuel cell.

Choi, Jong-Ho (Los Alamos, NM); Zelenay, Piotr (Los Alamos, NM); Wieckowski, Andrzej (Champaign, IL); Cao, Dianxue (Harabin, CN)

2010-12-14T23:59:59.000Z

386

Aluminum oxyhydroxide based separator/electrolyte and battery system, and a method of making the same  

DOE Patents [OSTI]

The instant invention relates a solid-state electrochemical cell and a novel separator/electrolyte incorporated therein. The invented electrochemical cell generally comprising: a unique metal oxyhydroxide based (i.e. AlOOH) separator/electrolyte membrane sandwiched between a first electrode and a second electrode. The novel separator/electrolyte comprises a nanoparticulate metal oxyhydroxide, preferably AlOOH and a salt which are mixed and then pressed together to form a monolithic metal oxyhydroxide-salt membrane.

Gerald, II; Rex E. (Brookfield, IL); Klingler, Robert J. (Glenview, IL); Rathke, Jerome W. (Homer Glen, IL)

2011-02-15T23:59:59.000Z

387

Final Progress Report for Linking Ion Solvation and Lithium Battery Electrolyte Properties  

SciTech Connect (OSTI)

The research objective of this proposal was to provide a detailed analysis of how solvent and anion structure govern the solvation state of Li+ cations in solvent-LiX mixtures and how this, in turn, dictates the electrolyte physicochemical and electrochemical properties which govern (in part) battery performance. Lithium battery electrolytes remain a poorly understood and hardly studied topic relative to the research devoted to battery electrodes. This is due to the fact that it is the electrodes which determine the energy (capacity) of the battery. The electrolyte, however, plays a crucial role in the practical energy density, power, low and/or high temperature performance, lifetime, safety, etc. which is achievable. The development within this project of a "looking glass" into the molecular interactions (i.e., solution structure) in bulk electrolytes through a synergistic experimental approach involving three research thrusts complements work by other researchers to optimize multi-solvent electrolytes and efforts to understand/control the electrode-electrolyte interfaces, thereby enabling the rational design of electrolytes for a wide variety of battery chemistries and applications (electrolytes-on-demand). The three research thrusts pursued include: (1) conduction of an in-depth analysis of the thermal phase behavior of diverse solvent-LiX mixtures, (2) exploration of the ionic association/solvate formation behavior of select LiX salts with a wide variety of solvents, and (3) linking structure to properties?determination of electrolyte physicochemical and electrochemical properties for comparison with the ionic association and phase behavior.

Henderson, Wesley

2014-08-29T23:59:59.000Z

388

Microstructure and properties of barium cerate based electrolytes for solid oxide fuel cells  

SciTech Connect (OSTI)

Barium cerate based ceramics have been widely reported to have high ionic conductivity and hold promise as electrolyte materials for intermediate-temperature solid oxide fuel cells (SOFC`s). Samples of niobium-doped barium cerate have been produced with a variety of microstructures. Many parameters affecting the final microstructure of the electrolyte materials have been systematically investigated. The conductivity of the electrolyte materials produced have been studied using impedance spectroscopy to understand the effect of microstructure on the desired properties of barium cerate based electrolytes.

Rauch, W.L.; Liu, M. [Georgia Institute of Technology, Atlanta, GA (United States)

1996-12-31T23:59:59.000Z

389

Webinar: Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis—Spotlight on Giner and Proton  

Broader source: Energy.gov [DOE]

Video recording of the webinar, Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis—Spotlight on Giner and Proton, originally presented on May 23, 2011.

390

E-Print Network 3.0 - air-breathing polymer electrolyte Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Park Collection: Engineering ; Materials Science 32 Switchable window based on electrochromic polymers Chunye Xu,a) Summary: electrolyte, and a counterelectrode that replaces...

391

E-Print Network 3.0 - aluminium electrolytic capacitors Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vanderbilt University Collection: Engineering 5 HANKS TO THEIR LARGE capacity and low price, electro- Summary: behaviour of aluminium electrolytic capacitors: An evaluation of...

392

Nonadditive effects of nonaqueous electrolyte components on the electrochemical behavior of lithium  

SciTech Connect (OSTI)

Lithium electrode surfaces passivate in nonaqueous electrolytes. For this reason, high-energy-density lithium batteries can be stored, but at the same time anodic lithium dissolution during initial discharge of the battery is delayed. For an optimization of the anode characteristics and the battery performance the authors of this paper seek to determine the factors governing the parameters of the passivating film under the influence of various nonaqueous electrolyte solutions. The influence of electrolyte composition on the electrochemical behavior and electrical conductivity and impedance of the film was tested for sulfur-dioxide-containing electrolytes based on propylene carbonate, acetonitrile, DMSO, and lithium perchlorate.

Shembel', E.M.; Maksyuta, I.M.; Ksenzhek, O.S.

1987-11-01T23:59:59.000Z

393

Six-Membered-Ring Malonatoborate-Based Lithium Salts as Electrolytes for Lithium Ion Batteries  

E-Print Network [OSTI]

References 1. Lithium Ion Batteries: Fundamentals andProgram for Lithium Ion Batteries, U.S. Department ofas Electrolytes for Lithium Ion Batteries Li Yang a , Hanjun

Yang, Li

2014-01-01T23:59:59.000Z

394

Internal electrolyte supply system for reliable transport throughout fuel cell stacks  

DOE Patents [OSTI]

An improved internal electrolyte supply system in a fuel cell stack employs a variety of arrangements of grooves and passages in bipolar plates of the multiplicity of repeating fuel cells to route gravity-assisted flowing electrolyte throughout the stack. The grooves route electrolyte flow along series of first paths which extend horizontally through the cells between the plates thereof. The passages route electrolyte flow along series of second paths which extend vertically through the stack so as to supply electrolyte to the first paths in order to expose the electrolyte to the matrices of the cells. Five different embodiments of the supply system are disclosed. Some embodiments employ wicks in the grooves for facilitating transfer of the electrolyte to the matrices as well as providing support for the matrices. Additionally, the passages of some embodiments by-pass certain of the grooves and supply electrolyte directly to other of the grooves. Some embodiments employ single grooves and others have dual grooves. Finally, in some embodiments the passages are connected to the grooves by a step which produces a cascading electrolyte flow.

Wright, Maynard K. (Bethel Park, PA); Downs, Robert E. (Monroeville, PA); King, Robert B. (Westlake, OH)

1988-01-01T23:59:59.000Z

395

High-Rate Oxygen Reduction in Mixed Nonaqueous Electrolyte Containing Acetonitrile  

SciTech Connect (OSTI)

A mixed nonaqueous electrolyte that contains acetonitrile and propylene carbonate (PC) was found to be suitable for a LiO2 battery with a metallic Li anode. Both the concentration and diffusion coefficient for the dissolved O2 are significantly higher in the mixed electrolyte than those in the pure PC electrolyte. A powder microelectrode was used to investigate the O2 solubility and diffusion coefficient. A 10 mA?cm-2 discharge rate on a gas-diffusion electrode is demonstrated by using the mixed electrolyte in a LiO2 cell.

Zheng D.; Yang X.; Qu D.

2011-12-02T23:59:59.000Z

396

Low temperature aqueous desulfurization of coal  

DOE Patents [OSTI]

This invention describes a chemical process for desulfurizing coal, especially adaptable to the treatment of coal-water slurries, at temperatures as low as ambient, comprising treating the coal with aqueous titanous chloride whereby hydrogen sulfide is liberated and the desulfurized coal is separated with the conversion of titanous chloride to titanium oxides.

Slegeir, William A. (Hampton Bays, NY); Healy, Francis E. (Massapequa, NY); Sapienza, Richard S. (Shoreham, NY)

1985-01-01T23:59:59.000Z

397

Corrosion inhibitor for aqueous ammonia absorption system  

DOE Patents [OSTI]

A method of inhibiting corrosion and the formation of hydrogen and thus improving absorption in an ammonia/water absorption refrigeration, air conditioning or heat pump system by maintaining the hydroxyl ion concentration of the aqueous ammonia working fluid within a selected range under anaerobic conditions at temperatures up to 425.degree. F. This hydroxyl ion concentration is maintained by introducing to the aqueous ammonia working fluid an inhibitor in an amount effective to produce a hydroxyl ion concentration corresponding to a normality of the inhibitor relative to the water content ranging from about 0.015 N to about 0.2 N at 25.degree. C. Also, working fluids for inhibiting the corrosion of carbon steel and resulting hydrogen formation and improving absorption in an ammonia/water absorption system under anaerobic conditions at up to 425.degree. F. The working fluids may be aqueous solutions of ammonia and a strong base or aqueous solutions of ammonia, a strong base, and a specified buffer.

Phillips, Benjamin A. (Benton Harbor, MI); Whitlow, Eugene P. (St. Joseph, MI)

1998-09-22T23:59:59.000Z

398

Corrosion inhibitor for aqueous ammonia absorption system  

DOE Patents [OSTI]

A method is described for inhibiting corrosion and the formation of hydrogen and thus improving absorption in an ammonia/water absorption refrigeration, air conditioning or heat pump system by maintaining the hydroxyl ion concentration of the aqueous ammonia working fluid within a selected range under anaerobic conditions at temperatures up to 425 F. This hydroxyl ion concentration is maintained by introducing to the aqueous ammonia working fluid an inhibitor in an amount effective to produce a hydroxyl ion concentration corresponding to a normality of the inhibitor relative to the water content ranging from about 0.015 N to about 0.2 N at 25 C. Also, working fluids for inhibiting the corrosion of carbon steel and resulting hydrogen formation and improving absorption in an ammonia/water absorption system under anaerobic conditions at up to 425 F. The working fluids may be aqueous solutions of ammonia and a strong base or aqueous solutions of ammonia, a strong base, and a specified buffer. 5 figs.

Phillips, B.A.; Whitlow, E.P.

1998-09-22T23:59:59.000Z

399

Method for aqueous radioactive waste treatment  

DOE Patents [OSTI]

Plutonium, strontium, and cesium found in aqueous waste solutions resulting from nuclear fuel processing are removed by contacting the waste solutions with synthetic zeolite incorporating up to about 5 wt % titanium as sodium titanate in an ion exchange system. More than 99.9% of the plutonium, strontium, and cesium are removed from the waste solutions. 3 figures.

Bray, L.A.; Burger, L.L.

1994-03-29T23:59:59.000Z

400

Method for aqueous radioactive waste treatment  

DOE Patents [OSTI]

Plutonium, strontium, and cesium found in aqueous waste solutions resulting from nuclear fuel processing are removed by contacting the waste solutions with synthetic zeolite incorporating up to about 5 wt % titanium as sodium titanate in an ion exchange system. More than 99.9% of the plutonium, strontium, and cesium are removed from the waste solutions.

Bray, Lane A. (Richland, WA); Burger, Leland L. (Richland, WA)

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aqueous electrolyte modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Method for inhibiting corrosion in aqueous systems  

DOE Patents [OSTI]

This invention is a method for inhibiting corrosion in aqueous systems containing components composed of aluminum, copper, iron, or alloys thereof. The method comprises (a) incorporating in the aqueous medium 2-10 ppm by weight of tolyltriazole; an effective amount of a biodegradable organic biocide; 500-1000 ppm by weight of sodium metasilicate; 500-2000 ppm by weight of sodium nitrite; and 500-2000 ppm by weight of sodium tetraborate, all of these concentrations being based on the weight of water in the system; and (b) maintaining the pH of the resulting system in the range of 7.5 to 8.0. The method permits longterm operation with very low corrosion rates and bacteria counts. All of the additives to the system are biodegradable, permitting the treated aqueous medium to be discharged to the environment without violating current regulations. The method has special application to solar systems in which an aqueous medium is circulated through aluminum-alloy heat exchangers.

DeMonbrun, James R. (Knoxville, TN); Schmitt, Charles R. (Oak Ridge, TN); Schreyer, James M. (Oak Ridge, TN)

1980-01-01T23:59:59.000Z

402

Diesel-engine fumigation with aqueous ethanol  

SciTech Connect (OSTI)

A three cylinder, two cycle diesel engine, rated at 22KW at 2300 rpm, was fumigated with ethanol of 140-to-200 proofs. P-T diagrams and engine performance were analyzed with particular emphasis on the detection and evaluation of the knock phenomenon. Satisfactory full load operation was obtained with thirty percent of the fuel energy supplied as aqueous ethanol.

McLaughlin, S.L.; Stephenson, K.Q.

1981-01-01T23:59:59.000Z

403

Low temperature aqueous desulfurization of coal  

DOE Patents [OSTI]

This invention describes a chemical process for desulfurizing coal, especially adaptable to the treatment of coal-water slurries, at temperatures as low as ambient, comprising treating the coal with aqueous titanous chloride whereby hydrogen sulfide is liberated and the desulfurized coal is separated with the conversion of titanous chloride to titanium oxides.

Slegeir, W.A.; Healy, F.E.; Sapienza, R.S.

1985-04-18T23:59:59.000Z

404

Removal of fluoride from aqueous solution by using alum sludge  

SciTech Connect (OSTI)

The ability of treated alum sludge to remove fluoride from aqueous solution has been investigated. The studies were carried out as functions of contact time, concentration of adsorbent and adsorbate, temperature, pH, and effect of concentrations of other anions. The data indicate that treated alum sludge surface sites are heterogeneous in nature and that fits into a heterogeneous site binding model. The optimum pH for complete removal of fluoride from aqueous solution was found to be 6. The rate of adsorption was rapid during the initial 5 minutes, and equilibrium was attained within 240 minutes. The adsorption followed first-order rate kinetics. The present system followed the Langmuir adsorption isotherm model. The loading factor (i.e., the milligram of fluoride adsorbed per gram of alum sludge) increased with initial fluoride concentration, whereas a negative trend was observed with increasing temperature. The influence of addition of anions on fluoride removal depends on the relative affinity of the anions for the surface and the relative concentrations of the anions.

Sujana, M.G.; Thakur, R.S.; Rao, S.B. [CSIR, Bhubaneswar (India). Regional Research Lab.] [CSIR, Bhubaneswar (India). Regional Research Lab.

1998-10-01T23:59:59.000Z

405

Molten salt bath circulation design for an electrolytic cell  

DOE Patents [OSTI]

An electrolytic cell for reduction of a metal oxide to a metal and oxygen has an inert anode and an upwardly angled roof covering the inert mode. The angled roof diverts oxygen bubbles into an upcomer channel, thereby agitating a molten salt bath in the upcomer channel and improving dissolution of a metal oxide in the molten salt bath. The molten salt bath has a lower velocity adjacent the inert anode in order to minimize corrosion by substances in the bath. A particularly preferred cell produces aluminum by electrolysis of alumina in a molten salt bath containing aluminum fluoride and sodium fluoride. 4 figs.

Dawless, R.K.; LaCamera, A.F.; Troup, R.L.; Ray, S.P.; Hosler, R.B.

1999-08-17T23:59:59.000Z

406

Molten salt bath circulation design for an electrolytic cell  

DOE Patents [OSTI]

An electrolytic cell for reduction of a metal oxide to a metal and oxygen has an inert anode and an upwardly angled roof covering the inert mode. The angled roof diverts oxygen bubbles into an upcomer channel, thereby agitating a molten salt bath in the upcomer channel and improving dissolution of a metal oxide in the molten salt bath. The molten salt bath has a lower velocity adjacent the inert anode in order to minimize corrosion by substances in the bath. A particularly preferred cell produces aluminum by electrolysis of alumina in a molten salt bath containing aluminum fluoride and sodium fluoride.

Dawless, Robert K. (Monroeville, PA); LaCamera, Alfred F. (Trafford, PA); Troup, R. Lee (Murrysville, PA); Ray, Siba P. (Murrysville, PA); Hosler, Robert B. (Sarver, PA)

1999-01-01T23:59:59.000Z

407

Sensoring hydrogen gas concentration using electrolyte made of proton  

SciTech Connect (OSTI)

Hydrogen gas promises to be a major clean fuel in the near future. Thus, sensors that can measure the concentrations of hydrogen gas over a wide dynamic range (e.g., 1 99.9%) are in demand for the production, storage, and utilization of hydrogen gas. However, it is difficult to directly measure hydrogen gas concentrations greater than 10% using conventional sensor [1 11]. We report a simple sensor using an electrolyte made of proton conductive manganese dioxide that enables in situmeasurements of hydrogen gas concentration over a wide range of 0.1 99.9% at room temperature.

Ueda, Yoshikatsu [Kyoto University, Japan; Kolesnikov, Alexander I [ORNL; Koyanaka, Hideki [Kyoto University, Japan

2011-01-01T23:59:59.000Z

408

Summary of Electrolytic Hydrogen Production: Milestone Completion Report  

SciTech Connect (OSTI)

This report provides an overview of the current state of electrolytic hydrogen production technologies and an economic analysis of the processes and systems available as of December 2003. The operating specifications of commercially available electrolyzers from five manufacturers, i.e., Stuart, Teledyne, Proton, Norsk Hydro, and Avalence, are summarized. Detailed economic analyses of three systems for which cost and economic data were available were completed. The contributions of the cost of electricity, system efficiency, and capital costs to the total cost of electrolysis are discussed.

Ivy, J.

2004-09-01T23:59:59.000Z

409

Summary of Electrolytic Hydrogen Production: Milestone Completion Report  

SciTech Connect (OSTI)

This report provides an overview of the current state of electrolytic hydrogen production technologies and an economic analysis of the processes and systems available as of December 2003. The operating specifications of commercially available electrolyzers from five manufacturers, i.e., Stuart, Teledyne, Proton, Norsk Hydro, and Avalence, are summarized. Detailed economic analyses of three systems for which cost and economic data were available were completed. The contributions of the cost of electricity, system efficiency, and capital costs to the total cost of electrolysis are discussed.

Ivy, J.

2004-04-01T23:59:59.000Z

410

Sputter deposition of lithium silicate - lithium phosphate amorphous electrolytes  

SciTech Connect (OSTI)

Thin films of an amorphous lithium-conducting electrolyte were deposited by rf magnetron sputtering of ceramic targets containing Li{sub 4}SiO{sub 4} and Li{sub 3}PO{sub 4}. The lithium content of the films was found to depend more strongly on the nature and composition of the targets than on many other sputtering parameters. For targets containing Li{sub 4}SiO{sub 4}, most of the lithium was found to segregate away from the sputtered area of the target. Codeposition using two sputter sources achieves a high lithium content in a controlled and reproducible film growth. 10 refs., 4 figs.

Dudney, N.J.; Bates, J.B.; Luck, C.F. (Oak Ridge National Lab., TN (USA)); Robertson, J.D. (Kentucky Univ., Lexington, KY (USA). Dept. of Chemistry)

1991-01-01T23:59:59.000Z

411

Molecular Architecture for Polyphosphazene Electrolytes for Seawater Batteries  

SciTech Connect (OSTI)

In this work, a series of polyphosphazenes were designed to function as water resistant, yet ionically conductive membranes for application to lithium/seawater batteries. In membranes of this nature, various molecular architectures are possible and representatives from each possible type were chosen. These polymers were synthesized and their performance as solid polymer electrolytes was evaluated in terms of both lithium ion conductivity and water permeability. The impact that this molecular architecture has on total performance of the membranes for seawater batteries is discussed. Further implications of this molecular architecture on the mechanisms of lithium ion transport through polyphosphazenes are also discussed.

Mason K. Harrup; Mason K. Harrup; Thomas A. Luther; Christopher J. Orme; Eric S. Peterson

2005-08-01T23:59:59.000Z

412

Electrolytic production of metals using a resistant anode  

DOE Patents [OSTI]

An electrolytic process comprising evolving oxygen on an anode in a molten salt, the anode comprising an alloy comprising a first metal and a second metal, both metals forming oxides, the oxide of the first metal being more resistant than the second metal to attack by the molten salt, the oxide of the second metal being more resistant than the first metal to the diffusion of oxygen. The electrode may also be formed of CuAlO.sub.2 and/or Cu.sub.2 O.

Tarcy, Gary P. (Plum Borough, PA); Gavasto, Thomas M. (New Kensington, PA); Ray, Siba P. (Plum Borough, PA)

1986-01-01T23:59:59.000Z

413

Electrolytic production of metals using a resistant anode  

DOE Patents [OSTI]

An electrolytic process is described comprising evolving oxygen on an anode in a molten salt, the anode comprising an alloy comprising a first metal and a second metal, both metals forming oxides, the oxide of the first metal being more resistant than the second metal to attack by the molten salt, the oxide of the second metal being more resistant than the first metal to the diffusion of oxygen. The electrode may also be formed of CuAlO[sub 2] and/or Cu[sub 2]O. 2 figs.

Tarcy, G.P.; Gavasto, T.M.; Ray, S.P.

1986-11-04T23:59:59.000Z

414

Cation Transport in Polymer Electrolytes: A Microscopic Approach  

E-Print Network [OSTI]

A microscopic theory for cation diffusion in polymer electrolytes is presented. Based on a thorough analysis of molecular dynamics simulations on PEO with LiBF$_4$ the mechanisms of cation dynamics are characterised. Cation jumps between polymer chains can be identified as renewal processes. This allows us to obtain an explicit expression for the lithium ion diffusion constant D_{Li} by invoking polymer specific properties such as the Rouse dynamics. This extends previous phenomenological and numerical approaches. In particular, the chain length dependence of D_{Li} can be predicted and compared with experimental data. This dependence can be fully understood without referring to entanglement effects.

A. Maitra; A. Heuer

2007-05-11T23:59:59.000Z

415

Electrolyte Genome Could Be Battery Game-Changer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It is the| CenterElectrolyte Genome Could

416

Equilibria in aqueous iodine solutions  

E-Print Network [OSTI]

for the determination of pH and. 1odide concentration. This instrument, reads pH to 0. 001 pH units and millivolts to F 1 mv. An Orion Specific Ion Electrode, Iodide Model 94-53, was used in the iodide determination. A Corning Triple Purpose pH glass elect- rode... with such electrodes fully confirms this statement. The optimum concentration of Solution I was found to be between 5 x 10 and 10 H iodide. Error in ZIIF Although short-term reproducibility to within 0. 001 26 pH unit can in principle be achieved. with the glass...

Burger, Joanne Denise

1970-01-01T23:59:59.000Z

417

Extraction of Biofuels and Biofeedstocks from Aqueous Solutions Using Ionic Liquids  

E-Print Network [OSTI]

Extraction of Biofuels and Biofeedstocks from Aqueous Solutions Using Ionic Liquids Luke D. Simoni-Butanol, Extraction, Liquid-Liquid Equilibrium, Excess Gibbs Energy Models, Biofuels #12;1 1. Introduction other organic compounds can be produced biologically, and thus can be considered as biofuel candidates

Stadtherr, Mark A.

418

Solid Electrolyte/Electrode Interfaces: Atomistic Behavior Analyzed Via UHV-AFM, Surface Spectroscopies, and Computer Simulations Computational and Experimental Studies of the Cathode/Electrolyte Interface in Oxide Thin Film Batteries  

SciTech Connect (OSTI)

The goals of the research were to understand the structural, dynamic, and chemical properties of solid electrolyte surfaces and the cathode/electrolyte interface at an atomistic and nanometer level using both computational and experimental techniques.

Garofalini, Stephen H.

2012-03-21T23:59:59.000Z

419

E-Print Network 3.0 - aqueous humor enhances Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Aqueous Humor through Microporous... recently been shown that aqueous ... Source: Johnson, Mark - Biomedical Engineering Department, Northwestern University Collection:...

420

Identity of Passive Film Formed on Aluminum in Li-ion Battery Electrolytes with LiPF6  

E-Print Network [OSTI]

Film on Aluminum in Li-ion Battery Electrolytes with LiPFFormed on Aluminum in Li-ion Battery Electrolytes with LiPFbattery charging. From the prospective of maintaining a functioning cathode in Li-ion

Zhang, Xueyuan; Devine, T.M.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aqueous electrolyte modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Basic principles of electrolyte chemistry for microfluidic electrokinetics. Part I: Acidbase equilibria and pH buffersx  

E-Print Network [OSTI]

Basic principles of electrolyte chemistry for microfluidic electrokinetics. Part I: Acid We review fundamental and applied acid­base equilibrium chemistry useful to microfluidic with electrolyte dynamics and electrochemistry in typical microfluidic electrokinetic systems. Introduction

Santiago, Juan G.

422

Surface tension of electrolytes: Hydrophilic and hydrophobic ions near an interface  

E-Print Network [OSTI]

Surface tension of electrolytes: Hydrophilic and hydrophobic ions near an interface Akira Onukia layer. We also derive a general expression for the surface tension of electrolyte systems, which. DOI: 10.1063/1.2936992 I. INTRODUCTION It has long been known that the surface tension of a water

423

Electrochimica Acta 50 (2005) 21252134 Single-ion conducting polymersilicate nanocomposite electrolytes  

E-Print Network [OSTI]

in solid-state rechargeable lithium batteries [2]. However, since the local relaxations and segmental; accepted 13 September 2004 Abstract Solid-state polymer­silicate nanocomposite electrolytes based electrolytes for lithium battery applications Mary Kuriana,1, Mary E. Galvina,, Patrick E. Trapab, Donald R

Sadoway, Donald Robert

424

Block Copolymer Solid Battery Electrolyte with High Li-Ion Transference Number  

E-Print Network [OSTI]

Block Copolymer Solid Battery Electrolyte with High Li-Ion Transference Number Ayan Ghosh number TLi+ value of 0.9 at room temperature 21­23°C . The solid-state flexible, translucent polymer of withstanding such high voltage conditions. Unlike traditional liquid electrolytes, solid-state polymer electro

Rubloff, Gary W.

425

Self-doped block copolymer electrolytes for solid-state, rechargeable lithium batteries  

E-Print Network [OSTI]

Self-doped block copolymer electrolytes for solid-state, rechargeable lithium batteries Donald R. Introduction The ideal electrolyte material for a solid-state battery would have the ionic conductivity and cathode binder thin-®lm, solid-state, rechargeable lithium batteries of the type Li/ BCE/LiMnO2 have been

Sadoway, Donald Robert

426

Experimental: Gel Electrolyte The gel mixtures were designed to be cast as  

E-Print Network [OSTI]

-electrolyte Dye Sensitized Solar Cells (LC) by quasi-solid-state constructions (SC) adopting organic with an active area of 2.5 cm2. Gel Electrolyte Application in Large Area Dye-sensitized Modules Matteo Biancardo layer of Pedot:PSS reduces the transmittance of the cell mostly in the N.I.R. where the N3* dye do

427

Binary inorganic salt mixtures as high conductivity liquid electrolytes for .100 uC fuel cells{  

E-Print Network [OSTI]

Binary inorganic salt mixtures as high conductivity liquid electrolytes for .100 uC fuel cells cations (e.g. ammonium) as electrolytes in fuel cells operating in the temperature range 100­200 uC, where cell operating with optimized electrodes in the same temperature range, while open circuit voltages

Angell, C. Austen

428

The Role of Confined Water in Ionic Liquid Electrolytes for Dye-Sensitized Solar Cells  

E-Print Network [OSTI]

The Role of Confined Water in Ionic Liquid Electrolytes for Dye- Sensitized Solar Cells Jiwon Jeon %) for applications such as nonvolatile electrolytes for dye-sensitized solar cells (DSSCs). This suggests a strategy Structure, Quantum Chemistry,General Theory The dye-sensitized solar cell (DSSC) proposed by Gratzel et al.1

Goddard III, William A.

429

Method for producing electricity from a fuel cell having solid-oxide ionic electrolyte  

DOE Patents [OSTI]

Stabilized quadrivalent cation oxide electrolytes are employed in fuel cells at elevated temperatures with a carbon and/or hydrogen containing fuel anode and an oxygen cathode. The fuel cell is operated at elevated temperatures with conductive metallic coatings as electrodes and desirably having the electrolyte surface blackened. Of particular interest as the quadrivalent oxide is zirconia.

Mason, David M. (Los Altos, CA)

1984-01-01T23:59:59.000Z

430

Metal-air cell comprising an electrolyte with a room temperature ionic liquid and hygroscopic additive  

DOE Patents [OSTI]

An electrochemical cell comprising an electrolyte comprising water and a hydrophobic ionic liquid comprising positive ions and negative ions. The electrochemical cell also includes an air electrode configured to absorb and reduce oxygen. A hydrophilic or hygroscopic additive modulates the hydrophobicity of the ionic liquid to maintain a concentration of the water in the electrolyte is between 0.001 mol % and 25 mol %.

Friesen, Cody A.; Krishnan, Ramkumar; Tang, Toni; Wolfe, Derek

2014-08-19T23:59:59.000Z

431

Oxide-supported PtCo alloy catalyst for intermediate temperature polymer electrolyte fuel cells  

E-Print Network [OSTI]

1 Oxide-supported PtCo alloy catalyst for intermediate temperature polymer electrolyte fuel cells reduction reaction in a polymer electrolyte fuel cell (PEMFC) operating between 80° and 110 °C at different, Fuel cells, Oxygen reduction reaction, Doped Ti-oxide support, Intermediate temperature

Boyer, Edmond

432

Electrolytic hydrogen production infrastructure options evaluation. Final subcontract report  

SciTech Connect (OSTI)

Fuel-cell electric vehicles have the potential to provide the range, acceleration, rapid refueling times, and other creature comforts associated with gasoline-powered vehicles, but with virtually no environmental degradation. To achieve this potential, society will have to develop the necessary infrastructure to supply hydrogen to the fuel-cell vehicles. Hydrogen could be stored directly on the vehicle, or it could be derived from methanol or other hydrocarbon fuels by on-board chemical reformation. This infrastructure analysis assumes high-pressure (5,000 psi) hydrogen on-board storage. This study evaluates one approach to providing hydrogen fuel: the electrolysis of water using off-peak electricity. Other contractors at Princeton University and Oak Ridge National Laboratory are investigating the feasibility of producing hydrogen by steam reforming natural gas, probably the least expensive hydrogen infrastructure alternative for large markets. Electrolytic hydrogen is a possible short-term transition strategy to provide relatively inexpensive hydrogen before there are enough fuel-cell vehicles to justify building large natural gas reforming facilities. In this study, the authors estimate the necessary price of off-peak electricity that would make electrolytic hydrogen costs competitive with gasoline on a per-mile basis, assuming that the electrolyzer systems are manufactured in relatively high volumes compared to current production. They then compare this off-peak electricity price goal with actual current utility residential prices across the US.

Thomas, C.E.; Kuhn, I.F. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

1995-09-01T23:59:59.000Z

433

An Insoluble Titanium-Lead Anode for Sulfate Electrolytes  

SciTech Connect (OSTI)

The project is devoted to the development of novel insoluble anodes for copper electrowinning and electrolytic manganese dioxide (EMD) production. The anodes are made of titanium-lead composite material produced by techniques of powder metallurgy, compaction of titanium powder, sintering and subsequent lead infiltration. The titanium-lead anode combines beneficial electrochemical behavior of a lead anode with high mechanical properties and corrosion resistance of a titanium anode. In the titanium-lead anode, the titanium stabilizes the lead, preventing it from spalling, and the lead sheathes the titanium, protecting it from passivation. Interconnections between manufacturing process, structure, composition and properties of the titanium-lead composite material were investigated. The material containing 20-30 vol.% of lead had optimal combination of mechanical and electrochemical properties. Optimal process parameters to manufacture the anodes were identified. Prototypes having optimized composition and structure were produced for testing in operating conditions of copper electrowinning and EMD production. Bench-scale, mini-pilot scale and pilot scale tests were performed. The test anodes were of both a plate design and a flow-through cylindrical design. The cylindrical anodes were composed of cylinders containing titanium inner rods and fitting over titanium-lead bushings. The cylindrical design allows the electrolyte to flow through the anode, which enhances diffusion of the electrolyte reactants. The cylindrical anodes demonstrate higher mass transport capabilities and increased electrical efficiency compared to the plate anodes. Copper electrowinning represents the primary target market for the titanium-lead anode. A full-size cylindrical anode performance in copper electrowinning conditions was monitored over a year. The test anode to cathode voltage was stable in the 1.8 to 2.0 volt range. Copper cathode morphology was very smooth and uniform. There was no measurable anode weight loss during this time period. Quantitative chemical analysis of the anode surface showed that the lead content after testing remained at its initial level. No lead dissolution or transfer from the anode to the product occurred.A key benefit of the titanium-lead anode design is that cobalt additions to copper electrolyte should be eliminated. Cobalt is added to the electrolyte to help stabilize the lead oxide surface of conventional lead anodes. The presence of the titanium intimately mixed with the lead should eliminate the need for cobalt stabilization of the lead surface. The anode should last twice as long as the conventional lead anode. Energy savings should be achieved due to minimizing and stabilizing the anode-cathode distance in the electrowinning cells. The anode is easily substitutable into existing tankhouses without a rectifier change.The copper electrowinning test data indicate that the titanium-lead anode is a good candidate for further testing as a possible replacement for a conventional lead anode. A key consideration is the cost. Titanium costs have increased. One of the ways to get the anode cost down is manufacturing the anodes with fewer cylinders. Additional prototypes having different number of cylinders were constructed for a long-term commercial testing in a circuit without cobalt. The objective of the testing is to evaluate the need for cobalt, investigate the effect of decreasing the number of cylinders on the anode performance, and to optimize further the anode design in order to meet the operating requirements, minimize the voltage, maximize the life of the anode, and to balance this against a reasonable cost for the anode. It is anticipated that after testing of the additional prototypes, a whole cell commercial test will be conducted to complete evaluation of the titanium-lead anode costs/benefits.

Ferdman, Alla

2005-05-11T23:59:59.000Z

434

Removal of metal ions from aqueous solution  

DOE Patents [OSTI]

A method of removing heavy metals from aqueous solution, a composition of matter used in effecting said removal, and apparatus used in effecting said removal. One or more of the polypeptides, poly (.gamma.-glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly (.gamma.-glutamylcysteinyl)glycines having a particular number of monomer repeat unit for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heayv metals from solution. This also results in the removal of the metals from the column in a concentrated form.

Jackson, Paul J. (both Los Alamos, NM); Delhaize, Emmanuel (both Los Alamos, NM); Robinson, Nigel J. (Durham, GB2); Unkefer, Clifford J. (Los Alamos, NM); Furlong, Clement (Seattle, WA)

1990-11-13T23:59:59.000Z

435

Removal of metal ions from aqueous solution  

DOE Patents [OSTI]

A method of removing heavy metals from aqueous solution, a composition of matter used in effecting said removal, and apparatus used in effecting said removal. One or more of the polypeptides, poly (.gamma.-glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly (.gamma.-glutamylcysteinyl)glycines having a particular number of monomer repeat units for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heavy metals from solution. This also results in the removal of the metals from the column in a concentrated form.

Jackson, Paul J. (Los Alamos, NM); Delhaize, Emmanuel (Los Alamos, NM); Robinson, Nigel J. (Durham, GB2); Unkefer, Clifford J. (Los Alamos, NM); Furlong, Clement (Seattle, WA)

1990-01-01T23:59:59.000Z

436

Aqueous flooding methods for tertiary oil recovery  

DOE Patents [OSTI]

A method of aqueous flooding of subterranean oil bearing formation for tertiary oil recovery involves injecting through a well into the formation a low alkaline pH aqueous sodium bicarbonate flooding solution. The flooding solution's pH ranges from about 8.25 to 9.25 and comprises from 0.25 to 5 weight percent and preferably about 0.75 to 3.0 weight percent of sodium bicarbonate and includes a petroleum recovery surfactant of 0.05 to 1.0 weight percent and between 1 and 20 weight percent of sodium chloride. After flooding, an oil and water mixture is withdrawn from the well and the oil is separated from the oil and water mixture.

Peru, Deborah A. (Bartlesville, OK)

1989-01-01T23:59:59.000Z

437

High elastic modulus polymer electrolytes suitable for preventing thermal runaway in lithium batteries  

DOE Patents [OSTI]

A polymer that combines high ionic conductivity with the structural properties required for Li electrode stability is useful as a solid phase electrolyte for high energy density, high cycle life batteries that do not suffer from failures due to side reactions and dendrite growth on the Li electrodes, and other potential applications. The polymer electrolyte includes a linear block copolymer having a conductive linear polymer block with a molecular weight of at least 5000 Daltons, a structural linear polymer block with an elastic modulus in excess of 1.times.10.sup.7 Pa and an ionic conductivity of at least 1.times.10.sup.-5 Scm.sup.-1. The electrolyte is made under dry conditions to achieve the noted characteristics. In another aspect, the electrolyte exhibits a conductivity drop when the temperature of electrolyte increases over a threshold temperature, thereby providing a shutoff mechanism for preventing thermal runaway in lithium battery cells.

Mullin, Scott; Panday, Ashoutosh; Balsara, Nitash Pervez; Singh, Mohit; Eitouni, Hany Basam; Gomez, Enrique Daniel

2014-04-22T23:59:59.000Z

438

Electrodeposition of a nickel-indium alloy from an ammonium citrate electrolyte  

SciTech Connect (OSTI)

The possibility of the electrolytic deposition of a nickel-indium alloy from an ammonium citrate electrolyte for purposes of increasing the cathode current output was investigated. The alloy antifriction coating was deposited in a rectangular glass bath of an electrolyte containing indium in the forms of a sulfate and a hydroxocitrate complex and nickel in the forms of mixed ammonium and citrate complexes as well as in sulfate form. The dependence of indium content and current output of the alloy on current density and indium sulfate concentration in the electrolyte was determined. Polarization curves for alloy precipitation established that indium precipitated at more negative potentials than nickel. The effect of indium content on microhardness was also assessed. An optimum electrolyte composition, pH value, and current density were established.

Vinogradov, S.N.; Perelygin, Yu.P.

1988-05-01T23:59:59.000Z

439

Electra-optical device including a nitrogen containing electrolyte  

DOE Patents [OSTI]

Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between -15.degree. C. and 150.degree. C.

Bates, John B. (Oak Ridge, TN); Dudney, Nancy J. (Knoxville, TN); Gruzalski, Greg R. (Oak Ridge, TN); Luck, Christopher F. (Knoxville, TN)

1995-01-01T23:59:59.000Z

440

Method of making an electrolyte for an electrochemical cell  

DOE Patents [OSTI]

Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between -15.degree. C. and 150.degree. C.

Bates, John B. (Oak Ridge, TN); Dudney, Nancy J. (Knoxville, TN)

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aqueous electrolyte modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Electra-optical device including a nitrogen containing electrolyte  

DOE Patents [OSTI]

Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode. Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between {minus}15 C and 150 C.

Bates, J.B.; Dudney, N.J.; Gruzalski, G.R.; Luck, C.F.

1995-10-03T23:59:59.000Z

442

Method of making an electrolyte for an electrochemical cell  

DOE Patents [OSTI]

Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode. Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between {minus}15 C and 150 C. 9 figs.

Bates, J.B.; Dudney, N.J.

1996-04-30T23:59:59.000Z

443

Aluminium Electroplating on Steel from a Fused Bromide Electrolyte  

SciTech Connect (OSTI)

A quaternary bromide bath (LiBr-KBr-CsBr-AlBr3) was used to electro-coat aluminium on steel substrates. The electrolyte was prepared by the addition of AlBr3 into the eutectic LiBr-KBr-CsBr melt. A smooth, thick, adherent and shiny aluminium coating could be obtained with 80 wt.% AlBr3 in the ternary melt. The SEM photographs of the coated surfaces suggest the formation of thick and dense coatings with good aluminium coverage. Both salt immersion and open circuit potential measurement suggest that the coatings did display good corrosion-resistance behavior. Annealing of the coated surfaces, prior to corrosion tests, suggested the robustness of the metallic aluminium coating in preventing the corrosion of the steel surfaces. Studies also indicated that the quaternary bromide plating bath can potentially provide a better aluminium coating on both ferrous and non-ferrous metals, including complex surfaces/geometries.

Prabhat Tripathy; Laura Wurth; Eric Dufek; Toni Y. Gutknecht; Natalie Gese; Paula Hahn; Steven Frank; Guy Fredrickson; J Stephen Herring

2014-08-01T23:59:59.000Z

444

Method and apparatus for spatially uniform electropolishing and electrolytic etching  

DOE Patents [OSTI]

In an electropolishing or electrolytic etching apparatus the anode is separated from the cathode to prevent bubble transport to the anode and to produce a uniform current distribution at the anode by means of a solid nonconducting anode-cathode barrier. The anode extends into the top of the barrier and the cathode is outside the barrier. A virtual cathode hole formed in the bottom of the barrier below the level of the cathode permits current flow while preventing bubble transport. The anode is rotatable and oriented horizontally facing down. An extended anode is formed by mounting the workpiece in a holder which extends the electropolishing or etching area beyond the edge of the workpiece to reduce edge effects at the workpiece. A reference electrode controls cell voltage. Endpoint detection and current shut-off stop polishing. Spatially uniform polishing or etching can be rapidly performed. 6 figs.

Mayer, S.T.; Contolini, R.J.; Bernhardt, A.F.

1992-03-17T23:59:59.000Z

445

Electrical contact structures for solid oxide electrolyte fuel cell  

DOE Patents [OSTI]

An improved electrical output connection means is provided for a high temperature solid oxide electrolyte type fuel cell generator. The electrical connection of the fuel cell electrodes to the electrical output bus, which is brought through the generator housing to be connected to an electrical load line maintains a highly uniform temperature distribution. The electrical connection means includes an electrode bus which is spaced parallel to the output bus with a plurality of symmetrically spaced transversely extending conductors extending between the electrode bus and the output bus, with thermal insulation means provided about the transverse conductors between the spaced apart buses. Single or plural stages of the insulated transversely extending conductors can be provided within the high temperatures regions of the fuel cell generator to provide highly homogeneous temperature distribution over the contacting surfaces.

Isenberg, Arnold O. (Forest Hills, PA)

1984-01-01T23:59:59.000Z

446

Electrosorption selectivity of ions from mixtures of electrolytes inside nanopores  

SciTech Connect (OSTI)

Grand canonical Monte Carlo (GCMC) simulations are employed to study the selective electrosorption of ions from a mixture of symmetric and asymmetric electrolytes confined in pores and results are compared to experimental observations obtained via cyclic voltammetry and batch electrosorption equilibrium experiments. GCMC simulations have the advantage over other Monte Carlo methods to unambiguously quantify the total number of ions in the pore solution. The exclusion parameter and selectivity factor are used to evaluate the selective capacity of pores toward different ionic species under various conditions. The number of coions inside the pore solution is determined by the proportion of different counterions present in the double-layer region. Because of the competitive effects resulting from asymmetries in charge and size associated with different ions, the electrosorption selectivity of small monovalent over large divalent counterions first decreases with increasing surface charge, passes through a minimum, and then increases with further increase in surface charge. At low and moderate surface charge densities, the fact that large divalent counterions preferentially screen the surface charge has a strong effect on pore occupancy; whereas at a very high surface charge density, size-exclusion effects dominate and determine the accessibility of different ions into the pores. Therefore, electrosorption selectivity of ions from a mixture of electrolytes could, in principle, be achieved via tuning the electrical double-layer formation inside the pores through the regulation of surface charge tailored for different ion characteristics. The findings of this work provide important information relevant to ion selectivity during separation processes and energy storage in supercapacitors.

Hou, Chia-Hung [Georgia Institute of Technology; Taboada Serrano, Patricia L [ORNL; Yiacoumi, Sotira [Georgia Institute of Technology; Tsouris, Costas [ORNL

2008-01-01T23:59:59.000Z

447

Bubble coalescence dynamics and supersaturation in electrolytic gas evolution  

SciTech Connect (OSTI)

The apparatus and procedures developed in this research permit the observation of electrolytic bubble coalescence, which heretofore has not been possible. The influence of bubble size, electrolyte viscosity, surface tension, gas type, and pH on bubble coalescence was examined. The Navier-Stokes equations with free surface boundary conditions were solved numerically for the full range of experimental variables that were examined. Based on this study, the following mechanism for bubble coalescence emerges: when two gas bubbles coalesce, the surface energy decreases as the curvature and surface area of the resultant bubble decrease, and the energy is imparted into the surrounding liquid. The initial motion is driven by the surface tension and slowed by the inertia and viscosity of the surrounding fluid. The initial velocity of the interface is approximately proportional to the square root of the surface tension and inversely proportional to the square root of the bubble radius. Fluid inertia sustains the oblate/prolate oscillations of the resultant bubble. The period of the oscillations varies with the bubble radius raised to the 3/2 power and inversely with the square root of the surface tension. Viscous resistance dampens the oscillations at a rate proportional to the viscosity and inversely proportional to the square of the bubble radius. The numerical simulations were consistent with most of the experimental results. The differences between the computed and measured saddle point decelerations and periods suggest that the surface tension in the experiments may have changed during each run. By adjusting the surface tension in the simulation, a good fit was obtained for the 150-{micro}m diameter bubbles. The simulations fit the experiments on larger bubbles with very little adjustment of surface tension. A more focused analysis should be done to elucidate the phenomena that occur in the receding liquid film immediately following rupture.

Stover, R.L. [Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering]|[Lawrence Berkeley National Lab., CA (United States). Energy and Environment Div.

1996-08-01T23:59:59.000Z

448

Artificial Solid Electrolyte Interphase to Address the Electrochemical Degradation of Silicon Electrodes  

SciTech Connect (OSTI)

Electrochemical degradation on Si anodes prevents them from being successfully used in lithium-ion full cells. Unlike the case of graphite anodes, natural solid electrolyte interphase (SEI) films generated from carbonate electrolyte do not self-passivate on Si and causes continuous electrolyte decomposition. In this work we aim at solving the issue of electrochemical degradation by fabricating artificial SEI films using a solid electrolyte material, lithium phosphor oxynitride (Lipon), that conducts Li ions and blocks electrons. For Si anodes coated with Lipon of 50 nm or thicker, significant effect is observed in suppressing the electrolyte decomposition, while Lipon of thinner than 40 nm has little effect. Ionic and electronic conductivity measurement reveals that the artificial SEI is effective when it is a pure ionic conductor, and the electrolyte decomposition is not suppressed when the artificial SEI is a mixed electronic-ionic conductor. The critical thickness for this transition in conducting behavior is found to be 40~50 nm. This work provides guidance for designing artificial SEI for high capacity lithium-ion battery electrodes using solid electrolyte materials.

Dudney, Nancy J [ORNL] [ORNL; Nanda, Jagjit [ORNL] [ORNL; Liang, Chengdu [ORNL] [ORNL; Li, Juchuan [ORNL] [ORNL

2014-01-01T23:59:59.000Z

449

Pushing the Theoretical Limit of Li-CFx Batteries: A Tale of Bi-functional Electrolyte  

SciTech Connect (OSTI)

In a typical battery, electrodes deliver capacities less or equal the theoretical maxima of the electrode materials.1 The inert electrolyte functions solely as the ionic conductor without contribution to the cell capacity because of its distinct mono-function in the concept of conventional batteries. Here we demonstrate that the most energy-dense Li-CFx battery2 delivers a capacity exceeding the theoretical maximum of CFx with a solid electrolyte of Li3PS4 (LPS) that has dual functions: as the inert electrolyte at the anode and the active component at the cathode. Such a bi-functional electrolyte reconciles both inert and active characteristics through a synergistic discharge mechanism of CFx and LPS. Li3PS4 is known as an inactive solid electrolyte with a broad electrochemical window over 5 V.3 The synergy at the cathode is through LiF, the discharge product of CFx, which activates the electrochemical discharge of LPS at a close electrochemical potential of CFx. Therefore, the solid-state Li-CFx batteries output 126.6% energy beyond their theoretic limits without compromising the stability of the cell voltage. The extra energy comes from the electrochemical discharge of LPS, the inert electrolyte. This bi-functional electrolyte revolutionizes the concept of conventional batteries and opens a new avenue for the design of batteries with an unprecedentedly high energy density.

Rangasamy, Ezhiylmurugan [ORNL] [ORNL; Li, Juchuan [ORNL] [ORNL; Sahu, Gayatri [ORNL] [ORNL; Dudney, Nancy J [ORNL] [ORNL; Liang, Chengdu [ORNL] [ORNL

2014-01-01T23:59:59.000Z

450

Aluminum oxyhydroxide based separator/electrolyte and battery system, and a method making the same  

SciTech Connect (OSTI)

The instant invention relates a solid-state electrochemical cell and a novel separator/electrolyte incorporated therein. A preferred embodiment of the invented electrochemical cell generally comprises a unique metal oxyhydroxide based (i.e. AlOOH) separator/electrolyte membrane sandwiched between a first electrode and a second electrode. A preferred novel separator/electrolyte comprises a nanoparticulate metal oxyhydroxide, preferably AlOOH and a salt which are mixed and then pressed together to form a monolithic metal oxyhydroxide-salt membrane.

Gerald, II, Rex E. (Brookfield, IL); Klingler, Robert J. (Glenview, IL); Rathke, Jerome W. (Homer Glen, IL)

2011-03-08T23:59:59.000Z

451

Electron-beam patterning of polymer electrolyte films to make multiple nanoscale gates for nanowire transistors  

E-Print Network [OSTI]

We report an electron-beam based method for the nanoscale patterning of the poly(ethylene oxide)/LiClO$_{4}$ polymer electrolyte. We use the patterned polymer electrolyte as a high capacitance gate dielectric in single nanowire transistors and obtain subthreshold swings comparable to conventional metal/oxide wrap-gated nanowire transistors. Patterning eliminates gate/contact overlap which reduces parasitic effects and enables multiple, independently controllable gates. The method's simplicity broadens the scope for using polymer electrolyte gating in studies of nanowires and other nanoscale devices.

D. J. Carrad; A. M. Burke; R. W. Lyttleton; H. J. Joyce; H. H. Tan; C. Jagadish; K. Storm; H. Linke; L. Samuelson; A. P. Micolich

2014-04-08T23:59:59.000Z

452

Method for treating electrolyte to remove Li.sub.2 O  

DOE Patents [OSTI]

A method of removing Li.sub.2 O present in an electrolyte predominantly of LiCl and KCl. The electrolyte is heated to a temperature not less than about 500.degree. C. and then Al is introduced into the electrolyte in an amount in excess of the stoichiometric amount needed to convert the Li.sub.2 O to a Li-Al alloy and lithium aluminate salt. The salt and aluminum are maintained in contact with agitation for a time sufficient to convert the Li.sub.2 O.

Tomczuk, Zygmunt (Lockport, IL); Miller, William E. (Naperville, IL); Johnson, Gerald K. (Downers Grove, IL); Willit, James L. (Batavia, IL)

1998-01-01T23:59:59.000Z

453

The evidence of cathodic micro-discharges during plasma electrolytic oxidation process  

SciTech Connect (OSTI)

Plasma electrolytic oxidation (PEO) processing of EV31 magnesium alloy has been carried out in fluoride containing electrolyte under bipolar pulse current regime. Unusual PEO cathodic micro-discharges have been observed and investigated. It is shown that the cathodic micro-discharges exhibit a collective intermittent behavior, which is discussed in terms of charge accumulations at the layer/electrolyte and layer/metal interfaces. Optical emission spectroscopy is used to determine the electron density (typ. 10{sup 15}?cm{sup ?3}) and the electron temperature (typ. 7500?K) while the role of F{sup ?} anions on the appearance of cathodic micro-discharges is pointed out.

Nominé, A., E-mail: alexandre.nomine@univ-lorraine.fr [Institut Jean Lamour, UMR 7198 CNRS, Université de Lorraine, Parc de Saurupt, 54011 Nancy (France); National Institute of Science and Technology “MISiS,” 4, Leninskij Prospekt, Moscow 119049 (Russian Federation); Martin, J.; Noël, C.; Henrion, G.; Belmonte, T. [Institut Jean Lamour, UMR 7198 CNRS, Université de Lorraine, Parc de Saurupt, 54011 Nancy (France); Bardin, I. V.; Kovalev, V. L.; Rakoch, A. G. [National Institute of Science and Technology “MISiS,” 4, Leninskij Prospekt, Moscow 119049 (Russian Federation)

2014-02-24T23:59:59.000Z

454

Efficient Reformulation of Solid-Phase Diffusion in Physics-Based Lithium-Ion Battery Models  

E-Print Network [OSTI]

Efficient Reformulation of Solid-Phase Diffusion in Physics-Based Lithium-Ion Battery Models or approximation for the solid phase. One of the major difficulties in simulating Li-ion battery models is the need typically solve electrolyte con- centration, electrolyte potential, solid-state potential, and solid-state

Subramanian, Venkat

455

Final Technical Report: SISGR: The Influence of Electrolyte Structure and Electrode Morphology on the Performance of Ionic-Liquid Based Supercapacitors: A Combined Experimental and Simulation Study  

SciTech Connect (OSTI)

Obtaining fundamental understanding and developing predictive modeling capabilities of electrochemical interfaces can significantly shorten the development cycles of electrical double layer capacitors (EDLCs). A notable improvement in EDLC performance has been achieved due to recent advances in understanding charge storage mechanisms, development of advanced nanostructured electrodes and electrochemically stable electrolytes. The development of new generation of EDLCs is intimately linked to that of nanostructured carbon materials which have large surface area, good adsorption/desorption properties, good electrical conductivity and are relatively inexpensive. To address these scientific challenges the efforts of an interdisciplinary team of modelers and experimentalists were combined to enhance our understanding of molecular level mechanisms controlling the performance of EDLCs comprised of room temperature ionic liquid (RTIL) electrolytes and nanostructured carbon-based electrodes and to utilize these knowledge in the design of a new generation of materials and devices for this energy storage application. Specifically our team efforts included: atomistic molecular dynamics simulations, materials science and electrode/device assembly, and synthesis and characterization of RTIL electrolytes.

Bedrov, Dmitry [University of Utah] [University of Utah

2013-08-15T23:59:59.000Z

456

acid aqueous medium: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

transfer radical polymerization technique ... Yao, Jia 3 Ultrasonic measurement of porous medium in an aqueous environment Texas A&M University - TxSpace Summary: August 1995 Major...

457

acidic aqueous medium: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

transfer radical polymerization technique ... Yao, Jia 3 Ultrasonic measurement of porous medium in an aqueous environment Texas A&M University - TxSpace Summary: August 1995 Major...

458

Method and apparatus for destroying organic contaminants in aqueous liquids  

DOE Patents [OSTI]

A method and apparatus for destroying organic contaminants, such as trichloroethylene, in aqueous liquids, such as groundwater, utilizing steam stripping integrated with biodegradation. The contaminated aqueous liquid is fed into a steam stripper causing the volatilization of essentially all of the organic contaminants and a portion of the aqueous liquid. The majority of the aqueous liquid is discharged from the steam stripper. The volatilized vapors are then condensed to the liquid phase and introduced into a bioreactor. The bioreactor contains methanotrophic microorganisms which convert the organic contaminants into mainly carbon dioxide. The effluent from the bioreactor is then recycled back to the steam stripper for further processing. 2 figures.

Donaldson, T.L.; Wilson, J.H.

1993-09-21T23:59:59.000Z

459

Chemical Processing in High-Pressure Aqueous Environments. 7...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Aqueous Environments. 7. Process Development for Catalytic Gasification of Wet Biomass Feedstocks."Industrial and Engineering Chemistry Research 43(9):1999-2004. Authors: DC...

460

MTR CONVERTER WITH AQUEOUS BLANKET | OSTI, US Dept of Energy...  

Office of Scientific and Technical Information (OSTI)

Oak Ridge, TN (United States) Reactors employing two different arrangements of the aluminum-clad MTR- type fuel elements and an aqueous solution ''blanket'' are considered for...

Note: This page contains sample records for the topic "aqueous electrolyte modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

aqueous liquid waste: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Majda 2005-01-01 18 Momentum, Heat, and Neutral Mass Transport in Convective Atmospheric Pressure Plasma-Liquid Systems and Implications for Aqueous Targets CERN Preprints...

462

aqueous sodium sulfate: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

viscosity, 771, for PDMDAAC fractions in sodium chloride solutions by viscosity, size-exclusionchromatography, and light Dubin, Paul D. 32 Structure and Dynamics in Aqueous...

463

aqueous solution route: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and alternating current polarography of nitrobenzene in aqueous solutions and in acetonitrile. Open Access Theses and Dissertations Summary: ??The polarographic reduction of...

464

aqueous solutions gamma: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and alternating current polarography of nitrobenzene in aqueous solutions and in acetonitrile. Open Access Theses and Dissertations Summary: ??The polarographic reduction of...

465

aqueous benzene solutions: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and alternating current polarography of nitrobenzene in aqueous solutions and in acetonitrile. Open Access Theses and Dissertations Summary: ??The polarographic reduction of...

466

aqueous libr solution: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and alternating current polarography of nitrobenzene in aqueous solutions and in acetonitrile. Open Access Theses and Dissertations Summary: ??The polarographic reduction of...

467

aqueous solutions experimental: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and alternating current polarography of nitrobenzene in aqueous solutions and in acetonitrile. Open Access Theses and Dissertations Summary: ??The polarographic reduction of...

468

aqueous solution importance: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and alternating current polarography of nitrobenzene in aqueous solutions and in acetonitrile. Open Access Theses and Dissertations Summary: ??The polarographic reduction of...

469

aqueous methanol solution: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and alternating current polarography of nitrobenzene in aqueous solutions and in acetonitrile. Open Access Theses and Dissertations Summary: ??The polarographic reduction of...

470

aqueous alkaline solutions: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and alternating current polarography of nitrobenzene in aqueous solutions and in acetonitrile. Open Access Theses and Dissertations Summary: ??The polarographic reduction of...

471

aqueous solution investigations: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and alternating current polarography of nitrobenzene in aqueous solutions and in acetonitrile. Open Access Theses and Dissertations Summary: ??The polarographic reduction of...

472

aqueous solution method: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and alternating current polarography of nitrobenzene in aqueous solutions and in acetonitrile. Open Access Theses and Dissertations Summary: ??The polarographic reduction of...

473

aqueous solution extraction: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and alternating current polarography of nitrobenzene in aqueous solutions and in acetonitrile. Open Access Theses and Dissertations Summary: ??The polarographic reduction of...

474

aqueous solution extractions: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and alternating current polarography of nitrobenzene in aqueous solutions and in acetonitrile. Open Access Theses and Dissertations Summary: ??The polarographic reduction of...

475

aqueous methanol solutions: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and alternating current polarography of nitrobenzene in aqueous solutions and in acetonitrile. Open Access Theses and Dissertations Summary: ??The polarographic reduction of...

476

alkaline aqueous solution: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and alternating current polarography of nitrobenzene in aqueous solutions and in acetonitrile. Open Access Theses and Dissertations Summary: ??The polarographic reduction of...

477

aqueous alkaline solution: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and alternating current polarography of nitrobenzene in aqueous solutions and in acetonitrile. Open Access Theses and Dissertations Summary: ??The polarographic reduction of...

478

aqueous solutions decoration: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrosoluble Polymers in Aqueous Solutions: Decoration Versus Bridging. a Small Angle Neutron Scattering Study Condensed Matter (arXiv) Summary: In this paper we examine the...

479

The design of a microfabricated air electrode for liquid electrolyte fuel cells  

E-Print Network [OSTI]

In this dissertation, the microfabricated electrode (MFE) concept was applied to the design of an air electrode for liquid electrolyte fuel cells. The catalyst layer of the electrode is envisioned to be fabricated by using ...

Pierre, Fritz, 1977-

2007-01-01T23:59:59.000Z

480

Electrolytes for Use in High Energy Lithium-Ion Batteries with...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for Use in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range...

Note: This page contains sample records for the topic "aqueous electrolyte modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Electrolysis of Molten Iron Oxide with an Iridium Anode: The Role of Electrolyte Basicity  

E-Print Network [OSTI]

in ironmaking cells operated with two different electrolytes. The basicity of the elec- trolyte has been found at a concentration of 9.1 wt % as feedstock for ironmaking. It is convenient to express the melt chemistry

Sadoway, Donald Robert

482

Progress in Electrolyte Component R&D within the ABR Program...  

Broader source: Energy.gov (indexed) [DOE]

Reversible redox at 4.0V vs LiLi + : suitable for LiFePO 4 chemistry * No interfere with bulk electrolyte. * Reduce cost by simplifying the BMS: 10% reduction estimated by BatPaC...

483

High Temperature/Low Humidity Polymer Electrolytes Derived from Ionic Liquids  

Broader source: Energy.gov [DOE]

Presentation on High Temperature/Low Humidity Polymer Electrolytes Derived from Ionic Liquids to the High Temperature Membrane Working Group Meeting held in Arlington, Virginia, May 26,2005.

484

Self-Assembled Silica Nano-Composite Polymer Electrolytes: Synthesis, Rheology & Electrochemistry  

SciTech Connect (OSTI)

The ultimate objectives of this research are to understand the principles underpinning nano-composite polymer electrolytes (CPEs) and facilitate development of novel CPEs that are low-cost, have high conductivities, large Li+ transference numbers, improved electrolyte-electrode interfacial stability, yield long cycle life, exhibit mechanical stability and are easily processable. Our approach is to use nanoparticulate silica fillers to formulate novel composite electrolytes consisting of surface-modified fumed silica nano-particles in polyethylene oxides (PEO) in the presence of lithium salts. We intend to design single-ion conducting silica nanoparticles which provide CPEs with high Li+ transference numbers. We also will develop low-Mw (molecular weight), high-Mw and crosslinked PEO electrolytes with tunable properties in terms of conductivity, transference number, interfacial stability, processability and mechanical strength

Khan, Saad A.: Fedkiw Peter S.; Baker, Gregory L.

2007-01-24T23:59:59.000Z

485

Coordination Chemistry in magnesium battery electrolytes: how ligands affect their performance  

SciTech Connect (OSTI)

Magnesium battery is potentially a safe, cost-effective, and high energy density technology for large scale energy storage. However, the development of magnesium battery has been hindered by the limited performance and the lack of fundamental understandings of electrolytes. Here, we present a coordination chemistry study of Mg(BH4)2 in ethereal solvents. The O donor denticity, i.e. ligand strength of the ethereal solvents which act as ligands to form solvated Mg complexes, plays a significant role in enhancing coulombic efficiency of the corresponding solvated Mg complex electrolytes. A new and safer electrolyte is developed based on Mg(BH4)2, diglyme and optimized LiBH4 additive. The new electrolyte demonstrates 100% coulombic efficiency, no dendrite formation, and stable cycling performance with the cathode capacity retention of ~90% for 300 cycles in a prototype magnesium battery.

Shao, Yuyan; Liu, Tianbiao L.; Li, Guosheng; Gu, Meng; Nie, Zimin; Engelhard, Mark H.; Xiao, Jie; Lu, Dongping; Wang, Chong M.; Zhang, Jiguang; Liu, Jun

2013-11-04T23:59:59.000Z

486

Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery  

Broader source: Energy.gov (indexed) [DOE]

performance (cell improver): For conventional electrolyte (for example 1.2M LiPF 6 ECEMC), the SEI additive is the performance improver. 2-1. Artificial SEI forms prior the...

487

Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery  

Broader source: Energy.gov (indexed) [DOE]

Li-ion Cell Performance: For conventional electrolyte (for example 1.2M LiPF 6 ECEMC 37), the SEI additive is the performance improver. Artificial SEI forms prior the...

488

Effects of electrode compression on the performance of a solid polymer electrolyte fuel cell  

E-Print Network [OSTI]

The effects of electrode compression on the performance of a polymer electrolyte fuel cell (PEFC) were investigated. Preliminary testing showed that considerable compression of the carbon cloth electrodes was provided by the PEFC structure. Further...

Del Campo, Christopher Scott

1997-01-01T23:59:59.000Z

489

E-Print Network 3.0 - alkaline electrolyte fuel cells Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fuel cells Search Powered by Explorit Topic List Advanced Search Sample search results for: alkaline electrolyte fuel cells Page: << < 1 2 3 4 5 > >> 1 The Biocarbon Fuel Cell III...

490

Inactive end cell assembly for fuel cells for improved electrolyte management and electrical contact  

DOE Patents [OSTI]

An assembly for storing electrolyte in a carbonate fuel cell is provided. The combination of a soft, compliant and resilient cathode current collector and an inactive anode part including a foam anode in each assembly mitigates electrical contact loss during operation of the fuel cell stack. In addition, an electrode reservoir in the positive end assembly and an electrode sink in the negative end assembly are provided, by which ribbed and flat cathode members inhibit electrolyte migration in the fuel cell stack.

Yuh, Chao-Yi (New Milford, CT); Farooque, Mohammad (Danbury, CT); Johnsen, Richard (New Fairfield, CT)

2007-04-10T23:59:59.000Z

491

Momentum, Heat, and Neutral Mass Transport in Convective Atmospheric Pressure Plasma-Liquid Systems and Implications for Aqueous Targets  

E-Print Network [OSTI]

There is a growing interest in the study of plasma-liquid interactions with application to biomedicine, chemical disinfection, agriculture, and other fields. This work models the momentum, heat, and neutral species mass transfer between gas and aqueous phases in the context of a streamer discharge; the qualitative conclusions are generally applicable to plasma-liquid systems. The problem domain is discretized using the finite element method. The most interesting and relevant model result for application purposes is the steep gradients in reactive species at the interface. At the center of where the reactive gas stream impinges on the water surface, the aqueous concentrations of OH and ONOOH decrease by roughly 9 and 4 orders of magnitude respectively within 50 $\\mu$m of the interface. Recognizing the limited penetration of reactive plasma species into the aqueous phase is critical to discussions about the therapeutic mechanisms for direct plasma treatment of biological solutions. Other interesting results fro...

Lindsay, Alexander; Slikboer, Elmar; Shannon, Steven; Graves, David

2015-01-01T23:59:59.000Z

492

DEVELOPMENT AND SELECTION OF IONIC LIQUID ELECTROLYTES FOR HYDROXIDE CONDUCTING POLYBENZIMIDAZOLE MEMBRANES IN ALKALINE FUEL CELLS  

SciTech Connect (OSTI)

Alkaline fuel cell (AFC) operation is currently limited to specialty applications such as low temperatures and pure H{sub 2}/O{sub 2} due to the corrosive nature of the electrolyte and formation of carbonates. AFCs are the cheapest and potentially most efficient (approaching 70%) fuel cells. The fact that non-Pt catalysts can be used, makes them an ideal low cost alternative for power production. The anode and cathode are separated by and solid electrolyte or alkaline porous media saturated with KOH. However, CO{sub 2} from the atmosphere or fuel feed severely poisons the electrolyte by forming insoluble carbonates. The corrosivity of KOH (electrolyte) limits operating temperatures to no more than 80?C. This chapter examines the development of ionic liquids electrolytes that are less corrosive, have higher operating temperatures, do not chemically bond to CO{sub 2}, and enable alternative fuels. Work is detailed on the IL selection and characterization as well as casting methods within the polybenzimidazole based solid membrane. This approach is novel as it targets the root of the problem (the electrolyte) unlike other current work in alkaline fuel cells which focus on making the fuel cell components more durable.

Fox, E.

2012-05-01T23:59:59.000Z

493

Properties of electric double-layer capacitors with various polymer gel electrolytes  

SciTech Connect (OSTI)

Polyethylene oxide (PEO), polymethyl methacrylate (PMMA), and polyacrylonitrile (PAN) based gel electrolytes with a mixture of ethylene carbonate and propylene carbonate as plasticizer and lithium perchlorate were used to fabricate an electric double-layer capacitor (EDLC). The performance of EDLCs with these gel electrolytes was investigated by using isotropic high-density graphite electrodes. The ion conductivities of various gel electrolytes were of the order of 10{sup {minus}4} to 10{sup {minus}3} S/cm, and they decreased in the order PAN > PEO > PMMA at ambient temperature. Capacitances approaching the value of EDLCs using organic liquid electrolyte, 20 mF/cm{sup 2}, with an isotropic high-density graphite electrode were obtained in PAN and PMMA gel electrolytes. The EDLC with PMMA-based gel electrolyte showed good charge-discharge behavior over 10{sup 4} cycles at a charge potential of 3.0 V. The rapid progress in the development of electric vehicles and electronic devices has placed increased demand on high-power capacitors. The EDLC is attractive as a rechargeable pulse power source or backup power supply for such applications.

Liu, X.; Osaka, Tetsuya [Waseda Univ., Tokyo (Japan)

1997-09-01T23:59:59.000Z

494

Pilot Plant Study of Carbon Dioxide Capture by Aqueous Monoethanolamine  

E-Print Network [OSTI]

i Pilot Plant Study of Carbon Dioxide Capture by Aqueous Monoethanolamine Topical Report Prepared Pilot Plant Study of Carbon Dioxide Capture by Aqueous Monoethanolamine Ross Edward Dugas, M capture using monoethanolamine (MEA). MEA is an appropriate choice for a baseline study since

Rochelle, Gary T.

495

Polymer electrolyte fuel cells: Potential transportation and stationary applications  

SciTech Connect (OSTI)

The application of the polymer electrolyte fuel cell (PEFC) as a primary power source in electric vehicles has received increasing attention during the last few years. This increased attention is the result of a combination of significant technical advances in this fuel cell technology and the initiation of some projects for the demonstration of a complete, PEFC-based power system a bus or in a passenger car. Such demonstration projects reflect an increase in industry's faith in the potential of this technology for transportation applications, or, at least, in the need for a detailed evaluation of this potential. Nevertheless, large scale transportation applications of PEFCs require a continued concerted effort of research on catalysis, materials and components, combined with the engineering efforts addressing the complete power system. This is required to achieve a cost effective, highly performing PEFC stack and power system. A related set of technical and cost challenges arises in the context of potential applications of PEFCs for stationary power applications, although there are clearly some differences in their nature, particularly, to do with the different types of fuels to be employed for each of these applications. We describe in this contribution some recent results of work performed by the Core Research PEFC Program at Los Alamos National Laboratory, which has addressed materials, components and single cell testing of PEFCS. Also included are some recent observations and some insights regarding the potential of this fuel cell technology for stationary Power generation.

Gottesfeld, S.

1993-01-01T23:59:59.000Z

496

Polymer electrolyte fuel cells: Potential transportation and stationary applications  

SciTech Connect (OSTI)

The application of the polymer electrolyte fuel cell (PEFC) as a primary power source in electric vehicles has received increasing attention during the last few years. This increased attention is the result of a combination of significant technical advances in this fuel cell technology and the initiation of some projects for the demonstration of a complete, PEFC-based power system a bus or in a passenger car. Such demonstration projects reflect an increase in industry`s faith in the potential of this technology for transportation applications, or, at least, in the need for a detailed evaluation of this potential. Nevertheless, large scale transportation applications of PEFCs require a continued concerted effort of research on catalysis, materials and components, combined with the engineering efforts addressing the complete power system. This is required to achieve a cost effective, highly performing PEFC stack and power system. A related set of technical and cost challenges arises in the context of potential applications of PEFCs for stationary power applications, although there are clearly some differences in their nature, particularly, to do with the different types of fuels to be employed for each of these applications. We describe in this contribution some recent results of work performed by the Core Research PEFC Program at Los Alamos National Laboratory, which has addressed materials, components and single cell testing of PEFCS. Also included are some recent observations and some insights regarding the potential of this fuel cell technology for stationary Power generation.

Gottesfeld, S.

1993-04-01T23:59:59.000Z

497

Hydrogen-fueled polymer electrolyte fuel cell systems for transportation.  

SciTech Connect (OSTI)

The performance of a polymer electrolyte fuel cell (PEFC) system that is fueled directly by hydrogen has been evaluated for transportation vehicles. The performance was simulated using a systems analysis code and a vehicle analysis code. The results indicate that, at the design point for a 50-kW PEFC system, the system efficiency is above 50%. The efficiency improves at partial load and approaches 60% at 40% load, as the fuel cell operating point moves to lower current densities on the voltage-current characteristic curve. At much lower loads, the system efficiency drops because of the deterioration in the performance of the compressor, expander, and, eventually, the fuel cell. The results also indicate that the PEFC system can start rapidly from ambient temperatures. Depending on the specific weight of the fuel cell (1.6 kg/kW in this case), the system takes up to 180s to reach its design operating conditions. The PEFC system has been evaluated for three mid-size vehicles: the 1995 Chrysler Sedan, the near-term Ford AIV (Aluminum Intensive Vehicle) Sable, and the future P2000 vehicle. The results show that the PEFC system can meet the demands of the Federal Urban Driving Schedule and the Highway driving cycles, for both warm and cold start-up conditions. The results also indicate that the P2000 vehicle can meet the fuel economy goal of 80 miles per gallon of gasoline (equivalent).

Ahluwalia, R.; Doss, E.D.; Kumar, R.

1998-10-19T23:59:59.000Z

498

Surface Tension of Electrolyte Solutions: A Self-consistent Theory  

E-Print Network [OSTI]

We study the surface tension of electrolyte solutions at the air/water and oil/water interfaces. Employing field-theoretical methods and considering short-range interactions of anions with the surface, we expand the Helmholtz free energy to first-order in a loop expansion and calculate the excess surface tension. Our approach is self-consistent and yields an analytical prediction that reunites the Onsager-Samaras pioneering result (which does not agree with experimental data), with the ionic specificity of the Hofmeister series. We obtain analytically the surface-tension dependence on the ionic strength, ionic size and ion-surface interaction, and show consequently that the Onsager-Samaras result is consistent with the one-loop correction beyond the mean-field result. Our theory fits well a wide range of concentrations for different salts using one fit parameter, reproducing the reverse Hofmeister series for anions at the air/water and oil/water interfaces.10.1029

Tomer Markovich; David Andelman; Rudi Podgornik

2014-04-09T23:59:59.000Z

499

Removal of fluoride from aqueous nitric acid  

SciTech Connect (OSTI)

Several methods for removing fluoride from aqueous nitric acid were investigated and compared with the frequently used aluminum nitrate-calcium nitrate (Ca/sup 2 +/-Al/sup 3 +/) chemical trap-distillation system. Zirconium oxynitrate solutions were found to be superior in preventing volatilization of fluoride during distillation of the nitric acid, producing decontamination factors (DFs) on the order of 2 x 10/sup 3/ (vs approx. 500 for the Ca/sup 2 +/-Al/sup 3 +/ system). Several other metal nitrate systems were tested, but they were less effective. Alumina and zirconia columns proved highly effective in removing HF from HF-HNO/sub 3/ vapors distilled through the columns; fluoride DFs on the order of 10/sup 6/ and 10/sup 4/, respectively, were obtained. A silica gel column was very effective in adsorbing HF from HF-HNO/sub 3/ solutions, producing a fluoride DF of approx. 10/sup 4/.

Pruett, D.J.; Howerton, W.B.; Mailen, J.C.

1981-06-01T23:59:59.000Z

500

Enhanced Oil Recovery: Aqueous Flow Tracer Measurement  

SciTech Connect (OSTI)

A low detection limit analytical method was developed to measure a suite of benzoic acid and fluorinated benzoic acid compounds intended for use as tracers for enhanced oil recovery operations. Although the new high performance liquid chromatography separation successfully measured the tracers in an aqueous matrix at low part per billion levels, the low detection limits could not be achieved in oil field water due to interference problems with the hydrocarbon-saturated water using the system's UV detector. Commercial instrument vendors were contacted in an effort to determine if mass spectrometry could be used as an alternate detection technique. The results of their work demonstrate that low part per billion analysis of the tracer compounds in oil field water could be achieved using ultra performance liquid chromatography mass spectrometry.

Joseph Rovani; John Schabron

2009-02-01T23:59:59.000Z