Sample records for aqueous electrolyte modeling

  1. Physical property parameter set for modeling ICPP aqueous wastes with ASPEN electrolyte NRTL model

    SciTech Connect (OSTI)

    Schindler, R.E.

    1996-09-01T23:59:59.000Z

    The aqueous waste evaporators at the Idaho Chemical Processing Plant (ICPP) are being modeled using ASPEN software. The ASPEN software calculates chemical and vapor-liquid equilibria with activity coefficients calculated using the electrolyte Non-Random Two Liquid (NRTL) model for local excess Gibbs free energies of interactions between ions and molecules in solution. The use of the electrolyte NRTL model requires the determination of empirical parameters for the excess Gibbs free energies of the interactions between species in solution. This report covers the development of a set parameters, from literature data, for the use of the electrolyte NRTL model with the major solutes in the ICPP aqueous wastes.

  2. Aqueous Electrolyte Modeling in Aspen Plus G. E

    Office of Scientific and Technical Information (OSTI)

    371-411. Debye, P. and Huckel, E., (1923) PhysikZ., 24, 185 Pitzer, K.S. (1973) Thermodynamics of Electrolytes. I. Theoretical Basis and General Equations, J. Phys. Chem., 77,...

  3. A model of vapor-liquid equilibria in acid gas: Aqueous alkanolamine systems using the electrolyte-NRTL equation

    SciTech Connect (OSTI)

    Austgen, D.M.; Rochelle, G.T. (Univ. of Texas at Austin, TX (US)); (Peng, X. (Sinopen Beijing Design Institute (US)); Chen, C.C. (Aspen Technology, Inc. TX (US)))

    1988-01-01T23:59:59.000Z

    In this paper a thermodynamically-consistent model is developed for representing vapor-liquid equilibria in the acid gas (H/sub 2/S, CO/sub 2/)-alkanolamine-water system. The model accounts for chemical equilibria in a rigorous manner. Activity coefficients are represented with the Electrolyte-NRTL equation, treating both long-range ion-ion interactions and short-range interactions between all true liquid phase species. Both water and alkanolamine are treated as solvents. Adjustable parameters of the Electrolyte-NRTL equation, representing short-range binary interactions, are fitted primarily on binary and ternary system VLE data. Calculated vapor pressures of H/sub 2/S or CO/sub 2/ over aqueous solutions of monoethanolamine or diethanolamine generally agree with published experimental data within 10 percent over the temperature range 25-120{sup 0}C. No more than two additional parameters are adjusted on quartenary system VLE data to provide a good representation of H/sub 2/S and CO/sub 2/ vapor pressures over the same alkanolamine solutions.

  4. Representing vapor-liquid equilibrium for an aqueous MEA-CO{sub 2} system using the electrolyte nonrandom-two-liquid model

    SciTech Connect (OSTI)

    Liu, Y.; Zhang, L.; Watanasiri, S. [Aspen Technology, Inc., Cambridge, MA (United States)] [Aspen Technology, Inc., Cambridge, MA (United States)

    1999-05-01T23:59:59.000Z

    Following the work of Austgen et al., the electrolyte nonrandom-two-liquid (NRTL) model was applied in a thermodynamically consistent manner to represent the vapor-liquid equilibrium (VLE) of the aqueous monoethanolamine (MEA)-CO{sub 2} system with rigorous chemical equilibrium consideration. Special attention was given to the accurate VLE description of the system at both absorbing and stripping conditions relevant to most aqueous MEA absorption/stripping processes for CO{sub 2} removal. The influence from chemical equilibrium constants, Henry`s constant, experimental data, and data regression on the representation of the VLE of the system was discussed in detail. The equilibrium constant of the carbamate reversion reaction as well as important interaction parameters of the electrolyte NRTL model were carefully fitted to experimental data. A good agreement between the calculated values and the experimental data was achieved. Moreover, the model with newly fitted parameters was successfully applied to simulate three industrial cases for CO{sub 2} removal using a rate-based approach. The results from this work were compared with those using the model by Austgen et al.

  5. Highly Quantitative Electrochemical Characterization of Non-Aqueous Electrolytes & Solid Electrolyte Interphases

    SciTech Connect (OSTI)

    Sergiy V. Sazhin; Kevin L. Gering; Mason K. Harrup; Harry W. Rollins

    2012-10-01T23:59:59.000Z

    The methods to measure solid electrolyte interphase (SEI) electrochemical properties and SEI formation capability of non-aqueous electrolyte solutions are not adequately addressed in the literature. And yet, there is a strong demand in new electrolyte generations that promote stabilized SEIs and have an influence to resolve safety, calendar life and other limitations of Li-ion batteries. To fill this gap, in situ electrochemical approach with new descriptive criteria for highly quantitative characterization of SEI and electrolytes is proposed. These criteria are: SEI formation capacity, SEI corrosion rate, SEI maintenance rate, and SEI kinetic stability. These criteria are associated with battery parameters like irreversible capacity, self-discharge, shelf-life, power, etc. Therefore, they are especially useful for electrolyte development and standard fast screening, allowing a skillful approach to narrow down the search for the best electrolyte. The characterization protocol also allows retrieving information on interfacial resistance for SEI layers and the electrochemical window of electrolytes, the other important metrics of characterization. The method validation was done on electrolyte blends containing phosphazenes, developed at Idaho National Laboratory, as 1.2M LiPF6 [80 % EC-MEC (2:8) (v/v) + 20% Phosphazene variety] (v/v), which were targeted for safer electrolyte variations.

  6. Theoretical analysis of aqueous solutions of mixed strong electrolytes by a smaller-ion shell electrostatic model

    SciTech Connect (OSTI)

    Fraenkel, Dan, E-mail: dfraenkel@eltronresearch.com [Eltron Research and Development Inc., 4600 Nautilus Court South, Boulder, Colorado 80301 (United States)] [Eltron Research and Development Inc., 4600 Nautilus Court South, Boulder, Colorado 80301 (United States)

    2014-02-07T23:59:59.000Z

    In spite of the great importance of mixed electrolytes in science and technology, no compelling theoretical explanation has been offered yet for the thermodynamic behavior of such systems, such as their deviation from ideality and the variation of their excess functions with ionic composition and concentration. Using the newly introduced Smaller-ion Shell treatment – an extension of the Debye–Hückel theory to ions of dissimilar size (hence DH–SiS) – simple analytic mathematical expressions can be derived for the mean and single-ion activity coefficients of binary electrolyte components of ternary ionic systems. Such expressions are based on modifying the parallel DH–SiS equations for pure binary ionic systems, by adding to the three ion-size parameters – a (of counterions), b{sub +} (of positive coions), and b{sub ?} (of negative coions) – a fourth parameter. For the (+ + ?) system, this is “b{sub ++},” the contact distance between non-coion cations. b{sub ++} is derived from fits with experiment and, like the other b’s, is constant at varying ion concentration and combination. Four case studies are presented: (1) HCl–NaCl–H{sub 2}O, (2) HCl–NH{sub 4}Cl–H{sub 2}O, (3) (0.01 M HX)–MX–H{sub 2}O with X = Cl, Br, and with M = Li, Na, K, Cs, and (4) HCl–MCl{sub n}–H{sub 2}O with n = 2, M = Sr, Ba; and n = 3, M = Al, Ce. In all cases, theory is fully consistent with experiment when using a of the measured binary electrolyte as the sole fitting parameter. DH–SiS is thus shown to explain known “mysteries” in the behavior of ternary electrolytes, including Harned rule, and to adequately predict the pH of acid solutions in which ionized salts are present at different concentrations.

  7. Investigations of the Electrochemical Stability of Aqueous Electrolytes for Lithium Battery Applications

    E-Print Network [OSTI]

    Cui, Yi

    Investigations of the Electrochemical Stability of Aqueous Electrolytes for Lithium Battery dominate commercial lithium battery applications in which the major consideration is the specific energy. The use of aqueous electrolytes in lithium battery systems was pioneered by the Dahn group,7-10 which

  8. Microscopic Insights into the Electrochemical Behavior of Non-aqueous Electrolytes in Supercapacitors

    SciTech Connect (OSTI)

    Jiang, Deen [ORNL; Wu, Jianzhong [ORNL

    2013-01-01T23:59:59.000Z

    Electric double-layer capacitors (EDLC) are electrical devices that store energy by adsorption of ionic species at the inner surface of porous electrodes. Compared with aqueous electrolytes, ionic liquid and organic electrolytes have the advantage of larger potential windows, making them attractive for the next generation of EDLC with superior energy and power densities. The performance of both ionic liquid and organic electrolyte EDLC hinges on the judicious selection of the electrode pore size and the electrolyte composition that requires a comprehension of the charging behavior from a microscopic view. In this perspective, we discuss predictions from the classical density functional theory (CDFT) on the dependence of the capacitance on the pore size for ionic-liquid and organic-electrolyte EDLC. CDFT is applicable to electrodes with the pore size ranging from that below the ionic dimensionality to mesoscopic scales, thus unique for investigating the electrochemical behavior of the confined electrolytes for EDLC applications.

  9. Electroneutrality Breakdown and Specific Ion Effects in Nanoconfined Aqueous Electrolytes Observed by NMR

    E-Print Network [OSTI]

    Luo, Zhi-Xiang; Ling, Yan-Chun; Kleinhammes, Alfred; Wu, Yue

    2015-01-01T23:59:59.000Z

    Ion distribution in aqueous electrolytes near the interface plays critical roles in electrochemical, biological and colloidal systems and is expected to be particularly significant inside nanoconfined regions. Electroneutrality of the total charge inside nanoconfined regions is commonly assumed a priori in solving ion distribution of aqueous electrolytes nanoconfined by uncharged hydrophobic surfaces with no direct experimental validation. Here, we use a quantitative nuclear magnetic resonance approach to investigate the properties of aqueous electrolytes nanoconfined in graphitic-like nanoporous carbon. Substantial electroneutrality breakdown in nanoconfined regions and very asymmetric responses of cations and anions to the charging of nanoconfining surfaces are observed. The electroneutrality breakdown is shown to depend strongly on the propensity of anions toward the water-carbon interface and such ion-specific response follows generally the anion ranking of the Hofmeister series. The experimental observat...

  10. Electroneutrality Breakdown and Specific Ion Effects in Nanoconfined Aqueous Electrolytes Observed by NMR

    E-Print Network [OSTI]

    Zhi-Xiang Luo; Yun-Zhao Xing; Yan-Chun Ling; Alfred Kleinhammes; Yue Wu

    2015-02-24T23:59:59.000Z

    Ion distribution in aqueous electrolytes near the interface plays critical roles in electrochemical, biological and colloidal systems and is expected to be particularly significant inside nanoconfined regions. Electroneutrality of the total charge inside nanoconfined regions is commonly assumed a priori in solving ion distribution of aqueous electrolytes nanoconfined by uncharged hydrophobic surfaces with no direct experimental validation. Here, we use a quantitative nuclear magnetic resonance approach to investigate the properties of aqueous electrolytes nanoconfined in graphitic-like nanoporous carbon. Substantial electroneutrality breakdown in nanoconfined regions and very asymmetric responses of cations and anions to the charging of nanoconfining surfaces are observed. The electroneutrality breakdown is shown to depend strongly on the propensity of anions toward the water-carbon interface and such ion-specific response follows generally the anion ranking of the Hofmeister series. The experimental observations are further supported by numerical evaluation using the generalized Poisson-Boltzmann equation

  11. Non-aqueous electrolyte for lithium-ion battery

    DOE Patents [OSTI]

    Zhang, Lu; Zhang, Zhengcheng; Amine, Khalil

    2014-04-15T23:59:59.000Z

    The present technology relates to stabilizing additives and electrolytes containing the same for use in electrochemical devices such as lithium ion batteries and capacitors. The stabilizing additives include triazinane triones and bicyclic compounds comprising succinic anhydride, such as compounds of Formulas I and II described herein.

  12. aqueous rare-earth electrolyte: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aqueous rare-earth electrolyte First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Hydrothermal transport...

  13. Modelling of Gas Clathrate Hydrate Equilibria using the Electrolyte Non-Random Two-Liquid (eNRTL) Model

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Modelling of Gas Clathrate Hydrate Equilibria using the Electrolyte Non-Random Two-Liquid (e + salt2 + gas} systems (salt = NaCl, KCl, CaCl2; gas = CH4, CO2) comprising a gas clathrate hydrate phase-electrolyte aqueous systems involving gas hydrate phases. In the H-Lw-G calculations, fugacities in the gas phase were

  14. Nanoscale heterogeneity at the aqueous electrolyte-electrode interface

    E-Print Network [OSTI]

    David T. Limmer; Adam P. Willard

    2014-10-06T23:59:59.000Z

    Using molecular dynamics simulations, we reveal emergent properties of hydrated electrode interfaces that while molecular in origin are integral to the behavior of the system across long times scales and large length scales. Specifically, we describe the impact of a disordered and slowly evolving adsorbed layer of water on the molecular structure and dynamics of the electrolyte solution adjacent to it. Generically, we find that densities and mobilities of both water and dissolved ions are spatially heterogeneous in the plane parallel to the electrode over nanosecond timescales. These and other recent results are analyzed in the context of available experimental literature from surface science and electrochemistry. We speculate on the implications of this emerging microscopic picture on the catalytic proficiency of hydrated electrodes, offering an new direction for study in heterogeneous catalysis at the nanoscale.

  15. Three dimensional electrode for the electrolytic removal of contaminants from aqueous waste streams

    DOE Patents [OSTI]

    Spiegel, Ella F. (Louisville, CO); Sammells, Anthony F. (Boulder, CO)

    2001-01-01T23:59:59.000Z

    Efficient and cost-effective electrochemical devices and processes for the remediation of aqueous waste streams. The invention provides electrolytic cells having a high surface area spouted electrode for removal of heavy metals and oxidation of organics from aqueous environments. Heavy metal ions are reduced, deposited on cathode particles of a spouted bed cathode and removed from solution. Organics are efficiently oxidized at anode particles of a spouted bed anode and removed from solution. The method of this inventions employs an electrochemical cell having an anolyte compartment and a catholyte compartment, separated by a microporous membrane, in and through which compartments anolyte and catholyte, respectively, are circulated. A spouted-bed electrode is employed as the cathode for metal deposition from contaminated aqueous media introduced as catholyte and as the anode for oxidation of organics from contaminated aqueous media introduced as anolyte.

  16. Electrodeposited Manganese Oxides on Three-Dimensional Carbon Nanotube Substrate: Supercapacitive Behaviour in Aqueous and Organic Electrolytes

    SciTech Connect (OSTI)

    Nam,K.W.; Yang,X.

    2009-03-01T23:59:59.000Z

    Thin amorphous manganese oxide layers with a thickness of 3-5nm are electrodeposited on a carbon nanotube (CNT) film substrate that has a three-dimensional nanoporous structure (denoted asMnO2/CNT electrode). For the purpose of comparison, manganese oxide films are also electrodeposited on a flat Pt-coated Si wafer substrate (denoted as MnO2 film electrode). The pseudocapacitive properties of the MnO2 film and MnO2/CNT electrodes are examined in both aqueous electrolyte (1.0M KCl) and nonaqueousorganic electrolyte (1.0M LiClO4 in propylene carbonate). While both types of electrode showpseudocapacitive behaviour in the aqueous electrolyte, only the MnO2/CNT electrode does so in the organic electrolyte, due to its high oxide/electrolyte interfacial area and improved electron conduction through the CNT substrate. Compared with the MnO2 film electrode, the MnO2/CNT electrode shows a much higher specific capacitance and better high-rate capability, regardless of the electrolyte used.Use of the organic electrolyte results in a ?6 times higher specific energy compared with that obtained with the aqueous electrolyte, while maintaining a similar specific power. The construction of a threedimensional nanoporous network structure consisting of a thin oxide layer on a CNT film substrate at the nm scale and the use of an organic electrolyte are promising approaches to improving the specific energyof supercapacitors.

  17. Predicting the surface tension of aqueous 1-1 electrolyte solutions at high salinity

    E-Print Network [OSTI]

    Boyer, Edmond

    industrial contexts. For example, capillary failure in the context of CO2 geological storage is, to a large model based on the modified Poisson-Boltzmann equation and the Pitzer theory is described and used water. The model predictions are in good agreement with the surface tension data for 1:1 electrolytes

  18. Quantitative Chromatographic Determination of Dissolved Elemental Sulfur in the Non-aqueous Electrolyte for Lithium-Sulfur Batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Dong [Univ. of Massachusetts, Boston, MA (United States). Dept. of Chemistry; Yang, Xiao-Qing [Brookhaven National Laboratory (BNL), Upton, NY (United States). Chemistry Dept.; Zhang, Xuran [Wuhan Univ. of Technology, Hubei (China); Dept. of Chemistry; Li, Chao [Univ. of Massachusetts, Boston, MA (United States). Dept. of Chemistry; McKinnon, Meaghan E. [Univ. of Massachusetts, Boston, MA (United States). Dept. of Chemistry; Sadok, Rachel G. [Univ. of Massachusetts, Boston, MA (United States). Dept. of Chemistry; Qu, Deyu [Wuhan Univ. of Technology, Hubei (China); Dept. of Chemistry; Yu, Xiqian [Brookhaven National Laboratory (BNL), Upton, NY (United States). Chemistry Dept.; Lee, Hung-Sui [Brookhaven National Laboratory (BNL), Upton, NY (United States). Chemistry Dept.; Qu, Deyang [Univ. of Massachusetts, Boston, MA (United States). Dept. of Chemistry

    2014-11-01T23:59:59.000Z

    A fast and reliable analytical method is reported for the quantitative determination of dissolved elemental sulfur in non-aqueous electrolytes for Li-S batteries. By using high performance liquid chromatography with a UV detector, the solubility of S in 12 different pure solvents and in 22 different electrolytes was determined. It was found that the solubility of elemental sulfur is dependent on the Lewis basicity, the polarity of solvents and the salt concentration in the electrolytes. In addition, the S content in the electrolyte recovered from a discharged Li-S battery was successfully determined by the proposed HPLC/UV method. Thus, the feasibility of the method to the online analysis for a Li-S battery is demonstrated. Interestingly, the S was found super-saturated in the electrolyte recovered from a discharged Li-S cell.

  19. Quantitative Chromatographic Determination of Dissolved Elemental Sulfur in the Non-aqueous Electrolyte for Lithium-Sulfur Batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Dong; Yang, Xiao-Qing; Zhang, Xuran; Li, Chao; McKinnon, Meaghan E.; Sadok, Rachel G.; Qu, Deyu; Yu, Xiqian; Lee, Hung-Sui; Qu, Deyang

    2014-11-01T23:59:59.000Z

    A fast and reliable analytical method is reported for the quantitative determination of dissolved elemental sulfur in non-aqueous electrolytes for Li-S batteries. By using high performance liquid chromatography with a UV detector, the solubility of S in 12 different pure solvents and in 22 different electrolytes was determined. It was found that the solubility of elemental sulfur is dependent on the Lewis basicity, the polarity of solvents and the salt concentration in the electrolytes. In addition, the S content in the electrolyte recovered from a discharged Li-S battery was successfully determined by the proposed HPLC/UV method. Thus, the feasibility ofmore »the method to the online analysis for a Li-S battery is demonstrated. Interestingly, the S was found super-saturated in the electrolyte recovered from a discharged Li-S cell.« less

  20. Electrolyte effects in a model system for mesoporous carbon electrodes

    SciTech Connect (OSTI)

    Wander, M. C.F.; Shuford, K. L.

    2011-01-01T23:59:59.000Z

    In this paper, a variety of alkali halide aqueous electrolyte solutions in contact with planar graphite slit pores are simulated using classical molecular dynamics. Size trends in structure and transport properties are examined by varying the choice of ions. The intermediate atomic weight ions within each group are found to diffuse faster than the larger or smaller ions. System dynamics are driven by changes in water hydration behavior and, specifically, by variations in the number of hydrogen bonds per water molecule. Both the cation and the anion sequences demonstrate that confinement effects can significantly alter the expected trends of alkali halide electrolytes.

  1. Structure and transport of aqueous electrolytes: From simple halides to radionuclide ions

    SciTech Connect (OSTI)

    Hartkamp, Remco, E-mail: hartkamp@mit.edu; Coasne, Benoit, E-mail: benoit.coasne@enscm.fr [Institut Charles Gerhardt Montpellier, CNRS (UMR 5253), Université Montpellier 2, ENSCM, 8 rue de l’Ecole Normale, 34296 Montpellier Cedex 05 (France); MultiScale Material Science for Energy and Environment, CNRS/MIT (UMI 3466), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States)

    2014-09-28T23:59:59.000Z

    Molecular simulations are used to compare the structure and dynamics of conventional and radioactive aqueous electrolytes: chloride solutions with sodium, potassium, cesium, calcium, and strontium. The study of Cs{sup +} and Sr{sup 2+} is important because these radioactive ions can be extremely harmful and are often confused by living organisms for K{sup +} and Ca{sup 2+}, respectively. Na{sup +}, Ca{sup 2+}, and Sr{sup 2+} are strongly bonded to their hydration shell because of their large charge density. We find that the water molecules in the first hydration shell around Na{sup +} form hydrogen bonds between each other, whereas molecules in the first hydration shell around Ca{sup 2+} and Sr{sup 2+} predominantly form hydrogen bonds with water molecules in the second shell. In contrast to these three ions, K{sup +} and Cs{sup +} have low charge densities so that they are weakly bonded to their hydration shell. Overall, the structural differences between Ca{sup 2+} and Sr{sup 2+} are small, but the difference between their coordination numbers relative to their surface areas could potentially be used to separate these ions. Moreover, the different decays of the velocity-autocorrelation functions corresponding to these ions indicates that the difference in mass could be used to separate these cations. In this work, we also propose a new definition of the pairing time that is easy to calculate and of physical significance regardless of the problem at hand.

  2. Electrolytes - Advanced Electrolyte and Electrolyte Additives...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Electrolytes - Advanced Electrolyte and Electrolyte Additives Electrolytes - Advanced Electrolyte and Electrolyte Additives Develop & Evaluate...

  3. Dense gas dispersion modeling for aqueous releases 

    E-Print Network [OSTI]

    Lara, Armando

    1999-01-01T23:59:59.000Z

    DENSE GAS DISPERSION MODELING FOR AQUEOUS RELEASES A Thesis by ARMANDO LARA Submitted to the Office of Graduate Studies of Texas A&M University In partial fulfill ment of the requirements for the degree of MASTER OF SCIENCE May 1999 Major... Modeling for Aqueous Releases. (May 1999) Armando Lara, B. S. , University of Houston Chair of Advisory Committee: Dr. Sam Mannan Production, transportation, and storage of hazardous chemicals represent potential risks to the environment, the public...

  4. H+ diffusion and electrochemical stability of Li1+x+yAlxTi2-xSiyP3-yO12 glass in aqueous Li/air battery electrolytes

    SciTech Connect (OSTI)

    Ding, Fei; Xu, Wu; Shao, Yuyan; Chen, Xilin; Wang, Zhiguo; Gao, Fei; Liu, Xingjiang; Zhang, Jiguang

    2012-09-15T23:59:59.000Z

    It is well known that LATP (Li1+x+y AlxTi2?x SiyP3?yO12) glass is a good lithium ion conductor. However, the interaction between LATP glass and H+ ions (including its diffusion and surface adsorption) needs to be well understood before the long-term application of LATP glass in an aqueous electrolyte based Li-air batteries where H+ always present. In this work, we investigate the H+ ion diffusion properties in LATP glass and their surface interactions using both experimental and modeling approaches. Our analysis indicates that the apparent H+ related current observed in the initial cyclic voltammetry scan should be attributed to the adsorption of H+ ions on the LATP glass rather than the bulk diffusion of H+ ions in the glass. Furthermore, the density functional theory calculations indicate that the H+ ion diffusion energy barrier (3.21 eV) is much higher than that of Li+ ion (0.79 eV) and Na+ ion (0.79 eV) in NASICON type LiTi2(PO4)3 material. As a result, the H+ ion conductivity in LATP glass is negligible at room temperature. However, significant surface corrosion was found after the LATP glass was soaked in strong alkaline electrolyte for extended time. Therefore, appropriate electrolytes have to be developed to prevent the corrosion of LATP glass before its practical application for Li-air batteries using aqueous electrolyte.

  5. Update on Electrolyte Modeling with Emphasis on Low Temperature...

    Energy Savers [EERE]

    performance) Molecular dynamics simulation studies of electrolytes and electrolyteelectrode interfaces Linking Ion Solvation and Lithium Battery Electrolyte Properties...

  6. Charting the known chemical space for non-aqueous Lithium-air battery electrolyte solvents

    E-Print Network [OSTI]

    Husch, Tamara

    2015-01-01T23:59:59.000Z

    The Li-Air battery is a very promising candidate for powering future mobility, but finding a suitable electrolyte solvent for this technology turned out to be a major problem. We present a systematic computational investigation of the known chemical space for possible Li-Air electrolyte solvents. It is shown that the problem of finding better Li-Air electrolyte solvents is not only - as previously suggested - about maximizing Li+ and O2- solubilities, but about finding the optimal balance of these solubilities with the viscosity of the solvent. As our results also show that trial-and-error experiments on known chemicals are unlikely to succeed, full chemical sub-spaces for the most promising compound classes are investigated, and suggestions are made for further experiments. The proposed screening approach is transferable and robust and can readily be applied to optimize electrolytes for other electrochemical devices. It goes beyond the current state-of-the-art both in width (considering the number of compoun...

  7. Investigation of the Rechargeability of Li-O2 Batteries in Non-aqueous Electrolyte

    SciTech Connect (OSTI)

    Xiao, Jie; Hu, Jian Z.; Wang, Deyu; Hu, Dehong; Xu, Wu; Graff, Gordon L.; Nie, Zimin; Liu, Jun; Zhang, Jiguang

    2011-07-01T23:59:59.000Z

    In order to understand the nature of the limited cycle life and poor energy efficiency associated with the secondary Li-O¬2 batteries the discharge products of primary Li-O2 cells at different depth of discharge (DOD) are systematically analyzed in this work. It is revealed that if discharged to 2.0 V a small amount of Li2O2 coexist with Li2CO3 and RO-(C=O)-OLi) in alkyl carbonate-based electrolyte. Further discharging the air electrodes to below 2.0 V the amount of Li2CO3 and LiRCO3 increases significantly due to the severe electrolyte decomposition. There is no Li2O detected in this alkyl carbonate electrolyte regardless of DOD. It is also found that the alkyl carbonate based electrolyte begins to decompose at 4.0 V during charging under the combined influences from the high surface area carbon, the nickel metal current collector and the oxygen atmosphere. Accordingly the impedance of the Li-O2 cell continues to increase after each discharge and recharge process indicating a repeated plating of insoluble lithium salts on the carbon surface. Therefore the whole carbon electrode becomes completely insulated only after a few cycles and loses the function of providing active tri-phase regions for the Li-oxygen batteries.

  8. Inverse hydrochemical models of aqueous extracts tests

    SciTech Connect (OSTI)

    Zheng, L.; Samper, J.; Montenegro, L.

    2008-10-10T23:59:59.000Z

    Aqueous extract test is a laboratory technique commonly used to measure the amount of soluble salts of a soil sample after adding a known mass of distilled water. Measured aqueous extract data have to be re-interpreted in order to infer porewater chemical composition of the sample because porewater chemistry changes significantly due to dilution and chemical reactions which take place during extraction. Here we present an inverse hydrochemical model to estimate porewater chemical composition from measured water content, aqueous extract, and mineralogical data. The model accounts for acid-base, redox, aqueous complexation, mineral dissolution/precipitation, gas dissolution/ex-solution, cation exchange and surface complexation reactions, of which are assumed to take place at local equilibrium. It has been solved with INVERSE-CORE{sup 2D} and been tested with bentonite samples taken from FEBEX (Full-scale Engineered Barrier EXperiment) in situ test. The inverse model reproduces most of the measured aqueous data except bicarbonate and provides an effective, flexible and comprehensive method to estimate porewater chemical composition of clays. Main uncertainties are related to kinetic calcite dissolution and variations in CO2(g) pressure.

  9. Electrolytes - Advanced Electrolyte and Electrolyte Additives...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Development of Advanced Electrolytes and Electrolyte Additives Electrolytes - Advanced Electrolyte and Electrolyte Additives Develop & evaluate...

  10. Liquid Water Dynamics in a Model Polymer Electrolyte Fuel Cell Flow Channel

    E-Print Network [OSTI]

    Victoria, University of

    Liquid Water Dynamics in a Model Polymer Electrolyte Fuel Cell Flow Channel by Chris Miller in a Model Polymer Electrolyte Fuel Cell Flow Channel by Chris Miller Bachelors of Engineering, University in a polymer electrolyte fuel cell is a critical issue in ensuring high cell performance. The water production

  11. Aqueous Electrolyte Modeling in Aspen Plus G. E

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperational Management » History »Dept ofY-12

  12. A Universal Model for Nanoporous Carbon Supercapacitors Applicable to Diverse Pore Regimes, Carbons, and Electrolyte

    SciTech Connect (OSTI)

    Sumpter, Bobby G [ORNL; Huang, Jingsong [ORNL; Meunier, Vincent [ORNL

    2008-01-01T23:59:59.000Z

    Supercapacitors, commonly called electric double-layer capacitors (EDLCs), are emerging as a novel type of energy storage device with the potential to substitute batteries in applications requiring high power densities. In response to the latest experimental breakthrough in nanoporous carbon supercapacitors, we propose a heuristic theoretical model that takes pore curvature into account as a replacement for the EDLC model which is based on a traditional parallel-plate capacitor. When the pore size is in the mesopore regime (2-50 nm), counterions enter mesoporous carbons and approach the pore wall to form an electric double-cylinder capacitor (EDCC); in the micropore regime (< 2 nm), solvated/desolvated counterions line up along the pore axis to form an electric wire-in-cylinder capacitor (EWCC). In the macropore regime (> 50 nm) where pores are large enough so that the pore curvature is no longer significant, the EDCC model can be reduced naturally to the EDLC model. We present density functional theory calculations and detailed analyses of available experimental data in various pore regimes, showing the significant effects of pore curvature on the supercapacitor properties of nanoporous carbons. It is shown that the EDCC/EWCC model is universal to carbon supercapacitors with diverse carbon materials including activated carbons, template carbons, and novel carbide-derived carbons, and with diverse electrolytes including organic electrolytes such as tetraethylammonium tetrafluoroborate (TEABF4), tetraethylammonium methyl-sulfonate (TEAMS) in acetonitrile, aqueous H2SO4 and KOH electrolytes, and even ionic liquid electrolyte such as 1-ethyl-3-methylimmidazolium bis(trifluromethane-sulfonyl)imide (EMI-TFSI). The EDCC/EWCC model allows the supercapacitor properties to be correlated with pore size, specific surface area, Debye length, electrolyte concentration and dielectric constant, and solute ion size, and may lend a support for the systematic optimization of the properties of carbon supercapacitors via experiments. On the basis of the insight obtained from the new model, we also discuss the effects of the kinetic solvation/desolvation process, multimodal (versus unimodal) pore size distribution, and exohedral (versus endohedral) capacitors on the electrochemical properties of supercapacitors.

  13. Modeling Cold Start in a Polymer-Electrolyte Fuel Cell

    E-Print Network [OSTI]

    Balliet, Ryan

    2010-01-01T23:59:59.000Z

    conditions used for fuel—cell simulations. 3.12 Values usedin Polymer Electrolyte Fuel Cells — II. Parametric Study,”of Polymer Electrolyte Fuel Cells,” Electrochimica Acta, 53,

  14. Inverse hydrochemical models of aqueous extracts tests

    E-Print Network [OSTI]

    Zheng, L.

    2010-01-01T23:59:59.000Z

    processes may occur during porewater extraction such as dissolution of soluble minerals (processes taking place during aqueous extraction. Identification of GM requires knowing: 1) Aqueous complexes, 2) Mineral

  15. SEPARATIONS Modeling of CO Capture by Aqueous2

    E-Print Network [OSTI]

    Rochelle, Gary T.

    moval with alkanolamines. not of the single absorber and stripper. Aspen Plus was found to be suitable the model consistent with the interface pseudo-first-order model and with a re- gressed Electrolyte

  16. Modeling Liquid-Liquid Equilibrium of Ionic Liquid Systems with NRTL, Electrolyte-NRTL, and UNIQUAC

    E-Print Network [OSTI]

    Stadtherr, Mark A.

    Modeling Liquid-Liquid Equilibrium of Ionic Liquid Systems with NRTL, Electrolyte-NRTL, and UNIQUAC different excess Gibbs free energy models are evaluated: the NRTL, UNIQUAC and electrolyte- NRTL (eNRTL) models. In the case of eNRTL, a new formulation of the model is used, based on a symmetric reference

  17. Modeling Cold Start in a Polymer-Electrolyte Fuel Cell

    E-Print Network [OSTI]

    Balliet, Ryan

    2010-01-01T23:59:59.000Z

    Boundary conditions used for fuel—cell simulations. 3.12to the Problem of Cold Start 1.1 Polymer—Electrolyte Fuelin Polymer Electrolyte Fuel Cells — II. Parametric Study,”

  18. On a Pioneering Polymer Electrolyte Fuel Cell Model

    SciTech Connect (OSTI)

    Weber, Adam Z.; Meyers, Jeremy P.

    2010-07-07T23:59:59.000Z

    "Polymer Electrolyte Fuel Cell Model" is a seminal work that continues to form the basis for modern modeling efforts, especially models concerning the membrane and its behavior at the continuum level. The paper is complete with experimental data, modeling equations, model validation, and optimization scenarios. While the treatment of the underlying phenomena is limited to isothermal, single-phase conditions, and one-dimensional flow, it represents the key interactions within the membrane at the center of the PEFC. It focuses on analyzing the water balance within the cell and clearly demonstrates the complex interactions of water diffusion and electro-osmotic flux. Cell-level and system-level water balance are key to the development of efficient PEFCs going forward, particularly as researchers address the need to simplify humidification and recycle configurations while increasing the operating temperature of the stack to minimize radiator requirements.

  19. THERMODYNAMIC MODELLING OF GAS SEMI-CLATHRATE HYDRATES USING THE ELECTROLYTE NRTL MODEL

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    THERMODYNAMIC MODELLING OF GAS SEMI-CLATHRATE HYDRATES USING THE ELECTROLYTE NRTL MODEL Matthias. For the description of the gas semiclathrate hydrate phase a combination of the salt hydrate model of Paricaud the applicability of the approach presented. Keywords: modeling, semiclathrate hydrate, gas semiclathrate hydrate, e

  20. MODELLING GAS HYDRATE EQUILIBRIA USING THE ELECTROLYTE NON-RANDOM TWO-LIQUID (ENRTL) MODEL

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    MODELLING GAS HYDRATE EQUILIBRIA USING THE ELECTROLYTE NON-RANDOM TWO-LIQUID (ENRTL) MODEL Matthias" developed in our group and allowing for performing equilibrium calculations involving gas hydrate phases of state approach for the gas phase, the van-der-Waals and Platteeuw model for the clathrate hydrate phase

  1. Ceramic electrolyte coating and methods

    DOE Patents [OSTI]

    Seabaugh, Matthew M. (Columbus, OH); Swartz, Scott L. (Columbus, OH); Dawson, William J. (Dublin, OH); McCormick, Buddy E. (Dublin, OH)

    2007-08-28T23:59:59.000Z

    Aqueous coating slurries useful in depositing a dense coating of a ceramic electrolyte material (e.g., yttrium-stabilized zirconia) onto a porous substrate of a ceramic electrode material (e.g., lanthanum strontium manganite or nickel/zirconia) and processes for preparing an aqueous suspension of a ceramic electrolyte material and an aqueous spray coating slurry including a ceramic electrolyte material. The invention also includes processes for depositing an aqueous spray coating slurry including a ceramic electrolyte material onto pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.

  2. Electrolyte-gated graphene field-effect transistors : modeling and applications

    E-Print Network [OSTI]

    Mackin, Charles Edward

    2015-01-01T23:59:59.000Z

    This work presents a model for electrolyte-gated graphene field-effect transistors (EGFETs) that incorporates the effects of the double layer capacitance and the quantum capacitance of graphene. The model is validated ...

  3. Modeling water content effects in polymer electrolyte fuel cells

    SciTech Connect (OSTI)

    Springer, T.E.; Zawodzinski, T.A.; Gottesfeld, S.

    1991-01-01T23:59:59.000Z

    Water content and transport is the key factor in the one-dimensional, steady-state model of a complete polymer electrolyte fuel cell (PEFC) described here. Water diffusion coefficients, electroosmotic drag coefficients, water sorption isotherms, and membrane conductivities, all measured in our laboratory as functions of membrane water content, were used in the model. The model predicts a net-water-per-proton flux ratio of 0.2 H{sub 2}O/H{sup +} under typical operating conditions, which is much less than the measured electroosmotic drag coefficient for a fully hydrated membrane. It also predicts an increase in membrane resistance with increased current density and demonstrates the great advantage of thinner membranes in alleviating this resistance problem. Both of these predictions were verified experimentally under certain conditions. We also describe the sensitivity of the water concentration profile and associated observables to variations in the values of some of the transport parameters in anticipation of applying the model to fuel cells employing other membranes. 16 refs., 9 figs.

  4. Inverse hydrochemical models of aqueous extracts tests

    E-Print Network [OSTI]

    Zheng, L.

    2010-01-01T23:59:59.000Z

    kinetic mineral dissolution during extraction. 4.3 Types ofextraction such as dissolution of soluble minerals (halite,extraction. Identification of GM requires knowing: 1) Aqueous complexes, 2) Mineral

  5. Anomalous pH Dependent Stability Behavior of Surfactant-Free Nonpolar Oil Drops in Aqueous Electrolyte Solutions

    E-Print Network [OSTI]

    Chan, Derek Y C

    . In this study, we investigated the interaction across an aqueous thin film between fluorocarbon with a higher refractive index than water, and a fluorocarbon oil (perfluoropentane, C5F12), a liquid will be attractive for the hydrocarbon oil and repulsive for the fluorocarbon oil. Traditional methods

  6. Computational Fluid Dynamics Modeling of a Lithium/Thionyl Chloride Battery with Electrolyte Flow

    E-Print Network [OSTI]

    Wang, Chao-Yang

    Computational Fluid Dynamics Modeling of a Lithium/Thionyl Chloride Battery with Electrolyte Flow W-dimensional model is developed to simulate discharge of a primary lithium/thionyl chloride battery. The model to the first task with important examples of lead-acid,1-3 nickel-metal hydride,4-8 and lithium-based batteries

  7. Mathematical Properties of Pump-Leak Models of Cell Volume Control and Electrolyte Balance

    E-Print Network [OSTI]

    Weinberger, Hans

    Mathematical Properties of Pump-Leak Models of Cell Volume Control and Electrolyte Balance Yoichiro using pump-leak models, a system of differential algebraic equations that de- scribes the balance and stability of steady states for a general class of pump-leak models. We treat two cases. When the ion channel

  8. Kinetic investigation of catalytic disproportionation of superoxide ions in the non-aqueous electrolyte used in Li-air batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Qiang; Yang, Xiao -Qing; Zheng, Doug; McKinnon, Meaghan E.; Qu, Deyang

    2015-01-01T23:59:59.000Z

    Superoxide reacts with carbonate solvents in Li–air batteries. Tris(pentafluorophenyl)borane is found to catalyze a more rapid superoxide (O2-) disproportionation reaction than the reaction between superoxide and propylene carbonate (PC). With this catalysis, the negative impact of the reaction between the electrolyte and O2-produced by the O2 reduction can be minimized. A simple kinetic study using ESR spectroscopy was reported to determine reaction orders and rate constants for the reaction between PC and superoxide, and the disproportionation of superoxide catalyzed by Tris(pentafluorophenyl)borane and Li ions. The reactions are found to be first order and the rate constants are 0.033 s-1 M-1,more »0.020 s-1 M-1and 0.67 s-1M-1 for reactions with PC, Li ion and Tris(pentafluorophenyl)borane, respectively.« less

  9. Kinetic investigation of catalytic disproportionation of superoxide ions in the non-aqueous electrolyte used in Li-air batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Qiang [Univ. of Massachusetts at Boston, Boston, MA (United States); Yang, Xiao -Qing [Brookhaven National Laboratory (BNL), Upton, NY (United States); Zheng, Doug [Univ. of Massachusetts at Boston, Boston, MA (United States); McKinnon, Meaghan E. [Univ. of Massachusetts at Boston, Boston, MA (United States); Qu, Deyang [Univ. of Massachusetts at Boston, Boston, MA (United States)

    2015-01-01T23:59:59.000Z

    Superoxide reacts with carbonate solvents in Li–air batteries. Tris(pentafluorophenyl)borane is found to catalyze a more rapid superoxide (O2-) disproportionation reaction than the reaction between superoxide and propylene carbonate (PC). With this catalysis, the negative impact of the reaction between the electrolyte and O2-produced by the O2 reduction can be minimized. A simple kinetic study using ESR spectroscopy was reported to determine reaction orders and rate constants for the reaction between PC and superoxide, and the disproportionation of superoxide catalyzed by Tris(pentafluorophenyl)borane and Li ions. The reactions are found to be first order and the rate constants are 0.033 s-1 M-1, 0.020 s-1 M-1and 0.67 s-1M-1 for reactions with PC, Li ion and Tris(pentafluorophenyl)borane, respectively.

  10. Kinetic investigation of catalytic disproportionation of superoxide ions in the non-aqueous electrolyte used in Li-air batteries

    SciTech Connect (OSTI)

    Wang, Qiang [Univ. of Massachusetts at Boston, Boston, MA (United States); Yang, Xiao -Qing [Brookhaven National Laboratory (BNL), Upton, NY (United States); Zheng, Doug [Univ. of Massachusetts at Boston, Boston, MA (United States); McKinnon, Meaghan E. [Univ. of Massachusetts at Boston, Boston, MA (United States); Qu, Deyang [Univ. of Massachusetts at Boston, Boston, MA (United States)

    2015-01-01T23:59:59.000Z

    Superoxide reacts with carbonate solvents in Li–air batteries. Tris(pentafluorophenyl)borane is found to catalyze a more rapid superoxide (O2-) disproportionation reaction than the reaction between superoxide and propylene carbonate (PC). With this catalysis, the negative impact of the reaction between the electrolyte and O2-produced by the O2 reduction can be minimized. A simple kinetic study using ESR spectroscopy was reported to determine reaction orders and rate constants for the reaction between PC and superoxide, and the disproportionation of superoxide catalyzed by Tris(pentafluorophenyl)borane and Li ions. The reactions are found to be first order and the rate constants are 0.033 s-1 M-1, 0.020 s-1 M-1and 0.67 s-1M-1 for reactions with PC, Li ion and Tris(pentafluorophenyl)borane, respectively.

  11. Stochastic Modeling and Direct Simulation of the Diffusion Media for Polymer Electrolyte Fuel Cells

    E-Print Network [OSTI]

    Schmidt, Volker

    Cells Yun Wang* and Xuhui Feng Renewable Energy Resources Lab (RERL) and National Fuel Cell Research the stochastic-model-based reconstruction of the gas diffusion layer (GDL) of polymer electrolyte fuel cells on pore-level transport and scrutinize the macroscopic approach vastly adopted in current fuel cell

  12. Computational Modeling of Electrolyte/Cathode Interfaces in Proton Exchange Membrane Fuel Cells

    E-Print Network [OSTI]

    Bjørnstad, Ottar Nordal

    Computational Modeling of Electrolyte/Cathode Interfaces in Proton Exchange Membrane Fuel Cells Dr Proton exchange membrane fuel cells (PEMFCs) are alternative energy conversion devices that efficiently. The fundamental relationship between operating conditions and device performance will help to optimize the device

  13. Electrolytes - Advanced Electrolyte and Electrolyte Additives...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Electrolyte Additives Develop & evaluate materials & additives that enhance thermal & overcharge abuse Advanced Electrolyte Additives for PHEVEV Lithium-ion Battery...

  14. A Multiphase Model for Cold Start of Polymer Electrolyte Fuel Leng Mao, Chao-Yang Wang,*,z

    E-Print Network [OSTI]

    A Multiphase Model for Cold Start of Polymer Electrolyte Fuel Cells Leng Mao, Chao-Yang Wang, The Pennsylvania State University, University Park, Pennsylvania 16802, USA A multiphase and transient model

  15. Transport Phenomena in Polymer Electrolyte Membranes I. Modeling Framework

    E-Print Network [OSTI]

    Struchtrup, Henning

    and optimization of fuel cells in a design and development environment. Kreuer et al.19 recently presented of ongoing efforts to develop more comprehensive compu- tational fuel cell model14-18 that allow analysis of the fundamental transport mechanisms. In the context of multidimensional fuel cell modeling, practical

  16. Modeling aerosol growth by aqueous chemistry in nonprecipitating stratiform cloud

    SciTech Connect (OSTI)

    Ovchinnikov, Mikhail; Easter, Richard C.

    2010-07-29T23:59:59.000Z

    A new microphysics module based on a two-dimensional (2D) joint size distribution function representing both interstitial and cloud particles is developed and applied to studying aerosol processing in non-precipitating stratocumulus clouds. The module is implemented in a three-dimensional dynamical framework of a large-eddy simulation (LES) model and in a trajectory ensemble model (TEM). Both models are used to study the modification of sulfate aerosol by the activation - aqueous chemistry - resuspension cycle in shallow marine stratocumulus clouds. The effect of particle mixing and different size-distribution representations on modeled aerosol processing are studied in a comparison of the LES and TEM simulations with the identical microphysics treatment exposes and a comparison of TEM simulations with a 2D fixed and moving bin microphysics. Particle mixing which is represented in LES and neglected in the TEM leads to the mean relative per particle dry mass change in the TEM simulations being about 30% lower than in analogous subsample of LES domain. Particles in the final LES spectrum are mixed in from different “parcels”, some of which have experienced longer in-cloud residence times than the TEM parcels, all of which originated in the subcloud layer, have. The mean relative per particle dry mass change differs by 14% between TEM simulations with fixed and moving bin microphysics. Finally, the TEM model with the moving bin microphysics is used to evaluate assumptions about liquid water mass partitioning among activated cloud condensation nuclei (CCN) of different dry sizes. These assumptions are used in large-scale models to map the bulk aqueous chemistry sulfate production, which is largely proportional to the liquid water mass, to the changes in aerosol size distribution. It is shown that the commonly used assumptions that the droplet mass is independent of CCN size or that the droplet mass is proportional to the CCN size to the third power do not perform well in the considered case. The explicitly predicted water partitioning indicates that the mean mass of droplets participating in the models aqueous chemistry calculations is proportional to the dry CCN size.

  17. Development of Advanced Electrolytes and Electrolyte Additives...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Component R&D within the ABR Program, 2009 thru 2013 Electrolytes - Advanced Electrolyte and Electrolyte Additives Advanced Electrolyte Additives for PHEVEV Lithium-ion Battery...

  18. Using a Quasipotential Transformation for Modeling Diffusion Media inPolymer-Electrolyte Fuel Cells

    SciTech Connect (OSTI)

    Weber, Adam Z.; Newman, John

    2008-08-29T23:59:59.000Z

    In this paper, a quasipotential approach along with conformal mapping is used to model the diffusion media of a polymer-electrolyte fuel cell. This method provides a series solution that is grid independent and only requires integration along a single boundary to solve the problem. The approach accounts for nonisothermal phenomena, two-phase flow, correct placement of the electronic potential boundary condition, and multilayer media. The method is applied to a cathode diffusion medium to explore the interplay between water and thermal management and performance, the impact of the rib-to-channel ratio, and the existence of diffusion under the rib and flooding phenomena.

  19. Modeling the Electrochemistry of an SOFC through the Electrodes and Electrolyte

    SciTech Connect (OSTI)

    Ryan, Emily M.; Recknagle, Kurtis P.; Khaleel, Mohammad A.

    2011-12-01T23:59:59.000Z

    This paper describes a distributed electrochemistry model of the solid oxide fuel cell (SOFC) electrodes and electrolyte. The distributed electrochemistry (DEC) model solves the transport, reactions, and electric potential through the thickness of the SOFC electrodes. The DEC model allows the local conditions within the electrodes to be studied and allows for a better understanding of how electrochemical and microstructural parameters affect the electrodes. In this paper the governing equations and implementation of the DEC model are presented along with several case studies which are used to investigate the sensitivity of the cathode to the microstructural and electrochemical parameters of the model and to explore methods of improving the electrochemical performance of the SOFC cathode.

  20. Electrolytes - Advanced Electrolyte and Electrolyte Additives

    Broader source: Energy.gov (indexed) [DOE]

    Co 13 O 2 , LiNi 0.5 Mn 1.5 O 4 Anode: MCMB, LTO Electrolyte-1: 1.2M LiPF 6 ECEMC 37 with or without additive Electrolyte-2: fully or partially fluorinated...

  1. Phase Behavior of Aqueous NA-K-MG-CA-CI-NO3 Mixtures: Isopiestic Measurements and Thermodynamic Modeling

    SciTech Connect (OSTI)

    M.S. Gruszkiewiez; D.A. Palmer; R.D. Springer; P. Wang; A. Anderko

    2006-09-14T23:59:59.000Z

    A comprehensive model has been established for calculating thermodynamic properties of multicomponent aqueous systems containing the Na{sup +}, K{sup +}, Mg{sup 2+}, Ca{sup 2+}, Cl{sup -}, and NO{sub 3}{sup -} ions. The thermodynamic framework is based on a previously developed model for mixed-solvent electrolyte solutions. The framework has been designed to reproduce the properties of salt solutions at temperatures ranging from the freezing point to 300 C and concentrations ranging from infinite dilution to the fused salt limit. The model has been parameterized using a combination of an extensive literature database and new isopiestic measurements for thirteen salt mixtures at 140 C. The measurements have been performed using Oak Ridge National Laboratory's (ORNL) previously designed gravimetric isopiestic apparatus, which makes it possible to detect solid phase precipitation. Water activities are reported for mixtures with a fixed ratio of salts as a function of the total apparent salt mole fraction. The isopiestic measurements reported here simultaneously reflect two fundamental properties of the system, i.e., the activity of water as a function of solution concentration and the occurrence of solid-liquid transitions. The thermodynamic model accurately reproduces the new isopiestic data as well as literature data for binary, ternary and higher-order subsystems. Because of its high accuracy in calculating vapor-liquid and solid-liquid equilibria, the model is suitable for studying deliquescence behavior of multicomponent salt systems.

  2. Using a Quasipotential Transformation for Modeling Diffusion Media in Polymer-Electrolyte Fuel Cells

    E-Print Network [OSTI]

    Weber, Adam Z.

    2008-01-01T23:59:59.000Z

    Proton Exchange Membrane Fuel Cell , Numerical Heat Transferof Polymer Electrolyte Fuel Cells Using a Two-EquationExchange Membrane Fuel Cells 2. Absolute Permeability ,

  3. Electrolytes - Advanced Electrolyte and Electrolyte Additives

    Broader source: Energy.gov (indexed) [DOE]

    testing Cathode: LiNi13Mn13Co13O2 Anode: MCMB Electrolyte: 1.2M LiPF6 ECEMC 37 with or without additive - Separator: Celgard 2325 Voltage for cycling:...

  4. Modeling the interface of Li metal and Li solid electrolytes from first principles Nicholas Lepley, N. A. W. Holzwarth

    E-Print Network [OSTI]

    Holzwarth, Natalie

    battery electrolytes. Simplified theoretical models often fail to agree with experimental observations are of considerable interest for Li-ion battery applications, both for their use as thin films capable of passivating." Physical Review B 88.10 (2013): 104103. 2. Kuwata, Naoaki, et al. "Characterization of thin-film lithium

  5. Osmotic Pressure of Aqueous Chondroitin Sulfate Solution: A Molecular Modeling Investigation

    E-Print Network [OSTI]

    Bathe, Mark

    The osmotic pressure of chondroitin sulfate (CS) solution in contact with an aqueous 1:1 salt reservoir of fixed ionic strength is studied using a recently developed coarse-grained molecular model. The effects of sulfation ...

  6. aqueous oleic acid: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Base, and Salt Solutions Chemistry Websites Summary: view of the structure of the airsolution interface of aqueous electrolytes containing monovalent. The behavior of acids is...

  7. Electrolytic orthoborate salts for lithium batteries

    DOE Patents [OSTI]

    Angell, Charles Austen [Mesa, AZ; Xu, Wu [Tempe, AZ

    2009-05-05T23:59:59.000Z

    Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

  8. Electrolytic orthoborate salts for lithium batteries

    DOE Patents [OSTI]

    Angell, Charles Austen (Mesa, AZ); Xu, Wu (Tempe, AZ)

    2008-01-01T23:59:59.000Z

    Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

  9. Novel electrolytes and electrolyte additives for PHEV applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    electrolytes and electrolyte additives for PHEV applications Novel electrolytes and electrolyte additives for PHEV applications 2009 DOE Hydrogen Program and Vehicle Technologies...

  10. Multi-scale First-Principles Modeling of Three-Phase System of Polymer Electrolyte Membrane Fuel Cel

    SciTech Connect (OSTI)

    Brunello, Giuseppe; Choi, Ji; Harvey, David; Jang, Seung

    2012-07-01T23:59:59.000Z

    The three-phase system consisting of Nafion, graphite and platinum in the presence of water is studied using molecule dynamics simulation. The force fields describing the molecular interaction between the components in the system are developed to reproduce the energies calculated from density functional theory modeling. The configuration of such complicated three-phase system is predicted through MD simulations. The nanophase-segregation and transport properties are investigated from the equilibrium state. The coverage of the electrolyte on the platinum surface and the dissolution of oxygen are analyzed.

  11. aqueous model system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    King, Simon; Wrench, Alan 1999-01-01 69 Development and application of earth system models Environmental Sciences and Ecology Websites Summary: Development and...

  12. aqueous food model: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    approaches to the understanding of food webs. After an overview of the available food web data, we discuss three different classes of models. The first class comprise static...

  13. Solid electrolytes

    DOE Patents [OSTI]

    Abraham, Kuzhikalail M. (Needham, MA); Alamgir, Mohamed (Dedham, MA)

    1993-06-15T23:59:59.000Z

    This invention pertains to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized (encapsulated) in a solid organic polymer matrix. In particular, this invention relates to solid polymer electrolytes derived by immobilizing complexes (solvates) formed between a Li salt such as LiAsF.sub.6, LiCF.sub.3 SO.sub.3 or LiClO.sub.4 and a mixture of aprotic organic solvents having high dielectric constants such as ethylene carbonate (EC) (dielectric constant=89.6) and propylene carbonate (PC) (dielectric constant=64.4) in a polymer matrix such as polyacrylonitrile, poly(tetraethylene glycol diacrylate), or poly(vinyl pyrrolidinone).

  14. Electrolyte salts for nonaqueous electrolytes

    DOE Patents [OSTI]

    Amine, Khalil; Zhang, Zhengcheng; Chen, Zonghai

    2012-10-09T23:59:59.000Z

    Metal complex salts may be used in lithium ion batteries. Such metal complex salts not only perform as an electrolyte salt in a lithium ion batteries with high solubility and conductivity, but also can act as redox shuttles that provide overcharge protection of individual cells in a battery pack and/or as electrolyte additives to provide other mechanisms to provide overcharge protection to lithium ion batteries. The metal complex salts have at least one aromatic ring. The aromatic moiety may be reversibly oxidized/reduced at a potential slightly higher than the working potential of the positive electrode in the lithium ion battery. The metal complex salts may also be known as overcharge protection salts.

  15. Effective Diffusion-Medium Thickness for Simplified Polymer-Electrolyte-Fuel-Cell Modeling

    SciTech Connect (OSTI)

    Weber, Adam; Weber, Adam Z.

    2008-07-30T23:59:59.000Z

    In this manuscript, conformal mapping is applied to a rib/channel domain of a polymer-electrolyte-fuel-cell diffusion medium. The analysis leads to the calculation of an effective diffusion-medium thickness, which can subsequently be used in 1-D simulations to account for the average rib/channel 2-D geometric effect. Extensions of the analysis to anisotropic and multilayer diffusion media are also given. Both equations and figures show the impact on a given variable at the catalyst layer of having a combined conducting/nonconducting boundary across from it.

  16. Quasi-steady model for predicting temperature of aqueous foams circulating in geothermal wellbores

    SciTech Connect (OSTI)

    Blackwell, B.F.; Ortega, A.

    1983-01-01T23:59:59.000Z

    A quasi-steady model has been developed for predicting the temperature profiles of aqueous foams circulating in geothermal wellbores. The model assumes steady one-dimensional incompressible flow in the wellbore; heat transfer by conduction from the geologic formation to the foam is one-dimensional radially and time-dependent. The vertical temperature distribution in the undisturbed geologic formation is assumed to be composed of two linear segments. For constant values of the convective heat-transfer coefficient, a closed-form analytical solution is obtained. It is demonstrated that the Prandtl number of aqueous foams is large (1000 to 5000); hence, a fully developed temperature profile may not exist for representative drilling applications. Existing convective heat-transfer-coefficient solutions are adapted to aqueous foams. The simplified quasi-steady model is successfully compared with a more-sophisticated finite-difference computer code. Sample temperature-profile calculations are presented for representative values of the primary parameters. For a 5000-ft wellbore with a bottom hole temperature of 375{sup 0}F, the maximum foam temperature can be as high as 300{sup 0}F.

  17. Cathode for the electrolytic production of hydrogen

    SciTech Connect (OSTI)

    Nicolas, E.

    1983-07-19T23:59:59.000Z

    The invention relates to a cathode for the electrolytic production of hydrogen. The cathode comprises an active surface consisting of a metal oxide obtained by the thermal decomposition of a thermally decomposable compound of a metal chosen from amongst cobalt, iron, manganese or nickel. The cathode is particularly suitable for the electrolysis of aqueous sodium chloride solutions in cells with a permeable diaphragm.

  18. Pseudo-capacitor device for aqueous electrolytes

    DOE Patents [OSTI]

    Prakash, Jai (3849 NW. 65th Ave., Gainesville, FL 32653); Thackeray, Michael M. (1763 Cliffside Ct., Naperville, IL 60565); Dees, Dennis W. (6224 Middaugh Ave., Downers Grove, IL 60516); Vissers, Donald R. (611 Clover Ct., Naperville, IL 60540); Myles, Kevin M. (1231 60th Pl., Downers Grove, IL 60516-1856)

    1998-01-01T23:59:59.000Z

    A pseudo-capacitor having a high energy storage capacity develops a double layer capacitance as well as a Faradaic or battery-like redox reaction, also referred to as pseudo-capacitance. The Faradaic reaction gives rise to a capacitance much greater than that of the typical ruthenate oxide ultracapacitor which develops only charge separation-based double layer capacitance. The capacitor employs a lead and/or bismuth/ruthenate and/or iridium system having the formula A.sub.2 ›B.sub.2-x Pb.sub.x !O.sub.7-y, where A=Pb, Bi, and B=Ru, Ir, and O

  19. Pseudo-capacitor device for aqueous electrolytes

    DOE Patents [OSTI]

    Prakash, J.; Thackeray, M.M.; Dees, D.W.; Vissers, D.R.; Myles, K.M.

    1998-11-24T23:59:59.000Z

    A pseudo-capacitor having a high energy storage capacity develops a double layer capacitance as well as a Faradaic or battery-like redox reaction, also referred to as pseudo-capacitance. The Faradaic reaction gives rise to a capacitance much greater than that of the typical ruthenate oxide ultracapacitor which develops only charge separation-based double layer capacitance. The capacitor employs a lead and/or bismuth/ruthenate and/or iridium system having the formula A{sub 2}[B{sub 2{minus}x}Pb{sub x}]O{sub 7{minus}y}, where A=Pb, Bi, and B=Ru, Ir, and O

  20. Inhomogeneous transport in model hydrated polymer electrolyte supported ultra-thin films

    E-Print Network [OSTI]

    D. Damasceno Borges; A. A. Franco; K. Malek; G. Gebel; S. Mossa

    2013-10-02T23:59:59.000Z

    Structure of polymer electrolytes membranes, e.g., Nafion, inside fuel cell catalyst layers has significant impact on the electrochemical activity and transport phenomena that determine cell performance. In those regions, Nafion can be found as an ultra-thin film, coating the catalyst and the catalyst support surfaces. The impact of the hydrophilic/hydrophobic character of these surfaces on the structural formation of the films and, in turn, on transport properties, has not been sufficiently explored yet. Here, we report about classical Molecular Dynamics simulations of hydrated Nafion thin-films in contact with unstructured supports, characterized by their global wetting properties only. We have investigated structure and transport in different regions of the film and found evidences of strongly heterogeneous behavior. We speculate about the implications of our work on experimental and technological activity.

  1. E-Print Network 3.0 - aqueous potassium hypochlorite Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ions such as potassium, chloride, and bromide show... in aqueous electrolyte supercapacitor systems. Significance Molecular level understanding of ion diffusivity Source:...

  2. Electrolytes - Advanced Electrolyte and Electrolyte Additives

    Broader source: Energy.gov (indexed) [DOE]

    energies, continuum model for solvation effects, periodic calculations, high performance computing including massively parallel codes Exoerimental methods: cell testing, CVs,...

  3. Novel Nonflammable Electrolytes for Secondary Magnesium Batteries and High Voltage Electrolytes for Electrochemcial Supercapacitors

    SciTech Connect (OSTI)

    Dr. Brian Dixon

    2008-12-30T23:59:59.000Z

    Magnesium has been used successfully in primary batteries, but its use in rechargeable cells has been stymied by the lack of suitable non-aqueous electrolyte that can conduct Mg+2 species, combined with poor stripping and plating properties. The development of a suitable cathode material for rechargeable magnesium batteries has also been a roadblock, but a nonflammable electrolyte is key. Likewise, the development of safe high voltage electrochemical supercapaitors has been stymied by the use of flammable solvents in the liquid electrolyte; to wit, acetonitrile. The purpose of the research conducted in this effort was to identify useful compositions of magnesium salts and polyphosphate solvents that would enable magnesium ions to be cycled within a secondary battery design. The polyphosphate solvents would provide the solvent for the magnesium salts while preventing the electrolyte from being flammable. This would enable these novel electrolytes to be considered as an alternative to THF-based electrolytes. In addition, we explored several of these solvents together with lithium slats for use as high voltage electrolytes for carbon-based electrochemical supercapacitors. The research was successful in that: 1) Magnesium imide dissolved in a phosphate ester solvent that contains a halogented phosphate ester appears to be the preferred electrolyte for a rechargeable Mg cell. 2) A combination of B-doped CNTs and vanadium phosphate appear to be the cathode of choice for a rechargeable Mg cell by virtue of higher voltage and better reversibility. 3) Magnesium alloys appear to perform better than pure magnesium when used in combination with the novel polyphosphate electrolytes. Also, this effort has established that Phoenix Innovationâ??s family of phosphonate/phosphate electrolytes together with specific lithium slats can be used in supercapacitor systems at voltages of greater than 10V.

  4. On the modeling and simulation of reaction-transfer dynamics in semiconductor-electrolyte solar cells

    E-Print Network [OSTI]

    Ren, Kui

    -performance semiconductor-liquid junction solar cells. We propose in this work a macroscopic mathematical model, a sys- tem-liquid junction, solar cell simulation, naso-scale device modeling. 1 Introduction The mathematical modeling by the increasing need of simulation tools for designing efficient solar cells to harvest sunlight for clean energy

  5. Molten salt electrolyte separator

    DOE Patents [OSTI]

    Kaun, Thomas D. (New Lenox, IL)

    1996-01-01T23:59:59.000Z

    A molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication.

  6. Novel Electrolytes and Additives

    Broader source: Energy.gov (indexed) [DOE]

    7 Point of Reference - Electrode and Electrolyte Chemistries Gen 2 electrolyte EC:EMC (3:7 by wt.) + 1.2M LiPF 6 Cu (-) Al (+) Mag-10 graphite Particle size 5 m Celgard...

  7. Anion exchange polymer electrolytes

    DOE Patents [OSTI]

    Kim, Yu Seung; Kim, Dae Sik

    2013-09-10T23:59:59.000Z

    Solid anion exchange polymer electrolytes include chemical compounds comprising a polymer backbone with side chains that include guanidinium cations.

  8. HANFORD RIVER PROTECTION PROJECT ENHANCED MISSION PLANNING THROUGH INNOVATIVE TOOLS LIFECYCLE COST MODELING AND AQUEOUS THERMODYNAMIC MODELING - 12134

    SciTech Connect (OSTI)

    PIERSON KL; MEINERT FL

    2012-01-26T23:59:59.000Z

    Two notable modeling efforts within the Hanford Tank Waste Operations Simulator (HTWOS) are currently underway to (1) increase the robustness of the underlying chemistry approximations through the development and implementation of an aqueous thermodynamic model, and (2) add enhanced planning capabilities to the HTWOS model through development and incorporation of the lifecycle cost model (LCM). Since even seemingly small changes in apparent waste composition or treatment parameters can result in large changes in quantities of high-level waste (HLW) and low-activity waste (LAW) glass, mission duration or lifecycle cost, a solubility model that more accurately depicts the phases and concentrations of constituents in tank waste is required. The LCM enables evaluation of the interactions of proposed changes on lifecycle mission costs, which is critical for decision makers.

  9. Solid polymer electrolyte compositions

    DOE Patents [OSTI]

    Garbe, James E. (Stillwater, MN); Atanasoski, Radoslav (Edina, MN); Hamrock, Steven J. (St. Paul, MN); Le, Dinh Ba (St. Paul, MN)

    2001-01-01T23:59:59.000Z

    An electrolyte composition is featured that includes a solid, ionically conductive polymer, organically modified oxide particles that include organic groups covalently bonded to the oxide particles, and an alkali metal salt. The electrolyte composition is free of lithiated zeolite. The invention also features cells that incorporate the electrolyte composition.

  10. Lithium ion conducting electrolytes

    DOE Patents [OSTI]

    Angell, Charles Austen (Mesa, AZ); Liu, Changle (Midland, MI); Xu, Kang (Montgomery Village, MD); Skotheim, Terje A. (Tucson, AZ)

    1999-01-01T23:59:59.000Z

    The present invention relates generally to highly conductive alkali-metal ion non-crystalline electrolyte systems, and more particularly to novel and unique molten (liquid), rubbery, and solid electrolyte systems which are especially well suited for use with high current density electrolytic cells such as primary and secondary batteries.

  11. Nonlinear modelling of polymer electrolyte membrane fuel cell stack using nonlinear cancellation technique

    SciTech Connect (OSTI)

    Barus, R. P. P., E-mail: rismawan.ppb@gmail.com [Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung and Centre for Material and Technical Product, Jalan Sangkuriang No. 14 Bandung (Indonesia); Tjokronegoro, H. A.; Leksono, E. [Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung (Indonesia); Ismunandar [Chemistry Study, Faculty of Mathematics and Science, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung (Indonesia)

    2014-09-25T23:59:59.000Z

    Fuel cells are promising new energy conversion devices that are friendly to the environment. A set of control systems are required in order to operate a fuel cell based power plant system optimally. For the purpose of control system design, an accurate fuel cell stack model in describing the dynamics of the real system is needed. Currently, linear model are widely used for fuel cell stack control purposes, but it has limitations in narrow operation range. While nonlinear models lead to nonlinear control implemnetation whos more complex and hard computing. In this research, nonlinear cancellation technique will be used to transform a nonlinear model into a linear form while maintaining the nonlinear characteristics. The transformation is done by replacing the input of the original model by a certain virtual input that has nonlinear relationship with the original input. Then the equality of the two models is tested by running a series of simulation. Input variation of H2, O2 and H2O as well as disturbance input I (current load) are studied by simulation. The error of comparison between the proposed model and the original nonlinear model are less than 1 %. Thus we can conclude that nonlinear cancellation technique can be used to represent fuel cell nonlinear model in a simple linear form while maintaining the nonlinear characteristics and therefore retain the wide operation range.

  12. A Carbon Corrosion Model to Evaluate the Effect of Steady State and Transient Operation of a Polymer Electrolyte Membrane Fuel Cell

    E-Print Network [OSTI]

    Pandy, Arun; Gummalla, Mallika; Atrazhev, Vadim V; Kuzminyh, Nikolay Yu; Sultanov, Vadim I; Burlatsky, Sergei F

    2014-01-01T23:59:59.000Z

    A carbon corrosion model is developed based on the formation of surface oxides on carbon and platinum of the polymer electrolyte membrane fuel cell electrode. The model predicts the rate of carbon corrosion under potential hold and potential cycling conditions. The model includes the interaction of carbon surface oxides with transient species like OH radicals to explain observed carbon corrosion trends under normal PEM fuel cell operating conditions. The model prediction agrees qualitatively with the experimental data supporting the hypothesis that the interplay of surface oxide formation on carbon and platinum is the primary driver of carbon corrosion.

  13. Nonisothermal Modeling of Polymer Electrolyte Fuel Cells II. Parametric Study of Low-Humidity Operation

    E-Print Network [OSTI]

    combustion engine as the power plant for automotive drivetrains. In this appli- cation, it is very becomes a central task in PEFC computer simulations, which requires an accu- rate and detailed membrane electrode assembly MEA model. Many numerical models have been developed to simulate the effects of various

  14. Predicting viscosities of aqueous salt mixtures

    SciTech Connect (OSTI)

    Zaltash, A.; Ally, M.R.

    1992-01-01T23:59:59.000Z

    Viscosity plays an important role in quantifying heat and mass transfer rates as depicted in theoretical and semi-empirical correlations. In practical problems where extreme temperatures and solute concentrations are encountered, viscosity data is usually unavailable. At these conditions, no dependable correlation appears to exist in the literature. This paper uses the hole type model to predict the viscosity of aqueous electrolytes containing single and mixed salts up to the molten salt regime. This model needs two parameters which can be evaluated from sparse data. For LiBr/water and (Li, K, na) NO[sub 3]/water mixtures, it is shown that the agreement between predicted and experimental values is very good over wide temperature and concentration ranges. The deviation between these two values was found to be less than 9%.

  15. Predicting viscosities of aqueous salt mixtures

    SciTech Connect (OSTI)

    Zaltash, A.; Ally, M.R.

    1992-12-01T23:59:59.000Z

    Viscosity plays an important role in quantifying heat and mass transfer rates as depicted in theoretical and semi-empirical correlations. In practical problems where extreme temperatures and solute concentrations are encountered, viscosity data is usually unavailable. At these conditions, no dependable correlation appears to exist in the literature. This paper uses the hole type model to predict the viscosity of aqueous electrolytes containing single and mixed salts up to the molten salt regime. This model needs two parameters which can be evaluated from sparse data. For LiBr/water and (Li, K, na) NO{sub 3}/water mixtures, it is shown that the agreement between predicted and experimental values is very good over wide temperature and concentration ranges. The deviation between these two values was found to be less than 9%.

  16. Electrolyte vapor condenser

    DOE Patents [OSTI]

    Sederquist, R.A.; Szydlowski, D.F.; Sawyer, R.D.

    1983-02-08T23:59:59.000Z

    A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well. 3 figs.

  17. Nanoporous polymer electrolyte

    DOE Patents [OSTI]

    Elliott, Brian (Wheat Ridge, CO); Nguyen, Vinh (Wheat Ridge, CO)

    2012-04-24T23:59:59.000Z

    A nanoporous polymer electrolyte and methods for making the polymer electrolyte are disclosed. The polymer electrolyte comprises a crosslinked self-assembly of a polymerizable salt surfactant, wherein the crosslinked self-assembly includes nanopores and wherein the crosslinked self-assembly has a conductivity of at least 1.0.times.10.sup.-6 S/cm at 25.degree. C. The method of making a polymer electrolyte comprises providing a polymerizable salt surfactant. The method further comprises crosslinking the polymerizable salt surfactant to form a nanoporous polymer electrolyte.

  18. Rate-Based Modeling of Reactive Absorption of CO2 and H2S into Aqueous Methyldiethanolamine

    E-Print Network [OSTI]

    Rochelle, Gary T.

    Rate-Based Modeling of Reactive Absorption of CO2 and H2S into Aqueous Methyldiethanolamine Manuel in the liquid phase. This framework was applied to the selective absorption of H2S from fuel gas containing CO2 primarily by physical absorption. Gas-film resistance is never significant for CO2 absorption. For H2S

  19. Improved Modeling and Understanding of Diffusion-Media Wettability on Polymer-Electrolyte-Fuel-Cell Performance

    SciTech Connect (OSTI)

    Weber, Adam

    2010-03-05T23:59:59.000Z

    A macroscopic-modeling methodology to account for the chemical and structural properties of fuel-cell diffusion media is developed. A previous model is updated to include for the first time the use of experimentally measured capillary pressure -- saturation relationships through the introduction of a Gaussian contact-angle distribution into the property equations. The updated model is used to simulate various limiting-case scenarios of water and gas transport in fuel-cell diffusion media. Analysis of these results demonstrate that interfacial conditions are more important than bulk transport in these layers, where the associated mass-transfer resistance is the result of higher capillary pressures at the boundaries and the steepness of the capillary pressure -- saturation relationship. The model is also used to examine the impact of a microporous layer, showing that it dominates the response of the overall diffusion medium. In addition, its primary mass-transfer-related effect is suggested to be limiting the water-injection sites into the more porous gas-diffusion layer.

  20. Transport Phenomena in Polymer Electrolyte Membranes II. Binary Friction Membrane Model

    E-Print Network [OSTI]

    Struchtrup, Henning

    is derived to represent conditions found in alternating current ac impedance conductivity measurements the conditions of ac impedance conductivity measurements. Using em- pirically fitted transport parameters dynamic models required for fundamental simulation of in situ processes that are difficult to ob- serve

  1. Inorganic non-aqueous cell

    SciTech Connect (OSTI)

    Kuo, H. C.; Dey, A. N.; Foster, D. L.; Gopikanth, M. L.; Schlaikjer, C. R.

    1985-04-23T23:59:59.000Z

    A novel inorganic non-aqueous electrochemical cell having an alkali or alkaline earth metal anode, an inorganic electrolyte comprised of an SO/sub 2/ solvent with an alkali or alkaline earth metal halide salt of aluminum, tantalum niobium or antimony, dissolved in the SO/sub 2/ and a cathode comprised of a carbonaceous material having an apparent bulk density in excess of 5 lb/ft/sup 3/ (80 gm/1). Lower bulk density carbonaceous material may, however, be used in electrolytes having high salt concentrations. Ketjenblack EC (furnace black) carbonaceous material may be admixed with a solid cathode active material which is substantially insoluble in the SO/sub 2/ electrolyte to provide a high primary cell capacity and an effectively rechargeable cell. There is no SO/sub 2/ per se discharge in the cell.

  2. Process and economic model of in-field heavy oil upgrading using aqueous pyrolysis

    SciTech Connect (OSTI)

    Thorsness, C. B., LLNL

    1997-01-21T23:59:59.000Z

    A process and economic model for aqueous pyrolysis in-field upgrading of heavy oil has been developed. The model has been constructed using the ASPEN PLUS chemical process simulator. The process features cracking of heavy oil at moderate temperatures in the presence of water to increase oil quality and thus the value of the oil. Calculations with the model indicate that for a 464 Mg/day (3,000 bbl/day) process, which increases the oil API gravity of the processed oil from 13.5{degree} to 22.4{degree}, the required value increase of the oil would need to be at least $2.80/Mg{center_dot}{degree}API($0.40/bbl{center_dot}{degree}API) to make the process economically attractive. This level of upgrading has been demonstrated in preliminary experiments with candidate catalysts. For improved catalysts capable of having the coke make and increasing the pyrolysis rate, a required price increase for the oil as low as $1.34/Mg{center_dot}{degree}API ($0.21/bbl{center_dot}{degree}API)has been calculated.

  3. Computational modeling of structure and OH-anion diffusion in quaternary ammonium polysulfone hydroxide Polymer electrolyte for application

    E-Print Network [OSTI]

    Goddard III, William A.

    . Introduction Despite the significant progress made in reducing cost of Polymer Electrolyte Membrane Fuel Cells further progress in commercializa- tion of the fuel cell technology, the focus should be moved to other types of fuel cells which do not require expensive Pt as catalysts. Alkaline fuel cells (AFCs) are more

  4. Structure and dynamics of electrical double layers in organic electrolytes

    SciTech Connect (OSTI)

    Huang, Jingsong [ORNL; Sumpter, Bobby G [ORNL; Meunier, Vincent [ORNL; Qiao, Rui [ORNL; Feng, Guang [Clemson University

    2010-01-01T23:59:59.000Z

    The organic electrolyte of tetraethylammonium tetrafluoroborate (TEABF{sub 4}) in the aprotic solvent of acetonitrile (ACN) is widely used in electrochemical systems such as electrochemical capacitors. In this paper, we examine the solvation of TEA{sup +} and BF{sub 4}{sup -} in ACN, and the structure, capacitance, and dynamics of the electrical double layers (EDLs) in the TEABF{sub 4}-ACN electrolyte using molecular dynamics simulations complemented with quantum density functional theory calculations. The solvation of TEA+ and BF4- ions is found to be much weaker than that of small inorganic ions in aqueous solutions, and the ACN molecules in the solvation shell of both types of ions show only weak packing and orientational ordering. These solvation characteristics are caused by the large size, charge delocalization, and irregular shape (in the case of TEA+ cation) of the ions. Near neutral electrodes, the double-layer structure in the organic electrolyte exhibits a rich organization: the solvent shows strong layering and orientational ordering, ions are significantly contact-adsorbed on the electrode, and alternating layers of cations/anions penetrate ca. 1.1 nm into the bulk electrolyte. The significant contact adsorption of ions and the alternating layering of cation/anion are new features found for EDLs in organic electrolytes. These features essentially originate from the fact that van der Waals interactions between organic ions and the electrode are strong and the partial desolvation of these ions occurs easily, as a result of the large size of the organic ions. Near charged electrodes, distinct counter-ion concentration peaks form, and the ion distribution cannot be described by the Helmholtz model or the Helmholtz + Poisson-Boltzmann model. This is because the number of counter-ions adsorbed on the electrode exceeds the number of electrons on the electrode, and the electrode is over-screened in parts of the EDL. The computed capacitances of the EDLs are in good agreement with that inferred from experimental measurements. Both the rotations (ACN only) and translations of interfacial ACN and ions are found to slow down as the electrode is electrified. We also observe an asymmetrical dependence of these motions on the sign of the electrode charge. The rotation/diffusion of ACN and the diffusion of ions in the region beyond the first ACN or ion layer differ only weakly from those in the bulk

  5. Electrolytes for power sources

    DOE Patents [OSTI]

    Doddapaneni, N.; Ingersoll, D.

    1995-01-03T23:59:59.000Z

    Electrolytes are disclosed for power sources, particularly alkaline and acidic power sources, comprising benzene polysulfonic acids and benzene polyphosphonic acids or salts of such acids. 7 figures.

  6. Electrolytes for power sources

    DOE Patents [OSTI]

    Doddapaneni, Narayan (Albuquerque, NM); Ingersoll, David (Albuquerque, NM)

    1995-01-01T23:59:59.000Z

    Electrolytes for power sources, particularly alkaline and acidic power sources, comprising benzene polysulfonic acids and benzene polyphosphonic acids or salts of such acids.

  7. Nano Res (2010) 3: 452458452 Aqueous Supercapacitors on Conductive Cotton

    E-Print Network [OSTI]

    Cui, Yi

    Nano Res (2010) 3: 452­458452 Aqueous Supercapacitors on Conductive Cotton Mauro Pasta1,2 , Fabio the fabrication of wearable supercapacitors using cotton fabric as an essential component. Carbon nanotubes in the supercapacitor. Aqueous lithium sulfate is used as the electrolyte in the devices, because it presents no safety

  8. Electrolyte additive for lithium rechargeable organic electrolyte battery

    DOE Patents [OSTI]

    Behl, Wishvender K. (Ocean, NJ); Chin, Der-Tau (Winthrop, NY)

    1989-01-01T23:59:59.000Z

    A large excess of lithium iodide in solution is used as an electrolyte adive to provide overcharge protection for a lithium rechargeable organic electrolyte battery.

  9. Electrolyte additive for lithium rechargeable organic electrolyte battery

    DOE Patents [OSTI]

    Behl, Wishvender K.; Chin, Der-Tau

    1989-02-07T23:59:59.000Z

    A large excess of lithium iodide in solution is used as an electrolyte adive to provide overcharge protection for a lithium rechargeable organic electrolyte battery.

  10. Molecular Simulations of Electrolytes and Electrolyte/Electrode...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Molecular Simulations of Electrolytes and ElectrolyteElectrode Interfaces Grant D. Smith and Oleg Borodin Department of Materials Science & Engineering University of Utah 0218...

  11. Molten salt electrolyte separator

    DOE Patents [OSTI]

    Kaun, T.D.

    1996-07-09T23:59:59.000Z

    The patent describes a molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication. 5 figs.

  12. Marcus Douglas Hilliard Thermodynamics of Aqueous Piperazine/Potassium

    E-Print Network [OSTI]

    Rochelle, Gary T.

    /Potassium Carbonate/Carbon Dioxide Characterized by the Electrolyte NRTL Model within Aspen Plus® by Marcus Douglas Characterized by the Electrolyte NRTL Model within Aspen Plus® APPROVED BY SUPERVISING COMMITTEE T. Rochelle The Electrolyte Nonrandom Two Liquid (NRTL) Activity Coefficient model within Aspen Plus

  13. Ion Partitioning at the liquid/vapor interface of a multi-component alkali halide solution: A model for aqueous sea salt aerosols

    E-Print Network [OSTI]

    Ghosal, Sutapa

    2009-01-01T23:59:59.000Z

    A model for aqueous sea salt aerosols Sutapa Ghosal, 1species associated with sea salt ice and aerosols has beena minor component in sea salt, which has a Br – /Cl – molar

  14. Electric current-producing device having sulfone-based electrolyte

    DOE Patents [OSTI]

    Angell, Charles Austen (Mesa, AZ); Sun, Xiao-Guang (Tempe, AZ)

    2010-11-16T23:59:59.000Z

    Electrolytic solvents and applications of such solvents including electric current-producing devices. For example, a solvent can include a sulfone compound of R1--SO2--R2, with R1 being an alkyl group and R2 a partially oxygenated alkyl group, to exhibit high chemical and thermal stability and high oxidation resistance. For another example, a battery can include, between an anode and a cathode, an electrolyte which includes ionic electrolyte salts and a non-aqueous electrolyte solvent which includes a non-symmetrical, non-cyclic sulfone. The sulfone has a formula of R1--SO2--R2, wherein R1 is a linear or branched alkyl or partially or fully fluorinated linear or branched alkyl group having 1 to 7 carbon atoms, and R2 is a linear or branched or partially or fully fluorinated linear or branched oxygen containing alkyl group having 1 to 7 carbon atoms. The electrolyte can include an electrolyte co-solvent and an electrolyte additive for protective layer formation.

  15. Electrochemically stable electrolytes

    DOE Patents [OSTI]

    Angell, Charles Austen (Mesa, AZ); Zhang, Sheng-Shui (Tucson, AZ); Xu, Kang (Tempe, AZ)

    1999-01-01T23:59:59.000Z

    This invention relates generally to inorganic ionic liquids which function as electrolytes and do not crystallize at ambient temperature. More specifically, this invention is directed to quasi-salt inorganic ionic liquids which comprise the reaction product of a strong Lewis acid with an inorganic halide-donating molecule. This invention is further directed to quasi-salt inorganic ionic liquid mixtures which comprise combinations of electrolyte additives and quasi-salt inorganic ionic liquids. These quasi-salt inorganic ionic liquid mixtures are useful electrolytes.

  16. Electrochemically stable electrolytes

    DOE Patents [OSTI]

    Angell, C.A.; Zhang, S.S.; Xu, K.

    1999-01-05T23:59:59.000Z

    This invention relates generally to inorganic ionic liquids which function as electrolytes and do not crystallize at ambient temperature. More specifically, this invention is directed to quasi-salt inorganic ionic liquids which comprise the reaction product of a strong Lewis acid with an inorganic halide-donating molecule. This invention is further directed to quasi-salt inorganic ionic liquid mixtures which comprise combinations of electrolyte additives and quasi-salt inorganic ionic liquids. These quasi-salt inorganic ionic liquid mixtures are useful electrolytes. 16 figs.

  17. Thermodynamic model for mineral solubility in aqueous fluids: theory, calibration and application to model

    E-Print Network [OSTI]

    Manning, Craig

    describes the energetics of solvation more accurately than does the Born electrostatic theory and can be extended beyond the limits of experimental measurements of the dielectric constant of H2O. The new model, their dissolution energet- ics involve a relatively small contribution from the solvent volumetric properties

  18. Andrey G. Kalinichev Molecular Modeling of Aqueous Solutions and Substrate-Solution Interfaces

    E-Print Network [OSTI]

    Kalinichev, Andrey G.

    (RDFs) o Mean square displacement (MSD) and self-diffusion coefficients o Velocity autocorrelation;2 · Hydrogen bonding in aqueous systems o Geometric, energetic and other criteria of H-bonding o Donating and accepting H-bonds; local tetrahedrality of water structure o Statistical analysis of H-bonding o Variations

  19. Modeling the Removal of Uranium U(VI) from Aqueous Solutions in the

    E-Print Network [OSTI]

    include natural U deposits, mining, milling, and tailing operations and U.S. Department of Energy (DOEModeling the Removal of Uranium U(VI) from Aqueous Solutions in the Presence of Sulfate Reducing The reduction kinetics of soluble hexavalent uranium (U(VI)) to insoluble tetravalent U(IV) by both a mixed

  20. Novel Electrolytes and Additives

    Broader source: Energy.gov (indexed) [DOE]

    (Gr) - 8% PVDF binder (KurehaC) Baseline Electrolyte (Gen2): - 1.2 M LiPF 6 in ECEMC (3:7) Typical cycling range: - Positive: 3 - 4.3V vs. Li - Negative: 2 - 0 vs. Li -...

  1. Molecular dynamics study of interfacial confinement effects of aqueous NaCl brines in nanoporous carbon

    SciTech Connect (OSTI)

    Wander, M. C.F.; Shuford, K. L.

    2010-01-01T23:59:59.000Z

    In this paper, studies of aqueous electrolyte solutions in contact with a family of porous carbon geometries using classical molecular dynamics simulations are presented. These simulations provide an atomic scale depiction of ion transport dynamics in different environments to elucidate power of aqueous electrolyte supercapacitors. The electrolyte contains alkali metal and halide ions, which allow for the examination of size trends within specific geometries as well as trends in concentration. The electrode pores are modeled as planar graphite sheets and carbon nanotubes with interstices ranging from one to four nanometers. Ordered layers form parallel to the carbon surface, which facilitates focused ion motion under slightly confining conditions. As a result, the ion’s diffusivities are enhanced in the direction of the slit or pore. Further confining the system leads to decreased ion diffusivities. The ions are fully hydrated in all but the smallest slits and pores with those sizes showing increased ion pairing. There is strong evidence of charge separation perpendicular to the surface at all size scales, concentrations, and ion types, providing a useful baseline for examining differential capacitance behavior and future studies on energy storage. These systems show promise as high-power electrical energy storage devices.

  2. Microscopic Insights into the Electrochemical Behavior of Nonaqueous Electrolytes in Electric Double-Layer Capacitors

    SciTech Connect (OSTI)

    Jiang, Deen [ORNL; Wu, Jianzhong [University of California, Riverside

    2013-01-01T23:59:59.000Z

    Electric double-layer capacitors (EDLCs) are electrical devices that store energy by adsorption of ionic species at the inner surface of porous electrodes. Compared with aqueous electrolytes, ionic liquid and organic electrolytes have the advantage of larger potential windows, making them attractive for the next generation of EDLCs with superior energy and power densities. The performance of both ionic liquid and organic electrolyte EDLCs hinges on the judicious selection of the electrode pore size and the electrolyte composition, which requires a comprehension of the charging behavior from a microscopic view. In this Perspective, we discuss predictions from the classical density functional theory (CDFT) on the dependence of the capacitance on the pore size for ionic liquid and organic electrolyte EDLCs. CDFT is applicable to electrodes with the pore size ranging from that below the ionic dimensionality to mesoscopic scales, thus unique for investigating the electrochemical behavior of the confined electrolytes for EDLC applications.

  3. TRANSPORT NUMBER GRADIENTS AND SOLID ELECTROLYTE DEGRADATION

    E-Print Network [OSTI]

    De Jonghe, Lutgard C.

    2012-01-01T23:59:59.000Z

    AND SOLID ELECTROLYTE DEGRADATION Lutgard C. De Jonghe TWO-AND SOLID ELECTROLYTE DEGRADATION Lutgard C. De JongheAND SOLID ELECTROLYTE DEGRADATION Lutgard C. De Jonghe

  4. Batteries using molten salt electrolyte

    DOE Patents [OSTI]

    Guidotti, Ronald A. (Albuquerque, NM)

    2003-04-08T23:59:59.000Z

    An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

  5. Nanoscale electrostatic actuators in liquid electrolytes: analysis and experiment

    E-Print Network [OSTI]

    Kim, Doyoung

    2006-04-12T23:59:59.000Z

    The objective of this dissertation is to analytically model a parallel plate electrostatic actuator operating in a liquid electrolyte and experimentally verify the analysis. The model assumes the system remains in thermodynamic equilibrium during...

  6. Novel electrolyte chemistries for Mg-Ni rechargeable batteries.

    SciTech Connect (OSTI)

    Garcia-Diaz, Brenda (Savannah River National Laboratory); Kane, Marie; Au, Ming (Savannah River National Laboratory)

    2010-10-01T23:59:59.000Z

    Commercial hybrid electric vehicles (HEV) and battery electric vehicles (BEV) serve as means to reduce the nation's dependence on oil. Current electric vehicles use relatively heavy nickel metal hydride (Ni-MH) rechargeable batteries. Li-ion rechargeable batteries have been developed extensively as the replacement; however, the high cost and safety concerns are still issues to be resolved before large-scale production. In this study, we propose a new highly conductive solid polymer electrolyte for Mg-Ni high electrochemical capacity batteries. The traditional corrosive alkaline aqueous electrolyte (KOH) is replaced with a dry polymer with conductivity on the order of 10{sup -2} S/cm, as measured by impedance spectroscopy. Several potential novel polymer and polymer composite candidates are presented with the best-performing electrolyte results for full cell testing and cycling.

  7. POLYMER ELECTROLYTE FUEL CELLS

    E-Print Network [OSTI]

    Petta, Jason

    POLYMER ELECTROLYTE FUEL CELLS: The Gas Diffusion Layer Johannah Itescu Princeton University PRISM REU #12;PEM FUEL CELLS: A little background information I. What do fuel cells do? Generate electricity through chemical reaction #12;PEM FUEL CELLS: A little background information -+ + eHH 442 2 0244 22 He

  8. Spin coating of electrolytes

    DOE Patents [OSTI]

    Stetter, Joseph R. (Naperville, IL); Maclay, G. Jordan (Maywood, IL)

    1989-01-01T23:59:59.000Z

    Methods for spin coating electrolytic materials onto substrates are disclosed. More particularly, methods for depositing solid coatings of ion-conducting material onto planar substrates and onto electrodes are disclosed. These spin coating methods are employed to fabricate electrochemical sensors for use in measuring, detecting and quantifying gases and liquids.

  9. Modeling and High-Resolution-Imaging Studies of Water-Content Profiles in a Polymer-Electrolyte-Fuel-Cell Membrane-Electrode Assembly

    SciTech Connect (OSTI)

    Stevenson, Cynthia; Weber, A.Z.; Hickner, M.A.

    2008-03-06T23:59:59.000Z

    Water-content profiles across the membrane electrode assembly of a polymer-electrolyte fuel cell were measured using high-resolution neutron imaging and compared to mathematical-modeling predictions. It was found that the membrane held considerably more water than the other membrane-electrode constituents (catalyst layers, microporous layers, and macroporous gas-diffusion layers) at low temperatures, 40 and 60 C. The water content in the membrane and the assembly decreased drastically at 80 C where vapor transport and a heat-pipe effect began to dominate the water removal from the membrane-electrode assembly. In the regimes where vapor transport was significant, the through-plane water-content profile skewed towards the cathode. Similar trends were observed as the relative humidity of the inlet gases was lowered. This combined experimental and modeling approach has been beneficial in rationalizing the results of each and given insight into future directions for new experimental work and refinements to currently available models.

  10. Representing Vapor-Liquid Equilibrium for an Aqueous MEA-CO2 System Using the Electrolyte Nonrandom-Two-Liquid Model

    E-Print Network [OSTI]

    Zhang, Luzheng

    : (a) It has a high reaction heat with CO2 that leads to higher stripping energy consumption. (b equilibrium constants, Henry's constant, experimental data, and data regression on the representation to experimental data. A good agreement between the calculated values and the experimental data was achieved

  11. Reference electrode for electrolytic cell

    DOE Patents [OSTI]

    Kessie, R.W.

    1988-07-28T23:59:59.000Z

    A reference electrode device is provided for a high temperature electrolytic cell used to electrolytically recover uranium from spent reactor fuel dissolved in an anode pool, the device having a glass tube to enclose the electrode and electrolyte and serve as a conductive membrane with the cell electrolyte, and an outer metal tube about the glass tube to serve as a shield and basket for any glass sections broken by handling of the tube to prevent their contact with the anode pool, the metal tube having perforations to provide access between the bulk of the cell electrolyte and glass membrane. 4 figs.

  12. Gel polymer electrolytes for batteries

    DOE Patents [OSTI]

    Balsara, Nitash Pervez; Eitouni, Hany Basam; Gur, Ilan; Singh, Mohit; Hudson, William

    2014-11-18T23:59:59.000Z

    Nanostructured gel polymer electrolytes that have both high ionic conductivity and high mechanical strength are disclosed. The electrolytes have at least two domains--one domain contains an ionically-conductive gel polymer and the other domain contains a rigid polymer that provides structure for the electrolyte. The domains are formed by block copolymers. The first block provides a polymer matrix that may or may not be conductive on by itself, but that can soak up a liquid electrolyte, thereby making a gel. An exemplary nanostructured gel polymer electrolyte has an ionic conductivity of at least 1.times.10.sup.-4 S cm.sup.-1 at 25.degree. C.

  13. On the modeling and simulation of of reaction-transfer dynamics in semiconductor-electrolyte solar cells

    E-Print Network [OSTI]

    -performance semiconductor-liquid junction solar cells. We propose in this work a macroscopic mathematical model, a sys- tem-liquid junction, solar cell simulation, naso-scale device modeling. 1 Introduction The mathematical modeling by the increasing need of simulation tools for designing efficient solar cells to harvest sunlight for clean energy

  14. Ice electrode electrolytic cell

    DOE Patents [OSTI]

    Glenn, David F. (Idaho Falls, ID); Suciu, Dan F. (Idaho Falls, ID); Harris, Taryl L. (Idaho Falls, ID); Ingram, Jani C. (Idaho Falls, ID)

    1993-01-01T23:59:59.000Z

    This invention relates to a method and apparatus for removing heavy metals from waste water, soils, or process streams by electrolytic cell means. The method includes cooling a cell cathode to form an ice layer over the cathode and then applying an electric current to deposit a layer of the heavy metal over the ice. The metal is then easily removed after melting the ice. In a second embodiment, the same ice-covered electrode can be employed to form powdered metals.

  15. Ice electrode electrolytic cell

    DOE Patents [OSTI]

    Glenn, D.F.; Suciu, D.F.; Harris, T.L.; Ingram, J.C.

    1993-04-06T23:59:59.000Z

    This invention relates to a method and apparatus for removing heavy metals from waste water, soils, or process streams by electrolytic cell means. The method includes cooling a cell cathode to form an ice layer over the cathode and then applying an electric current to deposit a layer of the heavy metal over the ice. The metal is then easily removed after melting the ice. In a second embodiment, the same ice-covered electrode can be employed to form powdered metals.

  16. Solid polymer electrolytes

    DOE Patents [OSTI]

    Abraham, Kuzhikalail M. (Needham, MA); Alamgir, Mohamed (Dedham, MA); Choe, Hyoun S. (Waltham, MA)

    1995-01-01T23:59:59.000Z

    This invention relates to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF.sub.3 SO.sub.2).sub.2, LiAsF.sub.6, and LiClO.sub.4.

  17. Solid polymer electrolytes

    DOE Patents [OSTI]

    Abraham, K.M.; Alamgir, M.; Choe, H.S.

    1995-12-12T23:59:59.000Z

    This invention relates to Li ion (Li{sup +}) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF{sub 3}SO{sub 2}){sub 2}, LiAsF{sub 6}, and LiClO{sub 4}. 2 figs.

  18. Thin film composite electrolyte

    DOE Patents [OSTI]

    Schucker, Robert C. (The Woodlands, TX)

    2007-08-14T23:59:59.000Z

    The invention is a thin film composite solid (and a means for making such) suitable for use as an electrolyte, having a first layer of a dense, non-porous conductive material; a second layer of a porous ionic conductive material; and a third layer of a dense non-porous conductive material, wherein the second layer has a Coefficient of thermal expansion within 5% of the coefficient of thermal expansion of the first and third layers.

  19. Lithium ion conducting electrolytes

    DOE Patents [OSTI]

    Angell, C. Austen (Tempe, AZ); Liu, Changle (Tempe, AZ)

    1996-01-01T23:59:59.000Z

    A liquid, predominantly lithium-conducting, ionic electrolyte having exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature, and comprising the lithium salts selected from the group consisting of the thiocyanate, iodide, bromide, chloride, perchlorate, acetate, tetrafluoroborate, perfluoromethane sulfonate, perfluoromethane sulfonamide, tetrahaloaluminate, and heptahaloaluminate salts of lithium, with or without a magnesium-salt selected from the group consisting of the perchlorate and acetate salts of magnesium. Certain of the latter embodiments may also contain molecular additives from the group of acetonitrile (CH.sub.3 CN) succinnonitrile (CH.sub.2 CN).sub.2, and tetraglyme (CH.sub.3 --O--CH.sub.2 --CH.sub.2 --O--).sub.2 (or like solvents) solvated to a Mg.sup.+2 cation to lower the freezing point of the electrolyte below room temperature. Other particularly useful embodiments contain up to about 40, but preferably not more than about 25, mol percent of a long chain polyether polymer dissolved in the lithium salts to provide an elastic or rubbery solid electrolyte of high ambient temperature conductivity and exceptional 100.degree. C. conductivity. Another embodiment contains up to about but not more than 10 mol percent of a molecular solvent such as acetone.

  20. Lithium ion conducting electrolytes

    DOE Patents [OSTI]

    Angell, C.A.; Liu, C.

    1996-04-09T23:59:59.000Z

    A liquid, predominantly lithium-conducting, ionic electrolyte is described having exceptionally high conductivity at temperatures of 100 C or lower, including room temperature, and comprising the lithium salts selected from the group consisting of the thiocyanate, iodide, bromide, chloride, perchlorate, acetate, tetrafluoroborate, perfluoromethane sulfonate, perfluoromethane sulfonamide, tetrahaloaluminate, and heptahaloaluminate salts of lithium, with or without a magnesium-salt selected from the group consisting of the perchlorate and acetate salts of magnesium. Certain of the latter embodiments may also contain molecular additives from the group of acetonitrile (CH{sub 3}CN), succinnonitrile (CH{sub 2}CN){sub 2}, and tetraglyme (CH{sub 3}--O--CH{sub 2}--CH{sub 2}--O--){sub 2} (or like solvents) solvated to a Mg{sup +2} cation to lower the freezing point of the electrolyte below room temperature. Other particularly useful embodiments contain up to about 40, but preferably not more than about 25, mol percent of a long chain polyether polymer dissolved in the lithium salts to provide an elastic or rubbery solid electrolyte of high ambient temperature conductivity and exceptional 100 C conductivity. Another embodiment contains up to about but not more than 10 mol percent of a molecular solvent such as acetone. 2 figs.

  1. Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2008-01-01T23:59:59.000Z

    Polymer Electrolyte Fuel Cell Model, J. Electrochem. Soc. ,in Polymer Electrolyte Fuel Cells, J. Electrochem. Soc. ,Solid-Polymer- Electrolyte Fuel Cell, J. Electrochem. Soc. ,

  2. Coupled Proton and Water Transport Modelling in Polymer Electrolyte J. Fimrite, B. Carnes, H. Struchtrup and N. Djilali*

    E-Print Network [OSTI]

    Struchtrup, Henning

    -15 that allow analysis and optimization of fuel cells in a design and development environment. Kreuer et al.16 with a fuel cell model. The simulations highlight the predictive abilities of the model, particularly under low hydration conditions characteristic of ambient air- breathing fuel cells. 1 INTRODUCTION Solid

  3. DOE workshop: Sedimentary systems, aqueous and organic geochemistry

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    A DOE workshop on sedimentary systems, aqueous and organic geochemistry was held July 15-16, 1993 at Lawrence Berkeley Laboratory. Papers were organized into several sections: Fundamental Properties, containing papers on the thermodynamics of brines, minerals and aqueous electrolyte solutions; Geochemical Transport, covering 3-D imaging of drill core samples, hydrothermal geochemistry, chemical interactions in hydrocarbon reservoirs, fluid flow model application, among others; Rock-Water Interactions, with presentations on stable isotope systematics of fluid/rock interaction, fluid flow and petotectonic evolution, grain boundary transport, sulfur incorporation, tracers in geologic reservoirs, geothermal controls on oil-reservoir evolution, and mineral hydrolysis kinetics; Organic Geochemistry covered new methods for constraining time of hydrocarbon migration, kinetic models of petroleum formation, mudstones in burial diagenesis, compound-specific carbon isotope analysis of petroleums, stability of natural gas, sulfur in sedimentary organic matter, organic geochemistry of deep ocean sediments, direct speciation of metal by optical spectroscopies; and lastly, Sedimentary Systems, covering sequence stratigraphy, seismic reflectors and diagenetic changes in carbonates, geochemistry and origin of regional dolomites, and evidence of large comet or asteroid impacts at extinction boundaries.

  4. aqueous electrolyte solutions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    swelling with a water content beyond 80%. Isotope exchange studies using ZNa, K, and aeCl indicated the existence of an intermediate rate constant and compartment which varied...

  5. aqueous electrolyte solution: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    swelling with a water content beyond 80%. Isotope exchange studies using ZNa, K, and aeCl indicated the existence of an intermediate rate constant and compartment which varied...

  6. UV Second-Harmonic Studies of Concentrated Aqueous Electrolyte Interfaces

    E-Print Network [OSTI]

    Otten, Dale Edward

    2010-01-01T23:59:59.000Z

    Probed by UV Second Harmonic Generation, in Department ofby UV Second Harmonic Generation Spectroscopy," 114, 13746with Femtosecond Second Harmonic Generation Spectroscopy,"

  7. Fluorinated Arylboron Oxalate for Non-Aqueous Battery Electrolytes - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New MexicoFinancingProofWorking OutsideFluorescentbeam

  8. Computation of liquid-liquid equilibrium in multicomponent electrolyte systems

    SciTech Connect (OSTI)

    Vianna, R.F.; d`Avila, S.G. [Universidade Estadual de Campinas (Brazil)

    1996-12-31T23:59:59.000Z

    A computational algorithm for predicting liquid-liquid equilibrium (LLE) data, based on a generalization of the maximum likelihood method applied to implicit constraints, is presented. The algorithm accepts multicomponent data and binary interaction parameters. A comparative study of the models NRTL and electrolyte-NRTL, used for estimating activity coefficients in a quaternary electrolyte system, is presented and discussed. Results show that both models give accurate predictions and the algorithm presents a good performance without convergence or initialization problems. This suggests that the basic NRTL model can be used for describing phase behavior in weak electrolyte systems and the procedure can be of great use for design and optimization of processes involving multicomponent electrolyte systems. 9 refs., 1 fig., 1 tab.

  9. Carbon nanotubes and graphene in aqueous surfactant solutions : molecular simulations and theoretical modeling

    E-Print Network [OSTI]

    Lin, Shangchao

    2012-01-01T23:59:59.000Z

    This thesis describes combined molecular simulations and theoretical modeling studies, supported by experimental observations, on properties and applications of carbon nanotubes (CNTs) and graphene sheets dispersed in ...

  10. Consequence analysis of aqueous ammonia spills using an improved liquid pool evaporation model 

    E-Print Network [OSTI]

    Raghunathan, Vijay

    2005-02-17T23:59:59.000Z

    ) units. This newly developed model can estimate the vaporization rate and net mass evaporating into the air from a multicomponent non- ideal chemical spill. The work has been divided into two parts. In the first step a generic, dynamic source term model...

  11. Electrolyte creepage barrier for liquid electrolyte fuel cells

    DOE Patents [OSTI]

    Li, Jian (Alberta, CA); Farooque, Mohammad (Danbury, CT); Yuh, Chao-Yi (New Milford, CT)

    2008-01-22T23:59:59.000Z

    A dielectric assembly for electrically insulating a manifold or other component from a liquid electrolyte fuel cell stack wherein the dielectric assembly includes a substantially impermeable dielectric member over which electrolyte is able to flow and a barrier adjacent the dielectric member and having a porosity of less than 50% and greater than 10% so that the barrier is able to measurably absorb and chemically react with the liquid electrolyte flowing on the dielectric member to form solid products which are stable in the liquid electrolyte. In this way, the barrier inhibits flow or creepage of electrolyte from the dielectric member to the manifold or component to be electrically insulated from the fuel cell stack by the dielectric assembly.

  12. Integrated environmental degradation model for Fe-Ni-Cr alloys in irradiated aqueous solutions

    E-Print Network [OSTI]

    Pleune, Thomas Todd, 1974-

    1999-01-01T23:59:59.000Z

    An integrated model has been developed to evaluate the effect of reactor flux, fluence, and other operating conditions on crack growth rates in austenitic stainless steels in boiling water reactor (BWR) environments. The ...

  13. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01T23:59:59.000Z

    K. M. Directions in secondary lithium battery research-and-runaway inhibitors for lithium battery electrolytes. Journalrunaway inhibitors for lithium battery electrolytes. Journal

  14. Summary of Electrolytic Hydrogen Production: Milestone Completion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolytic Hydrogen Production: Milestone Completion Report Summary of Electrolytic Hydrogen Production: Milestone Completion Report This report provides an overview of the...

  15. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01T23:59:59.000Z

    of poly(ethylene oxide) molten-salt rubbery electrolytes.of poly(ethylene oxide) molten-salt rubbery electrolytes.

  16. Thin film polymeric gel electrolytes

    DOE Patents [OSTI]

    Derzon, Dora K. (1554 Rosalba St. NE., Albuquerque, Bernalillo County, NM 87112); Arnold, Jr., Charles (3436 Tahoe, NE., Albuquerque, Bernalillo County, NM 87111); Delnick, Frank M. (9700 Fleming Rd., Dexter, MI 48130)

    1996-01-01T23:59:59.000Z

    Novel hybrid thin film electrolyte, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities .apprxeq.10.sup.-3 .OMEGA..sup.-1 cm.sup.-1 are useful as electrolytes for rechargeable lithium batteries.

  17. Thin film polymeric gel electrolytes

    DOE Patents [OSTI]

    Derzon, D.K.; Arnold, C. Jr.; Delnick, F.M.

    1996-12-31T23:59:59.000Z

    Novel hybrid thin film electrolytes, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities {approx_equal}10{sup {minus}3}{Omega}{sup {minus}1} cm{sup {minus}1} are useful as electrolytes for rechargeable lithium batteries. 1 fig.

  18. Electrolytes - Technology review

    SciTech Connect (OSTI)

    Meutzner, Falk; Ureña de Vivanco, Mateo [Institut für Experimentelle Physik, Technische Universität Bergakademie Freiberg, Leipziger Straße 23, 09596 Freiberg (Germany)

    2014-06-16T23:59:59.000Z

    Safety, lifetime, energy density, and costs are the key factors for battery development. This generates the need for improved cell chemistries and new, advanced battery materials. The components of an electrolyte are the solvent, in which a conducting salt and additives are dissolved. Each of them plays a specific role in the overall mechanism of a cell: the solvent provides the host medium for ionic conductivity, which originates in the conductive salt. Furthermore, additives can be used to optimize safety, performance, and cyclability. By understanding the tasks of the individual components and their optimum conditions of operation, the functionality of cells can be improved from a holistic point of view. This paper will present the most important technological features and requirements for electrolytes in lithium-ion batteries. The state-of-the-art chemistry of each component is presented, as well as different approaches for their modification. Finally, a comparison of Li-cells with lithium-based technologies currently under development is conducted.

  19. Electrolyte treatment for aluminum reduction

    DOE Patents [OSTI]

    Brown, Craig W. (Seattle, WA); Brooks, Richard J. (Seattle, WA); Frizzle, Patrick B. (Seattle, WA); Juric, Drago D. (Bulleen, AU)

    2002-01-01T23:59:59.000Z

    A method of treating an electrolyte for use in the electrolytic reduction of alumina to aluminum employing an anode and a cathode, the alumina dissolved in the electrolyte, the treating improving wetting of the cathode with molten aluminum during electrolysis. The method comprises the steps of providing a molten electrolyte comprised of ALF.sub.3 and at least one salt selected from the group consisting of NaF, KF and LiF, and treating the electrolyte by providing therein 0.004 to 0.2 wt. % of a transition metal or transition metal compound for improved wettability of the cathode with molten aluminum during subsequent electrolysis to reduce alumina to aluminum.

  20. Electrolyte paste for molten carbonate fuel cells

    DOE Patents [OSTI]

    Bregoli, Lawrance J. (Southwick, MA); Pearson, Mark L. (New London, CT)

    1995-01-01T23:59:59.000Z

    The electrolyte matrix and electrolyte reservoir plates in a molten carbonate fuel cell power plant stack are filled with electrolyte by applying a paste of dry electrolyte powder entrained in a dissipatable carrier to the reactant flow channels in the current collector plate. The stack plates are preformed and solidified to final operating condition so that they are self sustaining and can be disposed one atop the other to form the power plant stack. Packing the reactant flow channels with the electrolyte paste allows the use of thinner electrode plates, particularly on the anode side of the cells. The use of the packed electrolyte paste provides sufficient electrolyte to fill the matrix and to entrain excess electrolyte in the electrode plates, which also serve as excess electrolyte reservoirs. When the stack is heated up to operating temperatures, the electrolyte in the paste melts, the carrier vaporizes, or chemically decomposes, and the melted electrolyte is absorbed into the matrix and electrode plates.

  1. Consequence analysis of aqueous ammonia spills using an improved liquid pool evaporation model

    E-Print Network [OSTI]

    Raghunathan, Vijay

    2005-02-17T23:59:59.000Z

    of effective NOx emissions from utility boilers and combustion turbines nowadays (Pritchard et al. 1995). Its applications also include reduction of NOx emissions from diesel engines, process gas streams like nitric acid plants. The flue gas emitted from... serves the purpose of a reducing medium and is replacing anhydrous ammonia in most of the Selective catalytic reduction (SCR) units. This newly developed model can estimate the vaporization rate and net mass evaporating into the air from a...

  2. Electrochemical behavior of LiCoO2 as aqueous lithium-ion battery electrodes Riccardo Ruffo a

    E-Print Network [OSTI]

    Cui, Yi

    Electrochemical behavior of LiCoO2 as aqueous lithium-ion battery electrodes Riccardo Ruffo 2008 Available online xxxx Keywords: LiCoO2 Aqueous electrolyte LiNO3 Lithium-ion battery Cathode substrate using the procedures typical for the study of electrodes for lithium-ion batteries in organic

  3. Novel electrolytes and electrolyte additives for PHEV applications

    Broader source: Energy.gov (indexed) [DOE]

    diagnostics. Some of these electrolytes contained the following: - Solvents: EC, PC, EMC, etc. - Salts: LiPF 6 , LiBF 4 , LiB(C 2 O 4 ) 2 , LiF 2 BC 2 O 4 , etc. - Additives:...

  4. Lithium ion conducting ionic electrolytes

    DOE Patents [OSTI]

    Angell, C.A.; Xu, K.; Liu, C.

    1996-01-16T23:59:59.000Z

    A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100 C or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors. 4 figs.

  5. Lithium ion conducting ionic electrolytes

    DOE Patents [OSTI]

    Angell, C. Austen (Mesa, AZ); Xu, Kang (Tempe, AZ); Liu, Changle (Tulsa, OK)

    1996-01-01T23:59:59.000Z

    A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors.

  6. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01T23:59:59.000Z

    battery electrolytes; we also describe a general approach toward performing fundamental in situ characterization

  7. Refinement of the Kansas City Plant site conceptual model with respect to dense non-aqueous phase liquids (DNAPL)

    SciTech Connect (OSTI)

    Korte, N.E.; Hall, S.C. [Oak Ridge National Lab., TN (United States); Baker, J.L. [AlliedSignal Corp., Kansas City, MO (United States). Dept. of Environmental Protection

    1995-10-01T23:59:59.000Z

    This document presents a refinement of the site conceptual model with respect to dense non-aqueous phase liquid (DNAPL) at the US Department of Energy Kansas City Plant (KCP). This refinement was prompted by a review of the literature and the results of a limited study that was conducted to evaluate whether pools of DNAPL were present in contaminated locations at the KCP. The field study relied on the micropurge method of sample collection. This method has been demonstrated as a successful approach for obtaining discrete samples within a limited aquifer zone. Samples were collected at five locations across 5-ft well screens located at the base of the alluvial aquifer at the KCP. The hypothesis was that if pools of DNAPL were present, the dissolved concentration would increase with depth. Four wells with highly contaminated groundwater were selected for the test. Three of the wells were located in areas where DNAPL was suspected, and one where no DNAPL was believed to be present. The results demonstrated no discernible pattern with depth for the four wells tested. A review of the data in light of the available technical literature suggests that the fine-grained nature of the aquifer materials precludes the formation of pools. Instead, DNAPL is trapped as discontinuous ganglia that are probably widespread throughout the aquifer. The discontinuous nature of the DNAPL distribution prevents the collection of groundwater samples with concentrations approaching saturation. Furthermore, the results indicate that attempts to remediate the aquifer with conventional approaches will not result in restoration to pristine conditions because the tortuous groundwater flow paths will inhibit the efficiency of fluid-flow-based treatments.

  8. The rheology of oxide dispersions and the role of concentrated electrolyte solutions

    SciTech Connect (OSTI)

    Biggs, Simon; Tindley, Amy [Leeds University/Nexis Solutions URA in Particle Science and Technology, Institute of Particle Science and Engineering, School of Process, Environmental and Materials Engineering, The University of Leeds, Leeds LS2 9JT (United Kingdom)

    2007-07-01T23:59:59.000Z

    Stability control of particulate dispersions is critical to a wide range of industrial processes. In the UK nuclear industry, significant volumes of waste materials arising from the corrosion products of Magnox fuel rods currently require treatment and storage. The majority of this waste is present as aqueous dispersions of oxide particulates. Treatment of these dispersions will require a variety of unit operations including mobilisation, transport and solid- liquid separation. Typically these processes must operate across a narrow optimal range of pH and the dispersions are, almost without exception, found in complex electrolyte conditions of high overall concentration. Knowledge of the behaviour of oxides in various electrolyte conditions and over a large pH range is essential for the efficient design and control of any waste processing approach. The transport properties of particle dispersions are characterised by the rheological properties. It is well known that particle dispersion rheology is strongly influenced by particle-particle interaction forces, and that particle-particle interactions are strongly influenced by adsorbed ions on the particle surfaces. Here we correlate measurements of the shear yield stress and the particle zeta potentials to provide insight as to the role of ions in moderating particle interactions. The zeta potential of model TiO{sub 2} suspensions were determined (Colloidal Dynamics Zeta Probe) over a range of pH for a series of alkali metal halides and quaternary ammonium halides at a range of solution concentrations (0.001 M - 1 M). The results show some surprising co-ion effects at high electrolyte concentrations (>0.5 M) and indicate that even ions generally considered to be indifferent induce a shift in iso-electric point (i.e.p.) which is inferred as being due to specific adsorption of ions. The shear yield stress values of concentrated titania dispersions were measured using a Bohlin C-VOR stress controlled rheometer. The shear yield stress of a material is defined as the minimum applied shear stress required to induce flow. The yield stress vs. pH curves obtained reflected the shifts in i.e.p. seen in the zeta potential results. Interestingly, specific ion adsorption results in an unexplained increase in the value of the yield stress over that expected for simple systems with no such interfacial ion adsorption. Possible reasons for this effect such as ion-ion correlation effects are discussed. The importance of this increased attraction for the mobilisation of settled solids in an aqueous environment and especially the likely effects on the treatment of Magnox fuel waste materials is discussed. (authors)

  9. High cation transport polymer electrolyte

    DOE Patents [OSTI]

    Gerald, II, Rex E. (Brookfield, IL); Rathke, Jerome W. (Homer Glen, IL); Klingler, Robert J. (Westmont, IL)

    2007-06-05T23:59:59.000Z

    A solid state ion conducting electrolyte and a battery incorporating same. The electrolyte includes a polymer matrix with an alkali metal salt dissolved therein, the salt having an anion with a long or branched chain having not less than 5 carbon or silicon atoms therein. The polymer is preferably a polyether and the salt anion is preferably an alkyl or silyl moiety of from 5 to about 150 carbon/silicon atoms.

  10. Solid polymer electrolyte lithium batteries

    DOE Patents [OSTI]

    Alamgir, M.; Abraham, K.M.

    1993-10-12T23:59:59.000Z

    This invention pertains to Lithium batteries using Li ion (Li[sup +]) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride). 3 figures.

  11. Solid polymer electrolyte lithium batteries

    DOE Patents [OSTI]

    Alamgir, Mohamed (Dedham, MA); Abraham, Kuzhikalail M. (Needham, MA)

    1993-01-01T23:59:59.000Z

    This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

  12. Electrolytes for lithium ion batteries

    DOE Patents [OSTI]

    Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

    2014-08-05T23:59:59.000Z

    A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

  13. Non-aqueous solution preparation of doped and undoped lixmnyoz

    DOE Patents [OSTI]

    Boyle, Timothy J. (5801 Eubank, N.E., Apt. #97, Albuquerque, NM 87111); Voigt, James A. (187 Aaramar La., Corrales, NM 87048)

    1997-01-01T23:59:59.000Z

    A method for generation of phase-pure doped and undoped Li.sub.x Mn.sub.y O.sub.z precursors. The method of this invention uses organic solutions instead of aqueous solutions or nonsolution ball milling of dry powders to produce phase-pure precursors. These precursors can be used as cathodes for lithium-polymer electrolyte batteries. Dopants may be homogeneously incorporated to alter the characteristics of the powder.

  14. High elastic modulus polymer electrolytes

    DOE Patents [OSTI]

    Balsara, Nitash Pervez; Singh, Mohit; Eitouni, Hany Basam; Gomez, Enrique Daniel

    2013-10-22T23:59:59.000Z

    A polymer that combines high ionic conductivity with the structural properties required for Li electrode stability is useful as a solid phase electrolyte for high energy density, high cycle life batteries that do not suffer from failures due to side reactions and dendrite growth on the Li electrodes, and other potential applications. The polymer electrolyte includes a linear block copolymer having a conductive linear polymer block with a molecular weight of at least 5000 Daltons, a structural linear polymer block with an elastic modulus in excess of 1.times.10.sup.7 Pa and an ionic conductivity of at least 1.times.10.sup.-5 Scm.sup.-1. The electrolyte is made under dry conditions to achieve the noted characteristics.

  15. Anion exchange polymer electrolytes

    DOE Patents [OSTI]

    Kim, Yu Seung; Kim, Dae Sik; Lee, Kwan-Soo

    2013-07-23T23:59:59.000Z

    Solid anion exchange polymer electrolytes and compositions comprising chemical compounds comprising a polymeric core, a spacer A, and a guanidine base, wherein said chemical compound is uniformly dispersed in a suitable solvent and has the structure: ##STR00001## wherein: i) A is a spacer having the structure O, S, SO.sub.2, --NH--, --N(CH.sub.2).sub.n, wherein n=1-10, --(CH.sub.2).sub.n--CH.sub.3--, wherein n=1-10, SO.sub.2-Ph, CO-Ph, ##STR00002## wherein R.sub.5, R.sub.6, R.sub.7 and R.sub.8 each are independently --H, --NH.sub.2, F, Cl, Br, CN, or a C.sub.1-C.sub.6 alkyl group, or any combination of thereof; ii) R.sub.9, R.sub.10, R.sub.11, R.sub.12, or R.sub.13 each independently are --H, --CH.sub.3, --NH.sub.2, --NO, --CH.sub.nCH.sub.3 where n=1-6, HC.dbd.O--, NH.sub.2C.dbd.O--, --CH.sub.nCOOH where n=1-6, --(CH.sub.2).sub.n--C(NH.sub.2)--COOH where n=1-6, --CH--(COOH)--CH.sub.2--COOH, --CH.sub.2--CH(O--CH.sub.2CH.sub.3).sub.2, --(C.dbd.S)--NH.sub.2, --(C.dbd.NH)--N--(CH.sub.2).sub.nCH.sub.3, where n=0-6, --NH--(C.dbd.S)--SH, --CH.sub.2--(C.dbd.O)--O--C(CH.sub.3).sub.3, --O--(CH.sub.2).sub.n--CH--(NH.sub.2)--COOH, where n=1-6, --(CH.sub.2).sub.n--CH.dbd.CH wherein n=1-6, --(CH.sub.2).sub.n--CH--CN wherein n=1-6, an aromatic group such as a phenyl, benzyl, phenoxy, methylbenzyl, nitrogen-substituted benzyl or phenyl groups, a halide, or halide-substituted methyl groups; and iii) wherein the composition is suitable for use in a membrane electrode assembly.

  16. A Techno-Economic Analysis of Decentralized Electrolytic Hydrogen Production for Fuel Cell Vehicles

    E-Print Network [OSTI]

    Victoria, University of

    A Techno-Economic Analysis of Decentralized Electrolytic Hydrogen Production for Fuel Cell Vehicles-Economic Analysis of Decentralized Electrolytic Hydrogen Production for Fuel Cell Vehicles by Sébastien Prince options considered for future fuel cell vehicles. In this thesis, a model is developed to determine

  17. LOWER TEMPERATURE ELECTROLYTE AND ELECTRODE MATERIALS

    SciTech Connect (OSTI)

    Keqin Huang

    2003-04-30T23:59:59.000Z

    A thorough literature survey on low-temperature electrolyte and electrode materials for SOFC is given in this report. Thermodynamic stability of selected electrolyte and its chemical compatibility with cathode substrate were evaluated. Preliminary electrochemical characterizations were conducted on symmetrical cells consisting of the selected electrolyte and various electrode materials. Feasibility of plasma spraying new electrolyte material thin-film on cathode substrate was explored.

  18. Solid lithium-ion electrolyte

    DOE Patents [OSTI]

    Zhang, Ji-Guang (Golden, CO); Benson, David K. (Golden, CO); Tracy, C. Edwin (Golden, CO)

    1998-01-01T23:59:59.000Z

    The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li.sub.2 O--CeO.sub.2 --SiO.sub.2 system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications.

  19. Solid lithium-ion electrolyte

    DOE Patents [OSTI]

    Zhang, J.G.; Benson, D.K.; Tracy, C.E.

    1998-02-10T23:59:59.000Z

    The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li{sub 2}O--CeO{sub 2}--SiO{sub 2} system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications. 12 figs.

  20. Interfacial Behavior of Electrolytes

    Broader source: Energy.gov (indexed) [DOE]

    Barriers InteractionsCollaborations *M.M.Doeff, R. Kostecki, V. Battaglia, John Newman(LBNL) - electrodes, surface analysis, cell building, electrochemical system modeling. *Grant...

  1. Fuel cell with electrolyte feed system

    DOE Patents [OSTI]

    Feigenbaum, Haim (Highland Park, NJ)

    1984-01-01T23:59:59.000Z

    A fuel cell having a pair of electrodes at the sites of electrochemical reactions of hydrogen and oxygen and a phosphoric acid electrolyte provided with an electrolyte supporting structure in the form of a laminated matrix assembly disposed between the electrodes. The matrix assembly is formed of a central layer disposed between two outer layers, each being permeable to the flow of the electrolyte. The central layer is provided with relatively large pores while the outer layers are provided with relatively small pores. An external reservoir supplies electrolyte via a feed means to the central layer to compensate for changes in electrolyte volume in the matrix assembly during the operation of fuel cell.

  2. Electrolyte measurement device and measurement procedure

    DOE Patents [OSTI]

    Cooper, Kevin R. (Southern Pines, NC); Scribner, Louie L. (Southern Pines, NC)

    2010-01-26T23:59:59.000Z

    A method and apparatus for measuring the through-thickness resistance or conductance of a thin electrolyte is provided. The method and apparatus includes positioning a first source electrode on a first side of an electrolyte to be tested, positioning a second source electrode on a second side of the electrolyte, positioning a first sense electrode on the second side of the electrolyte, and positioning a second sense electrode on the first side of the electrolyte. current is then passed between the first and second source electrodes and the voltage between the first and second sense electrodes is measured.

  3. Solid-polymer-electrolyte fuel cells

    SciTech Connect (OSTI)

    Fuller, T.F.

    1992-07-01T23:59:59.000Z

    A transport model for polymer electrolytes is presented, based on concentrated solution theory and irreversible thermodynamics. Thermodynamic driving forces are developed, transport properties are identified and experiments devised. Transport number of water in Nafion 117 membrane is determined using a concentration cell. It is 1.4 for a membrane equilibrated with saturated water vapor at 25{degrees}C, decreases slowly as the membrane is dehydrated, and falls sharply toward zero as the water content approaches zero. The relation between transference number, transport number, and electroosmotic drag coefficient is presented, and their relevance to water-management is discussed. A mathematical model of transport in a solid-polymer-electrolyte fuel cell is presented. A two-dimensional membrane-electrode assembly is considered. Water management, thermal management, and utilization of fuel are examined in detail. The membrane separators of these fuel cells require sorbed water to maintain conductivity; therefore it is necessary to manage the water content in membranes to ensure efficient operation. Water and thermal management are interrelated. Rate of heat removal is shown to be a critical parameter in the operation of these fuel cells. Current-voltage curves are presented for operation on air and reformed methanol. Equations for convective diffusion to a rotating disk are solved numerically for a consolute point between the bulk concentration and the surface. A singular-perturbation expansion is presented for the condition where the bulk concentration is nearly equal to the consolute-point composition. Results are compared to Levich's solution and analysis.

  4. aqueous polymer two-phase: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Universit de 3 Model of Two-Phase Flow and Flooding Dynamics in Polymer Electrolyte Fuel Cells Energy Storage, Conversion and Utilization Websites Summary: , 2005. Water...

  5. Dependence of the dielectric constant of electrolyte solutions on ionic concentration

    E-Print Network [OSTI]

    Gavish, Nir

    2012-01-01T23:59:59.000Z

    We study the dependence of the static dielectric constant of aqueous electrolyte solutions upon the concentration of salt in the solution and temperature. The model takes into account the orientation of the solvent dipoles due to the electric field created by ions, the ionic response to an applied field, and the effect of thermal fluctuations. The analysis suggests that the formation of ion pairs by a small fraction of disassociated ions can have a significant effect on the static dielectric constant. The model predicts the dielectric has the functional dependence $\\varepsilon(c)=\\varepsilon_w-\\beta L(3\\alpha c/\\beta)$ where $L$ is the Langevin function, $c$ is the salt concentration, $\\varepsilon_w$ is the dielectric of the pure water, $\\alpha$ is the total excess polarization of the ions and $\\beta$ is the relative difference between the water dipole moment and the effective dipole moment of ion pairs as weighted by the density of ion pairs and their structural rigidity. The functional form gives an extreme...

  6. Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Electrolyte Additives for PHEVEV Lithium-ion Battery Development of Advanced Electrolytes and Electrolyte Additives...

  7. Order of wetting transitions in electrolyte solutions

    SciTech Connect (OSTI)

    Ibagon, Ingrid, E-mail: ingrid@is.mpg.de; Bier, Markus, E-mail: bier@is.mpg.de; Dietrich, S. [Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, 70569 Stuttgart, Germany and IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart (Germany)] [Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, 70569 Stuttgart, Germany and IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart (Germany)

    2014-05-07T23:59:59.000Z

    For wetting films in dilute electrolyte solutions close to charged walls we present analytic expressions for their effective interface potentials. The analysis of these expressions renders the conditions under which corresponding wetting transitions can be first- or second-order. Within mean field theory we consider two models, one with short- and one with long-ranged solvent-solvent and solvent-wall interactions. The analytic results reveal in a transparent way that wetting transitions in electrolyte solutions, which occur far away from their critical point (i.e., the bulk correlation length is less than half of the Debye length) are always first-order if the solvent-solvent and solvent-wall interactions are short-ranged. In contrast, wetting transitions close to the bulk critical point of the solvent (i.e., the bulk correlation length is larger than the Debye length) exhibit the same wetting behavior as the pure, i.e., salt-free, solvent. If the salt-free solvent is governed by long-ranged solvent-solvent as well as long-ranged solvent-wall interactions and exhibits critical wetting, adding salt can cause the occurrence of an ion-induced first-order thin-thick transition which precedes the subsequent continuous wetting as for the salt-free solvent.

  8. Composite electrode/electrolyte structure

    DOE Patents [OSTI]

    Visco, Steven J. (Berkeley, CA); Jacobson, Craig P. (El Cerrito, CA); DeJonghe, Lutgard C. (Lafayette, CA)

    2004-01-27T23:59:59.000Z

    Provided is an electrode fabricated from highly electronically conductive materials such as metals, metal alloys, or electronically conductive ceramics. The electronic conductivity of the electrode substrate is maximized. Onto this electrode in the green state, a green ionic (e.g., electrolyte) film is deposited and the assembly is co-fired at a temperature suitable to fully densify the film while the substrate retains porosity. Subsequently, a catalytic material is added to the electrode structure by infiltration of a metal salt and subsequent low temperature firing. The invention allows for an electrode with high electronic conductivity and sufficient catalytic activity to achieve high power density in ionic (electrochemical) devices such as fuel cells and electrolytic gas separation systems.

  9. Perovskite solid electrolytes for SOFC

    SciTech Connect (OSTI)

    Sammells, A.F.

    1993-11-01T23:59:59.000Z

    We have synthesized a new series of brownmillerite solid electrolyte phases Ba{sub 2}GdIn{sub 1-x}Ga{sub x}O{sub 5} (x = 0,0.2,0.4) with the x = 0.2 phase exhibiting an unusually low E. relative to both the observed ionic conductivity in this phase and to E{sub a}s observed in similar compounds. We attribute measured ionic conductivities to a lack of available charge carriers in Ba{sub 2}GdIn{sub 0.8}Ga{sub 0.2}O{sub 5}. However, the low E{sub a} supports the premise that brownmillerite solid electrolyte structures are suitable for supporting high ionic conductivity. Current work is focusing on enhancing the amount of charge carriers in these materials by systematically introducing disorder into the brownmillerite lattice.

  10. Perovskite solid electrolytes for SOFC

    SciTech Connect (OSTI)

    Sammells, A.F.

    1992-09-01T23:59:59.000Z

    Selected perovskite solid electrolytes incorporated into research size fuel cells have shown stability for > 4000 hours at 600{degrees}C. Perovskite lattice requirements which favor low E{sub a} for ionic conduction include (i) that the perovskite lattice possess a moderate enthalpy of formation, (ii) perovskite lattice possess large free volumes, (iii) that the lattice minimally polarizes the mobile ion and (iv) that the crystallographic saddle point r{sub c} for ionic conduction is {approx_equal} 1.

  11. Perovskite solid electrolytes for SOFC

    SciTech Connect (OSTI)

    Sammells, A.F.

    1992-01-01T23:59:59.000Z

    Selected perovskite solid electrolytes incorporated into research size fuel cells have shown stability for > 4000 hours at 600{degrees}C. Perovskite lattice requirements which favor low E{sub a} for ionic conduction include (i) that the perovskite lattice possess a moderate enthalpy of formation, (ii) perovskite lattice possess large free volumes, (iii) that the lattice minimally polarizes the mobile ion and (iv) that the crystallographic saddle point r{sub c} for ionic conduction is {approx equal} 1.

  12. Study of the dehydrochlorination of DDT in basic media in sulfobetaine aqueous micellar solutions

    SciTech Connect (OSTI)

    Rodriguez, A.; Mar Graciani, M. del; Guinda, A.; Munoz, M.; Moya, M.L.

    2000-04-04T23:59:59.000Z

    The reaction of dehydrochlorination of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane, DDT, with hydroxide ions has been studied in aqueous micellar solutions of N-tetradecyl-N,N-dimethyl-3-ammino-1-propane-sulfonate, SB3-14, and N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate, SB3-16. A simple expression for the observed rate constant, k{sub obs}, based on the pseudophase model, could explain the influence of changes in the surfactant concentration on k{sub obs}. The kinetic effects of added electrolytes (NaF, NaCl, NaBr, and NaNO{sub 3}) on the reaction rate in SB3-14 micellar media have also been studied. They were rationalized by considering the binding of the anions, which come from the added salt, to the sulfobetaine micelles and their competition with the reactive hydroxide ions for the micellar surface. Conductivity measurements have been a helpful tool in the discussion of the kinetic effects of added salts and permitted the estimation of equilibrium constants for the distribution of the anions between the zwitterionic micelles and the aqueous phase.

  13. Polymeric electrolytes based on hydrosilyation reactions

    DOE Patents [OSTI]

    Kerr, John Borland (Oakland, CA); Wang, Shanger (Fairfield, CA); Hou, Jun (Painted Post, NY); Sloop, Steven Edward (Berkeley, CA); Han, Yong Bong (Berkeley, CA); Liu, Gao (Oakland, CA)

    2006-09-05T23:59:59.000Z

    New polymer electrolytes were prepared by in situ cross-linking of allyl functional polymers based on hydrosilation reaction using a multifunctional silane cross-linker and an organoplatinum catalyst. The new cross-linked electrolytes are insoluble in organic solvent and show much better mechanical strength. In addition, the processability of the polymer electrolyte is maintained since the casting is finished well before the gel formation.

  14. Solid-oxide fuel cell electrolyte

    DOE Patents [OSTI]

    Bloom, Ira D. (Bolingbrook, IL); Hash, Mark C. (Joliet, IL); Krumpelt, Michael (Naperville, IL)

    1993-01-01T23:59:59.000Z

    A solid-oxide electrolyte operable at between 600.degree. C. and 800.degree. C. and a method of producing the solid-oxide electrolyte are provided. The solid-oxide electrolyte comprises a combination of a compound having weak metal-oxygen interactions with a compound having stronger metal-oxygen interactions whereby the resulting combination has both strong and weak metal-oxygen interaction properties.

  15. Electrolyte Solvation and Ionic Association. V. Acetonitrile-Lithium Bis(fluorosulfonyl)imide (LiFSI) Mixtures

    SciTech Connect (OSTI)

    Han, Sang D.; Borodin, Oleg; Seo, D. M.; Zhou, Zhi B.; Henderson, Wesley A.

    2014-09-30T23:59:59.000Z

    Electrolytes with the salt lithium bis(fluorosulfonyl)imide (LiFSI) have been evaluated relative to comparable electrolytes with other lithium salts. Acetonitrile (AN) has been used as a model electrolyte solvent. The information obtained from the thermal phase behavior, solvation/ionic association interactions, quantum chemical (QC) calculations and molecular dynamics (MD) simulations (with an APPLE&P many-body polarizable force field for the LiFSI salt) of the (AN)n-LiFSI mixtures provides detailed insight into the coordination interactions of the FSI- anions and the wide variability noted in the electrolyte transport property (i.e., viscosity and ionic conductivity).

  16. LOWER TEMPERATURE ELECTROLYTE AND ELECTRODE MATERIALS

    SciTech Connect (OSTI)

    Keqin Huang

    2002-04-30T23:59:59.000Z

    LSGM electrolyte and LSCF cathode materials were synthesized via solid state reaction and wet-chemical method. From these materials, symmetrical cells were fabricated for electrochemical characterizations.

  17. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01T23:59:59.000Z

    facing rechargeable lithium batteries. Nature 414, 359-367 (lithium and lithium-ion batteries. Solid State Ionics 135,electrolytes for lithium-ion batteries. Advanced Materials

  18. Electrolytic process for preparing uranium metal

    DOE Patents [OSTI]

    Haas, Paul A. (Knoxville, TN)

    1990-01-01T23:59:59.000Z

    An electrolytic process for making uranium from uranium oxide using Cl.sub.2 anode product from an electrolytic cell to react with UO.sub.2 to form uranium chlorides. The chlorides are used in low concentrations in a melt comprising fluorides and chlorides of potassium, sodium and barium in the electrolytic cell. The electrolysis produces Cl.sub.2 at the anode that reacts with UO.sub.2 in the feed reactor to form soluble UCl.sub.4, available for a continuous process in the electrolytic cell, rather than having insoluble UO.sub.2 fouling the cell.

  19. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01T23:59:59.000Z

    polymer electrolytes for lithium batteries. Nature 394, 456-facing rechargeable lithium batteries. Nature 414, 359-367 (vanadium oxides for lithium batteries. Journal of Materials

  20. Design of PHEVs and Electrolyte Properties

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    size and capacity usage depend on - Cell chemistry and design - Separator area and driving distance 4 Barriers * Electrolyte properties - Poor transport properties - A lack...

  1. Rebalancing electrolytes in redox flow battery systems

    DOE Patents [OSTI]

    Chang, On Kok; Pham, Ai Quoc

    2014-12-23T23:59:59.000Z

    Embodiments of redox flow battery rebalancing systems include a system for reacting an unbalanced flow battery electrolyte with a rebalance electrolyte in a first reaction cell. In some embodiments, the rebalance electrolyte may contain ferrous iron (Fe.sup.2+) which may be oxidized to ferric iron (Fe.sup.3+) in the first reaction cell. The reducing ability of the rebalance reactant may be restored in a second rebalance cell that is configured to reduce the ferric iron in the rebalance electrolyte back into ferrous iron through a reaction with metallic iron.

  2. Simulation of Electrolyte Composition Effects on High Energy Lithium-Ion Cells

    SciTech Connect (OSTI)

    K. Gering

    2014-09-01T23:59:59.000Z

    An important feature of the DUALFOIL model for simulation of lithium-ion cells [1,2] is rigorous accounting for non-ideal electrolyte properties. Unfortunately, data are available on only a few electrolytes [3,4]. However, K. Gering has developed a model for estimation of electrolyte properties [5] and recently generated complete property sets (density, conductivity, activity coefficient, diffusivity, transport number) as a function of temperature and salt concentration. Here we use these properties in an enhanced version of the DUALFOIL model called DISTNP, available in Battery Design Studio [6], to examine the effect of different electrolytes on cell performance. Specifically, the behavior of a high energy LiCoO2/graphite 18650-size cell is simulated. The ability of Battery Design Studio to si

  3. AQUEOUS BIPHASE EXTRACTION FOR PROCESSING OF FINE COAL

    SciTech Connect (OSTI)

    K. Osseo-Asare; X. Zeng

    2002-01-01T23:59:59.000Z

    The objective of this research project is to develop an aqueous biphase extraction process for the treatment of fine coals. Aqueous biphase extraction is an advanced separation technology that relies on the ability of an aqueous system consisting of a water-soluble polymer and another component, e.g., another polymer, an inorganic salt, or a nonionic surfactant, to separate into two immiscible aqueous phases. The principle behind the partition of solid particles in aqueous biphase systems is the physicochemical interaction between the solid surface and the surrounding liquid solution. In order to remove sulfur and mineral matter from fine coal with aqueous biphasic extraction, it is necessary to know the partitioning behavior of coal, as well as the inorganic mineral components. Therefore, in this research emphasis was placed on the partitioning behavior of fine coal particles as well as model fine inorganic particles in aqueous biphase systems.

  4. The H2O2+OH ? HO2+H2O reaction in aqueous solution from a charge-dependent continuum model of solvation

    SciTech Connect (OSTI)

    Ginovska, Bojana; Camaioni, Donald M.; Dupuis, Michel

    2008-07-07T23:59:59.000Z

    We applied our recently developed protocol of the conductor-like continuum model of solvation to describe the title reaction in aqueous solution. The model has the unique feature of the molecular cavity being dependent on the atomic charges in the solute, and can be extended naturally to transition states and reaction pathways. It was used to calculate the reaction energetics and reaction rate in solution for the title reaction. The rate of reaction calculated using canonical variational transition state theory CVT in the context of the equilibrium solvation path (ESP) approximation, and including correction for tunneling through the small curvature approximation (SCT) was found to be 3.6 106 M-1 s-1, in very good agreement with experiment, These results suggest that the present protocol of the conductor-like continuum model of solvation with the charge-dependent cavity definition captures accurately the solvation effects at transition states and allows for quantitative estimates of reaction rates in solutions. This work was supported by the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Chemical Sciences program. The Pacific Northwest National Laboratory is operated by Battelle for DOE.

  5. Solid-polymer-electrolyte fuel cells

    SciTech Connect (OSTI)

    Fuller, T.F.

    1992-07-01T23:59:59.000Z

    A transport model for polymer electrolytes is presented, based on concentrated solution theory and irreversible thermodynamics. Thermodynamic driving forces are developed, transport properties are identified and experiments devised. Transport number of water in Nafion 117 membrane is determined using a concentration cell. It is 1.4 for a membrane equilibrated with saturated water vapor at 25{degrees}C, decreases slowly as the membrane is dehydrated, and falls sharply toward zero as the water content approaches zero. The relation between transference number, transport number, and electroosmotic drag coefficient is presented, and their relevance to water-management is discussed. A mathematical model of transport in a solid-polymer-electrolyte fuel cell is presented. A two-dimensional membrane-electrode assembly is considered. Water management, thermal management, and utilization of fuel are examined in detail. The membrane separators of these fuel cells require sorbed water to maintain conductivity; therefore it is necessary to manage the water content in membranes to ensure efficient operation. Water and thermal management are interrelated. Rate of heat removal is shown to be a critical parameter in the operation of these fuel cells. Current-voltage curves are presented for operation on air and reformed methanol. Equations for convective diffusion to a rotating disk are solved numerically for a consolute point between the bulk concentration and the surface. A singular-perturbation expansion is presented for the condition where the bulk concentration is nearly equal to the consolute-point composition. Results are compared to Levich`s solution and analysis.

  6. Experimental investigation and thermodynamic modeling of extraction of heavy metal ions from aqueous solutions by chelation in supercritical carbon dioxide 

    E-Print Network [OSTI]

    Uyansoy, Hakki

    1995-01-01T23:59:59.000Z

    thermodynamic model has been developed. This model predicts the system pH which is a important factor in design of metal extraction units. With the model the efficiency of the extraction with different chelating agents at different temperatures and pressures...

  7. High performance electrolytes for MCFC

    DOE Patents [OSTI]

    Kaun, T.D.; Roche, M.F.

    1999-08-24T23:59:59.000Z

    A carbonate electrolyte of the Li/Na or CaBaLiNa system is described. The Li/Na carbonate has a composition displaced from the eutectic composition to diminish segregation effects in a molten carbonate fuel cell. The CaBaLiNa system includes relatively small amounts of Ca{sub 2}CO{sub 3} and BaCO{sub 3}, and preferably of equimolar amounts. The presence of both Ca and BaCO{sub 3} enables lower temperature fuel cell operation. 15 figs.

  8. Aqueous coal slurry

    DOE Patents [OSTI]

    Berggren, Mark H.; Smit, Francis J.; Swanson, Wilbur W.

    1993-04-06T23:59:59.000Z

    An aqueous slurry containing coal and dextrin as a dispersant. The slurry, in addition to containing dextrin, may contain a conventional dispersant or, alternatively, a pH controlling reagent.

  9. Aqueous coal slurry

    DOE Patents [OSTI]

    Berggren, Mark H. (Golden, CO); Smit, Francis J. (Arvada, CO); Swanson, Wilbur W. (Golden, CO)

    1993-01-01T23:59:59.000Z

    An aqueous slurry containing coal and dextrin as a dispersant. The slurry, in addition to containing dextrin, may contain a conventional dispersant or, alternatively, a pH controlling reagent.

  10. Dispenser Printed Zinc Microbattery with an Ionic Liquid Gel Electrolyte

    E-Print Network [OSTI]

    Ho, Christine Chihfan

    2010-01-01T23:59:59.000Z

    Polymer Electrolytes for Lithium-Ion Batteries." Advancedpolymer electrolytes for lithium-ion batteries." Journal ofinclude lithium and lithium-ion chemistries with various

  11. Molecular dynamics simulation and ab intio studies of electrolytes...

    Broader source: Energy.gov (indexed) [DOE]

    Molecular dynamics simulation and ab intio studies of electrolytes and electrolyteelectrode interfaces Molecular dynamics simulation and ab intio studies of electrolytes and...

  12. Molecular Dynamics Simulation of the AgCl/Electrolyte Interfacial...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulation of the AgClElectrolyte Interfacial Capacity. Molecular Dynamics Simulation of the AgClElectrolyte Interfacial Capacity. Abstract: Molecular dynamics simulation of the...

  13. Linking Ion Solvation and Lithium Battery Electrolyte Properties...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery Electrolyte Properties Linking Ion Solvation and Lithium Battery Electrolyte Properties 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and...

  14. Development of Polymer Electrolytes for Advanced Lithium Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Polymer Electrolytes for Advanced Lithium Batteries Development of Polymer Electrolytes for Advanced Lithium Batteries 2013 DOE Hydrogen and Fuel Cells Program and Vehicle...

  15. Towards Understanding the Poor Thermal Stability of V5+ Electrolyte...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Poor Thermal Stability of V5+ Electrolyte Solution in Vanadium Redox Flow Batteries. Towards Understanding the Poor Thermal Stability of V5+ Electrolyte Solution in...

  16. Probing the Degradation Mechanisms in Electrolyte Solutions for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Degradation Mechanisms in Electrolyte Solutions for Li-ion Batteries by In-Situ Transmission Electron Microscopy. Probing the Degradation Mechanisms in Electrolyte Solutions for...

  17. Polymer Electrolyte Fuel Cell Lifetime Limitations: The Role...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolyte Fuel Cell Lifetime Limitations: The Role of Electrocatalyst Degradation Polymer Electrolyte Fuel Cell Lifetime Limitations: The Role of Electrocatalyst Degradation...

  18. Novel Compounds for Enhancing Electrolyte Stability and Safety...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compounds for Enhancing Electrolyte Stability and Safety of Lithium-ion Cells Novel Compounds for Enhancing Electrolyte Stability and Safety of Lithium-ion Cells 2010 DOE Vehicle...

  19. Development of Novel Electrolytes for Use in High Energy Lithium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Development of Novel Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range Development of Novel Electrolytes...

  20. New lithium-based ionic liquid electrolytes that resist salt...

    Energy Savers [EERE]

    lithium-based ionic liquid electrolytes that resist salt concentration polarization New lithium-based ionic liquid electrolytes that resist salt concentration polarization...

  1. Ionic Liquid-Enhanced Solid State Electrolyte Interface (SEI...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liquid-Enhanced Solid State Electrolyte Interface (SEI) for Lithium Sulfur Batteries. Ionic Liquid-Enhanced Solid State Electrolyte Interface (SEI) for Lithium Sulfur Batteries....

  2. Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    15eswise2012p.pdf More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte...

  3. Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    15eswise2011p.pdf More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte...

  4. Nuclear Magnetic Resonance Studies on Vanadium(IV) Electrolyte...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetic Resonance Studies on Vanadium(IV) Electrolyte Solutions for Vanadium Redox Flow Battery . Nuclear Magnetic Resonance Studies on Vanadium(IV) Electrolyte Solutions for...

  5. Process Development and Scale up of Advanced Electrolyte Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scale up of Advanced Electrolyte Materials Process Development and Scale up of Advanced Electrolyte Materials 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies...

  6. Solid composite electrolytes for lithium batteries

    DOE Patents [OSTI]

    Kumar, Binod (Dayton, OH); Scanlon, Jr., Lawrence G. (Fairborn, OH)

    2000-01-01T23:59:59.000Z

    Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a ceramic-ceramic composite electrolyte is provided containing lithium nitride and lithium phosphate. The ceramic-ceramic composite is also preferably annealed and exhibits an activation energy of about 0.1 eV.

  7. Surface and interfacial tensions of Hofmeister electrolytes

    E-Print Network [OSTI]

    Levin, Yan

    Surface and interfacial tensions of Hofmeister electrolytes Alexandre P. dos Santos and Yan Levin to account quantitatively for the surface and interfacial tensions of different electrolyte solutions can also be used to calculate the surface and the interfacial tensions of acid solutions, predicting

  8. Solid polymer electrolytes for rechargeable batteries

    SciTech Connect (OSTI)

    Narang, S.C.; Macdonald, D.D.

    1990-11-01T23:59:59.000Z

    SRI International has synthesized novel solid polymer electrolytes for high energy density, rechargeable lithium batteries. We have systematically replaced the oxygens in PEO with sulfur to reduce the strong hard-acid hard-base interaction, while retaining the favorable helical conformation of the polymer backbone. The best polymer electrolyte produced so far is suitable for a medium power battery. In another effort, we have synthesized single ion conducting polymer electrolytes based on polyethyleneimine, polyphosphazene, and polysiloxane backbones. The single ion conducting polymer electrolytes will allow greater depth of charge and discharge by preventing dc polarization. The best conductivity so far with single ion conductors is 1.0 {times} 10{sup {minus}3} Scm{sup {minus}1} at room temperature. Further optimization of electrical and mechanical properties will allow the use of these polymer electrolytes in the fabrication of rechargeable lithium batteries. 8 tabs.

  9. Solid polymer electrolyte from phosphorylated chitosan

    SciTech Connect (OSTI)

    Fauzi, Iqbal, E-mail: arcana@chem.itb.ac.id; Arcana, I Made, E-mail: arcana@chem.itb.ac.id [Inorganic and Physical Chemistry Research Groups, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2014-03-24T23:59:59.000Z

    Recently, the need of secondary battery application continues to increase. The secondary battery which using a liquid electrolyte was indicated had some weakness. A solid polymer electrolyte is an alternative electrolytes membrane which developed in order to replace the liquid electrolyte type. In the present study, the effect of phosphorylation on to polymer electrolyte membrane which synthesized from chitosan and lithium perchlorate salts was investigated. The effect of the component’s composition respectively on the properties of polymer electrolyte, was carried out by analyzed of it’s characterization such as functional groups, ion conductivity, and thermal properties. The mechanical properties i.e tensile resistance and the morphology structure of membrane surface were determined. The phosphorylation processing of polymer electrolyte membrane of chitosan and lithium perchlorate was conducted by immersing with phosphoric acid for 2 hours, and then irradiated on a microwave for 60 seconds. The degree of deacetylation of chitosan derived from shrimp shells was obtained around 75.4%. Relative molecular mass of chitosan was obtained by viscometry method is 796,792 g/mol. The ionic conductivity of chitosan membrane was increase from 6.33 × 10{sup ?6} S/cm up to 6.01 × 10{sup ?4} S/cm after adding by 15 % solution of lithium perchlorate. After phosphorylation, the ionic conductivity of phosphorylated lithium chitosan membrane was observed 1.37 × 10{sup ?3} S/cm, while the tensile resistance of 40.2 MPa with a better thermal resistance. On the strength of electrolyte membrane properties, this polymer electrolyte membrane was suggested had one potential used for polymer electrolyte in field of lithium battery applications.

  10. New electrolytes and electrolyte additives to improve the low temperature performance of lithium-ion batteries

    SciTech Connect (OSTI)

    Yang, Xiao-Qing

    2008-08-31T23:59:59.000Z

    In this program, two different approaches were undertaken to improve the role of electrolyte at low temperature performance - through the improvement in (i) ionic conductivity and (ii) interfacial behavior. Several different types of electrolytes were prepared to examine the feasibil.ity of using these new electrolytes in rechargeable lithium-ion cells in the temperature range of +40°C to -40°C. The feasibility studies include (a) conductivity measurements of the electrolytes, (b) impedance measurements of lithium-ion cells using the screened electrolytes with di.fferent electrochemical history such as [(i) fresh cells prior to formation cycles, (ii) after first charge, and (iii) after first discharge], (c) electrical performance of the cells at room temperatures, and (d) charge discharge behavior at various low temperatures. Among the different types of electrolytes investigated in Phase I and Phase II of this SBIR project, carbonate-based LiPF6 electrolytes with the proposed additives and the low viscous ester as a third component to the carbonate-based LiPF6 electrolytes show promising results at low temperatures. The latter electrolytes deliver over 80% of room temperature capacity at -20{degrees}C when the lithium-ion cells containing these electrolytes were charged at -20 °C. Also, there was no lithium plating when the lithium­-ion cells using C-C composite anode and LiPF{sub 6} in EC/EMC/MP electrolyte were charged at -20{degrees}C at C/5 rate. The studies of ionic conductivity and AC impedance of these new electrolytes, as well as the charge discharge characteristics of lithium-ion cells using these new electrolytes at various low temperatures provide new findings: The reduced capacity and power capability, as well as the problem of lithium plating at low temperatures charging of lithium-ion cells are primarily due to slow the lithium-ion intercalation/de-intercalation kinetics in the carbon structure.

  11. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    SciTech Connect (OSTI)

    Harlan U. Anderson

    2000-03-31T23:59:59.000Z

    This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and Testing of Planar Single Cells. During this time period substantial progress has been made in developing low temperature deposition techniques to produce dense, nanocrystalline yttrium-stabilized zirconia films on both dense oxide and polymer substrates. Progress has been made in the preparation and characterization of thin electrolytes and porous LSM substrates. Both of these tasks are essentially on or ahead of schedule. In our proposal, we suggested that the ZrO{sub 2}/Sc system needed to be considered as a candidate as a thin electrolyte. This was because microcrystalline ZrO{sub 2}/Sc has a significantly higher ionic conductivity than YSZ, particularly at the lower temperatures. As a result, some 0.5 micron thick film of ZrO{sub 2}/16% Sc on an alumina substrate (grain size 20nm) was prepared and the electrical conductivity measured as a function of temperature and oxygen activity. The Sc doped ZrO{sub 2} certainly has a higher conductivity that either 20nm or 2400nm YSZ, however, electronic conductivity dominates the conductivity for oxygen activities below 10{sup -15}. Whereas for YSZ, electronic conductivity is not a problem until the oxygen activity decreases below 10{sup -25}. These initial results show that the ionic conductivity of 20nm YSZ and 20nm ZrO{sub 2}/16% Sc are essentially the same and the enhanced conductivity which is observed for Sc doping in microcrystalline specimens is not observed for the same composition when it is nanocrystalline. In addition they show that the electronic conductivity of Sc doped ZrO{sub 2} is at least two orders of magnitude higher than that observed for YSZ. The conclusion one reaches is that for 0.5 to 1 micron thick nanocrystalline films, Sc doping of ZrO{sub 2} has no benefits compared to YSZ. As a result, electrolyte films of ZrO{sub 2}/Sc should not be considered as candidates. However, they have the potential of being useful as an interface on the anode side of the electrolyte. NexTech has focused much of its effort during the past few months on establishing tape casting methods for porous LSM substrates. This work, performed under a separate DOE-funded program, involved tape casting formulations comprising LSM powders with bi-modal particle size distributions and fugitive pore forming additives. Sintered LSM substrates with porosities in the 30 to 40 vol% range, and pore sizes of 10 {approx} 20 microns have been prepared. In addition, tape casting formulations involving composite mixtures of LSM and Sm-doped ceria (SDC) have been evaluated. The LSM/SDC cathode substrates are expected to provide better performance at low temperatures. Characterization of these materials is currently underway.

  12. Electrolyte for an electrochemical cell

    DOE Patents [OSTI]

    Bates, John B. (Oak Ridge, TN); Dudney, Nancy J. (Knoxville, TN)

    1997-01-01T23:59:59.000Z

    Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte amorphous lithium phosphorus oxynitride which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between -15.degree. C. and 150.degree. C.

  13. Electrolyte for an electrochemical cell

    DOE Patents [OSTI]

    Bates, J.B.; Dudney, N.J.

    1997-01-28T23:59:59.000Z

    Described is a thin-film battery, especially a thin-film microbattery, and a method for making the same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte amorphous lithium phosphorus oxynitride which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between {minus}15 C and 150 C. 9 figs.

  14. Nanoscale Imaging of Lithium Ion Distribution During In Situ Operation of Battery Electrode and Electrolyte

    E-Print Network [OSTI]

    Holtz, Megan E; Gunceler, Deniz; Gao, Jie; Sundararaman, Ravishankar; Schwarz, Kathleen A; Arias, Tomás A; Abruña, Héctor D; Muller, David A

    2013-01-01T23:59:59.000Z

    A major challenge in the development of new battery materials is understanding their fundamental mechanisms of operation and degradation. Their microscopically inhomogeneous nature calls for characterization tools that provide operando and localized information from individual grains and particles. Here we describe an approach that images the nanoscale distribution of ions during electrochemical charging of a battery in a transmission electron microscope liquid flow cell. We use valence energy-loss spectroscopy to track both solvated and intercalated ions, with electronic structure fingerprints of the solvated ions identified using an ab initio non-linear response theory. Equipped with the new electrochemical cell holder, nanoscale spectroscopy and theory, we have been able to determine the lithiation state of a LiFePO4 electrode and surrounding aqueous electrolyte in real time with nanoscale resolution during electrochemical charge and discharge. We follow lithium transfer between electrode and electrolyte a...

  15. High conductivity electrolyte solutions and rechargeable cells incorporating such solutions

    DOE Patents [OSTI]

    Angell, C.A.; Zhang, S.S.; Xu, K.

    1998-10-20T23:59:59.000Z

    This invention relates generally to electrolyte solvents for use in liquid or rubbery polymer electrolyte solutions as are used, for example, in electrochemical devices. More specifically, this invention relates to sulfonyl/phospho-compound electrolyte solvents and sulfonyl/phospho-compound electrolyte solutions incorporating such solvents. 9 figs.

  16. Self-doped microphase separated block copolymer electrolyte

    DOE Patents [OSTI]

    Mayes, Anne M. (Waltham, MA); Sadoway, Donald R. (Waltham, MA); Banerjee, Pallab (Boston, MA); Soo, Philip (Cambridge, MA); Huang, Biying (Cambridge, MA)

    2002-01-01T23:59:59.000Z

    A polymer electrolyte includes a self-doped microphase separated block copolymer including at least one ionically conductive block and at least one second block that is immiscible in the ionically conductive block, an anion immobilized on the polymer electrolyte and a cationic species. The ionically conductive block provides a continuous ionically conductive pathway through the electrolyte. The electrolyte may be used as an electrolyte in an electrochemical cell.

  17. Self-doped molecular composite battery electrolytes

    DOE Patents [OSTI]

    Harrup, Mason K.; Wertsching, Alan K.; Stewart, Frederick F.

    2003-04-08T23:59:59.000Z

    This invention is in solid polymer-based electrolytes for battery applications. It uses molecular composite technology, coupled with unique preparation techniques to render a self-doped, stabilized electrolyte material suitable for inclusion in both primary and secondary batteries. In particular, a salt is incorporated in a nano-composite material formed by the in situ catalyzed condensation of a ceramic precursor in the presence of a solvated polymer material, utilizing a condensation agent comprised of at least one cation amenable to SPE applications. As such, the counterion in the condensation agent used in the formation of the molecular composite is already present as the electrolyte matrix develops. This procedure effectively decouples the cation loading levels required for maximum ionic conductivity from electrolyte physical properties associated with condensation agent loading levels by utilizing the inverse relationship discovered between condensation agent loading and the time domain of the aging step.

  18. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01T23:59:59.000Z

    D. Thin-film lithium and lithium-ion batteries. Solid StateH. Polymer electrolytes for lithium-ion batteries. AdvancedReviews, 2010). Ozawa, K. Lithium-ion rechargeable batteries

  19. A disposable, self-administered electrolyte test

    E-Print Network [OSTI]

    Prince, Ryan, 1977-

    2003-01-01T23:59:59.000Z

    This thesis demonstrates the novel concept that it is possible to make a disposable, self-administered electrolyte test to be introduced to the general consumer market. Although ion specific electrodes have been used to ...

  20. Fuel cell electrolyte membrane with acidic polymer

    DOE Patents [OSTI]

    Hamrock, Steven J. (Stillwater, MN); Larson, James M. (Saint Paul, MN); Pham, Phat T. (Little Canada, MN); Frey, Matthew H. (Cottage Grove, MN); Haugen, Gregory M. (Edina, MN); Lamanna, William M. (Stillwater, MN)

    2009-04-14T23:59:59.000Z

    An electrolyte membrane is formed by an acidic polymer and a low-volatility acid that is fluorinated, substantially free of basic groups, and is either oligomeric or non-polymeric.

  1. Aluminum ion batteries: electrolytes and cathodes

    E-Print Network [OSTI]

    Reed, Luke

    2015-01-01T23:59:59.000Z

    of Vanadium Oxide Aerogels. J. Non. Cryst. Solids (102)of composite V 2 O 5 aerogel electrodes. 26electrolyte and a V 2 O 5 aerogel cathode. There are few

  2. Continuous aqueous tritium monitor

    DOE Patents [OSTI]

    McManus, Gary J. (Idaho Falls, ID); Weesner, Forrest J. (Idaho Falls, ID)

    1989-05-30T23:59:59.000Z

    An apparatus for a selective on-line determination of aqueous tritium concentration is disclosed. A moist air stream of the liquid solution being analyzed is passed through a permeation dryer where the tritium and moisture and selectively removed to a purge air stream. The purge air stream is then analyzed for tritium concentration, humidity, and temperature, which allows computation of liquid tritium concentration.

  3. Nonaqueous electrolyte for electrical storage devices

    DOE Patents [OSTI]

    McEwen, Alan B. (Melrose, MA); Yair, Ein-Eli (Waltham, MA)

    1999-01-01T23:59:59.000Z

    Improved nonaqueous electrolytes for application in electrical storage devices such as electrochemical capacitors or batteries are disclosed. The electrolytes of the invention contain salts consisting of alkyl substituted, cyclic delocalized aromatic cations, and their perfluoro derivatives, and certain polyatomic anions having a van der Waals volume less than or equal to 100 .ANG..sup.3, preferably inorganic perfluoride anions and most preferably PF.sub.6.sup.-, the salts being dissolved in organic liquids, and preferably alkyl carbonate solvents, or liquid sulfur dioxide or combinations thereof, at a concentration of greater than 0.5M and preferably greater than 1.0M. Exemplary electrolytes comprise 1-ethyl-3-methylimidazolium hexafluorophosphate dissolved in a cyclic or acylic alkyl carbonate, or methyl formate, or a combination therof. These improved electrolytes have useful characteristics such as higher conductivity, higher concentration, higher energy storage capabilities, and higher power characteristics compared to prior art electrolytes. Stacked capacitor cells using electrolytes of the invention permit high energy, high voltage storage.

  4. Electrolytic recovery of reactor metal fuel

    DOE Patents [OSTI]

    Miller, W.E.; Tomczuk, Z.

    1994-09-20T23:59:59.000Z

    A new electrolytic process and apparatus are provided using sodium, cerium or a similar metal in alloy or within a sodium beta or beta[double prime]-alumina sodium ion conductor to electrolytically displace each of the spent fuel metals except for cesium and strontium on a selective basis from the electrolyte to an inert metal cathode. Each of the metals can be deposited separately. An electrolytic transfer of spent fuel into the electrolyte includes a sodium or cerium salt in the electrolyte with sodium or cerium alloy being deposited on the cathode during the transfer of the metals from the spent fuel. The cathode with the deposit of sodium or cerium alloy is then shunted to an anode and the reverse transfer is carried out on a selective basis with each metal being deposited separately at the cathode. The result is that the sodium or cerium needed for the process is regenerated in the first step and no additional source of these reactants is required. 2 figs.

  5. Electrolytic recovery of reactor metal fuel

    DOE Patents [OSTI]

    Miller, W.E.; Tomczuk, Z.

    1993-02-03T23:59:59.000Z

    This invention is comprised of a new electrolytic process and apparatus using sodium, cerium or a similar metal in an alloy or within a sodium beta or beta-alumina sodium ion conductor to electrolytically displace each of the spent fuel metals except for Cesium and strontium on a selective basis from the electrolyte to an inert metal cathode. Each of the metals can be deposited separately. An electrolytic transfer of spent fuel into the electrolyte includes a sodium or cerium salt in the electrolyte with sodium or cerium alloy being deposited on the cathode during the transfer of the metals from the spent fuel. The cathode with the deposit of sodium or cerium alloy is then changed to an anode and the reverse transfer is carried out on a selective basis with each metal being deposited separately at the cathode. The result is that the sodium or cerium needed for the process is regenerated in the first step and no additional source of these reactants is required.

  6. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    SciTech Connect (OSTI)

    Harlan U. Anderson; Fatih Dogan; Vladimir Petrovsky

    2003-03-31T23:59:59.000Z

    This report represents a summary of the work carried out on this project which started October 1999 and ended March 2003. A list of the publications resulting from the work are contained in Appendix A. The most significant achievements are: (1) Dense nanocrystalline zirconia and ceria films were obtained at temperatures < 400 C. (2) Nanocrystalline films of both ceria and zirconia were characterized. (3) We showed that under anodic conditions 0.5 to 1 micron thick nanocrystalline films of Sc doped zirconia have sufficient electronic conductivity to prevent them from being useful as an electrolyte. (4) We have developed a process by which dense 0.5 to 5 micron thick dense films of either YSZ or ceria can be deposited on sintered porous substrates which serve as either the cathode or anode at temperatures as low as 400 C. (5) The program has provided the research to produce two PhD thesis for students, one is now working in the solid oxide fuel cell field. (6) The results of the research have resulted in 69 papers published, 3 papers submitted or being prepared for publication, 50 oral presentations and 3 patent disclosures.

  7. The Long Scale Properties of Dense Electrolytes

    E-Print Network [OSTI]

    Mingnan Ding; Yihao Liang; Bing-Sui Lu; Xiangjun Xing

    2015-02-24T23:59:59.000Z

    In this work, we combine phenomenological, numerical, and analytical approaches to explore the long scale statistical properties of dense electrolytes. In the first part, we present a phenomenological framework. We show that the potential of mean force (PMF) for an ion with charge $q$ inside a {\\em weak} background of mean potential $\\phi$ is nonlinear in $q$, and linear but {\\em nonlocal} in $\\phi$. From this, we derive all the long scale properties of the system, including the linear response theory of mean potential, the effective interaction between two ions, and the large scale structures of electric double layers, as well as the renormalized charge of a neutral particle. We also discuss the connection and difference between our theory and the {\\em Dressed Ion Theory} developed by Kjellander and Mitchell in 1990's. In the second part, we discuss the numerical method that is used to extract various renormalized quantities from Monte Carlo simulation data, as well as some numerical results that demonstrate the internal consistency of our theory. In the third part, we develop a systematic analytic formalism for the PMF of an ion in a weak background potential. We apply this formalism to study the primitive model, and calculate all renormalized parameters up to the second order of ion valences. These analytic results agree, both qualitatively and quantitatively, with our large scale MC simulations.

  8. Electrolyte for an electrochemical cell, and an electrochemical cell including the electrolyte

    SciTech Connect (OSTI)

    Coetzer, J.; Nolte, M.J.; Steynberg, A.D.

    1981-09-01T23:59:59.000Z

    An electrolyte for use in an electrochemical cell is disclosed of the alkali metal-aluminium-halide type. The electrolyte has a melting point below 140/sup 0/ C. At atmospheric pressure and conforms with the stoichiometric product MAlx4 wherein M represents lithium cations, a mixture of lithium and potassium cations or a mixture of sodium and potassium cations; and X represents a mixture of chloride and fluoride anions. A method of reducing the melting point of a sodium-aluminiumchloride or lithium-aluminium-chloride electrolyte by doping it with a potassium fluoride, sodium fluoride, or lithium fluoride, to obtain said electrolyte with a melting point below 140/sup 0/ C. Is disclosed, as are various electrochemical cells employing the product electrolyte.

  9. Electrolytic Cell For Production Of Aluminum Employing Planar Anodes.

    DOE Patents [OSTI]

    Barnett, Robert J. (Goldendale, WA); Mezner, Michael B. (Sandy, OR); Bradford, Donald R (Underwood, WA)

    2004-10-05T23:59:59.000Z

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte, the method comprising providing a molten salt electrolyte having alumina dissolved therein in an electrolytic cell. A plurality of anodes and cathodes having planar surfaces are disposed in a generally vertical orientation in the electrolyte, the anodes and cathodes arranged in alternating or interleaving relationship to provide anode planar surfaces disposed opposite cathode planar surfaces, the anode comprised of carbon. Electric current is passed through anodes and through the electrolyte to the cathodes depositing aluminum at the cathodes and forming carbon containing gas at the anodes.

  10. Continuous aqueous tritium monitor

    DOE Patents [OSTI]

    McManus, G.J.; Weesner, F.J.

    1987-10-19T23:59:59.000Z

    An apparatus for a selective on-line determination of aqueous tritium concentration is disclosed. A moist air stream of the liquid solution being analyzed is passed through a permeation dryer where the tritium and moisture are selectively removed to a purge air stream. The purge air stream is then analyzed for tritium concentration, humidity, and temperature, which allows computation of liquid tritium concentration. 2 figs.

  11. Combination for electrolytic reduction of alumina

    DOE Patents [OSTI]

    Brown, Craig W. (Seattle, WA); Brooks, Richard J. (Seattle, WA); Frizzle, Patrick B. (Lynnwood, WA); Juric, Drago D. (Bulleen, AU)

    2002-04-30T23:59:59.000Z

    An electrolytic bath for use during the electrolytic reduction of alumina to aluminum. The bath comprises molten electrolyte having the following ingredients: AlF.sub.3 and at least one salt selected from the group consisting of NaF, KF, and LiF; and about 0.004 wt. % to about 0.2 wt. %, based on total weight of the molten electrolyte, of at least one transition metal or at least one compound of the metal or both. The compound is, a fluoride; oxide, or carbonate. The metal is nickel, iron, copper, cobalt, or molybdenum. The bath is employed in a combination including a vessel for containing the bath and at least one non-consumable anode and at least one dimensionally stable cathode in the bath. Employing the instant bath during electrolytic reduction of alumina to aluminum improves the wetting of aluminum on a cathode by reducing or eliminating the formation of non-metallic deposits on the cathode.

  12. Macroscopic Modeling of Polymer-Electrolyte Membranes

    E-Print Network [OSTI]

    Weber, A.Z.; Newman, J.

    2008-01-01T23:59:59.000Z

    Therefore, the nonionic fluorocarbon matrix can be taken asmembrane, such as the fluorocarbon-rich skin on the surfacewhere the gray area is the fluorocarbon matrix, the black is

  13. Electrolyte Model Helps Researchers Develop Better Batteries...

    Broader source: Energy.gov (indexed) [DOE]

    Sensor Reduces Fuel Consumption, Wins R&D 100 Award U.S. Department of Energy Projects Win 31 R&D 100 Awards for 2014 Project Overview Positive Impact Radio Frequency Diesel...

  14. Mixed Solvent Electrolyte Model | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311,Official FileEnergyAERMOD-PRIME,Department ofMixed Solvent

  15. Advanced Electrolyte Model - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14 Power andAdvanced Components andEnergyEnergy

  16. Passivation of Aluminum in Lithium-ion Battery Electrolytes with LiBOB

    E-Print Network [OSTI]

    Zhang, Xueyuan; Devine, Thomas M.

    2008-01-01T23:59:59.000Z

    of Aluminum in Lithium-ion Battery Electrolytes with LiBOBin commercially available lithium-ion battery electrolytes,

  17. Effects of additives on the stability of electrolytes for all...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effects of additives on the stability of electrolytes for all-vanadium redox flow batteries. Effects of additives on the stability of electrolytes for all-vanadium redox flow...

  18. Thermodynamics and Ionic Conductivity of Block Copolymer Electrolytes

    E-Print Network [OSTI]

    Wanakule, Nisita Sidra

    2010-01-01T23:59:59.000Z

    of Poly(Ethylene Oxide) Molten-Salt Rubbery Electrolytes.Imides: A New Family of Molten Salts and Conductive Plasticof Poly(Ethylene Oxide) Molten-Salt Rubbery Electrolytes.

  19. Lithium-ion batteries having conformal solid electrolyte layers

    DOE Patents [OSTI]

    Kim, Gi-Heon; Jung, Yoon Seok

    2014-05-27T23:59:59.000Z

    Hybrid solid-liquid electrolyte lithium-ion battery devices are disclosed. Certain devices comprise anodes and cathodes conformally coated with an electron insulating and lithium ion conductive solid electrolyte layer.

  20. Electrode/electrolyte interface. A status report

    SciTech Connect (OSTI)

    Bard, A.J. (Univ. of Texas, Austin (United States)); Abruna, H.D. (Cornell Univ., Ithaca, NY (United States)); Chidsey, C.E. (Stanford Univ., CA (United States)); Faulkner, L.R. (Univ. of Illinois, Urbana-Champaign (United States)); Feldberg, S.W. (Brookhaven National Lab., Upton, NY (United States)); Itaya, Kingo (Tohoku Univ., Sendai (Japan)); Majda, M. (Univ. of California, Berkeley (United States)); Melroy, O. (IBM Almaden Research Center, San Jose, CA (United States)); Murray, R.W. (Univ. of North Carolina, Chapel Hill (United States)); Porter, M.D. (Iowa State Univ., Ames (United States)); Soriaga, M.P. (Texas A M Univ., College Station (United States)); White, H.S. (Univ. of Utah, Salt Lake City (United States))

    1993-07-15T23:59:59.000Z

    This is a report of a workshop on the [open quotes]state of the art[close quotes] and potential future directions in the study of the electrode/electrolyte interface. Recent advances in experimental capabilities of characterizing the structure of the interface, e.g., through the use of such techniques as scanning tunneling microscopy and X-ray methods, are described. New approaches to studies of interfacial dynamics and materials aspects of the electrode/electrolyte interface are also discussed. 346 refs., 17 figs.

  1. Solid composite electrolytes for lithium batteries

    DOE Patents [OSTI]

    Kumar, Binod (Dayton, OH); Scanlon, Jr., Lawrence G. (Fairborn, OH)

    2001-01-01T23:59:59.000Z

    Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a polymer-ceramic composite electrolyte containing poly(ethylene oxide), lithium tetrafluoroborate and titanium dioxide is provided in the form of an annealed film having a room temperature conductivity of from 10.sup.-5 S cm.sup.-1 to 10.sup.-3 S cm.sup.-1 and an activation energy of about 0.5 eV.

  2. 2007 Status of Manufacturing: Polymer Electrolyte Membrane (PEM) Fuel Cells

    SciTech Connect (OSTI)

    Wheeler, D.; Sverdrup, G.

    2008-03-01T23:59:59.000Z

    In this document we assess the North American industry's current ability to manufacture polymer electrolyte membrane (PEM) fuel cells.

  3. Protective interlayer for high temperature solid electrolyte electrochemical cells

    DOE Patents [OSTI]

    Isenberg, Arnold O. (Forest Hills Boro, PA); Ruka, Roswell J. (Churchill Boro, PA)

    1986-01-01T23:59:59.000Z

    A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.

  4. Protective interlayer for high temperature solid electrolyte electrochemical cells

    DOE Patents [OSTI]

    Isenberg, Arnold O. (Forest Hills Boro, PA); Ruka, Roswell J. (Churchill Boro, PA); Zymboly, Gregory E. (Penn Hills Township, Allegheny County, PA)

    1985-01-01T23:59:59.000Z

    A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.

  5. Protective interlayer for high temperature solid electrolyte electrochemical cells

    DOE Patents [OSTI]

    Isenberg, Arnold O. (Forest Hills Boro, PA); Ruka, Roswell J. (Churchill Boro, PA)

    1987-01-01T23:59:59.000Z

    A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.

  6. Electrolytic Cell For Production Of Aluminum From Alumina

    DOE Patents [OSTI]

    Bradford, Donald R (Underwood, WA); Barnett, Robert J. (Goldendale, WA); Mezner, Michael B. (Sandy, OR)

    2004-11-02T23:59:59.000Z

    An electrolytic cell for producing aluminum from alumina having a reservoir for collecting molten aluminum remote from the electrolysis.

  7. The Kinetics and Thermodynamics of CO2 Capture by Aqueous Ammonia Derived Using Meta-GGA Density Functional Theory and Wavefunction-Based Model Chemistry Methods

    SciTech Connect (OSTI)

    Beste, Ariana [ORNL; Attalla, Moetaz [CSIRO ICT Center, Australia; Jackson, Phil [CSIRO ICT Center, Australia

    2012-01-01T23:59:59.000Z

    A meta GGA-DFT study of CO{sub 2} activation in aqueous ammonia solutions, with an emphasis on the reaction barrier and molecularity, has been undertaken using the M06-2X functional with an augmented triple-zeta split-valence basis set (6-311++G(d,p)). Up to five base molecules were treated explicitly in order to establish the effects of solvent catalysis in the chemical capture process. Aqueous free energies of solvation were determined for optimized reactant and transition structures using SM8/M06-2X/6-311++G(d,p). The concept of the solvent pre-complex as presented by Dixon and coworkers (Nguyen, M. T.; Matus, M. H.; Jackson, V. E.; Ngan, V. T.; Rustad, J. R.; Dixon, D. A. J. Phys. Chem. A 2008, 112, 10386-10398) was exploited to account for the energetics of disruption of the hydrogen-bonding solvent nano-network prior to the CO{sub 2} activation step. Selected gas- and aqueous-phase thermodynamic quantities have also been derived.

  8. High Temperature Aqueous Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet WhenHiggs BosonAccurate knowledge of aqueous

  9. Metal intercalation characteristics of n-HfS/sub 2/ photoelectrodes in nonaqueous electrolytes. Technical report No. 1, October 1986-May 1987

    SciTech Connect (OSTI)

    Semkow, K.W.; Pujare, N.U.; Sammells, A.F.

    1987-07-01T23:59:59.000Z

    The photoelectrochemical (PEC) performance of single-crystal n-hafnium disulfide was correlated with capacitance and impedance measurements obtained with the photoanode van der Waals layers oriented either parallel or perpendicular to acetonitrile-based nonaqueous electrolytes, with and without copper chloride introduced as an intercalating redox species. For van der Waals layers, perpendicular to the electrolyte (i.e., available for copper intercalation) space-charge capacitance values of respectively .01 and 1 microfarad/sq. cm were obtained for the non-intercalated and copper-intercalated photoelectrodes. The implications of these experimental observations were discussed in relation to the application of these intercalating photoelectrodes in both liquid non-aqueous and solid-polymer-electrolyte PEC storage devices.

  10. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    SciTech Connect (OSTI)

    Harlan U. Anderson; Wayne Huebner; Igor Kosacki

    2001-09-30T23:59:59.000Z

    This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and testing of Planar Single Cells. In this portion of study we have focused on producing YSZ films on porous LSM substrates. When using the polymer precursor there are a number of obstacles to overcome in order to form dense electrolyte layers on porous substrates (cathode or anode). Probably the most difficult problems are: (1) Extreme penetration of the polymer into the substrate must be prevented. (2) Shrinkage cracking must be avoided. (3) Film thickness in the 1 to 5{micro}m range must be achieved. We have demonstrated that cracking due to shrinkage involved during the elimination of solvents and organic matter and densification of the remaining oxide is not a problem as long as the resulting oxide film is < {approx} 0.15 {micro}m in thickness. We have also shown that we can make thicker films by making multiple depositions if the substrate is smooth (roughness {le} 0.1 {micro}m) and contains no surface pores > 0.2 {micro}m. The penetration of the polymer into the porous substrate can be minimized by increasing the viscosity of the polymer and reducing the largest pore at the surface of the substrate to {le} 0.2 {micro}m. We have shown that this can be done, but we have also shown that it is difficult to make dense films that are defect free with areas > 1 cm{sup 2}. This is because of the roughness of the substrate and the difficulty in making a substrate which does not have surface voids > 0.2 {micro}m. Thus the process works well for dense, smooth substrates for films < 1 {micro}m thick, but is difficult to apply to rough, porous surfaces and to make film thickness > 1 {micro}m. As a result of these problems, we have been addressing the issue of how to make dense films in the thickness range of 1 to 5 {micro}m on sintered porous substrates without introducing cracks and holes due to shrinkage and surface voids? These endeavors have lead us to a solution which we think is quite unique and should allow us to obtain flaw free dense films of thickness in the 0.5 to 5 {micro}m range at processing temperatures {le} 900{sup o}. The process involves the deposition of a slurry of nanocrystalline YSZ onto a presintered porous LSM substrate. The key element in the deposition is that the slurry contains sufficient YSZ polymer precursor to allow adhesion of the YSZ particles to each other and the surface after annealing at about 600 C. This allows the formation of a porous film of 0.5 to 5 {micro}m thick which adheres to the surface. After formation of this film, YSZ polymer precursor is allowed to impregnate the porous surface layer (capillary forces tend to confine the polymer solution in the nanoporous layer). After several impregnation/heat treatment cycles, a dense film results. Within the next few months, this process should be developed to the point that single cell measurements can be made on 0.5 to 5 {micro}m films on a LSM substrate. This type of processing allows the formation of essentially flaw free films over areas > 1 cm{sup 2}.

  11. Process for electrolytically preparing uranium metal

    DOE Patents [OSTI]

    Haas, Paul A. (Knoxville, TN)

    1989-01-01T23:59:59.000Z

    A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.

  12. Fuel cell electrolyte membrane with basic polymer

    DOE Patents [OSTI]

    Larson, James M.; Pham, Phat T.; Frey, Matthew H.; Hamrock, Steven J.; Haugen, Gregory M.; Lamanna, William M.

    2012-12-04T23:59:59.000Z

    The present invention is an electrolyte membrane comprising an acid and a basic polymer, where the acid is a low-volatile acid that is fluorinated and is either oligomeric or non-polymeric, and where the basic polymer is protonated by the acid and is stable to hydrolysis.

  13. Ultrasonic hydrometer. [Specific gravity of electrolyte

    DOE Patents [OSTI]

    Swoboda, C.A.

    1982-03-09T23:59:59.000Z

    The disclosed ultrasonic hydrometer determines the specific gravity (density) of the electrolyte of a wet battery, such as a lead-acid battery. The hydrometer utilizes a transducer that when excited emits an ultrasonic impulse that traverses through the electrolyte back and forth between spaced sonic surfaces. The transducer detects the returning impulse, and means measures the time t between the initial and returning impulses. Considering the distance d between the spaced sonic surfaces and the measured time t, the sonic velocity V is calculated with the equation V = 2d/t. The hydrometer also utilizes a thermocouple to measure the electrolyte temperature. A hydrometer database correlates three variable parameters including sonic velocity in and temperature and specific gravity of the electrolyte, for temperature values between 0 and 40/sup 0/C and for specific gravity values between 1.05 and 1.30. Upon knowing two parameters (the calculated sonic velocity and the measured temperature), the third parameter (specific gravity) can be uniquely found in the database. The hydrometer utilizes a microprocessor for data storage and manipulation.

  14. Electrolyte Composition for Cu Electrochemical Mechanical Planarization

    E-Print Network [OSTI]

    Suni, Ian Ivar

    abrasives are included within the ECMP electrolyte. In situ electrochemical impedance spectroscopy results measurements of the Cu removal rate, with and without surface abrasion. These results predict a 500 m indicate that the interfacial impedance is increased by the presence of silica, suggesting that silica

  15. Fuel cell electrolyte membrane with basic polymer

    DOE Patents [OSTI]

    Larson, James M. (Saint Paul, MN); Pham, Phat T. (Little Canada, MN); Frey, Matthew H. (Cottage Grove, MN); Hamrock, Steven J. (Stillwater, MN); Haugen, Gregory M. (Edina, MN); Lamanna, William M. (Stillwater, MN)

    2010-11-23T23:59:59.000Z

    The present invention is an electrolyte membrane comprising an acid and a basic polymer, where the acid is a low-volatile acid that is fluorinated and is either oligomeric or non-polymeric, and where the basic polymer is protonated by the acid and is stable to hydrolysis.

  16. Secondary calcium solid electrolyte high temperature battery

    SciTech Connect (OSTI)

    Sammells, A.F.; Schumacher, B.

    1986-01-01T23:59:59.000Z

    The authors report on recent work directed towards determining the viability of polycrystalline Ca/sup 2 +/ conducting ..beta..''-alumina solid electrolytes as the basis for a new type of high temperature battery. In this battery system the negative electrode consisted of a calcium-silicon alloy whose redox electro-chemistry was mediated to the calcium conducting solid electrolyte via the use of the molten salt eutectic CaCl/sub 2/ (51.4/sup M//0), CaI/sub 2/ (mp 550/sup 0/C). Both the molten salt and the calcium-alloy negative active material were separated from the positive active material via the Ca/sup 2 +/ conducting polycrystalline solid electrolyte. The positive electrode consisted of a solid-state matrix having a somewhat related crystallographic structure to Ca/sup 2 +/ ..beta..''-alumina, but where a significant fraction of the A1/sup 3 +/ sites located within this solid electrolyte's spinel block were replaced by immobile transition metal species. These species were available for participating in solid-state redox electrochemistry upon electrochemical cell cycling.

  17. High Voltage Electrolyte for Lithium Batteries

    Broader source: Energy.gov (indexed) [DOE]

    Argonne's Fluorinated Compounds as High Voltage Electrolytes (HVEs) O O O O O O EC EMC O O O CF CF 3 CF 3 O O O CF 3 F 2 HC C F 2 O F 2 C CF 2 H 6 Code Name Chemical...

  18. Maintaining molten salt electrolyte concentration in aluminum-producing electrolytic cell

    DOE Patents [OSTI]

    Barnett, Robert J.; Mezner, Michael B.; Bradford, Donald R

    2005-01-04T23:59:59.000Z

    A method of maintaining molten salt concentration in a low temperature electrolytic cell used for production of aluminum from alumina dissolved in a molten salt electrolyte contained in a cell free of frozen crust wherein volatile material is vented from the cell and contacted and captured on alumina being added to the cell. The captured volatile material is returned with alumina to cell to maintain the concentration of the molten salt.

  19. Method and apparatus for storage battery electrolyte circulation

    DOE Patents [OSTI]

    Inkmann, Mark S. (Milwaukee, WI)

    1980-09-09T23:59:59.000Z

    An electrolyte reservoir in fluid communication with the cell of a storage battery is intermittently pressurized with a pulse of compressed gas to cause a flow of electrolyte from the reservoir to the upper region of less dense electrolyte in the cell. Upon termination of the pressure pulse, more dense electrolyte is forced into the reservoir from the lower region of the cell by the differential pressure head between the cell and reservoir electrolyte levels. The compressed gas pulse is controlled to prevent the entry of gas from the reservoir into the cell.

  20. OSMOTIC COEFFICIENTS, SOLUBILITIES, AND DELIQUESCENCE RELATIONS IN MIXED AQUEOUS SALT SOLUTIONS AT ELEVATED TEMPERATURE

    SciTech Connect (OSTI)

    M.S. Gruszkiewicz; D.A. Palmer

    2006-02-22T23:59:59.000Z

    While thermodynamic properties of pure aqueous electrolytes are relatively well known at ambient temperature, there are far fewer data for binary systems extending to elevated temperatures and high concentrations. There is no general theoretically sound basis for prediction of the temperature dependence of ionic activities, and consequently temperature extrapolations based on ambient temperature data and empirical equations are uncertain and require empirical verification. Thermodynamic properties of mixed brines in a wide range of concentrations would enhance the understanding and precise modeling of the effects of deliquescence of initially dry solids in humid air in geological environments and in modeling the composition of waters during heating, cooling, evaporation or condensation processes. These conditions are of interest in the analysis of waters on metal surfaces at the proposed radioactive waste repository at Yucca Mountain, Nevada. The results obtained in this project will be useful for modeling the long-term evolution of the chemical environment, and this in turn is useful for the analysis of the corrosion of waste packages. In particular, there are few reliable experimental data available on the relationship between relative humidity and composition that reveals the eutonic points of the mixtures and the mixture deliquescence RH. The deliquescence RH for multicomponent mixtures is lower than that of pure component or binary solutions, but is not easy to predict quantitatively since the solutions are highly nonideal. In this work we used the ORNL low-temperature and high-temperature isopiestic facilities, capable of precise measurements of vapor pressure between ambient temperature and 250 C for determination of not only osmotic coefficients, but also solubilities and deliquescence points of aqueous mixed solutions in a range of temperatures. In addition to standard solutions of CaCl{sub 2}, LiCl, and NaCl used as references, precise direct-pressure measurements were also made at elevated temperatures. The project included multicomponent mixtures useful for verification of models, and a set of binary solutions with common ions (such as KNO{sub 3} + NaNO{sub 3}, KNO{sub 3} + Ca(NO{sub 3}){sub 2}, NaNO{sub 3} + Na{sub 2}SO{sub 4}, and KNO{sub 3} + K{sub 2}SO{sub 4}) needed for determination of the mixing parameters in the Pitzer ion-interaction model for mixtures. The results are compared with existing experimental results and model predictions.

  1. Thermodynamics and phase transitions of electrolytes on lattices with different discretization parameters

    E-Print Network [OSTI]

    Thermodynamics and phase transitions of electrolytes on lattices with different discretization February 2005; in final form 14 April 2005) Lattice models are crucial for studying thermodynamic thermodynamics and the nature of phase transitions in systems with charged particles. A discretization parameter

  2. Electrical response characteristics of soil-electrolyte systems (10kHz-10MHz)

    E-Print Network [OSTI]

    Bachu, Umesh Kumar

    1997-01-01T23:59:59.000Z

    apparatus; (4) performance of experiments; and (5) comparison of model predictions with experimental data. The solid particles used in the investigation were: kaolinite, silica flour, Ottawa sand, and glass beads, and electrolytes used were NaCl, KCI, CaC'2...

  3. Resistance and polarization losses in aqueous buffermembrane electrolytes for water-splitting photoelectrochemical cells

    E-Print Network [OSTI]

    the environmental consequences of increasing energy use. Hydrogen, which can be made from many different energy sources, is one of the most promising energy carriers for transportation applications. Hydrogen has a high be powered by several carbon-neutral energy sources including photovoltaic (PV)- coupled electrolyzers.2

  4. Effect of salt identity on the phase diagram for a globular protein in aqueous electrolyte solution

    E-Print Network [OSTI]

    Bostrom, Mathias; Tavares, Frederico W.; Ninham, Barry W.; Prausnitz, John M.

    2006-01-01T23:59:59.000Z

    or NaSCN. For all cases, salt concentration is 0.2 M. StableEFFECT OF SALT IDENTITY ON THE PHASE DIAGRAM FOR A GLOBULARcannot account for the effect of salt identity on the phase

  5. Electrolyte reservoir for carbonate fuel cells

    DOE Patents [OSTI]

    Iacovangelo, C.D.; Shores, D.A.

    1984-05-23T23:59:59.000Z

    An electrode for a carbonate fuel cell and method of making same are described wherein a substantially uniform mixture of an electrode-active powder and porous ceramic particles suitable for a carbonate fuel cell are formed into an electrode with the porous ceramic particles having pores in the range of from about 1 micron to about 3 microns, and a carbonate electrolyte is in the pores of the ceramic particles.

  6. STABLE HIGH CONDUCTIVITY BILAYERED ELECTROLYTES FOR LOW TEMPERATURE SOLID OXIDE FUEL CELLS

    SciTech Connect (OSTI)

    Eric D. Wachsman

    2000-10-01T23:59:59.000Z

    Solid oxide fuel cells (SOFCs) are the future of energy production in America. They offer great promise as a clean and efficient process for directly converting chemical energy to electricity while providing significant environmental benefits (they produce negligible CO, HC, or NOx and, as a result of their high efficiency, produce about one-third less CO{sub 2} per kilowatt hour than internal combustion engines). Unfortunately, the current SOFC technology, based on a stabilized zirconia electrolyte, must operate in the region of 1000 C to avoid unacceptably high ohmic losses. These high temperatures demand (a) specialized (expensive) materials for the fuel cell interconnects and insulation, (b) time to heat up to the operating temperature and (c) energy input to arrive at the operating temperature. Therefore, if fuel cells could be designed to give a reasonable power output at lower temperatures tremendous benefits may be accrued, not the least of which is reduced cost. The problem is, at lower temperatures the conductivity of the conventional stabilized zirconia electrolyte decreases to the point where it cannot supply electrical current efficiently to an external load. The primary objectives of the proposed research is to develop a stable high conductivity (>0.05 S cm{sup -1} at 550 C) electrolyte for lower temperature SOFCs. This objective is specifically directed toward meeting the lowest (and most difficult) temperature criteria for the 21st Century Fuel Cell Program. Meeting this objective provides a potential for future transportation applications of SOFCs, where their ability to directly use hydrocarbon fuels could permit refueling within the existing transportation infrastructure. In order to meet this objective we are developing a functionally gradient bilayer electrolyte comprised of bismuth oxide on the air side and ceria on the fuel side. Bismuth oxide and doped ceria are among the highest ionic conducting electrolytes and in fact bismuth oxide based electrolytes are the only known solid oxide electrolytes to have an ionic conductivity that meets the program conductivity goal. We have previously demonstrated that this concept works, that a bismuth oxide/ceria bilayer electrolyte provides near theoretical open circuit potential (OCP) and is stable for 1400 h of fuel cell operation under both open circuit and maximum power conditions. More recently, we developed a computer model to determine the defect transport in this bilayer and have found that a bilayer comprised primarily of the more conductive component (bismuth oxide) is stable for 500 C operation. In this first year of the project we are obtaining necessary thermochemical data to complete the computer model as well as initial SOFC results based on thick 1-2 mm single and bilayer ceria/bismuth oxide electrolytes. We will use the computer model to obtain the optimum relative layer thickness as a function of temperature and air/fuel conditions. SOFCs will be fabricated with 1-2 mm single and bilayer electrolytes based on the modeling results, tested for OCP, conductivity, and stability and compared against the predictions. The computer modeling is a continuation of previous work under support from GRI and the student was available at the inception of the contract. However, the experimental effort was delayed until the beginning of the Spring Semester because the contract was started in October, 2 months after the start of our Fall Semester, and after all of the graduate students were committed to other projects. The results from both of these efforts are described in the following two sections: (1) Experimental; and (2) Computer Modeling.

  7. Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator

    SciTech Connect (OSTI)

    Joshi, Ashok V. (Salt Lake City, UT); Balagopal, Shekar (Sandy, UT); Pendelton, Justin (Salt Lake City, UT)

    2011-12-13T23:59:59.000Z

    Alkali alcoholates, also called alkali alkoxides, are produced from alkali metal salt solutions and alcohol using a three-compartment electrolytic cell. The electrolytic cell includes an anolyte compartment configured with an anode, a buffer compartment, and a catholyte compartment configured with a cathode. An alkali ion conducting solid electrolyte configured to selectively transport alkali ions is positioned between the anolyte compartment and the buffer compartment. An alkali ion permeable separator is positioned between the buffer compartment and the catholyte compartment. The catholyte solution may include an alkali alcoholate and alcohol. The anolyte solution may include at least one alkali salt. The buffer compartment solution may include a soluble alkali salt and an alkali alcoholate in alcohol.

  8. Electrolyte matrix in a molten carbonate fuel cell stack

    DOE Patents [OSTI]

    Reiser, C.A.; Maricle, D.L.

    1987-04-21T23:59:59.000Z

    A fuel cell stack is disclosed with modified electrolyte matrices for limiting the electrolytic pumping and electrolyte migration along the stack external surfaces. Each of the matrices includes marginal portions at the stack face of substantially greater pore size than that of the central body of the matrix. Consequently, these marginal portions have insufficient electrolyte fill to support pumping or wicking of electrolyte from the center of the stack of the face surfaces in contact with the vertical seals. Various configurations of the marginal portions include a complete perimeter, opposite edge portions corresponding to the air plenums and tab size portions corresponding to the manifold seal locations. These margins will substantially limit the migration of electrolyte to and along the porous manifold seals during operation of the electrochemical cell stack. 6 figs.

  9. STABLE HIGH CONDUCTIVITY BILAYERED ELECTROLYTES FOR LOW TEMPERATURE SOLID OXIDE FUEL CELLS

    SciTech Connect (OSTI)

    Eric D. Wachsman; Keith L. Duncan

    2002-09-30T23:59:59.000Z

    A bilayer electrolyte consisting of acceptor-doped ceria (on the fuel/reducing side) and cubic-stabilized bismuth oxide (on the oxidizing side) was developed. The bilayer electrolyte that was developed showed significant improvement in open-circuit potential versus a typical ceria based SOFC. Moreover, the OCP of the bilayer cells increased as the thickness of the bismuth oxide layer increased relative to the ceria layer. Thereby, verifying the bilayer concept. Although, because of the absence of a suitable cathode (a problem we are still working assiduously to solve), we were unable to obtain power density curves, our modeling work predicts a reduction in electrolyte area specific resistance of two orders of magnitude over cubic-stabilized zirconia and projects a maximum power density of 9 W/m{sup 2} at 800 C and 0.09 W/m{sup 2} at 500 C. Towards the development of the bilayer electrolyte other significant strides were made. Among these were, first, the development of a, bismuth oxide based, oxide ion conductor with the highest conductivity (0.56 S/cm at 800 C and 0.043 S/cm at 500 C) known to date. Second, a physical model of the defect transport mechanisms and the driving forces for the ordering phenomena in bismuth oxide and other fluorite systems was developed. Third, a model for point defect transport in oxide mixed ionic-electronic conductors was developed, without the typical assumption of a uniform distribution of ions and including the effect of variable loads on the transport properties of an SOFC (with either a single or bilayer electrolyte).

  10. Polymer-electrolyte membrane, electrochemical fuel cell, and related method

    DOE Patents [OSTI]

    Krishnan, Lakshmi; Yeager, Gary William; Soloveichik, Grigorii Lev

    2014-12-09T23:59:59.000Z

    A polymer-electrolyte membrane is presented. The polymer-electrolyte membrane comprises an acid-functional polymer, and an additive incorporated in at least a portion of the membrane. The additive comprises a fluorinated cycloaliphatic additive, a hydrophobic cycloaliphatic additive, or combinations thereof, wherein the additive has a boiling point greater than about 120.degree. C. An electrochemical fuel cell including the polymer-electrolyte membrane, and a related method, are also presented.

  11. Use of nafion as a solid polymer electrolyte for the electroreduction of tungsten (VI) fluoride

    SciTech Connect (OSTI)

    Bettelheim, A.; Raven, A.; Polak, M.; Ozer, D. (Nuclear Research Center, Beer-Sheva 84190 (IL))

    1992-01-01T23:59:59.000Z

    In this paper a new method is described in which WF{sub 6} is electroreduced in a solid-state cell configuration with a Nafion membrane serving as a solid polymer electrolyte. Cyclic voltammetry indicates a behavior similar to that of metallic tungsten for coatings obtained at dry conditions and similar to that of tungsten oxide species when water vapor is not totally expelled. Surface analysis using Auger electroscope and x-ray photoelectron spectroscopy shows that solid-state electro-reduction of WF{sub 6} in dry conditions yields coatings free of fluorine, which contain much less oxygen than electrodeposits obtained from aqueous solutions. However, due to possible oxidation and reduction reactions occurring before and during the surface-analysis process, it is not possible at this state to determine the exact content of metallic and oxide species in the deposits obtained by the present method.

  12. Electrolytes at Solid-Water Interfaces: Theoretical Studies for Practical Applications

    SciTech Connect (OSTI)

    Striolo, Alberto

    2013-09-23T23:59:59.000Z

    The goal of this research program was to determine how a solid substrate affects structure and dynamics of aqueous electrolyte solutions. From fundamental observations, we seek to improve practical applications. Of particular interest at the project inset were carbon nanotube separation, electric double layer capacitors, and water desalination. As time progresses, we became interested in sub-surface water transport and fate, and in hydraulic fracturing. We employed an arsenal of techniques based on atomistic molecular dynamics simulations. We validated our methods using experimental data, to propose practical improvements. Some experiments were conducted in house. We established valuable collaborations with experienced scientists at National Laboratories to provide information not attainable with our in-house resources.

  13. Method of preparing a sintered lithium aluminate structure for containing electrolyte

    DOE Patents [OSTI]

    Sim, James W. (Evergreen Park, IL); Kinoshita, Kimio (Cupertino, CA)

    1981-01-01T23:59:59.000Z

    A porous sintered tile is formed of lithium aluminate for retaining molten lectrolyte within a fuel cell. The tile is prepared by reacting lithium hydroxide in aqueous solution with alumina particles to form beta lithium aluminate particles. The slurry is evaporated to dryness and the solids dehydrated to form a beta lithium aluminate powder. The powder is compacted into the desired shape and sintered at a temperature in excess of 1200 K. but less than 1900 K. to form a porous integral structure that is subsequently filled with molten electrolyte. A tile of this type is intended for use in containing molten alkali metal carbonates as electolyte for use in a fuel cell having porous metal or metal oxide electrodes for burning a fuel gas such as hydrogen and/or carbon monoxide with an oxidant gas containing oxygen.

  14. Application of Buckmaster Electrolyte Ion Leakage Test to Woody Biofuel Feedstocks

    SciTech Connect (OSTI)

    Broderick, Thomas F [Forest Concepts, LLC; Dooley, James H [Forest Concepts, LLC

    2014-08-28T23:59:59.000Z

    In an earlier ASABE paper, Buckmaster reported that ion conductivity of biomass leachate in aqueous solution was directly correlated with activity access to plant nutrients within the biomass materials for subsequent biological or chemical processing. The Buckmaster test involves placing a sample of the particles in a beaker of constant-temperature deionized water and monitoring the change in electrical conductivity over time. We adapted the Buckmaster method to a range of woody biomass and other cellulosic bioenergy feedstocks. Our experimental results suggest differences of electrolyte leakage between differently processed woody biomass particles may be an indicator of their utility for conversion in bioenergy processes. This simple assay appears to be particularly useful to compare different biomass comminution techniques and particle sizes for biochemical preprocessing.

  15. Method of synthesizing polymers from a solid electrolyte

    DOE Patents [OSTI]

    Skotheim, T.A.

    1984-10-19T23:59:59.000Z

    A method of synthesizing electrically conductive polymers from a solvent-free solid polymer electrolyte is disclosed. An assembly of a substrate having an electrode thereon, a thin coating of solid electrolyte including a solution of PEO complexed with an alkali salt, and a thin transparent noble metal electrode are disposed in an evacuated chamber into which a selected monomer vapor is introduced while an electric potential is applied across the solid electrolyte to hold the thin transparent electrode at a positive potential relative to the electrode on the substrate, whereby a highly conductive polymer film is grown on the transparent electrode between it and the solid electrolyte.

  16. Protection of Li Anodes Using Dual Phase Electrolytes

    Broader source: Energy.gov (indexed) [DOE]

    Coating Hardware System Development 2. Gel Polymer Electrolyte Coating Process Optimization 3. Large 2.5 Ah Format Cell Design, Optimization and Cell Manufacturing 5 6...

  17. Nanoscale Thin Film Electrolytes for Clean Energy Applications...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electrolytes to develop solid oxide fuel cells for clean energy production and to prevent air pollution by developing efficient, reliable oxygen sensors. In this study, we have...

  18. Electrolytes - R&D for Advanced Lithium Batteries. Interfacial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es089kerr2011o.pdf More Documents & Publications Electrolytes -...

  19. Molecular dynamics simulation and ab intio studies of electrolytes...

    Broader source: Energy.gov (indexed) [DOE]

    intio studies of electrolytes and electrolyteelectrode interfaces Grant D. Smith and Oleg Borodin University of Utah May 11, 2011 This presentation does not contain any...

  20. Polymer Electrolytes for High Energy Density Lithium Batteries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolytes for High Energy Density Lithium Batteries Ashoutosh Panday Scott Mullin Nitash Balsara Proposed Battery anode (Li metal) Li Li + + e - e - Li salt in a hard solid...

  1. Hydrogen Production by Polymer Electrolyte Membrane (PEM)Electrolysis...

    Broader source: Energy.gov (indexed) [DOE]

    and speaker biographies from the DOE Fuel Cell Technologies Office webinar "Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotlight on Giner and Proton"...

  2. Electrolytic cell for production of aluminum from alumina

    DOE Patents [OSTI]

    Bradford, Donald R; Barnett, Robert J.; Mezner, Michael B.

    2005-03-15T23:59:59.000Z

    Electrolysis of alumina dissolved in a molten salt electrolyte employing inert anode and cathodes, the anode having a box shape with slots for the cathodes.

  3. Electrolyte materials containing highly dissociated metal ion salts

    DOE Patents [OSTI]

    Lee, Hung-Sui (East Setauket, NY); Geng, Lin (Coram, NY); Skotheim, Terje A. (Shoreham, NY)

    1996-07-23T23:59:59.000Z

    The present invention relates to metal ion salts which can be used in electrolytes for producing electrochemical devices, including both primary and secondary batteries, photoelectrochemical cells and electrochromic displays. The salts have a low energy of dissociation and may be dissolved in a suitable polymer to produce a polymer solid electrolyte or in a polar aprotic liquid solvent to produce a liquid electrolyte. The anion of the salts may be covalently attached to polymer backbones to produce polymer solid electrolytes with exclusive cation conductivity.

  4. Electrolyte materials containing highly dissociated metal ion salts

    DOE Patents [OSTI]

    Lee, H.S.; Geng, L.; Skotheim, T.A.

    1996-07-23T23:59:59.000Z

    The present invention relates to metal ion salts which can be used in electrolytes for producing electrochemical devices, including both primary and secondary batteries, photoelectrochemical cells and electrochromic displays. The salts have a low energy of dissociation and may be dissolved in a suitable polymer to produce a polymer solid electrolyte or in a polar aprotic liquid solvent to produce a liquid electrolyte. The anion of the salts may be covalently attached to polymer backbones to produce polymer solid electrolytes with exclusive cation conductivity. 2 figs.

  5. acid electrolyte fuel cells: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    this material cells, in which a composite mixture of the electrolyte, Pt supported on carbon, Pt black and carbon 2 A novel, easily synthesized, anhydrous derivative of phosphoric...

  6. Proton Channel Orientation in Block-Copolymer Electrolyte Membranes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic...

  7. Long cycle life solid-state solid polymer electrolyte cells

    SciTech Connect (OSTI)

    Sammells, A.F.

    1988-02-02T23:59:59.000Z

    This patent describes a rechargeable solid-state lithium conducting solid polymer electrolyte electrochemical cell comprising: a lithium intercalation compound negative electrode selected from the group consisting of: MoO/sub 2/; RuO/sub 2/; WO; OsO/sub 2/; IrO/sub 2/; and Mo1/2V1/2O/sub 2/; a lithium ion conducting solid polymer electrolyte comprising a lithium ion conducting supporting electrolyte complexed with a solid polymer contacting the negative electrode on one side; and a lithium intercalation compound positive electrode contacting the opposite side of the solid polymer electrolyte.

  8. Autogenous electrolyte, non-pyrolytically produced solid capacitor structure

    DOE Patents [OSTI]

    Sharp, D.J.; Armstrong, P.S.; Panitz, J.K.G.

    1998-03-17T23:59:59.000Z

    A solid electrolytic capacitor is described having a solid electrolyte comprising manganese dioxide dispersed in an aromatic polyamide capable of further cure to form polyimide linkages, the solid electrolyte being disposed between a first electrode made of valve metal covered by an anodic oxide film and a second electrode opposite the first electrode. The electrolyte autogenously produces water, oxygen, and hydroxyl groups which act as healing substances and is not itself produced pyrolytically. Reduction of the manganese dioxide and the water molecules released by formation of imide linkages result in substantially improved self-healing of anodic dielectric layer defects. 2 figs.

  9. Autogenous electrolyte, non-pyrolytically produced solid capacitor structure

    DOE Patents [OSTI]

    Sharp, Donald J. (Albuquerque, NM); Armstrong, Pamela S. (Abingdon, MD); Panitz, Janda Kirk G. (Edgewood, NM)

    1998-01-01T23:59:59.000Z

    A solid electrolytic capacitor having a solid electrolyte comprising manganese dioxide dispersed in an aromatic polyamide capable of further cure to form polyimide linkages, the solid electrolyte being disposed between a first electrode made of valve metal covered by an anodic oxide film and a second electrode opposite the first electrode. The electrolyte autogenously produces water, oxygen, and hydroxyl groups which act as healing substances and is not itself produced pyrolytically. Reduction of the manganese dioxide and the water molecules released by formation of imide linkages result in substantially improved self-healing of anodic dielectric layer defects.

  10. Electrolyte Genome Could Be Battery Game-Changer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cathode to charge and discharge the cell. It consists of a salt and solvent, possibly additives and, not by design, impurities. Persson's Electrolyte Genome, launched more than two...

  11. Key Issues Regarding Electrolytes at Interfacial Regions (subtask...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with Emphasis on Low Temperature Performance Vehicle Technologies Office: 2009 Energy Storage R&D Annual Progress Report Development of Electrolytes for Lithium-ion Batteries...

  12. assisted electrolyte cell: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Highly Porous Catalytic Layers for Polymer Electrolyte Fuel Cell Based on Carbon Aerogels Physics Websites Summary: Synthesis of Highly Porous Catalytic Layers for Polymer...

  13. alkaline electrolyte fuel cells: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Highly Porous Catalytic Layers for Polymer Electrolyte Fuel Cell Based on Carbon Aerogels Physics Websites Summary: Synthesis of Highly Porous Catalytic Layers for Polymer...

  14. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    SciTech Connect (OSTI)

    Harlan U. Anderson; Wayne Huebner; Igor Kosacki

    2001-03-31T23:59:59.000Z

    This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and testing of Planar Single Cells. Substantial progress has been made on both characterizing thin films as well as developing methods to produce films on nanoporous substrates. The results of electrical conductivity measurements on ZrO{sub 2}:16%Sc nanocrystalline thin films under controlled oxygen partial pressure and temperature are presented. The experimental data have been interpreted using a defect model, which describes the interaction between Sc and oxygen vacancies resulting in the formation of donor - (Sc{sub Zr} - V{sub o} - e){sup x} and acceptor - (Sc{sub Zr}-h){sup x} levels. From this the electronic and ionic contribution to the electrical transport has been determined and correlated with the band structure. These results suggest that ZrO{sub 2}:16%Sc possesses higher electronic conductivity than ZrO{sub 2}:16%Y, which dominates the total conductivity in reducing atmospheres. This is an important result since it indicates that Sc-YSZ maybe useful in the anode regions of the cell. We have made important breakthroughs on depositing dense Ceria films on to porous LSM substrates. In previous studies we have found that in order to produce a surface which is smooth enough to coat with dense polymer precursor derived films, the required thickness of the colloidal film layer is determined by the maximum surface roughness. That is, if we wish to make 2 micron thick colloidal oxide layers, the roughness of the LSM surface can not exceed 2 microns. Currently, we are producing the composite CeO{sub 2}/LSM structures that can be coated with polymer precursor to produce 0.5 to 1.5 micron thickness dense YSZ films. In the next quarter, we will be testing SOFC's using these structures. YSZ/CeO{sub 2}/LSM composites have been formed by annealing at 800 C. Our studies show that the YSZ films are very dense with a 20 nm grain size. SOFC's using these composites are being fabricated and we expect to obtain cell data during the next quarter. As we reported in November 2000, we have had difficulties in making pore free films with larger areas that about 0.2cm{sup 2} which is due to problems in our clean room. Modifications have now been completed on the clean room and we should be approaching a class 100 in the film making area. This level of cleanliness is sufficient to obtain films without pores over areas up to 100cm{sup 2}.

  15. SISGR: Linking Ion Solvation and Lithium Battery Electrolyte Properties

    SciTech Connect (OSTI)

    Trulove, Paul C; Foley, Matthew P

    2013-03-14T23:59:59.000Z

    The solvation and phase behavior of the model battery electrolyte salt lithium trifluoromethanesulfonate (LiCF3SO3) in commonly used organic solvents; ethylene carbonate (EC), gamma-butyrolactone (GBL), and propylene carbonate (PC) was explored. Data from differential scanning calorimetry (DSC), Raman spectroscopy, and X-ray diffraction were correlated to provide insight into the solvation states present within a sample mixture. Data from DSC analyses allowed the construction of phase diagrams for each solvent system. Raman spectroscopy enabled the determination of specific solvation states present within a solvent-Ã?Â?Ã?Â?salt mixture, and X-ray diffraction data provided exact information concerning the structure of a solvates that could be isolated Thermal analysis of the various solvent-salt mixtures revealed the phase behavior of the model electrolytes was strongly dependent on solvent symmetry. The point groups of the solvents were (in order from high to low symmetry): C2V for EC, CS for GBL, and C1 for PC(R). The low symmetry solvents exhibited a crystallinity gap that increased as solvent symmetry decreased; no gap was observed for EC-LiTf, while a crystallinity gap was observed spanning 0.15 to 0.3 mole fraction for GBL-LiTf, and 0.1 to 0.33 mole fraction for PC(R)-LiTf mixtures. Raman analysis demonstrated the dominance of aggregated species in almost all solvent compositions. The AGG and CIP solvates represent the majority of the species in solutions for the more concentrated mixtures, and only in very dilute compositions does the SSIP solvate exist in significant amounts. Thus, the poor charge transport characteristics of CIP and AGG account for the low conductivity and transport properties of LiTf and explain why is a poor choice as a source of Li+ ions in a Li-ion battery.

  16. Cathode for aluminum producing electrolytic cell

    DOE Patents [OSTI]

    Brown, Craig W.

    2004-04-13T23:59:59.000Z

    A method of producing aluminum in an electrolytic cell comprising the steps of providing an anode in a cell, preferably a non-reactive anode, and also providing a cathode in the cell, the cathode comprised of a base material having low electrical conductivity reactive with molten aluminum to provide a highly electrically conductive layer on the base material. Electric current is passed from the anode to the cathode and alumina is reduced and aluminum is deposited at the cathode. The cathode base material is selected from boron carbide, and zirconium oxide.

  17. Thermodynamic model for the solubility of BaSeO4(cr) in the aqueous Ba2+-SeO42--Na+-H+-OH--H2O system: Extending to high selenate concentrations

    SciTech Connect (OSTI)

    Rai, Dhanpat; Felmy, Andrew R.; Moore, Dean A.; Kitamura, Akira; Yoshikawa, Hideki; Doi, Reisuke; Yoshida, Yasushi

    2014-09-15T23:59:59.000Z

    The solubility of Ba(SeO4, SO4) precipitates was determined as a function of the BaSeO4 mole fractions, ranging from 0.0015 to 0.3830, and time with an equilibration period extending to as long as 302 days. Equilibrium/steady state conditions in this system are reached in ? 65 days. Pitzer’s ion interaction model was used to calculate solid and aqueous phase activity coefficients. Thermodynamic analyses showed that the data do not satisfy Gibbs-Duhem equation, thereby demonstrating that a single-solid solution phase does not control both the selenate and sulfate concentrations. Our extensive data with log10 [Ba]) ranging from -3.6 to -5.9 mol.kg-1, log10 [SeO4]) ranging from -3.6 to -5.2 mol.kg-1, and log10 [SO4] ranging from -4.0 to -5.3 mol.kg-1 can be explained with the formation of an ideal BaSeO4 solid solution phase that controls the selenium concentrations and a slightly disordered/less-crystalline BaSO4(s) (log10 K0sp = -9.5 instead of -10.05 for barite) that controls the sulfate concentrations. In these experiments the BaSO4 component of the solid solution phase never reaches thermodynamic equilibrium with the aqueous phase. Thermodynamic interpretations of the data show that both the ideal BaSeO4 solid solution phase and less-crystalline BaSO4(s) phase are in equilibrium with each other in the entire range of BaSeO4 mole fractions investigated in this study.

  18. THERMODYNAMICS OF ELECTROLYTES. X. ENTHALPY AND THE EFFECT OF TEMPERATURE ON THE ACTIVITY COEFFICIENTS.

    E-Print Network [OSTI]

    Silvester, Leonard F.

    2011-01-01T23:59:59.000Z

    09 THERMODYNAMICS OFELECI'ROLYTES. X'rights. r'-" e. ct THERMODYNAMICS OF ELECTROLYTES. X.Coefficient, Electrolyte, Thermodynamics v ~p , I J ! l

  19. Preparation of ceramic matrix and alumina fiber composites for use as solid electrolytes

    DOE Patents [OSTI]

    Dudney, N.J.

    1987-04-30T23:59:59.000Z

    A process for making solid electrolytes using a fibrous stabilizing dispersed second phase for enhanced conductivity of the electrolyte after deformation and annealing. 1 tab.

  20. Membrane processes relevant for the polymer electrolyte fuel cell

    E-Print Network [OSTI]

    Kjelstrup, Signe

    Membrane processes relevant for the polymer electrolyte fuel cell Aleksander Kolstad Chemical. The important aspects concerning the Polymer Electrolyte Membrane Fuel Cell, more commonly known as Proton Exchange Membrane Fuel Cell (PEMFC), have been studied in two separate parts. Part 1 of the thesis

  1. Method of preparing thin film polymeric gel electrolytes

    DOE Patents [OSTI]

    Derzon, Dora K. (Albuquerque, NM); Arnold, Jr., Charles (Albuquerque, NM)

    1997-01-01T23:59:59.000Z

    Novel hybrid thin film electrolyte, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities .apprxeq.10.sup.-3 .OMEGA..sup.-1 cm.sup.-1 are useful as electrolytes for rechargeable lithium batteries.

  2. Method of preparing thin film polymeric gel electrolytes

    DOE Patents [OSTI]

    Derzon, D.K.; Arnold, C. Jr.

    1997-11-25T23:59:59.000Z

    Novel hybrid thin film electrolyte is described, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities {approx_equal}10{sup {minus}3}{Omega}{sup {minus}1}cm{sup {minus}1} are useful as electrolytes for rechargeable lithium batteries. 1 fig.

  3. Performance of capacitors using organic electrolytes

    SciTech Connect (OSTI)

    Morimoto, T.; Tsushima, M.; Che, Y.

    2000-07-01T23:59:59.000Z

    Electric double-layer capacitors (EDLC) based on charge storage at the interface between a high surface area activated carbon electrode and an electrolyte solution are characterized by their long cycle life and high power density in comparison with batteries. However, energy density of electric double-layer capacitors obtained at present is at most 1Wh/kg at a power density of 600W/kg and smaller compared with that of batteries, which limits the applications of the capacitor. Therefore, new capacitors which show larger energy density than that of electric-double layer capacitors are proposed. The new capacitors are hybrid capacitors consisting of activated carbon cathode, Li-doped graphite anode and an organic electrolyte. Maximum voltage applicable to the cell becomes over 4.0V which is larger than that of the electric double-layer capacitor. As a result, discharged energy density of the cell becomes 4Wh/kg at a power density of 600W/kg.

  4. EAF dust as an electrolytic zinc resource

    SciTech Connect (OSTI)

    Zunkel, A.D. [A.D. Zunkel Consultants Inc., Vancouver, WA (United States)

    1995-12-31T23:59:59.000Z

    Two viable options are presently available to the electrolytic zinc producer to supplement the zinc production capability significantly by using electric arc furnace dust (EAFD) or leady ZnO products derived from EAFD: Integrated processing of the materials using the Modified Zincex Process and commingling the zinc sulfate solution from that process with the neutral solution from the calcine leaching circuit; Installing a completely separate circuit for treating the material using technologies such as the Modified Zincex or Esinex Processes. EAFD and halogen-bearing EAFD derived products are a zinc resource which is virtually untapped by new or existing electrolytic zinc producers and which offers them, with the advent of new technologies able to deal with halides, the opportunity to maintain or increase their zinc production from a relatively cheap, if not ``free``, and already mined zinc source. Such an approach would also provide the EAFD producer an alternative, perhaps lower cost, outlet for their material to the currently rather closely held EAFD processing industry.

  5. Solid polymer electrolyte composite membrane comprising laser micromachined porous support

    DOE Patents [OSTI]

    Liu, Han (Waltham, MA); LaConti, Anthony B. (Lynnfield, MA); Mittelsteadt, Cortney K. (Natick, MA); McCallum, Thomas J. (Ashland, MA)

    2011-01-11T23:59:59.000Z

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 5 microns, are made by laser micromachining and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  6. PREPARATION AND CHARACTERIZATION OF SOLID ELECTROLYTES: FUEL CELL APPLICATIONS

    SciTech Connect (OSTI)

    Rambabu Bobba; Josef Hormes; T. Wang; Jaymes A. Baker; Donald G. Prier; Tommy Rockwood; Dinesha Hawkins; Saleem Hasan; V. Rayanki

    1997-12-31T23:59:59.000Z

    The intent of this project with Federal Energy Technology Center (FETC)/Morgantown Energy Technology Center (METC) is to develop research infrastructure conductive to Fuel Cell research at Southern University and A and M College, Baton Route. A state of the art research laboratory (James Hall No.123 and No.114) for energy conversion and storage devices was developed during this project duration. The Solid State Ionics laboratory is now fully equipped with materials research instruments: Arbin Battery Cycling and testing (8 channel) unit, Electrochemical Analyzer (EG and G PAR Model 273 and Solartron AC impedance analyzer), Fuel Cell test station (Globe Tech), Differential Scanning Calorimeter (DSC-10), Thermogravimetric Analyzer (TGA), Scanning Tunneling Microscope (STM), UV-VIS-NIR Absorption Spectrometer, Fluorescence Spectrometer, FT-IR Spectrometer, Extended X-ray Absorption Fine Structure (EXAFS) measurement capability at Center for Advanced Microstructure and Devices (CAMD- a multimillion dollar DOE facility), Glove Box, gas hood chamber, high temperature furnaces, hydraulic press and several high performance computers. IN particular, a high temperature furnace (Thermodyne 6000 furnace) and a high temperature oven were acquired through this project funds. The PI Dr. R Bobba has acquired additional funds from federal agencies include NSF-Academic Research Infrastructure program and other DOE sites. They have extensively used the multimillion dollar DOE facility ''Center'' for Advanced Microstructures and Devices (CAMD) for electrochemical research. The students were heavily involved in the experimental EXAFS measurements and made use of their DCM beamline for EXAFS research. The primary objective was to provide hands on experience to the selected African American undergraduate and graduate students in experimental energy research.The goal was to develop research skills and involve them in the Preparation and Characterization of Solid Electrolytes. Ionically conducting solid electrolytes are successfully used for battery, fuel cell and sensor applications.

  7. Aqueous Corrosion Rates for Waste Package Materials

    SciTech Connect (OSTI)

    S. Arthur

    2004-10-08T23:59:59.000Z

    The purpose of this analysis, as directed by ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]), is to compile applicable corrosion data from the literature (journal articles, engineering documents, materials handbooks, or standards, and national laboratory reports), evaluate the quality of these data, and use these to perform statistical analyses and distributions for aqueous corrosion rates of waste package materials. The purpose of this report is not to describe the performance of engineered barriers for the TSPA-LA. Instead, the analysis provides simple statistics on aqueous corrosion rates of steels and alloys. These rates are limited by various aqueous parameters such as temperature (up to 100 C), water type (i.e., fresh versus saline), and pH. Corrosion data of materials at pH extremes (below 4 and above 9) are not included in this analysis, as materials commonly display different corrosion behaviors under these conditions. The exception is highly corrosion-resistant materials (Inconel Alloys) for which rate data from corrosion tests at a pH of approximately 3 were included. The waste package materials investigated are those from the long and short 5-DHLW waste packages, 2-MCO/2-DHLW waste package, and the 21-PWR commercial waste package. This analysis also contains rate data for some of the materials present inside the fuel canisters for the following fuel types: U-Mo (Fermi U-10%Mo), MOX (FFTF), Thorium Carbide and Th/U Carbide (Fort Saint Vrain [FSVR]), Th/U Oxide (Shippingport LWBR), U-metal (N Reactor), Intact U-Oxide (Shippingport PWR, Commercial), aluminum-based, and U-Zr-H (TRIGA). Analysis of corrosion rates for Alloy 22, spent nuclear fuel, defense high level waste (DHLW) glass, and Titanium Grade 7 can be found in other analysis or model reports.

  8. Aqueous Processing Material Accountability Instrumentation

    SciTech Connect (OSTI)

    Robert Bean

    2007-09-01T23:59:59.000Z

    Increased use of nuclear power will require new facilities. The U.S. has not built a new spent nuclear fuel reprocessing facility for decades. Reprocessing facilities must maintain accountability of their nuclear fuel. This survey report on the techniques used in current aqueous reprocessing facilities, and provides references to source materials to assist facility design efforts.

  9. Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2008-01-01T23:59:59.000Z

    derived from a basic diagnostic fuel cell model [3] was usedExperimental Diagnostics in Polymer Electrolyte Fuel Cells,

  10. Electrolyte matrix for molten carbonate fuel cells

    DOE Patents [OSTI]

    Huang, Chao M. (Danbury, CT); Yuh, Chao-Yi (New Milford, CT)

    1999-01-01T23:59:59.000Z

    A matrix for a carbonate electrolyte including a support material and an additive constituent having a relatively low melting temperature and a relatively high coefficient of thermal expansion. The additive constituent is from 3 to 45 weight percent of the matrix and is formed from raw particles whose diameter is in a range of 0.1 .mu.m to 20 .mu.m and whose aspect ratio is in a range of 1 to 50. High energy intensive milling is used to mix the support material and additive constituent during matrix formation. Also disclosed is the use of a further additive constituent comprising an alkaline earth containing material. The further additive is mixed with the support material using high energy intensive milling.

  11. Solid polymeric electrolytes for lithium batteries

    DOE Patents [OSTI]

    Angell, Charles A.; Xu, Wu; Sun, Xiaoguang

    2006-03-14T23:59:59.000Z

    Novel conductive polyanionic polymers and methods for their preparion are provided. The polyanionic polymers comprise repeating units of weakly-coordinating anionic groups chemically linked to polymer chains. The polymer chains in turn comprise repeating spacer groups. Spacer groups can be chosen to be of length and structure to impart desired electrochemical and physical properties to the polymers. Preferred embodiments are prepared from precursor polymers comprising the Lewis acid borate tri-coordinated to a selected ligand and repeating spacer groups to form repeating polymer chain units. These precursor polymers are reacted with a chosen Lewis base to form a polyanionic polymer comprising weakly coordinating anionic groups spaced at chosen intervals along the polymer chain. The polyanionic polymers exhibit high conductivity and physical properties which make them suitable as solid polymeric electrolytes in lithium batteries, especially secondary lithium batteries.

  12. Electrolyte matrix for molten carbonate fuel cells

    DOE Patents [OSTI]

    Huang, C.M.; Yuh, C.Y.

    1999-02-09T23:59:59.000Z

    A matrix is described for a carbonate electrolyte including a support material and an additive constituent having a relatively low melting temperature and a relatively high coefficient of thermal expansion. The additive constituent is from 3 to 45 weight percent of the matrix and is formed from raw particles whose diameter is in a range of 0.1 {micro}m to 20 {micro}m and whose aspect ratio is in a range of 1 to 50. High energy intensive milling is used to mix the support material and additive constituent during matrix formation. Also disclosed is the use of a further additive constituent comprising an alkaline earth containing material. The further additive is mixed with the support material using high energy intensive milling. 5 figs.

  13. Charge relaxation dynamics of an electrolytic nanocapacitor

    E-Print Network [OSTI]

    Thakore, Vaibhav

    2013-01-01T23:59:59.000Z

    Understanding ion relaxation dynamics in overlapping electric double layers (EDLs) is critical for the development of efficient nanotechnology based electrochemical energy storage, electrochemomechanical energy conversion and bioelectrochemical sensing devices besides controlled synthesis of nanostructured materials. Here, using Lattice Boltzmann (LB) method, we present results from the simulations of an electrolytic nanocapacitor subjected to a step potential at t = 0 for various degrees of EDL overlap, solvent viscosities, ratios of cation to anion diffusivity and electrode separations. A continuously varying molecular speed dependent relaxation time, proposed for use with the LB equation, recovers the correct microscopic description of molecular collision phenomena and holds promise for enhancing the stability of the LB algorithm. Results for large EDL overlap showed oscillatory behavior for ionic current densities in contrast to monotonic relaxation to equilibrium for low EDL overlap. Further, at low solv...

  14. Method of making a layered composite electrode/electrolyte

    DOE Patents [OSTI]

    Visco, Steven J. (Berkeley, CA); Jacobson, Craig P. (El Cerrito, CA); DeJonghe, Lutgard C. (Lafayette, CA)

    2005-01-25T23:59:59.000Z

    An electrode/electrolyte structure is prepared by a plurality of methods. An unsintered (possibly bisque fired) moderately catalytic electronically-conductive or homogeneous mixed ionic electronic conductive electrode material is deposited on a layer composed of a sintered or unsintered ionically-conductive electrolyte material prior to being sintered. A layer of particulate electrode material is deposited on an unsintered ("green") layer of electrolyte material and the electrode and electrolyte layers are sintered simultaneously, sometimes referred to as "co-firing," under conditions suitable to fully densify the electrolyte while the electrode retains porosity. Or, the layer of particulate electrode material is deposited on a previously sintered layer of electrolyte, and then sintered. Subsequently, a catalytic material is added to the electrode structure by infiltration of an electrolcatalyst precursor (e.g., a metal salt such as a transition metal nitrate). This may be followed by low temperature firing to convert the precursor to catalyst. The invention allows for an electrode with high electronic conductivity and sufficient catalytic activity to achieve high power density in an ionic (electrochemical) device such as fuel cells and electrolytic gas separation systems.

  15. Removal of Heavy Metals from Aqueous Systems with Thiol Functionalized...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heavy Metals from Aqueous Systems with Thiol Functionalized Superparamagnetic Nanoparticles. Removal of Heavy Metals from Aqueous Systems with Thiol Functionalized...

  16. Physical Property Modeling of Concentrated Cesium Eluate Solutions, Part I - Derivation of Models

    SciTech Connect (OSTI)

    Choi, A.S.; Pierce, R. A.; Edwards, T. B.; Calloway, T. B.

    2005-09-15T23:59:59.000Z

    Major analytes projected to be present in the Hanford Waste Treatment Plant cesium ion-exchange eluate solutions were identified from the available analytical data collected during radioactive bench-scale runs, and a test matrix of cesium eluate solutions was designed within the bounding concentrations of those analytes. A computer model simulating the semi-batch evaporation of cesium eluate solutions was run in conjunction with a multi-electrolyte aqueous system database to calculate the physical properties of each test matrix solution concentrated to the target endpoints of 80% and 100% saturation. The calculated physical properties were analyzed statistically and fitted into mathematical expressions for the bulk solubility, density, viscosity, heat capacity and volume reduction factor as a function of temperature and concentration of each major analyte in the eluate feed. The R{sup 2} of the resulting physical property models ranged from 0.89 to 0.99.

  17. High temperature solid electrolyte fuel cell with ceramic electrodes

    DOE Patents [OSTI]

    Marchant, David D. (Richland, WA); Bates, J. Lambert (Richland, WA)

    1984-01-01T23:59:59.000Z

    A solid oxide electrolyte fuel cell is described having a central electrolyte comprised of a HfO.sub.2 or ZrO.sub.2 ceramic stabilized and rendered ionically conductive by the addition of Ca, Mg, Y, La, Nd, Sm, Gd, Dy Er, or Yb. The electrolyte is sandwiched between porous electrodes of a HfO.sub.2 or ZrO.sub.2 ceramic stabilized by the addition of a rare earth and rendered electronically conductive by the addition of In.sub.2 O.sub.3. Alternatively, the anode electrode may be made of a metal such as Co, Ni, Ir Pt, or Pd.

  18. Electrowinning process with electrode compartment to avoid contamination of electrolyte

    DOE Patents [OSTI]

    Poa, Davis S. (Naperville, IL); Pierce, R. Dean (Naperville, IL); Mulcahey, Thomas P. (Downers Grove, IL); Johnson, Gerald K. (Downers Grove, IL)

    1993-01-01T23:59:59.000Z

    An electrolytic process and apparatus for reducing calcium oxide in a molten electrolyte of CaCl.sub.2 -CaF.sub.2 with a graphite anode in which particles or other contamination from the anode is restricted by the use of a porous barrier in the form of a basket surrounding the anode which may be removed from the electrolyte to burn the graphite particles, and wherein the calcium oxide feed is introduced to the anode compartment to increase the oxygen ion concentration at the anode.

  19. Passivation of Aluminum in Lithium-ion Battery Electrolytes with LiBOB

    E-Print Network [OSTI]

    Zhang, Xueyuan; Devine, Thomas M.

    2008-01-01T23:59:59.000Z

    Passivation of Aluminum in Lithium-ion Battery Electrolytesin commercially available lithium-ion battery electrolytes,

  20. Effect on the Pore-Size Dependence of an Organic Electrolyte Supercapacitor

    SciTech Connect (OSTI)

    Jiang, Deen [ORNL; Jin, Zhehui [University of California, Riverside; Henderson, Douglous [Brigham Young University; Wu, Jianzhong [University of California, Riverside

    2012-01-01T23:59:59.000Z

    Organic electrolytes such as tetraethylammonium tetrafluoroborate dissolved in acetonitrile (TEA-BF{sub 4}/ACN) are widely used in commercial supercapacitors and academic research, but conflicting experimental results have been reported regarding the dependence of surface-area-normalized capacitance on the pore size. Here we show from a classical density functional theory the dependence of capacitance on the pore size from 0.5 to 3.0 nm for a model TEA-BF{sub 4}/ACN electrolyte. We find that the capacitance-pore size curve becomes roughly flat after the first peak around the ion diameter, and the peak capacitance is not significantly higher than the large-pore average. We attribute the invariance of capacitance with the pore size to the formation of an electric double-layer structure that consists of counterions and highly organized solvent molecules. This work highlights the role of the solvent molecules in modulating the capacitance and reconciles apparently conflicting experimental reports.

  1. Uranyl fluoride luminescence in acidic aqueous solutions

    SciTech Connect (OSTI)

    Beitz, J.V.; Williams, C.W. [Argonne National Lab., IL (United States). Chemistry Div.

    1996-08-01T23:59:59.000Z

    Luminescence emission spectra and decay rates are reported for uranyl species in acidic aqueous solutions containing HF or added NaF. The longest luminescence lifetime, 0.269 {+-} 0.006 ms, was observed from uranyl in 1 M HF + 1 M HClO{sub 4} at 296 K and decreased with increasing temperature. Based on a luminescence dynamics model that assumes equilibrium among electronically excited uranyl fluoride species and free fluoride ion, this long lived uranyl luminescence in aqueous solution is attributed primarily to UO{sub 2}F{sub 2}. Studies on the effect of added LiNO{sub 3} or Na{sub 2}WO{sub 4}{center_dot}2H{sub 2}O showed relatively weak quenching of uranyl fluoride luminescence which suggests that high sensitivity determination of the UF{sub 6} content of WF{sub 6} gas should be feasible via uranyl luminescence analysis of hydrolyzed gas samples of impure WF{sub 6}.

  2. Solar-assisted hydrogen generation by photoelectrocatalysis: electric birefringence and ellipsometric spectroscopy of the semiconductor/electrolyte interface. Annual report 3 Sep 82-31 Aug 83

    SciTech Connect (OSTI)

    Ang, P.G.P.; St. John, M.R.; Sammells, A.F.

    1983-09-01T23:59:59.000Z

    The project goals are to apply and develop electro-optical techniques (electric birefringence and ellipsometric spectroscopy) for in-situ investigation of modified and unmodified photoelectrode/liquid junctions. This information will be used in conjunction with other spectroscopic and photoelectro-chemical techniques to delineate those features, necessary at this interface, for the achievement of high photo-electrolysis efficiencies. The thorough understanding obtained for both the photoelectrode and its liquid junction with aqueous electrolytes will be directed toward the development of high-efficiency photo-electrochemical cells for hydrogen generation.

  3. Ab-initio simulation of novel solid electrolytes

    E-Print Network [OSTI]

    Richards, William D. (William Davidson)

    2014-01-01T23:59:59.000Z

    All solid-state batteries may be a solution to some of the problems facing conventional organic electrolytes in Li and Na-ion batteries, but typically conductivities are very low. Reports of fast lithium conduction in Li ...

  4. Protection of Li Anodes Using Dual Phase Electrolytes

    Broader source: Energy.gov (indexed) [DOE]

    the laboratory scale Li-S cells. Partners BASF SE, Germany * Development of Li-S battery materials 3 Project Objectives * Develop a unique electrolyte providing two liquid phases...

  5. Solid-state Graft Copolymer Electrolytes for Lithium Battery Applications

    E-Print Network [OSTI]

    Hu, Qichao

    Battery safety has been a very important research area over the past decade. Commercially available lithium ion batteries employ low flash point (<80 °C), flammable, and volatile organic electrolytes. These organic based ...

  6. Molten salt electrolyte battery cell with overcharge tolerance

    DOE Patents [OSTI]

    Kaun, Thomas D. (New Lenox, IL); Nelson, Paul A. (Wheaton, IL)

    1989-01-01T23:59:59.000Z

    A molten salt electrolyte battery having an increased overcharge tolerance employs a negative electrode with two lithium alloy phases of different electrochemical potential, one of which allows self-discharge rates which permits battery cell equalization.

  7. Lithium sulfide compositions for battery electrolyte and battery electrode coatings

    DOE Patents [OSTI]

    Liang, Chengdu; Liu, Zengcai; Fu, Wujun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

    2014-10-28T23:59:59.000Z

    Method of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electrolytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

  8. Sandia National Laboratories: lithium-ion-based solid electrolyte...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ion-based solid electrolyte battery Sandia Labs, Front Edge Technology, Inc., Pacific Northwest National Lab, Univ. of California-Los Angeles: Micro Power Source On March 20, 2013,...

  9. Solid electrolyte material manufacturable by polymer processing methods

    DOE Patents [OSTI]

    Singh, Mohit; Gur, Ilan; Eitouni, Hany Basam; Balsara, Nitash Pervez

    2012-09-18T23:59:59.000Z

    The present invention relates generally to electrolyte materials. According to an embodiment, the present invention provides for a solid polymer electrolyte material that is ionically conductive, mechanically robust, and can be formed into desirable shapes using conventional polymer processing methods. An exemplary polymer electrolyte material has an elastic modulus in excess of 1.times.10.sup.6 Pa at 90 degrees C. and is characterized by an ionic conductivity of at least 1.times.10.sup.-5 Scm-1 at 90 degrees C. An exemplary material can be characterized by a two domain or three domain material system. An exemplary material can include material components made of diblock polymers or triblock polymers. Many uses are contemplated for the solid polymer electrolyte materials. For example, the present invention can be applied to improve Li-based batteries by means of enabling higher energy density, better thermal and environmental stability, lower rates of self-discharge, enhanced safety, lower manufacturing costs, and novel form factors.

  10. Thermodynamic Phase And Chemical Equilibrium At 0-110 C For The H+-K+-Na+-Cl--H2O System Up To 16 Molal And The HNO3-H2O System Up To 20 Molal Using An Association-Based Pitzer Model Compatible With ASPEN Plus

    SciTech Connect (OSTI)

    Nichols,T.T.; Taylor,D.D.

    2003-09-26T23:59:59.000Z

    A status is presented of the parameterization during FY2003 of an association-based Pitzer model to simulate chemical and phase equilibria of acid-chloride-nitrate-mercury aqueous electrolyte systems at 0-100 C within the industry-standard process simulator, ASPEN Plus. Compatibility with ASPEN Plus requires that the Pitzer model used be limited to the third virial coefficient and have the values of b and a1 as originally proposed by Pitzer. Two aqueous models for 0-110 C at atmospheric pressure were parameterized in FY03. The model for the aqueous H+-K+-Na+-Cl- system is applicable for 0-16 molal, and the HNO3-H2O for 0-20 molal. An association-based Pitzer activity coefficient model is combined with Henry's law to predict activity/osmotic coefficient and VLE. The chloride model also predicts KCl and NaCl solubility, while the nitric acid model has the unique capability of predicting extent of dissociation with an average absolute deviation of 1.43%. The association-based approach presented here extends the utility of the molality-based Pitzer model past 6 molal to predict activity/osmotic coefficients up to 16-20 molal. The association-based approach offers the additional benefits of predicting extent of dissociation and of allowing the Pitzer model to be fully utilized in commercial simulators, such as ASPEN Plus, that require accounting for association to implement Henry's law. The Pitzer models presented here provide the chemical process simulation engineer with a superior alternative to the Electrolyte NRTL model that can easily be used in ASPEN Plus.

  11. Thermodynamic Phase And Chemical Equilibrium At 0-110°C For The H+-K+-Na+-Cl--H2O System Up To 16 Molal And The HNO3-H2O System Up To 20 Molal Using An Association-Based Pitzer Model Compatible With ASPEN Plus

    SciTech Connect (OSTI)

    Todd T. Nichols; Dean D. Taylor

    2003-09-01T23:59:59.000Z

    A status is presented of the parameterization during FY2003 of an association-based Pitzer model to simulate chemical and phase equilibria of acid-chloride-nitrate-mercury aqueous electrolyte systems at 0-100° C within the industry-standard process simulator, ASPEN Plus. Compatibility with ASPEN Plus requires that the Pitzer model used be limited to the third virial coefficient and have the values of b and a1 as originally proposed by Pitzer. Two aqueous models for 0-110° C at atmospheric pressure were parameterized in FY03. The model for the aqueous H+-K+-Na+-Cl- system is applicable for 0-16 molal, and the HNO3-H2O for 0-20 molal. An association-based Pitzer activity coefficient model is combined with Henry.s law to predict activity/osmotic coefficient and VLE. The chloride model also predicts KCl and NaCl solubility, while the nitric acid model has the unique capability of predicting extent of dissociation with an average absolute deviation of 1.43%. The association-based approach presented here extends the utility of the molality-based Pitzer model past 6 molal to predict activity/osmotic coefficients up to 16-20 molal. The association-based approach offers the additional benefits of predicting extent of dissociation and of allowing the Pitzer model to be fully utilized in commercial simulators, such as ASPEN Plus, that require accounting for association to implement Henry’s law. The Pitzer models presented here provide the chemical process simulation engineer with a superior alternative to the Electrolyte NRTL model that can easily be used in ASPEN Plus.

  12. Effects of Nonaqueous Electrolytes on Primary Li-Air Batteries

    SciTech Connect (OSTI)

    Xu, Wu; Xiao, Jie; Wang, Deyu; Zhang, Jian; Zhang, Jiguang

    2010-06-14T23:59:59.000Z

    The effects of nonaqueous electrolytes on the performance of primary Li-air batteries operated in dry air environment have been investigated. Organic solvents with low volatility and low moisture absorption are necessary to minimize the change of electrolyte compositions and the reaction between Li anode and water during the discharge process. The polarity of aprotic solvents outweighs the viscosity, ion conductivity and oxygen solubility on the performance of Li-air batteries once these latter properties attain certain reasonable level, because the solvent polarity significantly affects the number of tri-phase regions formed by oxygen, electrolyte, and active carbons (with catalyst) in the air electrode. The most feasible electrolyte formulation is the system of LiTFSI in PC/EC mixtures, whose performance is relatively insensitive to PC/EC ratio and salt concentration. The quantity of such electrolyte added to a Li-air cell has notably effects on the discharge performance of the Li-air battery as well, and a maximum in capacity is observed as a function of electrolyte amount. The coordination effect from the additives or co-solvents [tris(pentafluorophenyl)borane and crown ethers in this study] also greatly affects the discharge performance of a Li-air battery.

  13. Refractive indexes of aqueous LiBr solutions

    SciTech Connect (OSTI)

    Zaltash, A.; Ally, M.R. (Energy Div., Oak Ridge National Lab., Oak Ridge, TN (US))

    1992-01-01T23:59:59.000Z

    This paper reports that the refractive indexes of water-lithium bromide solutions were measured in the temperature range from 5.0 to 80.0 {degrees}C and in the range of salt concentrations from 0.00 (deionized water) to 58.90 mass %. An electrolyte solution of LlBr in water was chosen for study because of its wide use as an absorption chiller fluid. The concentration of LlBr aqueous solution was determined by argentimetric titration using tetrabromofluoresceln (Eosin) as an adsorption indicator and was checked at a few discrete concentrations (10.06, 20.30, and 58.90 mass % LlBr) against the values obtained by gravimetric analysis. The deviation between values obtained using these two techniques was found to be less than 0.27 mass %. The refractive indexes are shown to represent a reliable and convenient way of measuring the concentration of salt (or water) in LlBr solutions with accuracies of {plus minus}0.3 mass % salt.

  14. Cu--Ni--Fe anode for use in aluminum producing electrolytic cell

    DOE Patents [OSTI]

    Bergsma, S. Craig; Brown, Craig W.; Bradford, Donald R; Barnett, Robert J.; Mezner, Michael B.

    2006-07-18T23:59:59.000Z

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte, the method comprising the steps of providing a molten salt electrolyte at a temperature of less than 900.degree. C. having alumina dissolved therein in an electrolytic cell having a liner for containing the electrolyte, the liner having a bottom and walls extending upwardly from said bottom. A plurality of non-consumable Cu--Ni--Fe anodes and cathodes are disposed in a vertical direction in the electrolyte, the cathodes having a plate configuration and the anodes having a flat configuration to compliment the cathodes. The anodes contain apertures therethrough to permit flow of electrolyte through the apertures to provide alumina-enriched electrolyte between the anodes and the cathodes. Electrical current is passed through the anodes and through the electrolyte to the cathodes, depositing aluminum at the cathodes and producing gas at the anodes.

  15. Development of three-dimensional site-site Smoluchowski-Vlasov equation and application to electrolyte solutions

    SciTech Connect (OSTI)

    Kasahara, Kento [Department of Molecular Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); Sato, Hirofumi, E-mail: hirofumi@moleng.kyoto-u.ac.jp [Department of Molecular Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan)

    2014-06-28T23:59:59.000Z

    Site-site Smoluchowski-Vlasov (SSSV) equation enables us to directly calculate van Hove time correlation function, which describes diffusion process in molecular liquids. Recently, the theory had been extended to treat solute-solvent system by Iida and Sato [J. Chem. Phys. 137, 034506 (2012)]. Because the original framework of SSSV equation is based on conventional pair correlation function, time evolution of system is expressed in terms of one-dimensional solvation structure. Here, we propose a new SSSV equation to calculate time evolution of solvation structure in three-dimensional space. The proposed theory was applied to analyze diffusion processes in 1M NaCl aqueous solution and in lithium ion battery electrolyte solution. The results demonstrate that these processes are properly described with the theory, and the computed van Hove functions are in good agreement with those in previous works.

  16. Solid polymer electrolyte composite membrane comprising plasma etched porous support

    DOE Patents [OSTI]

    Liu, Han (Waltham, MA); LaConti, Anthony B. (Lynnfield, MA)

    2010-10-05T23:59:59.000Z

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 0.1 to 5 microns, are made by plasma etching and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  17. Bath for electrolytic reduction of alumina and method therefor

    DOE Patents [OSTI]

    Brown, Craig W. (Seattle, WA); Brooks, Richard J. (Seattle, WA); Frizzle, Patrick B. (Lynnwood, WA); Juric, Drago D. (Bulleen, AU)

    2002-11-26T23:59:59.000Z

    An electrolytic bath for use during the electrolytic reduction of alumina to aluminum. The bath comprises a molten electrolyte having the following ingredients: (a) AlF.sub.3 and at least one salt selected from the group consisting of NaF, KF, and LiF; and (b) about 0.004 wt. % to about 0.2 wt. %, based on total weight of the molten electrolyte, of at least one transition metal or at least one compound of the metal or both. The compound may be, for example, a fluoride, oxide, or carbonate. The metal can be nickel, iron, copper, cobalt, or molybdenum. The bath can be employed in a combination that includes a vessel for containing the bath and at least one non-consumable anode and at least one dimensionally stable cathode in the bath. Employing the bath of the present invention during electrolytic reduction of alumina to aluminum can improve the wetting of aluminum on a cathode by reducing or eliminating the formation of non-metallic deposits on the cathode. Removing sulfur from the bath can also minimize cathode deposits. Aluminum formed on the cathode can be removed directly from the cathode.

  18. Bath for electrolytic reduction of alumina and method therefor

    DOE Patents [OSTI]

    Brown, Craig W. (Seattle, WA); Brooks, Richard J. (Seattle, WA); Frizzle, Patrick B. (Lynnwood, WA); Juric, Drago D. (Bulleen, AU)

    2001-07-10T23:59:59.000Z

    An electrolytic bath for use during the electrolytic reduction of alumina to aluminum. The bath comprises a molten electrolyte having the following ingredients: (a) AlF.sub.3 and at least one salt selected from the group consisting of NaF, KF, and LiF; and (b) about 0.004 wt. % to about 0.2 wt. %, based on total weight of the molten electrolyte, of at least one transition metal or at least one compound of the metal or both. The compound may be, for example, a fluoride, oxide, or carbonate. The metal can be nickel, iron, copper, cobalt, or molybdenum. The bath can be employed in a combination that includes a vessel for containing the bath and at least one non-consumable anode and at least one dimensionally stable cathode in the bath. Employing the bath of the present invention during electrolytic reduction of alumina to aluminum can improve the wetting of aluminum on a cathode by reducing or eliminating the formation of non-metallic deposits on the cathode.

  19. Influence of confinement on polymer-electrolyte relaxational dynamics.

    SciTech Connect (OSTI)

    Zanotti, J.-M.; Smith, L. J.; Price, D. L.; Saboungi, M.-L.; Intense Pulsed Neutron Source; Lab. Leon Brillouin (CEA-CRNS); Clark Univ.; CRMHT (CNRS); CRMD (CNRS)

    2004-01-01T23:59:59.000Z

    Conception and industrial production of viable high specific energy/power batteries is a central issue for the development of non-polluting vehicles. In terms of stored energy and safety, solid-state devices using polymer electrolytes are highly desirable. One of the most studied systems is PEO (polyethylene oxide) complexed by Li salts. Polymer segmental motions and ionic conductivity are closely related. Bulk PEO is actually a biphasic system where an amorphous and a crystalline state (Tm 335 K) coexist. To improve ionic conduction in those systems requires a significant increase of the amorphous phase fraction where lithium conduction is known to mainly take place. Confinement strongly affects properties of condensed matter and in particular the collective phenomena inducing crystallization. Confinement of the polymer matrix is therefore a possible alternative route to the unpractical use of high temperature. Results of a quasi-elastic incoherent neutron scattering study of the influence of confinement on polyethylene oxide (PEO) and (PEO)8Li+[(CF3SO2)2N]- (or (POE)8LiTFSI) dynamics are presented. The nano-confining media is Vycor, a silica based hydrophilic porous glass (characteristic size of the 3D pore network 50 {angstrom}). As expected, the presence of Li salt slows down the bulk polymer dynamics. The confinement also affects dramatically the apparent mean-square displacement of the polymer. Local relaxational PEO dynamics is described KWW model. We also present an alternate model and show how the detailed polymer dynamics (correlation times and local geometry of the motions) can be described without the use of such stretched exponentials so as to access a rheology-related meaningful physical quantity: the monomeric friction coefficient.

  20. Physical Properties Models for Simulation of Processes to Treat INEEL Tank Farm Waste: Thermodynamic Equilibrium

    SciTech Connect (OSTI)

    Nichols, Todd Travis; Taylor, Dean Dalton

    2002-07-01T23:59:59.000Z

    A status is presented of the development during FY2002 of a database for physical properties models for the simulation of the treatment of Sodium-Bearing Waste (SBW) at the Idaho National Engineering and Environmental Laboratory. An activity coefficient model is needed for concentrated, aqueous, multi-electrolyte solutions that can be used by process design practitioners. Reasonable first-order estimates of activity coefficients in the relevant media are needed rather than an incremental improvement in theoretical approaches which are not usable by practitioners. A comparison of the Electrolyte Non-Random Two-Liquid (ENRTL) and Pitzer ion-interaction models for the thermodynamic representation of SBW is presented. It is concluded that Pitzer's model is superior to ENRTL in modeling treatment processes for SBW. The applicability of the Pitzer treatment to high concentrations of pertinent species and to the determination of solubilities and chemical equilibria is addressed. Alternate values of Pitzer parameters for HCl, H2SO4, and HNO3 are proposed, applicable up to 16m, and 12m, respectively. Partial validation of the implementation of Pitzer's treatment within the commercial process simulator ASPEN Plus was performed.

  1. Physical Properties Models for Simulation of Processes to Treat INEEL Tank Farm Waste: Thermodynamic Equilibrium

    SciTech Connect (OSTI)

    Nichols, T.T.; Taylor, D.D.

    2002-07-18T23:59:59.000Z

    A status is presented of the development during FY2002 of a database for physical properties models for the simulation of the treatment of Sodium-Bearing Waste (SBW) at the Idaho National Engineering and Environmental Laboratory. An activity coefficient model is needed for concentrated, aqueous, multi-electrolyte solutions that can be used by process design practitioners. Reasonable first-order estimates of activity coefficients in the relevant media are needed rather than an incremental improvement in theoretical approaches which are not usable by practitioners. A comparison of the Electrolyte Non-Random Two-Liquid (ENRTL) and Pitzer ion-interaction models for the thermodynamic representation of SBW is presented. It is concluded that Pitzer's model is superior to ENRTL in modeling treatment processes for SBW. The applicability of the Pitzer treatment to high concentrations of pertinent species and to the determination of solubilities and chemical equilibria is addressed. Alternate values of Pitzer parameters for HCl, H2SO4, and HNO3 are proposed, applicable up to 16m, and 12m, respectively. Partial validation of the implementation of Pitzer's treatment within the commercial process simulator ASPEN Plus was performed.

  2. Lithium sulfide compositions for battery electrolyte and battery electrode coatings

    SciTech Connect (OSTI)

    Liang, Chengdu; Liu, Zengcai; Fu, Wunjun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

    2013-12-03T23:59:59.000Z

    Methods of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electroytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one or .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

  3. Creating Addressable Aqueous Microcompartments above Solid Supported

    E-Print Network [OSTI]

    combinatorial libraries of solid supported fluid lipid membranes because these systems retain many a novel soft lithographic technique5 for partitioning and addressing aqueous solutions above supported methodology affords the ability to create a large number of aqueous compartments consisting of various

  4. Inverse hydrochemical models of aqueous extracts tests

    E-Print Network [OSTI]

    Zheng, L.

    2010-01-01T23:59:59.000Z

    years to improve water extraction methods, develop numericalreactions during water extraction, redox processes were notAranyossy, J.F. , 2001. Extraction of water and solutes from

  5. Inverse hydrochemical models of aqueous extracts tests

    E-Print Network [OSTI]

    Zheng, L.

    2010-01-01T23:59:59.000Z

    Samper, J. , Yang, C. , Montenegro, L. , 2003. Users ManualSamper, J. , Vázquez, A. , Montenegro, L. , 2005. Inverse563. Samper, J. , Zhang, G. , Montenegro, L. , 2006. Coupled

  6. Dense gas dispersion modeling for aqueous releases

    E-Print Network [OSTI]

    Lara, Armando

    1999-01-01T23:59:59.000Z

    , and the intention of this work is to have a methodology flexible enough to be applied in very general cases. Wilson, NRTL, and UNIQUAC were also considered. Unlike Wilson's equation, NRTL and UNIQUAC equations are applicable to 25 both vapor-liquid and liquid...-liquid equilibria. While UNIQUAC is mathematically more complex than NRTL, it has four advantages; (1) it has only two adjustable parameters, (2) UNIQUAC's parameters have a smaller dependence on temperature, (3) UNIQUAC's parameters are more widely available, (4...

  7. Adsorption analysis of ammonia in an aqueous solution

    SciTech Connect (OSTI)

    Arman, B.; Panchal, C.B.

    1993-08-01T23:59:59.000Z

    An analysis is carried out to determine the effects of the diffusional resistance on the rate of the adsorption of ammonia in an aqueous solution. A performance prediction model is developed to calculate the local rate of heat and mass transfer, including physical and thermodynamic property calculations of the mixture. An algorithm is developed for calculating the interfacial conditions. The local heat- and mass-transfer calculation is then incorporated into the performance prediction method for adsorption for a given geometry.

  8. Metal separations using aqueous biphasic partitioning systems

    SciTech Connect (OSTI)

    Chaiko, D.J.; Zaslavsky, B.; Rollins, A.N.; Vojta, Y.; Gartelmann, J.; Mego, W. [Argonne National Lab., IL (United States). Chemical Technology Div.

    1996-05-01T23:59:59.000Z

    Aqueous biphasic extraction (ABE) processes offer the potential for low-cost, highly selective separations. This countercurrent extraction technique involves selective partitioning of either dissolved solutes or ultrafine particulates between two immiscible aqueous phases. The extraction systems that the authors have studied are generated by combining an aqueous salt solution with an aqueous polymer solution. They have examined a wide range of applications for ABE, including the treatment of solid and liquid nuclear wastes, decontamination of soils, and processing of mineral ores. They have also conducted fundamental studies of solution microstructure using small angle neutron scattering (SANS). In this report they review the physicochemical fundamentals of aqueous biphase formation and discuss the development and scaleup of ABE processes for environmental remediation.

  9. Effects of electrolyte salts on the performance of Li-O2 batteries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electrolyte salts on the performance of Li-O2 batteries. Effects of electrolyte salts on the performance of Li-O2 batteries. Abstract: It is well known that the stability of...

  10. Electrolytic production of neodymium without perfluorinated carbon compounds on the offgases

    DOE Patents [OSTI]

    Keller, R.; Larimer, K.T.

    1998-09-22T23:59:59.000Z

    A method is described for producing neodymium in an electrolytic cell without formation of perfluorinated carbon gases (PFCs), the method comprising the steps of providing an electrolyte in the electrolytic cell and providing an anode in an anode region of the electrolyte and providing a cathode in a cathode region of the electrolytic cell. Dissolving an oxygen-containing neodymium compound in the electrolyte in the anode region and maintaining a more intense electrolyte circulation in the anode region than in the cathode region. Passing an electrolytic current between said anode and said cathode and depositing neodymium metal at the cathode, preventing the formation of perfluorinated carbon gases by limiting anode over voltage. 4 figs.

  11. Fuel cell system with separating structure bonded to electrolyte

    DOE Patents [OSTI]

    Bourgeois, Richard Scott (Albany, NY); Gudlavalleti, Sauri (Albany, NY); Quek, Shu Ching (Clifton Park, NY); Hasz, Wayne Charles (Pownal, VT); Powers, James Daniel (Santa Monica, CA)

    2010-09-28T23:59:59.000Z

    A fuel cell assembly comprises a separating structure configured for separating a first reactant and a second reactant wherein the separating structure has an opening therein. The fuel cell assembly further comprises a fuel cell comprising a first electrode, a second electrode, and an electrolyte interposed between the first and second electrodes, and a passage configured to introduce the second reactant to the second electrode. The electrolyte is bonded to the separating structure with the first electrode being situated within the opening, and the second electrode being situated within the passage.

  12. Behavior of lithium alloy electrodes in organic electrolyte solutions

    SciTech Connect (OSTI)

    Matsuda, Yoshiharu; Ishikawa, Masashi; Morita, Masayuki; Otani, Kenya [Yamaguchi Univ., Ube (Japan)

    1995-07-01T23:59:59.000Z

    The electrochemical behavior of lithium (Li) alloy electrodes, Li-aluminum (Al) and Li-tin (Sn), has been investigated in propylene carbonate (PC)-based electrolyte containing lithium perchlorate (LiClO{sub 4}). The content of Al or Sn in the Li-based alloy was in the range of 0.1 to 2.0 wt.%. The interfacial behavior between the alloy electrode/electrolyte was discussed on the basis of the results of an ac impedance analysis and charge-discharge cycling tests.

  13. Process to remove rare earth from IFR electrolyte

    DOE Patents [OSTI]

    Ackerman, John P. (Downers Grove, IL); Johnson, Terry R. (Wheaton, IL)

    1994-01-01T23:59:59.000Z

    The invention is a process for the removal of rare earths from molten chloride electrolyte salts used in the reprocessing of integrated fast reactor fuel (IFR). The process can be used either continuously during normal operation of the electrorefiner or as a batch process. The process consists of first separating the actinide values from the salt before purification by removal of the rare earths. After replacement of the actinides removed in the first step, the now-purified salt electrolyte has the same uranium and plutonium concentration and ratio as when the salt was removed from the electrorefiner.

  14. Process to remove rare earth from IFR electrolyte

    DOE Patents [OSTI]

    Ackerman, J.P.; Johnson, T.R.

    1994-08-09T23:59:59.000Z

    The invention is a process for the removal of rare earths from molten chloride electrolyte salts used in the reprocessing of integrated fast reactor fuel (IFR). The process can be used either continuously during normal operation of the electrorefiner or as a batch process. The process consists of first separating the actinide values from the salt before purification by removal of the rare earths. After replacement of the actinides removed in the first step, the now-purified salt electrolyte has the same uranium and plutonium concentration and ratio as when the salt was removed from the electrorefiner. 1 fig.

  15. Process to remove rare earth from IFR electrolyte

    DOE Patents [OSTI]

    Ackerman, J.P.; Johnson, T.R.

    1992-01-01T23:59:59.000Z

    The invention is a process for the removal of rare earths from molten chloride electrolyte salts used in the reprocessing of integrated fast reactor fuel (IFR). The process can be used either continuously during normal operation of the electrorefiner or as a batch process. The process consists of first separating the actinide values from the salt before purification by removal of the rare earths. After replacement of the actinides removed in the first step, the now-purified salt electrolyte has the same uranium and plutonium concentration and ratio as when the salt was removed from the electrorefiner.

  16. Decoupling of Ionic Trasport from Segmental Relaxation in Polymer Electrolytes

    SciTech Connect (OSTI)

    Wang, Yangyang [ORNL; Agapov, Alexander L [ORNL; Fan, Fei [ORNL; Hong, Kunlun [ORNL; Yu, Xiang [ORNL; Mays, Jimmy [ORNL; Sokolov, Alexei P [ORNL

    2012-01-01T23:59:59.000Z

    We present detailed studies of the relationship between ionic conductivity and segmental relaxation in polymer electrolytes. The analysis shows that the ionic conductivity can be decoupled from segmental dynamics and the strength of the decoupling correlates with the fragility but not with the glass transition temperature. These results call for a revision of the current picture of ionic transport in polymer electrolytes. We relate the observed decoupling phenomenon to frustration in packing of rigid polymers, where the loose local structure is also responsible for the increase in their fragility.

  17. Anomalous diffusivity and electric conductivity for low concentration electrolytes in nanopores S. K. Lai1,

    E-Print Network [OSTI]

    in the properties of confined electrolytes has been directed to finding an optimized performance of fuel cells

  18. Structure, Kinetics, and Thermodynamics of the Aqueous Uranyl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kinetics, and Thermodynamics of the Aqueous Uranyl(VI) Cation. Structure, Kinetics, and Thermodynamics of the Aqueous Uranyl(VI) Cation. Abstract: Molecular simulation techniques...

  19. Coordination and Hydrolysis of Plutonium Ions in Aqueous Solution...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrolysis of Plutonium Ions in Aqueous Solution using Car-Parrinello Molecular Dynamics Free Energy Coordination and Hydrolysis of Plutonium Ions in Aqueous Solution using...

  20. Densities and refractive indexes of aqueous (Li,K,Na) NO[sub 3] mixtures

    SciTech Connect (OSTI)

    Ally, M.R.; Zaltash, A.; Linkous, R.L. (Oak Ridge National Lab., TN (United States). Energy Div.); Klatt, L.N. (Oak Ridge National Lab., TN (United States). Analytical Chemistry Div.)

    1991-04-01T23:59:59.000Z

    This paper describes experimental procedures and techniques for measuring densities and/or refractive indexes of aqueous salt solutions between 25 and 200 [degrees]C and with 18.90-90.50 wt % mixed salt (LINO[sub 3], KNO[sub 3], and NaNO[sub 3]). An electrolyte solution of (LI, K, Na) NO[sub 3] slats in water was chosen for study because of its recent development as a potential high-temperature heat pump fluid, but any other appropriate fluid may be accommodated for study in the apparatus. The densities and refractive indexes are shown to represent a convenient way to measuring the concentration of salt (or water), and accuracies of [plus minus]0.8 and [plus minus]0.3 wt % total mixed salt were achieved by using the above two methods, respectively.

  1. Carbonate fuel cell and components thereof for in-situ delayed addition of carbonate electrolyte

    DOE Patents [OSTI]

    Johnsen, Richard (Waterbury, CT); Yuh, Chao-Yi (New Milford, CT); Farooque, Mohammad (Danbury, CT)

    2011-05-10T23:59:59.000Z

    An apparatus and method in which a delayed carbonate electrolyte is stored in the storage areas of a non-electrolyte matrix fuel cell component and is of a preselected content so as to obtain a delayed time release of the electrolyte in the storage areas in the operating temperature range of the fuel cell.

  2. Three steps in the anode reaction of the polymer electrolyte membrane fuel cell. Effect of CO

    E-Print Network [OSTI]

    Kjelstrup, Signe

    Three steps in the anode reaction of the polymer electrolyte membrane fuel cell. Effect of CO Anne in the polymer electrolyte membrane fuel cell (PEMFC) using electrochemical impedance spectroscopy (EIS mechanism 1. Introduction In the polymer electrolyte membrane fuel cell (PEMFC), the largest overpotential

  3. Synthesis and Characterization of Single-Ion Graft Copolymer Electrolytes

    E-Print Network [OSTI]

    Sadoway, Donald Robert

    Synthesis and Characterization of Single-Ion Graft Copolymer Electrolytes Patrick E. Trapa, Metin H manuscript received July 18, 2005. Available electronically October 13, 2005. Polarization in batteries of the overall battery by narrowing the voltage window seen by the electrodes. In addition, depletion regions

  4. Integrated photoelectrochemical cell and system having a liquid electrolyte

    DOE Patents [OSTI]

    Deng, Xunming (Sylvania, OH); Xu, Liwei (Sylvania, OH)

    2010-07-06T23:59:59.000Z

    An integrated photoelectrochemical (PEC) cell generates hydrogen and oxygen from water while being illuminated with radiation. The PEC cell employs a liquid electrolyte, a multi-junction photovoltaic electrode, and a thin ion-exchange membrane. A PEC system and a method of making such PEC cell and PEC system are also disclosed.

  5. Water Visualization and Flooding in Polymer Electrolyte Membrane Fuel Cells

    E-Print Network [OSTI]

    Petta, Jason

    Water Visualization and Flooding in Polymer Electrolyte Membrane Fuel Cells Brian Holsclaw West- 2H2O e- e- e- e- e- H+ H+ H+ Membrane + Schematic of a PEMFC Operation #12;PFR PEM Fuel Cell Plug for membrane Two-phase flow in channels #12;CSTR PEM Fuel Cell Continuous Stirred-Tank Reactor (CSTR) "Perfect

  6. Water Management in Polymer Electrolyte Membrane (PEM) Fuel Cells

    E-Print Network [OSTI]

    Petta, Jason

    ;Data Compilation ­What's Important? 1. SlugVolume (Dimensionless) Required to calculate how much power the channel (P_slug) Required to calculate how much power it takes to remove a slug Pslug #12;Square ChannelWater Management in Polymer Electrolyte Membrane (PEM) Fuel Cells Catherine Chan & Lauren Isbell

  7. Coated powder for electrolyte matrix for carbonate fuel cell

    DOE Patents [OSTI]

    Iacovangelo, Charles D. (Schenectady, NY); Browall, Kenneth W. (Schenectady, NY)

    1985-01-01T23:59:59.000Z

    A plurality of electrolyte carbonate-coated ceramic particle which does not differ significantly in size from that of the ceramic particle and wherein no significant portion of the ceramic particle is exposed is fabricated into a porous tape comprised of said coated-ceramic particles bonded together by the coating for use in a molten carbonate fuel cell.

  8. Design and optimization of polymer electrolyte membrane (PEM) fuel cells

    E-Print Network [OSTI]

    Grujicic, Mica

    Design and optimization of polymer electrolyte membrane (PEM) fuel cells M. Grujicic* , K optimization algorithm to determine an optimum design of the fuel cell with respect to the operation difference has the largest effect on the predicted polarization curve of the fuel cell. However, the optimal

  9. Electrolytic production of high purity aluminum using ceramic inert anodes

    DOE Patents [OSTI]

    Ray, Siba P. (Murrysville, PA); Liu, Xinghua (Monroeville, PA); Weirauch, Douglas A. (Murrysville, PA); DiMilia, Robert A. (Baton Rouge, LA); Dynys, Joseph M. (New Kensington, PA); Phelps, Frankie E. (Apollo, PA); LaCamera, Alfred F. (Trafford, PA)

    2002-01-01T23:59:59.000Z

    A method of producing commercial purity aluminum in an electrolytic reduction cell comprising ceramic inert anodes is disclosed. The method produces aluminum having acceptable levels of Fe, Cu and Ni impurities. The ceramic inert anodes used in the process may comprise oxides containing Fe and Ni, as well as other oxides, metals and/or dopants.

  10. Electrolytic production of high purity aluminum using inert anodes

    DOE Patents [OSTI]

    Ray, Siba P. (Murrysville, PA); Liu, Xinghua (Monroeville, PA); Weirauch, Jr., Douglas A. (Murrysville, PA)

    2001-01-01T23:59:59.000Z

    A method of producing commercial purity aluminum in an electrolytic reduction cell comprising inert anodes is disclosed. The method produces aluminum having acceptable levels of Fe, Cu and Ni impurities. The inert anodes used in the process preferably comprise a cermet material comprising ceramic oxide phase portions and metal phase portions.

  11. Using polymer electrolyte gates to set-and-freeze threshold voltage and local potential in nanowire-based devices and thermoelectrics

    E-Print Network [OSTI]

    Sofia Fahlvik Svensson; Adam M. Burke; Damon J. Carrad; Martin Leijnse; Heiner Linke; Adam P. Micolich

    2014-11-11T23:59:59.000Z

    We use the strongly temperature-dependent ionic mobility in polymer electrolytes to 'freeze in' specific ionic charge environments around a nanowire using a local wrap-gate geometry. This enables us to set both the threshold voltage for a conventional doped substrate gate and the local disorder potential at temperatures below 200 Kelvin, which we characterize in detail by combining conductance and thermovoltage measurements with modeling. Our results demonstrate that local polymer electrolyte gates are compatible with nanowire thermoelectrics, where they offer the advantage of a very low thermal conductivity, and hold great potential towards setting the optimal operating point for solid-state cooling applications.

  12. Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Yuesheng [Chinese Academy of Sciences (CAS), Beijing (China). Inst. of High Energy Physics (IHEP); Liu, Jue [Brookhaven National Lab. (BNL), Upton, NY (United States); Lee, Byungju [Seoul National Univ. (Korea, Republic of); Qiao, Ruimin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source; Yang, Zhenzhong [Chinese Academy of Sciences (CAS), Beijing (China). Inst. of High Energy Physics (IHEP); Xu, Shuyin [Chinese Academy of Sciences (CAS), Beijing (China). Inst. of High Energy Physics (IHEP); Yu, Xiqian [Brookhaven National Lab. (BNL), Upton, NY (United States)] (ORCID:000000018513518X); Gu, Lin [Chinese Academy of Sciences (CAS), Beijing (China). Inst. of High Energy Physics (IHEP); Hu, Yong-Sheng [Chinese Academy of Sciences (CAS), Beijing (China). Inst. of High Energy Physics (IHEP)] (ORCID:0000000284306474); Yang, Wanli [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source] (ORCID:0000000306668063); Kang, Kisuk [Seoul National Univ. (Korea, Republic of); Li, Hong [Chinese Academy of Sciences (CAS), Beijing (China). Inst. of High Energy Physics (IHEP)] (ORCID:000000028659086X); Yang, Xiao-Qing [Brookhaven National Lab. (BNL), Upton, NY (United States); Chen, Liquan [Chinese Academy of Sciences (CAS), Beijing (China). Inst. of High Energy Physics (IHEP); Huang, Xuejie [Chinese Academy of Sciences (CAS), Beijing (China). Inst. of High Energy Physics (IHEP)

    2015-03-25T23:59:59.000Z

    The aqueous sodium-ion battery system is a safe and low-cost solution for large-scale energy storage, due to the abundance of sodium and inexpensive aqueous electrolytes. Although several positive electrode materials, e.g., Na0.44MnO2, were proposed, few negative electrode materials, e.g., activated carbon and NaTi2(PO4)3, are available. Here we show that Ti-substituted Na0.44MnO2 (Na0.44[Mn1-xTix]O2) with tunnel structure can be used as a negative electrode material for aqueous sodium-ion batteries. This material exhibits superior cyclability even without the special treatment of oxygen removal from the aqueous solution. Atomic-scale characterizations based on spherical aberration-corrected electron microscopy and ab initio calculations are utilized to accurately identify the Ti substitution sites and sodium storage mechanism. Ti substitution tunes the charge ordering property and reaction pathway, significantly smoothing the discharge/charge profiles and lowering the storage voltage. Both the fundamental understanding and practical demonstrations suggest that Na0.44[Mn1-xTix]O2 is a promising negative electrode material for aqueous sodium-ion batteries.

  13. Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Yuesheng; Liu, Jue; Lee, Byungju; Qiao, Ruimin; Yang, Zhenzhong; Xu, Shuyin; Yu, Xiqian; Gu, Lin; Hu, Yong-Sheng; Yang, Wanli; et al

    2015-03-25T23:59:59.000Z

    The aqueous sodium-ion battery system is a safe and low-cost solution for large-scale energy storage, due to the abundance of sodium and inexpensive aqueous electrolytes. Although several positive electrode materials, e.g., Na0.44MnO2, were proposed, few negative electrode materials, e.g., activated carbon and NaTi2(PO4)3, are available. Here we show that Ti-substituted Na0.44MnO2 (Na0.44[Mn1-xTix]O2) with tunnel structure can be used as a negative electrode material for aqueous sodium-ion batteries. This material exhibits superior cyclability even without the special treatment of oxygen removal from the aqueous solution. Atomic-scale characterizations based on spherical aberration-corrected electron microscopy and ab initio calculations are utilized to accuratelymore »identify the Ti substitution sites and sodium storage mechanism. Ti substitution tunes the charge ordering property and reaction pathway, significantly smoothing the discharge/charge profiles and lowering the storage voltage. Both the fundamental understanding and practical demonstrations suggest that Na0.44[Mn1-xTix]O2 is a promising negative electrode material for aqueous sodium-ion batteries.« less

  14. Purification of aqueous cellulose ethers

    SciTech Connect (OSTI)

    Bartscherer, K.A.; de Pablo, J.J.; Bonnin, M.C.; Prausnitz, J.M.

    1990-07-01T23:59:59.000Z

    Manufacture of cellulose ethers usually involves high amounts of salt by-products. For application of the product, salt must be removed. In this work, we have studied the injection of high-pressure CO{sub 2} into an aqueous polymer-salt solution; we find that upon addition of isopropanol in addition to CO{sub 2}, the solution separates into two phases. One phase is rich in polymer and water, and the other phase contains mostly isopropanol, water and CO{sub 2}. The salt distributes between the two phases, thereby offering interesting possibilities for development of a new purification process for water-soluble polymers. This work presents experimental phase-equilibrium data for hydroxyethyl cellulose and sodium carboxymethyl cellulose with sodium acetate and potassium sulfate, respectively, in the region 40{degree}C and 30 to 80 bar. Based on these data, we suggest a process for the manufacture and purification of water-soluble cellulose ethers. 15 refs., 14 figs., 9 tabs.

  15. Method for processing aqueous wastes

    DOE Patents [OSTI]

    Pickett, J.B.; Martin, H.L.; Langton, C.A.; Harley, W.W.

    1993-12-28T23:59:59.000Z

    A method is presented for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply. 4 figures.

  16. Method for processing aqueous wastes

    DOE Patents [OSTI]

    Pickett, John B. (3922 Wood Valley Dr., Aiken, SC 29803); Martin, Hollis L. (Rt. 1, Box 188KB, McCormick, SC 29835); Langton, Christine A. (455 Sumter St. SE., Aiken, SC 29801); Harley, Willie W. (110 Fairchild St., Batesburg, SC 29006)

    1993-01-01T23:59:59.000Z

    A method for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply.

  17. Process for reducing aqueous nitrate to ammonia

    DOE Patents [OSTI]

    Mattus, Alfred J. (Oak Ridge, TN)

    1993-01-01T23:59:59.000Z

    Powdered aluminum is added to a nitrate-containing alkaline, aqueous solution to reduce the nitrate and/or nitrite to ammonia and co-produce a sinterable ceramic product.

  18. Process for reducing aqueous nitrate to ammonia

    DOE Patents [OSTI]

    Mattus, A.J.

    1993-11-30T23:59:59.000Z

    Powdered aluminum is added to a nitrate-containing alkaline, aqueous solution to reduce the nitrate and/or nitrite to ammonia and co-produce a sinterable ceramic product. 3 figures.

  19. Aqueous foam toxicology evaluation and hazard review

    SciTech Connect (OSTI)

    Archuleta, M.M.

    1995-10-01T23:59:59.000Z

    Aqueous foams are aggregates of bubbles mechanically generated by passing air or other gases through a net, screen, or other porous medium that is wetted by an aqueous solution of surface-active foaming agents (surfactants). Aqueous foams are important in modem fire-fighting technology, as well as for military uses for area denial and riot or crowd control. An aqueous foam is currently being developed and evaluated by Sandia National Laboratories (SNL) as a Less-Than-Lethal Weapon for the National Institute of Justice (NIJ). The purpose of this study is to evaluate the toxicity of the aqueous foam developed for the NIJ and to determine whether there are any significant adverse health effects associated with completely immersing individuals without protective equipment in the foam. The toxicity of the aqueous foam formulation developed for NIJ is determined by evaluating the toxicity of the individual components of the foam. The foam is made from a 2--5% solution of Steol CA-330 surfactant in water generated at expansion ratios ranging from 500:1 to 1000:1. SteoI CA-330 is a 35% ammonium laureth sulfate in water and is produced by Stepan Chemical Company and containing trace amounts (<0.1%) of 1,4-dioxane. The results of this study indicate that Steol CA-330 is a non-toxic, mildly irritating, surfactant that is used extensively in the cosmetics industry for hair care and bath products. Inhalation or dermal exposure to this material in aqueous foam is not expected to produce significant irritation or systemic toxicity to exposed individuals, even after prolonged exposure. The amount of 1,4-dioxane in the surfactant, and subsequently in the foam, is negligible and therefore, the toxicity associated with dioxane exposure is not significant. In general, immersion in similar aqueous foams has not resulted in acute, immediately life-threatening effects, or chronic, long-term, non-reversible effects following exposure.

  20. Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li-O$_2$ battery capacity

    E-Print Network [OSTI]

    Burke, Colin M; Khetan, Abhishek; Viswanathan, Venkatasubramanian; McCloskey, Bryan D

    2015-01-01T23:59:59.000Z

    Among the 'beyond Li-ion' battery chemistries, nonaqueous Li-O$_2$ batteries have the highest theoretical specific energy and as a result have attracted significant research attention over the past decade. A critical scientific challenge facing nonaqueous Li-O$_2$ batteries is the electronically insulating nature of the primary discharge product, lithium peroxide, which passivates the battery cathode as it is formed, leading to low ultimate cell capacities. Recently, strategies to enhance solubility to circumvent this issue have been reported, but rely upon electrolyte formulations that further decrease the overall electrochemical stability of the system, thereby deleteriously affecting battery rechargeability. In this study, we report that a significant enhancement (greater than four-fold) in Li-O$_2$ cell capacity is possible by appropriately selecting the salt anion in the electrolyte solution. Using $^7$Li nuclear magnetic resonance and modeling, we confirm that this improvement is a result of enhanced Li...

  1. Lithium Ion Transport Mechanism in Ternary Polymer Electrolyte-Ionic Liquid Mixtures - A Molecular Dynamics Simulation Study

    E-Print Network [OSTI]

    Diddo Diddens; Andreas Heuer

    2013-02-20T23:59:59.000Z

    The lithium transport mechanism in ternary polymer electrolytes, consisting of PEO/LiTFSI and various fractions of the ionic liquid N-methyl-N-propylpyrrolidinium bis(trifluoromethane)sulfonimide, are investigated by means of MD simulations. This is motivated by recent experimental findings [Passerini et al., Electrochim. Acta 2012, 86, 330-338], which demonstrated that these materials display an enhanced lithium mobility relative to their binary counterpart PEO/LiTFSI. In order to grasp the underlying microscopic scenario giving rise to these observations, we employ an analytical, Rouse-based cation transport model [Maitra at al., PRL 2007, 98, 227802], which has originally been devised for conventional polymer electrolytes. This model describes the cation transport via three different mechanisms, each characterized by an individual time scale. It turns out that also in the ternary electrolytes essentially all lithium ions are coordinated by PEO chains, thus ruling out a transport mechanism enhanced by the presence of ionic-liquid molecules. Rather, the plasticizing effect of the ionic liquid contributes to the increased lithium mobility by enhancing the dynamics of the PEO chains and consequently also the motion of the attached ions. Additional focus is laid on the prediction of lithium diffusion coefficients from the simulation data for various chain lengths and the comparison with experimental data, thus demonstrating the broad applicability of our approach.

  2. Study of anion adsorption at the gold--aqueous solution interface by atomic force microscopy

    SciTech Connect (OSTI)

    Biggs, S.; Mulvaney, P.; Grieser, F. (Univ. of Melbourne (Australia)); Zukoski, C.F. (Univ. of Illinois, Urbana, IL (United States))

    1994-10-05T23:59:59.000Z

    The forces between a gold coated colloidal silica sphere and a pure gold plate have been measured in aqueous solution as a function of electrolyte concentration using an atomic force microscope (AFM). Forces in the presence of gold(III) chloride (HAuCl[sub 4]), sodium chloride, and trisodium citrate were recorded as a function of concentration. Each of these anion species is present during the formation of colloidal gold by the reduction of gold(III) chloride with trisodium citrate. In pure water the force between the gold surfaces was exclusively attractive. In sodium chloride or trisodium citrate solution a repulsive interaction was observed which is attributed to the adsorption of these anions at the gold/water interface. The observed interaction force in gold(III) chloride solution was always attractive, the surface potential never exceeding 20 mV. Data taken in aqueous solutions of citrate and chloride ions together suggested that the citrate ions were preferentially adsorbed to the surface of the gold. Addition of gold(III) chloride to the AFM liquid cell after the pre-adsorption of citrate anions caused the force of interaction to change from a repulsvie force to an attractive one initially as the gold(III) chloride was reduced to gold by the citrate anions. 33 refs., 11 figs.

  3. AQUEOUS HOMOGENEOUS REACTORTECHNICAL PANEL REPORT

    SciTech Connect (OSTI)

    Diamond, D.J.; Bajorek, S.; Bakel, A.; Flanagan, G.; Mubayi, V.; Skarda, R.; Staudenmeier, J.; Taiwo, T.; Tonoike, K.; Tripp, C.; Wei, T.; Yarsky, P.

    2010-12-03T23:59:59.000Z

    Considerable interest has been expressed for developing a stable U.S. production capacity for medical isotopes and particularly for molybdenum- 99 (99Mo). This is motivated by recent re-ductions in production and supply worldwide. Consistent with U.S. nonproliferation objectives, any new production capability should not use highly enriched uranium fuel or targets. Conse-quently, Aqueous Homogeneous Reactors (AHRs) are under consideration for potential 99Mo production using low-enriched uranium. Although the Nuclear Regulatory Commission (NRC) has guidance to facilitate the licensing process for non-power reactors, that guidance is focused on reactors with fixed, solid fuel and hence, not applicable to an AHR. A panel was convened to study the technical issues associated with normal operation and potential transients and accidents of an AHR that might be designed for isotope production. The panel has produced the requisite AHR licensing guidance for three chapters that exist now for non-power reactor licensing: Reac-tor Description, Reactor Coolant Systems, and Accident Analysis. The guidance is in two parts for each chapter: 1) standard format and content a licensee would use and 2) the standard review plan the NRC staff would use. This guidance takes into account the unique features of an AHR such as the fuel being in solution; the fission product barriers being the vessel and attached systems; the production and release of radiolytic and fission product gases and their impact on operations and their control by a gas management system; and the movement of fuel into and out of the reactor vessel.

  4. Modeling Water Management in Polymer-Electrolyte Fuel Cells

    SciTech Connect (OSTI)

    Department of Chemical Engineering, University of California, Berkeley; Weber, Adam; Weber, Adam Z.; Balliet, Ryan; Gunterman, Haluna P.; Newman, John

    2007-09-07T23:59:59.000Z

    Fuel cells may become the energy-delivery devices of the 21st century with realization of a carbon-neutral energy economy. Although there are many types of fuel cells, polymerelectrolyte fuel cells (PEFCs) are receiving the most attention for automotive and small stationary applications. In a PEFC, hydrogen and oxygen are combined electrochemically to produce water, electricity, and waste heat. During the operation of a PEFC, many interrelated and complex phenomena occur. These processes include mass and heat transfer, electrochemical reactions, and ionic and electronic transport. Most of these processes occur in the through-plane direction in what we term the PEFC sandwich as shown in Figure 1. This sandwich comprises multiple layers including diffusion media that can be composite structures containing a macroporous gas-diffusion layer (GDL) and microporous layer (MPL), catalyst layers (CLs), flow fields or bipolar plates, and a membrane. During operation fuel is fed into the anode flow field, moves through the diffusion medium, and reacts electrochemically at the anode CL to form hydrogen ions and electrons. The oxidant, usually oxygen in air, is fed into the cathode flow field, moves through the diffusion medium, and is electrochemically reduced at the cathode CL by combination with the generated protons and electrons. The water, either liquid or vapor, produced by the reduction of oxygen at the cathode exits the PEFC through either the cathode or anode flow field. The electrons generated at the anode pass through an external circuit and may be used to perform work before they are consumed at the cathode. The performance of a PEFC is most often reported in the form of a polarization curve, as shown in Figure 2. Roughly speaking, the polarization curve can be broken down into various regions. First, it should be noted that the equilibrium potential differs from the open-circuit voltage due mainly to hydrogen crossover through the membrane (i.e., a mixed potential on the cathode) and the resulting effects of the kinetic reactions. Next, at low currents, the behavior of a PEFC is dominated by kinetic losses. These losses mainly stem from the high overpotential of the oxygen-reduction reaction (ORR). As the current is increased, ohmic losses become a factor in lowering the overall cell potential. These ohmic losses are mainly from ionic losses in the electrodes and separator. At high currents, mass-transport limitations become increasingly important. These losses are due to reactants not being able to reach the electrocatalytic sites. Key among the issues facing PEFCs today is water management. Due to their low operating temperature (< 100 C), water exists in both liquid and vapor phases. Furthermore, state-of-the-art membranes require the use of water to provide high conductivity and fast proton transport. Thus, there is a tradeoff between having enough water for proton conduction (ohmic losses), but not too much or else the buildup of liquid water will cause a situation in which the reactant-gas-transport pathways are flooded (mass-transfer limitations). Figure 3 displays experimental evidence of the effects of water management on performance. In Figure 3(a), a neutron image of water content displays flooding near the outlet of the cell due to accumulation of liquid water and a decrease in the gas flowrates. The serpentine flow field is clearly visible with the water mainly underneath the ribs. Figure 3(b) shows polarization performance at 0.4 and 0.8 V and high-frequency resistance at 0.8 V as a function of cathode humidification temperature. At low current densities, as the inlet air becomes more humid, the membrane resistance decreases, and the performance increases. At higher current densities, the same effect occurs; however, the higher temperatures and more humid air also results in a lower inlet oxygen partial pressure.

  5. Modeling Cold Start in a Polymer-Electrolyte Fuel Cell

    E-Print Network [OSTI]

    Balliet, Ryan

    2010-01-01T23:59:59.000Z

    heat up, and when its own waste heat is used to do so, thedensity and (b) total waste heat generated by the cell.the cell is in use its waste heat should be su?icient to

  6. Modeling Water Management in Polymer-Electrolyte Fuel Cells

    E-Print Network [OSTI]

    Weber, Adam; Department of Chemical Engineering, University of California, Berkeley

    2008-01-01T23:59:59.000Z

    side of the cell in both crossflow and flow-under-the-ribgas flow is probably crossflow. This situation was looked atbalances. They found that crossflow increases the average

  7. Modeling Cold Start in a Polymer-Electrolyte Fuel Cell

    E-Print Network [OSTI]

    Balliet, Ryan

    2010-01-01T23:59:59.000Z

    3.2.2.9 3.3 Cold—Start Simulation Transport of ions andperformance during cold start. Transport of water in thetransport overpotentials for the hydrogen electrode are neglected. Table 1.3: Automotive cold-

  8. Modeling Cold Start in a Polymer-Electrolyte Fuel Cell

    E-Print Network [OSTI]

    Balliet, Ryan

    2010-01-01T23:59:59.000Z

    expense of decreased energy. For applications requiring energy storage with zero emissions and a renewable source of energy,

  9. Update on Electrolyte Modeling with Emphasis on Low Temperature Performance

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartment of Energy Office of EnergyMotor Carrier|

  10. Electrolyte effects in a model system for mesoporous carbon electrodes...

    Office of Scientific and Technical Information (OSTI)

    changes in water hydration behavior and, specifically, by variations in the number of hydrogen bonds per water molecule. Both the cation and the anion sequences demonstrate that...

  11. Characterization of ?-carrageenan and its derivative based green polymer electrolytes

    SciTech Connect (OSTI)

    Jumaah, Fatihah Najirah; Mobaraka, Nadhratun Naiim; Ahmad, Azizan; Ramli, Nazaruddin [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan (Malaysia)

    2013-11-27T23:59:59.000Z

    The new types of green polymer electrolytes based on ?-carrageenan derivative have been prepared. ?-carrageenan act as precursor was reacted with monochloroacetic acid to produce carboxymethyl ?-carrageenan. The powders were characterized by Attenuated Total Reflection Fourier Transform infrared (ATR-FTIR) spectroscopy and {sup 1}H nuclear magnetic resonance (NMR) to confirm the substitution of targeted functional group in ?-carrageenan. The green polymer electrolyte based on ?-carrageenan and carboxymethyl ?-carrageenan was prepared by solution-casting technique. The films were characterized by electrochemical impedance spectroscopy to determine the ionic conductivity. The ionic conductivity ?-carrageenan film were higher than carboxymethyl ?-carrageenan which 4.87 ×10{sup ?6} S cm{sup ?1} and 2.19 ×10{sup ?8} S cm{sup ?1}, respectively.

  12. Improved Electrodes and Electrolytes for Dye-Based Solar Cells

    SciTech Connect (OSTI)

    Harry R. Allcock; Thomas E. Mallouk; Mark W. Horn

    2011-10-26T23:59:59.000Z

    The most important factor in limiting the stability of dye-sensitized solar cells is the use of volatile liquid solvents in the electrolytes, which causes leakage during extended operation especially at elevated temperatures. This, together with the necessary complex sealing of the cells, seriously hampers the industrial-scale manufacturing and commercialization feasibilities of DSSCs. The objective of this program was to bring about a significant improvement in the performance and longevity of dye-based solar cells leading to commercialization. This had been studied in two ways first through development of low volatility solid, gel or liquid electrolytes, second through design and fabrication of TiO2 sculptured thin film electrodes.

  13. Solid lithium ion conducting electrolytes and methods of preparation

    DOE Patents [OSTI]

    Narula, Chaitanya K; Daniel, Claus

    2013-05-28T23:59:59.000Z

    A composition comprised of nanoparticles of lithium ion conducting solid oxide material, wherein the solid oxide material is comprised of lithium ions, and at least one type of metal ion selected from pentavalent metal ions and trivalent lanthanide metal ions. Solution methods useful for synthesizing these solid oxide materials, as well as precursor solutions and components thereof, are also described. The solid oxide materials are incorporated as electrolytes into lithium ion batteries.

  14. A van der Waals free energy in electrolytes revisited

    E-Print Network [OSTI]

    B. Jancovici

    2006-02-15T23:59:59.000Z

    A system of three electrolytes separated by two parallel planes is considered. Each region is described by a dielectric constant and a Coulomb fluid in the Debye-H\\"uckel regime. In their book Dispersion Forces, Mahanty and Ninham have given the van der Waals free energy of this system. We rederive this free energy by a different method, using linear response theory and the electrostatic Maxwell stress tensor for obtaining the dispersion force.

  15. Aluminum Solubility in Complex Electrolytes - 13011

    SciTech Connect (OSTI)

    Agnew, S.F. [Columbia Energy and Environmental Services, Inc., 1806 Terminal Dr., Richland, WA 99354 (United States)] [Columbia Energy and Environmental Services, Inc., 1806 Terminal Dr., Richland, WA 99354 (United States); Johnston, C.T. [Dept. of Crop, Soil, and Environmental Sciences, Purdue University, West Lafayette, IN 47907 (United States)] [Dept. of Crop, Soil, and Environmental Sciences, Purdue University, West Lafayette, IN 47907 (United States)

    2013-07-01T23:59:59.000Z

    Predicting aluminum solubility for Hanford and Savannah River waste liquids is very important for their disposition. It is a key mission goal at each Site to leach as much aluminum as practical from sludges in order to minimize the amount of vitrified high level waste. And it is correspondingly important to assure that any soluble aluminum does not precipitate during subsequent decontamination of the liquid leachates with ion exchange. This report shows a very simple and yet thermodynamic model for aluminum solubility that is consistent with a wide range of Al liquors, from simple mixtures of hydroxide and aluminate to over 300 Hanford concentrates and to a set of 19 Bayer liquors for temperatures from 20-100 deg. C. This dimer-dS{sub mix} (DDS) model incorporates an ideal entropy of mixing along with previous reports for the Al dimer, water activities, gibbsite, and bayerite thermodynamics. We expect this model will have broad application for nuclear wastes as well as the Bayer gibbsite process industry. (authors)

  16. Method of making chalcogen catalysts for polymer electrolyte fuel cells

    DOE Patents [OSTI]

    Choi, Jong-Ho (Los Alamos, NM); Zelenay, Piotr (Los Alamos, NM); Wieckowski, Andrzej (Champaign, IL); Cao, Dianxue (Harabin, CN)

    2010-12-14T23:59:59.000Z

    A method of making an electrode catalyst material using aqueous solutions. The electrode catalyst material includes a support comprising at least one transition metal and at least one chalcogen disposed on a surface of the transition metal. The method includes reducing a metal powder, mixing the metal powder with an aqueous solution containing at least one inorganic compound of the chalcogen to form a mixture, and providing a reducing agent to the mixture to form nanoparticles of the electrode catalyst. The electrode catalyst may be used in a membrane electrode assembly for a fuel cell.

  17. Methane conversion by solid electrolyte membranes. Final report, January 1, 1989-August 31, 1993

    SciTech Connect (OSTI)

    Sammells, A.F.; Schwartz, M.; Cook, R.L.; White, J.H.

    1994-03-01T23:59:59.000Z

    The research sought to develop correlations underlying highly conductive solid electrolytes and employ more conductive electrolytes in laboratory fuel cells which operate at temperatures several hundreds of degrees below the 1000 C temperatures used in current solid oxide fuel cells (SOFCs). The goal of the research was to improve the reliability and cost of planar SOFCs through the use of electrolytes that could function under relatively mild temperatures.

  18. Aluminum oxyhydroxide based separator/electrolyte and battery system, and a method of making the same

    DOE Patents [OSTI]

    Gerald, II; Rex E. (Brookfield, IL); Klingler, Robert J. (Glenview, IL); Rathke, Jerome W. (Homer Glen, IL)

    2011-02-15T23:59:59.000Z

    The instant invention relates a solid-state electrochemical cell and a novel separator/electrolyte incorporated therein. The invented electrochemical cell generally comprising: a unique metal oxyhydroxide based (i.e. AlOOH) separator/electrolyte membrane sandwiched between a first electrode and a second electrode. The novel separator/electrolyte comprises a nanoparticulate metal oxyhydroxide, preferably AlOOH and a salt which are mixed and then pressed together to form a monolithic metal oxyhydroxide-salt membrane.

  19. Nonadditive effects of nonaqueous electrolyte components on the electrochemical behavior of lithium

    SciTech Connect (OSTI)

    Shembel', E.M.; Maksyuta, I.M.; Ksenzhek, O.S.

    1987-11-01T23:59:59.000Z

    Lithium electrode surfaces passivate in nonaqueous electrolytes. For this reason, high-energy-density lithium batteries can be stored, but at the same time anodic lithium dissolution during initial discharge of the battery is delayed. For an optimization of the anode characteristics and the battery performance the authors of this paper seek to determine the factors governing the parameters of the passivating film under the influence of various nonaqueous electrolyte solutions. The influence of electrolyte composition on the electrochemical behavior and electrical conductivity and impedance of the film was tested for sulfur-dioxide-containing electrolytes based on propylene carbonate, acetonitrile, DMSO, and lithium perchlorate.

  20. Apparatus and process for the electrolytic reduction of uranium and plutonium oxides

    DOE Patents [OSTI]

    Poa, David S. (Naperville, IL); Burris, Leslie (Naperville, IL); Steunenberg, Robert K. (Naperville, IL); Tomczuk, Zygmunt (Orland Park, IL)

    1991-01-01T23:59:59.000Z

    An apparatus and process for reducing uranium and/or plutonium oxides to produce a solid, high-purity metal. The apparatus is an electrolyte cell consisting of a first container, and a smaller second container within the first container. An electrolyte fills both containers, the level of the electrolyte in the first container being above the top of the second container so that the electrolyte can be circulated between the containers. The anode is positioned in the first container while the cathode is located in the second container. Means are provided for passing an inert gas into the electrolyte near the lower end of the anode to sparge the electrolyte and to remove gases which form on the anode during the reduction operation. Means are also provided for mixing and stirring the electrolyte in the first container to solubilize the metal oxide in the electrolyte and to transport the electrolyte containing dissolved oxide into contact with the cathode in the second container. The cell is operated at a temperature below the melting temperature of the metal product so that the metal forms as a solid on the cathode.

  1. Six-Membered-Ring Malonatoborate-Based Lithium Salts as Electrolytes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Yang, Li

    2014-01-01T23:59:59.000Z

    References 1. Lithium Ion Batteries: Fundamentals andProgram for Lithium Ion Batteries, U.S. Department ofas Electrolytes for Lithium Ion Batteries Li Yang a , Hanjun

  2. Webinar: Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis—Spotlight on Giner and Proton

    Broader source: Energy.gov [DOE]

    Video recording of the webinar, Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis—Spotlight on Giner and Proton, originally presented on May 23, 2011.

  3. High-Rate Oxygen Reduction in Mixed Nonaqueous Electrolyte Containing Acetonitrile

    SciTech Connect (OSTI)

    Zheng D.; Yang X.; Qu D.

    2011-12-02T23:59:59.000Z

    A mixed nonaqueous electrolyte that contains acetonitrile and propylene carbonate (PC) was found to be suitable for a LiO2 battery with a metallic Li anode. Both the concentration and diffusion coefficient for the dissolved O2 are significantly higher in the mixed electrolyte than those in the pure PC electrolyte. A powder microelectrode was used to investigate the O2 solubility and diffusion coefficient. A 10 mA?cm-2 discharge rate on a gas-diffusion electrode is demonstrated by using the mixed electrolyte in a LiO2 cell.

  4. Trivalent Lanthanide/Actinide Separation Using Aqueous-Modified TALSPEAK Chemistry

    SciTech Connect (OSTI)

    Travis S. Grimes; Richard D. Tillotson; Leigh R. Martin

    2014-05-01T23:59:59.000Z

    TALSPEAK is a liquid/liquid extraction process designed to separate trivalent lanthanides (Ln3+) from minor actinides (MAs) Am3+ and Cm3+. Traditional TALSPEAK organic phase is comprised of a monoacidic dialkyl bis(2-ethylhexyl)phosphoric acid extractant (HDEHP) in diisopropyl benzene (DIPB). The aqueous phase contains a soluble aminopolycarboxylate diethylenetriamine-N,N,N’,N”,N”-pentaacetic acid (DTPA) in a concentrated (1.0-2.0 M) lactic acid (HL) buffer with the aqueous acidity typically adjusted to pH 3.0. TALSPEAK balances the selective complexation of the actinides by DTPA against the electrostatic attraction of the lanthanides by the HDEHP extractant to achieve the desired trivalent lanthanide/actinide group separation. Although TALSPEAK is considered a successful separations scheme, recent fundamental studies have highlighted complex chemical interactions occurring in the aqueous and organic phases during the extraction process. Previous attempts to model the system have shown thermodynamic models do not accurately predict the observed extraction trends in the p[H+] range 2.5-4.8. In this study, the aqueous phase is modified by replacing the lactic acid buffer with a variety of simple and longer-chain amino acid buffers. The results show successful trivalent lanthanide/actinide group separation with the aqueous-modified TALSPEAK process at pH 2. The amino acid buffer concentrations were reduced to 0.5 M (at pH 2) and separations were performed without any effect on phase transfer kinetics. Successful modeling of the aqueous-modified TALSPEAK process (p[H+] 1.6-3.1) using a simplified thermodynamic model and an internally consistent set of thermodynamic data is presented.

  5. PHYSICAL REVIEW B 85, 235438 (2012) Prediction of solid-aqueous equilibria: Scheme to combine first-principles calculations of solids

    E-Print Network [OSTI]

    Ceder, Gerbrand

    2012-01-01T23:59:59.000Z

    5 for aqueous stability, (2) the stability of small nanoparticle Pt in acid water, and (3) the prediction of particle morphology and facet stabilization of olivine LiFePO4 as a function of aqueous modeled proton-mediated dissolution of manganese and cobalt oxides in acid. In their calculation

  6. aqueous environment ph: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Effect of pH on Aqueous Phenylalanine Studied Using a 265-nm Pulsed Light-emitting Diode Physics Websites Summary: Effect of pH on Aqueous Phenylalanine Studied Using a...

  7. aqueous phase ph: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 Effect of pH on Aqueous Phenylalanine Studied Using a 265-nm Pulsed Light-emitting Diode Physics Websites Summary: Effect of pH on Aqueous Phenylalanine Studied Using a...

  8. aqueous lithium hydroxide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: Prediction of the theoretical capacity of non-aqueous lithium-air batteries Peng Tan, Zhaohuan Wei of non-aqueous lithium-air batteries is predicted. Key...

  9. Method for aqueous radioactive waste treatment

    DOE Patents [OSTI]

    Bray, L.A.; Burger, L.L.

    1994-03-29T23:59:59.000Z

    Plutonium, strontium, and cesium found in aqueous waste solutions resulting from nuclear fuel processing are removed by contacting the waste solutions with synthetic zeolite incorporating up to about 5 wt % titanium as sodium titanate in an ion exchange system. More than 99.9% of the plutonium, strontium, and cesium are removed from the waste solutions. 3 figures.

  10. Method for aqueous radioactive waste treatment

    DOE Patents [OSTI]

    Bray, Lane A. (Richland, WA); Burger, Leland L. (Richland, WA)

    1994-01-01T23:59:59.000Z

    Plutonium, strontium, and cesium found in aqueous waste solutions resulting from nuclear fuel processing are removed by contacting the waste solutions with synthetic zeolite incorporating up to about 5 wt % titanium as sodium titanate in an ion exchange system. More than 99.9% of the plutonium, strontium, and cesium are removed from the waste solutions.

  11. Corrosion inhibitor for aqueous ammonia absorption system

    DOE Patents [OSTI]

    Phillips, Benjamin A. (Benton Harbor, MI); Whitlow, Eugene P. (St. Joseph, MI)

    1998-09-22T23:59:59.000Z

    A method of inhibiting corrosion and the formation of hydrogen and thus improving absorption in an ammonia/water absorption refrigeration, air conditioning or heat pump system by maintaining the hydroxyl ion concentration of the aqueous ammonia working fluid within a selected range under anaerobic conditions at temperatures up to 425.degree. F. This hydroxyl ion concentration is maintained by introducing to the aqueous ammonia working fluid an inhibitor in an amount effective to produce a hydroxyl ion concentration corresponding to a normality of the inhibitor relative to the water content ranging from about 0.015 N to about 0.2 N at 25.degree. C. Also, working fluids for inhibiting the corrosion of carbon steel and resulting hydrogen formation and improving absorption in an ammonia/water absorption system under anaerobic conditions at up to 425.degree. F. The working fluids may be aqueous solutions of ammonia and a strong base or aqueous solutions of ammonia, a strong base, and a specified buffer.

  12. Corrosion inhibitor for aqueous ammonia absorption system

    DOE Patents [OSTI]

    Phillips, B.A.; Whitlow, E.P.

    1998-09-22T23:59:59.000Z

    A method is described for inhibiting corrosion and the formation of hydrogen and thus improving absorption in an ammonia/water absorption refrigeration, air conditioning or heat pump system by maintaining the hydroxyl ion concentration of the aqueous ammonia working fluid within a selected range under anaerobic conditions at temperatures up to 425 F. This hydroxyl ion concentration is maintained by introducing to the aqueous ammonia working fluid an inhibitor in an amount effective to produce a hydroxyl ion concentration corresponding to a normality of the inhibitor relative to the water content ranging from about 0.015 N to about 0.2 N at 25 C. Also, working fluids for inhibiting the corrosion of carbon steel and resulting hydrogen formation and improving absorption in an ammonia/water absorption system under anaerobic conditions at up to 425 F. The working fluids may be aqueous solutions of ammonia and a strong base or aqueous solutions of ammonia, a strong base, and a specified buffer. 5 figs.

  13. Low temperature aqueous desulfurization of coal

    DOE Patents [OSTI]

    Slegeir, W.A.; Healy, F.E.; Sapienza, R.S.

    1985-04-18T23:59:59.000Z

    This invention describes a chemical process for desulfurizing coal, especially adaptable to the treatment of coal-water slurries, at temperatures as low as ambient, comprising treating the coal with aqueous titanous chloride whereby hydrogen sulfide is liberated and the desulfurized coal is separated with the conversion of titanous chloride to titanium oxides.

  14. Method for inhibiting corrosion in aqueous systems

    DOE Patents [OSTI]

    DeMonbrun, James R. (Knoxville, TN); Schmitt, Charles R. (Oak Ridge, TN); Schreyer, James M. (Oak Ridge, TN)

    1980-01-01T23:59:59.000Z

    This invention is a method for inhibiting corrosion in aqueous systems containing components composed of aluminum, copper, iron, or alloys thereof. The method comprises (a) incorporating in the aqueous medium 2-10 ppm by weight of tolyltriazole; an effective amount of a biodegradable organic biocide; 500-1000 ppm by weight of sodium metasilicate; 500-2000 ppm by weight of sodium nitrite; and 500-2000 ppm by weight of sodium tetraborate, all of these concentrations being based on the weight of water in the system; and (b) maintaining the pH of the resulting system in the range of 7.5 to 8.0. The method permits longterm operation with very low corrosion rates and bacteria counts. All of the additives to the system are biodegradable, permitting the treated aqueous medium to be discharged to the environment without violating current regulations. The method has special application to solar systems in which an aqueous medium is circulated through aluminum-alloy heat exchangers.

  15. aqueous solution combustion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Perovskite membranes; Combustion synthesis; Membrane microstructure; Sintering; Oxygen selective Mukasyan, Alexander 6 Explosivity Conditions of Aqueous Solutions and L....

  16. Removal of fluoride from aqueous solution by using alum sludge

    SciTech Connect (OSTI)

    Sujana, M.G.; Thakur, R.S.; Rao, S.B. [CSIR, Bhubaneswar (India). Regional Research Lab.] [CSIR, Bhubaneswar (India). Regional Research Lab.

    1998-10-01T23:59:59.000Z

    The ability of treated alum sludge to remove fluoride from aqueous solution has been investigated. The studies were carried out as functions of contact time, concentration of adsorbent and adsorbate, temperature, pH, and effect of concentrations of other anions. The data indicate that treated alum sludge surface sites are heterogeneous in nature and that fits into a heterogeneous site binding model. The optimum pH for complete removal of fluoride from aqueous solution was found to be 6. The rate of adsorption was rapid during the initial 5 minutes, and equilibrium was attained within 240 minutes. The adsorption followed first-order rate kinetics. The present system followed the Langmuir adsorption isotherm model. The loading factor (i.e., the milligram of fluoride adsorbed per gram of alum sludge) increased with initial fluoride concentration, whereas a negative trend was observed with increasing temperature. The influence of addition of anions on fluoride removal depends on the relative affinity of the anions for the surface and the relative concentrations of the anions.

  17. Sputter deposition of lithium silicate - lithium phosphate amorphous electrolytes

    SciTech Connect (OSTI)

    Dudney, N.J.; Bates, J.B.; Luck, C.F. (Oak Ridge National Lab., TN (USA)); Robertson, J.D. (Kentucky Univ., Lexington, KY (USA). Dept. of Chemistry)

    1991-01-01T23:59:59.000Z

    Thin films of an amorphous lithium-conducting electrolyte were deposited by rf magnetron sputtering of ceramic targets containing Li{sub 4}SiO{sub 4} and Li{sub 3}PO{sub 4}. The lithium content of the films was found to depend more strongly on the nature and composition of the targets than on many other sputtering parameters. For targets containing Li{sub 4}SiO{sub 4}, most of the lithium was found to segregate away from the sputtered area of the target. Codeposition using two sputter sources achieves a high lithium content in a controlled and reproducible film growth. 10 refs., 4 figs.

  18. Molecular Architecture for Polyphosphazene Electrolytes for Seawater Batteries

    SciTech Connect (OSTI)

    Mason K. Harrup; Mason K. Harrup; Thomas A. Luther; Christopher J. Orme; Eric S. Peterson

    2005-08-01T23:59:59.000Z

    In this work, a series of polyphosphazenes were designed to function as water resistant, yet ionically conductive membranes for application to lithium/seawater batteries. In membranes of this nature, various molecular architectures are possible and representatives from each possible type were chosen. These polymers were synthesized and their performance as solid polymer electrolytes was evaluated in terms of both lithium ion conductivity and water permeability. The impact that this molecular architecture has on total performance of the membranes for seawater batteries is discussed. Further implications of this molecular architecture on the mechanisms of lithium ion transport through polyphosphazenes are also discussed.

  19. Electrolytic production of metals using a resistant anode

    DOE Patents [OSTI]

    Tarcy, Gary P. (Plum Borough, PA); Gavasto, Thomas M. (New Kensington, PA); Ray, Siba P. (Plum Borough, PA)

    1986-01-01T23:59:59.000Z

    An electrolytic process comprising evolving oxygen on an anode in a molten salt, the anode comprising an alloy comprising a first metal and a second metal, both metals forming oxides, the oxide of the first metal being more resistant than the second metal to attack by the molten salt, the oxide of the second metal being more resistant than the first metal to the diffusion of oxygen. The electrode may also be formed of CuAlO.sub.2 and/or Cu.sub.2 O.

  20. Electrolytes For Electrooptic Devices Comprising Ionic Liqu Ids

    DOE Patents [OSTI]

    Warner, Benjamin P. (Los Alamos, NM); McCleskey, T. Mark (Los Alamos, NM); Agrawal, Anoop (Tucson, AZ); Cronin, John P. (Tucson, AZ); Tonazzi, Juan C. L. (Tucson, AZ); Burrell, Anthony K. (Los Alamos, NM)

    2005-02-08T23:59:59.000Z

    Electrolyte solutions of soluble bifunctional redox dyes in molten salt solvent may be used to prepare electrooptic devices with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF.sub.3 SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3 SO.sub.2).sub.2 N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3 CF.sub.2 SO.sub.2).sub.2 N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3 SO.sub.2).sub.3 C.sup.-).

  1. Molten salt bath circulation design for an electrolytic cell

    DOE Patents [OSTI]

    Dawless, R.K.; LaCamera, A.F.; Troup, R.L.; Ray, S.P.; Hosler, R.B.

    1999-08-17T23:59:59.000Z

    An electrolytic cell for reduction of a metal oxide to a metal and oxygen has an inert anode and an upwardly angled roof covering the inert mode. The angled roof diverts oxygen bubbles into an upcomer channel, thereby agitating a molten salt bath in the upcomer channel and improving dissolution of a metal oxide in the molten salt bath. The molten salt bath has a lower velocity adjacent the inert anode in order to minimize corrosion by substances in the bath. A particularly preferred cell produces aluminum by electrolysis of alumina in a molten salt bath containing aluminum fluoride and sodium fluoride. 4 figs.

  2. Molten salt bath circulation design for an electrolytic cell

    DOE Patents [OSTI]

    Dawless, Robert K. (Monroeville, PA); LaCamera, Alfred F. (Trafford, PA); Troup, R. Lee (Murrysville, PA); Ray, Siba P. (Murrysville, PA); Hosler, Robert B. (Sarver, PA)

    1999-01-01T23:59:59.000Z

    An electrolytic cell for reduction of a metal oxide to a metal and oxygen has an inert anode and an upwardly angled roof covering the inert mode. The angled roof diverts oxygen bubbles into an upcomer channel, thereby agitating a molten salt bath in the upcomer channel and improving dissolution of a metal oxide in the molten salt bath. The molten salt bath has a lower velocity adjacent the inert anode in order to minimize corrosion by substances in the bath. A particularly preferred cell produces aluminum by electrolysis of alumina in a molten salt bath containing aluminum fluoride and sodium fluoride.

  3. Long Range Hydration Effects in Electrolytic Free Suspended Black Films

    E-Print Network [OSTI]

    D. Sentenac; J. J. Benattar

    1998-06-16T23:59:59.000Z

    The force law within free suspended black films made of negatively charged Aerosol-OT (AOT) with added LiCl or CsCl is studied accurately using X-ray reflectivity (ca. 1{\\AA}). We find an electrolyte concentration threshold above which a substantial additional repulsion is detected in the LiCl films, up to distances of 100 {\\AA}. We interpret this phenomenon as an augmentation of the Debye screening length, due to the local screening of the condensed hydrophilic counterions by the primary hydration shell.

  4. Electrolytic production of metals using a resistant anode

    DOE Patents [OSTI]

    Tarcy, G.P.; Gavasto, T.M.; Ray, S.P.

    1986-11-04T23:59:59.000Z

    An electrolytic process is described comprising evolving oxygen on an anode in a molten salt, the anode comprising an alloy comprising a first metal and a second metal, both metals forming oxides, the oxide of the first metal being more resistant than the second metal to attack by the molten salt, the oxide of the second metal being more resistant than the first metal to the diffusion of oxygen. The electrode may also be formed of CuAlO[sub 2] and/or Cu[sub 2]O. 2 figs.

  5. SOLID ELECTROLYTES FOR NEXT GENERATION BATTERIES | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG - ORDER 2913|| Department ofSOLID ELECTROLYTES FOR

  6. Electrolyte Genome Could Be Battery Game-Changer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract ManagementDiscoveringESnetEffectiveElectricAprilElectrolyte Genome

  7. Solid Electrolyte/Electrode Interfaces: Atomistic Behavior Analyzed Via UHV-AFM, Surface Spectroscopies, and Computer Simulations Computational and Experimental Studies of the Cathode/Electrolyte Interface in Oxide Thin Film Batteries

    SciTech Connect (OSTI)

    Garofalini, Stephen H

    2012-03-21T23:59:59.000Z

    The goals of the research were to understand the structural, dynamic, and chemical properties of solid electrolyte surfaces and the cathode/electrolyte interface at an atomistic and nanometer level using both computational and experimental techniques.

  8. WERE AQUEOUS RIPPLES ON MARS FORMED BY FLOWING BRINES? MICHAEL P. LAMB, JOHN P. GROTZINGER

    E-Print Network [OSTI]

    WERE AQUEOUS RIPPLES ON MARS FORMED BY FLOWING BRINES? MICHAEL P. LAMB, JOHN P. GROTZINGER are not observed. Recent thermodynamic modeling indicates that these brines could have had higher densities (by up whether ripples could have been stable bed forms under flowing Martian brines. To this end, we compiled

  9. Thermodynamics of carbon dioxide in aqueous piperazine/potassium carbonate systems at stripper conditions

    E-Print Network [OSTI]

    Rochelle, Gary T.

    GHGT-8 1 Thermodynamics of carbon dioxide in aqueous piperazine/potassium carbonate systems thermodynamic models. The range in CO2 solubility measured from 100 ­ 120 o C for K+ /PZ mixtures was from (0 and Technology to expand the thermodynamic data of for potassium carbonate/piperazine/CO2 with measurements of CO

  10. Extraction of Biofuels and Biofeedstocks from Aqueous Solutions Using Ionic Liquids

    E-Print Network [OSTI]

    Stadtherr, Mark A.

    Extraction of Biofuels and Biofeedstocks from Aqueous Solutions Using Ionic Liquids Luke D. Simoni-Butanol, Extraction, Liquid-Liquid Equilibrium, Excess Gibbs Energy Models, Biofuels #12;1 1. Introduction other organic compounds can be produced biologically, and thus can be considered as biofuel candidates

  11. Modulation of Drug Transport Properties by Multicomponent Diffusion in Surfactant Aqueous Solutions

    E-Print Network [OSTI]

    Annunziata, Onofrio

    Modulation of Drug Transport Properties by Multicomponent Diffusion in Surfactant Aqueous Solutions ReceiVed July 1, 2008 Diffusion coefficients of drug compounds are crucial parameters used for modeling diffusion. A multicomponent diffusion study on drug-surfactant-water ternary mixtures is reported here

  12. Photothermal Beam Deflection and Photoaction Spectroscopic Study of CdS Photoelectrodes in Polysulfide Electrolyte

    E-Print Network [OSTI]

    Mandelis, Andreas

    , and a photovoltaic effect occurs when the semiconductor/electrolyte junction is illuminated with superbandgap light, the photovoltaic effect can be measured as the open-circuit voltage. Alternatively, a dc bias can be applied across, the effect of a current-induced species gradient at the working electrode/ electrolyte interface upon

  13. Electrochimica Acta 51 (2006) 39243933 Dynamics of polymer electrolyte fuel cells undergoing load changes

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    reserved. Keywords: Polymer electrolyte fuel cells; Transient response; Voltage undershoot; Water transportElectrochimica Acta 51 (2006) 3924­3933 Dynamics of polymer electrolyte fuel cells undergoing load cell (PEFC) undergoing a step increase in current density. The objective is to elucidate profound

  14. Method for producing electricity from a fuel cell having solid-oxide ionic electrolyte

    DOE Patents [OSTI]

    Mason, David M. (Los Altos, CA)

    1984-01-01T23:59:59.000Z

    Stabilized quadrivalent cation oxide electrolytes are employed in fuel cells at elevated temperatures with a carbon and/or hydrogen containing fuel anode and an oxygen cathode. The fuel cell is operated at elevated temperatures with conductive metallic coatings as electrodes and desirably having the electrolyte surface blackened. Of particular interest as the quadrivalent oxide is zirconia.

  15. Electrolyte Stability Determines Scaling Limits for Solid-State 3D Li Ion Batteries

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Electrolyte Stability Determines Scaling Limits for Solid-State 3D Li Ion Batteries Dmitry Ruzmetov, all-solid-state Li ion batteries (LIBs) with high specific capacity and small footprint are highly, into the nanometer regime, can lead to rapid self-discharge of the battery even when the electrolyte layer

  16. Probing water transport in polymer electrolyte fuel cells with neutron radiography

    E-Print Network [OSTI]

    Mench, Matthew M.

    and Fuel Cell Dynamics and Diagnostics Laboratory, The Pennsylvania State University, USA b ResearchProbing water transport in polymer electrolyte fuel cells with neutron radiography Kyu Taek Cho a Available online 5 February 2009 Keywords: Polymer electrolyte fuel cell Gas purge Neutron radiography Heavy

  17. Nanostructured tungsten carbide catalysts for polymer electrolyte fuel cells X. G. Yanga

    E-Print Network [OSTI]

    Nanostructured tungsten carbide catalysts for polymer electrolyte fuel cells X. G. Yanga and C. Y/air polymer electrolyte fuel cell using nanoscale tungsten carbide as the anode catalyst and carbon supported, thereby creating a fundamental technology to reduce the cost of future fuel cell engines. The tungsten

  18. Metal-air cell comprising an electrolyte with a room temperature ionic liquid and hygroscopic additive

    DOE Patents [OSTI]

    Friesen, Cody A.; Krishnan, Ramkumar; Tang, Toni; Wolfe, Derek

    2014-08-19T23:59:59.000Z

    An electrochemical cell comprising an electrolyte comprising water and a hydrophobic ionic liquid comprising positive ions and negative ions. The electrochemical cell also includes an air electrode configured to absorb and reduce oxygen. A hydrophilic or hygroscopic additive modulates the hydrophobicity of the ionic liquid to maintain a concentration of the water in the electrolyte is between 0.001 mol % and 25 mol %.

  19. Experimental: Gel Electrolyte The gel mixtures were designed to be cast as

    E-Print Network [OSTI]

    -electrolyte Dye Sensitized Solar Cells (LC) by quasi-solid-state constructions (SC) adopting organic with an active area of 2.5 cm2. Gel Electrolyte Application in Large Area Dye-sensitized Modules Matteo Biancardo layer of Pedot:PSS reduces the transmittance of the cell mostly in the N.I.R. where the N3* dye do

  20. Binary inorganic salt mixtures as high conductivity liquid electrolytes for .100 uC fuel cells{

    E-Print Network [OSTI]

    Angell, C. Austen

    Binary inorganic salt mixtures as high conductivity liquid electrolytes for .100 uC fuel cells cations (e.g. ammonium) as electrolytes in fuel cells operating in the temperature range 100­200 uC, where cell operating with optimized electrodes in the same temperature range, while open circuit voltages

  1. Surface tension of electrolytes: Hydrophilic and hydrophobic ions near an interface

    E-Print Network [OSTI]

    Surface tension of electrolytes: Hydrophilic and hydrophobic ions near an interface Akira Onukia layer. We also derive a general expression for the surface tension of electrolyte systems, which. DOI: 10.1063/1.2936992 I. INTRODUCTION It has long been known that the surface tension of a water

  2. Relaxation in polymer electrolytes on the nanosecond timescale.

    SciTech Connect (OSTI)

    Mao, G.; Fernandez-Perea, R.; Price, D. L.; Saboungi, M.-L.; Howells, W. S.; Materials Science Division; Rutherford-Appleton Lab.

    2000-05-11T23:59:59.000Z

    The relation between mechanical and electrical relaxation in polymer/lithium-salt complexes is a fascinating and still unresolved problem in condensed-matter physics, yet has an important bearing on the viability of such materials for use as electrolytes in lithium batteries. At room temperature, these materials are biphasic: they consist of both fluid amorphous regions and salt-enriched crystalline regions. Ionic conduction is known to occur predominantly in the amorphous fluid regions. Although the conduction mechanisms are not yet fully understood, it is widely accepted that lithium ions, coordinated with groups of ether oxygen atoms on single or perhaps double polymer chains, move through re-coordination with other oxygen-bearing groups. The formation and disruption of these coordination bonds must be accompanied by strong relaxation of the local chain structure. Here we probe the relaxation on a nanosecond timescale using quasielastic neutron scattering, and we show that at least two processes are involved: a slow process with a translational character and one or two fast processes with a rotational character. Whereas the former reflects the slowing-down of the translational relaxation commonly observed in polyethylene oxide and other polymer melts, the latter appears to be unique to the polymer electrolytes and has not (to our knowledge) been observed before. A clear picture emerges of the lithium cations forming crosslinks between chain segments and thereby profoundly altering the dynamics of the polymer network.

  3. Electrolytic hydrogen production infrastructure options evaluation. Final subcontract report

    SciTech Connect (OSTI)

    Thomas, C.E.; Kuhn, I.F. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

    1995-09-01T23:59:59.000Z

    Fuel-cell electric vehicles have the potential to provide the range, acceleration, rapid refueling times, and other creature comforts associated with gasoline-powered vehicles, but with virtually no environmental degradation. To achieve this potential, society will have to develop the necessary infrastructure to supply hydrogen to the fuel-cell vehicles. Hydrogen could be stored directly on the vehicle, or it could be derived from methanol or other hydrocarbon fuels by on-board chemical reformation. This infrastructure analysis assumes high-pressure (5,000 psi) hydrogen on-board storage. This study evaluates one approach to providing hydrogen fuel: the electrolysis of water using off-peak electricity. Other contractors at Princeton University and Oak Ridge National Laboratory are investigating the feasibility of producing hydrogen by steam reforming natural gas, probably the least expensive hydrogen infrastructure alternative for large markets. Electrolytic hydrogen is a possible short-term transition strategy to provide relatively inexpensive hydrogen before there are enough fuel-cell vehicles to justify building large natural gas reforming facilities. In this study, the authors estimate the necessary price of off-peak electricity that would make electrolytic hydrogen costs competitive with gasoline on a per-mile basis, assuming that the electrolyzer systems are manufactured in relatively high volumes compared to current production. They then compare this off-peak electricity price goal with actual current utility residential prices across the US.

  4. An Insoluble Titanium-Lead Anode for Sulfate Electrolytes

    SciTech Connect (OSTI)

    Ferdman, Alla

    2005-05-11T23:59:59.000Z

    The project is devoted to the development of novel insoluble anodes for copper electrowinning and electrolytic manganese dioxide (EMD) production. The anodes are made of titanium-lead composite material produced by techniques of powder metallurgy, compaction of titanium powder, sintering and subsequent lead infiltration. The titanium-lead anode combines beneficial electrochemical behavior of a lead anode with high mechanical properties and corrosion resistance of a titanium anode. In the titanium-lead anode, the titanium stabilizes the lead, preventing it from spalling, and the lead sheathes the titanium, protecting it from passivation. Interconnections between manufacturing process, structure, composition and properties of the titanium-lead composite material were investigated. The material containing 20-30 vol.% of lead had optimal combination of mechanical and electrochemical properties. Optimal process parameters to manufacture the anodes were identified. Prototypes having optimized composition and structure were produced for testing in operating conditions of copper electrowinning and EMD production. Bench-scale, mini-pilot scale and pilot scale tests were performed. The test anodes were of both a plate design and a flow-through cylindrical design. The cylindrical anodes were composed of cylinders containing titanium inner rods and fitting over titanium-lead bushings. The cylindrical design allows the electrolyte to flow through the anode, which enhances diffusion of the electrolyte reactants. The cylindrical anodes demonstrate higher mass transport capabilities and increased electrical efficiency compared to the plate anodes. Copper electrowinning represents the primary target market for the titanium-lead anode. A full-size cylindrical anode performance in copper electrowinning conditions was monitored over a year. The test anode to cathode voltage was stable in the 1.8 to 2.0 volt range. Copper cathode morphology was very smooth and uniform. There was no measurable anode weight loss during this time period. Quantitative chemical analysis of the anode surface showed that the lead content after testing remained at its initial level. No lead dissolution or transfer from the anode to the product occurred.A key benefit of the titanium-lead anode design is that cobalt additions to copper electrolyte should be eliminated. Cobalt is added to the electrolyte to help stabilize the lead oxide surface of conventional lead anodes. The presence of the titanium intimately mixed with the lead should eliminate the need for cobalt stabilization of the lead surface. The anode should last twice as long as the conventional lead anode. Energy savings should be achieved due to minimizing and stabilizing the anode-cathode distance in the electrowinning cells. The anode is easily substitutable into existing tankhouses without a rectifier change.The copper electrowinning test data indicate that the titanium-lead anode is a good candidate for further testing as a possible replacement for a conventional lead anode. A key consideration is the cost. Titanium costs have increased. One of the ways to get the anode cost down is manufacturing the anodes with fewer cylinders. Additional prototypes having different number of cylinders were constructed for a long-term commercial testing in a circuit without cobalt. The objective of the testing is to evaluate the need for cobalt, investigate the effect of decreasing the number of cylinders on the anode performance, and to optimize further the anode design in order to meet the operating requirements, minimize the voltage, maximize the life of the anode, and to balance this against a reasonable cost for the anode. It is anticipated that after testing of the additional prototypes, a whole cell commercial test will be conducted to complete evaluation of the titanium-lead anode costs/benefits.

  5. High elastic modulus polymer electrolytes suitable for preventing thermal runaway in lithium batteries

    DOE Patents [OSTI]

    Mullin, Scott; Panday, Ashoutosh; Balsara, Nitash Pervez; Singh, Mohit; Eitouni, Hany Basam; Gomez, Enrique Daniel

    2014-04-22T23:59:59.000Z

    A polymer that combines high ionic conductivity with the structural properties required for Li electrode stability is useful as a solid phase electrolyte for high energy density, high cycle life batteries that do not suffer from failures due to side reactions and dendrite growth on the Li electrodes, and other potential applications. The polymer electrolyte includes a linear block copolymer having a conductive linear polymer block with a molecular weight of at least 5000 Daltons, a structural linear polymer block with an elastic modulus in excess of 1.times.10.sup.7 Pa and an ionic conductivity of at least 1.times.10.sup.-5 Scm.sup.-1. The electrolyte is made under dry conditions to achieve the noted characteristics. In another aspect, the electrolyte exhibits a conductivity drop when the temperature of electrolyte increases over a threshold temperature, thereby providing a shutoff mechanism for preventing thermal runaway in lithium battery cells.

  6. Electrodeposition of a nickel-indium alloy from an ammonium citrate electrolyte

    SciTech Connect (OSTI)

    Vinogradov, S.N.; Perelygin, Yu.P.

    1988-05-01T23:59:59.000Z

    The possibility of the electrolytic deposition of a nickel-indium alloy from an ammonium citrate electrolyte for purposes of increasing the cathode current output was investigated. The alloy antifriction coating was deposited in a rectangular glass bath of an electrolyte containing indium in the forms of a sulfate and a hydroxocitrate complex and nickel in the forms of mixed ammonium and citrate complexes as well as in sulfate form. The dependence of indium content and current output of the alloy on current density and indium sulfate concentration in the electrolyte was determined. Polarization curves for alloy precipitation established that indium precipitated at more negative potentials than nickel. The effect of indium content on microhardness was also assessed. An optimum electrolyte composition, pH value, and current density were established.

  7. Organophosphates as Solvents for Electrolytes in Electrochemical Andrew Hess, Greg Barber, Chen Chen, Thomas E. Mallouk, and Harry R. Allcock*

    E-Print Network [OSTI]

    , electrolyte, dye-sensitized solar cell, lithium batteries, fire-retardant 1. INTRODUCTION Dye-sensitized solar-retardant oligoalkyleneoxy- phosphates was synthesized for evaluation as liquid or gel-type electrolyte media for dye-sensitized solar cells (DSSCs) and secondary lithium batteries. Unoptimized DSSC electrolyte formulations for DSSCs

  8. Aqueous flooding methods for tertiary oil recovery

    DOE Patents [OSTI]

    Peru, Deborah A. (Bartlesville, OK)

    1989-01-01T23:59:59.000Z

    A method of aqueous flooding of subterranean oil bearing formation for tertiary oil recovery involves injecting through a well into the formation a low alkaline pH aqueous sodium bicarbonate flooding solution. The flooding solution's pH ranges from about 8.25 to 9.25 and comprises from 0.25 to 5 weight percent and preferably about 0.75 to 3.0 weight percent of sodium bicarbonate and includes a petroleum recovery surfactant of 0.05 to 1.0 weight percent and between 1 and 20 weight percent of sodium chloride. After flooding, an oil and water mixture is withdrawn from the well and the oil is separated from the oil and water mixture.

  9. Removal of metal ions from aqueous solution

    DOE Patents [OSTI]

    Jackson, Paul J. (both Los Alamos, NM); Delhaize, Emmanuel (both Los Alamos, NM); Robinson, Nigel J. (Durham, GB2); Unkefer, Clifford J. (Los Alamos, NM); Furlong, Clement (Seattle, WA)

    1990-11-13T23:59:59.000Z

    A method of removing heavy metals from aqueous solution, a composition of matter used in effecting said removal, and apparatus used in effecting said removal. One or more of the polypeptides, poly (.gamma.-glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly (.gamma.-glutamylcysteinyl)glycines having a particular number of monomer repeat unit for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heayv metals from solution. This also results in the removal of the metals from the column in a concentrated form.

  10. Removal of metal ions from aqueous solution

    DOE Patents [OSTI]

    Jackson, Paul J. (Los Alamos, NM); Delhaize, Emmanuel (Los Alamos, NM); Robinson, Nigel J. (Durham, GB2); Unkefer, Clifford J. (Los Alamos, NM); Furlong, Clement (Seattle, WA)

    1990-01-01T23:59:59.000Z

    A method of removing heavy metals from aqueous solution, a composition of matter used in effecting said removal, and apparatus used in effecting said removal. One or more of the polypeptides, poly (.gamma.-glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly (.gamma.-glutamylcysteinyl)glycines having a particular number of monomer repeat units for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heavy metals from solution. This also results in the removal of the metals from the column in a concentrated form.

  11. Aluminium Electroplating on Steel from a Fused Bromide Electrolyte

    SciTech Connect (OSTI)

    Prabhat Tripathy; Laura Wurth; Eric Dufek; Toni Y. Gutknecht; Natalie Gese; Paula Hahn; Steven Frank; Guy Fredrickson; J Stephen Herring

    2014-08-01T23:59:59.000Z

    A quaternary bromide bath (LiBr-KBr-CsBr-AlBr3) was used to electro-coat aluminium on steel substrates. The electrolyte was prepared by the addition of AlBr3 into the eutectic LiBr-KBr-CsBr melt. A smooth, thick, adherent and shiny aluminium coating could be obtained with 80 wt.% AlBr3 in the ternary melt. The SEM photographs of the coated surfaces suggest the formation of thick and dense coatings with good aluminium coverage. Both salt immersion and open circuit potential measurement suggest that the coatings did display good corrosion-resistance behavior. Annealing of the coated surfaces, prior to corrosion tests, suggested the robustness of the metallic aluminium coating in preventing the corrosion of the steel surfaces. Studies also indicated that the quaternary bromide plating bath can potentially provide a better aluminium coating on both ferrous and non-ferrous metals, including complex surfaces/geometries.

  12. Electra-optical device including a nitrogen containing electrolyte

    DOE Patents [OSTI]

    Bates, John B. (Oak Ridge, TN); Dudney, Nancy J. (Knoxville, TN); Gruzalski, Greg R. (Oak Ridge, TN); Luck, Christopher F. (Knoxville, TN)

    1995-01-01T23:59:59.000Z

    Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between -15.degree. C. and 150.degree. C.

  13. Method of making an electrolyte for an electrochemical cell

    DOE Patents [OSTI]

    Bates, John B. (Oak Ridge, TN); Dudney, Nancy J. (Knoxville, TN)

    1996-01-01T23:59:59.000Z

    Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between -15.degree. C. and 150.degree. C.

  14. Electra-optical device including a nitrogen containing electrolyte

    DOE Patents [OSTI]

    Bates, J.B.; Dudney, N.J.; Gruzalski, G.R.; Luck, C.F.

    1995-10-03T23:59:59.000Z

    Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode. Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between {minus}15 C and 150 C.

  15. Method of making an electrolyte for an electrochemical cell

    DOE Patents [OSTI]

    Bates, J.B.; Dudney, N.J.

    1996-04-30T23:59:59.000Z

    Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode. Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between {minus}15 C and 150 C. 9 figs.

  16. Structure of Liquid PEO-LiTFSI Electrolyte

    SciTech Connect (OSTI)

    Mao, Guomin; Saboungi, Marie-Louise; Price, David L.; Armand, Michel B.; Howells, W. S.

    2000-06-12T23:59:59.000Z

    The structure of a polymer electrolyte, P(EO){sub 7.5}LiN (SO{sub 2} CF{sub 3}){sub 2} , has been determined by neutron diffraction with isotropic substitution. The Li ions are bonded on average to five ether oxygens belonging to pairs of PEO coils. These are arranged with a considerable degree of extended-range order providing pathways for the Li ion conduction. The lack of ion pairing in this system below 4.8 Angstrom is reminiscent of that observed in the remarkable structure of P(EO){sub 6}LiAsF {sub 6} and implies that anions and cations are free to migrate independently. (c) 2000 The American Physical Society.

  17. The Stirred Tank Reactor Polymer Electrolyte Membrane Fuel Cell

    E-Print Network [OSTI]

    Benziger, J; Karnas, E; Moxley, J; Teuscher, C; Kevrekidis, Yu G; Benziger, Jay

    2003-01-01T23:59:59.000Z

    The design and operation of a differential Polymer Electrolyte Membrane (PEM) fuel cell is described. The fuel cell design is based on coupled Stirred Tank Reactors (STR); the gas phase in each reactor compartment was well mixed. The characteristic times for reactant flow, gas phase diffusion and reaction were chosen so that the gas compositions at both the anode and cathode are uniform. The STR PEM fuel cell is one-dimensional; the only spatial gradients are transverse to the membrane. The STR PEM fuel cell was employed to examine fuel cell start- up, and its dynamic responses to changes in load, temperature and reactant flow rates. Multiple time scales in systems response are found to correspond to water absorption by the membrane, water transport through the membrane and stress-related mechanical changes of the membrane.

  18. Short protection device for stack of electrolytic cells

    DOE Patents [OSTI]

    Katz, Murray (Newington, CT); Schroll, Craig R. (West Hartford, CT)

    1985-10-22T23:59:59.000Z

    Electrical short protection is provided in an electrolytic cell stack by the combination of a thin, nonporous ceramic shield and a noble metal foil disposed on opposite sides of the sealing medium in a gas manifold gasket. The thin ceramic shield, such as alumina, is placed between the porous gasket and the cell stack face at the margins of the negative end plate to the most negative cells to impede ion current flow. The noble metal foil, for instance gold, is electrically coupled to the negative potential of the stack to collect positive ions at a harmless location away from the stack face. Consequently, corrosion products from the stack structure deposit on the foil rather than on the stack face to eliminate electrical shorting of cells at the negative end of the stack.

  19. Pyrochemical process for extracting plutonium from an electrolyte salt

    DOE Patents [OSTI]

    Mullins, L.J.; Christensen, D.C.

    1982-09-20T23:59:59.000Z

    A pyrochemical process for extracting plutonium from a plutonium-bearing salt is disclosed. The process is particularly useful in the recovery of plutonium for electrolyte salts which are left over from the electrorefining of plutonium. In accordance with the process, the plutonium-bearing salt is melted and mixed with metallic calcium. The calcium reduces ionized plutonium in the salt to plutonium metal, and also causes metallic plutonium in the salt, which is typically present as finely dispersed metallic shot, to coalesce. The reduced and coalesced plutonium separates out on the bottom of the reaction vessel as a separate metallic phase which is readily separable from the overlying salt upon cooling of the mixture. Yields of plutonium are typically on the order of 95%. The stripped salt is virtually free of plutonium and may be discarded to low-level waste storage.

  20. Pyrochemical process for extracting plutonium from an electrolyte salt

    DOE Patents [OSTI]

    Mullins, Lawrence J. (Los Alamos, NM); Christensen, Dana C. (Los Alamos, NM)

    1984-01-01T23:59:59.000Z

    A pyrochemical process for extracting plutonium from a plutonium-bearing salt is disclosed. The process is particularly useful in the recovery of plutonium from electrolyte salts which are left over from the electrorefining of plutonium. In accordance with the process, the plutonium-bearing salt is melted and mixed with metallic calcium. The calcium reduces ionized plutonium in the salt to plutonium metal, and also causes metallic plutonium in the salt, which is typically present as finely dispersed metallic shot, to coalesce. The reduced and coalesced plutonium separates out on the bottom of the reaction vessel as a separate metallic phase which is readily separable from the overlying salt upon cooling of the mixture. Yields of plutonium are typically on the order of 95%. The stripped salt is virtually free of plutonium and may be discarded to low-level waste storage.

  1. Artificial Solid Electrolyte Interphase to Address the Electrochemical Degradation of Silicon Electrodes

    SciTech Connect (OSTI)

    Dudney, Nancy J [ORNL] [ORNL; Nanda, Jagjit [ORNL] [ORNL; Liang, Chengdu [ORNL] [ORNL; Li, Juchuan [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Electrochemical degradation on Si anodes prevents them from being successfully used in lithium-ion full cells. Unlike the case of graphite anodes, natural solid electrolyte interphase (SEI) films generated from carbonate electrolyte do not self-passivate on Si and causes continuous electrolyte decomposition. In this work we aim at solving the issue of electrochemical degradation by fabricating artificial SEI films using a solid electrolyte material, lithium phosphor oxynitride (Lipon), that conducts Li ions and blocks electrons. For Si anodes coated with Lipon of 50 nm or thicker, significant effect is observed in suppressing the electrolyte decomposition, while Lipon of thinner than 40 nm has little effect. Ionic and electronic conductivity measurement reveals that the artificial SEI is effective when it is a pure ionic conductor, and the electrolyte decomposition is not suppressed when the artificial SEI is a mixed electronic-ionic conductor. The critical thickness for this transition in conducting behavior is found to be 40~50 nm. This work provides guidance for designing artificial SEI for high capacity lithium-ion battery electrodes using solid electrolyte materials.

  2. Pushing the Theoretical Limit of Li-CFx Batteries: A Tale of Bi-functional Electrolyte

    SciTech Connect (OSTI)

    Rangasamy, Ezhiylmurugan [ORNL] [ORNL; Li, Juchuan [ORNL] [ORNL; Sahu, Gayatri [ORNL] [ORNL; Dudney, Nancy J [ORNL] [ORNL; Liang, Chengdu [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    In a typical battery, electrodes deliver capacities less or equal the theoretical maxima of the electrode materials.1 The inert electrolyte functions solely as the ionic conductor without contribution to the cell capacity because of its distinct mono-function in the concept of conventional batteries. Here we demonstrate that the most energy-dense Li-CFx battery2 delivers a capacity exceeding the theoretical maximum of CFx with a solid electrolyte of Li3PS4 (LPS) that has dual functions: as the inert electrolyte at the anode and the active component at the cathode. Such a bi-functional electrolyte reconciles both inert and active characteristics through a synergistic discharge mechanism of CFx and LPS. Li3PS4 is known as an inactive solid electrolyte with a broad electrochemical window over 5 V.3 The synergy at the cathode is through LiF, the discharge product of CFx, which activates the electrochemical discharge of LPS at a close electrochemical potential of CFx. Therefore, the solid-state Li-CFx batteries output 126.6% energy beyond their theoretic limits without compromising the stability of the cell voltage. The extra energy comes from the electrochemical discharge of LPS, the inert electrolyte. This bi-functional electrolyte revolutionizes the concept of conventional batteries and opens a new avenue for the design of batteries with an unprecedentedly high energy density.

  3. Bubble coalescence dynamics and supersaturation in electrolytic gas evolution

    SciTech Connect (OSTI)

    Stover, R.L. [Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering]|[Lawrence Berkeley National Lab., CA (United States). Energy and Environment Div.

    1996-08-01T23:59:59.000Z

    The apparatus and procedures developed in this research permit the observation of electrolytic bubble coalescence, which heretofore has not been possible. The influence of bubble size, electrolyte viscosity, surface tension, gas type, and pH on bubble coalescence was examined. The Navier-Stokes equations with free surface boundary conditions were solved numerically for the full range of experimental variables that were examined. Based on this study, the following mechanism for bubble coalescence emerges: when two gas bubbles coalesce, the surface energy decreases as the curvature and surface area of the resultant bubble decrease, and the energy is imparted into the surrounding liquid. The initial motion is driven by the surface tension and slowed by the inertia and viscosity of the surrounding fluid. The initial velocity of the interface is approximately proportional to the square root of the surface tension and inversely proportional to the square root of the bubble radius. Fluid inertia sustains the oblate/prolate oscillations of the resultant bubble. The period of the oscillations varies with the bubble radius raised to the 3/2 power and inversely with the square root of the surface tension. Viscous resistance dampens the oscillations at a rate proportional to the viscosity and inversely proportional to the square of the bubble radius. The numerical simulations were consistent with most of the experimental results. The differences between the computed and measured saddle point decelerations and periods suggest that the surface tension in the experiments may have changed during each run. By adjusting the surface tension in the simulation, a good fit was obtained for the 150-{micro}m diameter bubbles. The simulations fit the experiments on larger bubbles with very little adjustment of surface tension. A more focused analysis should be done to elucidate the phenomena that occur in the receding liquid film immediately following rupture.

  4. Electrosorption selectivity of ions from mixtures of electrolytes inside nanopores

    SciTech Connect (OSTI)

    Hou, Chia-Hung [Georgia Institute of Technology; Taboada Serrano, Patricia L [ORNL; Yiacoumi, Sotira [Georgia Institute of Technology; Tsouris, Costas [ORNL

    2008-01-01T23:59:59.000Z

    Grand canonical Monte Carlo (GCMC) simulations are employed to study the selective electrosorption of ions from a mixture of symmetric and asymmetric electrolytes confined in pores and results are compared to experimental observations obtained via cyclic voltammetry and batch electrosorption equilibrium experiments. GCMC simulations have the advantage over other Monte Carlo methods to unambiguously quantify the total number of ions in the pore solution. The exclusion parameter and selectivity factor are used to evaluate the selective capacity of pores toward different ionic species under various conditions. The number of coions inside the pore solution is determined by the proportion of different counterions present in the double-layer region. Because of the competitive effects resulting from asymmetries in charge and size associated with different ions, the electrosorption selectivity of small monovalent over large divalent counterions first decreases with increasing surface charge, passes through a minimum, and then increases with further increase in surface charge. At low and moderate surface charge densities, the fact that large divalent counterions preferentially screen the surface charge has a strong effect on pore occupancy; whereas at a very high surface charge density, size-exclusion effects dominate and determine the accessibility of different ions into the pores. Therefore, electrosorption selectivity of ions from a mixture of electrolytes could, in principle, be achieved via tuning the electrical double-layer formation inside the pores through the regulation of surface charge tailored for different ion characteristics. The findings of this work provide important information relevant to ion selectivity during separation processes and energy storage in supercapacitors.

  5. A two-dimensional mathematical model of a porous lead dioxide electrode in a lead-acid cell

    E-Print Network [OSTI]

    Dimpault-Darcy, Eric Christophe

    1987-01-01T23:59:59.000Z

    contained six dependent variables: the concentration of the acid electrolyte, the porosity, the electric potentials of the solid and solution phases, and the two directional components of the curreut density in the electrolyte. The model was solved... (ir? irs) MODEL DEVELOPMENT 9 11 12 13 14 14 15 15 16 17 V. A. Divergence oi' Current B. Porosity Balance C. Electrode Kinetics D. Ohm's Lave in Solution E. Electrolyte Material Balance NUMERICAL SOLUTION TECHNIQUE 18 19 20 22 24...

  6. Aluminum oxyhydroxide based separator/electrolyte and battery system, and a method making the same

    DOE Patents [OSTI]

    Gerald, II, Rex E. (Brookfield, IL); Klingler, Robert J. (Glenview, IL); Rathke, Jerome W. (Homer Glen, IL)

    2011-03-08T23:59:59.000Z

    The instant invention relates a solid-state electrochemical cell and a novel separator/electrolyte incorporated therein. A preferred embodiment of the invented electrochemical cell generally comprises a unique metal oxyhydroxide based (i.e. AlOOH) separator/electrolyte membrane sandwiched between a first electrode and a second electrode. A preferred novel separator/electrolyte comprises a nanoparticulate metal oxyhydroxide, preferably AlOOH and a salt which are mixed and then pressed together to form a monolithic metal oxyhydroxide-salt membrane.

  7. The evidence of cathodic micro-discharges during plasma electrolytic oxidation process

    SciTech Connect (OSTI)

    Nominé, A., E-mail: alexandre.nomine@univ-lorraine.fr [Institut Jean Lamour, UMR 7198 CNRS, Université de Lorraine, Parc de Saurupt, 54011 Nancy (France); National Institute of Science and Technology “MISiS,” 4, Leninskij Prospekt, Moscow 119049 (Russian Federation); Martin, J.; Noël, C.; Henrion, G.; Belmonte, T. [Institut Jean Lamour, UMR 7198 CNRS, Université de Lorraine, Parc de Saurupt, 54011 Nancy (France); Bardin, I. V.; Kovalev, V. L.; Rakoch, A. G. [National Institute of Science and Technology “MISiS,” 4, Leninskij Prospekt, Moscow 119049 (Russian Federation)

    2014-02-24T23:59:59.000Z

    Plasma electrolytic oxidation (PEO) processing of EV31 magnesium alloy has been carried out in fluoride containing electrolyte under bipolar pulse current regime. Unusual PEO cathodic micro-discharges have been observed and investigated. It is shown that the cathodic micro-discharges exhibit a collective intermittent behavior, which is discussed in terms of charge accumulations at the layer/electrolyte and layer/metal interfaces. Optical emission spectroscopy is used to determine the electron density (typ. 10{sup 15}?cm{sup ?3}) and the electron temperature (typ. 7500?K) while the role of F{sup ?} anions on the appearance of cathodic micro-discharges is pointed out.

  8. Method for treating electrolyte to remove Li{sub 2}O

    DOE Patents [OSTI]

    Tomczuk, Z.; Miller, W.E.; Johnson, G.K.; Willit, J.L.

    1998-01-20T23:59:59.000Z

    A method is described for removing Li{sub 2}O present in an electrolyte predominantly of LiCl and KCl. The electrolyte is heated to a temperature not less than about 500 C and then Al is introduced into the electrolyte in an amount in excess of the stoichiometric amount needed to convert the Li{sub 2}O to a Li-Al alloy and lithium aluminate salt. The salt and aluminum are maintained in contact with agitation for a time sufficient to convert the Li{sub 2}O.

  9. Design, integration, and trade-off analyses of gasoline-fueled polymer electrolyte fuel cell systems for transportation.

    SciTech Connect (OSTI)

    Kumar, R.

    1998-09-14T23:59:59.000Z

    Prototype fuel-cell-powered vehicles have recently been demonstrated in Japan, Europe, and North America. Conceptual designs and simulations of fuel-cell-powered vehicles have also been published [1-3]. Many of these simulations include detailed vehicle performance models, but they use relatively simplistic fuel-cell power system models. We have developed a comprehensive model of a polymer electrolyte fuel cell (PEFC) power system for automotive propulsion. This system simulation has been used to design and analyze fuel-cell systems and vehicles with gasoline (or other hydrocarbons) as the on-board fuel. The major objective of this analysis is to examine the influence of design parameters on system efficiency and performance, and component sizes.

  10. Final Technical Report: SISGR: The Influence of Electrolyte Structure and Electrode Morphology on the Performance of Ionic-Liquid Based Supercapacitors: A Combined Experimental and Simulation Study

    SciTech Connect (OSTI)

    Bedrov, Dmitry [University of Utah] [University of Utah

    2013-08-15T23:59:59.000Z

    Obtaining fundamental understanding and developing predictive modeling capabilities of electrochemical interfaces can significantly shorten the development cycles of electrical double layer capacitors (EDLCs). A notable improvement in EDLC performance has been achieved due to recent advances in understanding charge storage mechanisms, development of advanced nanostructured electrodes and electrochemically stable electrolytes. The development of new generation of EDLCs is intimately linked to that of nanostructured carbon materials which have large surface area, good adsorption/desorption properties, good electrical conductivity and are relatively inexpensive. To address these scientific challenges the efforts of an interdisciplinary team of modelers and experimentalists were combined to enhance our understanding of molecular level mechanisms controlling the performance of EDLCs comprised of room temperature ionic liquid (RTIL) electrolytes and nanostructured carbon-based electrodes and to utilize these knowledge in the design of a new generation of materials and devices for this energy storage application. Specifically our team efforts included: atomistic molecular dynamics simulations, materials science and electrode/device assembly, and synthesis and characterization of RTIL electrolytes.

  11. Removal of uranium from aqueous HF solutions

    DOE Patents [OSTI]

    Pulley, Howard (West Paducah, KY); Seltzer, Steven F. (Paducah, KY)

    1980-01-01T23:59:59.000Z

    This invention is a simple and effective method for removing uranium from aqueous HF solutions containing trace quantities of the same. The method comprises contacting the solution with particulate calcium fluoride to form uranium-bearing particulates, permitting the particulates to settle, and separting the solution from the settled particulates. The CaF.sub.2 is selected to have a nitrogen surface area in a selected range and is employed in an amount providing a calcium fluoride/uranium weight ratio in a selected range. As applied to dilute HF solutions containing 120 ppm uranium, the method removes at least 92% of the uranium, without introducing contaminants to the product solution.

  12. aqueous phase leaching: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Donald L. Suarez; Catherine Grieve 139 In-situ spectroscopic investigations of surfactant adsorption and water structure at the CaF2aqueous solution interfacey Chemistry Websites...

  13. aqueous liquid waste: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Majda 2005-01-01 18 Momentum, Heat, and Neutral Mass Transport in Convective Atmospheric Pressure Plasma-Liquid Systems and Implications for Aqueous Targets CERN Preprints...

  14. aqueous solution studied: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dispersion of chemical shifts indicated 6 Additional Studies on the Softening of Rigid PVC by Aqueous Solutions of Organic Solvents CiteSeer Summary: This study examined whether...

  15. aqueous solutions studied: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dispersion of chemical shifts indicated 6 Additional Studies on the Softening of Rigid PVC by Aqueous Solutions of Organic Solvents CiteSeer Summary: This study examined whether...

  16. aqueous organic systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    light were examined Boolchand, Punit 10 Additional Studies on the Softening of Rigid PVC by Aqueous Solutions of Organic Solvents CiteSeer Summary: This study examined whether...

  17. aqueous sodium sulfate: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    viscosity, 771, for PDMDAAC fractions in sodium chloride solutions by viscosity, size-exclusionchromatography, and light Dubin, Paul D. 32 Structure and Dynamics in Aqueous...

  18. Method and apparatus for destroying organic contaminants in aqueous liquids

    DOE Patents [OSTI]

    Donaldson, Terrence L. (Lenior City, TN); Wilson, James H. (Oak Ridge, TN)

    1993-01-01T23:59:59.000Z

    A method and apparatus for destroying organic contaminants, such as trichloroethylene, in aqueous liquids, such as groundwater, utilizing steam stripping integrated with biodegradation. The contaminated aqueous liquid is fed into a steam stripper causing the volatilization of essentially all of the organic contaminants and a portion of the aqueous liquid. The majority of the aqueous liquid is discharged from the steam stripper. The volatilized vapors are then condensed to the liquid phase and introduced into a bioreactor. The bioreactor contains methanotrophic microorganisms which convert the organic contaminants into mainly carbon dioxide. The effluent from the bioreactor is then recycled back to the steam stripper for further processing.

  19. Method and apparatus for destroying organic contaminants in aqueous liquids

    DOE Patents [OSTI]

    Donaldson, T.L.; Wilson, J.H.

    1993-09-21T23:59:59.000Z

    A method and apparatus for destroying organic contaminants, such as trichloroethylene, in aqueous liquids, such as groundwater, utilizing steam stripping integrated with biodegradation. The contaminated aqueous liquid is fed into a steam stripper causing the volatilization of essentially all of the organic contaminants and a portion of the aqueous liquid. The majority of the aqueous liquid is discharged from the steam stripper. The volatilized vapors are then condensed to the liquid phase and introduced into a bioreactor. The bioreactor contains methanotrophic microorganisms which convert the organic contaminants into mainly carbon dioxide. The effluent from the bioreactor is then recycled back to the steam stripper for further processing. 2 figures.

  20. aqueous solutions decoration: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrosoluble Polymers in Aqueous Solutions: Decoration Versus Bridging. a Small Angle Neutron Scattering Study Condensed Matter (arXiv) Summary: In this paper we examine the...