Sample records for aq batch id

  1. Isotopic Fractionation of Mg2+(aq), Ca2+(aq), and Fe2+(aq) with...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fractionation of Mg2+(aq), Ca2+(aq), and Fe2+(aq) with Carbonate Minerals. Isotopic Fractionation of Mg2+(aq), Ca2+(aq), and Fe2+(aq) with Carbonate Minerals. Abstract: Density...

  2. DARS BATCH QUICK REFERENCE 1. Log on to http://dars.services.wisc.edu using your NetID and password

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    DARS BATCH QUICK REFERENCE 1. Log on to http://dars.services.wisc.edu using your NetID and password. #12;5. You can monitor the status of your request on the DARS Batch Recent Requests Summary page. a. Contact the DARS administrator if the request is pending their approval. b. Click View Requested Reports

  3. PDSF Interactive Batch Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interactive Batch Jobs Running Interactive Batch Jobs You cannot login to the PDSF batch nodes directly but you can run an interactive session on a batch node using either qlogin...

  4. NDA BATCH 2002-02

    SciTech Connect (OSTI)

    Lawrence Livermore National Laboratory

    2009-12-09T23:59:59.000Z

    QC sample results (daily background checks, 20-gram and 100-gram SGS drum checks) were within acceptable criteria established by WIPP's Quality Assurance Objectives for TRU Waste Characterization. Replicate runs were performed on 5 drums with IDs LL85101099TRU, LL85801147TRU, LL85801109TRU, LL85300999TRU and LL85500979TRU. All replicate measurement results are identical at the 95% confidence level as established by WIPP criteria. Note that the batch covered 5 weeks of SGS measurements from 23-Jan-2002 through 22-Feb-2002. Data packet for SGS Batch 2002-02 generated using gamma spectroscopy with the Pu Facility SGS unit is technically reasonable. All QC samples are in compliance with established control limits. The batch data packet has been reviewed for correctness, completeness, consistency and compliance with WIPP's Quality Assurance Objectives and determined to be acceptable. An Expert Review was performed on the data packet between 28-Feb-02 and 09-Jul-02 to check for potential U-235, Np-237 and Am-241 interferences and address drum cases where specific scan segments showed Se gamma ray transmissions for the 136-keV gamma to be below 0.1 %. Two drums in the batch showed Pu-238 at a relative mass ratio more than 2% of all the Pu isotopes.

  5. Don't forget to pick up your U-Pass and SFU student ID card. For Registrar and Information Services desk hours, please refer to http://students.sfu.ca/contact.html.

    E-Print Network [OSTI]

    Don't forget to pick up your U-Pass and SFU student ID card. For Registrar and Information Services (Northeast AQ Hallway) Register and pick up your orientation package. Coffee, tea and light breakfast

  6. MULTIVESSEL BATCH DISTILLATION EXPERIMENTAL VERIFICATION

    E-Print Network [OSTI]

    Skogestad, Sigurd

    MULTIVESSEL BATCH DISTILLATION ­ EXPERIMENTAL VERIFICATION Bernd Wittgens and Sigurd Skogestad 1 The experimental verification of the operation of a multivessel batch distillation column, operated under total vessels, provides a generalization of previously proposed batch distillation schemes. We propose a simple

  7. Submitting Batch Jobs on Franklin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pacific Time, 256 nodes are reserved for debugging and interactive use. See also, running Interactive Jobs. Sample Batch Scripts The following batch script requests 8 cores on...

  8. INSTALLATIONAND OPERATING INSTRUCTIONS FOR AQ-1 POWER VENT KIT

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    HEATERS AQUASTAR 125B WATER HEATERS INCLUDING AQUASTAR MODELS: 125HX · 125BS · 125X · 125BL TABLE supplied with the water heater. 2. Before mounting water heater to wall, check its minimum clearance requirements. 3. When using an AQ-1 the maximum horizontal distance from the water heater to the power vent

  9. Example Hopper Batch Scripts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA) /Email Announcements12:25Sequedex:Example Batch

  10. NDA BATCH 2009-7

    SciTech Connect (OSTI)

    Lawrence Livermore National Laboratory

    2009-10-30T23:59:59.000Z

    The testing facility is LLNL plutonium facility segmented gamma scanner. 100% of the radioassay data in the batch data report is reviewed.

  11. Map ID

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electronEnergy Manufacturing Energy andYou areID 90 Map

  12. Progressing batch hydrolysis process

    DOE Patents [OSTI]

    Wright, J.D.

    1985-01-10T23:59:59.000Z

    A progressive batch hydrolysis process is disclosed for producing sugar from a lignocellulosic feedstock. It comprises passing a stream of dilute acid serially through a plurality of percolation hydrolysis reactors charged with feed stock, at a flow rate, temperature and pressure sufficient to substantially convert all the cellulose component of the feed stock to glucose. The cooled dilute acid stream containing glucose, after exiting the last percolation hydrolysis reactor, serially fed through a plurality of pre-hydrolysis percolation reactors, charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the hemicellulose component of said feedstock to glucose. The dilute acid stream containing glucose is cooled after it exits the last prehydrolysis reactor.

  13. TOTAL REFLUX OPERATION OF MULTIVESSEL BATCH DISTILLATION

    E-Print Network [OSTI]

    Skogestad, Sigurd

    TOTAL REFLUX OPERATION OF MULTIVESSEL BATCH DISTILLATION BERND WITTGENS, RAJAB LITTO, EVA SŘRENSEN in this paper provides a generalization of previously proposed batch distillation schemes. A simple feedback been built and the experiments verify the simulations. INTRODUCTION Although batch distillation

  14. Multivessel Batch Distillation Potential Energy Savings

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Multivessel Batch Distillation ­ Potential Energy Savings Bernd Wittgens and Sigurd Skogestad 1, Norway ABSTRACT ­ A conventional batch distillation column operated under feedback control applying the proposed policy is compared to the multivessel batch distillation column. In some cases we found

  15. Multivessel Batch Distillation -Potential Energy Savings

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Multivessel Batch Distillation - Potential Energy Savings Bernd Wittgens and Sigurd Skogestad 1, Norway ABSTRACT - A conventional batch distillation column operated under feedback control applying the proposed policy is compared to the multivessel batch distillation column. In some cases we found

  16. 27-ID and 35-ID Construction Schedule | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    27-ID and 35-ID Past 27-ID and 35-ID Installation schedule for the sector 27 Control room. Receive materials on Friday March 10, 2014 Installation starts on Monday March 10, 2014...

  17. Aq Dryers Agricultural Drying Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrim County,Delhi (NCT), India

  18. Beamline 29-ID

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (29-ID): The Intermediate Energy X-Ray (IEX) beamline 29-ID is currently under commissioning and construction. The general user program is expected to start in 2015. This...

  19. Transferring Data from Batch Jobs at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (see HPSS Passwords) you can access HPSS within batch scripts. You can add the following lines at the end of your batch script. HSI will accept one-line commands on the HSI...

  20. POTENTIAL ENERGY SAVINGS OF MULTIVESSEL BATCH DISTILLATION

    E-Print Network [OSTI]

    Skogestad, Sigurd

    POTENTIAL ENERGY SAVINGS OF MULTIVESSEL BATCH DISTILLATION Bernd Wittgens and Sigurd Skogestad 1, Norway ABSTRACT ­ A conventional batch distillation column operated under feedback control applying the proposed policy is compared to the multivessel batch distillation column. In some cases we found

  1. POTENTIAL ENERGY SAVINGS OF MULTIVESSEL BATCH DISTILLATION

    E-Print Network [OSTI]

    Skogestad, Sigurd

    POTENTIAL ENERGY SAVINGS OF MULTIVESSEL BATCH DISTILLATION Bernd Wittgens and Sigurd Skogestad 1, Norway ABSTRACT - A conventional batch distillation column operated under feedback control applying the proposed policy is compared to the multivessel batch distillation column. In some cases we found

  2. TOTAL REFLUX OPERATION OF MULTIVESSEL BATCH DISTILLATION

    E-Print Network [OSTI]

    Skogestad, Sigurd

    TOTAL REFLUX OPERATION OF MULTIVESSEL BATCH DISTILLATION BERND WITTGENS, RAJAB LITTO, EVA S RENSEN a generalization of previously proposed batch distillation schemes. A simple feedback control strategy for total re verify the simulations. INTRODUCTION Although batch distillation generally is less energy e cient than

  3. NDA Batch 2002-13

    SciTech Connect (OSTI)

    Hollister, R

    2009-09-17T23:59:59.000Z

    QC sample results (daily background check drum and 100-gram SGS check drum) were within acceptance criteria established by WIPP's Quality Assurance Objectives for TRU Waste Characterization. Replicate runs were performed on drum LL85501243TRU. Replicate measurement results are identical at the 95% confidence level as established by WIPP criteria. HWM NCAR No. 02-1000168 issued on 17-Oct-2002 regarding a partially dislodged Cd sheet filter on the HPGe coaxial detector. This physical geometry occurred on 01-Oct-2002 and was not corrected until 10-Oct-2002, during which period is inclusive of the present batch run of drums. Per discussions among the Independent Technical Reviewer, Expert Reviewer and the Technical QA Supervisor, as well as in consultation with John Fleissner, Technical Point of Contact from Canberra, the analytical results are technically reliable. All QC standard runs during this period were in control. Data packet for SGS Batch 2002-13 generated using passive gamma-ray spectroscopy with the Pu Facility SGS unit is technically reasonable. All QC samples are in compliance with establiShed control limits. The batch data packet has been reviewed for correctness, completeness, consistency and compliance with WIPP's Quality Assurance Objectives and determined to be acceptable.

  4. 2002 Dog Island Lease Area, Levy County Quality Assurance/Quality Control (AQ/QC) Log

    E-Print Network [OSTI]

    Florida, University of

    the month. This includes information on fouling, equipment failures and whether post-deployment checks were or a lack of standardization between the two sondes). Notes regarding reliability of data (whether/Quality Control (AQ/QC) Log General Notes on Reliability of Data: 1) In general, measurements of temperature

  5. Adding coal dust to coal batch

    SciTech Connect (OSTI)

    V.S. Shved; A.V.Berezin [OAO Koks, Kemerovo (Russian Federation)

    2009-05-15T23:59:59.000Z

    The granulometric composition of coke dust from the dry-slaking machine is determined. The influence of additions of 3-7% coke dust on the quality of industrial coking batch and the coke obtained by box coking is estimated. Adding 1% coke dust to coking batch does not markedly change the coke quality. Industrial equipment for the supply of dry-slaking dust to the batch is described.

  6. DOE/ID-Number

    Energy Savers [EERE]

    Report UCRL-ID-133846. Walker, J.S. 2009. The Road to Yucca Mountain. Berkeley, CA: University of California Press. Warner, D.L. 1972. Survey of Industrial Waste Injection...

  7. Analysis and Control of Heteroazeotropic Batch Distillation

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Analysis and Control of Heteroazeotropic Batch Distillation S. Skouras and S. Skogestad Dept.interscience.wiley.com). The separation of close-boiling and azeotropic mixtures by heterogeneous azeotropic distillation is addressed. The results show that heteroazeotropic batch distillation exhibits substantial flexibility. The column profile

  8. CASCADE OPTIMIZATION AND CONTROL OF BATCH REACTORS

    E-Print Network [OSTI]

    Jutan, Arthur

    CASCADE OPTIMIZATION AND CONTROL OF BATCH REACTORS Xiangming Hua, Sohrab Rohani and Arthur Jutan ajutan@uwo.ca Abstract: In this study, a cascade closed-loop optimization and control strategy for batch reactor. Using model reduction a cascade system is developed, which can effectively combine optimization

  9. Thermal Analysis of Waste Glass Batches: Effect of Batch Makeup on Gas-Evolving Reactions

    SciTech Connect (OSTI)

    Pierce, David A.; Hrma, Pavel R.; Marcial, Jose

    2013-01-21T23:59:59.000Z

    Batches made with a variety of precursors were subjected to thermo-gravimetric analysis. The baseline modifications included all-nitrate batch with sucrose addition, all-carbonate batch, and batches with different sources of alumina. All batches were formulated for a single glass composition (a vitrified simulated high-alumina high-level waste). Batch samples were heated from the ambient temperature to 1200°C at constant heating rates ranging from 1 K/min to 50 K/min. Major gas evolving reactions began at temperatures just above 100°C and were virtually complete by 650°C. Activation energies for major reactions were obtained with the Kissinger’s method. A rough model for the overall kinetics of the batch-conversion was developed to be eventually applied to a mathematical model of the cold cap.

  10. Optimization of a fed-batch fermentation process control competition ...

    E-Print Network [OSTI]

    2003-07-07T23:59:59.000Z

    Keywords: optimal control, fed-batch process, network enabled optimization. 1 INTRODUCTION ... input, the output for each batch would not be the problem is ...

  11. Heteroazeotropic Batch Distillation Feasibility and Operation

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Heteroazeotropic Batch Distillation Feasibility and Operation by Efstathios Skouras and distillation is the dominating unit operation for such separations. However, the presence of azeotropes and non distillation as the best suited process. Among, various techniques to enhance distillation, heterogeneous

  12. 4-ID-D optics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4-ID-D Beamline Optics A schetch of the major optical components for beam line 4-ID-D are shown above. All these components located in the B-station upstream from the D...

  13. Beamline 4-ID-D

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    D Home Recent Publications Beamline Info Optics Instrumentation Software User Info FAQs Beamline 4-ID-D Beamline 4-ID-D is operated by the Magnetic Materials Group in the X-ray...

  14. CLOSED OPERATION OF MULTIVESSEL BATCH DISTILLATION -EXPERIMENTAL VERIFICATION

    E-Print Network [OSTI]

    Skogestad, Sigurd

    1 CLOSED OPERATION OF MULTIVESSEL BATCH DISTILLATION - EXPERIMENTAL VERIFICATION Submitted to AICheĆcient operation, multicomponent distillation, batch distillation, total re ux operation ABSTRACT. The multivessel batch distillation column, as well as conven- tional batch distillation, may be operated in a closed

  15. How to batch upload video files with Unison How to batch upload video files with Unison

    E-Print Network [OSTI]

    Benos, Panayiotis "Takis"

    How to batch upload video files with Unison How to batch upload video files with Unison There are two different ways to upload already existing video files into Unison: Upload from the New Session page (only allows one video file to be uploaded at a time) Launching the editor in Composer (allows

  16. AFTER: Batch jobs on the Apollo ring

    SciTech Connect (OSTI)

    Hofstadler, P.

    1987-07-01T23:59:59.000Z

    This document describes AFTER, a system that allows users of an Apollo ring to submit batch jobs to run without leaving themselves logged in to the ring. Jobs may be submitted to run at a later time or on a different node. Results from the batch job are mailed to the user through some designated mail system. AFTER features an understandable user interface, good on line help, and site customization. This manual serves primarily as a user's guide to AFTER although administration and installation are covered for completeness.

  17. Remote Batch Invocation for Compositional Object Services

    E-Print Network [OSTI]

    Ryder, Barbara G.

    Remote Batch Invocation for Compositional Object Services Ali Ibrahim2 , Yang Jiao1 , Eli Tilevich1 Remote Procedure Calls do not compose efficiently, design- ers of distributed object systems use Data Transfer and Remote Fac¸ade patterns to create large-granularity interfaces, hard-coded for particular

  18. Your Unanswered Questions…. Answered- Batch 2

    Broader source: Energy.gov [DOE]

    Secretary Chu hosted an online town hall to discuss President Obama's clean energy innovation agenda -- and while he was able to answer about 10 questions submitted online during the event, we received more than 200! Here is our second batch of questions and answers.

  19. Data ID Service

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOfficeOctoberDaniel WoodID Service First DOI

  20. T ID CODE I

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby Dietrich5 | NUMBER 1 | MARCHT ID CODE I

  1. APS Beamline 6-ID-D

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MM-Group Home MMG Advisory Committees 6-ID-D Home Recent Publications Beamline Info Optics Instrumentation Software User Info Beamline 6-ID-D Beamline 6-ID-D is operated by the...

  2. Batch” Kinetics in Flow: Online IR Analysis and Continuous Control

    E-Print Network [OSTI]

    Moore, Jason S.

    Currently, kinetic data is either collected under steady-state conditions in flow or by generating time-series data in batch. Batch experiments are generally considered to be more suitable for the generation of kinetic ...

  3. ID-69 Sodium drain experiments

    SciTech Connect (OSTI)

    Johnston, D.C.

    1996-09-19T23:59:59.000Z

    This paper describes experiments to determine the sodium retention and drainage from the two key areas of an ID-69. This information is then used as the initiation point for guidelines of how to proceed with washing an ID-69 in the IEM Cell Sodium Removal System.

  4. Batch load anaerobic digestion of dairy manure

    E-Print Network [OSTI]

    Egg, Richard P

    1979-01-01T23:59:59.000Z

    and resource recovery. Anaerobic digestion of manure has re- ceived much attention as a method to reduce the pollution threat to the environment while reclaiming energy in the form of methane gas from the biomass. Currently there is one commercial anaerobic... production than the conventional process used in most studies to date. The objective of this research was to evaluate a batch load digestion process for methane production from dairy manure to determine the optimum influent total solids concentration...

  5. SLUDGE BATCH 5 SIMULANT FLOWSHEET STUDIES

    SciTech Connect (OSTI)

    Lambert, D; Michael Stone, M; Bradley Pickenheim, B; David Best, D; David Koopman, D

    2008-10-03T23:59:59.000Z

    The Defense Waste Processing Facility (DWPF) will transition from Sludge Batch 4 (SB4) processing to Sludge Batch 5 (SB5) processing in early fiscal year 2009. Tests were conducted using non-radioactive simulants of the expected SB5 composition to determine the impact of varying the acid stoichiometry during the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) processes. The work was conducted to meet the Technical Task Request (TTR) HLW/DWPF/TTR-2007-0007, Rev. 1 and followed the guidelines of a Task Technical and Quality Assurance Plan (TT&QAP). The flowsheet studies are performed to evaluate the potential chemical processing issues, hydrogen generation rates, and process slurry rheological properties as a function of acid stoichiometry. Initial SB5 flowsheet studies were conducted to guide decisions during the sludge batch preparation process. These studies were conducted with the estimated SB5 composition at the time of the study. The composition has changed slightly since these studies were completed due to changes in the washing plan to prepare SB5 and the estimated SB4 heel mass. Nine DWPF process simulations were completed in 4-L laboratory-scale equipment using both a batch simulant (Tank 51 simulant after washing is complete) and a blend simulant (Tank 40 simulant after Tank 51 transfer is complete). Each simulant had a set of four SRAT and SME simulations at varying acid stoichiometry levels (115%, 130%, 145% and 160%). One additional run was made using blend simulant at 130% acid that included additions of the Actinide Removal Process (ARP) waste prior to acid addition and the Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU) waste following SRAT dewatering. There are several parameters that are noteworthy concerning SB5 sludge: (1) This is the first batch DWPF will be processing that contains sludge that has had a significant fraction of aluminum removed through aluminum dissolution. (2) The sludge is high in mercury. (3) The sludge is high in noble metals. (4) The sludge is high in U and Pu--components that are not added in sludge simulants. Two SB5 processing issues were noted during testing. First, high hydrogen generation rates were measured during experiments with both the blend and batch simulant at high acid stoichiometry. Also, the reflux time was extended due to the high mercury concentration in both the batch and blend simulant. Adding ARP will extend processing times in DWPF. The ARP caustic boil took approximately six hours. The boiling time during the experiment with added MCU was 14 hours at the maximum DWPF steam flux rate. This is comparable to the DWPF processing time for dewatering plus reflux without MCU at a 5000 lbs/hr boil-up rate, but would require significantly more time at boiling at 2000-2500 lbs/hr boil-up rate. The addition of ARP and MCU did not cause any other processing issues, since foaming, rheology and hydrogen generation were less of an issue while processing with ARP/MCU.

  6. Conversion of batch to molten glass, I: Volume expansion

    SciTech Connect (OSTI)

    Henager, Samuel H.; Hrma, Pavel R.; Swearingen, Kevin J.; Schweiger, Michael J.; Marcial, Jose; Tegrotenhuis, Nathan E.

    2011-02-01T23:59:59.000Z

    Batches designed to simulate nuclear high-level waste glass were compressed into pellets that were heated at a rate of 5°C/min and photographed to obtain the profile area as a function of temperature. Three types of batches were prepared with different nitrate-carbonate ratios. To determine the impact of the heat supply by an exothermic reaction and the batch expansion, the nitrated batches were prepared with varying addition of sucrose. To obtain the impact of the grain size of the quartz component, the mixed nitrate-carbonate batches were prepared with silica particles ranging in size from 5 µm to 195 µm. One batch containing only carbonates was also tested. Sucrose addition had little effect on the batch expansion, while the size of silica was very influential. The 5-?m grains had a strongest effect, causing the generation of both primary and secondary foam, whereas only secondary foam was produced in batches with grains of 45 µm and larger. The retention of gases evolved as the batch melts creates primary foam. Gases evolved from oxidation-reduction reactions once the batch has melted produce secondary foam. We suggest that the viscosity of the melt and the amount of gas evolved are the main influences on foam production. As more gas is produced in the melt and as the glass becomes less viscous, the bubbles of gas coalesce into larger and larger cavities, until the glass can no longer contain the bubbles and they burst, causing the foam to collapse.

  7. Bull Test ID 1118 2013 Florida Bull Test

    E-Print Network [OSTI]

    Jawitz, James W.

    Bull Test ID 1118 2013 Florida Bull Test #12;Bull Test ID 1119 2013 Florida Bull Test #12;Bull Test ID 1120 2013 Florida Bull Test #12;Bull Test ID 1121 2013 Florida Bull Test #12;Bull Test ID 1122 2013 Florida Bull Test #12;Bull Test ID 1123 2013 Florida Bull Test #12;Bull Test ID 1124 2013 Florida

  8. Bull Test ID 1181 2013 Florida Bull Test

    E-Print Network [OSTI]

    Jawitz, James W.

    Bull Test ID 1181 2013 Florida Bull Test #12;Bull Test ID 1182 2013 Florida Bull Test #12;Bull Test ID 1183 2013 Florida Bull Test #12;Bull Test ID 1184 2013 Florida Bull Test #12;Bull Test ID 1185 2013 Florida Bull Test #12;Bull Test ID 1186 2013 Florida Bull Test #12;Bull Test ID 1187 2013 Florida

  9. Bull Test ID 1098 2013 Florida Bull Test

    E-Print Network [OSTI]

    Jawitz, James W.

    Bull Test ID 1098 2013 Florida Bull Test #12;Bull Test ID 1099 2013 Florida Bull Test #12;Bull Test ID 1100 2013 Florida Bull Test #12;Bull Test ID 1101 2013 Florida Bull Test #12;Bull Test ID 1102 2013 Florida Bull Test #12;Bull Test ID 1103 2013 Florida Bull Test #12;Bull Test ID 1104 2013 Florida

  10. Bull Test ID 1160 2013 Florida Bull Test

    E-Print Network [OSTI]

    Jawitz, James W.

    Bull Test ID 1160 2013 Florida Bull Test #12;Bull Test ID 1161 2013 Florida Bull Test #12;Bull Test ID 1162 2013 Florida Bull Test #12;Bull Test ID 1163 2013 Florida Bull Test #12;Bull Test ID 1164 2013 Florida Bull Test #12;Bull Test ID 1165 2013 Florida Bull Test #12;Bull Test ID 1166 2013 Florida

  11. Bull Test ID 1140 2013 Florida Bull Test

    E-Print Network [OSTI]

    Jawitz, James W.

    Bull Test ID 1140 2013 Florida Bull Test #12;Bull Test ID 1141 2013 Florida Bull Test #12;Bull Test ID 1142 2013 Florida Bull Test #12;Bull Test ID 1143 2013 Florida Bull Test #12;Bull Test ID 1144 2013 Florida Bull Test #12;Bull Test ID 1145 2013 Florida Bull Test #12;Bull Test ID 1146 2013 Florida

  12. Evaluation of vitrification factors from DWPF's macro-batch 1

    SciTech Connect (OSTI)

    Edwards, T.B.

    2000-01-25T23:59:59.000Z

    The Defense Waste Processing Facility (DWPF) is evaluating new sampling and analytical methods that may be used to support future Slurry Mix Evaporator (SME) batch acceptability decisions. This report uses data acquired during DWPF's processing of macro-batch 1 to determine a set of vitrification factors covering several SME and Melter Feed Tank (MFT) batches. Such values are needed for converting the cation measurements derived from the new methods to a ``glass'' basis. The available data from macro-batch 1 were used to examine the stability of these vitrification factors, to estimate their uncertainty over the course of a macro-batch, and to provide a recommendation on the use of a single factor for an entire macro-batch. The report is in response to Technical Task Request HLW/DWPF/TTR-980015.

  13. aerobic batch fermentations: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    motivating application we try to optimize the power output of nano-enhanced Microbial Fuel Cells (MFCs). MFCsHybrid Batch Bayesian Optimization Javad Azimi...

  14. Elink Batch Upload Instructions | OSTI, US Dept of Energy, Office...

    Office of Scientific and Technical Information (OSTI)

    includes reporting for contract proposals, funding status, routine construction or inventory, and similar products. AN 241.1 Submission Options Batch Upload allows you to upload...

  15. Optimization of A Fed-batch Fermentation Process Control ...

    E-Print Network [OSTI]

    Jinsong Liang

    2003-08-01T23:59:59.000Z

    Aug 1, 2003 ... Optimization of A Fed-batch Fermentation Process Control Competition Problem Using NEOS. Jinsong Liang (jinsongliang ***at*** cc.usu.edu)

  16. Reducing variance in batch partitioning measurements

    SciTech Connect (OSTI)

    Mariner, Paul E.

    2010-08-11T23:59:59.000Z

    The partitioning experiment is commonly performed with little or no attention to reducing measurement variance. Batch test procedures such as those used to measure K{sub d} values (e.g., ASTM D 4646 and EPA402 -R-99-004A) do not explain how to evaluate measurement uncertainty nor how to minimize measurement variance. In fact, ASTM D 4646 prescribes a sorbent:water ratio that prevents variance minimization. Consequently, the variance of a set of partitioning measurements can be extreme and even absurd. Such data sets, which are commonplace, hamper probabilistic modeling efforts. An error-savvy design requires adjustment of the solution:sorbent ratio so that approximately half of the sorbate partitions to the sorbent. Results of Monte Carlo simulations indicate that this simple step can markedly improve the precision and statistical characterization of partitioning uncertainty.

  17. Materials selection for kraft batch digesters

    SciTech Connect (OSTI)

    Wensley, A. [Bacon Donaldson Consulting Engineers, Richmond, British Columbia (Canada); Moskal, M. [Stone Container Corp., Burr Ridge, IL (United States); Wilton, W. [Stone-Consolidated Corp., Fort Frances, Ontario (Canada)

    1997-08-01T23:59:59.000Z

    Several candidate materials were evaluated by corrosion testing in autoclaves containing white and black liquors for batch digesters. The relationship between corrosion rate and corrosion potential was determined for ASTM SA516-Grade 70 carbon steel, UNS S30403 (Type 304L) austenitic stainless steel, UNS S31803 (2205) and UNS S32550 (2605) duplex stainless steels, and two stainless steel weld overlays, applied by the GMAW (gas metal arc welding) and SAW (submerged arc welding) processes. The tests revealed that SA516-Grade 70 carbon steel and type 304L stainless steel can experience high rates of corrosion. For the duplex stainless steels and weld overlays, corrosion resistance improved with chromium content. A chromium content of at least 25% was found to be necessary for good corrosion resistance.

  18. APS Beamline 6-ID-B,C

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    x-ray scattering studies of materials. The beamline has 2 end-stations: 6-ID-B: Psi -Diffractomter & In-Field Studies 6-ID-C: UHV in-situ growth Recent Research Highlights...

  19. APS Beamline 6-ID-D

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    D Home Recent Publications Beamline Info Optics Instrumentation Software User Info Beamline 6-ID-D Beamline 6-ID-D is operated by the Magnetic Materials Group in the X-ray Science...

  20. MULTIVESSEL BATCH DISTILLATION 1 SIGURD SKOGESTAD 2 , BERND WITTGENS,

    E-Print Network [OSTI]

    Skogestad, Sigurd

    MULTIVESSEL BATCH DISTILLATION 1 SIGURD SKOGESTAD 2 , BERND WITTGENS, EVA S RENSEN 3 and RAJAB distillation schemes, including the inverted column and the middle vessel column. The total re ux operation of the multivessel batch distillation column was presented recently, and the main contribution of this paper

  1. Analysis of Closed Multivessel Batch Distillation of Ternary Azeotropic Mixtures

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Analysis of Closed Multivessel Batch Distillation of Ternary Azeotropic Mixtures using Elementary) diagrams like distillation lines and isotherms maps may be used in analysis of the closed (total reflux) multivessel batch distillation column. An indirect level control strategy is implemented that eliminates

  2. Separation of Azeotropic Mixtures in Closed Batch Distillation Arrangements

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Separation of Azeotropic Mixtures in Closed Batch Distillation Arrangements S. Skouras and S, Norway SCOPE OF THE PROJECT ·How can we separate ternary mixtures in closed batch distillation-up period is required, followed by a heteroazeotropic distillation step (Figure 3) Modified: The separation

  3. MULTIVESSEL BATCH DISTILLATION 1 SIGURD SKOGESTAD 2 , BERND WITTGENS,

    E-Print Network [OSTI]

    Skogestad, Sigurd

    MULTIVESSEL BATCH DISTILLATION 1 SIGURD SKOGESTAD 2 , BERND WITTGENS, EVA SŘRENSEN 3 and RAJAB distillation schemes, including the inverted column and the middle vessel column. The total reflux operation of the multivessel batch distillation column was presented recently, and the main contribution of this paper

  4. REQUEST FOR ADVANCE Employee Name: SU ID #

    E-Print Network [OSTI]

    Carter, John

    (RINA 219) Fax: 206-398-4402 Email: bixlers@seattleu.edu FOR OFFICIAL USE ONLY SU ID #: Previous Request

  5. Bull Test ID 1077 2013 Florida Bull Test

    E-Print Network [OSTI]

    Jawitz, James W.

    14th Annual Florida Bull Test #12;Bull Test ID 1077 2013 Florida Bull Test #12;Bull Test ID 1078 2013 Florida Bull Test #12;Bull Test ID 1079 2013 Florida Bull Test #12;Bull Test ID 1080 2013 Florida Bull Test #12;Bull Test ID 1081 2013 Florida Bull Test #12;Bull Test ID 1082 2013 Florida Bull Test #12

  6. ID SYSTEM DEBIT ACCOUNT Payroll Deduction Form

    E-Print Network [OSTI]

    Karsai, Istvan

    ID SYSTEM DEBIT ACCOUNT Payroll Deduction Form This is my authorization for the ETSU Payroll Department to make a monthly deduction from my paycheck to be deposited to my ETSU ID System Debit Card 37614-0611 PHONE: 423/439-8316 http://www.etsu.edu/students/univcent/id.htm e-mail ­ IDBUCS@etsu.edu #12;

  7. Effect of glass-batch makeup on the melting process

    SciTech Connect (OSTI)

    Hrma, Pavel R.; Schweiger, Michael J.; Humrickhouse, Carissa J.; Moody, J. Adam; Tate, Rachel M.; Rainsdon, Timothy T.; Tegrotenhuis, Nathan E.; Arrigoni, Benjamin M.; Marcial, Jose; Rodriguez, Carmen P.; Tincher, Benjamin

    2010-03-29T23:59:59.000Z

    The response of a glass batch to heating is determined by the batch makeup and in turn determines the rate of melting. Batches formulated for a high-alumina nuclear waste to be vitrified in an all-electric melter were heated at a constant temperature-increase rate to determine changes in melting behavior in response to the selection of batch chemicals and silica grain-size as well as the addition of heat-generating reactants. The type of batch materials and the size of silica grains determine how much, if any, primary foam occurs during melting. Small quartz grains, 5-?m in size, caused extensive foaming because their major portion dissolved at temperatures <800°C, contributing to the formation of viscous glass-forming melt that trapped evolving batch gases. Primary foam did not occur in batches with larger quartz grains, ?75 ?m in size, because their major portion dissolved at temperatures >800°C when batch gases no longer evolved. The exothermal reaction of nitrates with sucrose was ignited at a temperature as low as 160°C and caused a temporary jump in temperature of several hundred degrees. Secondary foam, the source of which is oxygen from redox reactions, occurred in all batches of a limited composition variation involving five oxides, B2O3, CaO, Li2O, MgO, and Na2O. The foam volume at the maximum volume-increase rate was a weak function of temperature and melt basicity. Neither the batch makeup nor the change in glass composition had a significant impact on the dissolution of silica grains. The impacts of primary foam generation on glass homogeneity and the rate of melting in large-scale continuous furnaces have yet to be established via mathematical modeling and melter experiments.

  8. EFFECT OF GLASS-BATCH MAKEUP ON THE MELTING PROCESS

    SciTech Connect (OSTI)

    KRUGER AA; HRMA P

    2010-12-07T23:59:59.000Z

    The response of a glass batch to heating is determined by the batch makeup and in turn determines the rate of melting. Batches formulated for a high-alumina nuclear waste to be vitrified in an all-electric melter were heated at a constant temperature-increase rate to determine changes in melting behavior in response to the selection of batch chemicals and silica grain-size as well as the addition of heat-generating reactants. The type of batch materials and the size of silica grains determine how much, if any, primary foam occurs during melting. Small quartz grains, 5 {micro}m in size, caused extensive foaming because their major portion dissolved at temperatures <800 C, contributing to the formation of viscous glass forming melt that trapped evolving batch gases. Primary foam did not occur in batches with larger quartz grains, {+-}75 {micro}m in size, because their major portion dissolved at temperatures >800 C when batch gases no longer evolved. The exothermal reaction of nitrates with sucrose was ignited at a temperature as low as 160 C and caused a temporary jump in temperature of several hundred degrees. Secondary foam, the source of which is oxygen from redox reactions, occurred in all batches of a limited composition variation involving five oxides, B{sub 2}O{sub 3}, CaO, Li{sub 2}O, MgO, and Na{sub 2}O. The foam volume at the maximum volume-increase rate was a weak function of temperature and melt basicity. Neither the batch makeup nor the change in glass composition had a significant impact on the dissolution of silica grains. The impacts of primary foam generation on glass homogeneity and the rate of melting in large-scale continuous furnaces have yet to be established via mathematical modeling and melter experiments.

  9. DOWNSTREAM MOVEMENT OF SALMON IDS

    E-Print Network [OSTI]

    DOWNSTREAM MOVEMENT OF SALMON IDS AT BONNEVILLE DAM Marine Biological Laboratory APR 1 7 1958 WOODS Washington, D. C January 1958 #12;ABSTRACT At Bonneville Deun most downstream-migrant salmonlds were ca TABLES 1. Hourly catches of downstream-migrant seLLmonids in 1952. Each hour represents the suomation

  10. DISCOVER-AQ Outlook for Monday, July 4, 2011 Strong thunderstorms rolled through the study area early this morning in response to the passage of the

    E-Print Network [OSTI]

    visibility. · Light / variable winds with overcast. · Front that will push through this afternoon · Sfc with light and variable surface winds may begin an AQ stagnation scenario. · Scattered low to mid pressure remains in place producing light and variable winds · Cloud cover at multiple levels. #12;NAM

  11. DISCOVER-AQ Outlook for Friday, July 21, 2011 High surface temperatures of near 100 F today in the study region have led to substantial ozone

    E-Print Network [OSTI]

    Orange for PM2.5 today, which is the first time that has occurred during DISCOVER-AQ. South and SW winds expected. Southerly winds continue to bring moisture into our region. 500 mb NAM at 2 PM. #12;Tomorrow Saturday: Heat and humidity sticks around. Sunday: Hot, sticky, and cloud coverage > 50%. Light Winds Juicy

  12. Temperature effects on seawater batch activated sludge systems

    E-Print Network [OSTI]

    Wigley, Henry Albert

    1972-01-01T23:59:59.000Z

    TEMPERATURE EFFECTS ON SEAMATER BATCH ACTIVATED SLUDGE SYSTEMS A Thesis by HENRY ALBERT WIGLEY, JR. Submitted to the Graduate Colleqe of Texas A&M University in partial fulfillment of the requirement for the deqree of MASTER OF SCIENCE May... 1972 Major Subject: Civil Engineerinq TEMPERATURE EFFECTS ON SEAWATER BATCH ACTIVATED SLUDGE SYSTEMS A Thesis by HENRY ALBERT WIGLEY, JR. Approved as to style and content by: C ai rman o ommi ttee Head of D partmen Member Member May 1972...

  13. REQUEST FOR TRAVEL AUTHORIZATION Document ID #

    E-Print Network [OSTI]

    Texas at Austin, University of

    REQUEST FOR TRAVEL AUTHORIZATION Document ID # Name: UTEID: Travel Dates: Begin: End: Destination," please allow one month for processssing. Helpful Information: Navigant (Travel Management) (512

  14. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOffice ofHale Plan24, 2013 DOE-ID Operations

  15. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOffice ofHale Plan24, 2013 DOE-ID

  16. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOffice ofHale Plan24, 2013 DOE-ID26, 2013

  17. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOffice ofHale Plan24, 2013 DOE-ID26,

  18. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOffice ofHale Plan24, 2013 DOE-ID26,5, 2013

  19. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOffice ofHale Plan24, 2013 DOE-ID26,5,

  20. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOffice ofHale Plan24, 2013 DOE-ID26,5,6,

  1. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOffice ofHale Plan24, 2013 DOE-ID26,5,6,27,

  2. SLUDGE BATCH 7B GLASS VARIABILITY STUDY

    SciTech Connect (OSTI)

    Johnson, F.; Edwards, T.

    2011-10-25T23:59:59.000Z

    The Defense Waste Processing Facility (DWPF) is preparing to initiate processing Sludge Batch 7b (SB7b). In support of the upcoming processing, the Savannah River National Laboratory (SRNL) provided a recommendation to utilize Frits 418 with a 6% Na{sub 2}O addition (26 wt% Na{sub 2}O in sludge) and 702 with a 4% Na{sub 2}O addition (24 wt% Na{sub 2}O in sludge) to process SB7b. This recommendation was based on assessments of the compositional projections for SB7b available at the time from the Savannah River Remediation (SRR). To support qualification of SB7b, SRNL executed a variability study to assess the applicability of the current durability models for SB7b. The durability models were assessed over the expected composition range of SB7b, including potential caustic additions, combined with Frits 702 and 418 over a 32-40% waste loading (WL) range. Thirty four glasses were selected based on Frits 418 and 702 coupled with the sludge projections with an additional 4-6% Na{sub 2}O to reflect the potential caustic addition. Six of these glasses, based on average nominal sludge compositions including the appropriate caustic addition, were developed for both Frit 418 and Frit 702 at 32, 36 and 40% WL to provide coverage in the center of the anticipated SB7b glass region. All glasses were fabricated and characterized using chemical composition analysis, X-ray diffraction (XRD) and the Product Consistency Test (PCT). To comply with the DWPF Glass Product Control Program, a total of thirty four glasses were fabricated to assess the applicability of the current DWPF PCCS durability models. Based on the measured PCT response, all of the glasses were acceptable with respect to the Environmental Assessment (EA) benchmark glass regardless of thermal history. The NL[B] values of the SB7b variability study glasses were less than 1.99 g/L as compared to 16.695 g/L for EA. A small number of the D-optimally selected 'outer layer' extreme vertices (EV) glasses were not predictable using the current Product Composition Control System (PCCS) models for durability, but were acceptable compared to the EA glass when tested. These glasses fell outside of the lower 95% confidence band, which demonstrates conservatism in the model. A few of the glasses fell outside of the upper 95% confidence band; however, these particular glasses have normalized release values that were much lower than the values of EA and should be of no practical concern. Per the requirements of the DWPF Glass Product Control Program, the PCCS durability models have been shown to be applicable to the SB7b sludge system with a range of Na{sub 2}O concentrations blended with Frits 418 or 702. PCT results from the glasses fabricated as part of the variability study were shown to be predictable by the current DWPF PCCS models and/or acceptable with respect to the EA benchmark glass regardless of thermal history or compositional view.

  3. Reporting Tools Course ID: FMS121

    E-Print Network [OSTI]

    Shull, Kenneth R.

    Reporting Tools Course ID: FMS121 PS Query 03/31/2009 © 2009 Northwestern University FMS121 0 Introduction to Query For Query Developers Query is an ad-hoc reporting tool that allows you to retrieve data will have access to both query viewer and query manager pages. #12;Reporting Tools Course ID: FMS121 PS

  4. Reporting Tools Course ID: FMS121

    E-Print Network [OSTI]

    Shull, Kenneth R.

    Reporting Tools Course ID: FMS121 PS Query 03/31/2009 © 2009 Northwestern University FMS121 0 Introduction to Query For Query Viewers Query is an ad-hoc reporting tool that allows you to retrieve data will have access to both query viewer and query manager pages. #12;Reporting Tools Course ID: FMS121 PS

  5. Durability of Diesel Engine Particulate Filters (Agreement ID...

    Broader source: Energy.gov (indexed) [DOE]

    Durability of Diesel Engine Particulate Filters (Agreement ID:10461) Durability of Diesel Engine Particulate Filters (Agreement ID:10461) 2013 DOE Hydrogen and Fuel Cells Program...

  6. ID BUC$ EQUIPMENT REQUEST FORM CAMPUS EVENT PAYMENT OPTION

    E-Print Network [OSTI]

    Karsai, Istvan

    ID BUC$ EQUIPMENT REQUEST FORM CAMPUS EVENT PAYMENT OPTION FOR ETSU ORGANIZATIONS Name ID BUC$. ETSU account transfer or a check requested? o ETSU Account

  7. Dissolution retardation of solid silica during glass batch-melting

    SciTech Connect (OSTI)

    Hrma, Pavel R.; Marcial, Jose

    2011-07-15T23:59:59.000Z

    During glass-batch melting, solid silica (quartz) usually dissolves last. A retardation function was defined as a measure of the progressive inhibition of silica dissolution that occurs during batch melting. This function is based on the comparison of the measured rate of dissolution of silica particles with the hypothetical diffusion-controlled volume flux from regularly distributed particles with uniform concentration layers around them. The severe inhibition of silica dissolution has been attributed to the irregular spatial distribution of silica particles that is associated with the formation of nearly saturated melt at a portion of their surfaces. Irregular shapes and unequal sizes of particles also contribute to their extended lifetime.

  8. Separation of Azeotropic Mixtures in Closed Batch Distillation Arrangements

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Separation of Azeotropic Mixtures in Closed Batch Distillation Arrangements S. Skouras and S to obtain a light and a heavy fraction simultaneously from the top and the bottom of the column, while an intermediate fraction may also be recovered in the middle vessel. Two modifications of the multivessel

  9. MULTIVESSEL BATCH DISTILLATION 1 SIGURD SKOGESTAD 2 , BERND WITTGENS,

    E-Print Network [OSTI]

    Skogestad, Sigurd

    MULTIVESSEL BATCH DISTILLATION 1 SIGURD SKOGESTAD 2 , BERND WITTGENS, EVA SŘRENSEN 3 and RAJAB distillation schemes. A simple feedback control strategy for the total reflux operation of a multivessel column distillation generally is less energy efficient than continuous distillation, it has received increased

  10. MULTIVESSEL BATCH DISTILLATION 1 SIGURD SKOGESTAD 2 , BERND WITTGENS,

    E-Print Network [OSTI]

    Skogestad, Sigurd

    MULTIVESSEL BATCH DISTILLATION 1 SIGURD SKOGESTAD 2 , BERND WITTGENS, EVA S RENSEN 3 and RAJAB distillation schemes. A simple feedback control strategy for the total re ux operation of a multivessel column distillation generally is less energy e cient than continuous distillation, it has received increased attention

  11. On the Impossibility of Batch Update for Cryptographic Accumulators

    E-Print Network [OSTI]

    On the Impossibility of Batch Update for Cryptographic Accumulators Philippe Camacho Dept@dcc.uchile.cl December 15, 2009 Abstract A cryptographic accumulator is a scheme where a set of elements is represented into the set. In their survey on accumulators [FN02], Fazzio and Nicolisi noted that the Camenisch

  12. On the Impossibility of Batch Update for Cryptographic Accumulators

    E-Print Network [OSTI]

    Hevia, Alejandro

    On the Impossibility of Batch Update for Cryptographic Accumulators Philippe Camacho and Alejandro. {pcamacho,ahevia}@dcc.uchile.cl Abstract. A cryptographic accumulator is a scheme where a set of elements membership into the set. If new values are added or existent values are deleted from the accumulator

  13. Improving SSL Handshake Performance via Batching Hovav Shacham Dan Boneh

    E-Print Network [OSTI]

    Boneh, Dan

    Improving SSL Handshake Performance via Batching Hovav Shacham Dan Boneh hovav@cs.stanford.edu dabo@cs.stanford.edu Abstract We present an algorithmic approach for speeding up SSL's performance on a web server. Our approach improves the performance of SSL's handshake protocol by up to a factor of 2.5 for 1024-bit RSA keys

  14. SLUDGE WASHING AND DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS FOR SLUDGE BATCH 7A QUALIFICATION

    SciTech Connect (OSTI)

    Pareizs, J.; Billings, A.; Click, D.

    2011-07-08T23:59:59.000Z

    Waste Solidification Engineering (WSE) has requested that characterization and a radioactive demonstration of the next batch of sludge slurry (Sludge Batch 7a*) be completed in the Shielded Cells Facility of the Savannah River National Laboratory (SRNL) via a Technical Task Request (TTR). This characterization and demonstration, or sludge batch qualification process, is required prior to transfer of the sludge from Tank 51 to the Defense Waste Processing Facility (DWPF) feed tank (Tank 40). The current WSE practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks. Discharges of nuclear materials from H Canyon are often added to Tank 51 during sludge batch preparation. The sludge is washed and transferred to Tank 40, the current DWPF feed tank. Prior to transfer of Tank 51 to Tank 40, SRNL simulates the Tank Farm and DWPF processes with a Tank 51 sample (referred to as the qualification sample). Sludge Batch 7a (SB7a) is composed of portions of Tanks 4, 7, and 12; the Sludge Batch 6 heel in Tank 51; and a plutonium stream from H Canyon. SRNL received the Tank 51 qualification sample (sample ID HTF-51-10-125) following sludge additions to Tank 51. This report documents: (1) The washing (addition of water to dilute the sludge supernate) and concentration (decanting of supernate) of the SB7a - Tank 51 qualification sample to adjust sodium content and weight percent insoluble solids to Tank Farm projections. (2) The performance of a DWPF Chemical Process Cell (CPC) simulation using the washed Tank 51 sample. The simulation included a Sludge Receipt and Adjustment Tank (SRAT) cycle, where acid was added to the sludge to destroy nitrite and reduce mercury, and a Slurry Mix Evaporator (SME) cycle, where glass frit was added to the sludge in preparation for vitrification. The SME cycle also included replication of five canister decontamination additions and concentrations. Processing parameters were based on work with a non-radioactive simulant. (3) Vitrification of a portion of the SME product and characterization and durability testing (as measured by the Product Consistency Test (PCT)) of the resulting glass. (4) Rheology measurements of the initial slurry samples and samples after each phase of CPC processing. This program was controlled by a Task Technical and Quality Assurance Plan (TTQAP), and analyses were guided by an Analytical Study Plan. This work is Technical Baseline Research and Development (R&D) for the DWPF. It should be noted that much of the data in this document has been published in interoffice memoranda. The intent of this technical report is bring all of the SB7a related data together in a single permanent record and to discuss the overall aspects of SB7a processing.

  15. HIGH LEVEL WASTE SLUDGE BATCH 4 VARIABILITY STUDY

    SciTech Connect (OSTI)

    Fox, K; Tommy Edwards, T; David Peeler, D; David Best, D; Irene Reamer, I; Phyllis Workman, P

    2006-10-02T23:59:59.000Z

    The Defense Waste Processing Facility (DWPF) is preparing for vitrification of High Level Waste (HLW) Sludge Batch 4 (SB4) in early FY2007. To support this process, the Savannah River National Laboratory (SRNL) has provided a recommendation to utilize Frit 503 for vitrifying this sludge batch, based on the composition projection provided by the Liquid Waste Organization on June 22, 2006. Frit 418 was also recommended for possible use during the transition from SB3 to SB4. A critical step in the SB4 qualification process is to demonstrate the applicability of the durability models, which are used as part of the DWPF's process control strategy, to the glass system of interest via a variability study. A variability study is an experimentally-driven assessment of the predictability and acceptability of the quality of the vitrified waste product that is anticipated from the processing of a sludge batch. At the DWPF, the durability of the vitrified waste product is not directly measured. Instead, the durability is predicted using a set of models that relate the Product Consistency Test (PCT) response of a glass to the chemical composition of that glass. In addition, a glass sample is taken during the processing of that sludge batch, the sample is transmitted to SRNL, and the durability is measured to confirm acceptance. The objective of a variability study is to demonstrate that these models are applicable to the glass composition region anticipated during the processing of the sludge batch - in this case the Frit 503 - SB4 compositional region. The success of this demonstration allows the DWPF to confidently rely on the predictions of the durability/composition models as they are used in the control of the DWPF process.

  16. Id-1 and Id-2 genes and products as markers of epithelial cancer

    SciTech Connect (OSTI)

    Desprez, Pierre-Yves (El Cerrito, CA); Campisi, Judith (Berkeley, CA)

    2011-10-04T23:59:59.000Z

    A method for detection and prognosis of breast cancer and other types of cancer. The method comprises detecting expression, if any, for both an Id-1 and an Id-2 genes, or the ratio thereof, of gene products in samples of breast tissue obtained from a patient. When expressed, Id-1 gene is a prognostic indicator that breast cancer cells are invasive and metastatic, whereas Id-2 gene is a prognostic indicator that breast cancer cells are localized and noninvasive in the breast tissue.

  17. Id-1 and Id-2 genes and products as markers of epithelial cancer

    DOE Patents [OSTI]

    Desprez, Pierre-Yves (El Cerrito, CA); Campisi, Judith (Berkeley, CA)

    2008-09-30T23:59:59.000Z

    A method for detection and prognosis of breast cancer and other types of cancer. The method comprises detecting expression, if any, for both an Id-1 and an Id-2 genes, or the ratio thereof, of gene products in samples of breast tissue obtained from a patient. When expressed, Id-1 gene is a prognostic indicator that breast cancer cells are invasive and metastatic, whereas Id-2 gene is a prognostic indicator that breast cancer cells are localized and noninvasive in the breast tissue.

  18. Feedback Stabilization of Fed-Batch Bioreactors: Non-Monotonic Growth Kinetics

    E-Print Network [OSTI]

    Bastin, Georges

    Feedback Stabilization of Fed-Batch Bioreactors: Non-Monotonic Growth Kinetics Ilse Y. Smets's yeast, food additives, and recom- binant proteins), optimization and control of fed-batch bioreactors

  19. Minimal time problem for a fed-batch bioreactor with saturating singular control

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Minimal time problem for a fed-batch bioreactor with saturating singular control T´erence Bayen in the present work is a fed-batch bioreactor with one species and one substrate. Our aim is to find an optimal

  20. Control of Job Arrivals with Processing Time Windows into Batch Processor Buffer

    E-Print Network [OSTI]

    Tajan, John Benedict Cheng

    Consider a two-stage manufacturing system composed of a batch processor and its upstream feeder processor. Jobs exit the feeder processor and join a queue in front of the batch processor, where they wait to be processed. ...

  1. UT-B ID 201102665 Technology Summary

    E-Print Network [OSTI]

    Pennycook, Steve

    also enable users to evaluate future energy technologies, including renewable energies. Advantages users to evaluate future energy technologies including renewables Potential Applications · UtilityUT-B ID 201102665 06.2012 Technology Summary Promoting energy efficiency is a primary focus

  2. ____________________Rowan ID# K. Bryant 3/2013

    E-Print Network [OSTI]

    Rusu, Adrian

    ____________________Rowan ID# K. Bryant 3/2013 Private/Alternative Education Loan Understanding receipt) the form to: Cooper Medical School of Rowan University, Office of Financial Aid Kyhna Bryant

  3. Document ID: POLUMITPUR01702 Information Technology

    E-Print Network [OSTI]

    Shyu, Mei-Ling

    Document ID: POLUMITPUR01702 Information Technology Supersedes: POLUMITPUR01701 Effective Date: 02 Sep 2014 Page 1 of 5 Document Title: Purchasing Computerized Systems/Software Applications Miletic Manager ­ Quality Assurance Research Compliance and Quality Assurance Made revisions based

  4. Kentucky WRI Pilot Test Universal ID

    E-Print Network [OSTI]

    screening deployment experience · Significant cost savings to FMCSA ·Enabling technology already deployedKentucky WRI Pilot Test ­ Universal ID Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 #12;·Utilizes existing automated screening system ·Uses assorted

  5. JOB DESCRIPTION Requisition ID 4206BR

    E-Print Network [OSTI]

    general office and administrative policies. · May supervise lower level staff members. · Schedules in accordance with established procedures. · Performs research and/or statistical analyses and assistsJOB DESCRIPTION Requisition ID 4206BR ASU Job Title Administrative Secretary Job Title

  6. pH control of a fed batch reactor with precipitation J. Barraud a

    E-Print Network [OSTI]

    pH control of a fed batch reactor with precipitation J. Barraud a , Y. Creff a , N. Petit b,* a IFP of controlling the pH, in a fed batch reactor where precipitation occurs, is con- sidered. Due to the batch Keywords: pH control Fed batch process Precipitation a b s t r a c t In this paper, the problem

  7. MULTIVESSEL BATCH DISTILLATION SIGURD SKOGESTAD 1 , BERND WITTGENS, EVA S RENSEN 2

    E-Print Network [OSTI]

    Skogestad, Sigurd

    MULTIVESSEL BATCH DISTILLATION SIGURD SKOGESTAD 1 , BERND WITTGENS, EVA S RENSEN 2 and RAJAB LITTO column presented in this paper provides a generalization of previously proposed batch distillation schemes. The economic potential of the multivessel batch distillation under total re ux is demon- strated

  8. Experimental and Theoretical Studies on the Start-Up Operation of a Multivessel Batch Distillation Column

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Experimental and Theoretical Studies on the Start-Up Operation of a Multivessel Batch DistillationVersity of Science and Technology, Trondheim, Norway Multivessel batch distillation is a promising alternative to conventional batch distillation. Earlier studies proved the feasibility of temperature control in a closed

  9. On the Dynamics of Batch Distillation : A Study of Parametric Sensitivity in Ideal

    E-Print Network [OSTI]

    Skogestad, Sigurd

    On the Dynamics of Batch Distillation : A Study of Parametric Sensitivity in Ideal Binary Columns sensitivity in batch distillation processes. By considering the effect of small changes in the operating #12; 1 Introduction Batch distillation has become of increasing importance in industry during the last

  10. MULTIVESSEL BATCH DISTILLATION -EXPERIMENTAL VERIFICATION Bernd Wittgens and Sigurd Skogestad1

    E-Print Network [OSTI]

    Skogestad, Sigurd

    MULTIVESSEL BATCH DISTILLATION -EXPERIMENTAL VERIFICATION Bernd Wittgens and Sigurd Skogestad1 The experimental veri cation of the operation of a multivessel batch distillation column, operated under total re vessels, provides a generalization of previously proposed batch distillation schemes. We propose a simple

  11. MULTIVESSEL BATCH DISTILLATION SIGURD SKOGESTAD 1 , BERND WITTGENS, EVA SRENSEN 2

    E-Print Network [OSTI]

    Skogestad, Sigurd

    MULTIVESSEL BATCH DISTILLATION SIGURD SKOGESTAD 1 , BERND WITTGENS, EVA SŘRENSEN 2 and RAJAB LITTO column presented in this paper provides a generalization of previously proposed batch distillation schemes. The economic potential of the multivessel batch distillation under total reflux is demon­ strated

  12. Minimal time control of fed-batch bioreactor with product Terence Bayen Francis Mairet

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Minimal time control of fed-batch bioreactor with product inhibition T´erence Bayen · Francis-batch bioreactors, in presence of an inhibitory product, which is released by the biomass proportionally to its Introduction Fed-batch operation of bioreactor is a popular operating mode used in industry as the limiting

  13. Effect of Alumina Source on the Rate of Melting Demonstrated with Nuclear Waste Glass Batch

    SciTech Connect (OSTI)

    Pierce, David A.; Hrma, Pavel R.; Marcial, Jose; Riley, Brian J.; Schweiger, Michael J.

    2012-03-30T23:59:59.000Z

    The melting behaviors of three glass batches formulated to vitrify high-level waste were compared. These batches, otherwise identical, differed in the alumina source: one was prepared with corundum (Al2O3), another with gibbsite [Al(OH)3], and the other with boehmite [AlO(OH)]. Batch samples, in the form of loose batches or pressed pellets, were heated at 5°C/min up to 1200°C. The expansion of pellets was monitored photographically. Quenched samples of batches, heated in crucibles, were thin-sectioned, investigated with optical microscopy, and analyzed with X-ray diffraction to quantify crystalline phases. Finally, batch-to-glass conversion was investigated with thermal analysis. Corundum was still present in one batch up to 900°C whereas gibbsite and boehmite dissolved below 500°C. In the batch with corundum, quartz, the source of silica, dissolved marginally earlier than in the batches with gibbsite and boehmite. Unlike the batch with corundum that exhibited considerable foaming, the batches with gibbsite and boehmite did not produce primary foam and made a more homogeneous glass. The occurrence of primary foam in the batch with corundum is a likely cause of a low rate of melting within the cold cap of a large-scale electric melter.

  14. Optimisation of sanitary landfill leachate treatment in a sequencing batch reactor

    E-Print Network [OSTI]

    Optimisation of sanitary landfill leachate treatment in a sequencing batch reactor A. Spagni, S al. 1988; Kjeldsen et al. 2002). Among several technologies, sequen- cing batch reactors (SBRs) haveH and oxidation-reduction potential (ORP) have been frequently used for monitoring and control of batch reactors

  15. Batch polymerization of styrene initiated by alkyl lithiums

    E-Print Network [OSTI]

    Desai, Rashmi R

    1970-01-01T23:59:59.000Z

    -butyl lithium using cyclohexane as the solvent, The polymerization is carried out in an isothermal batch reactor at a temperature of. 5D C. The proposed reaction proceeds by a homogenous anionic mechanism. The mathematical model developed by Edgar (6..., propagat)on and their kinetics, In this work the experimentally detersnined molecu]ar weight distribution and monomer conversions are compared with the results predicted by a mathematical model developed by Edgar (11). Rate constants determined by Hsieh...

  16. Dynamic Control for Batch Process Systems Using Stochastic Utility Evaluation

    E-Print Network [OSTI]

    Park, Hongsuk

    2012-10-19T23:59:59.000Z

    for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Amarnath Banerjee Committee Members, César O. Malavé James A. Wall Yoonsuck Choe Head of Department, Brett A. Peters August 2011 Major Subject: Industrial Engineering...: Dr. Amarnath Banerjee Most research studies in the batch process control problem are focused on optimizing system performance. The methods address the problem by minimizing single criterion such as cycle time and tardiness, or bi...

  17. SLUDGE BATCH 4 SIMULANT FLOWSHEET STUDIES: PHASE II RESULTS

    SciTech Connect (OSTI)

    Stone, M; David Best, D

    2006-09-12T23:59:59.000Z

    The Defense Waste Processing Facility (DWPF) will transition from Sludge Batch 3 (SB3) processing to Sludge Batch 4 (SB4) processing in early fiscal year 2007. Tests were conducted using non-radioactive simulants of the expected SB4 composition to determine the impact of varying the acid stoichiometry during the Sludge Receipt and Adjustment Tank (SRAT) process. The work was conducted to meet the Technical Task Request (TTR) HLW/DWPF/TTR-2004-0031 and followed the guidelines of a Task Technical and Quality Assurance Plan (TT&QAP). The flowsheet studies are performed to evaluate the potential chemical processing issues, hydrogen generation rates, and process slurry rheological properties as a function of acid stoichiometry. Initial SB4 flowsheet studies were conducted to guide decisions during the sludge batch preparation process. These studies were conducted with the estimated SB4 composition at the time of the study. The composition has changed slightly since these studies were completed due to changes in the sludges blended to prepare SB4 and the estimated SB3 heel mass. The following TTR requirements were addressed in this testing: (1) Hydrogen and nitrous oxide generation rates as a function of acid stoichiometry; (2) Acid quantities and processing times required for mercury removal; (3) Acid quantities and processing times required for nitrite destruction; and (4) Impact of SB4 composition (in particular, oxalate, manganese, nickel, mercury, and aluminum) on DWPF processing (i.e. acid addition strategy, foaming, hydrogen generation, REDOX control, rheology, etc.).

  18. ID Nom Prnom Groupe 11206695 ABDOU CHAFIN B

    E-Print Network [OSTI]

    Mironescu, Petru

    ID Nom Prénom Groupe 11206695 ABDOU CHAFIN B 11207912 ABDOU-RAZACK AIDIDE D 11207680 ACOLATSE REGIS

  19. REAL WASTE TESTING OF SLUDGE BATCH 5 MELTER FEED RHEOLOGY

    SciTech Connect (OSTI)

    Reboul, S.; Stone, M.

    2010-03-17T23:59:59.000Z

    Clogging of the melter feed loop at the Defense Waste Processing Facility (DWPF) has reduced the throughput of Sludge Batch 5 (SB5) processing. After completing a data review, DWPF attributed the clogging to the rheological properties of the Slurry Mix Evaporator (SME) project. The yield stress of the SB5 melter feed material was expected to be high, based on the relatively high pH of the SME product and the rheological results of a previous Chemical Process Cell (CPC) demonstration performed at the Savannah River National Laboratory (SRNL).

  20. Optimal IDS Sensor Placement And Alert Prioritization Using Attack Graphs

    E-Print Network [OSTI]

    Noel, Steven

    1 Optimal IDS Sensor Placement And Alert Prioritization Using Attack Graphs Steven Noel and Sushil optimally place intrusion detection system (IDS) sensors and prioritize IDS alerts using attack graph. The set of all such paths through the network constitutes an attack graph, which we aggregate according

  1. Article ID #eqr106 REPLACEMENT STRATEGIES

    E-Print Network [OSTI]

    Popova, Elmira

    Article ID #eqr106 REPLACEMENT STRATEGIES Elmira Popova Associate Professor, Department)-296-5795 e-mail: popovai@seattleu.edu Corresponding Contributor: Elmira Popova Keywords: Replacement Policies define what is a replacement policy for a system that fails randomly in time and its main characteristics

  2. Master Project Assessment Form Student: ID number

    E-Print Network [OSTI]

    Franssen, Michael

    Master Project Assessment Form Student: ID number: Master Program: Graduation supervisor Graduation presentation Defense Execution of the project Grade Signature of supervisor Date * Hand in at the student administration (MF 3.068) together with an official result form (uitslagbon) #12;"Master Project

  3. LAYNE, HOSPEDALES, GONG: RE-ID: HUNTING ATTRIBUTES IN THE WILD 1 Re-id: Hunting Attributes in the Wild

    E-Print Network [OSTI]

    Gong, Shaogang

    LAYNE, HOSPEDALES, GONG: RE-ID: HUNTING ATTRIBUTES IN THE WILD 1 Re-id: Hunting Attributes in the Wild Ryan Layne r.d.c.layne@qmul.ac.uk Timothy M. Hospedales t.hospedales@qmul.ac.uk Shaogang Gong s.gong, HOSPEDALES, GONG: RE-ID: HUNTING ATTRIBUTES IN THE WILD Much re-identification research breaks down into two

  4. Increased CPC batch size study for Tank 42 sludge in the Defense Waste Processing Facility

    SciTech Connect (OSTI)

    Daniel, W.E.

    2000-01-06T23:59:59.000Z

    A series of experiments have been completed at TNX for the sludge-only REDOX adjusted flowsheet using Tank 42 sludge simulant in response to the Technical Task Request HLW/DWPT/TTR-980013 to increase CPC batch sizes. By increasing the initial SRAT batch size, a melter feed batch at greater waste solids concentration can be prepared and thus increase melter output per batch by about one canister. The increased throughput would allow DWPF to dispose of more waste in a given time period thus shortening the overall campaign.

  5. FLOWSHEET FOR ALUMINUM REMOVAL FROM SLUDGE BATCH 6

    SciTech Connect (OSTI)

    Pike, J; Jeffrey Gillam, J

    2008-12-17T23:59:59.000Z

    Samples of Tank 12 sludge slurry show a substantially larger fraction of aluminum than originally identified in sludge batch planning. The Liquid Waste Organization (LWO) plans to formulate Sludge Batch 6 (SB6) with about one half of the sludge slurry in Tank 12 and one half of the sludge slurry in Tank 4. LWO identified aluminum dissolution as a method to mitigate the effect of having about 50% more solids in High Level Waste (HLW) sludge than previously planned. Previous aluminum dissolution performed in a HLW tank in 1982 was performed at approximately 85 C for 5 days and dissolved nearly 80% of the aluminum in the sludge slurry. In 2008, LWO successfully dissolved 64% of the aluminum at approximately 60 C in 46 days with minimal tank modifications and using only slurry pumps as a heat source. This report establishes the technical basis and flowsheet for performing an aluminum removal process in Tank 51 for SB6 that incorporates the lessons learned from previous aluminum dissolution evolutions. For SB6, aluminum dissolution process temperature will be held at a minimum of 65 C for at least 24 days, but as long as practical or until as much as 80% of the aluminum is dissolved. As planned, an aluminum removal process can reduce the aluminum in SB6 from about 84,500 kg to as little as 17,900 kg with a corresponding reduction of total insoluble solids in the batch from 246,000 kg to 131,000 kg. The extent of the reduction may be limited by the time available to maintain Tank 51 at dissolution temperature. The range of dissolution in four weeks based on the known variability in dissolution kinetics can range from 44 to more than 80%. At 44% of the aluminum dissolved, the mass reduction is approximately 1/2 of the mass noted above, i.e., 33,300 kg of aluminum instead of 66,600 kg. Planning to reach 80% of the aluminum dissolved should allow a maximum of 81 days for dissolution and reduce the allowance if test data shows faster kinetics. 47,800 kg of the dissolved aluminum will be stored in Tank 8 and 21,000 kg will be stored in saltcake via evaporation. Up to 77% of the total aluminum planned for SB6 may be removed via aluminum dissolution. Storage of the aluminum-laden supernate in Tank 8 will require routine evaluation of the free hydroxide concentration in order to maintain aluminum in solution. Periodic evaluation will be established on concurrent frequency with corrosion program samples as previously established for aluminum-laden supernate from SB5 that is stored in Tank 11.

  6. Uranium Adsorption on Granular Activated Carbon – Batch Testing

    SciTech Connect (OSTI)

    Parker, Kent E.; Golovich, Elizabeth C.; Wellman, Dawn M.

    2013-09-26T23:59:59.000Z

    The uranium adsorption performance of two activated carbon samples (Tusaar Lot B-64, Tusaar ER2-189A) was tested using unadjusted source water from well 299-W19-36. These batch tests support ongoing performance optimization efforts to use the best material for uranium treatment in the Hanford Site 200 West Area groundwater pump-and-treat system. A linear response of uranium loading as a function of the solution-to-solid ratio was observed for both materials. Kd values ranged from ~380,000 to >1,900,000 ml/g for the B-64 material and ~200,000 to >1,900,000 ml/g for the ER2-189A material. Uranium loading values ranged from 10.4 to 41.6 ?g/g for the two Tusaar materials.

  7. Inside-Outside ID: 00050001778e 0

    E-Print Network [OSTI]

    Shirai, Kiyoaki

    EDR 1 EDR EDR 1 Inside-Outside [2, 3] [1] EDR [5, 6] 2 2 EDR · ( ) · ( ) 1 EDR ID: 00050001778e 0 2222 1 @@@@@ 2 3 ¨¨ rr hhhhh 4 $$$$ 5 ¨¨ 6 44 1: EDR 1 1 1 · " " " " [ ] #12;1: 6 5 4 5 6 3 2 3 1 2 4 0 1 · " " : EDR " " " " [ ] · " " : " " " " · " " : " " [ ] · " " : EDR

  8. On the Dynamics of Batch Distillation : A Study of Parametric Sensitivity in Ideal

    E-Print Network [OSTI]

    Skogestad, Sigurd

    On the Dynamics of Batch Distillation : A Study of Parametric Sensitivity in Ideal Binary Columns distillation processes. By considering the e ect of small changes in the operating parameters, e.g., initial-mail: jacobsen@elixir.e.kth.se 1 #12;1 Introduction Batch distillation has become of increasing importance

  9. Integrated Design, Operation and Control of Batch Extractive Distillation with a Middle Vessel

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Integrated Design, Operation and Control of Batch Extractive Distillation with a Middle Vessel E. K distillation for separating homogeneous minimum-boiling azeotropic mixtures, where the extractive agent and a control structure for the batch extractive middle vessel distillation is proposed. In extractive

  10. Integrated Design, Operation and Control of Batch Extractive Distillation with a Middle Vessel

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Integrated Design, Operation and Control of Batch Extractive Distillation with a Middle Vessel E. K distillation for separating homogeneous minimum­boiling azeotropic mixtures, where the extractive agent and a control structure for the batch extractive middle vessel distillation is proposed. In extractive

  11. SEPARATION OF TERNARY HETEROAZEOTROPIC MIXTURES IN A CLOSED MULTIVESSEL BATCH DISTILLATION-DECANTER HYBRID

    E-Print Network [OSTI]

    Skogestad, Sigurd

    SEPARATION OF TERNARY HETEROAZEOTROPIC MIXTURES IN A CLOSED MULTIVESSEL BATCH DISTILLATION, Trondheim, Norway The feasibility of a novel multivessel batch distillation-decanter hybrid for simultaneous enables us to make direct use of the distillation line (or residue curve) map. Simple rules for predicting

  12. THE TEMPERATURE-LIMITED FED-BATCH TECHNIQUE FOR CONTROL OF ESCHERICHIA COLI CULTURES

    E-Print Network [OSTI]

    Enfors, Sven-Olof

    from 18 to 37 °C. A dynamic simulation model of the TLFB technique was developed and the results wereTHE TEMPERATURE-LIMITED FED-BATCH TECHNIQUE FOR CONTROL OF ESCHERICHIA COLI CULTURES MARIE SVENSSON with emphasis on the temperature-limited fed-batch (TLFB) culture. The TLFB technique controls the oxygen

  13. Robust controller design for temperature tracking problems in jacketed batch reactors

    E-Print Network [OSTI]

    Palanki, Srinivas

    Robust controller design for temperature tracking problems in jacketed batch reactors Vishak for temperature tracking problems in batch reactors in the presence of parametric uncertainty. The controller has]. Control is achieved by manipulating the heat content from the jacket to the reactor. In the past

  14. APPLIED MICROBIAL AND CELL PHYSIOLOGY Electricity production from xylose in fed-batch

    E-Print Network [OSTI]

    -batch and continuous-flow microbial fuel cells Liping Huang & Bruce E. Logan Received: 23 March 2008 /Revised: 30 May-scale (0.77 l) air-cathode, brush- anode microbial fuel cell (MFC) operated in fed-batch mode using xylose vary with xylose loading. Keywords Microbial fuel cell . Xylose . Degradation . Power production

  15. Production Leveling (Heijunka) Implementation in a Batch Production System: a Case Study

    E-Print Network [OSTI]

    Boyer, Edmond

    Production Leveling (Heijunka) Implementation in a Batch Production System: a Case Study Luciano a case study of an implementation of a new method for Production Leveling designed for batch production. It includes prioritizing criteria of products and level production plan. Moreover, it was applied

  16. Design of Batch Tube Reactor 377 Applied Biochemistry and Biotechnology Vol. 9193, 2001

    E-Print Network [OSTI]

    California at Riverside, University of

    Design of Batch Tube Reactor 377 Applied Biochemistry and Biotechnology Vol. 91­93, 2001 Copyright unparalleled environmental, economic, and strategic benefits. However, low-cost, high-yield technologies for varying reaction con- ditions. In this article, heat transfer for batch tubes is analyzed to derive

  17. Integrated Scheduling and Dynamic Optimization of Batch Processes Using State Equipment Networks

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Integrated Scheduling and Dynamic Optimization of Batch Processes Using State Equipment Networks value to existing assets Improving plant reliability 1 J.M. Wassick and J. Ferrio. Extending A batch plant with existing equipment A time horizon to make products Dynamic models of process operations

  18. Optimization of Fed-Batch Saccharomyces cereWisiae Fermentation Using Dynamic Flux Balance Models

    E-Print Network [OSTI]

    Mountziaris, T. J.

    ARTICLES Optimization of Fed-Batch Saccharomyces cereWisiae Fermentation Using Dynamic Flux Balance metabolism with dynamic mass balances on key extracellular species. Model-based dynamic optimization concentration profiles, and the final batch time are treated as decision variables in the dynamic optimization

  19. A batch reactor heat recovery challenge problem Johannes Jschke, Sigurd Skogestad

    E-Print Network [OSTI]

    Skogestad, Sigurd

    A batch reactor heat recovery challenge problem Johannes Jäschke, Sigurd Skogestad Department reactors, which are discharged periodically. A cold process stream is to be used as a utility, and is split periods of the batch reactors, the reactor effluents are fed into the secondary sides of the heat

  20. Intelligent monitoring system for long-term control of Sequencing Batch Reactors

    E-Print Network [OSTI]

    Instruments Italy to test the potentials of monitoring systems applied to biological wastewater treatment Sequencing Batch Reactors (SBRs) are widely used as a flexible and low-cost process for biological wastewater-scale Sequencing Batch Reactor (SBR) treating nitrogen-rich wastewater (sanitary landfill leachate). The paper

  1. Design, implementation, and operation of a class based batch queue scheduler for VAX/VMS

    SciTech Connect (OSTI)

    Chadwick, K.

    1988-05-20T23:59:59.000Z

    Fermilab found that the standard VMS batch configuration options were inadequate for the job mix that exists on the Fermilab central computer facility VAX cluster. Accordingly, Fermilab designed and implemented a class based batch queue scheduler. This scheduler makes use of the standard VMS job controller and batch system. Users interact with the scheduler at job submission time by specification of CPU time limits and batch job characteristics. This scheduler allows Fermilab to make efficient use of our large heterogeneous VAX cluster which contains machines ranging from a VAX 780 to a VAX 8800. The scheduler was implemented using the VMS system services $GETQUI and $SNDJBC, without changes to the existing VMS job scheduler. As a result, the scheduler should remain compatible with future VMS versions. This session will discuss the design goals, implementation, and operational experience with Fermilab's class based batch queue scheduler.

  2. REPORTABLE RADIONUCLIDES IN DWPF SLUDGE BATCH 7A (MACROBATCH 8)

    SciTech Connect (OSTI)

    Reboul, S.; Diprete, D.; Click, D.; Bannochie, C.

    2011-12-20T23:59:59.000Z

    The Waste Acceptance Product Specifications (WAPS) 1.2 require that the waste producer 'shall report the curie inventory of radionuclides that have half-lives longer than 10 years and that are, or will be, present in concentrations greater than 0.05 percent of the total inventory for each waste type indexed to the years 2015 and 3115.' As part of the strategy to meet WAPS 1.2, the Defense Waste Processing Facility (DWPF) will report for each waste type all radionuclides that have half-lives longer than 10 years and contribute greater than 0.01 percent of the total curie inventory from the time of production through the 1100 year period from 2015 through 3115. The initial list of radionuclides to be reported is based on the design-basis glass identified in the Waste Form Compliance Plan (WCP) and Waste Form Qualification Report. However, it is required that the list be expanded if other radionuclides with half-lives greater than 10 years are identified that meet the 'greater than 0.01% of the curie inventory' criterion. Specification 1.6 of the WAPS, International Atomic Energy Agency Safeguards Reporting for High Level Waste (HLW), requires that the ratio by weights of the following uranium and plutonium isotopes be reported: U-233, U-234, U-235, U-236, and U-238; and Pu-238, Pu-239, Pu-240, Pu-241, and Pu-242. Therefore, the complete list of reportable radionuclides must also include these sets of U and Pu isotopes - and the U and Pu isotopic mass distributions must be identified. The DWPF receives HLW sludge slurry from Savannah River Site (SRS) Tank 40. For Sludge Batch 7a (SB7a), the waste in Tank 40 contained a blend of the heel from Sludge Batch 6 (SB6) and the Sludge Batch 7 (SB7) material transferred to Tank 40 from Tank 51. This sludge blend is also referred to as Macrobatch 8. Laboratory analyses of a Tank 40 sludge sample were performed to quantify the concentrations of pertinent radionuclides in the SB7a waste. Subsequently, radiological decay and in-growth were calculated over the time period from 2015 to 3115. This provided a basis for characterizing the radionuclide content of SB7a over time and for identifying the 'reportable radionuclides.' Details of the characterization methodology and the analytical results are the focus of this report. This work was performed at the request of the Waste Solidification Engineering Department of Savannah River Remediation, initiated via Technical Task Request (TTR) HLW-DWPF-TTR-2010-0031. A minor revision in the reporting requirements was requested via a subsequent email communication. The work was conducted in accordance with the protocols identified in Task Technical and Quality Assurance Plan SRNL-RP-2010-01218 and Analytical Study Plan SRNL-RP-2010-01219. All of the raw data related to this scope have been recorded in laboratory notebook SRNL-NB-2011-00061. The overall goal of this task was to characterize the radionuclide content of the SB7a waste sufficiently to meet the WAPS and DWPF reporting requirements. The specific objectives were: (1) Quantify the current concentrations of all radionuclides impacting (or potentially-impacting) the total curie content between calendar years 2011 and 3115. Also quantify the current concentrations of other radionuclides specifically requested in the TTR or required by the WAPS. (2) Calculate future concentrations of decayed and in-grown radionuclides impacting the total curie content between calendar years 2015 and 3115; (3) Identify as 'reportable' all radionuclides contributing {ge} 0.01% of the total curie content from 2015 to 3115 and having half-lives {ge} 10 years.

  3. SLUDGE BATCH 7 PREPARATION TANK 4 AND 12 CHARACTERIZATION

    SciTech Connect (OSTI)

    Bannochie, C.; Click, D.; Pareizs, J.

    2010-05-21T23:59:59.000Z

    Samples of PUREX sludge from Tank 4 and HM sludge from Tank 12 were characterized in preparation for Sludge Batch 7 (SB7) formulation in Tank 51. SRNL analyses on Tank 4 and Tank 12 were requested in separate Technical Assistance Requests (TAR). The Tank 4 samples were pulled on January 19, 2010 following slurry operations by F-Tank Farm. The Tank 12 samples were pulled on February 9, 2010 following slurry operations by H-Tank Farm. At the Savannah River National Laboratory (SRNL), two 200 mL dip samples of Tank 4 and two 200 mL dip samples of Tank 12 were received in the SRNL Shielded Cells. Each tank's samples were composited into clean 500 mL polyethylene storage bottles and weighed. The composited Tank 4 sample was 428.27 g and the composited Tank 12 sample was 502.15 g. As expected there are distinct compositional differences between Tank 4 and Tank 12 sludges. The Tank 12 slurry is much higher in Al, Hg, Mn, and Th, and much lower in Fe, Ni, S, and U than the Tank 4 slurry. The Tank 4 sludge definitely makes the more significant contribution of S to any sludge batch blend. This S, like that observed during SB6 washing, is best monitored by looking at the total S measured by digesting the sample and analyzing by inductively coupled plasma - atomic emission spectroscopy (ICPAES). Alternatively, one can measure the soluble S by ICP-AES and adjust the value upward by approximately 15% to have a pretty good estimate of the total S in the slurry. Soluble sulfate measurements by ion chromatography (IC) will be biased considerably lower than the actual total S, the difference being due to the non-sulfate soluble S and the undissolved S. Tank 12 sludge is enriched in U-235, and hence samples transferred into SRNL from the Tank Farm will need to be placed on the reportable special nuclear material inventory and tracked for total U per SRNL procedure requirements.

  4. Field Experience/Internship Proposal Student's Name:_____________________________________ ID#:_____________________

    E-Print Network [OSTI]

    New Hampshire, University of

    Field Experience/Internship Proposal Student's Name:_____________________________________ ID:________________________ Email:______________________________________________ Internship Site Supervisor's Name and Title:___________________________________________________________ Course Information (Internship/Field Experience/Independent Study) (Where applicable) Course name

  5. ,"Eastport, ID Natural Gas Pipeline Imports From Canada (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Eastport, ID...

  6. Integration of the Mini-Sulfide Sulfite Anthraquinone (MSS-AQ) Pulping Process and Black Liquor Gasification in a Pulp Mill

    SciTech Connect (OSTI)

    Hasan Jameel, North Carolina State University; Adrianna Kirkman, North Carolina State University; Ravi Chandran,Thermochem Recovery International Brian Turk Research Triangle Institute; Brian Green, Research Triangle Institute

    2010-01-27T23:59:59.000Z

    As many of the recovery boilers and other pieces of large capital equipment of U.S. pulp mills are nearing the end of their useful life, the pulp and paper industry will soon need to make long-term investments in new technologies. The ability to install integrated, complete systems that are highly efficient will impact the industry’s energy use for decades to come. Developing a process for these new systems is key to the adoption of state-of-the-art technologies in the Forest Products industry. This project defined an integrated process model that combines mini-sulfide sulfite anthraquinone (MSS-AQ) pulping and black liquor gasification with a proprietary desulfurization process developed by the Research Triangle Institute. Black liquor gasification is an emerging technology that enables the use of MSS-AQ pulping, which results in higher yield, lower bleaching cost, lower sulfur emissions, and the elimination of causticization requirements. The recently developed gas cleanup/absorber technology can clean the product gas to a state suitable for use in a gas turbine and also regenerate the pulping chemicals needed to for the MSS-AQ pulping process. The combination of three advanced technologies into an integrated design will enable the pulping industry to achieve a new level of efficiency, environmental performance, and cost savings. Because the three technologies are complimentary, their adoption as a streamlined package will ensure their ability to deliver maximum energy and cost savings benefits. The process models developed by this project will enable the successful integration of new technologies into the next generation of chemical pulping mills. When compared to the Kraft reference pulp, the MSS-AQ procedures produced pulps with a 10-15 % yield benefit and the ISO brightness was 1.5-2 times greater. The pulp refined little easier and had a slightly lower apparent sheet density (In both the cases). At similar levels of tear index the MSS-AQ pulps also produced a comparable tensile and burst index pulps. Product gas composition determined using computer simulations The results demonstrate that RVS-1 can effectively remove > 99.8% of the H2S present in simulated synthesis gas generated from the gasification of black liquor. This level of sulfur removal was consistent over simulated synthesis gas mixtures that contained from 6 to 9.5 vol % H2S.A significant amount of the sulfur in the simulated syngas was recovered as SO2 during regeneration. The average recovery of sulfur as SO2 was about 75%. Because these are first cycle results, this sulfur recovery is expected to improve. Developed WINGems model of the process.The total decrease in variable operating costs for the BLG process compared to the HERB was in excess of $6,200,000 per year for a mill producing 350,000 tons of pulp per year. This represents a decrease in operating cost of about $17.7/ton of oven dry pulp produced. There will be additional savings in labor and maintenance cost that has not been taken into account. The capital cost for the MSSAQ based gasifier system was estimated at $164,000,000, which is comparable to a High Efficiency Recovery Boiler. The return on investment was estimated at 4%. A gasifier replacement cannot be justified on its own, however if the recovery boiler needs to be replaced the MSSAQ gasifier system shows significantly higher savings. Before black liquor based gasifer technology can be commercialized more work is necessary. The recovery of the absorbed sulfur in the absorbent as sulfur dioxide is only 75%. This needs to be greater than 90% for economical operation. It has been suggested that as the number of cycles is increased the sulfur dioxide recovery might improve. Further research is necessary. Even though a significant amount of work has been done on a pilot scale gasifiers using liquors containing sulfur, both at low and high temperatures the lack of a commercial unit is an impediment to the implementation of the MSSAQ technology. The implementation of a commercial unit needs to be facilated before the benefits of

  7. Statistical Review of Data from DWPF's Process Samples for Batches 19 Through 30

    SciTech Connect (OSTI)

    Edwards, T.B.

    1999-04-06T23:59:59.000Z

    The measurements derived from samples taken during the processing of batches 19 through 30 at the Defense Waste Processing Facility (DWPF) affords an opportunity for review and comparisons. This report has looked at some of the statistics from these data. Only the data reported by the DWPF lab (that is, the data provided by the lab as representative of the samples taken) are available for this analysis. In some cases, the sample results reported may be a subset of the sample results generated by the analytical procedures. A thorough assessment of the DWPF lab's analytical procedures would require the complete set of data. Thus, the statistics reported here, specifically, as they relate to analytical uncertainties, are limited to the reported data for these samples, A fell for the consistency of the incoming slurry is the estimation of the components of variation for the Sludge Receipt and Adjustment Tank (SRAT) receipts. In general, for all of the vessels, the data from batches after 21 show smaller batch-to-batch variation than the data from all the batches. The relative contributions of batch-to-batch versus residual, which includes analytical, are presented in these analyses.

  8. Conversion of batch to molten glass, II: Dissolution of quartz particles

    SciTech Connect (OSTI)

    Hrma, Pavel R.; Marcial, Jose; Swearingen, Kevin J.; Henager, Samuel H.; Schweiger, Michael J.; Tegrotenhuis, Nathan E.

    2011-01-28T23:59:59.000Z

    Quartz dissolution during the batch-to-glass conversion influences the melt viscosity and ultimately the temperature at which the glass forms. Batches to make a high-alumina borosilicate glass (formulated for the vitrification of nuclear waste) were heated as 5°C min-1 and quenched from the temperatures of 400-1200°C at 100°C intervals. As a silica source, the batches contained quartz with particles ranging from 5 to 195 µm. The content of unreacted quartz in the samples was determined with x-ray diffraction. Most of fine quartz has dissolved during the early batch reactions (at temperatures <800°C), whereas coarser quartz dissolved mostly in a continuous glass phase via diffusion. The mass-transfer coefficients were assessed from the data as functions of the initial particle sizes and the temperature. A series of batch was also tested that contained nitrated components and additions of sucrose known to accelerate melting. While sucrose addition had no discernible impact on quartz dissolution, nitrate batches melted somewhat more slowly than batches containing carbonates and hydroxides in addition to nitrates.

  9. Methods for batch fabrication of cold cathode vacuum switch tubes

    DOE Patents [OSTI]

    Walker, Charles A. (Albuquerque, NM); Trowbridge, Frank R. (Albuquerque, NM)

    2011-05-10T23:59:59.000Z

    Methods are disclosed for batch fabrication of vacuum switch tubes that reduce manufacturing costs and improve tube to tube uniformity. The disclosed methods comprise creating a stacked assembly of layers containing a plurality of adjacently spaced switch tube sub-assemblies aligned and registered through common layers. The layers include trigger electrode layer, cathode layer including a metallic support/contact with graphite cathode inserts, trigger probe sub-assembly layer, ceramic (e.g. tube body) insulator layer, and metallic anode sub-assembly layer. Braze alloy layers are incorporated into the stacked assembly of layers, and can include active metal braze alloys or direct braze alloys, to eliminate costs associated with traditional metallization of the ceramic insulator layers. The entire stacked assembly is then heated to braze/join/bond the stack-up into a cohesive body, after which individual switch tubes are singulated by methods such as sawing. The inventive methods provide for simultaneously fabricating a plurality of devices as opposed to traditional methods that rely on skilled craftsman to essentially hand build individual devices.

  10. Copyright 2004 Auto-ID Labs, All Rights Reserved The Auto-ID Labs

    E-Print Network [OSTI]

    Brock, David

    Reserved Several Types of Webs · The Web of Information HTML and the World Wide Web · The Web of Things-ID Labs, All Rights Reserved A Special Word of Thanks to my Colleagues · Stuart J. Allen - Professor Reserved A Special Word of Thanks to my Colleagues (continued) · Nhat-So Lam ­ Family Retail Business

  11. DOE-ID Mission and Vision

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOffice ofHale Plan by(formerlyand5,ReadingID

  12. Data ID Service | DOE Data Explorer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOfficeOctoberDaniel WoodID Service First

  13. Property:DSIRE/Id | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,PillarPublicationType JumpDOEInvolve Jump to: navigation, search PropertyDtAddId

  14. Id-1 and Id-2 genes and products as therapeutic targets for treatment of breast cancer and other types of carcinoma

    SciTech Connect (OSTI)

    Desprez, Pierre-Yves; Campisi, Judith

    2014-09-30T23:59:59.000Z

    A method for treatment and amelioration of breast, cervical, ovarian, endometrial, squamous cells, prostate cancer and melanoma in a patient comprising targeting Id-1 or Id-2 gene expression with a delivery vehicle comprising a product which modulates Id-1 or Id-2 expression.

  15. A role for transcriptional regulator Id2 in natural killer T cells

    E-Print Network [OSTI]

    Monticelli, Laurel Anne

    2008-01-01T23:59:59.000Z

    proteins (Id) 14-16 . Id proteins lack the DNA bindingto analyze protein expression directly. Due to the lack of aprotein-2 (Id2) fail to develop natural killer cells, CD8? + dendritic cells, ?? IELs, Langerhans cells, and lack

  16. Multi-batch slip stacking in the Main Injector at Fermilab

    SciTech Connect (OSTI)

    Seiya, K.; Berenc, T.; Chase, B.; Dey, J.; Joireman, P.; Kourbanis, I.; Reid, J.; /Fermilab

    2007-06-01T23:59:59.000Z

    The Main Injector (MI) at Fermilab is planning to use multi-batch slip stacking scheme in order to increase the proton intensity at the NuMI target by about a factor of 1.5.[1] [2] By using multi-batch slip stacking, a total of 11 Booster batches are merged into 6, 5 double ones and one single. We have successfully demonstrated the multibatch slip stacking in MI and accelerated a record intensity of 4.6E13 particle per cycle to 120 GeV. The technical issues and beam loss mechanisms for multibatch slip stacking scheme are discussed.

  17. Efficient DHT attack mitigation through peers' ID distribution

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Efficient DHT attack mitigation through peers' ID distribution Thibault Cholez, Isabelle Chrisment.festor}@loria.fr Abstract--We present a new solution to protect the widely deployed KAD DHT against localized attacks which DHT attacks by comparing real peers' ID distributions to the theoretical one thanks to the Kullback

  18. Tc-99 Adsorption on Selected Activated Carbons - Batch Testing Results

    SciTech Connect (OSTI)

    Mattigod, Shas V.; Wellman, Dawn M.; Golovich, Elizabeth C.; Cordova, Elsa A.; Smith, Ronald M.

    2010-12-01T23:59:59.000Z

    CH2M HILL Plateau Remediation Company (CHPRC) is currently developing a 200-West Area groundwater pump-and-treat system as the remedial action selected under the Comprehensive Environmental Response, Compensation, and Liability Act Record of Decision for Operable Unit (OU) 200-ZP-1. This report documents the results of treatability tests Pacific Northwest National Laboratory researchers conducted to quantify the ability of selected activated carbon products (or carbons) to adsorb technetium-99 (Tc-99) from 200-West Area groundwater. The Tc-99 adsorption performance of seven activated carbons (J177601 Calgon Fitrasorb 400, J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, J177612 Norit GAC830, J177613 Norit GAC830, and J177617 Nucon LW1230) were evaluated using water from well 299-W19-36. Four of the best performing carbons (J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, and J177613 Norit GAC830) were selected for batch isotherm testing. The batch isotherm tests on four of the selected carbons indicated that under lower nitrate concentration conditions (382 mg/L), Kd values ranged from 6,000 to 20,000 mL/g. In comparison. Under higher nitrate (750 mg/L) conditions, there was a measureable decrease in Tc-99 adsorption with Kd values ranging from 3,000 to 7,000 mL/g. The adsorption data fit both the Langmuir and the Freundlich equations. Supplemental tests were conducted using the two carbons that demonstrated the highest adsorption capacity to resolve the issue of the best fit isotherm. These tests indicated that Langmuir isotherms provided the best fit for Tc-99 adsorption under low nitrate concentration conditions. At the design basis concentration of Tc 0.865 µg/L(14,700 pCi/L), the predicted Kd values from using Langmuir isotherm constants were 5,980 mL/g and 6,870 mL/g for for the two carbons. These Kd values did not meet the target Kd value of 9,000 mL/g. Tests conducted to ascertain the effects of changing pH showed that at pH values of 6.5 and 7.5, no significant differences existed in Tc-adsorption performance for three of the carbons, but the fourth carbon performed better at pH 7.5. When the pH was increased to 8.5, a slight decline in performance was observed for all carbons. Tests conducted to ascertain the temperature effect on Tc-99 adsorption indicated that at 21 şC, 27 şC, and 32 şC there were no significant differences in Tc-99 adsorption for three of the carbons. The fourth carbon showed a noticeable decline in Tc-99 adsorption performance with increasing temperature. The presence of volatile organic compounds (VOCs) in the source water did not significantly affect Tc-99 adsorption on either of two carbons tested. Technetium-99 adsorption differed by less than 15% with or without VOCs present in the test water, indicating that Tc-99 adsorption would not be significantly affected if VOCs were removed from the water prior to contact with carbon.

  19. Progress in Multi-Batch Slip Stacking in the Fermilab Main Injector and Future Plans

    SciTech Connect (OSTI)

    Seiya, K.; Chase, B.; Dey, J.; Joireman, P.; Kourbanis, I.; Reid, J.; /Fermilab

    2008-04-01T23:59:59.000Z

    The multi-batch slip stacking has been used for operations since January, 2008 and effectively increased proton intensity to the NuMI target by 50% in a Main Injector (MI) cycle. The MI accepts 11 batches at injection energy from the Booster, and sends two batches to antiproton production and nine to the NuMI beam line. The total beam power in a cycle was increased to 340 kW on average. We have been doing beam studies in order to increase the beam power to 400 kW and to control the beam loss. We will also discuss 12 batch slip stacking scheme which is going to be used for future neutrino experiments.

  20. OVERVIEW OF TESTING TO SUPPORT PROCESSING OF SLUDGE BATCH 4 IN THE DEFENSE WASTE PROCESSING FACILITY

    SciTech Connect (OSTI)

    Herman, C

    2006-09-20T23:59:59.000Z

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site began processing of its third sludge batch in March 2004. To avoid a feed outage in the facility, the next sludge batch will have to be prepared and ready for transfer to the DWPF by the end of 2006. The next sludge batch, Sludge Batch 4 (SB4), will consist of a significant volume of HM-type sludge. HM-type sludge is very high in aluminum compared to the mostly Purex-type sludges that have been processed to date. The Savannah River National Laboratory (SRNL) has been working with Liquid Waste Operations to define the sludge preparation plans and to perform testing to support qualification and processing of SB4. Significant challenges have arisen during SB4 preparation and testing to include poor sludge settling behavior and lower than desired projected melt rates. An overview of the testing activities is provided.

  1. Countercurrent Enzymatic Saccharification of Lignocellulosic Biomass and Improvements Over Batch Operation

    E-Print Network [OSTI]

    Zentay, Agustin Nicholas

    2014-05-05T23:59:59.000Z

    of starchy biomass (e.g., corn), which competes with food. Using lignocellulose avoids competition with food; however, it is difficult to digest using traditional batch saccharification. This work investigates countercurrent saccharification as an alternative...

  2. Nitrate and sulphate dynamics in peat subjected to different hydrological conditions: Batch experiments and field comparison

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Nitrate and sulphate dynamics in peat subjected to different hydrological conditions: Batch concentrations were investigated in bioreactors, using peat samples from field sites influenced by different hydrologic regimes. In this experiment, peat samples were subjected to similar conditions to address

  3. Design and Optimization of Condenser and Centrifuge Units for Enhancement of a Batch Vacuum Frying System 

    E-Print Network [OSTI]

    Pandey, Akhilesh

    2011-02-22T23:59:59.000Z

    A batch vacuum frying system, which processes fruits and vegetables, includes a frying pan, a surface-condenser, and a vacuum pump. With health and safety issues in mind, this research focused on developing a modified ...

  4. Tank 40 Final Sludge Batch 8 Chemical Characterization Results

    SciTech Connect (OSTI)

    Bannochie, Christopher J.

    2013-09-19T23:59:59.000Z

    A sample of Sludge Batch 8 (SB8) was pulled from Tank 40 in order to obtain radionuclide inventory analyses necessary for compliance with the Waste Acceptance Product Specifications (WAPS). The SB8 WAPS sample was also analyzed for chemical composition, including noble metals, and fissile constituents, and these results are reported here. These analyses along with the WAPS radionuclide analyses will help define the composition of the sludge in Tank 40 that is currently being fed to the Defense Waste Processing Facility (DWPF) as SB8. At SRNL, the 3-L Tank 40 SB8 sample was transferred from the shipping container into a 4-L high density polyethylene bottle and solids were allowed to settle. Supernate was then siphoned off and circulated through the shipping container to complete the transfer of the sample. Following thorough mixing of the 3-L sample, a 553 g sub-sample was removed. This sub-sample was then utilized for all subsequent slurry sample preparations. Eight separate aliquots of the slurry were digested, four with HNO{sub 3}/HCl (aqua regia) in sealed Teflon(r) vessels and four with NaOH/Na{sub 2}O{sub 2} (alkali or peroxide fusion) using Zr crucibles. Two Analytical Reference Glass - 1 (ARG-1) standards were digested along with a blank for each preparation. Each aqua regia digestion and blank was diluted to 1:100 mL with deionized water and submitted to Analytical Development (AD) for inductively coupled plasma - atomic emission spectroscopy (ICP-AES) analysis, inductively coupled plasma - mass spectrometry (ICP-MS) analysis, atomic absorption spectroscopy (AA) for As and Se, and cold vapor atomic absorption spectroscopy (CV-AA) for Hg. Equivalent dilutions of the alkali fusion digestions and blank were submitted to AD for ICP-AES analysis. Tank 40 SB8 supernate was collected from a mixed slurry sample in the SRNL Shielded Cells and submitted to AD for ICP-AES, ion chromatography (IC), total base/free OH-/other base, total inorganic carbon/total organic carbon (TIC/TOC) analyses. Weighted dilutions of slurry were submitted for IC, TIC/TOC, and total base/free OH-/other base analyses. Activities for U-233, U-235, and Pu-239 were determined from the ICP-MS data for the aqua regia digestions of the Tank 40 WAPS slurry using the specific activity of each isotope. The Pu-241 value was determined from a Pu-238/-241 method developed by SRNL AD and previously described.

  5. Property:RAPID/Contact/ID8/Website | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to:ID8/Organization RAPID/Contact/ID8/Position RAPID/Contact/ID8/Name

  6. Property:RAPID/Contact/ID8/Name | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation,ID2/PhoneID7/Phone"ID8/Name"

  7. H id lb U i it G Heidelberg University, Germany

    E-Print Network [OSTI]

    Fischer, Wolfgang

    H id lb U i it G Topics: Heidelberg University, Germany Talks on 15th of July 2011 Neue Universität-Ming University and Heidelberg University 14. ­ 15. July 2011 Heidelberg University, Germany #12;NYMU - HD 2011 2

  8. Dissertation Checklist Coversheet Created June 2014 Student Name: Student ID

    E-Print Network [OSTI]

    Northern British Columbia, University of

    Dissertation Checklist Coversheet Created June 2014 Student Name: Student ID: Program: Supervisor's Name: Dissertation Defence Checklist Coversheet Office of Graduate Programs (OGP) University supervisory committee member has read the dissertation and agreed that it is examinable. Completed GR364

  9. Dissertation Checklist Coversheet Revised Nov 2014 Student Name: Student ID

    E-Print Network [OSTI]

    Northern British Columbia, University of

    Dissertation Checklist Coversheet Revised Nov 2014 Student Name: Student ID: Program: Supervisor's Name: Dissertation Defence Checklist Coversheet Office of Graduate Programs (OGP) University supervisory committee member has read the dissertation and agreed that it is examinable. Completed GR364

  10. SLUDGE BATCH 6/TANK 40 SIMULANT CHEMICAL PROCESS CELL SIMULATIONS

    SciTech Connect (OSTI)

    Koopman, David

    2010-04-28T23:59:59.000Z

    Phase III simulant flowsheet testing was completed using the latest composition estimates for SB6/Tank 40 feed to DWPF. The goals of the testing were to determine reasonable operating conditions and assumptions for the startup of SB6 processing in the DWPF. Testing covered the region from 102-159% of the current DWPF stoichiometric acid equation. Nitrite ion concentration was reduced to 90 mg/kg in the SRAT product of the lowest acid run. The 159% acid run reached 60% of the DWPF Sludge Receipt and Adjustment Tank (SRAT) limit of 0.65 lb H2/hr, and then sporadically exceeded the DWPF Slurry Mix Evaporator (SME) limit of 0.223 lb H2/hr. Hydrogen generation rates peaked at 112% of the SME limit, but higher than targeted wt% total solids levels may have been partially responsible for rates seen. A stoichiometric factor of 120% met both objectives. A processing window for SB6 exists from 102% to something close to 159% based on the simulant results. An initial recommendation for SB6 processing is at 115-120% of the current DWPF stoichiometric acid equation. The addition of simulated Actinide Removal Process (ARP) and Modular Caustic Side Solvent Extraction Unit (MCU) streams to the SRAT cycle had no apparent impact on the preferred stoichiometric factor. Hydrogen generation occurred continuously after acid addition in three of the four tests. The three runs at 120%, 118.4% with ARP/MCU, and 159% stoichiometry were all still producing around 0.1 lb hydrogen/hr at DWPF scale after 36 hours of boiling in the SRAT. The 120% acid run reached 23% of the SRAT limit and 37% of the SME limit. Conversely, nitrous oxide generation was subdued compared to previous sludge batches, staying below 29 lb/hr in all four tests or about a fourth as much as in comparable SB4 testing. Two processing issues, identified during SB6 Phase II flowsheet testing and qualification simulant testing, were monitored during Phase III. Mercury material balance closure was impacted by acid stoichiometry, and significant mercury was not accounted for in the highest acid run. Coalescence of elemental mercury droplets in the mercury water wash tank (MWWT) appeared to degrade with increasing stoichiometry. Observations were made of mercury scale formation in the SRAT condenser and MWWT. A tacky mercury amalgam with Rh, Pd, and Cu, plus some Ru and Ca formed on the impeller at 159% acid. It contained a significant fraction of the available Pd, Cu, and Rh as well as about 25% of the total mercury charged. Free (elemental) mercury was found in all of the SME products. Ammonia scrubbers were used during the tests to capture off-gas ammonia for material balance purposes. Significant ammonium ion formation was again observed during the SRAT cycle, and ammonia gas entered the off-gas as the pH rose during boiling. Ammonium ion production was lower than in the SB6 Phase II and the qualification simulant testing. Similar ammonium ion formation was seen in the ARP/MCU simulation as in the 120% flowsheet run. A slightly higher pH caused most of the ammonium to vaporize and collect in the ammonia scrubber reflux solution. Two periods of foaminess were noted. Neither required additional antifoam to control the foam growth. A steady foam layer formed during reflux in the 120% acid run. It was about an inch thick, but was 2-3 times more volume of bubbles than is typically seen during reflux. A similar foam layer also was seen during caustic boiling of the simulant during the ARP addition. While frequently seen with the radioactive sludge, foaminess during caustic boiling with simulants has been relatively rare. Two further flowsheet tests were performed and will be documented separately. One test was to evaluate the impact of process conditions that match current DWPF operation (lower rates). The second test was to evaluate the impact of SRAT/SME processing on the rheology of a modified Phase III simulant that had been made five times more viscous using ultrasonication.

  11. Design and Optimization of Condenser and Centrifuge Units for Enhancement of a Batch Vacuum Frying System

    E-Print Network [OSTI]

    Pandey, Akhilesh

    2011-02-22T23:59:59.000Z

    of vacuum frying can be a feasible alternative method to produce chips with lower oil content and high quality color and texture (Garayo and Moreira, 2002). 7 Figure 2-1 displays the use of different deep-fat fryers in the commercial food industry.... Countertops are generally used in homes, while high efficiency batch fryers are employed in commercial (McDonalds, KFC, etc.) food services as well as industries (Frito Lay, Pringles, etc.). Application of a batch fryer is limited to frying small loads...

  12. aq ybt aq: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    observing long-term trends detecting unrecognized sources (paper mills, fracking, natural gas Need easy-to-use data formats Improve emission inventories of:...

  13. aq ybs aq: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    observing long-term trends detecting unrecognized sources (paper mills, fracking, natural gas Need easy-to-use data formats Improve emission inventories of:...

  14. aq hot aq: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    observing long-term trends detecting unrecognized sources (paper mills, fracking, natural gas Need easy-to-use data formats Improve emission inventories of:...

  15. Optimal feeding strategy for the minimal time problem of a fed-batch bioreactor with mortality rate

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Optimal feeding strategy for the minimal time problem of a fed-batch bioreactor with mortality rate of finding an optimal feedback control for feeding a fed-batch bioreactor with one species and one substrate, Bioreactor. 1 Introduction This work is devoted to the study of a bioreactor which is operated in fed

  16. Utilizing Green Energy Prediction to Schedule Mixed Batch and Service Jobs in Data Centers

    E-Print Network [OSTI]

    Simunic, Tajana

    Utilizing Green Energy Prediction to Schedule Mixed Batch and Service Jobs in Data Centers Baris on using immediately available green energy to supplement the non- renewable, or brown energy at the cost of canceling and rescheduling jobs whenever the green energy availability is too low [16]. In this paper we

  17. Precision vertical mixer processes 30,000 pound batch of solid rocket propellants

    SciTech Connect (OSTI)

    Not Available

    1986-11-01T23:59:59.000Z

    The world's largest solid rocket propellant mixer has been singled out for Honors in the mixers and blenders category of the 1986 Chemical Processing Vaaler Awards competition. The mixer, which is four times larger than any heretofore used, was specially designed and built for one of the nations' foremost manufacturers of rocket propellants. Developments in the fields of metallurgy, material handling, computerization and electronics permitted the giant step of manufacturing propellants in batch sizes up to 30,000 pounds. Until this time, 7000 pounds was considered the maximum size batch within the scope of hazards analysis. The vertical design of the mixer lends itself to an effective fire protection system. Infra-red detectors are used to sense a sudden heat rise. Should an emergency situation arise once the bowl is in the mix position and under vacuum, the protection system will activate within twelve seconds, deluge the product zone with water, rapidly drop the bowl and simultaneously disconnect the electric power. The design encompasses remote operation and emphasizes safety and reliability. The mixer permits propellant manufacturers to safely produce more uniform, even burning products. Its large batch size simplifies the problems with multiple batches within a simple engine. By reducing labor costs and affording other manufacturing economies, it increases productivity while cutting costs.

  18. Microbial Fuel Cells In this experiment, a batch mixed culture microbial fuel cell with Shewanella

    E-Print Network [OSTI]

    Fay, Noah

    Microbial Fuel Cells Abstract In this experiment, a batch mixed culture microbial fuel cell conditions under nitrogen gas. In the microbial fuel cell with Shewanella putrefaciens sp. 200 as catalysisM at pH=7. Introduction Microbial fuel cells (MFC) are systems that take advantage of certain

  19. Control strategies for reactive batch distillation Eva Swensen and Sigurd Skogestad"

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Control strategies for reactive batch distillation Eva Swensen and Sigurd Skogestad" Department be combined directly with a distillation column by distilling off the light component product in order a maximum value in order to avoid break-through of an intermediate component in the distillate. This maximum

  20. Transfer-Free Batch Fabrication of Large-Area Suspended Graphene Membranes

    E-Print Network [OSTI]

    Zettl, Alex

    heightened for the preparation of sus- pended graphene structures to ascertain graphene's fundamentalTransfer-Free Batch Fabrication of Large- Area Suspended Graphene Membranes Benjami´n Alema of the predicted properties arising from the two-dimensional nature of graphene1 4 can be obscured or altered

  1. Effect of Xylan and Lignin Removal by Batch and Flowthrough Pretreatment

    E-Print Network [OSTI]

    California at Riverside, University of

    Effect of Xylan and Lignin Removal by Batch and Flowthrough Pretreatment on the Enzymatic for pretreating cellulosic biomass, including higher hemicellulose sugar yields, enhanced cellulose digestibility understand these trade-offs, comparative data are reported on xylan and lignin removal and enzymatic

  2. Batch self-organizing maps based on city-block distances for interval variables

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    methods [14, 18]. K-means algorithm and fuzzy c-means are the most famous partitional approaches learning strategy which has both clustering and visualization properties. Different from K-means, SOM uses interval-valued data sets, in comparison with batch SOM algorithms based on adaptive and non

  3. Research article A modified batch reactor system to study equilibrium-reactive

    E-Print Network [OSTI]

    Clement, Prabhakar

    the characteristics of batch experiments and provides complete control over the reaction time; in addition, the setup-reactor SER experiments to investigate arsenic adsorption and transport on iron-oxide coated sand to column experiments and allows better control over system parameters such as pH, reaction time, and solid

  4. Batch-mode vs Online-mode Supervised Learning Motivations for Artificial Neural Networks

    E-Print Network [OSTI]

    Wehenkel, Louis

    Batch-mode vs Online-mode Supervised Learning Motivations for Artificial Neural Networks Linear ANN-mode vs Online-mode Supervised Learning Motivations for Artificial Neural Networks Linear ANN Models for Artificial Neural Networks Linear ANN Models Single neuron models Single layer models Nonlinear ANN Models

  5. On the Practical and Security Issues of Batch Content Distribution Via Network Coding

    E-Print Network [OSTI]

    Lui, John C.S.

    On the Practical and Security Issues of Batch Content Distribution Via Network Coding Qiming Li distribution via network coding has received a lot of attention lately. However, direct application of network distribution process to slow down the information dispersal or even deplete the network resource. Therefore

  6. Modeling of batch operations in the Defense Waste Processing Facility at the Savannah River Site

    SciTech Connect (OSTI)

    Smith, F.G.

    1995-02-01T23:59:59.000Z

    A computer model is in development to provide a dynamic simulation of batch operations within the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). The DWPF will chemically treat high level waste materials from the site tank farm and vitrify the resulting slurry into a borosilicate glass for permanent disposal. The DWPF consists of three major processing areas: Salt Processing Cell (SPC), Chemical Processing Cell (CPC) and the Melt Cell. Separate models have been developed for each of these process units using the SPEEDUP{trademark} software from Aspen Technology. Except for glass production in the Melt Cell, all of the chemical operations within DWPF are batch processes. Since the SPEEDUP software is designed for dynamic modeling of continuous processes, considerable effort was required to devise batch process algorithms. This effort was successful and the models are able to simulate batch operations and the dynamic behavior of the process. In this paper, we will describe the SPC model in some detail and present preliminary results from a few simulation studies.

  7. Elucidating the solid, liquid and gaseous products from batch pyrolysis of cotton-gin trash.

    E-Print Network [OSTI]

    Aquino, Froilan Ludana

    2009-05-15T23:59:59.000Z

    Cotton-gin trash (CGT) was pyrolyzed at different temperatures and reaction times using an externally-heated batch reactor. The average yields of output products (solid/char, liquid/bio-oil, and gaseous) were determined. The heating value (HV...

  8. Hybrid Batch Bayesian Optimization Javad Azimi AZIMI@EECS.OREGONSTATE.EDU

    E-Print Network [OSTI]

    Fern, Xiaoli Zhang

    motivating application we try to optimize the power output of nano-enhanced Microbial Fuel Cells (MFCs). MFCsHybrid Batch Bayesian Optimization Javad Azimi AZIMI@EECS.OREGONSTATE.EDU Oregon State University Abstract Bayesian Optimization (BO) aims at optimizing an unknown function that is costly to evaluate. We

  9. Nitrogen removal via nitrite in a sequencing batch reactor treating sanitary landfill leachate

    E-Print Network [OSTI]

    Ammonium rich wastewater Fuzzy logic Biological nutrient removal a b s t r a c t The present paper reports and biological pro- cesses (Lema et al., 1988). Among several biological treatment sys- tems, sequencing batch confirm the effectiveness of the nitrite route for nitrogen removal optimisation in leachate treatment

  10. Property:RAPID/Contact/ID3/Phone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation,ID2/Phone Jump to:EmailID3/Organization

  11. Property:RAPID/Contact/ID7/Phone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation,ID2/PhoneID7/Phone" Showing 2

  12. Property:RAPID/Contact/ID7/Position | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation,ID2/PhoneID7/Phone" Showing

  13. Property:RAPID/Contact/ID8/Email | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation,ID2/PhoneID7/Phone"

  14. RAPID/Roadmap/13-ID-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas)ID-a < RAPID‎ID-a <

  15. RAPID/Roadmap/14-ID-d | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas)ID-aRAPID/Roadmap/14-ID-d <

  16. MA 261 EXAM II Fall 2001 Page 1/6 NAME STUDENT ID ...

    E-Print Network [OSTI]

    1910-20-20T23:59:59.000Z

    I.D.# is your 9 digit ID (probably your social security number). Also write your name at the top of ... information about the nature of f(1, -1). D. fxx(1, -1)fyy(1, -1) < 0.

  17. TidFP: Mining Frequent Patterns in Different Databases with Transaction ID

    E-Print Network [OSTI]

    Ezeife, Christie

    techniques as well as sequential mining. Keywords: Data mining, Transaction id, Frequent PatternsTidFP: Mining Frequent Patterns in Different Databases with Transaction ID C.I. Ezeife and Dan) are unique and would not usually be frequent, mining frequent patterns with transaction ids, show- ing

  18. ANALYSIS OF SLUDGE BATCH 4 (MACROBATCH 5) FOR CANISTER S02902 AND SLUDGE BATCH 5 (MACROBATCH 6) FOR CANISTER S03317 DWPF POUR STREAM GLASS SAMPLES

    SciTech Connect (OSTI)

    Reigel, M.; Bibler, N.

    2010-10-04T23:59:59.000Z

    The Defense Waste Processing Facility (DWPF) began processing Sludge Batch 4 (SB4), Macrobatch 5 (MB5) on May 29, 2007. Sludge Batch 4 was a blend of the heel of Tank 40 from Sludge Batch 3 (SB3) and SB4 material qualified in Tank 51. On November 28, 2008, DWPF began processing Sludge Batch 5 (SB5) from Tank 40 which is a blend of the heel of Tank 40 from SB4, SB5 material qualified in Tank 51 and H-Canyon Pu and Np transfers. SB4 was processed using Frit 510 and SB5 used Frit 418. During processing of each sludge batch, the DWPF is required to take at least one glass sample to meet the objectives of the Glass Product Control Program and to complete the necessary Production Records so that the final glass product may be disposed of at a Federal Repository. During the processing of SB4 and SB5, glass samples were obtained during the pouring of canisters S02902 and S03317, respectively. The samples were transferred to the Savannah River National Laboratory (SRNL) where they were analyzed (durability, chemical and radionuclide composition). The following observations and conclusions are drawn from the analytical results provided in this report: (1) The sum of the oxides for the chemical composition of both the SB4 and SB5 pour stream glasses is within the Product Composition Control System (PCCS) acceptance limits (95 {le} sum of oxides {le} 105). (2) The calculated Sludge Dilution Factor (SDF) for SB4 is 2.52. The measured radionuclide content is in good agreement with the calculated values from the dried sludge results from the SB4 Waste Acceptance Production Specification (WAPS) sample (References 1 and 19). (3) The calculated SDF for SB5 is 2.60. The measured radionuclide content is in good agreement with the calculated values from the dried sludge results from the SB5 WAPS sample (References 2 and 20). (4) Scanning Electron Microscopy (SEM) analysis shows there are noble metal inclusions, primarily ruthenium, present in both pour stream samples. (5) The Product Consistency Test (PCT) results show that the SB4 pour stream glass meets the waste acceptance criteria for durability with a normalized boron release of 0.67 g/L which is an order of magnitude lower than the Environmental Assessment (EA) glass. (6) The PCT results show that the SB5 pour stream glass meets the waste acceptance criteria for durability with a normalized boron release of 0.72 g/ which is an order of magnitude lower than the EA glass. (7) The density of the SB4 glass is 2.5 g/cm{sup 3}. (8) The density of the SB5 glass is 2.6 g/cm{sup 3}.

  19. Contribution ID : 133 The TAG Collector -A Tool for Atlas

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    CHEP04 Contribution ID : 133 The TAG Collector - A Tool for Atlas Code Release Management Thursday 30 Sep 2004 at 10:00 (00h00') The Tag Collector is a web interfaced database application for release distributed geographically. The Tag Collector was designed and implemented during the summer of 2001

  20. Article ID: Query Translation on the Fly in Deep Web

    E-Print Network [OSTI]

    Article ID: Query Translation on the Fly in Deep Web Integration Jiang Fangjiao, Jia Linlin, Meng users to access the desired information, many researches have dedicated to the Deep Web (i.e. Web databases) integration. We focus on query translation which is an important part of the Deep Web integration

  1. ORNL 2010-G01074/jcn UT-B ID 200301298

    E-Print Network [OSTI]

    ORNL 2010-G01074/jcn UT-B ID 200301298 Super Energy Saver Heat Pump Technology Summary ORNL heat pumps, inventing a super energy saver heat pump. This invention significantly improves heating of the hybrid phase change material in the heat pump cycle. The material combines Group I and II halides

  2. Bachelor of Science, Geophysics, 2013-2014 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Bachelor of Science, Geophysics, 2013-2014 Name ID# Date General Degree Requirements Residency with Lab 4 COMPSCI 115 Introduction to C 2 GEOPH 201 Seeing the Unseen: an Introduction to Geophysics 4 GEOPH 300 Physics of the Earth 3 GEOPH 305 Applied Geophysics 3 GEOPH 420 Geophysical Applications

  3. Introduction to Health and Social Care (ID:250)

    E-Print Network [OSTI]

    Harman, Neal.A.

    Introduction to Health and Social Care (ID:250) Outline This is a day event which will be designed will be given short talks from different staff about the various health and social care courses on offer details Learning outcomes: · The different health and social care courses offered at Swansea University

  4. Hindawi Publishing Corporation Volume 2012, Article ID 507894, 8 pages

    E-Print Network [OSTI]

    Barbas III, Carlos F.

    is properly cited. Sickle cell disease (SCD) and -thalassemia patients are phenotypically normal if they carry]. Sickle cell disease (SCD) and -thalassemia patients are phenotypically normal if they carry compensatoryHindawi Publishing Corporation Anemia Volume 2012, Article ID 507894, 8 pages doi:10

  5. ORNL 2012-G00212/tcc UT-B ID 200902214

    E-Print Network [OSTI]

    Pennycook, Steve

    Technology Summary Glass used in building materials (curtain walls), windshields, goggles, glasses, opticalORNL 2012-G00212/tcc UT-B ID 200902214 08.2012 Superhydrophobic Transparent Glass Thin Films researchers have invented a method to produce durable, superhydrophobic, antireflective glass thin films

  6. Exam 1 Phys 105 Section______Fall 2002 Name__________________________________ ID

    E-Print Network [OSTI]

    Gary, Dale E.

    Exam 1 Phys 105 Section______Fall 2002 Name__________________________________ ID: Closed book exam each. Work out problems are 4 points each. Passing of the exam requires at least 50% of the maximum an expression, a t2 /2 where a is acceleration and t is time. The dimension of this expression in the SI system

  7. https://doyouliveunited.org 1. Enter you user ID

    E-Print Network [OSTI]

    Search' button. 7. Enter you search terms for the agency of your choice and click on `Search'. #12;httpshttps://doyouliveunited.org 1. Enter you user ID: your email address Enter your password: welcome be different then the options listed here. 5. For a payroll pledge, enter the amount per pay or the total

  8. Bachelor of Applied Science, 2014-2015 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Writing and Research 3 CID BAS 300 Communication in the Applied Sciences 3 UF 100 Intellectual FoundationsBachelor of Applied Science, 2014-2015 Name ID# Date General Degree Requirements Residency: Total 3 UF 200 Civic and Ethical Foundations 3 FF BAS 400 Capstone in Applied Sciences 3 DLM Mathematics 3

  9. Bachelor of Applied Science, 2012-2013 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Writing and Research 3 CID BAS 300 Communication in the Applied Sciences 3 UF 100 Intellectual FoundationsBachelor of Applied Science, 2012-2013 Name ID# Date General Degree Requirements Residency: Total 3 UF 200 Civic and Ethical Foundations 3 FF BAS 400 Capstone in Applied Sciences 3 DLM Mathematics 3

  10. Bachelor of Applied Science, 2013-2014 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Writing and Research 3 CID BAS 300 Communication in the Applied Sciences 3 UF 100 Intellectual FoundationsBachelor of Applied Science, 2013-2014 Name ID# Date General Degree Requirements Residency: Total 3 UF 200 Civic and Ethical Foundations 3 FF BAS 400 Capstone in Applied Sciences 3 DLM Mathematics 3

  11. UW China Hong Kong Entrance Scholarship University of Waterloo ID#

    E-Print Network [OSTI]

    Le Roy, Robert J.

    UW ­ China Hong Kong Entrance Scholarship Name: University of Waterloo ID#: Program Applied of Waterloo who currently lives in or who previously lived in Hong Kong or mainland China. Candidates must also intend to return to Hong Kong or China after graduation. Selection will be based on academic

  12. ORNL 2010-G01078/jcn UT-B ID 201002389

    E-Print Network [OSTI]

    Pennycook, Steve

    ORNL 2010-G01078/jcn UT-B ID 201002389 Energy Saving Absorption Heat Pump Water Heater Technology Summary ORNL's new absorption heat pump and water heater technology offers substantial energy savings and can reduce the use of fossil fuels by buildings. While conventional heat pump water heater designs

  13. Wet-Nanotechnology: fl id t NIUnanofluids at NIU

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    .kostic.niu.edu 4 Mechanical Engineering NORTHERN ILLINOIS UNIVERSITY #12;One Step Nanofluid Production ImprovementOne-Step Nanofluid Production Improvement Insulated and vertically-adjustable boat- heater evaporator NIU with i fl id heater evaporatorLaboratoryLaboratory S.S. ChoiChoi J. Hull,J. Hull, and othersand others

  14. SRS SLUDGE BATCH QUALIFICATION AND PROCESSING; HISTORICAL PERSPECTIVE AND LESSONS LEARNED

    SciTech Connect (OSTI)

    Cercy, M.; Peeler, D.; Stone, M.

    2013-09-25T23:59:59.000Z

    This report provides a historical overview and lessons learned associated with the SRS sludge batch (SB) qualification and processing programs. The report covers the framework of the requirements for waste form acceptance, the DWPF Glass Product Control Program (GPCP), waste feed acceptance, examples of how the program complies with the specifications, an overview of the Startup Program, and a summary of continuous improvements and lessons learned. The report includes a bibliography of previous reports and briefings on the topic.

  15. Batch polymerization of styrene and isoprene by n-butyl lithium initiator

    E-Print Network [OSTI]

    Hasan, Sayeed

    1970-01-01T23:59:59.000Z

    on these mechanisms Edgar (12) developed a mathema- tical model for polymerization of the above systems. In the present work polymerization reactions of styrene and isoprene via n-butyl lithium were studied at 80'C in n-hexane and cyclohexane solvents. Both... on the mechanisms proposed by Hsieh (18, 19, 20) Edgar (12) obtained an anlytical solution for calculating molecular weight di. stributions, monomer concentrations, initi. ator concentrations, and polymer species concentrations at any time, t, in a batch reactor...

  16. MODELING CST ION EXCHANGE FOR CESIUM REMOVAL FROM SCIX BATCHES 1 - 4

    SciTech Connect (OSTI)

    Smith, F.

    2011-04-25T23:59:59.000Z

    The objective of this work is, through modeling, to predict the performance of Crystalline Silicotitinate (CST) for the removal of cesium from Small Column Ion Exchange (SCIX) Batches 1-4 (as proposed in Revision 16 of the Liquid Waste System Plan). The scope of this task is specified in Technical Task Request (TTR) 'SCIX Feed Modeling', HLE-TTR-2011-003, which specified using the Zheng, Anthony, Miller (ZAM) code to predict CST isotherms for six given SCIX feed compositions and the VErsatile Reaction and SEparation simulator for Liquid Chromatography (VERSE-LC) code to predict ion-exchange column behavior. The six SCIX feed compositions provided in the TTR represent SCIX Batches 1-4 and Batches 1 and 2 without caustic addition. The study also investigated the sensitivity in column performance to: (1) Flow rates of 5, 10, and 20 gpm with 10 gpm as the nominal flow; and (2) Temperatures of 25, 35, and 45 C with 35 C as the nominal temperature. The isotherms and column predictions presented in this report reflect the expected performance of engineered CST IE-911. This form of CST was used in experiments conducted at the Savannah River National Laboratory (SRNL) that formed the basis for estimating model parameters (Hamm et al., 2002). As has been done previously, the engineered resin capacity is estimated to be 68% of the capacity of particulate CST without binder.

  17. Evaluation of batch leaching procedures for estimating metal mobility in glaciated soils

    SciTech Connect (OSTI)

    Lackovic, J.A.; Nikolaidis, N.P.; Chheda, P.; Carley, R.J.; Patton, E.

    1997-12-01T23:59:59.000Z

    Batch leaching methods have been used for several decades to estimate the potential release of contaminants from soils. Four batch leaching procedures (toxicity characteristic leaching procedure, synthetic precipitation leaching procedure, deionized water leaching procedure, and California waste extraction test) were evaluated for their ability to realistically quantify the mobility of metals from previously contaminated glaciated soils. The study was conducted using soils from four different sites (three in Connecticut and one in Maine). The results of the batch leaching procedures were compared with a set of continuous column leaching experiments performed at two different flowrates and two influent pH values. The results suggested that the synthetic precipitation leaching procedure (SPLP) was more realistic than the toxicity characteristic leaching procedure (TCLP), but still a conservative leaching estimate for evaluating the potential for metal mobility in glaciated soils. This study suggests that using SPLP as a test for estimating metal cleanup levels will result in lower remediation costs relative to TCLP or waste extraction test (WET), but still maintain a high level of confidence in the protection of ground water quality.

  18. Analysis Of DWPF Sludge Batch 7a (Macrobatch 8) Pour Stream Samples

    SciTech Connect (OSTI)

    Johnson, F. C.; Pareizs, J. M.

    2012-10-24T23:59:59.000Z

    The Defense Waste Processing Facility (DWPF) began processing Sludge Batch 7a (SB7a), also referred to as Macrobatch 8 (MB8), in June 2011. SB7a is a blend of the heel of Tank 40 from Sludge Batch 6 (SB6) and the SB7a material that was transferred to Tank 40 from Tank 51. SB7a was processed using Frit 418. During processing of each sludge batch, the DWPF is required to take at least one glass sample to meet the objectives of the Glass Product Control Program (GPCP), which is governed by the DWPF Waste Compliance Plan, and to complete the necessary Production Records so that the final glass product may be disposed of at a Federal Repository. Three pour stream glass samples and two Melter Feed Tank (MFT) slurry samples were collected while processing SB7a. These additional samples were taken during SB7a to understand the impact of antifoam and the melter bubblers on glass redox chemistry. The samples were transferred to the Savannah River National Laboratory (SRNL) where they were analyzed.

  19. Over Batch Analysis for the LLNL DOE-STD-3013 Packaging System

    SciTech Connect (OSTI)

    Riley, D C; Dodson, K

    2009-07-02T23:59:59.000Z

    This document addresses the concern raised in the Savannah River Site (SRS) Acceptance Criteria about receiving an item that is over batched by 1.0 kg of fissile materials. This document shows that the occurrence of this is incredible. Some of the Department of Energy Standard 3013 (DOE-STD-3013) requirements are described in Section 2.1. The SRS requirement is discussed in Section 2.2. Section 2.3 describes the way fissile materials are handled in the Lawrence Livermore National Laboratory (LLNL) Plutonium Facility (B332). Based on the material handling discussed in Section 2.3, there are only three errors that could result in a shipping container being over batched. These are: incorrect measurement of the item, selecting the wrong item to package, and packaging two items into a single shipping container. The analysis in Section 3 shows that the first two events are incredible because of the controls that exist at LLNL. The third event is physically impossible. Therefore, it is incredible for an item to be shipped to SRS that is more than 1.0 kg of fissile materials over batched.

  20. Evaluation of ISDP Batch 2 Qualification Compliance to 512-S, DWPF, Tank Farm, and Saltstone Waste Acceptance Criteria

    SciTech Connect (OSTI)

    Shafer, A.

    2010-05-05T23:59:59.000Z

    The purpose of this report is to document the acceptability of the second macrobatch (Salt Batch 2) of Tank 49H waste to H Tank Farm, DWPF, and Saltstone for operation of the Interim Salt Disposition Project (ISDP). Tank 49 feed meets the Waste Acceptance Criteria (WAC) requirements specified by References 11, 12, and 13. Salt Batch 2 material is qualified and ready to be processed through ARP/MCU to the final disposal facilities.

  1. SLUDGE BATCH 7B QUALIFICATION ACTIVITIES WITH SRS TANK FARM SLUDGE

    SciTech Connect (OSTI)

    Pareizs, J.; Click, D.; Lambert, D.; Reboul, S.

    2011-11-16T23:59:59.000Z

    Waste Solidification Engineering (WSE) has requested that characterization and a radioactive demonstration of the next batch of sludge slurry - Sludge Batch 7b (SB7b) - be completed in the Shielded Cells Facility of the Savannah River National Laboratory (SRNL) via a Technical Task Request (TTR). This characterization and demonstration, or sludge batch qualification process, is required prior to transfer of the sludge from Tank 51 to the Defense Waste Processing Facility (DWPF) feed tank (Tank 40). The current WSE practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks. Discharges of nuclear materials from H Canyon are often added to Tank 51 during sludge batch preparation. The sludge is washed and transferred to Tank 40, the current DWPF feed tank. Prior to transfer of Tank 51 to Tank 40, SRNL typically simulates the Tank Farm and DWPF processes with a Tank 51 sample (referred to as the qualification sample). With the tight schedule constraints for SB7b and the potential need for caustic addition to allow for an acceptable glass processing window, the qualification for SB7b was approached differently than past batches. For SB7b, SRNL prepared a Tank 51 and a Tank 40 sample for qualification. SRNL did not receive the qualification sample from Tank 51 nor did it simulate all of the Tank Farm washing and decanting operations. Instead, SRNL prepared a Tank 51 SB7b sample from samples of Tank 7 and Tank 51, along with a wash solution to adjust the supernatant composition to the final SB7b Tank 51 Tank Farm projections. SRNL then prepared a sample to represent SB7b in Tank 40 by combining portions of the SRNL-prepared Tank 51 SB7b sample and a Tank 40 Sludge Batch 7a (SB7a) sample. The blended sample was 71% Tank 40 (SB7a) and 29% Tank 7/Tank 51 on an insoluble solids basis. This sample is referred to as the SB7b Qualification Sample. The blend represented the highest projected Tank 40 heel (as of May 25, 2011), and thus, the highest projected noble metals content for SB7b. Characterization was performed on the Tank 51 SB7b samples and SRNL performed DWPF simulations using the Tank 40 SB7b material. This report documents: (1) The preparation and characterization of the Tank 51 SB7b and Tank 40 SB7b samples. (2) The performance of a DWPF Chemical Process Cell (CPC) simulation using the SB7b Tank 40 sample. The simulation included a Sludge Receipt and Adjustment Tank (SRAT) cycle, where acid was added to the sludge to destroy nitrite and reduce mercury, and a Slurry Mix Evaporator (SME) cycle, where glass frit was added to the sludge in preparation for vitrification. The SME cycle also included replication of five canister decontamination additions and concentrations. Processing parameters were based on work with a nonradioactive simulant. (3) Vitrification of a portion of the SME product and characterization and durability testing (as measured by the Product Consistency Test (PCT)) of the resulting glass. (4) Rheology measurements of the SRAT receipt, SRAT product, and SME product. This program was controlled by a Task Technical and Quality Assurance Plan (TTQAP), and analyses were guided by an Analytical Study Plan. This work is Technical Baseline Research and Development (R&D) for the DWPF. It should be noted that much of the data in this document has been published in interoffice memoranda. The intent of this technical report is bring all of the SB7b related data together in a single permanent record and to discuss the overall aspects of SB7b processing.

  2. Analysis of Sludge Batch 3 (Macrobatch4) DWPF Pour Stream Glass Sample for Canister s02312

    SciTech Connect (OSTI)

    Bannochie, C

    2005-09-01T23:59:59.000Z

    The Defense Waste Processing Facility (DWPF) began processing Sludge Batch 3 (SB3), Macrobatch 4 (MB4) in March 2004 as part of Sludge Receipt and Adjustment Tank (SRAT) Batch 272. Sludge Batch 3 is a blend of the contents Tank 40 remaining from Sludge Batch 2 (SB2), the sludge that was transferred to Tank 40 from Tank 51 and Canyon Np solution additions made directly to Tank 40. The sludge transferred from Tank 51 contained sludges from Tanks 7, 18 and 19 along with precipitated solutions of U, Pu/Gd and Am/Cm from the F and H Canyons. The blend of sludge from Tank 51, Tank 40, and the Canyon additions defines SB3 (or MB4). The sludge slurry is received into the DWPF Chemical Processing Cell (CPC) and is processed through the SRAT and Slurry Mix Evaporator (SME) Tank and fed to the melter. During the processing of each sludge batch, the DWPF is required to take at least one glass sample. This glass sample is taken to meet the objectives of the Glass Product Control Program and complete the necessary Production Records so that the final glass product may be disposed of at a Federal Repository. Two glass samples were obtained while pouring Canisters S02312 and S02315 which were sent to the Savannah River National Laboratory's (SRNL) Shielded Cells Facility. Sample S02312 was designated for analysis, while sample S02315 was designated for archival storage. This report contains the visual observations of the as-received glass sample, results for the density, chemical composition, the Product Consistency Test (PCT) and the calculated and measured radionuclide results needed for the Production Record for Canister S02312. The following conclusions were drawn from the examination of this DWPF pour stream glass sample: (1) The glass sample taken during the filling of DWPF Canister S02312 weighed 41.69 g and was generally dark and reflective. (2) Minor inclusions, on the order of 1 {micro}m in size, of noble metals were seen in the glass via contained scanning electron microscopy and confirmed from their x-ray fluorescence spectra. (3) The results for the composition of glass sample S02312, except for U, are in reasonable agreement (15% or better) with the DWPF SME Batch 319 results, the SME batch being fed to the melter when the sample was collected. (4) The calculated waste dilution factor (WDF) was 2.19. The measured values of the radionuclides and noble metals in the glass sample generally corresponded well with the calculated values determined using sludge slurry results from Reference 9 and the WDF. (5) The noble metal content of the glass indicates that the noble metals are largely swept from the melter with the glass based upon the noble metals analyzed in the glass and those predicted in the sludge from the WDF. (6) Comparison of the noble metal results for the two digestion methods (mixed acid and alkali fusion) indicates that the alkali fusion method is preferred for the determination of noble metals in glass. (7) The PCT results for the glass (normalized release of B: 1.09 g/L, Na: 1.03 g/L, and Li: 0.94 g/L) indicate that it meets the waste acceptance criterion for durability. (8) The normalized release rates for the measured radionuclides were less than those for the major soluble elements in the waste (B, Na, and Li) with the exception of Tc-99 which was released at a rate similar to that the soluble elements in the leachate. (9) The measured density of the glass was 2.58 {+-} 0.11 g/cm{sup 3}.

  3. Web: http://dust.ess.uci.edu/prp/prp ids/prp ids.pdf NASA International Polar Year (IPY) Proposal Submitted: April 17, 2006

    E-Print Network [OSTI]

    Zender, Charles

    Web: http://dust.ess.uci.edu/prp/prp ids/prp ids.pdf NASA International Polar Year (IPY) Proposal Researchers and Postdocs on CRY- OLIST and on ESS Website. 6. 20070723: Registered for SPAC Workshop for potential collaborators/contributors: 1. Use CVS to obtain source to this proposal: cvs -d :ext:esmf.ess

  4. Applying Fuzzy ID3 Decision Tree for Software Effort Estimation

    E-Print Network [OSTI]

    Elyassami, Sanaa

    2011-01-01T23:59:59.000Z

    Web Effort Estimation is a process of predicting the efforts and cost in terms of money, schedule and staff for any software project system. Many estimation models have been proposed over the last three decades and it is believed that it is a must for the purpose of: Budgeting, risk analysis, project planning and control, and project improvement investment analysis. In this paper, we investigate the use of Fuzzy ID3 decision tree for software cost estimation; it is designed by integrating the principles of ID3 decision tree and the fuzzy set-theoretic concepts, enabling the model to handle uncertain and imprecise data when describing the software projects, which can improve greatly the accuracy of obtained estimates. MMRE and Pred are used as measures of prediction accuracy for this study. A series of experiments is reported using two different software projects datasets namely, Tukutuku and COCOMO'81 datasets. The results are compared with those produced by the crisp version of the ID3 decision tree.

  5. Plasma enhanced atomic layer batch processing of aluminum doped titanium dioxide

    SciTech Connect (OSTI)

    Lehnert, Wolfgang; Ruhl, Guenther; Gschwandtner, Alexander [Infineon Technologies AG, Wernerwerkstrasse 2, Regensburg, 93049 (Germany); R3T GmbH, Hochstrasse 1, Taufkirchen, 82024 (Germany)

    2012-01-15T23:59:59.000Z

    Among many promising high-k dielectrics, TiO{sub 2} is an interesting candidate because of its relatively high k value of over 40 and its easy integration into existing semiconductor manufacturing schemes. The most critical issues of TiO{sub 2} are its low electrical stability and its high leakage current density. However, doping TiO{sub 2} with Al has shown to yield significant improvement of layer quality on Ru electrodes [S. K. Kim et al., Adv. Mater. 20, 1429 (2008)]. In this work we investigated if atomic layer deposition (ALD) of Al doped TiO{sub 2} is feasible in a batch system. Electrical characterizations were done using common electrode materials like TiN, TaN, or W. Additionally, the effect of plasma enhanced processing in this reactor was studied. For this investigation a production batch ALD furnace has been retrofitted with a plasma source which can be used for post deposition anneals with oxygen radicals as well as for directly plasma enhanced ALD. After evaluation of several Ti precursors a deposition process for AlTiO{sub x} with excellent film thickness and composition uniformity was developed. The effects of post deposition anneals, Al{sub 2}O{sub 3} interlayers between electrode and TiO{sub 2}, Al doping concentration, plasma enhanced deposition and electrode material type on leakage current density are shown. An optimized AlTiO{sub x} deposition process on TaN electrodes yields to leakage current density of 5 x 10{sup -7} A/cm{sup 2} at 2 V and k values of about 35. Thus, it could be demonstrated that a plasma enhanced batch ALD process for Al doped TiO{sub 2} is feasible with acceptable leakage current density on a standard electrode material.

  6. Investigation of Rheological Impacts on Sludge Batch 3 as Insoluble Solids and Wash Endpoints are Adjusted

    SciTech Connect (OSTI)

    Fellinger, T. L.

    2005-07-12T23:59:59.000Z

    The Defense Waste Processing Facility (DWPF) is currently processing and immobilizing radioactive sludge slurry into a durable borosilicate glass. The DWPF has already processed three sludge batches (Sludge Batch 1A, Sludge Batch 1B, and Sludge Batch 2) and is currently processing the fourth sludge batch (Sludge Batch 3). A sludge batch is defined as a single tank of sludge slurry or a combination of sludge slurries from different tanks that has been or will be qualified before being transferred to DWPF. As a part of the Sludge Batch 3 (SB3) qualification task, rheology measurements of the sludge slurry were requested at different insoluble solids loadings. These measurements were requested in order to gain insight into potential processing problems that may occur as the insoluble solids are adjusted up or down (by concentration or dilution) during the process. As a part of this study, a portion of the ''as received'' SB3 sample was washed with inhibited water (0.015 M NaOH and 0.015 M NaNO2) to target 0.5M Na versus a measured 1M Na in the supernate. The purpose of the ''washing'' step was to allow a comparison of the SB3 rheological data to the rheological data collected for Sludge Batch 2 (SB2) and to determine if there was a dependence of the yield stress and consistency as a function of washing. The ''as received'' SB3 rheology data was also compared to SB3 simulants prepared by the Simulant Development Program in order to provide guidance for selecting a simulant that is more representative of the rheological properties of the radioactive sludge slurry. A summary of the observations, conclusions are: (1) The yield stress and plastic viscosity increased as the weight percent insoluble solids were increased for the ''as received'' and ''washed'' SB3 samples, at a fixed pH. (2) For the same insoluble solids loading, the yield stress for the SB2 sample is approximately a factor of three higher than the ''as received'' SB3 sample. There also appears to be small difference in the plastic viscosity. This difference is probably due to the different Na concentrations of the slurries. (3) The yield stress for the SB2 sample at 17.5 wt. % insoluble solids loading is four times higher than the ''washed'' SB3 sample at 16.5 wt. % insoluble solids. There also appears to be small difference in the plastic viscosity. The differences for the yield stress and consistency can be explained by the differences in the Fe and Na concentrations of the sludge slurry and the anion concentrations of the resulting supernates. (4) The rheological properties (i.e. yield stress and plastic viscosity), as the insoluble solids are adjusted, for the ''as received'' and ''washed'' SB3 samples are different. The plastic viscosity curve for the ''as received'' SB3 sample was higher than the plastic viscosity curve for SB3 ''washed'' sample. The yield stress curve for the ''washed'' SB3 sample is slightly lower than the ''as received'' SB3 sample up until {approx}19 wt. % insoluble solids. The ''washed'' SB3 sample then exceeds the yield stress curve for the ''as received'' SB3 sample. This rheological behavior is probably due to the difference in the Na concentration of the supernate for the samples. (5) No unusual behavior, such as air entrainment, was noted for the ''as received'' SB3 sample. (6) The observed physical properties of the SB3 sample changed after washing. The ''washed'' SB3 sample entrained air readily at higher insoluble solids loadings (i.e. 14.1, 16.5, 19.5 wt. %) as it did for SB2. The air entrainment appeared to dissipate for the SB3 sample at the lower insoluble solids loadings (i.e. 9.7 and 11.7 wt. %). (7) The physical behavior of SB3 can be influenced by controlling the Na concentration in the supernate and the wt. % insoluble solids. The cause for the air entrainment in the ''washed'' SB3 sample could be due to a change in the particle size during the washing step. (8) The SB3 simulants prepared for the Simulant Development Program were approximately a factor of 1.6 to 4 times higher for yield stress and 2.6 to 4 times higher

  7. Selective batch crushing in the coal-preparation shop at OAO NTMK

    SciTech Connect (OSTI)

    N.A. Berkutov; Yu.V. Stepanov; P.V. Shtark; L.A. Makhortova; N.K. Popova; D.A. Koshkarov; N.V. Tsarev [OAO Nizhnetagil'skii Metallurgicheskii Kombinat (NTMK)(Russian Federation)

    2007-05-15T23:59:59.000Z

    In September 2004, after reconstruction at OAO Nizhnetagil'skii Metallurgicheskii Kombinat (NTMK), blast furnace 6 went into operation for the production of vanadium from hot metal. At the startup of furnace 6, besides optimising its composition; it was decided to restore selective crushing of the coal batch using pneumatic and mechanical separation in the third unit of the coal preparation shop. Additional increase in the mechanical strength of coke by 1.5-2.0% was predicted with a 0.5-1.0% decrease in wear.

  8. A Batch Wafer Scale LIGA Assembly and Packaging Technique vai Diffusion Bonding

    SciTech Connect (OSTI)

    Christenson, T.R.; Schmale, D.T.

    1999-01-27T23:59:59.000Z

    A technique using diffusion bonding (or solid-state welding) has been used to achieve batch fabrication of two- level nickel LIGA structures. Interlayer alignment accuracy of less than 1 micron is achieved using press-fit gauge pins. A mini-scale torsion tester was built to measure the diffusion bond strength of LIGA formed specimens that has shown successful bonding at temperatures of 450"C at 7 ksi pressure with bond strength greater than 100 Mpa. Extensions to this basic process to allow for additional layers and thereby more complex assemblies as well as commensurate packaging are discussed.

  9. Batch methods for enriching trace impurities in hydrogen gas for their further analysis

    DOE Patents [OSTI]

    Ahmed, Shabbir; Lee, Sheldon H.D.; Kumar, Romesh; Papdias, Dionissios D.

    2014-07-15T23:59:59.000Z

    Provided herein are batch methods and devices for enriching trace quantities of impurities in gaseous mixtures, such as hydrogen fuel. The methods and devices rely on concentrating impurities using hydrogen transport membranes wherein the time period for concentrating the sample is calculated on the basis of optimized membrane characteristics, comprising its thickness and permeance, with optimization of temperature, and wherein the enrichment of trace impurities is proportional to the pressure ratio P.sub.hi/P.sub.lo and the volume ratio V.sub.1/V.sub.2, with following detection of the impurities using commonly-available detection methods.

  10. Evaluation of methods of mixing lime in bituminous paving mixtures in batch and drum plants 

    E-Print Network [OSTI]

    Button, Joseph Wade

    1984-01-01T23:59:59.000Z

    ) Joseph Wade Button, B. S. , Texas ASM University Co-Chairmen of Advisory Committee: Mr. Bob M. Gallaway and Dr. Dallas N. Little A field test was conducted to evaluate the use of hydrated lime as an antistrip additive in hot mix asphalt concrete.... Lime was added in the pugmill of the batch plant, on the cold feed belt, and through the fines feeder of the drum mix plant. The asphalt and aggregates used were characterized in the laboratory. Asphalt concrete mixture tests included laboratory...

  11. FRIT OPTIMIZATION FOR SLUDGE BATCH PROCESSING AT THE DEFENSE WASTE PROCESSING FACILITY

    SciTech Connect (OSTI)

    Fox, K.

    2009-01-28T23:59:59.000Z

    The Savannah River National Laboratory (SRNL) Frit Development Team recommends that the Defense Waste Processing Facility (DWPF) utilize Frit 418 for initial processing of high level waste (HLW) Sludge Batch 5 (SB5). The extended SB5 preparation time and need for DWPF feed have necessitated the use of a frit that is already included on the DWPF procurement specification. Frit 418 has been used previously in vitrification of Sludge Batches 3 and 4. Paper study assessments predict that Frit 418 will form an acceptable glass when combined with SB5 over a range of waste loadings (WLs), typically 30-41% based on nominal projected SB5 compositions. Frit 418 has a relatively high degree of robustness with regard to variation in the projected SB5 composition, particularly when the Na{sub 2}O concentration is varied. The acceptability (chemical durability) and model applicability of the Frit 418-SB5 system will be verified experimentally through a variability study, to be documented separately. Frit 418 has not been designed to provide an optimal melt rate with SB5, but is recommended for initial processing of SB5 until experimental testing to optimize a frit composition for melt rate can be completed. Melt rate performance can not be predicted at this time and must be determined experimentally. Note that melt rate testing may either identify an improved frit for SB5 processing (one which produces an acceptable glass at a faster rate than Frit 418) or confirm that Frit 418 is the best option.

  12. RECOMMENDED FRIT COMPOSITION FOR INITIAL SLUDGE BATCH 5 PROCESSING AT THE DEFENSE WASTE PROCESSING FACILITY

    SciTech Connect (OSTI)

    Fox, K; Tommy Edwards, T; David Peeler, D

    2008-06-25T23:59:59.000Z

    The Savannah River National Laboratory (SRNL) Frit Development Team recommends that the Defense Waste Processing Facility (DWPF) utilize Frit 418 for initial processing of high level waste (HLW) Sludge Batch 5 (SB5). The extended SB5 preparation time and need for DWPF feed have necessitated the use of a frit that is already included on the DWPF procurement specification. Frit 418 has been used previously in vitrification of Sludge Batches 3 and 4. Paper study assessments predict that Frit 418 will form an acceptable glass when combined with SB5 over a range of waste loadings (WLs), typically 30-41% based on nominal projected SB5 compositions. Frit 418 has a relatively high degree of robustness with regard to variation in the projected SB5 composition, particularly when the Na{sub 2}O concentration is varied. The acceptability (chemical durability) and model applicability of the Frit 418-SB5 system will be verified experimentally through a variability study, to be documented separately. Frit 418 has not been designed to provide an optimal melt rate with SB5, but is recommended for initial processing of SB5 until experimental testing to optimize a frit composition for melt rate can be completed. Melt rate performance can not be predicted at this time and must be determined experimentally. Note that melt rate testing may either identify an improved frit for SB5 processing (one which produces an acceptable glass at a faster rate than Frit 418) or confirm that Frit 418 is the best option.

  13. Kinetic model for quartz and spinel dissolution during melting of high-level-waste glass batch

    SciTech Connect (OSTI)

    Pokorny, Richard; Rice, Jarrett A.; Crum, Jarrod V.; Schweiger, Michael J.; Hrma, Pavel R.

    2013-07-24T23:59:59.000Z

    The dissolution of quartz particles and the growth and dissolution of crystalline phases during the conversion of batch to glass potentially affects both the glass melting process and product quality. Crystals of spinel exiting the cold cap to molten glass below can be troublesome during the vitrification of iron-containing high-level wastes. To estimate the distribution of quartz and spinel fractions within the cold cap, we used kinetic models that relate fractions of these phases to temperature and heating rate. Fitting the model equations to data showed that the heating rate, apart from affecting quartz and spinel behavior directly, also affects them indirectly via concurrent processes, such as the formation and motion of bubbles. Because of these indirect effects, it was necessary to allow one kinetic parameter (the pre-exponential factor) to vary with the heating rate. The resulting kinetic equations are sufficiently simple for the detailed modeling of batch-to-glass conversion as it occurs in glass melters. The estimated fractions and sizes of quartz and spinel particles as they leave the cold cap, determined in this study, will provide the source terms needed for modeling the behavior of these solid particles within the flow of molten glass in the melter.

  14. Mechanism of Phase Formation in the Batch Mixtures for Slag-Bearing Glass Ceramics - 12207

    SciTech Connect (OSTI)

    Stefanovsky, Sergey V.; Stefanovsky, Olga I.; Malinina, Galina A. [SIA Radon, 7th Rostovskii lane 2/14, Moscow 119121 (Russian Federation)

    2012-07-01T23:59:59.000Z

    Slag surrogate was produced from chemicals by heating to 900 deg. C and keeping at this temperature for 1 hr. The product obtained was intermixed with either sodium di-silicate (75 wt.% waste loading) or borax (85 wt.% slag loading). The mixtures were heat-treated within a temperature range of 25 to 1300 deg. C. The products were examined by X-ray diffraction and infrared spectroscopy. The products prepared at temperatures of up to 1000 deg. C contained both phase typical of the source slag and intermediate phases as well as phases typical of the materials melted at 1350 deg. C such as nepheline, britholite, magnetite and matrix vitreous phase. Vitrification process in batch mixtures consisting of slag surrogate and either sodium di-silicate or sodium tetraborate runs through formation of intermediate phases mainly silico-phosphates capable to incorporate Sm as trivalent actinides surrogate. Reactions in the batch mixtures are in the whole completed by ?1000 deg. C but higher temperatures are required to homogenize the products. If in the borate-based system the mechanism is close to simple dissolution of slag constituents in the low viscous borate melt, then in the silicate-based system the mechanism was found to be much complicated and includes re-crystallization during melting with segregation of newly-formed nepheline type phase. (authors)

  15. SULFATE RETENTION IN HIGH LEVEL WASTE SLUDGE BATCH 4 GLASSES: A PRELIMINARY ASSESSMENT

    SciTech Connect (OSTI)

    Fox, K; Tommy Edwards, T; David Peeler, D

    2006-12-11T23:59:59.000Z

    Early projections of the Sludge Batch 4 (SB4) composition predicted relatively high concentrations of alumina (Al{sub 2}O{sub 3}, 23.5 wt%) and sulfate (SO{sub 4}{sup 2-}, 1.2 wt%) in the sludge. A high concentration of Al{sub 2}O{sub 3} in the sludge, combined with Na{sub 2}O additions in the frit, raises the potential for nepheline crystallization in the glass. However, strategic frit development efforts at the Savannah River National Laboratory (SRNL) have shown that frits containing a relatively high concentration of B{sub 2}O{sub 3} can both suppress nepheline crystallization and improve melt rates. A high sulfate concentration is a concern to the DWPF as it can lead to the formation of sulfate inclusions in the glass and/or the formation of a molten, sulfate-rich phase atop the melt pool. To avoid these issues, a sulfate concentration limit of 0.4 wt% SO{sub 4}{sup 2-} in glass was originally set in the Product Composition Control System (PCCS) used at DWPF. It was later shown that this limit could be increased to 0.6 wt% SO{sub 4}{sup 2-} in glass for the Frit 418, Sludge Batch 3 (SB3) system.

  16. INTERPRETATION OF AT-LINE SPECTRA FROM AFS-2 BATCH #3 FERROUS SULFAMATE TREATMENT

    SciTech Connect (OSTI)

    Kyser, E.; O'Rourke, P.

    2013-12-10T23:59:59.000Z

    Spectra from the “at-line” spectrometer were obtained during the ferrous sulfamate (FS) valence adjustment step of AFS-2 Batch #3 on 9/18/2013. These spectra were analyzed by mathematical principal component regression (PCR) techniques to evaluate the effectiveness of this treatment. Despite the complications from Pu(IV), we conclude that all Pu(VI) was consumed during the FS treatment, and that by the end of the treatment, about 85% was as Pu(IV) and about 15% was as Pu(III). Due to the concerns about the “odd” shape of the Pu(IV) peak and the possibility of this behavior being observed in the future, a follow-up sample was sent to SRNL to investigate this further. Analysis of this sample confirmed the previous results and concluded that it “odd” shape was due to an intermediate acid concentration. Since the spectral evidence shows complete reduction of Pu(VI) we conclude that it is appropriate to proceed with processing of this the batch of feed solution for HB-Line including the complexation of the fluoride with aluminum nitrate.

  17. Determination Of Reportable Radionuclides For DWPF Sludge Batch 7B (Macrobatch 9)

    SciTech Connect (OSTI)

    Crawford, C. L.; Diprete, D. P.

    2012-12-17T23:59:59.000Z

    The DWPF is receiving radioactive sludge slurry from HLW Tank 40. The radioactive sludge slurry in Tank 40 is a blend of the heel from Sludge Batch 7a (SB7a) and Sludge Batch 7b (SB7b) that was transferred to Tank 40 from Tank 51. The blend of sludge in Tank 40 is also referred to as Macrobatch 9 (MB9). This report develops the list of reportable radionuclides and associated activities as a function of time. Twenty-seven radionuclides have been identified as reportable for DWPF SB7b. Each of these radionuclides has a half-life greater than ten years and contributes more than 0.01% of the radioactivity on a Curie basis at some point from production through the 1100 year period between 2015 and 3115. For SB7b, all of the radionuclides in the Design Basis glass are reportable except for three radionuclides: Pd-107, Cs-135, and Th-230. At no time during the 1100- year period between 2015 and 3115 did any of these three radionuclides contribute to more than 0.01% of the radioactivity on a Curie basis. The radionuclide measurements made for SB7b are the most extensive conducted to date. Some method development/refinement occurred during the conduct of these measurements, leading to lower detection limits and more accurate measurement of some isotopes than was previously possible.

  18. Determination of Reportable Radionuclides for DWPF Sludge Batch 3 (Macrobatch 4)

    SciTech Connect (OSTI)

    Bannochie, C

    2005-05-01T23:59:59.000Z

    The Waste Acceptance Product Specifications (WAPS) 1.2 require that ''The Producer shall report the inventory of radionuclides (in Curies) that have half-lives longer than 10 years and that are, or will be, present in concentrations greater than 0.05 percent of the total inventory for each waste type indexed to the years 2015 and 3115''. As part of the strategy to meet WAPS 1.2, the Defense Waste Processing Facility (DWPF) will report for each waste type, all radionuclides (with half-lives greater than 10 years) that have concentrations greater than 0.01 percent of the total inventory from time of production through the 1100 year period from 2015 through 3115. The initial listing of radionuclides to be included is based on the design-basis glass as identified in the Waste Form Compliance Plan (WCP) and Waste Form Qualification Report (WQR). However, it is required that this list be expanded if other radionuclides with half-lives greater than 10 years are identified that meet the greater than 0.01% criterion for Curie content. Specification 1.6 of the WAPS, IAEA Safeguards Reporting for HLW, requires that the ratio by weights of the following uranium and plutonium isotopes be reported: U-233, U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, and Pu-242. Therefore, the complete set of reportable radionuclides must also include this set of U and Pu isotopes. The Defense Waste Processing Facility (DWPF) is receiving radioactive sludge slurry from High Level Waste Tank 40. The radioactive sludge slurry in Tank 40 is a blend of the previous contents of Tank 40 (Sludge Batch 2) and the sludge that was transferred to Tank 40 from Tank 51. The blend of sludge from Tank 51 and Tank 40 defines Macrobatch 4 (also referred to as Sludge Batch 3). This report develops the list of reportable radionuclides and associated activities and determines the radionuclide activities as a function of time. The DWPF will use this list and the activities as one of the inputs for the development of the Production Records that relate to radionuclide inventory. This work was initiated through Task Technical Request HLW/DWPF/TTR-03-0005, Revision 1 entitled Sludge Batch 3 SRTC Shielded Cells Testing. Specifically, this report details results from performing, in part, Subtask 3 of the TTR and, in part, meets Deliverable 6 of the TTR. The work was performed following the Technical Task and Quality Assurance Plan (TTQAP), WSRC-RP-2003-00249, Rev. 1 and Analytical Study Plan (ASP), WSRC-RP-2004-00262. In order to determine the reportable radionuclides for Sludge Batch 3 (Macro Batch 4), a list of radioisotopes that may meet the criteria as specified by the Department of Energy's (DOE) WAPS was developed. All radioactive U-235 fission products and all radioactive activation products that could be in the SRS HLW were considered. In addition, all U and Pu isotopes identified in WAPS 1.6 were included in the list. This list was then evaluated and some isotopes excluded from the projection calculations.

  19. DARS BATCH PROCESSING O F F I C E O F T H E R E G I S T R A R

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    DARS BATCH PROCESSING O F F I C E O F T H E R E G I S T R A R UNIVERSITY OF WISCONSIN-MADISON #12;TABLE OF CONTENTS 1. About DARS Batch a. History b. Capabilities 2. Quick Reference Guide 3. The DARS of Batches a. Monitoring the status of a request b. Viewing and printing 6. FAQs 7. DARS Analysis Tables 8

  20. Idaho National Laboratory Supervisory Control and Data Acquisition Intrusion Detection System (SCADA IDS)

    SciTech Connect (OSTI)

    Jared Verba; Michael Milvich

    2008-05-01T23:59:59.000Z

    Current Intrusion Detection System (IDS) technology is not suited to be widely deployed inside a Supervisory, Control and Data Acquisition (SCADA) environment. Anomaly- and signature-based IDS technologies have developed methods to cover information technology-based networks activity and protocols effectively. However, these IDS technologies do not include the fine protocol granularity required to ensure network security inside an environment with weak protocols lacking authentication and encryption. By implementing a more specific and more intelligent packet inspection mechanism, tailored traffic flow analysis, and unique packet tampering detection, IDS technology developed specifically for SCADA environments can be deployed with confidence in detecting malicious activity.

  1. Verification Of The Defense Waste Processing Facility's (DWPF) Process Digestion Methods For The Sludge Batch 8 Qualification Sample

    SciTech Connect (OSTI)

    Click, D. R.; Edwards, T. B.; Wiedenman, B. J.; Brown, L. W.

    2013-03-18T23:59:59.000Z

    This report contains the results and comparison of data generated from inductively coupled plasma – atomic emission spectroscopy (ICP-AES) analysis of Aqua Regia (AR), Sodium Peroxide/Sodium Hydroxide Fusion Dissolution (PF) and Cold Chem (CC) method digestions and Cold Vapor Atomic Absorption analysis of Hg digestions from the DWPF Hg digestion method of Sludge Batch 8 (SB8) Sludge Receipt and Adjustment Tank (SRAT) Receipt and SB8 SRAT Product samples. The SB8 SRAT Receipt and SB8 SRAT Product samples were prepared in the SRNL Shielded Cells, and the SRAT Receipt material is representative of the sludge that constitutes the SB8 Batch or qualification composition. This is the sludge in Tank 51 that is to be transferred into Tank 40, which will contain the heel of Sludge Batch 7b (SB7b), to form the SB8 Blend composition.

  2. Department of Energy Idaho - Inside DOE-ID

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGas SeparationsRelevantDOEDelegations Current ByCommonInside ID

  3. RAPID/Roadmap/14-ID-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to:ID8/OrganizationTechProbSolutionsPublicQuanlightR3(2)3-AK-aNV-aCA-eeb

  4. RAPID/Roadmap/14-ID-f | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation, search RAPID Regulatory and

  5. RAPID/Roadmap/15-ID-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation, search RAPIDaUT-a <bfa

  6. RAPID/Roadmap/19-ID-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation, searche < RAPID‎

  7. RAPID/Roadmap/3-ID-d | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation, searche <

  8. RAPID/Roadmap/5-ID-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation, searche <ca

  9. RAPID/Roadmap/7-ID-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation, searcheWA-aHI-a <a <

  10. RAPID/Roadmap/8-ID-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation,c < RAPID‎ | Roadmapca

  11. RAPID/Roadmap/8-ID-e | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation,c < RAPID‎ | Roadmapcae

  12. Microsoft Word - 140602DOE-ID_OperationsSummary.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your HomeOverviewCleanupShipping Form3 - March, 2014 DOE-ID

  13. Property:RAPID/Contact/ID1/Organization | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation, searchID1/Organization Property Type

  14. Property:RAPID/Contact/ID1/Phone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation, searchID1/Organization Property

  15. Property:RAPID/Contact/ID1/Position | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation, searchID1/Organization

  16. Property:RAPID/Contact/ID1/Website | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation, searchID1/OrganizationProperty Edit

  17. Property:RAPID/Contact/ID2/Email | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation, searchID1/OrganizationProperty

  18. Property:RAPID/Contact/ID2/Name | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation, searchID1/OrganizationPropertyProperty

  19. Property:RAPID/Contact/ID2/Phone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation,ID2/Phone Jump to: navigation, search

  20. Property:RAPID/Contact/ID2/Position | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation,ID2/Phone Jump to: navigation,

  1. Property:RAPID/Contact/ID2/Website | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation,ID2/Phone Jump to:

  2. Property:RAPID/Contact/ID3/Email | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation,ID2/Phone Jump to:Email Property Type

  3. Property:RAPID/Contact/ID3/Name | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation,ID2/Phone Jump to:Email Property

  4. Property:RAPID/Contact/ID3/Organization | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation,ID2/Phone Jump to:Email

  5. Property:RAPID/Contact/ID3/Position | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation,ID2/Phone Jump

  6. Property:RAPID/Contact/ID3/Website | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation,ID2/Phone Jumppages using this

  7. Property:RAPID/Contact/ID5/Email | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation,ID2/Phone Jumppages using

  8. Property:RAPID/Contact/ID5/Name | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation,ID2/Phone Jumppages usingBill Steele +

  9. Property:RAPID/Contact/ID5/Organization | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation,ID2/Phone Jumppages usingBill Steele

  10. Property:RAPID/Contact/ID5/Position | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation,ID2/Phone Jumppages usingBill

  11. Property:RAPID/Contact/ID5/Website | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation,ID2/Phone Jumppages

  12. Property:RAPID/Contact/ID6/Email | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation,ID2/Phone JumppagesType Email

  13. Property:RAPID/Contact/ID6/Name | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation,ID2/Phone JumppagesType EmailThis

  14. Property:RAPID/Contact/ID6/Organization | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation,ID2/Phone JumppagesType EmailThis5

  15. Property:RAPID/Contact/ID6/Phone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation,ID2/Phone JumppagesType

  16. Property:RAPID/Contact/ID6/Position | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation,ID2/Phone JumppagesTypeString

  17. Property:RAPID/Contact/ID7/Name | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to: navigation,ID2/Phone

  18. RAPID/Roadmap/12-ID-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas)ID-a < RAPID‎ | Roadmap Jump

  19. RAPID/Roadmap/14-ID-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas)ID-a

  20. RAPID/Roadmap/19-ID-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ | RoadmapHI-acCA-bfID-a <

  1. RAPID/Roadmap/20-ID-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ |gWA-e <20 <-ID-a <

  2. RAPID/Roadmap/3-ID-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ |gWA-eID-b < RAPID‎ |

  3. RAPID/Roadmap/3-ID-c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ |gWA-eID-b < RAPID‎

  4. RAPID/Roadmap/3-ID-e | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ |gWA-eID-b <

  5. RAPID/Roadmap/4-ID-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ |gWA-eID-b <aibHI-a

  6. RAPID/Roadmap/6-ID-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ |gWA-eID-baa <b <a <

  7. RAPID/Roadmap/6-ID-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ |gWA-eID-baa <b <a

  8. RAPID/Roadmap/6-ID-c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ |gWA-eID-baa <b <ac

  9. Microsoft Word - DOE-ID-INL-14-046.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Project Title:4 SECTIONR1DETERMINATIODOE0ID

  10. Microsoft Word - DOE-ID-INL-14-048.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Project Title:4 SECTIONR1DETERMINATIODOE0ID8

  11. Investigation of Sludge Batch 3 (Macrobatch 4) Glass Sample Anomalous Behavior

    SciTech Connect (OSTI)

    Bannochie, C. J.; Bibler, N. E.; Peeler, D. K.

    2005-08-15T23:59:59.000Z

    Two Defense Waste Processing Facility (DWPF) glass samples from Sludge Batch 3 (SB3) (Macrobatch 4) were received by the Savannah River National Laboratory (SRNL) on February 23, 2005. One sample, S02244, was designated for the Product Consistency Test (PCT) and elemental and radionuclide analyses. The second sample, S02247, was designated for archival storage. The samples were pulled from the melter pour stream during the feeding of Melter Feed Tank (MFT) Batch 308 and therefore roughly correspond to feed from Slurry Mix Evaporator (SME) Batches 306-308. During the course of preparing sample S02244 for PCT and other analyses two observations were made which were characterized as ''unusual'' or anomalous behavior relative to historical observations of glasses prepared for the PCT. These observations ultimately led to a series of scoping tests in order to determine more about the nature of the behavior and possible mechanisms. The first observation was the behavior of the ground glass fraction (-100 +200 mesh) for PCT analysis when contacted with deionized water during the washing phase of the PCT procedure. The behavior was analogous to that of an organic compound in the presence of water: clumping, floating on the water surface, and crawling up the beaker walls. In other words, the glass sample did not ''wet'' normally, displaying a hydrophobic behavior in water. This had never been seen before in 18 years SRNL PCT tests on either radioactive or non-radioactive glasses. Typical glass behavior is largely to settle to the bottom of the water filled beaker, though there may be suspended fines which result in some cloudiness to the wash water. The typical appearance is analogous to wetting sand. The second observation was the presence of faint black rings at the initial and final solution levels in the Teflon vessels used for the mixed acid digestion of S02244 glass conducted for compositional analysis. The digestion is composed of two stages, and at both the intermediate and the final content levels in the digestion vessel the rings were present. The rings had not been seen previously during glass digestions and were not present in the Analytical Reference Glass (ARG) standard samples digested, in separate vessels, along with the DWPF glass. What follows in this report are the results and analyses from various scoping experiments done in order to explain the anomalous behavior observed with DWPF glass S02244, along with a comparison with tests on sample S02247 where the anomalous wetting behavior was not observed.

  12. Analysis Of The Sludge Batch 7b (Macrobatch 9) DWPF Pour Stream Glass Sample

    SciTech Connect (OSTI)

    Johnson, F. C.; Crawford, C. L.; Pareizs, J. M.

    2013-11-18T23:59:59.000Z

    The Defense Waste Processing Facility (DWPF) began processing Sludge Batch 7b (SB7b), also referred to as Macrobatch 9 (MB9), in January 2012. SB7b is a blend of the heel of Tank 40 from Sludge Batch 7a (SB7a) and the SB7b material that was transferred to Tank 40 from Tank 51. SB7b was processed using Frit 418. During processing of each sludge batch, the DWPF is required to take at least one glass sample to meet the objectives of the Glass Product Control Program (GPCP), which is governed by the DWPF Waste Form Compliance Plan, and to complete the necessary Production Records so that the final glass product may be disposed of at a Federal Repository. Two pour stream glass samples were collected while processing SB7b. The samples were transferred to the Savannah River National Laboratory (SRNL) where one was analyzed and the other was archived. The following conclusions were drawn from the analytical results provided in this report: The sum of oxides for the official SB7b pour stream glass is within the Product Composition Control System (PCCS) limits (95-105 wt%); The average calculated Waste Dilution Factor (WDF) for SB7b is 2.3. In general, the measured radionuclide content of the official SB7b pour stream glass is in good agreement with the calculated values from the Tank 40 dried sludge results from the SB7b Waste Acceptance Program Specification (WAPS) sample; As in previous pour stream samples, ruthenium and rhodium inclusions were detected by Scanning Electron Microscopy-Electron Dispersive Spectroscopy (SEM-EDS) in the SB7b pour stream sample; The Product Consistency Test (PCT) results indicate that the official SB7b pour stream glass meets the waste acceptance criteria for durability with a normalized boron release of 0.8 g/L, which is an order of magnitude less than the Environmental Assessment (EA) glass; The measured density of the SB7b pour stream glass was 2.70 g/cm{sup 3}; The Fe{sup 2+}/?Fe ratio of the SB7b pour stream samples was 0.07.

  13. ANALYSIS OF DWPF SLUDGE BATCH 7A (MACROBATCH 8) POUR STREAM SAMPLES

    SciTech Connect (OSTI)

    Johnson, F.

    2012-05-01T23:59:59.000Z

    The Defense Waste Processing Facility (DWPF) began processing Sludge Batch 7a (SB7a), also referred to as Macrobatch 8 (MB8), in June 2011. SB7a is a blend of the heel of Tank 40 from Sludge Batch 6 (SB6) and the SB7a material that was transferred to Tank 40 from Tank 51. SB7a was processed using Frit 418. During processing of each sludge batch, the DWPF is required to take at least one glass sample to meet the objectives of the Glass Product Control Program (GPCP), which is governed by the DWPF Waste Compliance Plan, and to complete the necessary Production Records so that the final glass product may be disposed of at a Federal Repository. Three pour stream glass samples and two Melter Feed Tank (MFT) slurry samples were collected while processing SB7a. These additional samples were taken during SB7a to understand the impact of antifoam and the melter bubblers on glass redox chemistry. The samples were transferred to the Savannah River National Laboratory (SRNL) where they were analyzed. The following conclusions were drawn from the analytical results provided in this report: (1) The sum of oxides for the official SB7a pour stream glass is within the Product Composition Control System (PCCS) limits (95-105 wt%). (2) The average calculated Waste Dilution Factor (WDF) for SB7a is 2.3. In general, the measured radionuclide content of the official SB7a pour stream glass is in good agreement with the calculated values from the Tank 40 dried sludge results from the SB7a Waste Acceptance Program Specification (WAPS) sample. (3) As in previous pour stream samples, ruthenium and rhodium inclusions were detected by Scanning Electron Microscopy-Electron Dispersive Spectroscopy (SEM-EDS) in the official SB7a pour stream sample. (4) The Product Consistency Test (PCT) results indicate that the official SB7a pour stream glass meets the waste acceptance criteria for durability with a normalized boron release of 0.64 g/L, which is an order of magnitude less than the Environmental Assessment (EA) glass. (5) The measured density of the SB7a pour stream glass was 2.7 g/cm{sup 3}. (6) The Fe{sup 2+}/{Sigma}Fe ratios of the SB7a pour stream samples were in the range of 0.04-0.13, while the MFT sample glasses prepared by SRNL were in the range of 0.02-0.04.

  14. ANALYSIS OF DWPF SLUDGE BATCH 6 (MACROBATCH 7) POUR STREAM GLASS SAMPLES

    SciTech Connect (OSTI)

    Johnson, F.

    2012-01-20T23:59:59.000Z

    The Defense Waste Processing Facility (DWPF) began processing Sludge Batch 6 (SB6), also referred to as Macrobatch 7 (MB7), in June 2010. SB6 is a blend of the heel of Tank 40 from Sludge Batch 5 (SB5), H-Canyon Np transfers and SB6 that was transferred to Tank 40 from Tank 51.1 SB6 was processed using Frit 418. Sludge is received into the DWPF Chemical Processing Cell (CPC) and is processed through the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator Tank (SME). The treated sludge slurry is then transferred to the Melter Feed Tank (MFT) and fed to the melter. During processing of each sludge batch, the DWPF is required to take at least one glass sample to meet the objectives of the Glass Product Control Program (GPCP) and to complete the necessary Production Records so that the final glass product may be disposed of at a Federal Repository. The DWPF requested various analyses of radioactive glass samples obtained from the melter pour stream during processing of SB6 as well as reduction/oxidation (REDOX) analysis of MFT samples to determine the impact of Argon bubbling. Sample analysis followed the Task Technical and Quality Assurance Plan (TTQAP) and an Analytical Study Plan (ASP). Four Pour Stream (PS) glass samples and two MFT slurry samples were delivered to the Savannah River National Laboratory (SRNL) from the DWPF. Table 1-1 lists the sample information for each pour stream glass sample. SB6 PS3 (S03472) was selected as the official pour stream sample for SB6 and full analysis was requested. This report details the visual observations of the as-received SB6 PS No.3 glass sample as well as results for the chemical composition, Product Consistency Test (PCT), radionuclide content, noble metals, and glass density. REDOX results will be provided for all four pour stream samples and vitrified samples of MFT-558 and MFT-568A. Where appropriate, data from other pour stream samples will be provided.

  15. UO{sub 2} corrosion in high surface-area-to-volume batch experiments.

    SciTech Connect (OSTI)

    Bates, J. K.; Finch, R. J.; Hanchar, J. M.; Wolf, S. F.

    1997-12-08T23:59:59.000Z

    Unsaturated drip tests have been used to investigate the alteration of unirradiated UO{sub 2} and spent UO{sub 2} fuel in an unsaturated environment such as may be expected in the proposed repository at Yucca Mountain. In these tests, simulated groundwater is periodically injected onto a sample at 90 C in a steel vessel. The solids react with the dripping groundwater and water condensed on surfaces to form a suite of U(VI) alteration phases. Solution chemistry is determined from leachate at the bottom of each vessel after the leachate stops interacting with the solids. A more detailed knowledge of the compositional evolution of the leachate is desirable. By providing just enough water to maintain a thin film of water on a small quantity of fuel in batch experiments, we can more closely monitor the compositional changes to the water as it reacts to form alteration phases.

  16. UO2 CORROSION IN HIGH SURFACE-AREA-TO-VOLUME BATCH EXPERIMENTS

    SciTech Connect (OSTI)

    Finch, Robert J.; Wolf, Stephen F.; Hanchar, John M.; Bates, John K.

    1998-05-11T23:59:59.000Z

    Unsaturated drip tests have been used to investigate the alteration of unirradiated UO{sub 2} and spent UO{sub 2} fuel in an unsaturated environment, such as may be expected in the proposed repository at Yucca Mountain. In these tests, simulated groundwater is periodically injected onto a sample at 90 C in a steel vessel. The solids react with the dripping groundwater and water condensed on surfaces to form a suite of U(VI) alteration phases. Solution chemistry is determined from leachate at the bottom of each vessel after the leachate stops interacting with the solids. A more detailed knowledge of the compositional evolution of the leachate is desirable. By providing just enough water to maintain a thin film of water on a small quantity of fuel in batch experiments, we can more closely monitor the compositional changes to the water as it reacts to form alteration phases.

  17. A Proposed Algorithm to improve security & Efficiency of SSL-TLS servers using Batch RSA decryption

    E-Print Network [OSTI]

    Pateriya, R K; Shrivastava, S C; Patel, Jaideep

    2009-01-01T23:59:59.000Z

    Today, Internet becomes the essential part of our lives. Over 90 percent of the ecommerce is developed on the Internet. A security algorithm became very necessary for producer client transactions assurance and the financial applications safety. The rsa algorithm applicability derives from algorithm properties like confidentiality, safe authentication, data safety and integrity on the internet. Thus, this kind of networks can have a more easy utilization by practical accessing from short, medium, even long distance and from different public places. Rsa encryption in the client side is relatively cheap, whereas, the corresponding decryption in the server side is expensive because its private exponent is much larger. Thus ssl tls servers become swamped to perform public key decryption operations when the simultaneous requests increase quickly .The batch rsa method is useful for such highly loaded web server .In our proposed algorithm by reducing the response time and clients tolerable waiting time an improvement...

  18. A STATISTICAL REVIEW OF DWPF LABORATORY MEASUREMENTS GENERATED DURING THE PROCESSING OF BATCHES 300 THROUGH 356

    SciTech Connect (OSTI)

    Edwards, T

    2006-08-31T23:59:59.000Z

    In this report, the Statistical Consulting Section (SCS) of the Savannah River National Laboratory (SRNL) provides summaries and comparisons of composition measurements for glass samples that were generated during the processing of batches 300 through 356 at the Defense Waste Processing Facility (DWPF). These analyses, which include measurements of samples from the Sludge Receipt and Adjustment Tank (SRAT) and the Slurry Mix Evaporator (SME) as well as samples of glass standards, were provided to SCS by the DWPF Laboratory (DWPF Lab) of Waste Laboratory Services. The comparisons made by SCS were extensive given that these data allowed for contrasts between preparation methods and between the two spectrometers that are currently in use at the DWPF Lab. In addition to general comparisons, specific questions that were posed in the Technical Task Request (TTR) behind this effort were addressed in this report.

  19. Numerical model for the vacuum pyrolysis of scrap tires in batch reactors

    SciTech Connect (OSTI)

    Yang, J.; Tanguy, P.A.; Roy, C. [Univ. Laval, Quebec, PQ (Canada). Dept. de Genie Chimique] [Univ. Laval, Quebec, PQ (Canada). Dept. de Genie Chimique

    1995-06-01T23:59:59.000Z

    A quantitative model for scrap tire pyrolysis in a batch scale reactor developed comprises the following basic phenomena: conduction inside tire particles; conduction, convection, and radiation between the feedstock particles or between the fluids and the particles; tire pyrolysis reaction; exothermicity and endothermicity caused by tire decomposition and volatilization; and the variation of the composition and the thermal properties of tire particles. This model was used to predict the transient temperature and density distributions in the bed of particles, the volatile product evolution rate, the mass change, the energy consumption during the pyrolysis process, and the pressure history in a tire pyrolysis reactor with a load of 1 kg. The model predictions agree well with independent experimental data.

  20. The visualization of data and the user-interface in the Auto-ID World

    E-Print Network [OSTI]

    Chandrasekhar, Chaitra

    2005-01-01T23:59:59.000Z

    This thesis proposes a framework for user interface (UI) design in the Auto-ID world. The thesis includes the examination of issues related to visualizing data to the user from a top-down perspective in the Auto-ID World. ...

  1. Femtosecond dark-field imaging with an X-ray free electron laser (CXIDB ID 19)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Martin, A. V.

    This data was collected as part of the same experiment as the data deposited in [ID16](id-16.html). Experiment details are given in [Loh, N.D. et al.](http://dx.doi.org/10.1038/nature11222)

  2. The metalloid arsenite induces nuclear export of Id3 possibly via binding to the N-terminal cysteine residues

    SciTech Connect (OSTI)

    Kurooka, Hisanori, E-mail: hkurooka@u-fukui.ac.jp [Division of Molecular Genetics, Department of Biochemistry and Bioinformative Sciences, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan) [Division of Molecular Genetics, Department of Biochemistry and Bioinformative Sciences, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Research and Education Program for Life Science, University of Fukui, Fukui (Japan); Sugai, Manabu [Department of Experimental Therapeutics, Translational Research Center, Kyoto University Hospital, Kyoto (Japan)] [Department of Experimental Therapeutics, Translational Research Center, Kyoto University Hospital, Kyoto (Japan); Mori, Kentaro [Division of Molecular Genetics, Department of Biochemistry and Bioinformative Sciences, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan)] [Division of Molecular Genetics, Department of Biochemistry and Bioinformative Sciences, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Yokota, Yoshifumi, E-mail: yokota@u-fukui.ac.jp [Division of Molecular Genetics, Department of Biochemistry and Bioinformative Sciences, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan) [Division of Molecular Genetics, Department of Biochemistry and Bioinformative Sciences, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Research and Education Program for Life Science, University of Fukui, Fukui (Japan)

    2013-04-19T23:59:59.000Z

    Highlights: •Sodium arsenite induces cytoplasmic accumulation of Id3. •Arsenite binds to closely spaced N-terminal cysteine residues of Id3. •N-terminal cysteines are essential for arsenite-induced nuclear export of Id3. •Nuclear export of Id3 counteracts its transcriptional repression activity. -- Abstract: Ids are versatile transcriptional repressors that regulate cell proliferation and differentiation, and appropriate subcellular localization of the Id proteins is important for their functions. We previously identified distinct functional nuclear export signals (NESs) in Id1 and Id2, but no active NES has been reported in Id3. In this study, we found that treatment with the stress-inducing metalloid arsenite led to the accumulation of GFP-tagged Id3 in the cytoplasm. Cytoplasmic accumulation was impaired by a mutation in the Id3 NES-like sequence resembling the Id1 NES, located at the end of the HLH domain. It was also blocked by co-treatment with the CRM1-specific nuclear export inhibitor leptomycin B (LMB), but not with the inhibitors for mitogen-activated protein kinases (MAPKs). Importantly, we showed that the closely spaced N-terminal cysteine residues of Id3 interacted with the arsenic derivative phenylarsine oxide (PAO) and were essential for the arsenite-induced cytoplasmic accumulation, suggesting that arsenite induces the CRM1-dependent nuclear export of Id3 via binding to the N-terminal cysteines. Finally, we demonstrated that Id3 significantly repressed arsenite-stimulated transcription of the immediate-early gene Egr-1 and that this repression activity was inversely correlated with the arsenite-induced nuclear export. Our results imply that Id3 may be involved in the biological action of arsenite.

  3. Id-1 gene and gene products as therapeutic targets for treatment of breast cancer and other types of carcinoma

    SciTech Connect (OSTI)

    Desprez, Pierre-Yves; Campisi, Judith

    2014-08-19T23:59:59.000Z

    A method for treatment of breast cancer and other types of cancer. The method comprises targeting and modulating Id-1 gene expression, if any, for the Id-1 gene, or gene products in breast or other epithelial cancers in a patient by delivering products that modulate Id-1 gene expression. When expressed, Id-1 gene is a prognostic indicator that cancer cells are invasive and metastatic.

  4. SJSU Information Support Services Run Batch Contracts for Temporary Faculty info-support@sjsu.edu, 408-924-1530 Page 1

    E-Print Network [OSTI]

    Su, Xiao

    page displays. 5. Term: Use the lookup button to search the appropriate term. 6. Due Date: (optional data that exists in the system for the temporary faculty will appear on the Contract Appointment letter/Terms. 2. Click Batch Contracts for T. Faculty. The Batch Process for TF Contract search page displays. 3

  5. Electrochemical study of multi-electrode microbial fuel cells under fed-batch and continuous flow conditions

    E-Print Network [OSTI]

    Electrochemical study of multi-electrode microbial fuel cells under fed-batch and continuous flow November 2013 Available online 18 December 2013 Keywords: Multi-electrode Microbial fuel cells Hydraulic connected microbial fuel cells (MFCs) was compared with the reactors operated using individual electrical

  6. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 10, NO. 1, MARCH 2001 25 Batch Transfer of LIGA Microstructures by Selective

    E-Print Network [OSTI]

    Lin, Liwei

    polymer bumps [6], and diffusion bonding [7]. These processes aim to provide reliable electro of polymer bumps, and high temperature processing requirement for the diffusion bonding. Other processes have Microstructures by Selective Electroplating and Bonding Li-Wei Pan and Liwei Lin Abstract--A flip-chip, batch

  7. VERIFICATION OF THE DEFENSE WASTE PROCESSING FACILITY'S (DWPF) PROCESS DIGESTION METHOD FOR THE SLUDGE BATCH 7A QUALIFICATION SAMPLE

    SciTech Connect (OSTI)

    Click, D.; Edwards, T.; Jones, M.; Wiedenman, B.

    2011-03-14T23:59:59.000Z

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs confirmation of the applicability of the digestion method to be used by the DWPF lab for elemental analysis of Sludge Receipt and Adjustment Tank (SRAT) receipt samples and SRAT product process control samples. DWPF SRAT samples are typically dissolved using a room temperature HF-HNO{sub 3} acid dissolution (i.e., DWPF Cold Chem Method, see DWPF Procedure SW4-15.201) and then analyzed by inductively coupled plasma - atomic emission spectroscopy (ICP-AES). This report contains the results and comparison of data generated from performing the Aqua Regia (AR), Sodium peroxide/Hydroxide Fusion (PF) and DWPF Cold Chem (CC) method digestions of Sludge Batch 7a (SB7a) SRAT Receipt and SB7a SRAT Product samples. The SB7a SRAT Receipt and SB7a SRAT Product samples were prepared in the SRNL Shielded Cells, and the SRAT Receipt material is representative of the sludge that constituates the SB7a Batch or qualification composition. This is the sludge in Tank 51 that is to be transferred into Tank 40, which will contain the heel of Sludge Batch 6 (SB6), to form the Sb7a Blend composition.

  8. Batch Logo --A Strategy for Introducin g PL/1 and Structured Programming to Gifted High School Student s

    E-Print Network [OSTI]

    Drew, Mark S.

    Batch Logo -- A Strategy for Introducin g PL/1 and Structured Programming to Gifted High School of the use of ideas borrowed fro m LOGO . We felt that the concepts from a program such as LOGO, even t success graphically . 2. The Teaching Strategy : LOGO in PL 1 The main objective was to gauge th e

  9. K-Means+ID3: A Novel Method for Supervised Anomaly Detection by Cascading K-Means

    E-Print Network [OSTI]

    Phoha, Vir V.

    K-Means+ID3: A Novel Method for Supervised Anomaly Detection by Cascading K-Means Clustering and ID. Balagani Abstract--In this paper, we present "K-Means+ID3," a method to cascade k-Means clustering network, an active electronic circuit, and a mechanical mass- beam system. The k-Means clustering method

  10. DETERMINATION OF REPORTABLE RADIONUCLIDES FOR DWPF SLUDGE BATCH 4 MACROBATCH 5

    SciTech Connect (OSTI)

    Bannochie, C; Ned Bibler, N; David Diprete, D

    2008-05-30T23:59:59.000Z

    The Waste Acceptance Product Specifications (WAPS)1 1.2 require that 'The Producer shall report the inventory of radionuclides (in Curies) that have half-lives longer than 10 years and that are, or will be, present in concentrations greater than 0.05 percent of the total inventory for each waste type indexed to the years 2015 and 3115'. As part of the strategy to meet WAPS 1.2, the Defense Waste Processing Facility (DWPF) will report for each waste type, all radionuclides (with half-lives greater than 10 years) that have concentrations greater than 0.01 percent of the total inventory from time of production through the 1100 year period from 2015 through 3115. The initial listing of radionuclides to be included is based on the design-basis glass as identified in the Waste Form Compliance Plan (WCP)2 and Waste Form Qualification Report (WQR)3. However, it is required that this list be expanded if other radionuclides with half-lives greater than 10 years are identified that may meet the greater than 0.01% criterion for Curie content. Specification 1.6 of the WAPS, International Atomic Energy Agency (IAEA) Safeguards Reporting for High Level Waste (HLW), requires that the ratio by weights of the following uranium and plutonium isotopes be reported: U-233, U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, and Pu-242. Therefore, the complete set of reportable radionuclides must also include this set of U and Pu isotopes. The DWPF is receiving radioactive sludge slurry from HLW Tank 40. The radioactive sludge slurry in Tank 40 is a blend of the previous contents of Tank 40 (Sludge Batch 3) and the sludge that was transferred to Tank 40 from Tank 51. The blend of sludge from Tank 51 and Tank 40 defines Sludge Batch 4 (also referred to as Macrobatch 5 (MB5)). This report develops the list of reportable radionuclides and associated activities and determines the radionuclide activities as a function of time. The DWPF will use this list and the activities as one of the inputs for the development of the Production Records that relate to the radionuclide inventory. This work was initiated through Task Technical Request HLW/DWPF/TTR-2005-0034; Rev. 0 entitled Sludge Batch 4 SRNL Shielded Cells Testing4. Specifically, this report details results from performing, in part, Subtask 3 of the TTR and, in part, meets Deliverable 7 of the TTR. The work was performed following the Technical Task and Quality Assurance Plan (TTQAP), WSRC-RP-2006-00310, Rev. 15 and Analytical Study Plan (ASP), WSRC-RP-2006-00458, Rev. 16. In order to determine the reportable radionuclides for Sludge Batch 4 (SB4) (Macro Batch 5 (MB5)), a list of radioisotopes that may meet the criteria as specified by the Department of Energy's (DOE) WAPS was developed. All radioactive U-235 fission products and all radioactive activation products that could be in the SRS HLW were considered. In addition, all U and Pu isotopes identified in WAPS 1.6 were included in the list. This list was then evaluated and some isotopes excluded from the projection calculations. Based on measurements and analytical detection limits, twenty-nine radionuclides have been identified as reportable for DWPF SB4 (MB5) as specified by WAPS 1.2. The 29 reportable nuclides are: Ni-59; Ni-63; Se-79; Sr-90; Zr-93; Nb-93m; Tc-99; Sn-126; Cs-137; Sm-151; U-233; U-234; Np-237; U-238; Pu-238; Pu-239; Pu-240; Am-241; Pu-241; Pu-242; Am-242m; Am-243; Cm-244; Cm-245; Cm-246; Cm-247; Bk-247; Cm-248; and Cf-251. The WCP and WQR require that all of radionuclides present in the Design Basis glass be considered as the initial set of reportable radionuclides. For SB4 (MB5), all of the radionuclides in the Design Basis glass are reportable except for three radionuclides: Pd-107, Cs-135, and Th-230. At no time through the calendar year 3115 did any of these three radionuclides contribute to more than 0.01% of the radioactivity on a Curie basis. Two additional uranium isotopes (U-235 and -236) must be added to the list of reportable radionuclides in order to meet WAPS 1.6. All of the Pu isotopes and other U isoto

  11. A short Id2 protein fragment containing the nuclear export signal forms amyloid-like fibrils

    SciTech Connect (OSTI)

    Colombo, Noemi [Fakultaet fuer Chemie und Pharmazie, Universitaet Regensburg, Universitaetsstrasse 31, 93053 Regensburg (Germany); Schroeder, Josef [Institut fuer Pathologie, Zentrales EM-Labor, Fakultaet fuer Medizin, Universitaet Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg (Germany); Cabrele, Chiara [Fakultaet fuer Chemie und Pharmazie, Universitaet Regensburg, Universitaetsstrasse 31, 93053 Regensburg (Germany)]. E-mail: chiara.cabrele@chemie.uni-regensburg.de

    2006-07-21T23:59:59.000Z

    The negative regulator of DNA-binding/cell-differentiation Id2 is a small protein containing a central helix-loop-helix (HLH) motif and a C-terminal nuclear export signal (NES). Whereas the former is essential for Id2 dimerization and nuclear localization, the latter is responsible for the transport of Id2 from the nucleus to the cytoplasm. Whereas the isolated Id2 HLH motif is highly helical, large C-terminal Id2 fragments including the NES sequence are either unordered or aggregation-prone. To study the conformational properties of the isolated NES region, we synthesized the Id2 segment 103-124. The latter was insoluble in water and only temporarily soluble in water/alcohol mixtures, where it formed quickly precipitating {beta}-sheets. Introduction of a positively charged N-terminal tail prevented aggressive precipitation and led to aggregates consisting of long fibrils that bound thioflavin T. These results show an interesting structural aspect of the Id2 NES region, which might be of significance for both protein folding and function.

  12. Power/Performance Trade-offs of Small Batched LU Based Solvers on GPUs

    SciTech Connect (OSTI)

    Villa, Oreste; Fatica, Massimiliano; Gawande, Nitin A.; Tumeo, Antonino

    2013-08-26T23:59:59.000Z

    In this paper we propose and analyze a set of batched linear solvers for small matrices on Graphic Processing Units (GPUs), evaluating the various alternatives depending on the size of the systems to solve. We discuss three different solutions that operate with different level of parallelization and GPU features. The first, exploiting the CUBLAS library, manages matrices of size up to 32x32 and employs Warp level (one matrix, one Warp) parallelism and shared memory. The second works at Thread-block level parallelism (one matrix, one Thread-block), still exploiting shared memory but managing matrices up to 76x76. The third is Thread level parallel (one matrix, one thread) and can reach sizes up to 128x128, but it does not exploit shared memory and only relies on the high memory bandwidth of the GPU. The first and second solution only support partial pivoting, the third one easily supports partial and full pivoting, making it attractive to problems that require greater numerical stability. We analyze the trade-offs in terms of performance and power consumption as function of the size of the linear systems that are simultaneously solved. We execute the three implementations on a Tesla M2090 (Fermi) and on a Tesla K20 (Kepler).

  13. Organic and nitrogen removal from landfill leachate in aerobic granular sludge sequencing batch reactors

    SciTech Connect (OSTI)

    Wei Yanjie [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China); Key Laboratory of Environmental Protection in Water Transport Engineering Ministry of Communications, Tianjin Research Institute of Water Transport Engineering, Tianjin 300456 (China); Ji Min, E-mail: jmtju@yahoo.cn [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China); Li Ruying [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China); Qin Feifei [Tianjin Tanggu Sino French Water Supply Co. Ltd., Tianjin 300450 (China)

    2012-03-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Aerobic granular sludge SBR was used to treat real landfill leachate. Black-Right-Pointing-Pointer COD removal was analyzed kinetically using a modified model. Black-Right-Pointing-Pointer Characteristics of nitrogen removal at different ammonium inputs were explored. Black-Right-Pointing-Pointer DO variations were consistent with the GSBR performances at low ammonium inputs. - Abstract: Granule sequencing batch reactors (GSBR) were established for landfill leachate treatment, and the COD removal was analyzed kinetically using a modified model. Results showed that COD removal rate decreased as influent ammonium concentration increasing. Characteristics of nitrogen removal at different influent ammonium levels were also studied. When the ammonium concentration in the landfill leachate was 366 mg L{sup -1}, the dominant nitrogen removal process in the GSBR was simultaneous nitrification and denitrification (SND). Under the ammonium concentration of 788 mg L{sup -1}, nitrite accumulation occurred and the accumulated nitrite was reduced to nitrogen gas by the shortcut denitrification process. When the influent ammonium increased to a higher level of 1105 mg L{sup -1}, accumulation of nitrite and nitrate lasted in the whole cycle, and the removal efficiencies of total nitrogen and ammonium decreased to only 35.0% and 39.3%, respectively. Results also showed that DO was a useful process controlling parameter for the organics and nitrogen removal at low ammonium input.

  14. Long-lived oscillations in the chlorite-iodide-malonic acid reaction in batch

    SciTech Connect (OSTI)

    Noszticzius, Z.; Ouyang, Qi; McCormick, W.D.; Swinney, H.L. [Univ. of Texas, Austin, TX (United States)

    1992-05-20T23:59:59.000Z

    The title reaction is the subject of current interest because the first experimental Turing patterns were observed recently in this system. Here, the authors report the first observation of oscillations that are long lived (over 1 h) in this system in a batch reactor; even after cessation the oscillations can be restarted several times by adding ClO{sub 2} to the exhausted system. These low-frequency low-amplitude (LL) oscillations were detected with both platinum and iodide-selective electrodes in the chlorite-iodide-malonic acid (original CIMA) reaction and in the closely related chlorine dioxide-iodide-malonic acid (minimal CIMA) system. The LL oscillations follow after the already known high frequency oscillations, sometimes separated by a second induction period. LL oscillations can appear without any induction period if appropriate concentrations of chlorine dioxide, iodomalonic acid, and chloride (CIMA-Cl system) are established in a dilute sulfuric acid medium. In this case neither iodine, iodide, nor malonic acid is needed. Some suggestions are made regarding the mechanism of these newly discovered oscillations. 33 refs., 6 figs., 1 tab.

  15. Method for automatically evaluating a transition from a batch manufacturing technique to a lean manufacturing technique

    DOE Patents [OSTI]

    Ivezic, Nenad; Potok, Thomas E.

    2003-09-30T23:59:59.000Z

    A method for automatically evaluating a manufacturing technique comprises the steps of: receiving from a user manufacturing process step parameters characterizing a manufacturing process; accepting from the user a selection for an analysis of a particular lean manufacturing technique; automatically compiling process step data for each process step in the manufacturing process; automatically calculating process metrics from a summation of the compiled process step data for each process step; and, presenting the automatically calculated process metrics to the user. A method for evaluating a transition from a batch manufacturing technique to a lean manufacturing technique can comprise the steps of: collecting manufacturing process step characterization parameters; selecting a lean manufacturing technique for analysis; communicating the selected lean manufacturing technique and the manufacturing process step characterization parameters to an automatic manufacturing technique evaluation engine having a mathematical model for generating manufacturing technique evaluation data; and, using the lean manufacturing technique evaluation data to determine whether to transition from an existing manufacturing technique to the selected lean manufacturing technique.

  16. A novel proportional--integral-derivative control configuration with application to the control of batch distillation

    SciTech Connect (OSTI)

    Alvarez-Ramirez, J.; Monroy-Loperena, R.; Cervantes, I.; Morales, A.

    2000-02-01T23:59:59.000Z

    The aim of this paper is to propose a novel proportional-integral-derivative (PID) control configuration based on an observer structure. Batch distillation is used as the base case study where the regulated output is the distillate composition. The proposed PID control law is derived in the framework of robust nonlinear control with modeling error compensation techniques. A reduced-order observer is proposed to estimate both the derivative of the regulated output and the underlying modeling error. These observations are subsequently used in a control loop to feedback variations of distillate composition (derivative feedback) and to counteract the effects of modeling errors. It is shown that, under certain conditions, the resulting control law is equivalent to a classical PID controller with an antireset windup scheme. Moreover, the tuning of the controller is performed very easily in terms of a prescribed closed-loop time constant and an estimation time constant. Numerical results are provided for binary and multicomponent separations. Sampled/delayed measurements and several sources of uncertainties are considered in order to provide a realistic test scenario for the proposed control design procedure.

  17. Completing Pre-Pilot Tasks To Scale Up Biomass Fractionation Pretreatment Apparatus From Batch To Continuous

    SciTech Connect (OSTI)

    Dick Wingerson

    2004-12-15T23:59:59.000Z

    PureVision Technology, Inc. (PureVision) was the recipient of a $200,000 Invention and Innovations (I&I) grant from the U. S. Department of Energy (DOE) to complete prepilot tasks in order to scale up its patented biomass fractionation pretreatment apparatus from batch to continuous processing. The initial goal of the I&I program, as detailed in PureVision's original application to the DOE, was to develop the design criteria to build a small continuous biomass fractionation pilot apparatus utilizing a retrofitted extruder with a novel screw configuration to create multiple reaction zones, separated by dynamic plugs within the reaction chamber that support the continuous counter-flow of liquids and solids at elevated temperature and pressure. Although the ultimate results of this 27-month I&I program exceeded the initial expectations, some of the originally planned tasks were not completed due to a modification of direction in the program. PureVision achieved its primary milestone by establishing the design criteria for a continuous process development unit (PDU). In addition, PureVision was able to complete the procurement, assembly, and initiate shake down of the PDU at Western Research Institute (WRI) in Laramie, WY during August 2003 to February 2004. During the month of March 2004, PureVision and WRI performed initial testing of the continuous PDU at WRI.

  18. Batch Microreactor Studies of Lignin Depolymerization by Bases. 1. Alcohol Solvents

    SciTech Connect (OSTI)

    MILLER, JAMES E.; EVANS, LINDSEY; LITTLEWOLF, ALICIA; TRUDELL, DANIEL E.

    2002-05-01T23:59:59.000Z

    Biomass feedstocks contain roughly 10-30% lignin, a substance that can not be converted to fermentable sugars. Hence, most schemes for producing biofuels (ethanol) assume that the lignin coproduct will be utilized as boiler fuel to provide heat and power to the process. However, the chemical structure of lignin suggests that it will make an excellent high value fuel additive, if it can be broken down into smaller molecular units. From fiscal year 1997 through fiscal year 2001, Sandia National Laboratories was a participant in a cooperative effort with the National Renewable Energy Laboratory and the University of Utah to develop and scale a base catalyzed depolymerization (BCD) process for lignin conversion. SNL's primary role in the effort was to utilize rapidly heated batch microreactors to perform kinetic studies, examine the reaction chemistry, and to develop alternate catalyst systems for the BCD process. This report summarizes the work performed at Sandia during FY97 and FY98 with alcohol based systems. More recent work with aqueous based systems will be summarized in a second report.

  19. Programs Beamlines Contact/GL Programs Beamlines Contact/GL Programs Beamlines Contact/GL Contact/GL Spectroscopy (SPC) 20ID S. Heald Inelastic and Nuclear 3ID T. Gog Imaging (IMG) 2BM F. DeCarlo S. Pasky

    E-Print Network [OSTI]

    Kemner, Ken

    /GL Spectroscopy (SPC) 20ID S. Heald Inelastic and Nuclear 3ID T. Gog Imaging (IMG) 2BM F. DeCarlo S. Pasky 9BM S

  20. CONTROL ID: 1469463 TITLE: In Situ Techniques for Mineralogy and Geochemistry of Small Bodies

    E-Print Network [OSTI]

    Rossman. George R.

    CONTROL ID: 1469463 TITLE: In Situ Techniques for Mineralogy and Geochemistry of Small Bodies information about their formation histories and evolution. Combined geochemistry and mineralogy measurements measurement techniques that could provide microscopic mineralogy and isotope geochemistry. We will discuss

  1. Microsoft Word - DOE-ID-INL-12-028-1.doc

    Broader source: Energy.gov (indexed) [DOE]

    Energy (DOE-ID). The project would use a location near the northeast corner of the Test Area North (TAN) perimeter fence just north of the old TAN parking lot adjacent to the...

  2. *Name: Date of Birth: Banner/Student ID # Social Security # Phone: Cell

    E-Print Network [OSTI]

    Gering, Jon C.

    Transmitted Infection Anemia Eye Disease (excluding glasses) Joint Disease/Injury Sickle Cell Trait*Name: Date of Birth: Banner/Student ID # Social Security # Phone: Cell Permanent Address: Home Age, contact: Name Relationship: Phone: Day____________________ Eve____________________ Cell

  3. Orientation Permission to Treat Form Name of Student: Student ID: DOB

    E-Print Network [OSTI]

    Mohanty, Saraju P.

    Orientation Permission to Treat Form Name of Student: Student ID: DOB: Emergency Contact Name/Restrictions: Permission to Treat: The person herein named is medically cleared and has permission to engage in all

  4. ______________________~~-www.lejacq.com ID:8430 SPOTLIGHT ON HEART FAILURE TRANSLATIONAL RESEARCH

    E-Print Network [OSTI]

    Hammock, Bruce D.

    ______________________~~-www.lejacq.com ID:8430 SPOTLIGHT ON HEART FAILURE TRANSLATIONAL RESEARCH of atherosclerotic plaque as well as infarct size associated with ischemic heart injury.2 An unexpected finding, how

  5. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells (CXIDB ID 7)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nelson, Johanna

    This is the fourth of five exposures of the same sample at different tilts. This one is at -15 degrees tilt. Check CXI IDs 4 to 8 for the complete set.

  6. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells (CXIDB ID 4)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nelson, Johanna

    This is the first of five exposures of the same sample at different tilts. This one is at +0 degrees tilt. Check CXI IDs 4 to 8 for the complete set.

  7. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells (CXIDB ID 8)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nelson, Johanna

    This is the fifth of five exposures of the same sample at different tilts. This one is at -30 degrees tilt. Check CXI IDs 4 to 8 for the complete set.

  8. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells (CXIDB ID 5)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nelson, Johanna

    This is the second of five exposures of the same sample at different tilts. This one is at +15 degrees tilt. Check CXI IDs 4 to 8 for the complete set.

  9. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells (CXIDB ID 6)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nelson, Johanna

    This is the third of five exposures of the same sample at different tilts. This one is at +30 degrees tilt. Check CXI IDs 4 to 8 for the complete set.

  10. CruzID Account Modification Form University of California, Santa Cruz

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    forms: http://its.ucsc.edu/accounts/forms.html) FIS (Banner) PPS NES Web AIS Removal requested for: FIS (Banner) PPS NES Web Data Warehouse AIS CruzID login name change request: Change Login Name: Please

  11. NEPHELINE FORMATION STUDY FOR SLUDGE BATCH 4: PHASE 3 EXPERIMENTAL RESULTS

    SciTech Connect (OSTI)

    Fox, K

    2006-05-01T23:59:59.000Z

    This Phase 3 study was undertaken to complement the previous phases of the nepheline formation studies1, 2 by continuing the investigation into the ability of the nepheline discriminator to predict the occurrence of nepheline crystallization in Sludge Batch 4 (SB4) glasses and into the impact of such phases on the durability of the SB4 glasses. The Phase 3 study had two primary objectives. The first was to continue to demonstrate the ability of the discriminator value to adequately predict the nepheline formation potential for specific glass systems of interest. The second was to generate additional data that have a high probability of supporting the SB4 variability study. To support these two objectives, sixteen glasses were selected based on the most recent SB4 compositional projection, Case 15C Blend 1.3 Four different frits were included, based on previous assessments of projected operating windows and melt rate,4, 5 with four WLs selected for each frit. Eight of these frit-sludge combinations covered WLs which tightly bound the nepheline discriminator value of 0.62, with the intent of refining this value to a level of confidence where it can be incorporated into offline administrative controls and/or the Process Composition Control System (PCCS) to support Slurry Mix Evaporator (SME) acceptability decisions. The remaining eight frit-sludge combinations targeted lower WLs (35 and 40%) and were prepared and analyzed to contribute needed data to the ComPro database6 to support a potential variability study for SB4.

  12. Large batch dimensional metrology demonstrated in the example of a LIGA fabricated spring.

    SciTech Connect (OSTI)

    Aigeldinger, Georg; Skala, Dawn M.; Ceremuga, Joseph T.

    2004-04-01T23:59:59.000Z

    Deep x-ray lithography in combination with electroforming is capable of producing high precision metal parts in small lot series. This study deals with a high aspect ratio structure with overall dimensions on the order of 10 mm x 7 mm x 1.5 mm, with the smallest line width being 150 {micro}m. The lateral deviation from the design is to be kept to a minimum, preferably below 5 {micro}m. To ensure adequate quality control, a semi-automated metrology technique has been established to measure all parts. While the paper will give a brief overview of all involved techniques, it focuses on the method to measure the top and bottom of the parts and the top of geometries following the process. The instrument used is a View Engineering Voyager V6x12 microscope, which is fully programmable. The microscope allows direct measurement of geometries but also is capable of saving all captured data as point clouds. These point clouds play a central role when evaluating part geometry. After measuring the part, the point cloud is compared to the computer aided design (CAD) contour of the part, using a commercially available software package. The challenge of proper edge lighting on a nickel alloy part is evaluated by varying lighting conditions systematically. Results of two conditions are presented along with a set of optimized parameters. With the introduced set of tools, process flow can be monitored by measuring geometries, e.g. linewidths in every step of the process line. An example for such analysis is given. After delivery of a large batch of parts, extensive numbers of datasets were available allowing the evaluation of the variation of part geometries. Discussed in detail is the deviation from part top to part bottom geometries indicating swelling of the PMMA mold in the electroplating bath.

  13. Determination Of Reportable Radionuclides For DWPF Sludge Batch 7B (Macrobatch 9)

    SciTech Connect (OSTI)

    Crawford, C. L.; DiPrete, D. P.

    2013-08-22T23:59:59.000Z

    The Waste Acceptance Product Specifications (WAPS) 1.2 require that “The Producer shall report the inventory of radionuclides (in Curies) that have half-lives longer than 10 years and that are, or will be, present in concentrations greater than 0.05 percent of the total inventory for each waste type indexed to the years 2015 and 3115”. As part of the strategy to comply with WAPS 1.2, the Defense Waste Processing Facility (DWPF) will report for each waste type, all radionuclides (with half-lives greater than 10 years) that have concentrations greater than 0.01 percent of the total inventory from time of production through the 1100 year period from 2015 through 3115. The initial listing of radionuclides to be included is based on the design-basis glass as identified in the Waste Form Compliance Plan (WCP) and Waste Form Qualification Report (WQR). However, it is required that this list be expanded if other radionuclides with half-lives greater than 10 years are identified that may meet the greater than 0.01% criterion for Curie content. Specification 1.6 of the WAPS, International Atomic Energy Agency (IAEA) Safeguards Reporting for High Level Waste (HLW), requires that the ratio by weights of the following uranium and plutonium isotopes be reported: U-233, U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, and Pu-242. Therefore, the complete set of reportable radionuclides must also include this set of U and Pu isotopes. The DWPF is receiving radioactive sludge slurry from HLW Tank 40. The radioactive sludge slurry in Tank 40 is a blend of the heel from Sludge Batch 7a (SB7a) and Sludge Batch 7b (SB7b) that was transferred to Tank 40 from Tank 51. The blend of sludge in Tank 40 is also referred to as Macrobatch 9 (MB9). This report develops the list of reportable radionuclides and associated activities as a function of time. The DWPF will use this list and the activities as one of the inputs for the development of the Production Records that relate to radionuclide inventory. This work was initiated through Technical Task Request (TTR) HLW-DWPF-TTR-2011-0004; Rev. 0 entitled Sludge Batch 7b Qualification Studies. Specifically, this report details results from performing Subtask II, Item 2 of the TTR and, in part, meets Deliverable 6 of the TTR. The work was performed following the Task Technical and Quality Assurance Plan (TTQAP), SRNL-RP-2011-00247, Rev. 0 and Analytical Study Plan (ASP), SRNL-RP-2011-00248, Rev. 0. In order to determine the reportable radionuclides for SB7b (MB9), a list of radioisotopes that may meet the criteria as specified by the Department of Energy’s (DOE) WAPS was developed. All radioactive U-235 fission products and all radioactive activation products that could be in the SRS HLW were considered. In addition, all U and Pu isotopes identified in WAPS 1.6 were included in the list. This list was then evaluated and some isotopes were excluded from the projection calculations. Based on measurements and analytical detection limits, 27 radionuclides have been identified as reportable for DWPF SB7b as specified by WAPS 1.2. The WCP and WQR require that all of the radionuclides present in the Design Basis glass be considered as the initial set of reportable radionuclides. For SB7b, all of the radionuclides in the Design Basis glass are reportable except for three radionuclides: Pd-107, Cs-135, and Th-230. At no time during the 1100-year period between 2015 and 3115 did any of these three radionuclides contribute to more than 0.01% of the radioactivity on a Curie basis. Two additional uranium isotopes (U-235 and -236) must be added to the list of reportable radionuclides in order to meet WAPS 1.6. All of the Pu isotopes (Pu-238, -239, -240, -241, and -242) and other U isotopes (U-233, -234, and -238) identified in WAPS 1.6 were already determined to be reportable according to WAPS 1.2 This brings the total number of reportable radionuclides for SB7b to 29. The radionuclide measurements made for SB7b are similar to those performed in the previous SB7a MB8 work. Some method development/refine

  14. DETERMINATION OF REPORTABLE RADIONUCLIDES FOR DWPF SLUDGE BATCH 7B (MACROBATCH 9)

    SciTech Connect (OSTI)

    Crawford, C. L.; Diprete, D. P.

    2014-05-01T23:59:59.000Z

    The Waste Acceptance Product Specifications (WAPS) 1.2 require that “The Producer shall report the inventory of radionuclides (in Curies) that have half-lives longer than 10 years and that are, or will be, present in concentrations greater than 0.05 percent of the total inventory for each waste type indexed to the years 2015 and 3115”. As part of the strategy to comply with WAPS 1.2, the Defense Waste Processing Facility (DWPF) will report for each waste type, all radionuclides (with half-lives greater than 10 years) that have concentrations greater than 0.01 percent of the total inventory from time of production through the 1100 year period from 2015 through 3115. The initial listing of radionuclides to be included is based on the design-basis glass as identified in the Waste Form Compliance Plan (WCP) and Waste Form Qualification Report (WQR). However, it is required that this list be expanded if other radionuclides with half-lives greater than 10 years are identified that may meet the greater than 0.01% criterion for Curie content. Specification 1.6 of the WAPS, International Atomic Energy Agency (IAEA) Safeguards Reporting for High Level Waste (HLW), requires that the ratio by weights of the following uranium and plutonium isotopes be reported: U-233, U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, and Pu- 242. Therefore, the complete set of reportable radionuclides must also include this set of U and Pu isotopes. The DWPF is receiving radioactive sludge slurry from HLW Tank 40. The radioactive sludge slurry in Tank 40 is a blend of the heel from Sludge Batch 7a (SB7a) and Sludge Batch 7b (SB7b) that was transferred to Tank 40 from Tank 51. The blend of sludge in Tank 40 is also referred to as Macrobatch 9 (MB9). This report develops the list of reportable radionuclides and associated activities as a function of time. The DWPF will use this list and the activities as one of the inputs for the development of the Production Records that relate to radionuclide inventory. This work was initiated through Technical Task Request (TTR) HLW-DWPF-TTR-2011-0004; Rev. 0 entitled Sludge Batch 7b Qualification Studies. Specifically, this report details results from performing Subtask II, Item 2 of the TTR and, in part, meets Deliverable 6 of the TTR. The work was performed following the Task Technical and Quality Assurance Plan (TTQAP), SRNL-RP-2011-00247, Rev. 0 and Analytical Study Plan (ASP), SRNL-RP-2011-00248, Rev. 0. In order to determine the reportable radionuclides for SB7b (MB9), a list of radioisotopes that may meet the criteria as specified by the Department of Energy’s (DOE) WAPS was developed. All radioactive U- 235 fission products and all radioactive activation products that could be in the SRS HLW were considered. In addition, all U and Pu isotopes identified in WAPS 1.6 were included in the list. This list was then evaluated and some isotopes were excluded from the projection calculations. Based on measurements and analytical detection limits, 27 radionuclides have been identified as reportable for DWPF SB7b as specified by WAPS 1.2. The WCP and WQR require that all of the radionuclides present in the Design Basis glass be considered as the initial set of reportable radionuclides. For SB7b, all of the radionuclides in the Design Basis glass are reportable except for three radionuclides: Pd-107, Cs-135, and Th-230. At no time during the 1100- year period between 2015 and 3115 did any of these three radionuclides contribute to more than 0.01% of the radioactivity on a Curie basis. Two additional uranium isotopes (U-235 and -236) must be added to the list of reportable radionuclides in order to meet WAPS 1.6. All of the Pu isotopes (Pu-238, -239, -240, -241, and -242) and other U isotopes (U-233, -234, and -238) identified in WAPS 1.6 were already determined to be reportable according to WAPS 1.2 This brings the total number of reportable radionuclides for SB7b to 29. The radionuclide measurements made for SB7b are similar to those performed in the previous SB7a MB8 work. Some method development/ref

  15. DETERMINATION OF REPORTABLE RADIONUCLIDES FOR DWPF SLUDGE BATCH 6 (MACROBATCH 7)

    SciTech Connect (OSTI)

    Bannochie, C.; Diprete, D.

    2011-06-01T23:59:59.000Z

    The Waste Acceptance Product Specifications (WAPS) 1.2 require that 'The Producer shall report the inventory of radionuclides (in Curies) that have half-lives longer than 10 years and that are, or will be, present in concentrations greater than 0.05 percent of the total inventory for each waste type indexed to the years 2015 and 3115'. As part of the strategy to comply with WAPS 1.2, the Defense Waste Processing Facility (DWPF) will report for each waste type, all radionuclides (with half-lives greater than 10 years) that have concentrations greater than 0.01 percent of the total inventory from time of production through the 1100 year period from 2015 through 3115. The initial listing of radionuclides to be included is based on the design-basis glass as identified in the Waste Form Compliance Plan (WCP) and Waste Form Qualification Report (WQR). However, it is required that this list be expanded if other radionuclides with half-lives greater than 10 years are identified that may meet the greater than 0.01% criterion for Curie content. Specification 1.6 of the WAPS, International Atomic Energy Agency (IAEA) Safeguards Reporting for High Level Waste (HLW), requires that the ratio by weights of the following uranium and plutonium isotopes be reported: U-233, U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, and Pu-242. Therefore, the complete set of reportable radionuclides must also include this set of U and Pu isotopes. The DWPF is receiving radioactive sludge slurry from HLW Tank 40. The radioactive sludge slurry in Tank 40 is a blend of the heel from Sludge Batch 5 (SB5) with H-Canyon Np transfers completed after the start of processing SB5, and Sludge Batch 6 (SB6) that was transferred to Tank 40 from Tank 51. The blend of sludge in Tank 40 is also referred to as Macrobatch 7 (MB7). This report develops the list of reportable radionuclides and associated activities as a function of time. The DWPF will use this list and the activities as one of the inputs for the development of the Production Records that relate to radionuclide inventory. This work was initiated through Technical Task Request (TTR) HLW-DWPF-TTR-2009-0014; Rev. 2 entitled Sludge Batch 6 SRNL Shielded Cells Testing. Specifically, this report details results from performing Subtask III, Item 2 of the TTR and, in part, meets Deliverable 7 of the TTR. The work was performed following the Task Technical and Quality Assurance Plan (TTQAP), SRNL-RP-2009-00473, Rev. 15 and Analytical Study Plan (ASP), SRNL-RP-2009-00474, Rev. 1. In order to determine the reportable radionuclides for SB6 (MB7), a list of radioisotopes that may meet the criteria as specified by the Department of Energy's (DOE) WAPS was developed. All radioactive U-235 fission products and all radioactive activation products that could be in the SRS HLW were considered. In addition, all U and Pu isotopes identified in WAPS 1.6 were included in the list. This list was then evaluated and some isotopes were excluded from the projection calculations. Based on measurements and analytical detection limits, 30 radionuclides have been identified as reportable for DWPF SB6 as specified by WAPS 1.2. The WCP and WQR require that all of the radionuclides present in the Design Basis glass be considered as the initial set of reportable radionuclides. For SB6, all of the radionuclides in the Design Basis glass are reportable except for three radionuclides: Pd-107, Cs-135, and Th-230. At no time during the 1100-year period between 2015 and 3115 did any of these three radionuclides contribute to more than 0.01% of the radioactivity on a Curie basis. Two additional uranium isotopes (U-235 and -236) must be added to the list of reportable radionuclides in order to meet WAPS 1.6. All of the Pu isotopes (Pu-238, -239, -240, -241, and -242) and other U isotopes (U-233, -234, and -238) identified in WAPS 1.6 were already determined to be reportable according to WAPS 1.2 This brings the total number of reportable radionuclides for SB6 to 32. The radionuclide measurements made for SB6 are the most extensive condu

  16. DETERMINATION OF REPORTABLE RADIONUCLIDES FOR DWPF SLUDGE BATCH 5 (MACROBATCH 6)

    SciTech Connect (OSTI)

    Bannochie, C.; Bibler, N.; Diprete, D.

    2010-02-04T23:59:59.000Z

    The Waste Acceptance Product Specifications (WAPS) 1.2 require that ''The Producer shall report the inventory of radionuclides (in Curies) that have half-lives longer than 10 years and that are, or will be, present in concentrations greater than 0.05 percent of the total inventory for each waste type indexed to the years 2015 and 3115''. As part of the strategy to comply with WAPS 1.2, the Defense Waste Processing Facility (DWPF) will report for each waste type, all radionuclides (with half-lives greater than 10 years) that have concentrations greater than 0.01 percent of the total inventory from time of production through the 1100 year period from 2015 through 3115. The initial listing of radionuclides to be included is based on the design-basis glass as identified in the Waste Form Compliance Plan (WCP) and Waste Form Qualification Report (WQR). However, it is required that this list be expanded if other radionuclides with half-lives greater than 10 years are identified that may meet the greater than 0.01% criterion for Curie content. Specification 1.6 of the WAPS, International Atomic Energy Agency (IAEA) Safeguards Reporting for High Level Waste (HLW), requires that the ratio by weights of the following uranium and plutonium isotopes be reported: U-233, U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, and Pu-242. Therefore, the complete set of reportable radionuclides must also include this set of U and Pu isotopes. The DWPF is receiving radioactive sludge slurry from HLW Tank 40. The radioactive sludge slurry in Tank 40 is a blend of the heel from Tank 40 (Sludge Batch 4 (SB4)), Sludge Batch 5 (SB5) that was transferred to Tank 40 from Tank 51, and H-Canyon Np transfers completed after the start of processing. The blend of sludge in Tank 40 is also referred to as Macrobatch 6 (MB6). This report develops the list of reportable radionuclides and associated activities and determines the radionuclide activities as a function of time. The DWPF will use this list and the activities as one of the inputs for the development of the Production Records that relate to the radionuclide inventory. This work was initiated through Technical Task Request (TTR) HLW-DWPF-TTR-2008-0010; Rev. 2 entitled Sludge Batch 5 SRNL Shielded Cells Testing. Specifically, this report details results from performing Subtask II, 5 of the TTR and, in part, meets Deliverable 7 of the TTR. The work was performed following the Task Technical and Quality Assurance Plan (TTQAP), WSRC-RP-2008-00137, Rev. 2 and Analytical Study Plan (ASP), WSRC-RP-2008-00138, Rev. 2. In order to determine the reportable radionuclides for SB5 (MB6), a list of radioisotopes that may meet the criteria as specified by the Department of Energy's (DOE) WAPS was developed. All radioactive U-235 fission products and all radioactive activation products that could be in the SRS HLW were considered. In addition, all U and Pu isotopes identified in WAPS 1.6 were included in the list. This list was then evaluated and some isotopes excluded from the projection calculations. Based on measurements and analytical detection limits, twenty-six radionuclides have been identified as reportable for DWPF SB5 as specified by WAPS 1.2. The 26 reportable radionuclides are: Cl-36, Ni-59, Ni-63, Sr-90, Zr-93, Nb-93m, Tc-99, Sn-126, Cs-137, Sm-151, U-233, U-234, Np-237, U-238, Pu-238, Pu-239, Pu-240, Am-241, Pu-241, Pu-242, Am-242m, Am-243, Cm-244, Cm-245, Cm-246, Cf-251. Chlorine-36 is reported for the first time based on the upper bounding activity determined from the aqua regia digested sludge slurry. The WCP and WQR require that all of radionuclides present in the Design Basis glass be considered as the initial set of reportable radionuclides. For SB5 (MB6), all of the radionuclides in the Design Basis glass are reportable except for four radionuclides: Se-79, Pd-107, Cs-135, and Th-230. At no time through the year 3115 did any of these three radionuclides contribute to more than 0.01% of the radioactivity on a Curie basis. Two additional uranium isotopes (U-235 and -236) must be added to

  17. SLUDGE BATCH 4: MODEL BASED ASSESSMENTS OF THE FEBRUARY 2007 SLUDGE PROJECTION

    SciTech Connect (OSTI)

    Peeler, D; Tommy Edwards, T; Kevin Fox, K

    2007-03-22T23:59:59.000Z

    The Savannah River National Laboratory (SRNL) has developed, and continues to enhance, its integrated capability to evaluate the impact of proposed sludge preparation plans on the Defense Waste Processing Facility's (DWPF's) operation. One of the components of this integrated capability focuses on frit development which identifies a viable frit or frits for each sludge option being contemplated for DWPF processing. A frit is considered viable if its composition allows for economic fabrication and if, when it is combined with the sludge option under consideration, the DWPF property/composition models (the models of DWPF's Product Composition Control System (PCCS)) indicate that the combination has the potential for an operating window (a waste loading (WL) interval over which the sludge/frit glass system satisfies processability and durability constraints) that would allow DWPF to meet its goals for waste loading and canister production. This report documents the results of SRNL's efforts to identify candidate frit compositions and corresponding predicted operating windows (defined in terms of WL intervals) for the February 2007 compositional projection of Sludge Batch 4 (SB4) developed by the Liquid Waste Organization (LWO). The nominal compositional projection was used to assess projected operating windows (in terms of a waste loading interval over which all predicted properties were classified as acceptable) for various frits, evaluate the applicability of the 0.6 wt% SO{sub 4}{sup =} PCCS limit to the glass systems of interest, and determine the impact (or lack thereof) to the previous SB4 variability studies. It should be mentioned that the information from this report will be coupled with assessments of melt rate to recommend a frit for SB4 processing. The results of this paper study suggest that candidate frits are available to process the nominal SB4 composition over attractive waste loadings of interest to DWPF. Specifically, two primary candidate frits for SB4 processing, Frit 510 and Frit 418, have projected operating windows that should allow for successful processing at DWPF. While Frit 418 has been utilized at DWPF, Frit 510 is a higher B{sub 2}O{sub 3} based frit which could lead to improvements in melt rate. These frits provide relatively large operating windows and demonstrate robustness to possible sludge compositional variation while avoiding potential nepheline formation issues. In addition, assessments of SO{sub 4}{sup =} solubility indicate that the 0.6 wt% SO{sub 4}{sup =} limit in PCCS is applicable for the Frit 418 and the Frit 510 based SB4 glass systems.

  18. Cycle-to-cycle extraction synchronization of the Fermilab Booster for multiple batch injection to the Main Injector

    SciTech Connect (OSTI)

    Zwaska, R.; Kopp, S.; /Texas U.; Pellico, W.; /Fermilab

    2005-05-01T23:59:59.000Z

    We report on a system to ensure cycle-to-cycle synchronization of beam extraction from the Fermilab Booster accelerator to the Main Injector. Such synchronization is necessary for multiple batch operation of the Main Injector for the Run II upgrade of anti-proton production using slip-stacking in the Main Injector, and for the NuMI (Neutrinos at the Main Injector) neutrino beam. To perform this task a system of fast measurements and feedback controls the longitudinal progress of the Booster beam throughout its acceleration period by manipulation of the transverse position maintained by the LLRF (Low-level Radio Frequency) system.

  19. The Impact Of The MCU Life Extension Solvent On Sludge Batch 8 Projected Operating Windows

    SciTech Connect (OSTI)

    Peeler, D. K.; Edwards, T. B.; Stone, M. E.

    2013-08-14T23:59:59.000Z

    As a part of the Actinide Removal Process (ARP)/Modular Caustic Side Solvent Extraction Unit (MCU) Life Extension Project, a next generation solvent (NGS) and a new strip acid will be deployed. The strip acid will be changed from dilute nitric acid to dilute boric acid (0.01 M). Because of these changes, experimental testing or evaluations with the next generation solvent are required to determine the impact of these changes (if any) to Chemical Process Cell (CPC) activities, glass formulation strategies, and melter operations at the Defense Waste Processing Facility (DWPF). The introduction of the dilute (0.01M) boric acid stream into the DWPF flowsheet has a potential impact on glass formulation and frit development efforts since B2O3 is a major oxide in frits developed for DWPF. Prior knowledge of this stream can be accounted for during frit development efforts but that was not the case for Sludge Batch 8 (SB8). Frit 803 has already been recommended and procured for SB8 processing; altering the frit to account for the incoming boron from the strip effluent (SE) is not an option for SB8. Therefore, the operational robustness of Frit 803 to the introduction of SE including its compositional tolerances (i.e., up to 0.0125M boric acid) is of interest and was the focus of this study. The primary question to be addressed in the current study was: What is the impact (if any) on the projected operating windows for the Frit 803 – SB8 flowsheet to additions of B2O3 from the SE in the Sludge Receipt and Adjustment Tank (SRAT)? More specifically, will Frit 803 be robust to the potential compositional changes occurring in the SRAT due to sludge variation, varying additions of ARP and/or the introduction of SE by providing access to waste loadings (WLs) of interest to DWPF? The Measurement Acceptability Region (MAR) results indicate there is very little, if any, impact on the projected operating windows for the Frit 803 – SB8 system regardless of the presence or absence of ARP and SE (up to 2 wt% B2O3 contained in the SRAT and up to 2000 gallons of ARP). It should be noted that 0.95 wt% B2O3 is the nominal projected concentration in the SRAT based on a 0.0125M boric acid flowsheet with 70,000 liters of SE being added to the SRAT. The impact on CPC processing of a 0.01M boric acid solution for elution of cesium during Modular Caustic Side Solvent Extraction Unit (MCU) processing has previously been evaluated by the Savannah River National Laboratory (SRNL). Increasing the acid strength to 0.0125M boric acid to account for variations in the boric acid strength has been reviewed versus the previous evaluation. The amount of acid from the boric acid represented approximately 5% of the total acid during the previous evaluation. An increase from 0.01 to 0.0125M boric acid represents a change of approximately 1.3% which is well within the error of the acid calculation. Therefore, no significant changes to CPC processing (hydrogen generation, metal solubilities, rheological properties, REDOX control, etc.) are expected from an increase in allowable boric acid concentration from 0.01M to 0.0125M.

  20. Sludge Washing And Demonstration Of The DWPF Flowsheet In The SRNL Shielded Cells For Sludge Batch 8 Qualification

    SciTech Connect (OSTI)

    Pareizs, J. M.; Crawford, C. L.

    2013-04-26T23:59:59.000Z

    The current Waste Solidification Engineering (WSE) practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks to Tank 51. Tank 51 sludge is washed and transferred to Tank 40, the current Defense Waste Processing Facility (DWPF) feed tank. Prior to transfer of Tank 51 to Tank 40, the Savannah River National Laboratory (SRNL) typically simulates the Tank Farm and DWPF processes using a Tank 51 sample (referred to as the qualification sample). WSE requested the SRNL to perform characterization on a Sludge Batch 8 (SB8) sample and demonstrate the DWPF flowsheet in the SRNL shielded cells for SB8 as the final qualification process required prior to SB8 transfer from Tank 51 to Tank 40. A 3-L sample from Tank 51 (the SB8 qualification sample; Tank Farm sample HTF-51-12-80) was received by SRNL on September 20, 2012. The as-received sample was characterized prior to being washed. The washed material was further characterized and used as the material for the DWPF process simulation including a Sludge Receipt and Adjustment Tank (SRAT) cycle, a Slurry Mix Evaporator (SME) cycle, and glass fabrication and chemical durability measurements.

  1. Stratigraphic relationships in Woodbine-Eagleford and Sub-Clarksville sandstones, IDS field, Brazos County, Texas

    E-Print Network [OSTI]

    Brogdon, Ron Lee

    1990-01-01T23:59:59.000Z

    -Clarksville Sandstones, IDS Field, Brazos County, Texas. (August 1990) Ron Lee Brogdon, B. A. , Harvard University Chair of Advisory Committee: Dr. Robert R. Berg Sandstones of the Upper-Cretaceous Woodbine-Eagleford interval produce oil and gas from a small... no influence as a hydrocarbon trap. Production from IDS field, like the extent of the reservoir, is small. Nine years of production from 13 wells have yielded only 584 MBBLS of oil. Production is not uniform across the field, but defines a trend which...

  2. Id1 expression promotes peripheral CD4{sup +} T cell proliferation and survival upon TCR activation without co-stimulation

    SciTech Connect (OSTI)

    Liu, Chen; Jin, Rong [Department of Immunology, Peking University Health Science Center, Beijing (China)] [Department of Immunology, Peking University Health Science Center, Beijing (China); Wang, Hong-Cheng [Oklahoma Medical Research Foundation, Oklahoma City, OK (United States)] [Oklahoma Medical Research Foundation, Oklahoma City, OK (United States); Tang, Hui; Liu, Yuan-Feng; Qian, Xiao-Ping; Sun, Xiu-Yuan; Ge, Qing [Department of Immunology, Peking University Health Science Center, Beijing (China)] [Department of Immunology, Peking University Health Science Center, Beijing (China); Sun, Xiao-Hong, E-mail: sunx@omrf.org [Oklahoma Medical Research Foundation, Oklahoma City, OK (United States)] [Oklahoma Medical Research Foundation, Oklahoma City, OK (United States); Zhang, Yu, E-mail: zhangyu007@bjmu.edu.cn [Department of Immunology, Peking University Health Science Center, Beijing (China)] [Department of Immunology, Peking University Health Science Center, Beijing (China)

    2013-06-21T23:59:59.000Z

    Highlights: •Id1 expression enables naďve T cell proliferation without anti-CD28 co-stimulation. •Id1 expression facilitates T cells survival when stimulated with anti-CD3. •Elevation of IL-2 production by Id1 contributes increased proliferation and survival. •Id1 potentiates NF-?B activation by anti-CD3 stimulation. -- Abstract: Although the role of E proteins in the thymocyte development is well documented, much less is known about their function in peripheral T cells. Here we demonstrated that CD4 promoter-driven transgenic expression of Id1, a naturally occurring dominant-negative inhibitor of E proteins, can substitute for the co-stimulatory signal delivered by CD28 to facilitate the proliferation and survival of naďve CD4{sup +} cells upon anti-CD3 stimulation. We next discovered that IL-2 production and NF-?B activity after anti-CD3 stimulation were significantly elevated in Id1-expressing cells, which may be, at least in part, responsible for the augmentation of their proliferation and survival. Taken together, results from this study suggest an important role of E and Id proteins in peripheral T cell activation. The ability of Id proteins to by-pass co-stimulatory signals to enable T cell activation has significant implications in regulating T cell immunity.

  3. SLUDGE WASHING AND DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS FOR SLUDGE BATCH 6 QUALIFICATION

    SciTech Connect (OSTI)

    Pareizs, J.; Pickenheim, B.; Bannochie, C.; Billings, A.; Bibler, N.; Click, D.

    2010-10-01T23:59:59.000Z

    Prior to initiating a new sludge batch in the Defense Waste Processing Facility (DWPF), Savannah River National Laboratory (SRNL) is required to simulate this processing, including Chemical Process Cell (CPC) simulation, waste glass fabrication, and chemical durability testing. This report documents this simulation for the next sludge batch, Sludge Batch 6 (SB6). SB6 consists of Tank 12 material that has been transferred to Tank 51 and subjected to Low Temperature Aluminum Dissolution (LTAD), Tank 4 sludge, and H-Canyon Pu solutions. Following LTAD and the Tank 4 addition, Liquid Waste Operations (LWO) provided SRNL a 3 L sample of Tank 51 sludge for SB6 qualification. Pu solution from H Canyon was also received. SB6 qualification included washing the sample per LWO plans/projections (including the addition of Pu from H Canyon), DWPF CPC simulations, waste glass fabrication (vitrification), and waste glass characterization and chemical durability evaluation. The following are significant observations from this demonstration. Sludge settling improved slightly as the sludge was washed. SRNL recommended (and the Tank Farm implemented) one less wash based on evaluations of Tank 40 heel projections and projections of the glass composition following transfer of Tank 51 to Tank 40. Thorium was detected in significant quantities (>0.1 wt % of total solids) in the sludge. In past sludge batches, thorium has been determined by Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS), seen in small quantities, and reported with the radionuclides. As a result of the high thorium, SRNL-AD has added thorium to their suite of Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) elements. The acid stoichiometry for the DWPF Sludge Receipt and Adjustment Tank (SRAT) processing of 115%, or 1.3 mol acid per liter of SRAT receipt slurry, was adequate to accomplish some of the goals of SRAT processing: nitrite was destroyed to below 1,000 mg/kg and mercury was removed to below the DWPF target with 750 g of steam per g of mercury. However, rheological properties did not improve and were above the design basis. Hydrogen generation rates did not exceed DWPF limits during the SRAT and Slurry Mix Evaporator (SME) cycles. However, hydrogen generation during the SRAT cycle approached the DWPF limit. The glass fabricated with the Tank 51 SB6 SME product and Frit 418 was acceptable with respect to chemical durability as measured by the Product Consistency Test (PCT). The PCT response was also predictable by the current durability models of the DWPF Product Composition Control System (PCCS). It should be noted, however, that in the first attempt to make glass from the SME product, the contents of the fabrication crucible foamed over. This may be a result of the SME product's REDOX (Reduction/Oxidation - Fe{sup 2+}/{Sigma}Fe) of 0.08 (calculated from SME product analytical results). The following are recommendations drawn from this demonstration. In this demonstration, at the request of DWPF, SRNL caustic boiled the SRAT contents prior to acid addition to remove water (to increase solids concentration). During the nearly five hours of caustic boiling, 700 ppm of antifoam was required to control foaming. SRNL recommends that DWPF not caustic boil/concentrate SRAT receipt prior to acid addition until further studies can be performed to provide a better foaming control strategy or a new antifoam is developed for caustic boiling. Based on this set of runs and a recently completed demonstration with the SB6 Waste Acceptance Product Specifications (WAPS) sample, it is recommended that DWPF not add formic acid at the design addition rate of two gallons per minute for this sludge batch. A longer acid addition time appears to be helpful in allowing slower reaction of formic acid with the sludge and possibly decreases the chance of a foam over during acid addition.

  4. This is an author-deposited version published in: http://oatao.univ-toulouse.fr/ Eprints ID: 5303

    E-Print Network [OSTI]

    Mailhes, Corinne

    Harjunkoski and Gross- mann (2001) where a four-step batch process transforms scrap metal into cast steel, from long term to short term management and from industrial networks to single plants (Gibbs and Deutz

  5. SUMMARY REPORT FOR THE ANALYSIS OF THE SLUDGE BATCH 7A (MACROBATCH 8) DWPF POUR STREAM GLASS SAMPLE FOR CANISTER S03619

    SciTech Connect (OSTI)

    Johnson, F.

    2012-05-01T23:59:59.000Z

    In order to comply with the Waste Acceptance Specifications in Sludge Batch 7a (Macrobatch 8), Savannah River National Laboratory personnel characterized the Defense Waste Processing Facility (DWPF) pour stream glass sample collected while filling canister S03619. This report summarizes the results of the compositional analysis for reportable oxides and radionuclides, and the normalized Product Consistency Test (PCT) results. The PCT responses indicate that the DWPF produced glass that is significantly more durable than the Environmental Assessment glass. Results and further details are documented in 'Analysis of DWPF Sludge Batch 7a (Macrobatch 8) Pour Stream Samples,' SRNL-STI-2012-00017.

  6. SUMMARY REPORT FOR THE ANALYSIS OF THE SLUDGE BATCH 6 (MACROBATCH 7) DWPF POUR STREAM GLASS SAMPLE FOR CANISTER S03472

    SciTech Connect (OSTI)

    Johnson, F.

    2012-01-23T23:59:59.000Z

    In order to comply with the Waste Acceptance Specifications in Sludge Batch 6 (Macrobatch 7), Savannah River National Laboratory personnel performed characterization analyses on the Defense Waste Processing Facility (DWPF) pour stream glass sample collected while filling canister S03472. This report summarizes results of the characterization, which indicate that the DWPF produced glass that is significantly more durable than the Environmental Assessment glass. Results and further details are documented in 'Analysis of DWPF Sludge Batch 6 (Macrobatch 7) Pour Stream Glass Samples,' SRNL-STI-2011-00555.

  7. Annales Geophysicae (2004) 22: 32913297 SRef-ID: 1432-0576/ag/2004-22-3291

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    to the interaction of the radar beam with the background wind (e.g. Atlas, 1964; Hocking, 1985; Nastrom, 1997). WhileAnnales Geophysicae (2004) 22: 3291­3297 SRef-ID: 1432-0576/ag/2004-22-3291 © European Geosciences- beamwidth method and the traditional method are very sim- ilar in regions of light winds (

  8. Annales Geophysicae (2004) 22: 23012308 SRef-ID: 1432-0576/ag/2004-22-2301

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Annales Geophysicae (2004) 22: 2301­2308 SRef-ID: 1432-0576/ag/2004-22-2301 © European Geosciences populations of Correspondence to: H. Kucharek (kucharek@atlas.sr.unh.edu) backstreaming ions (e.g. Gosling et beams. Sonnerup (1969) demonstrated that solar wind protons could easily be energized if the bow shock

  9. Annales Geophysicae (2004) 22: 40434048 SRef-ID: 1432-0576/ag/2004-22-4043

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    wind produced by three different numerical models in the European-Mediterranean area is analyzed observations of surface wind to predic- tive skill seems to be overall modest (Atlas et al., 2001Annales Geophysicae (2004) 22: 4043­4048 SRef-ID: 1432-0576/ag/2004-22-4043 © European Geosciences

  10. Turning The Web Into An Effective Knowledge Repository INESC-ID / IST

    E-Print Network [OSTI]

    Ferreira, Paulo

    . This includes safely preserving static and dynamic content as well as performing stor- age managementTurning The Web Into An Effective Knowledge Repository Luis Veiga INESC-ID / IST Rua Alves Redol, 9 management, web proxy, detecting distributed cycles, distributed garbage collection. Abstract: To fulfill

  11. COMPUTER SCIENCE @ UCI >>> WhaT dId yOU lEaRN?

    E-Print Network [OSTI]

    Barrett, Jeffrey A.

    COMPUTER SCIENCE @ UCI >>> WhaT dId yOU lEaRN? My COURSES havE INClUdEd: Computer Graphics I these environments with avatars. Embedded Computing Systems I designed an intelligent hexapod robot that used optical Languages I built a personnel-scheduling application that integrated components written in multiple computer

  12. .4/H 19%; 9.1'8-Id.3 Hypertension and Outcomes Research

    E-Print Network [OSTI]

    Lin, Danyu

    .4/H 19%; 9.1'8-Id.3 Hypertension and Outcomes Research From Clinical Trials to Clinical about their effect tin major disease endpoints in patients with hypertension are still not available benefits of antihypertensive therapies. Am J Hypertens 15%;9:178-183 KEY wwux: Hypertension, drug therapy

  13. Online Submission ID: 0594 Sound Propagation in Large Complex Environments Using Wave-Ray Coupling

    E-Print Network [OSTI]

    North Carolina at Chapel Hill, University of

    Online Submission ID: 0594 Sound Propagation in Large Complex Environments Using Wave-Ray Coupling-3 cal acoustic techniques for sound propagation that computes how4 sound waves travel in space reducing the overall computation.19 1 Introduction20 Sound propagation techniques determine how sound waves

  14. Online Submission ID: 0301 Wave-Ray Coupling for Interactive Sound Propagation in Large Complex Scenes

    E-Print Network [OSTI]

    North Carolina at Chapel Hill, University of

    Online Submission ID: 0301 Wave-Ray Coupling for Interactive Sound Propagation in Large Complex numerical techniques.18 1 Introduction19 Sound propagation techniques are used to model how sound waves20 applications use geometric sound propagation40 techniques, which assume that sound waves travels like rays

  15. Single mimivirus particles intercepted and imaged with an X-ray laser (CXIDB ID 2)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Seibert, M. Marvin; Ekeberg, Tomas

    These are the files used to reconstruct the images in the paper "Single Mimivirus particles intercepted and imaged with an X-ray laser". Besides the diffracted intensities, the Hawk configuration files used for the reconstructions are also provided. The files from CXIDB ID 2 are the pattern and configuration files for the pattern showed in Figure 2b in the paper.

  16. Bachelor of Science, Mechanical Engineering, 2014-2015 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Equations with Matrix Theory 4 MATH 360 Engineering Statistics or MATH 361 Probability and Statistics I 3 MEBachelor of Science, Mechanical Engineering, 2014-2015 Name ID# Date General Degree Requirements Communication 3 DLS Social Sciences course in a second field 3 ENGR 120 Introduction to Engineering or ENGR 130

  17. Bachelor of Business Administration, Business Economics, 2014-2015 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Bachelor of Business Administration, Business Economics, 2014-2015 Name ID# Date General Degree to Managerial Accounting 3 CID BUSCOM 201 Business Communication 3 BUSSTAT 207-208 Statistical Techniques Upper-division economics electives 15 FINAN 303 Principles of Finance 3 GENBUS 101 Business for the New

  18. Bachelor of Business Administration, General Business, 2013-2014 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Bachelor of Business Administration, General Business, 2013-2014 Name ID# Date General Degree to Managerial Accounting 3 CID BUSCOM 201 Business Communication 3 BUSSTAT 207-208 Statistical Techniques Leadership for a New Generation 3 GENBUS 202 The Legal Environment of Business 3 FF GENBUS 450 Business

  19. Bachelor of Business Administration, International Business, 2012-2013 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Bachelor of Business Administration, International Business, 2012-2013 Name ID# Date General Degree Introduction to Managerial Accounting 3 3 CID BUSCOM 201 Business Communication BUSSTAT 207-208 Statistical Generation GENBUS 202 The Legal Environment of Business or GENBUS 304 Law For Accountants I FF GENBUS 450

  20. Bachelor of Business Administration, International Business, 2014-2015 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Bachelor of Business Administration, International Business, 2014-2015 Name ID# Date General Degree Introduction to Managerial Accounting CID BUSCOM 201 Business Communication BUSSTAT 207-208 Statistical FINAN 303 Principles of Finance FINAN 430 International Finance GENBUS 101 Business for the New

  1. Bachelor of Business Administration, Business Economics, 2012-2013 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Bachelor of Business Administration, Business Economics, 2012-2013 Name ID# Date General Degree to Managerial Accounting 3 CID BUSCOM 201 Business Communication 3 BUSSTAT 207-208 Statistical Techniques Upper-division economics electives 15 FINAN 303 Principles of Finance 3 GENBUS 101 Business for the New

  2. Bachelor of Business Administration, Business Economics, 2013-2014 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Bachelor of Business Administration, Business Economics, 2013-2014 Name ID# Date General Degree to Managerial Accounting 3 CID BUSCOM 201 Business Communication 3 BUSSTAT 207-208 Statistical Techniques Upper-division economics electives 15 FINAN 303 Principles of Finance 3 GENBUS 101 Business for the New

  3. BUSINESS INFORMATION MANAGEMENT @ UCI >>> WhAT dId yOU lEARN?

    E-Print Network [OSTI]

    Barrett, Jeffrey A.

    BUSINESS INFORMATION MANAGEMENT @ UCI >>> WhAT dId yOU lEARN? My COURSES hAvE INCl to Managerial Finance I learned how to make financial projections for technology projects. Business Intelligence and implement the kinds of databases that are used by virtually every business and enterprise in the world

  4. Bachelor of Business Administration, International Business, 2013-2014 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Bachelor of Business Administration, International Business, 2013-2014 Name ID# Date General Degree Introduction to Managerial Accounting CID BUSCOM 201 Business Communication BUSSTAT 207-208 Statistical Generation GENBUS 202 The Legal Environment of Business or GENBUS 304 Law For Accountants I FF GENBUS 450

  5. Bachelor of Business Administration, General Business, 2012-2013 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Bachelor of Business Administration, General Business, 2012-2013 Name ID# Date General Degree to Managerial Accounting 3 CID BUSCOM 201 Business Communication 3 BUSSTAT 207-208 Statistical Techniques Leadership for a New Generation 3 GENBUS 202 The Legal Environment of Business 3 FF GENBUS 450 Business

  6. Bachelor of Business Administration, General Business, 2014-2015 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Bachelor of Business Administration, General Business, 2014-2015 Name ID# Date General Degree to Managerial Accounting 3 CID BUSCOM 201 Business Communication 3 BUSSTAT 207-208 Statistical Techniques Leadership for a New Generation 3 GENBUS 202 The Legal Environment of Business 3 FF GENBUS 450 Business

  7. Mineral ID Self-Instruction Lab Name _________________________ Geology 100 Harbor Section

    E-Print Network [OSTI]

    Harbor, David

    Mineral ID Self-Instruction Lab Name _________________________ Geology 100 ­ Harbor Section Your goal for this lab is to become familiar with the physical properties used to identify minerals. Physical properties are determined by the chemical and crystalline properties of the given mineral. However

  8. TS-IDS Algorithm For Query Selection in the Deep Web Crawling

    E-Print Network [OSTI]

    Lu, Jianguo

    TS-IDS Algorithm For Query Selection in the Deep Web Crawling Yan Wang1 , Jianguo Lu2 , and Jessica. The deep web crawling is the process of collecting data items inside a data source hidden behind searchable of documents and terms involved, calls for new approximation algorithms for efficient deep web data crawling

  9. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT ID 1 Development of a Software Engineering

    E-Print Network [OSTI]

    Sommerville, Ian

    Engineering Ontology for Multi-site Software Development Pornpit Wongthongtham, Elizabeth Chang, Tharam Dillon of software engineering. Index Terms--Software Engineering, Ontology Development, Multi-site SoftwareIEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT ID 1 Development of a Software

  10. Bachelor of Science, Materials Science and Engineering, 2014-2015 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Bachelor of Science, Materials Science and Engineering, 2014-2015 Name ID# Date General Degree Science & Engineering & Lab 3-4 3 3 4 MATH 175 Calculus II MATH 275 Multivariable and Vector Calculus MATH Electrical Properties of Materials 3 MSE 312 Mechanical Behavior of Materials 3 MSE 380 Materials Science

  11. Bachelor of Science, Materials Science and Engineering, 2013-2014 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Bachelor of Science, Materials Science and Engineering, 2013-2014 Name ID# Date General Degree of Materials MSE 312 Mechanical Behavior of Materials MSE 380 Materials Science and Engineering Lab MSE 404 Science & Engineering & Lab MATH 175 Calculus II MATH 275 Multivariable and Vector Calculus MATH 333

  12. Bachelor of Science, Materials Science and Engineering, 2012-2013 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Bachelor of Science, Materials Science and Engineering, 2012-2013 Name ID# Date General Degree to Electric Circuits ENGR 245, 245L Intro to Materials Science & Engineering & Lab 3 3 3 4 MATH 175 Calculus Mechanical Behavior of Materials MSE 380 Materials Science and Engineering Lab MSE 404 Materials Analysis

  13. Bachelor of Arts, Communication, Public Communication Emphasis, 2013-2014 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Bachelor of Arts, Communication, Public Communication Emphasis, 2013-2014 Name ID# Date General Communication Arts - choose one from the following: COMM 131, COMM 211, COMM 231, COMM 268, COMM 269, COMM 273, COMM 278 3 Communication Contexts - choose one from the following: COMM 221, COMM 341, COMM 351, COMM

  14. Bachelor of Arts, Communication, Public Communication Emphasis, 2014-2015 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Bachelor of Arts, Communication, Public Communication Emphasis, 2014-2015 Name ID# Date General Communication Arts - choose one from the following: COMM 131, COMM 211, COMM 231, COMM 268, COMM 269, COMM 273, COMM 278 3 Communication Contexts - choose one from the following: COMM 221, COMM 341, COMM 351, COMM

  15. Bachelor of Arts, Communication, Public Communication Emphasis, 2012-2013 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Bachelor of Arts, Communication, Public Communication Emphasis, 2012-2013 Name ID# Date General Communication Arts - choose one from the following: COMM 131, COMM 211, COMM 231, COMM 268, COMM 269, COMM 273, COMM 278 3 Communication Contexts - choose one from the following: COMM 221, COMM 341, COMM 351, COMM

  16. ~ WELDING RESEARCH ~Jlj~~~-------------!ID~ SUPPLEMENT TO THE tVELOING JOURNAL. IULY 1993

    E-Print Network [OSTI]

    Eagar, Thomas W.

    ~ WELDING RESEARCH ~Jlj~~~-------------!ID~ SUPPLEMENT TO THE t·VELOING JOURNAL. IULY 1993 Sponsored by the American Welding Society and the Welding Research Council Metal Transfer in Pulsed Current Gas Metal Arc Welding A static force balance analysis was used to estimate the melting rates

  17. Danger Theory: The Link between AIS and IDS?+ Uwe Aickelin1

    E-Print Network [OSTI]

    Aickelin, Uwe

    Danger Theory: The Link between AIS and IDS?+ Uwe Aickelin1 , Peter Bentley2 , Steve Cayzer_Cayzer@hplb.hpl.hp.com, Jungwon@dcs.kcl.ac.uk, Julie.Mcleod@uwe.ac.uk artificial immune system, intrusion detection, danger theory self-nonself thinking and a new `Danger Theory' (DT) is emerging. This new theory suggests

  18. Bachelor of Science, Electrical Engineering, 2014-2015 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Bachelor of Science, Electrical Engineering, 2014-2015 Name ID# Date General Degree Requirements ECE 380, 380L Electrical Engineering Practice and Lab 3 ECE 480 Senior Design Project I 3 FF ECE 482L Physics I & II with Calculus & Labs 10 Electrical Engineering electives* 12 Technical electives* 6

  19. Bachelor of Science, Electrical Engineering, 2013-2014 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Bachelor of Science, Electrical Engineering, 2013-2014 Name ID# Date General Degree Requirements System Modeling and Control CID ECE 380, 380L Electrical Engineering Practice and Lab ECE 480 Senior 3 3 3 4 4 4 3 PHYS 211, 211L-212, 212L Physics I & II with Calculus & Labs 10 Electrical Engineering

  20. Bachelor of Science, Electrical Engineering, 2012-2013 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Bachelor of Science, Electrical Engineering, 2012-2013 Name ID# Date General Degree Requirements Modeling and Control 3 CID ECE 380, 380L Electrical Engineering Practice and Lab 3 ECE 480 Senior Design PHYS 211, 211L-212, 212L Physics I & II with Calculus & Labs 10 Electrical Engineering electives* 12

  1. Bachelor of Science, Environmental and Occupational Health, 2014-2015 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Bachelor of Science, Environmental and Occupational Health, 2014-2015 Name ID# Date General Degree and Humanities 3-4 DLS ENGL 202 Technical Communication 3 DLS ENVHLTH 102 Global Environmental Health 3 BIOL 192 320 Community Environmental Health Management ENVHLTH 415 Occupational Safety and Health ENVHLTH 416

  2. Bachelor of Science, Environmental and Occupational Health, 2013-2014 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Bachelor of Science, Environmental and Occupational Health, 2013-2014 Name ID# Date General Degree and Humanities 3-4 DLS ENGL 202 Technical Communication 3 DLS ENVHLTH 102 Global Environmental Health 3 BIOL 192 320 Community Environmental Health Management ENVHLTH 415 Occupational Safety and Health ENVHLTH 416

  3. Bachelor of Science, Environmental and Occupational Health, 2012-2013 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Bachelor of Science, Environmental and Occupational Health, 2012-2013 Name ID# Date General Degree and Humanities 3-4 DLS ENGL 202 Technical Communication 3 DLS ENVHLTH 102 Global Environmental Health 3 BIOL 192 Management ENVHLTH 320 Community Environmental Health Management ENVHLTH 415 Occupational Safety and Health

  4. Bachelor of Science, Geosciences, Geophysics Emphasis, 2014-2015 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Bachelor of Science, Geosciences, Geophysics Emphasis, 2014-2015 Name ID# Date General Degree General Chemistry II with Lab 4 GEOPH 201 Seeing the Unseen: an Introduction to Geophysics 4 GEOG 360 Physics I & II with Calculus & Labs Physics Option II: PHYS 111-112 General Physics 8-10 Geophysics

  5. Abstract ID 616 MC-TRACE: MULTICASTING THROUGH TIME RESERVATION USING ADAPTIVE CONTROL

    E-Print Network [OSTI]

    Heinzelman, Wendi

    Abstract ID 616 1 of 7 MC-TRACE: MULTICASTING THROUGH TIME RESERVATION USING ADAPTIVE CONTROL, University of Rochester, Rochester NY Abstract- In this paper, we present Multicasting through Time Reservation using Adaptive Control for Energy efficiency (MC-TRACE), which is an energy-efficient voice

  6. 2014-2015 Verification of Social Security Number & Date of Birth A. STUDENT INFORMATION SPIRE ID#: ____________________

    E-Print Network [OSTI]

    Mountziaris, T. J.

    2014-2015 Verification of Social Security Number & Date of Birth A. STUDENT INFORMATION SPIRE ID YYYY My correct Social Security Number is: ________ - _____ - _________ B. SIGNATURE- For corrections to date of birth. · Signed Social Security card or passport- For corrections to social security

  7. MS ID: JLR/2013/039446 Obesity alters the gustatory perception of lipids in the mouse

    E-Print Network [OSTI]

    Boyer, Edmond

    1 MS ID: JLR/2013/039446 Obesity alters the gustatory perception of lipids in the mouse: plausible INSERM/Université de Bourgogne/AgroSup Dijon, F-21000 Dijon, France. Short title: Obesity decreases-induced obesity; GLP-1, glucagon-like peptide-1; HF, high fat diet; HFHS, high fat/high sucrose diet; LA, linoleic

  8. ISSE2011: Hossain (2011): A sustainable diagnostic test tool Paper ID: 108-59871

    E-Print Network [OSTI]

    Hossain, M. Enamul

    2011-01-01T23:59:59.000Z

    ISSE­2011: Hossain (2011): A sustainable diagnostic test tool 1 Paper ID: 108-59871 International Symposium on Sustainable Systems and the Environment (ISSE) 2011 American University of Sharjah, Sharjah was introduced in beginning of 19th century when rotary drilling system was developed to drill a hole on earth [1

  9. Bachelor of Science, Social Science, 2013-2014 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Bachelor of Science, Social Science, 2013-2014 Name ID# Date General Degree Requirements Residency DLM Mathematics 3-4 DLN Natural, Physical, & Applied Sciences course with lab 4 DLN Natural, Physical, and Applied Sciences course 3-4 DLV Visual and Performing Arts 3 DLL Literature and Humanities 3-4 DLS Social

  10. Bachelor of Science, Social Science, 2014-2015 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Bachelor of Science, Social Science, 2014-2015 Name ID# Date General Degree Requirements Residency DLM Mathematics 3-4 DLN Natural, Physical, & Applied Sciences course with lab 4 DLN Natural, Physical, and Applied Sciences course 3-4 DLV Visual and Performing Arts 3 DLL Literature and Humanities 3-4 DLS Social

  11. Bachelor of Science, Social Science, 2012-2013 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Bachelor of Science, Social Science, 2012-2013 Name ID# Date General Degree Requirements Residency DLM Mathematics 3-4 DLN Natural, Physical, & Applied Sciences course with lab 4 DLN Natural, Physical, and Applied Sciences course 3-4 DLV Visual and Performing Arts 3 DLL Literature and Humanities 3-4 DLS Social

  12. Computer Science Major Worksheet B.A. Degree Student: _______________________ ID#___________ Catalog:_________ Advisor _____________

    E-Print Network [OSTI]

    Delene, David J.

    10/15/2012 Computer Science Major Worksheet ­ B.A. Degree Student: _______________________ ID#___________ Catalog:_________ Advisor _____________ Computer Science Required Courses Cr. Semester Gr. CSci 160 Computer Science I 4 CSci 161 Computer Science II 4 CSci 230 Systems Programming 3 CSci 242 Algo. & Data

  13. Bachelor of Science, Computer Science, 2012-2013 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Bachelor of Science, Computer Science, 2012-2013 Name ID# Date General Degree Requirements of Speech Communication COMPSCI 125 Introduction to Computer Science I COMPSCI 225 Introduction to Computer Science II CID COMPSCI 230 Ethical Issues in Computing COMPSCI 253 Object-Oriented Program Development

  14. Bachelor of Science, Computer Science, 2013-2014 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Bachelor of Science, Computer Science, 2013-2014 Name ID# Date General Degree Requirements Technical Communication 3 COMPSCI 121 Computer Science I COMPSCI 221 Computer Science II CID COMPSCI 230 Microprocessors and Lab 4 3 3 3 3 3 3 3 3 3 3 3 3 0 1 4 4 Three additional computer science courses chosen from

  15. Bachelor of Science, Computer Science, 2014-2015 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Bachelor of Science, Computer Science, 2014-2015 Name ID# Date General Degree Requirements Technical Communication 3 CS 121, 121L Computer Science I and Lab 4 CS 221 Computer Science II 3 CID CS 230 Microprocessors and Lab 4 4 Four additional computer science courses chosen from: CS 401, CS 410, CS 425, CS 430

  16. RENEWABLE ENERGY FROM SWINE WASTE Bingjun He, University of Idaho, Moscow, ID 1

    E-Print Network [OSTI]

    He, Brian

    RENEWABLE ENERGY FROM SWINE WASTE Bingjun He, University of Idaho, Moscow, ID 1 Yuanhui Zhang, Ted waste and to produce renewable energy from swine manure. Experimental results showed that operating were also studied. Typical oil yield of the TCC process ranged from 60% to 65% on the input volatile

  17. Academic Staff ESS Coversheet Candidate Name (Last, First, M.I.) Banner ID

    E-Print Network [OSTI]

    VandeVord, Pamela

    rev. 6/14 Academic Staff ESS Coversheet Candidate Name (Last, First, M.I.) Banner ID Primary School Initial WSU appointment date Length of ESS-track service (in years & months) Academic Services Officer Archivist Initial WSU rank Dates off ESS-track/Reason Extens Prgm Coordinator Financial Aid Officer Date

  18. Library hours vary by semester; Check lib.usf.edu After midnight, USF ID required

    E-Print Network [OSTI]

    Meyers, Steven D.

    Library hours vary by semester; Check lib.usf.edu After midnight, USF ID required lib.usf.edu (813? To learn how to: Integrate the library into Canvas, Invite a librarian to join your course's Canvas site, or Request a tailored research guide or library research assignment, Contact: Susan Silver | ssilver

  19. Project ID: 35011 Title: The Floating Net Pen Transportation System Pilot Project

    E-Print Network [OSTI]

    Project ID: 35011 Title: The Floating Net Pen Transportation System Pilot Project Sponsor: Columbia sufficient. The proposal does not specify what benefits might be expected from use of net pens relative raceways or other sources to the net pens is discussed in the proposal. The reviewers are aware

  20. Single mimivirus particles intercepted and imaged with an X-ray laser (CXIDB ID 1)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Seibert, M. Marvin; Ekeberg, Tomas; Maia, Filipe R.N.C.

    These are the files used to reconstruct the images in the paper "Single Mimivirus particles intercepted and imaged with an X-ray laser". Besides the diffracted intensities, the Hawk configuration files used for the reconstructions are also provided. The files from CXIDB ID 1 are the pattern and configuration files for the pattern showed in Figure 2a in the paper.

  1. Bachelor of Science, Radiologic Sciences, Computed Tomography Emphasis, 2014-2015 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Bachelor of Science, Radiologic Sciences, Computed Tomography Emphasis, 2014-2015 Name ID# Date RADSCI 450 Principles of Computed Tomography RADSCI 450L Principles of Computed Tomography Lab RADSCI 451 Procedural Case Studies in Computed Tomography RADSCI 455 Clinical Experience in Computed Tomography 1 3 1 3

  2. Bachelor of Science, Radiologic Sciences, Computed Tomography Emphasis, 2013-2014 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Bachelor of Science, Radiologic Sciences, Computed Tomography Emphasis, 2013-2014 Name ID# Date RADSCI 450 Principles of Computed Tomography RADSCI 450L Principles of Computed Tomography Lab RADSCI 451 Procedural Case Studies in Computed Tomography RADSCI 455 Clinical Experience in Computed Tomography 1 3 1 3

  3. Bachelor of Science, Radiologic Sciences, Computed Tomography Emphasis, 2012-2013 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Bachelor of Science, Radiologic Sciences, Computed Tomography Emphasis, 2012-2013 Name ID# Date Imaging 3 RADSCI 431 CT Radiation Dose and Risk Analysis 1 RADSCI 450 Principles of Computed Tomography 3 RADSCI 450L Principles of Computed Tomography Lab 1 RADSCI 451 Procedural Case Studies in Computed

  4. MA 166 FINAL EXAM Spring 1999 Page 1/10 NAME STUDENT ID ...

    E-Print Network [OSTI]

    1910-00-41T23:59:59.000Z

    Fill in the above items in print. I.D.# is ... 3. B. c = -1. C. c = 1. D. c = 0. E. no value of c. 2. Calculate the length of the projection of b = i + j + k onto a = 2 i - k. A. 1.

  5. Advanced Applications for e-ID Cards in Flanders ADAPID Deliverable D2

    E-Print Network [OSTI]

    Verbrugge, Clark

    CHUM Centre Hospitalier de lUniversit´e de Montreal CHUQ Centres Hospitaliers affili´es Universitaires Belgian Data Protection Act DRM Digital Rights Management DU Data Unavailability EBR Event Based Retention Technologies ID Identity 7 #12;IDA Information Dispersal Algorithm IDM Identity Management IOI Item Of Interest

  6. Bachelor of Arts, Communication, Media Studies Emphasis, 2012-2013 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    and Ethical Foundations 3 DLM Mathematics 3-4 DLN Natural, Physical, & Applied Sciences course with lab 4 DLN Natural, Physical, and Applied Sciences course 3-4 DLV Visual and Performing Arts 3 DLL LiteratureBachelor of Arts, Communication, Media Studies Emphasis, 2012-2013 Name ID# Date General Degree

  7. Bachelor of Arts, English, Technical Communication Emphasis, 2013-2014 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    and Ethical Foundations 3 DLM Mathematics 3-4 DLN Natural, Physical, & Applied Sciences course with lab 4 DLN Natural, Physical, and Applied Sciences course 3-4 DLV Visual and Performing Arts 3 DLL LiteratureBachelor of Arts, English, Technical Communication Emphasis, 2013-2014 Name ID# Date General Degree

  8. Bachelor of Arts, English, Technical Communication Emphasis, 214-2015 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    and Ethical Foundations 3 DLM Mathematics 3-4 DLN Natural, Physical, & Applied Sciences course with lab 4 DLN Natural, Physical, and Applied Sciences course 3-4 DLV Visual and Performing Arts 3 DLL LiteratureBachelor of Arts, English, Technical Communication Emphasis, 214-2015 Name ID# Date General Degree

  9. Bachelor of Arts, Communication, Media Production Emphasis, 2013-2014 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    and Ethical Foundations 3 DLM Mathematics 3-4 DLN Natural, Physical, & Applied Sciences course with lab 4 DLN Natural, Physical, and Applied Sciences course 3-4 DLV Visual and Performing Arts 3 DLL LiteratureBachelor of Arts, Communication, Media Production Emphasis, 2013-2014 Name ID# Date General Degree

  10. Bachelor of Arts, English, Technical Communication Emphasis, 2012-2013 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    and Ethical Foundations 3 DLM Mathematics 3-4 DLN Natural, Physical, & Applied Sciences course with lab 4 DLN Natural, Physical, and Applied Sciences course 3-4 DLV Visual and Performing Arts 3 DLL LiteratureBachelor of Arts, English, Technical Communication Emphasis, 2012-2013 Name ID# Date General Degree

  11. Bachelor of Arts, Communication, Journalism and Media Studies Emphasis, 2014-2015 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    200 Civic and Ethical Foundations 3 DLM Mathematics 3-4 DLN Natural, Physical, & Applied Sciences course with lab 4 DLN Natural, Physical, and Applied Sciences course 3-4 DLV Visual and Performing Arts 3Bachelor of Arts, Communication, Journalism and Media Studies Emphasis, 2014-2015 Name ID# Date

  12. Bachelor of Arts, Communication, Relational and Organizational Studies Emphasis, Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    200 Civic and Ethical Foundations 3 DLM Mathematics 3-4 DLN Natural, Physical, & Applied Sciences course with lab 4 DLN Natural, Physical, and Applied Sciences course 3-4 DLV Visual and Performing Arts 3Bachelor of Arts, Communication, Relational and Organizational Studies Emphasis, 2013-2014 Name ID

  13. Bachelor of Arts, Communication, Relational and Organizational Studies Emphasis, Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    200 Civic and Ethical Foundations 3 DLM Mathematics 3-4 DLN Natural, Physical, & Applied Sciences course with lab 4 DLN Natural, Physical, and Applied Sciences course 3-4 DLV Visual and Performing Arts 3Bachelor of Arts, Communication, Relational and Organizational Studies Emphasis, 2012-2013 Name ID

  14. Bachelor of Arts, Communication, Media Studies Emphasis, 2013-2014 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    and Ethical Foundations 3 DLM Mathematics 3-4 DLN Natural, Physical, & Applied Sciences course with lab 4 DLN Natural, Physical, and Applied Sciences course 3-4 DLV Visual and Performing Arts 3 DLL LiteratureBachelor of Arts, Communication, Media Studies Emphasis, 2013-2014 Name ID# Date General Degree

  15. Bachelor of Arts, Communication, Media Production Emphasis, 2012-2013 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    and Ethical Foundations 3 DLM Mathematics 3-4 DLN Natural, Physical, & Applied Sciences course with lab 4 DLN Natural, Physical, and Applied Sciences course 3-4 DLV Visual and Performing Arts 3 DLL LiteratureBachelor of Arts, Communication, Media Production Emphasis, 2012-2013 Name ID# Date General Degree

  16. Bachelor of Arts, Communication, Relational and Organizational Studies Emphasis, Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    200 Civic and Ethical Foundations 3 DLM Mathematics 3-4 DLN Natural, Physical, & Applied Sciences course with lab 4 DLN Natural, Physical, and Applied Sciences course 3-4 DLV Visual and Performing Arts 3Bachelor of Arts, Communication, Relational and Organizational Studies Emphasis, 2014-2015 Name ID

  17. Bachelor of Arts, Communication, Media Production Emphasis, 2014-2015 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    and Ethical Foundations 3 DLM Mathematics 3-4 DLN Natural, Physical, & Applied Sciences course with lab 4 DLN Natural, Physical, and Applied Sciences course 3-4 DLV Visual and Performing Arts 3 DLL LiteratureBachelor of Arts, Communication, Media Production Emphasis, 2014-2015 Name ID# Date General Degree

  18. 1. CONTRACT ID CODE PAGES AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT

    E-Print Network [OSTI]

    of Offers 0 is extended. D is nOl extended. Offers must acknowledge receipt of Ihis amendmenl priDr ID) By completing Uems 8 and 15, and relurnlng copies cllhe amendmenl; (b) By acknowledging receipt 01 a reference 10 Ihe solicitation and amelldmanl numbers. FAILURE OF YOUR ACKNOWLEDGEMENT TO BE RECEIVED

  19. CONFIRMATION NO. 1357 SESSION ID 3EI07 1 Fabrication and characterization of superconducting

    E-Print Network [OSTI]

    CONFIRMATION NO. 1357 SESSION ID 3EI07 1 Fabrication and characterization of superconducting-angle evaporation in superconducting resonators with high quality factor. An important issue is to characterize the quality factor of the res- onators. We present an RF-characterization of superconducting resonators

  20. Online Submission ID: 1199 Gremlin: An Interactive Visualization Model for Analyzing

    E-Print Network [OSTI]

    Laidlaw, David

    Online Submission ID: 1199 Gremlin: An Interactive Visualization Model for Analyzing Genomic Rearrangements Category: Research Fig. 1. Our new method for visualizing genome rearrangements: deletions (green), inversions (brown), and inter-chromosomal translocations (cyan) classified from a cancer genome with respect

  1. Data Mining-based Intrusion Detectors: An Overview of the Columbia IDS Project

    E-Print Network [OSTI]

    Yang, Junfeng

    Data Mining-based Intrusion Detectors: An Overview of the Columbia IDS Project Salvatore J. Stolfo by sensing a misuse or a breach of a security policy and alerting operators to an ongoing (or, at least on a weekly basis reporting that malicious users still succeed in attacking systems with sometimes devastating

  2. Mechanism of Aluminum Soption on Birnessite: Influences on Chromium (ID.) Oxidation

    E-Print Network [OSTI]

    Sparks, Donald L.

    Mechanism of Aluminum Soption on Birnessite: Influences on Chromium (ID.) Oxidation Scott E and their effects on Cr(Ill) oxidation. Aluminum had no effect on Cr(III) oxidation at pH values less than 4 electron microscopy revealed that an aluminum hydroxide surface precipitate formed on birnessite at pH ~ 4

  3. CRC DEPLETION CALCULATIONS FOR THE NON-RODDED ASSEMBLIES IN BATCHES 8 AND 9 CRYSTAL RIVER UNIT 3

    SciTech Connect (OSTI)

    Michael L. Wilson

    2001-02-08T23:59:59.000Z

    The purpose of this design analysis is to document the SAS2H depletion calculations of certain non-rodded fuel assemblies from batches 8 and 9 of the Crystal River Unit 3 pressurized water reactor (PWR) that are required for Commercial Reactor Critical (CRC) evaluations to support the development of the disposal criticality methodology. A non-rodded assembly is one which never contains a control rod assembly (CRA) or an axial power shaping rod assembly (APSRA) during its irradiation history. The objective of this analysis is to provide SAS2H generated isotopic compositions for each fuel assembly's depleted fuel and depleted burnable poison materials. These SAS2H generated isotopic compositions are acceptable for use in CRC benchmark reactivity calculations containing the various fuel assemblies.

  4. CRC DEPLETION CALCULATIONS FOR THE RODDED ASSEMBLIES IN BATCHES 1, 2, 3, AND 1X OF CRYSTAL RIVER UNIT 3

    SciTech Connect (OSTI)

    Kenneth D. Wright

    1997-09-03T23:59:59.000Z

    The purpose of this design analysis is to document the SAS2H depletion calculations of certain rodded fuel assemblies from batches 1, 2, 3, and 1X of the Crystal River Unit 3 pressurized water reactor (PWR) that are required for Commercial Reactor Critical (CRC) evaluations to support the development of the disposal criticality methodology. A rodded assembly is one that contains a control rod assembly (CRA) or an axial power shaping rod assembly (APSRA) for some period of time during its irradiation history. The objective of this analysis is to provide SAS2H calculated isotopic compositions of depleted fuel and depleted burnable poison for each fuel assembly to be used in subsequent CRC reactivity calculations containing the fuel assemblies.

  5. Coal fly ash interaction with environmental fluids: Geochemical and strontium isotope results from combined column and batch leaching experiments

    SciTech Connect (OSTI)

    Brubaker, Tonya M.; Stewart, Brian W.; Capo, Rosemary C.; Schroeder, Karl T.; Chapman, Elizabeth C.; Spivak-Birndorf, Lev J.; Vesper, Dorothy J.; Cardone, Carol R.; Rohar, Paul C.

    2013-05-01T23:59:59.000Z

    The major element and Sr isotope systematics and geochemistry of coal fly ash and its interactions with environmental waters were investigated using laboratory flow-through column leaching experiments (sodium carbonate, acetic acid, nitric acid) and sequential batch leaching experiments (water, acetic acid, hydrochloric acid). Column leaching of Class F fly ash samples shows rapid release of most major elements early in the leaching procedure, suggesting an association of these elements with soluble and surface bound phases. Delayed release of certain elements (e.g., Al, Fe, Si) signals gradual dissolution of more resistant silicate or glass phases as leaching continues. Strontium isotope results from both column and batch leaching experiments show a marked increase in {sup 87}Sr/{sup 86}Sr ratio with continued leaching, yielding a total range of values from 0.7107 to 0.7138. For comparison, the isotopic composition of fluid output from a fly ash impoundment in West Virginia falls in a narrow range around 0.7124. The experimental data suggest the presence of a more resistant, highly radiogenic silicate phase that survives the combustion process and is leached after the more soluble minerals are removed. Strontium isotopic homogenization of minerals in coal does not always occur during the combustion process, despite the high temperatures encountered in the boiler. Early-released Sr tends to be isotopically uniform; thus the Sr isotopic composition of fly ash could be distinguishable from other sources and is a useful tool for quantifying the possible contribution of fly ash leaching to the total dissolved load in natural surface and ground waters.

  6. Conveying Cycle-Time Analysis in Pneumatic Conveying: A Study of Relationship between Batching & Convey Cycles in Powder & Bulk Handling Systems

    E-Print Network [OSTI]

    Aghdaie, Bahman

    2008-12-19T23:59:59.000Z

    Engineering Management Field Project Conveying Cycle-Time Analysis in Pneumatic Conveying: A Study of Relationship between Batching & Convey Cycles in Powder & Bulk Handling Systems By Bahman Aghdaie Fall Semester, 2008...:_________________ Bahman Aghdaie EMGT-835 Field Project 2 Table of Contents Page Acknowledgements 4 Executive Summary 5 Chapter 1 - Introduction 7 Chapter 2 - Literature Review 9 Chapter 3 – Research Procedure 12...

  7. Geophysical Research Abstracts, Vol. 6, 01855, 2004 SRef-ID: 1607-7962/gra/EGU04-A-01855

    E-Print Network [OSTI]

    Demouchy, Sylvie

    Geophysical Research Abstracts, Vol. 6, 01855, 2004 SRef-ID: 1607-7962/gra/EGU04-A-01855 c European (benoit@dstu.univ-montp2.fr), (2) Department of Geology and Geophysics, Texas A&M University, College

  8. Geophysical Research Abstracts, Vol. 9, 11521, 2007 SRef-ID: 1607-7962/gra/EGU2007-A-11521

    E-Print Network [OSTI]

    Jamieson, Bruce

    Geophysical Research Abstracts, Vol. 9, 11521, 2007 SRef-ID: 1607-7962/gra/EGU2007-A-11521, University of Calgary, Calgary AB, Canada, (3) Department of Geology and Geophysics, University of Calgary

  9. Geophysical Research Abstracts, Vol. 8, 05723, 2006 SRef-ID: 1607-7962/gra/EGU06-A-05723

    E-Print Network [OSTI]

    Demouchy, Sylvie

    Geophysical Research Abstracts, Vol. 8, 05723, 2006 SRef-ID: 1607-7962/gra/EGU06-A-05723 © European) Scripps Inst. of Oceanography, UCSD, la Jolla, USA, (3) Dpt of Geology and Geophysics, Univ. of Wyoming

  10. Geophysical Research Abstracts, Vol. 8, 06396, 2006 SRef-ID: 1607-7962/gra/EGU06-A-06396

    E-Print Network [OSTI]

    Jamieson, Bruce

    Geophysical Research Abstracts, Vol. 8, 06396, 2006 SRef-ID: 1607-7962/gra/EGU06-A-06396 © European) Dept. of Geology and Geophysics, University of Calgary, Alberta, Canada This study investigates

  11. SLURRY MIX EVAPORATOR BATCH ACCEPTABILITY AND TEST CASES OF THE PRODUCT COMPOSITION CONTROL SYSTEM WITH THORIUM AS A REPORTABLE ELEMENT

    SciTech Connect (OSTI)

    Edwards, T.

    2010-10-07T23:59:59.000Z

    The Defense Waste Processing Facility (DWPF), which is operated by Savannah River Remediation, LLC (SRR), has recently begun processing Sludge Batch 6 (SB6) by combining it with Frit 418 at a nominal waste loading (WL) of 36%. A unique feature of the SB6/Frit 418 glass system, as compared to the previous glass systems processed in DWPF, is that thorium will be a reportable element (i.e., concentrations of elemental thorium in the final glass product greater than 0.5 weight percent (wt%)) for the resulting wasteform. Several activities were initiated based upon this unique aspect of SB6. One of these was an investigation into the impact of thorium on the models utilized in DWPF's Product Composition and Control System (PCCS). While the PCCS is described in more detail below, for now note that it is utilized by Waste Solidification Engineering (WSE) to evaluate the acceptability of each batch of material in the Slurry Mix Evaporator (SME) before this material is passed on to the melter. The evaluation employs models that predict properties associated with processability and product quality from the composition of vitrified samples of the SME material. The investigation of the impact of thorium on these models was conducted by Peeler and Edwards [1] and led to a recommendation that DWPF can process the SB6/Frit 418 glass system with ThO{sub 2} concentrations up to 1.8 wt% in glass. Questions also arose regarding the handling of thorium in the SME batch acceptability process as documented by Brown, Postles, and Edwards [2]. Specifically, that document is the technical bases of PCCS, and while Peeler and Edwards confirmed the reliability of the models, there is a need to confirm that the current implementation of DWPF's PCCS appropriately handles thorium as a reportable element. Realization of this need led to a Technical Task Request (TTR) prepared by Bricker [3] that identified some specific SME-related activities that the Savannah River National Laboratory (SRNL) was requested to conduct. SRNL issued a Task Technical and Quality Assurance (TT&QA) plan [4] in response to the SRR request. The conclusions provided in this report are that no changes need to be made to the SME acceptability process (i.e., no modifications to WSRC-TR-95-00364, Revision 5, are needed) and no changes need to be made to the Product Composition Control System (PCCS) itself (i.e. the spreadsheet utilized by Waste Solidification Engineering (WSE) for acceptability decisions does not require modification) in response to thorium becoming a reportable element for DWPF operations. In addition, the inputs and results for the two test cases requested by WSE for use in confirming the successful activation of thorium as a reportable element for DWPF operations during the processing of SB6 are presented in this report.

  12. Memo of Assistance Instructions 2010-2011 Requesting an Aid Identification Number (Aid ID)

    E-Print Network [OSTI]

    Yang, Sichun

    , it will not be accepted. 4. Be sure to check if it is the initial form for the year or if it is a change, i.e. additional/reduction the number of credit hours and charges to determine the student's cost of attendance. If this information is being reported. ! On a separate line, the new Aid ID and speed type must be listed. When an increase

  13. English Bachelor Modules Dep. EI 09/14 Modul ID Modulbezeichnung Sem. ECTS

    E-Print Network [OSTI]

    Kuehnlenz, Kolja

    English Bachelor Modules Dep. EI 09/14 Modul ID Modulbezeichnung Sem. ECTS Lehrform V/Ü/P SWS Prüfungsart Spra- che EI0679 Basic Laboratory Course on Telecommunications WS/SS 5 0/0/4 4 7x s, 30 min (je 1/7) E EI0554 Blockpraktikum C++ WS/SS 6 2/0/4 6 s, 60 min (60%) + m (40%) + l (SL) D/E EI0607

  14. RESORCINOL-FORMALDEHYDE ADSORPTION OF CESIUM (Cs+) FROM HANFORD WASTE SOLUTIONS-PART I: BATCH EQUILIBRIUM STUDY

    SciTech Connect (OSTI)

    HASSAN, NEGUIBM

    2004-03-30T23:59:59.000Z

    Batch equilibrium measurements were conducted with a granular Resorcinol-Formaldehyde (RF) resin to determine the distribution coefficients (Kds) for cesium. In the tests, Hanford Site actual waste sample containing radioactive cesium and a pretreated waste sample that was spiked with non-radioactive cesium were used. Initial concentrations of non-radioactive cesium in the waste sample were varied to generate an equilibrium isotherm for cesium. Two additional tests were conducted using a liquid to solid phase ratio of 10 and a contact time of 120 hours. The measured distribution coefficient (Kd) for radioactive cesium (137Cs) was 948 mL/g; the Kd for non-radioactive cesium (133Cs) was 1039 mL/g. The Kd for non-radioactive cesium decreased from 1039 to 691 mL/g as the initial cesium concentration increased. Very little change of the Kd was observed at initial cesium concentrations above 64 mg/mL. The maximum sorption capacity for cesium on granular RF resin was 1.17 mmole/g dry resin. T his value was calculated from the fit of the equilibrium isotherm data to the Dubinin-Radushkevich equation. Previously, a total capacity of 2.84 mmole/g was calculated by Bibler and Wallace for air-dried RF resin.

  15. Analytical Plans Supporting The Sludge Batch 8 Glass Variability Study Being Conducted By Energysolutions And Cua's Vitreous State Laboratory

    SciTech Connect (OSTI)

    Edwards, T. B.; Peeler, D. K.

    2012-11-26T23:59:59.000Z

    EnergySolutions (ES) and its partner, the Vitreous State Laboratory (VSL) of The Catholic University of America (CUA), are to provide engineering and technical services support to Savannah River Remediation, LLC (SRR) for ongoing operation of the Defense Waste Processing Facility (DWPF) flowsheet as well as for modifications to improve overall plant performance. SRR has requested via a statement of work that ES/VSL conduct a glass variability study (VS) for Sludge Batch 8. SRR issued a technical task request (TTR) asking that the Savannah River National Laboratory (SRNL) provide planning and data reduction support for the ES/VSL effort. This document provides two analytical plans for use by ES/VSL: one plan is to guide the measurement of the chemical composition of the study glasses while the second is to guide the measurement of the durability of the study glasses. The measurements generated by ES/VSL are to be provided to SRNL for data reduction and evaluation. SRNL is to review the results of its evaluation with ES/VSL and SRR. The results will subsequently be incorporated into a joint report with ES/VSL as a deliverable to SRR to support the processing of SB8 at DWPF.

  16. Sequence and batch language programs and alarm-related ``C`` programs for the 242-A MCS. Revision 2

    SciTech Connect (OSTI)

    Berger, J.F.

    1995-03-01T23:59:59.000Z

    A Distributive Process Control system was purchased by Project B-534, ``242-A Evaporator/Crystallizer Upgrades``. This control system, called the Monitor and Control System (MCS), was installed in the 242-A Evaporator located in the 200 East Area. The purpose of the MCS is to monitor and control the Evaporator and monitor a number of alarms and other signals from various Tank Farm facilities. Applications software for the MCS was developed by the Waste Treatment Systems Engineering (WTSE) group of Westinghouse. The standard displays and alarm scheme provide for control and monitoring, but do not directly indicate the signal location or depict the overall process. To do this, WTSE developed a second alarm scheme which uses special programs, annunciator keys, and process graphics. The special programs are written in two languages; Sequence and Batch Language (SABL), and ``C`` language. The WTSE-developed alarm scheme works as described below: SABL relates signals and alarms to the annunciator keys, called SKID keys. When an alarm occurs, a SABL program causes a SKID key to flash, and if the alarm is of yellow or white priority then a ``C`` program turns on an audible horn (the D/3 system uses a different audible horn for the red priority alarms). The horn and flashing key draws the attention of the operator.

  17. Root cause analysis for waste area grouping 1, Batch I, Series 1 Tank T-30 project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    Four inactive liquid low-level waste (LLLW) tanks were scheduled for remedial actions as the Batch L Series I Tank Project during fiscal year (FY) 1995. These tanks are 3001-B, 3004-B, T-30, and 3013. The initial tank remediation project was conducted as a maintenance action. One project objective was to gain experience in remediation efforts (under maintenance actions) to assist in conducting remedial action projects for the 33 remaining inactive LLLW tanks. Batch I, Series 1 project activities resulted in the successful remediation of tanks 3001-B, 3004-B, and 3013. Tank T-30 remedial actions were halted as a result of information obtained during waste characterization activities. The conditions discovered on tank T-30 would not allow completion of tank removal and smelting as originally planned. A decision was made to conduct a root cause analysis of Tank T-30 events to identify and, where possible, correct weaknesses that, if uncorrected, could result in similar delays for completion of future inactive tank remediation projects. The objective of the analysis was to determine why a portion of expected project end results for Tank T-30 were not fully achieved. The root cause analysis evaluates project events and recommends beneficial improvements for application to future projects. This report presents the results of the Batch I, Series root cause analysis results and makes recommendations based on that analysis.

  18. Integration of the Uncertainties of Anion and TOC Measurements into the Flammability Control Strategy for Sludge Batch 8 at the DWPF

    SciTech Connect (OSTI)

    Edwards, T. B.

    2013-03-14T23:59:59.000Z

    The Savannah River National Laboratory (SRNL) has been working with the Savannah River Remediation (SRR) Defense Waste Processing Facility (DWPF) in the development and implementation of a flammability control strategy for DWPF’s melter operation during the processing of Sludge Batch 8 (SB8). SRNL’s support has been in response to technical task requests that have been made by SRR’s Waste Solidification Engineering (WSE) organization. The flammability control strategy relies on measurements that are performed on Slurry Mix Evaporator (SME) samples by the DWPF Laboratory. Measurements of nitrate, oxalate, formate, and total organic carbon (TOC) standards generated by the DWPF Laboratory are presented in this report, and an evaluation of the uncertainties of these measurements is provided. The impact of the uncertainties of these measurements on DWPF’s strategy for controlling melter flammability also is evaluated. The strategy includes monitoring each SME batch for its nitrate content and its TOC content relative to the nitrate content and relative to the antifoam additions made during the preparation of the SME batch. A linearized approach for monitoring the relationship between TOC and nitrate is developed, equations are provided that integrate the measurement uncertainties into the flammability control strategy, and sample calculations for these equations are shown to illustrate the impact of the uncertainties on the flammability control strategy.

  19. 6/10/12 Researchers Develop New Method to Measure Bubble Size Distribution in Pipelines 1/2www.azomining.com/news.aspx?newsID=6367

    E-Print Network [OSTI]

    Sóbester, András

    .azomining.com/news.aspx?newsID=6367 0 Posted in | Natural Gas | Oil Shale Read in | English | Espańol | Français | Deutsch | Portuguęs

  20. Analyses by the Defense Waste Processing Facility Laboratory of Thorium Glasses from the Sludge Batch 6 Variability Study

    SciTech Connect (OSTI)

    Edwards, T.; Click, D.; Feller, M.

    2011-02-28T23:59:59.000Z

    The Savannah River Remediation (SRR) Defense Waste Processing Facility (DWPF) is currently processing Sludge Batch 6 (SB6) with Frit 418. At times during the processing of this glass system, thorium is expected to be at concentrations in the final wasteform that make it a reportable element for the first time since startup of radioactive operations at the DWPF. The Savannah River National Laboratory (SRNL) supported the qualification of the processing of this glass system at the DWPF. A recommendation from the SRNL studies was the need for the DWPF Laboratory to establish a method to measure thorium by Inductively Coupled Plasma - Atomic Emission Spectroscopy (ICPAES). This recommendation led to the set of thorium-bearing glasses from the SB6 Variability Study (VS) being submitted to the DWPF Laboratory for chemical composition measurement. The measurements were conducted by the DWPF Laboratory using the sodium peroxide fusion preparation method routinely employed for analysis of samples from the Slurry Mix Evaporator (SME). These measurements are presented and reviewed in this report. The review indicates that the measurements provided by the DWPF Laboratory are comparable to those provided by Analytical Development's laboratory at SRNL for these same glasses. As a result, the authors of this report recommend that the DWPF Laboratory begin using its routine peroxide fusion dissolution method for the measurement of thorium in SME samples of SB6. The purpose of this technical report is to present the measurements generated by the DWPF Laboratory for the SB6 VS glasses and to compare the measurements to the targeted compositions for these VS glasses as well as to SRNL's measurements (both sets, targeted and measured, of compositional values were reported by SRNL in [2]). The goal of these comparisons is to provide information that will lead to the qualification of peroxide fusion dissolution as a method for the measurement by the DWPF Laboratory of thorium in SME glass samples.

  1. SLUDGE WASHING AND DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS FOR SLUDGE BATCH 5 QUALIFICATION

    SciTech Connect (OSTI)

    Pareizs, J; Cj Bannochie, C; Damon Click, D; Dan Lambert, D; Michael Stone, M; Bradley Pickenheim, B; Amanda Billings, A; Ned Bibler, N

    2008-11-10T23:59:59.000Z

    Sludge Batch 5 (SB5) is predominantly a combination of H-modified (HM) sludge from Tank 11 that underwent aluminum dissolution in late 2007 to reduce the total mass of sludge solids and aluminum being fed to the Defense Waste Processing Facility (DWPF) and Purex sludge transferred from Tank 7. Following aluminum dissolution, the addition of Tank 7 sludge and excess Pu to Tank 51, Liquid Waste Operations (LWO) provided the Savannah River National Laboratory (SRNL) a 3-L sample of Tank 51 sludge for SB5 qualification. SB5 qualification included washing the sample per LWO plans/projections (including the addition of a Pu/Be stream from H Canyon), DWPF Chemical Process Cell (CPC) simulations, waste glass fabrication (vitrification), and waste glass chemical durability evaluation. This report documents: (1) The washing (addition of water to dilute the sludge supernatant) and concentration (decanting of supernatant) of the Tank 51 qualification sample to adjust sodium content and weight percent insoluble solids to Tank Farm projections. (2) The performance of a DWPF CPC simulation using the washed Tank 51 sample. This includes a Sludge Receipt and Adjustment Tank (SRAT) cycle, where acid is added to the sludge to destroy nitrite and remove mercury, and a Slurry Mix Evaporator (SME) cycle, where glass frit is added to the sludge in preparation for vitrification. The SME cycle also included replication of five canister decontamination additions and concentrations. Processing parameters for the CPC processing were based on work with a non radioactive simulant. (3) Vitrification of a portion of the SME product and Product Consistency Test (PCT) evaluation of the resulting glass. (4) Rheology measurements of the initial slurry samples and samples after each phase of CPC processing. This work is controlled by a Task Technical and Quality Assurance Plan (TTQAP) , and analyses are guided by an Analytical Study Plan. This work is Technical Baseline Research and Development (R&D) for the DWPF.

  2. Biodegradation of high explosives on granular activated carbon [GAC]: Enhanced desorption of high explosives from GAC -- Batch studies

    SciTech Connect (OSTI)

    Morley, M.C.; Speitel, G.E. Jr. [Univ. of Texas, Austin, TX (United States). Dept. of Civil Engineering

    1999-03-01T23:59:59.000Z

    Adsorption to GAC is an effective method for removing high explosives (HE) compounds from water, but no permanent treatment is achieved. Bioregeneration, which treats adsorbed contaminants by desorption and biodegradation, is being developed as a method for reducing GAC usage rates and permanently degrading RDX and HMX. Because desorption is often the limiting mass transfer mechanism in bioregeneration systems, several methods for increasing the rate and extent of desorption of RDX and HMX are being studied. These include use of cosolvents (methanol and ethanol), surfactants (both anionic and nonionic), and {beta}- and {gamma}-cyclodextrins. Batch experiments to characterize the desorption of these HEs from GAC have been completed using Northwestern LB-830, the GAC being used at Pantex. Over a total of 11 days of desorption, about 3% of the adsorbed RDX was desorbed from the GAC using buffered water as the desorption fluid. In comparison, about 96% of the RDX was extracted from the GAC by acetonitrile over the same desorption period. Ethanol and methanol were both effective in desorbing RDX and HMX; higher alcohol concentrations were able to desorb more HE from the GAC. Surfactants varied widely in their abilities to enhance desorption of HEs. The most effective surfactant that was studied was sodium dodecyl sulfate (SDS), which desorbed 56.4% of the adsorbed RDX at a concentration of 500 mg SDS/L. The cyclodextrins that were used were marginally more effective than water. Continuous-flow column tests are underway for further testing the most promising of these methods. These results will be compared to column experiments that have been completed under baseline conditions (using buffered water as the desorption fluid). Results of this research will support modeling and design of further desorption and bioregeneration experiments.

  3. A State-of-the-art Survey on IDS for Mobile Ad-Hoc Networks and Wireless Mesh Networks

    E-Print Network [OSTI]

    Deb, Novarun; Chaki, Nabendu

    2011-01-01T23:59:59.000Z

    An Intrusion Detection System (IDS) detects malicious and selfish nodes in a network. Ad hoc networks are often secured by using either intrusion detection or by secure routing. Designing efficient IDS for wireless ad-hoc networks that would not affect the performance of the network significantly is indeed a challenging task. Arguably, the most common thing in a review paper in the domain of wireless networks is to compare the performances of different solutions using simulation results. However, variance in multiple configuration aspects including that due to different underlying routing protocols, makes the task of simulation based comparative evaluation of IDS solutions somewhat unrealistic. In stead, the authors have followed an analytic approach to identify the gaps in the existing IDS solutions for MANETs and wireless mesh networks. The paper aims to ease the job of a new researcher by exposing him to the state of the art research issues on IDS. Nearly 80% of the works cited in this paper are published ...

  4. Emissions from burning tire-derived fuel (TDF): Comparison of batch combustion of tire chips and continuous combustion of tire crumb mixed with coal

    SciTech Connect (OSTI)

    Levendis, Y.A.; Atal, A. [Northeastern Univ., Boston, MA (United States); Carlson, J.B. [Army Natick R, Natick, MA (United States)

    1998-04-01T23:59:59.000Z

    This laboratory study investigated the emissions of waste automobile tire-derived fuel (TDF). This fuel was burned in two different modes, either segmented in small pieces (tire chunks) or in pulverized form (tire crumb). Tire chunks were burned in fixed beds in batch mode in a horizontal furnace. Tire crumb was burned in a continous flow mode, dispersed in air, either alone or mixed with pulverized coal, in a verical furnace. The gas flow was laminar, the gas temperature was 1000{degrees}C in all cases, and the residence times of the combustion products in the furnaces were similar. Chunks of waste tires had dimensions in the range of 3-9 {mu}m, tire crumb was size-classified to be 180-212 {mu}m and the high volatile bituminous coal, used herein, was 63-75. The fuel mass loading in the furnaces was varied. The following emissions were monitored at the exit of the furnaces: CO, CO{sub 2}, NO{sub x} polynuclear aromatic hydrocarbon (PAH) and particulates. Results showed that combustion of TDF in fixed beds resulted in large yields (emissions per mass of fuel burned) of CO, soot and PAHs. Such yields increased with the size of the bed. CO, soot and PAHs yields from batch combustion of fixed beds of coal were lower by more than an order of magnitude than those from fixed beds of TDF. Continuous pulverized fuel combustion of TDF (tire crumb) resulted in dramatically lower yields of CO, soot and PAHs than those from batch combustion, especially when TDF was mixed with pulverized coal. To the contrary, switching the mode of combustion of coal (from fixed beds to pulverized fuel) did not result in large differences in the aforementioned emissions. CO{sub 2}, and, especially, NO{sub x} yields from batch combustion of TDF were lower than those from coal. Emissions of NO{sub x} were somewhat lower from batch combustion than from pulverized fuel combustion of TDF and coal.

  5. Comments on Docket ID: DOE-HQ-2011-0014 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesville EnergyDepartment. CashDay-June 22,on Docket ID: DOE-HQ-2011-0014

  6. Idaho How to Obtain EPA ID Number Webpage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITC TransmissionIdaho DEQ StorageObtain EPA ID

  7. File:USDA-CE-Production-GIFmaps-ID.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdf Jump to:Originalfaq.pdfFinal.pdf Jump to:AZ.pdfGA.pdfID.pdf

  8. Batch Strategies for Maximizing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperationalAugustDecade5-F,INITIALoperatorBassi IBM POWER 5u s

  9. Batch Strategies for Maximizing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperationalAugustDecade5-F,INITIALoperatorBassi IBM POWER 5u

  10. Hopper Batch Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergy 2010 A selection of

  11. PDSF Batch Statistics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTest andOptimize832 2.860 2.864 2.867039 J -

  12. PDSF Interactive Batch Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTest andOptimize832 2.860 2.864 2.867039 JEmailInteractive

  13. Parallel Batch Scripts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTestPhysics LabInterconnection RiskMarch

  14. Batch Script Examples

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumniComplex historian ...BESFor Users Live Status My

  15. Edison Batch Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract ManagementDiscoveringESnet UpdateEarth WeekAlamos NationalEd

  16. Example Edison Batch Scripts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA) /Email Announcements12:25Sequedex:

  17. SLUDGE BATCH 7 (SB7) WASHING DEMONSTRATION TO DETERMINE SULFATE/OXALATE REMOVAL EFFICIENCY AND SETTLING BEHAVIOR

    SciTech Connect (OSTI)

    Reboul, S.; Click, D.; Lambert, D.

    2010-12-10T23:59:59.000Z

    To support Sludge Batch 7 (SB7) washing, a demonstration of the proposed Tank Farm washing operation was performed utilizing a real-waste test slurry generated from Tank 4, 7, and 12 samples. The purpose of the demonstration was twofold: (1) to determine the settling time requirements and washing strategy needed to bring the SB7 slurry to the desired endpoint; and (2) to determine the impact of washing on the chemical and physical characteristics of the sludge, particularly those of sulfur content, oxalate content, and rheology. Seven wash cycles were conducted over a four month period to reduce the supernatant sodium concentration to approximately one molar. The long washing duration was due to the slow settling of the sludge and the limited compaction. Approximately 90% of the sulfur was removed through washing, and the vast majority of the sulfur was determined to be soluble from the start. In contrast, only about half of the oxalate was removed through washing, as most of the oxalate was initially insoluble and did not partition to the liquid phase until the latter washes. The final sulfur concentration was 0.45 wt% of the total solids, and the final oxalate concentration was 9,900 mg/kg slurry. More oxalate could have been removed through additional washing, although the washing would have reduced the supernatant sodium concentration.The yield stress of the final washed sludge (35 Pa) was an order of magnitude higher than that of the unwashed sludge ({approx}4 Pa) and was deemed potentially problematic. The high yield stress was related to the significant increase in insoluble solids that occurred ({approx}8 wt% to {approx}18 wt%) as soluble solids and water were removed from the slurry. Reduction of the insoluble solids concentration to {approx}14 wt% was needed to reduce the yield stress to an acceptable level. However, depending on the manner that the insoluble solids adjustment was performed, the final sodium concentration and extent of oxalate removal would be prone to change. As such, the strategy for completing the final wash cycle is integral to maintaining the proper balance of chemical and physical requirements.

  18. 1 Managed by UT-Battelle for the U.S. Department of Energy NF-IDS Videoconference 2 Jun 2009

    E-Print Network [OSTI]

    McDonald, Kirk

    1 Managed by UT-Battelle for the U.S. Department of Energy NF-IDS Videoconference 2 Jun 2009 by UT-Battelle for the U.S. Department of Energy NF-IDS Videoconference 2 Jun 2009 Purpose · Compare · Compilation of magnet geometry data #12;3 Managed by UT-Battelle for the U.S. Department of Energy NF

  19. http://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?id=1342&pid=1336&topicname=Intersect_(Analysis) Intersect Computes a geometric intersection of the Input Features. Features or portions of

    E-Print Network [OSTI]

    Brownstone, Rob

    http://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?id=1342&pid=1336&topicname;http://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?id=1342&pid=1336&topicname

  20. http://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?id=1829&pid=1824&topicname=Merge_(Data_Management) Merge Combines input features from multiple input sources (of the same datatype) into a single,

    E-Print Network [OSTI]

    Brownstone, Rob

    http://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?id=1829&pid=1824&topicname://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?id=1829&pid=1824&topicname=Merge_(Data_Management) Parameters: Input Datasets

  1. http://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?id=1348&pid=1347&topicname=Buffer_(Analysis) Buffer Creates buffer polygons to a specified distance around the Input Features. An optional

    E-Print Network [OSTI]

    Brownstone, Rob

    http://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?id=1348&pid=1347&topicname ­Proximity Toolset ­ Buffer #12;http://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?id=1348&pid=1347

  2. http://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?id=1840&pid=1837&topicname=Dissolve_(Data_Management) Dissolve Aggregates features based on specified attributes. It removes internal boundaries.

    E-Print Network [OSTI]

    Brownstone, Rob

    http://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?id=1840&pid=1837&topicname://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?id=1840&pid=1837&topicname=Dissolve_(Data_Management) Parameters: Input Features

  3. 5/7/10 7:36 AMEureka!: UMass researchers study messengers from the stars Page 1 of 3http://www.gazettenet.com/print/268409?CSAuthResp=%3Asession%...ss%3AMMkuMGHWo1eZ4aGIQGMuaQ%3D%3D&CSUserId=49689&CSGroupId=5

    E-Print Network [OSTI]

    Lovley, Derek

    /268409?CSAuthResp=%3Asession%...ss%3AMMkuMGHWo1eZ4aGIQGMuaQ%3D%3D&CSUserId=49689&CSGroupId=5 Published?CSAuthResp=%3Asession%...ss%3AMMkuMGHWo1eZ4aGIQGMuaQ%3D%3D&CSUserId=49689&CSGroupId=5 radioactive decay5/7/10 7:36 AMEureka!: UMass researchers study messengers from the stars Page 1 of 3http://www.gazettenet.com/print

  4. Summary Report For The Analysis Of The Sludge Batch 7b (Macrobatch 9) DWPF Pour Stream Glass Sample For Canister S04023

    SciTech Connect (OSTI)

    Johnson, F. C.

    2013-11-18T23:59:59.000Z

    In order to comply with the Defense Waste Processing Facility (DWPF) Waste Form Compliance Plan for Sluldge Batch 7b, Savannah River National Laboratory (SRNL) personnel characterized the Defense Waste Processing Facility (DWPF) pour stream (PS) glass sample collected while filling canister S04023. This report summarizes the results of the compositional analysis for reportable oxides and radionuclides and the normalized Product Consistency Test (PCT) results. The PCT responses indicate that the DWPF produced glass that is significantly more durable than the Environmental Assessment glass.

  5. Max Planck Institute for Biological Cybernetics, Tbingen, Germany VSS 2002, #18.3 ID501 Spatial updating in virtual environments

    E-Print Network [OSTI]

    Max Planck Institute for Biological Cybernetics, Tübingen, Germany VSS 2002, #18.3 ID501 Spatial: What are vestibular cues good for? MPI for Biological Cybernetics, Germany 2 "Voluntary" vs Cybernetics, Germany 3 Methods - Setup · Vestibular stimuli: 6 dof Motion Platform · Visual stimuli: LCD video

  6. Advances in Geosciences, 2, 255257, 2005 SRef-ID: 1680-7359/adgeo/2005-2-255

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    The wind and wave atlas of the Mediterranean Sea ­ the calibration phase L. Cavaleri Institutte of Marine by the Italian, French and Greek Navies, an extensive atlas of the wind and wave conditions in the MediterraneanAdvances in Geosciences, 2, 255­257, 2005 SRef-ID: 1680-7359/adgeo/2005-2-255 European Geosciences

  7. Advances in Geosciences, 7, 327331, 2006 SRef-ID: 1680-7359/adgeo/2006-7-327

    E-Print Network [OSTI]

    Romero, Romu

    Advances in Geosciences, 7, 327­331, 2006 SRef-ID: 1680-7359/adgeo/2006-7-327 European Geosciences Cyclogenesis in the lee of the Atlas Mountains: a factor separation numerical study K. Horvath1, L. Fita2, R of Atlas Mountains is in- vestigated by a series of numerical experiments using the MM5 forecast model

  8. MIC 2009: The VIII Metaheuristics International Conference id-1 Non-Linear Great Deluge with Learning Mechanism for Solving

    E-Print Network [OSTI]

    Landa-Silva, Dario

    M IC 2009 MIC 2009: The VIII Metaheuristics International Conference id-1 Non-Linear Great Deluge acceptance criterion while Kendall and Mohamad [15] used the great deluge acceptance criterion. Hamburg In this paper, we propose an approach that uses a learning mechanism and a non-linear great deluge acceptance

  9. This is an author-deposited version published in: http://oatao.univ-toulouse.fr/ Eprints ID: 6656

    E-Print Network [OSTI]

    Mailhes, Corinne

    This is an author-deposited version published in: http://oatao.univ-toulouse.fr/ Eprints ID: 6656 to Flow Coefficient Map: Application to Radial Turbine. (2012) Journal of Thermal Science, vol. 21 (n° 6 to radial turbine Xavier CARBONNEAU and Nicolas BINDER Université de Toulouse Institut Supérieur de l

  10. Geophysical Research Abstracts, Vol. 9, 06422, 2007 SRef-ID: 1607-7962/gra/EGU2007-A-06422

    E-Print Network [OSTI]

    BrĂĽckl, Ewald

    Geophysical Research Abstracts, Vol. 9, 06422, 2007 SRef-ID: 1607-7962/gra/EGU2007-A-06422 © European Geosciences Union 2007 Deep Alpine Valleys - examples of geophysical explorations in Austria E. Brückl (1), J. Brückl (2), W. Chwatal (1), Ch. Ullrich (1,3) (1) Institute of Geodesy and Geophysics

  11. VIBRATIONAL MEASUREMENTS IN 3-ID-B J. Sutter1, E. Alp1, J. Barraza2, D. Shu2

    E-Print Network [OSTI]

    Kemner, Ken

    noise that could have a ected our measurements. However, the table itself was equipped with six motors table's position and angle. Because these motors could also have produced vibrations on the table top1 VIBRATIONAL MEASUREMENTS IN 3-ID-B J. Sutter1, E. Alp1, J. Barraza2, D. Shu2 1 INTRODUCTION We

  12. MUON CAPTURE IN THE FRONT END OF THE IDS NEUTRINO D. Neuffer, Fermilab, Batavia, IL 60510, USA

    E-Print Network [OSTI]

    McDonald, Kirk

    paper discusses the muon capture and cooling system. In this system we follow ref. [2], and set 201 to (nearly) equal central energies, and initiates ionization cooling. The muons are then accelerated to high the scope of a future neutrino Factory facility. INTRODUCTION The goal of the IDS Neutrino Factory

  13. ABSTRACT FINAL ID: SM13B-2055 TITLE: Whistler amplification: a free electron laser in the Earth's magnetosphere

    E-Print Network [OSTI]

    Ng, Chung-Sang

    ABSTRACT FINAL ID: SM13B-2055 TITLE: Whistler amplification: a free electron laser in the Earth on the similarities between free electron lasers (FELs) and whistler mode emissions, we present here a new set in the Earth's magnetosphere that arise due to the interaction of whistler waves with radiation belt electrons

  14. Abstract ID: WED-AM-B3 Use of ion beam analysis techniques to characterise iron corrosion

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Abstract ID: WED-AM-B3 Use of ion beam analysis techniques to characterise iron corrosion under 12 MeV proton irradiation on the corrosion behaviour of pure iron. Oxygen and hydrogen playing a crucial role during the corrosion process have been specifically investigated. Heavy desaerated water

  15. http://resolver.caltech.edu/CaltechOH:OH_Gell-Mann_M Photo ID RFB70.2-4

    E-Print Network [OSTI]

    Dervan, Peter B.

    http://resolver.caltech.edu/CaltechOH:OH_Gell-Mann_M Photo ID RFB70.2-4 MURRAY GELL-MANN (b. 1929, with Murray Gell-Mann, Robert Andrews Millikan Professor of Theoretical Physics, emeritus. Dr. Gell Wasserburg; works on dispersion relations and pseudoscalar meson theory #12;http://resolver.caltech.edu/CaltechOH:OH_Gell

  16. Texas A&M NetID Lifecycle Management for Texas A&M University Employees and Retirees

    E-Print Network [OSTI]

    record status affects inclusion/exclusion of a record in the data feed to the TAMU Identity Management, employee status code `U' has been added for new employee base records added from the UIN manager programTexas A&M NetID Lifecycle Management for Texas A&M University Employees and Retirees This document

  17. Greek Researcher Pioneers Heart ID Suspect in Toronto Murder Nabbed in Greece Greek Literature Translated Into French

    E-Print Network [OSTI]

    Greek Researcher Pioneers Heart ID Suspect in Toronto Murder Nabbed in Greece Greek Literature economic times in Greece and the limited Greek literature exports abroad, the French speaking residents works revolve around the harsh times of World War II and the Civil War in Greece. The anthology also

  18. Day 1 with PowerShell Things I wish I'd known when I started using PowerShell

    E-Print Network [OSTI]

    Cook, John D.

    on the subject. Set the execution policy PowerShell was designed from the beginning with security in mind. Power details.. At line:1 char:13 + .\\myScript.ps1 PowerShell launch faster When Microsoft releasedDay 1 with PowerShell Things I wish I'd known when I started using PowerShell John D. Cook http

  19. Natural Hazards and Earth System Sciences (2004) 4: 775781 SRef-ID: 1684-9981/nhess/2004-4-775

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    2004-01-01T23:59:59.000Z

    electromagnetic (EM) monitoring systems to search possible precursory or co-seismic EM signals associated, magnetic and electro-magnetic fields correlated with seismic activity have been reported in USSR (KopytenkoNatural Hazards and Earth System Sciences (2004) 4: 775­781 SRef-ID: 1684-9981/nhess/2004

  20. AoM 2007 ID Number : 12323 NEW PRODUCT DEVELOPMENT IN A PLATFORM-DRIVEN ORGANIZATION : TOWARDS PLATFORM

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    AoM 2007 ID Number : 12323 NEW PRODUCT DEVELOPMENT IN A PLATFORM-DRIVEN ORGANIZATION : TOWARDS PLATFORM LIFECYCLE MANAGEMENT. SYLVAIN LENFLE, SIHEM JOUINI, CAROLINE DERROUSSEAUX CENTRE DE RECHERCHE EN GESTION, ECOLE POLYTECHNIQUE ABSTRACT Platform product development is now widely used to tackle the cost

  1. The Intracellular Localization of ID2 Expression Has a Predictive Value in Non Small Cell Lung Cancer

    E-Print Network [OSTI]

    Boyer, Edmond

    The Intracellular Localization of ID2 Expression Has a Predictive Value in Non Small Cell Lung-small cell lung cancer (NSCLC) patients and the clinicopathological features and prognosis of these patients Expression Has a Predictive Value in Non Small Cell Lung Cancer. PLoS ONE 4(1): e4158. doi:10.1371/journal

  2. Development Of A Macro-Batch Qualification Strategy For The Hanford Tank Waste Treatment And Immobilization Plant

    SciTech Connect (OSTI)

    Herman, Connie C.

    2013-09-30T23:59:59.000Z

    The Savannah River National Laboratory (SRNL) has evaluated the existing waste feed qualification strategy for the Hanford Tank Waste Treatment and Immobilization Plant (WTP) based on experience from the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) waste qualification program. The current waste qualification programs for each of the sites are discussed in the report to provide a baseline for comparison. Recommendations on strategies are then provided that could be implemented at Hanford based on the successful Macrobatch qualification strategy utilized at SRS to reduce the risk of processing upsets or the production of a staged waste campaign that does not meet the processing requirements of the WTP. Considerations included the baseline WTP process, as well as options involving Direct High Level Waste (HLW) and Low Activity Waste (LAW) processing, and the potential use of a Tank Waste Characterization and Staging Facility (TWCSF). The main objectives of the Hanford waste feed qualification program are to demonstrate compliance with the Waste Acceptance Criteria (WAC), determine waste processability, and demonstrate unit operations at a laboratory scale. Risks to acceptability and successful implementation of this program, as compared to the DWPF Macro-Batch qualification strategy, include: Limitations of mixing/blending capability of the Hanford Tank Farm; The complexity of unit operations (i.e., multiple chemical and mechanical separations processes) involved in the WTP pretreatment qualification process; The need to account for effects of blending of LAW and HLW streams, as well as a recycle stream, within the PT unit operations; and The reliance on only a single set of unit operations demonstrations with the radioactive qualification sample. This later limitation is further complicated because of the 180-day completion requirement for all of the necessary waste feed qualification steps. The primary recommendations/changes include the following: Collection and characterization of samples for relevant process analytes from the tanks to be blended during the staging process; Initiation of qualification activities earlier in the staging process to optimize the campaign composition through evaluation from both a processing and glass composition perspective; Definition of the parameters that are important for processing in the WTP facilities (unit operations) across the anticipated range of wastes and as they relate to qualification-scale equipment; Performance of limited testing with simulants ahead of the waste feed qualification sample demonstration as needed to determine the available processing window for that campaign; and Demonstration of sufficient mixing in the staging tank to show that the waste qualification sample chemical and physical properties are representative of the transfers to be made to WTP. Potential flowcharts for derivatives of the Hanford waste feed qualification process are also provided in this report. While these recommendations are an extension of the existing WTP waste qualification program, they are more in line with the processes currently performed for SRS. The implementation of these processes at SRS has been shown to offer flexibility for processing, having identified potential processing issues ahead of the qualification or facility processing, and having provided opportunity to optimize waste loading and throughput in the DWPF.

  3. NEPHELINE FORMATION POTENTIAL IN SLUDGE BATCH 4 AND ITS IMPACT ON DURABILITY: SELECTING GLASSES FOR A PHASE 3 STUDY

    SciTech Connect (OSTI)

    Fox, K

    2006-01-27T23:59:59.000Z

    Savannah River National Laboratory's frit development effort for SB4 is being driven by the most current CBU option for this sludge, referred to as Case 15C Blend 1. Candidate frits have been identified for this option via a paper study approach developed by Peeler and Edwards with the intent of down-selecting to a set of key frits whose operating windows (i.e., WL intervals that meet PCCS MAR criteria) are robust to and/or selectively optimal for this sludge option. The primary frits that appear attractive on paper (i.e., down-selected via the paper study) are now being incorporated into this experimental study. The potential for the formation of a nepheline primary crystalline phase is an important factor in frit development for SB4, due to the high Al{sub 2}O{sub 3} content of this sludge. Based upon earlier work by Li et al., glasses that do not satisfy the constraint: (SiO{sub 2}/SiO{sub 2} + Na{sub 2}O + Al{sub 2}O{sub 3}) > 0.62 where the oxides are expressed as mass fractions in the glass, will precipitate nepheline as their primary crystalline phase, hindering the durability of the glass. Based on the most recent compositional projection from the CBU for SB4 (Case 15C Blend 1), 16 glasses have been selected to complement the earlier work by continuing the investigation into the ability of the above constraint to predict the occurrence of a nepheline primary crystalline phase for SB4 glasses and into the impact of such phases on the durability of the SB4 glasses. Glasses were selected to cover WLs which tightly bound the nepheline discriminator value of 0.62, with the intent of refining this value to a level of confidence where it can be incorporated into offline administrative controls and/or the PCCS to support SME acceptability decisions. In addition, glass specimens at WLs of 35 and 40% will be prepared and analyzed to contribute needed data to the ComPro{trademark} database in anticipation of a variability study for SB4. The glasses in Table 4-3 are to batched and fabricated using standard procedures. Visual observations and other analytical techniques are to be used, as needed, to assess the presence of crystals with specific interest in the nepheline primary phase. The durability of these glasses (for both quenched and centerline canister cooled versions) is to be measured using the ASTM PCT Method A. The results from these efforts are to be documented in a subsequent report. The results of this study will provide valuable input for the frit development efforts and subsequent feedback to the CBU regarding the relative viability of the current SB4 option under consideration. The refined nepheline discriminator value will provide a guideline for the avoidance of nepheline crystallization in SB4 glasses and aid in down-selection of frit compositions. These data will be combined with the results of melt rate studies and a paper study of the frits robustness with regard to variability in the sludge composition to provide an optimized frit recommendation to DWPF for immobilization of SB4.

  4. Yucca Mountain Project Integrated Data System (IDS); Final report, October 1, 1989--December 31, 1990

    SciTech Connect (OSTI)

    NONE

    1991-05-23T23:59:59.000Z

    This final report for LANL Subcontract 9-XS8-2604-1 includes copies of all formal letters, memorandums, and reports provided by CAG to support the IDS effort in the LANL Test Managers Office, Las Vegas, Nevada from October 1, 1989 through the end of the contract on December 31, 1990. The material is divided into two sections; the Functional Requirements Document (FRD) and other reports, letters, and memorandums. All documents are arranged in chronological order with most recent last. Numerous draft copies of the FRD were prepared and cover sheets for all drafts are included. The complete text of only the last version supplied (July 27, 1990) is included in this document.

  5. North Portal Fuel Storage System Fire Hazard Analysis-ESF Surface Design Package ID

    SciTech Connect (OSTI)

    N.M. Ruonavaara

    1995-01-18T23:59:59.000Z

    The purpose of the fire hazard analysis is to comprehensively assess the risk from fire within the individual fire areas. This document will only assess the fire hazard analysis within the Exploratory Studies Facility (ESF) Design Package ID, which includes the fuel storage system area of the North Portal facility, and evaluate whether the following objectives are met: 1.1.1--This analysis, performed in accordance with the requirements of this document, will satisfy the requirements for a fire hazard analysis in accordance with U.S. Department of Energy (DOE) Order 5480.7A. 1.1.2--Ensure that property damage from fire and related perils does not exceed an acceptable level. 1.1.3--Provide input to the ESF Basis For Design (BFD) Document. 1.1.4 Provide input to the facility Safety Analysis Report (SAR) (Paragraph 3.8).

  6. A 12-MW-scale pilot study of in-duct scrubbing (IDS) using a rotary atomizer

    SciTech Connect (OSTI)

    Samuel, E.A.; Murphy, K.R.; Demian, A.

    1989-11-01T23:59:59.000Z

    A low-cost, moderate-removal efficiency, flue gas desulfurization (FGD) technology was selected by the US Department of Energy for pilot demonstration in its Acid Rain Precursor Control Technology Initiative. The process, identified as In-Duct Scrubbing (IDS), applies rotary atomizer techniques developed for lime-based spray dryer FGD while utilizing existing flue gas ductwork and particulate collectors. IDS technology is anticipated to result in a dry desulfurization process with a moderate removal efficiency (50% or greater) for high-sulfur coal-fired boilers. The critical elements for successful application are: (1) adequate mixing of sorbent droplets with flue gas for efficient reaction contact, (2) sufficient residence time to produce a non-wetting product, and (3) appropriate ductwork cross-sectional area to prevent deposition of wet reaction products before particle drying is comple. The ductwork in many older plants, previously modified to meet 1970 Clean Air Act requirements for particulate control, usually meet these criteria. A 12 MW-scale IDS pilot plant was constructed at the Muskingum River Plant of the American Electric Power System. The pilot plant, which operates from a slipstrem attached to the air-preheater outlet duct from the Unit 5 boiler at the Muskingum River Plant (which burns about 4% sulfur coal), is equipped with three atomizer stations to test the IDS concept in vertical and horizontal configurations. In addition, the pilot plant is equipped to test the effect of injecting IDS off- product upstream of the atomizer, on SO{sub 2}and NO{sub x} removals.

  7. Catalytic hydrolysis of urea with fly ash for generation of ammonia in a batch reactor for flue gas conditioning and NOx reduction

    SciTech Connect (OSTI)

    Sahu, J.N.; Gangadharan, P.; Patwardhan, A.V.; Meikap, B.C. [Indian Institute of Technology, Kharagpur (India). Dept. of Chemical Engineering

    2009-01-15T23:59:59.000Z

    Ammonia is a highly volatile noxious material with adverse physiological effects, which become intolerable even at very low concentrations and present substantial environmental and operating hazards and risk. Yet ammonia has long been known to be used for feedstock of flue gas conditioning and NOx reduction. Urea as the source of ammonia for the production of ammonia has the obvious advantages that no ammonia shipping, handling, and storage is required. The process of this invention minimizes the risks and hazards associated with the transport, storage, and use of anhydrous and aqueous ammonia. Yet no such rapid urea conversion process is available as per requirement of high conversion in shorter time, so here we study the catalytic hydrolysis of urea for fast conversion in a batch reactor. The catalyst used in this study is fly ash, a waste material originating in great amounts in combustion processes. A number of experiments were carried out in a batch reactor at different catalytic doses, temperatures, times, and at a constant concentration of urea solution 10% by weight, and equilibrium and kinetic studies have been made.

  8. ELIMINATION OF THE CHARACTERIZATION OF DWPF POUR STREAM SAMPLE AND THE GLASS FABRICATION AND TESTING OF THE DWPF SLUDGE BATCH QUALIFICATION SAMPLE

    SciTech Connect (OSTI)

    Amoroso, J.; Peeler, D.; Edwards, T.

    2012-05-11T23:59:59.000Z

    A recommendation to eliminate all characterization of pour stream glass samples and the glass fabrication and Product Consistency Test (PCT) of the sludge batch qualification sample was made by a Six-Sigma team chartered to eliminate non-value-added activities for the Defense Waste Processing Facility (DWPF) sludge batch qualification program and is documented in the report SS-PIP-2006-00030. That recommendation was supported through a technical data review by the Savannah River National Laboratory (SRNL) and is documented in the memorandums SRNL-PSE-2007-00079 and SRNL-PSE-2007-00080. At the time of writing those memorandums, the DWPF was processing sludge-only waste but, has since transitioned to a coupled operation (sludge and salt). The SRNL was recently tasked to perform a similar data review relevant to coupled operations and re-evaluate the previous recommendations. This report evaluates the validity of eliminating the characterization of pour stream glass samples and the glass fabrication and Product Consistency Test (PCT) of the sludge batch qualification samples based on sludge-only and coupled operations. The pour stream sample has confirmed the DWPF's ability to produce an acceptable waste form from Slurry Mix Evaporator (SME) blending and product composition/durability predictions for the previous sixteen years but, ultimately the pour stream analysis has added minimal value to the DWPF's waste qualification strategy. Similarly, the information gained from the glass fabrication and PCT of the sludge batch qualification sample was determined to add minimal value to the waste qualification strategy since that sample is routinely not representative of the waste composition ultimately processed at the DWPF due to blending and salt processing considerations. Moreover, the qualification process has repeatedly confirmed minimal differences in glass behavior from actual radioactive waste to glasses fabricated from simulants or batch chemicals. In contrast, the variability study has significantly added value to the DWPF's qualification strategy. The variability study has evolved to become the primary aspect of the DWPF's compliance strategy as it has been shown to be versatile and capable of adapting to the DWPF's various and diverse waste streams and blending strategies. The variability study, which aims to ensure durability requirements and the PCT and chemical composition correlations are valid for the compositional region to be processed at the DWPF, must continue to be performed. Due to the importance of the variability study and its place in the DWPF's qualification strategy, it will also be discussed in this report. An analysis of historical data and Production Records indicated that the recommendation of the Six Sigma team to eliminate all characterization of pour stream glass samples and the glass fabrication and PCT performed with the qualification glass does not compromise the DWPF's current compliance plan. Furthermore, the DWPF should continue to produce an acceptable waste form following the remaining elements of the Glass Product Control Program; regardless of a sludge-only or coupled operations strategy. If the DWPF does decide to eliminate the characterization of pour stream samples, pour stream samples should continue to be collected for archival reasons, which would allow testing to be performed should any issues arise or new repository test methods be developed.

  9. T-582: RSA systems has resulted in certain information being extracted from RSA systems that relates to RSA SecurID

    Broader source: Energy.gov [DOE]

    RSA investigation has revealed that the attack resulted in certain information being extracted from RSA's systems. Some of that information is related to RSA's SecurID two-factor authentication products.

  10. Enter Search Term Enter Drill Deeper or ED Online ID Home Subscribe Back Issues Design FAQs Ideas for Design Power Analog

    E-Print Network [OSTI]

    Rogers, John A.

    Enter Search Term Enter Drill Deeper or ED Online ID Home Subscribe Back Issues Design FAQs Ideas Subscribe to Electronic Design UPDATE (Archive) Email: Enter Email Click to view this week's welcome screen

  11. Monitoring Uranium Transformations Determined by the Evolution of Biogeochemical Processes: Design of Mixed Batch Reactor and Column Studies at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Criddle, Craig S.; Wu, Weimin

    2013-04-17T23:59:59.000Z

    With funds provided by the US DOE, Argonne National Laboratory subcontracted the design of batch and column studies to a Stanford University team with field experience at the ORNL IFRC, Oak Ridge, TN. The contribution of the Stanford group ended in 2011 due to budget reduction in ANL. Over the funded research period, the Stanford research team characterized ORNL IFRC groundwater and sediments and set up microcosm reactors and columns at ANL to ensure that experiments were relevant to field conditions at Oak Ridge. The results of microcosm testing demonstrated that U(VI) in sediments was reduced to U(IV) with the addition of ethanol. The reduced products were not uraninite but were instead U(IV) complexes associated with Fe. Fe(III) in solid phase was only partially reduced. The Stanford team communicated with the ANL team members through email and conference calls and face to face at the annual ERSP PI meeting and national meetings.

  12. Peak T in Edge-Cooled Beryllium Window at z = 3 m in Magnet IDS120h Bob Weggel, M.O.R.E., LLC

    E-Print Network [OSTI]

    McDonald, Kirk

    Peak T in Edge-Cooled Beryllium Window at z = 3 m in Magnet IDS120h Bob Weggel, M.O.R.E., LLC:16 PM) to incorporate Nick's latest predictions of the power density in a beryllium window at z = 3 m, +0.7) of 103 W/g--190 W/cm3 for beryllium (1.85 g/cm3 ). [Note: File "IDS120hm_BeWind_TDP_NO_SH1_NP

  13. Id-1 is induced in MDCK epithelial cells by activated Erk/MAPK pathway in response to expression of the Snail and E47 transcription factors

    SciTech Connect (OSTI)

    Jorda, Mireia [IDIBELL-Institut de Recerca Oncologica, Centre d'Oncologia Molecular, Barcelona (Spain); Vinyals, Antonia [IDIBELL-Institut de Recerca Oncologica, Centre d'Oncologia Molecular, Barcelona (Spain); Marazuela, Anna [IDIBELL-Institut de Recerca Oncologica, Centre d'Oncologia Molecular, Barcelona (Spain); Cubillo, Eva [Instituto de Investigaciones Biomedicas 'Alberto Sols' (CSIC-UAM) and Departamento de Bioquimica (UAM), Madrid (Spain); Olmeda, David [Instituto de Investigaciones Biomedicas 'Alberto Sols' (CSIC-UAM) and Departamento de Bioquimica (UAM), Madrid (Spain); Valero, Eva [IDIBELL-Institut de Recerca Oncologica, Centre d'Oncologia Molecular, Barcelona (Spain); Cano, Amparo [Instituto de Investigaciones Biomedicas 'Alberto Sols' (CSIC-UAM) and Departamento de Bioquimica (UAM), Madrid (Spain); Fabra, Angels [IDIBELL-Institut de Recerca Oncologica, Centre d'Oncologia Molecular, Barcelona (Spain)]. E-mail: afabra@idibell.org

    2007-07-01T23:59:59.000Z

    Id-1, a member of the helix-loop-helix transcription factor family has been shown to be involved in cell proliferation, angiogenesis and invasion of many types of human cancers. We have previously shown that stable expression of E47 and Snail repressors of the E-cadherin promoter in MDCK epithelial cell line triggers epithelial mesenchymal transition (EMT) concomitantly with changes in gene expression. We show here that both factors activate the Id-1 gene promoter and induce Id-1 mRNA and protein. The upregulation of the Id-1 gene occurs through the transactivation of the promoter by the Erk/MAPK signaling pathway. Moreover, oncogenic Ras is also able to activate Id-1 promoter in MDCK cells in the absence of both E47 and Snail transcription factors. Several transcriptionally active regulatory elements have been identified in the proximal promoter, including AP-1, Sp1 and four putative E-boxes. By EMSA, we only detected an increased binding to Sp1 and AP-1 elements in E47- and Snail-expressing cells. Binding is affected by the treatment of cells with PD 98059 MEK inhibitor, suggesting that MAPK/Erk contributes to the recruitment or assembly of proteins to Id-1 promoter. Small interfering RNA directed against Sp1 reduced Id-1 expression and the upregulation of the promoter, indicating that Sp1 is required for Id-1 induction in E47- and Snail-expressing cells. Our results provide new insights into how some target genes are activated during and/or as a consequence of the EMT triggered by both E47 and Snail transcription factors.

  14. 1 Managed by UT-Battelle for the U.S. Department of Energy NF/IDS Hg Vessel Layout 30 Jun 09

    E-Print Network [OSTI]

    McDonald, Kirk

    1 Managed by UT-Battelle for the U.S. Department of Energy NF/IDS Hg Vessel Layout 30 Jun 09 Cryostat 2 Front Drain Mercury Vessel Concept Matthew F. Glisson Van Graves #12;2 Managed by UT-Battelle;3 Managed by UT-Battelle for the U.S. Department of Energy NF/IDS Hg Vessel Layout 30 Jun 09 Cross Section

  15. Comparison of different liquid anaerobic digestion effluents as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover

    SciTech Connect (OSTI)

    Xu Fuqing; Shi Jian [Department of Food, Agricultural and Biological Engineering, Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691 (United States); Lv Wen; Yu Zhongtang [Department of Animal Sciences, Ohio State University, Columbus, OH 43210 (United States); Li Yebo, E-mail: li.851@osu.edu [Department of Food, Agricultural and Biological Engineering, Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691 (United States)

    2013-01-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Compared methane production of solid AD inoculated with different effluents. Black-Right-Pointing-Pointer Food waste effluent (FWE) had the largest population of acetoclastic methanogens. Black-Right-Pointing-Pointer Solid AD inoculated with FWE produced the highest methane yield at F/E ratio of 4. Black-Right-Pointing-Pointer Dairy waste effluent (DWE) was rich of cellulolytic and xylanolytic bacteria. Black-Right-Pointing-Pointer Solid AD inoculated with DWE produced the highest methane yield at F/E ratio of 2. - Abstract: Effluents from three liquid anaerobic digesters, fed with municipal sewage sludge, food waste, or dairy waste, were evaluated as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover in mesophilic reactors. Three feedstock-to-effluent (F/E) ratios (i.e., 2, 4, and 6) were tested for each effluent. At an F/E ratio of 2, the reactor inoculated by dairy waste effluent achieved the highest methane yield of 238.5 L/kgVS{sub feed}, while at an F/E ratio of 4, the reactor inoculated by food waste effluent achieved the highest methane yield of 199.6 L/kgVS{sub feed}. The microbial population and chemical composition of the three effluents were substantially different. Food waste effluent had the largest population of acetoclastic methanogens, while dairy waste effluent had the largest populations of cellulolytic and xylanolytic bacteria. Dairy waste also had the highest C/N ratio of 8.5 and the highest alkalinity of 19.3 g CaCO{sub 3}/kg. The performance of solid-state batch anaerobic digestion reactors was closely related to the microbial status in the liquid anaerobic digestion effluents.

  16. AQ AM Announcement Y150512 DRAFT jm-cpb

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mazumder - University of Michigan Prof. Chris Tuck - University of Nottingham Dr. Kalman Migler - NIST* anticipated Workshop scope: Additive manufacturing (AM) offers distinct...

  17. MEASUREMENTS OF THE DEUTERON ELASTIC STRUCTURE FUNCTION AQ2

    E-Print Network [OSTI]

    's continuous electron beam with energies from 3.2 to 4.4 GeV, and currents from 5 to 120 A. The beam current. CHUDAKOVa Thomas Je erson National Accelerator Facility, Newport News, Va, US The deuteron elastic structure of the experimental areas Hall A of the Thomas Je erson National Accelerator Facility JLab, using the Jlab

  18. EERE Program Management Guide - Appendices A-Q

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJulySavannah RiverSustainability |InnovationsDepartment of EERE

  19. AQ AM Announcement Y150512 DRAFT jm-cpb

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See theDoctoral20ALSNewstt^APPLIANCE STANDARDS How Los

  20. DESTRUCTION OF TETRAPHENYLBORATE IN TANK 48H USING WET AIR OXIDATION BATCH BENCH SCALE AUTOCLAVE TESTING WITH ACTUAL RADIOACTIVE TANK 48H WASTE

    SciTech Connect (OSTI)

    Adu-Wusu, K; Paul Burket, P

    2009-03-31T23:59:59.000Z

    Wet Air Oxidation (WAO) is one of the two technologies being considered for the destruction of Tetraphenylborate (TPB) in Tank 48H. Batch bench-scale autoclave testing with radioactive (actual) Tank 48H waste is among the tests required in the WAO Technology Maturation Plan. The goal of the autoclave testing is to validate that the simulant being used for extensive WAO vendor testing adequately represents the Tank 48H waste. The test objective was to demonstrate comparable test results when running simulated waste and real waste under similar test conditions. Specifically: (1) Confirm the TPB destruction efficiency and rate (same reaction times) obtained from comparable simulant tests, (2) Determine the destruction efficiency of other organics including biphenyl, (3) Identify and quantify the reaction byproducts, and (4) Determine off-gas composition. Batch bench-scale stirred autoclave tests were conducted with simulated and actual Tank 48H wastes at SRNL. Experimental conditions were chosen based on continuous-flow pilot-scale simulant testing performed at Siemens Water Technologies Corporation (SWT) in Rothschild, Wisconsin. The following items were demonstrated as a result of this testing. (1) Tetraphenylborate was destroyed to below detection limits during the 1-hour reaction time at 280 C. Destruction efficiency of TPB was > 99.997%. (2) Other organics (TPB associated compounds), except biphenyl, were destroyed to below their respective detection limits. Biphenyl was partially destroyed in the process, mainly due to its propensity to reside in the vapor phase during the WAO reaction. Biphenyl is expected to be removed in the gas phase during the actual process, which is a continuous-flow system. (3) Reaction byproducts, remnants of MST, and the PUREX sludge, were characterized in this work. Radioactive species, such as Pu, Sr-90 and Cs-137 were quantified in the filtrate and slurry samples. Notably, Cs-137, boron and potassium were shown as soluble as a result of the WAO reaction. (4) Off-gas composition was measured in the resulting gas phase from the reaction. Benzene and hydrogen were formed during the reaction, but they were reasonably low in the off-gas at 0.096 and 0.0063 vol% respectively. Considering the consistency in replicating similar test results with simulated waste and Tank 48H waste under similar test conditions, the results confirm the validity of the simulant for other WAO test conditions.