National Library of Energy BETA

Sample records for aps x-ray source

  1. Producing X-rays at the APS

    ScienceCinema (OSTI)

    None

    2013-04-19

    An introduction and overview of the Advanced Photon Source at Argonne National Laboratory, the technology that produces the brightest X-ray beams in the Western Hemisphere, and the research carried out by scientists using those X-rays.

  2. X-ray lithography source

    DOE Patents [OSTI]

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.

    1991-12-31

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.

  3. X-ray lithography source

    DOE Patents [OSTI]

    Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary

    1991-01-01

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

  4. Miniature x-ray source

    DOE Patents [OSTI]

    Trebes, James E.; Stone, Gary F.; Bell, Perry M.; Robinson, Ronald B.; Chornenky, Victor I.

    2002-01-01

    A miniature x-ray source capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature x-ray source comprises a compact vacuum tube assembly containing a cathode, an anode, a high voltage feedthru for delivering high voltage to the anode, a getter for maintaining high vacuum, a connection for an initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is highly x-ray transparent and made, for example, from boron nitride. The compact size and potential for remote operation allows the x-ray source, for example, to be placed adjacent to a material sample undergoing analysis or in proximity to the region to be treated for medical applications.

  5. Miniature x-ray source

    DOE Patents [OSTI]

    Trebes, James E.; Bell, Perry M.; Robinson, Ronald B.

    2000-01-01

    A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.

  6. Focused X-ray source

    DOE Patents [OSTI]

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.I.; Maccagno, P.

    1990-08-21

    Disclosed is an intense, relatively inexpensive X-ray source (as compared to a synchrotron emitter) for technological, scientific, and spectroscopic purposes. A conical radiation pattern produced by a single foil or stack of foils is focused by optics to increase the intensity of the radiation at a distance from the conical radiator. 8 figs.

  7. Focused X-ray source

    DOE Patents [OSTI]

    Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary I.; Maccagno, Pierre

    1990-01-01

    An intense, relatively inexpensive X-ray source (as compared to a synchrotron emitter) for technological, scientific, and spectroscopic purposes. A conical radiation pattern produced by a single foil or stack of foils is focused by optics to increase the intensity of the radiation at a distance from the conical radiator.

  8. Compact x-ray source and panel

    DOE Patents [OSTI]

    Sampayon, Stephen E.

    2008-02-12

    A compact, self-contained x-ray source, and a compact x-ray source panel having a plurality of such x-ray sources arranged in a preferably broad-area pixelized array. Each x-ray source includes an electron source for producing an electron beam, an x-ray conversion target, and a multilayer insulator separating the electron source and the x-ray conversion target from each other. The multi-layer insulator preferably has a cylindrical configuration with a plurality of alternating insulator and conductor layers surrounding an acceleration channel leading from the electron source to the x-ray conversion target. A power source is connected to each x-ray source of the array to produce an accelerating gradient between the electron source and x-ray conversion target in any one or more of the x-ray sources independent of other x-ray sources in the array, so as to accelerate an electron beam towards the x-ray conversion target. The multilayer insulator enables relatively short separation distances between the electron source and the x-ray conversion target so that a thin panel is possible for compactness. This is due to the ability of the plurality of alternating insulator and conductor layers of the multilayer insulators to resist surface flashover when sufficiently high acceleration energies necessary for x-ray generation are supplied by the power source to the x-ray sources.

  9. APS Science | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science APS Science features articles on Advanced Photon Source research and engineering highlights that are written for the interested public as well as the synchrotron x-ray,...

  10. Tunable X-ray source

    DOE Patents [OSTI]

    Boyce, James R.

    2011-02-08

    A method for the production of X-ray bunches tunable in both time and energy level by generating multiple photon, X-ray, beams through the use of Thomson scattering. The method of the present invention simultaneously produces two X-ray pulses that are tunable in energy and/or time.

  11. Introduction to APS | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Introduction to APS What is the APS? What is the APS? The Advanced Photon Source is a synchrotron light source that produces high-energy, high-brightness x-ray beams. The source is...

  12. DISCOVERY OF AN EXTENDED X-RAY JET IN AP LIBRAE

    SciTech Connect (OSTI)

    Kaufmann, S.; Wagner, S. J.; Tibolla, O.

    2013-10-20

    Chandra observations of the low-energy-peaked BL Lac object (LBL) AP Librae (AP Lib) revealed the clear discovery of a non-thermal X-ray jet. AP Lib is the first LBL with an extended non-thermal X-ray jet that shows emission into the very high energy range. The X-ray jet has an extension of ?15''(? 14 kpc). The X-ray jet morphology is similar to the radio jet observed with Very Large Array at 1.36 GHz emerging in the southeast direction and bends by 50 at a distance of 12'' toward the northeast. The intensity profiles of the X-ray emission studied are consistent with those found in the radio range. The spectral analysis reveals that the X-ray spectra of the core and jet region are both inverse-Compton-(IC)-dominated. This adds to a still small sample of BL Lac objects whose X-ray jets are IC-dominated and thus more similar to the high-luminosity Fanaroff-Riley II sources than to the low-luminosity Fanaroff-Riley I objects, which are usually considered to be the parent population of BL Lac objects.

  13. X-Ray Light Sources | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    The APS is one of only four third-generation, hard x-ray synchrotron radiation light ... Stanford Synchrotron Radiation Light Source (SSRL) at SLAC National Accelerator Laboratory ...

  14. Accelerator-driven X-ray Sources

    SciTech Connect (OSTI)

    Nguyen, Dinh Cong

    2015-11-09

    After an introduction which mentions x-ray tubes and storage rings and gives a brief review of special relativity, the subject is treated under the following topics and subtopics: synchrotron radiation (bending magnet radiation, wiggler radiation, undulator radiation, brightness and brilliance definition, synchrotron radiation facilities), x-ray free-electron lasers (linac-driven X-ray FEL, FEL interactions, self-amplified spontaneous emission (SASE), SASE self-seeding, fourth-generation light source facilities), and other X-ray sources (energy recovery linacs, Inverse Compton scattering, laser wakefield accelerator driven X-ray sources. In summary, accelerator-based light sources cover the entire electromagnetic spectrum. Synchrotron radiation (bending magnet, wiggler and undulator radiation) has unique properties that can be tailored to the users’ needs: bending magnet and wiggler radiation is broadband, undulator radiation has narrow spectral lines. X-ray FELs are the brightest coherent X-ray sources with high photon flux, femtosecond pulses, full transverse coherence, partial temporal coherence (SASE), and narrow spectral lines with seeding techniques. New developments in electron accelerators and radiation production can potentially lead to more compact sources of coherent X-rays.

  15. A computational study of x-ray emission from high-Z x-ray sources...

    Office of Scientific and Technical Information (OSTI)

    A computational study of x-ray emission from high-Z x-ray sources on the National Ignition Facility laser Citation Details In-Document Search Title: A computational study of x-ray ...

  16. A computational study of x-ray emission from high-Z x-ray sources...

    Office of Scientific and Technical Information (OSTI)

    study of x-ray emission from high-Z x-ray sources on the National Ignition Facility laser Citation Details In-Document Search Title: A computational study of x-ray emission...

  17. X-ray source for mammography

    DOE Patents [OSTI]

    Logan, C.M.

    1994-12-20

    An x-ray source is described utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms. 6 figures.

  18. X-ray source for mammography

    DOE Patents [OSTI]

    Logan, Clinton M.

    1994-01-01

    An x-ray source utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms.

  19. Compton backscattered collmated X-ray source

    DOE Patents [OSTI]

    Ruth, Ronald D.; Huang, Zhirong

    2000-01-01

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  20. Compton backscattered collimated x-ray source

    DOE Patents [OSTI]

    Ruth, R.D.; Huang, Z.

    1998-10-20

    A high-intensity, inexpensive and collimated x-ray source is disclosed for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications. 4 figs.

  1. Compton backscattered collimated x-ray source

    DOE Patents [OSTI]

    Ruth, Ronald D.; Huang, Zhirong

    1998-01-01

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  2. X-Ray Light Sources | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    X-Ray Light Sources Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Advanced Light Source (ALS) Advanced Photon Source (APS) Linac Coherent Light Source (LCLS) National Synchrotron Light Source II (NSLS-II) Stanford Synchrotron Radiation Light Source (SSRL) Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES Home User Facilities

  3. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also presentmore » data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.« less

  4. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    SciTech Connect (OSTI)

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  5. Femtosecond laser-electron x-ray source

    DOE Patents [OSTI]

    Hartemann, Frederic V.; Baldis, Hector A.; Barty, Chris P.; Gibson, David J.; Rupp, Bernhard

    2004-04-20

    A femtosecond laser-electron X-ray source. A high-brightness relativistic electron injector produces an electron beam pulse train. A system accelerates the electron beam pulse train. The femtosecond laser-electron X-ray source includes a high intra-cavity power, mode-locked laser and an x-ray optics system.

  6. X-RAY POINT-SOURCE POPULATIONS CONSTITUTING THE GALACTIC RIDGE X-RAY EMISSION

    SciTech Connect (OSTI)

    Morihana, Kumiko [Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)] [Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Tsujimoto, Masahiro; Ebisawa, Ken [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, 3-1-1 Yoshino-dai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan)] [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, 3-1-1 Yoshino-dai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Yoshida, Tessei, E-mail: morihana@crab.riken.jp [National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo 181-8588 (Japan)] [National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2013-03-20

    Apparently diffuse X-ray emission has been known to exist along the central quarter of the Galactic Plane since the beginning of X-ray astronomy; this is referred to as the Galactic Ridge X-ray emission (GRXE). Recent deep X-ray observations have shown that numerous X-ray point sources account for a large fraction of the GRXE in the hard band (2-8 keV). However, the nature of these sources is poorly understood. Using the deepest X-ray observations made in the Chandra bulge field, we present the result of a coherent photometric and spectroscopic analysis of individual X-ray point sources for the purpose of constraining their nature and deriving their fractional contributions to the hard-band continuum and Fe K line emission of the GRXE. Based on the X-ray color-color diagram, we divided the point sources into three groups: A (hard), B (soft and broad spectrum), and C (soft and peaked spectrum). The group A sources are further decomposed spectrally into thermal and non-thermal sources with different fractions in different flux ranges. From their X-ray properties, we speculate that the group A non-thermal sources are mostly active galactic nuclei and the thermal sources are mostly white dwarf (WD) binaries such as magnetic and non-magnetic cataclysmic variables (CVs), pre-CVs, and symbiotic stars, whereas the group B and C sources are X-ray active stars in flares and quiescence, respectively. In the log N-log S curve of the 2-8 keV band, the group A non-thermal sources are dominant above Almost-Equal-To 10{sup -14} erg cm{sup -2} s{sup -1}, which is gradually taken over by Galactic sources in the fainter flux ranges. The Fe K{alpha} emission is mostly from the group A thermal (WD binaries) and the group B (X-ray active stars) sources.

  7. High intensity x-ray source using liquid gallium target

    DOE Patents [OSTI]

    Smither, Robert K.; Knapp, Gordon S.; Westbrook, Edwin M.; Forster, George A.

    1990-01-01

    A high intensity x-ray source that uses a flowing stream of liquid gallium as a target with the electron beam impinging directly on the liquid metal.

  8. X-ray imaging crystal spectrometer for extended X-ray sources

    DOE Patents [OSTI]

    Bitter, Manfred L.; Fraenkel, Ben; Gorman, James L.; Hill, Kenneth W.; Roquemore, A. Lane; Stodiek, Wolfgang; von Goeler, Schweickhard E.

    2001-01-01

    Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokomak fusion experiment to provide spatially and temporally resolved data on plasma parameters using the imaging properties for Bragg angles near 45. For a Bragg angle of 45.degree., the spherical crystal focuses a bundle of near parallel X-rays (the cross section of which is determined by the cross section of the crystal) from the plasma to a point on a detector, with parallel rays inclined to the main plain of diffraction focused to different points on the detector. Thus, it is possible to radially image the plasma X-ray emission in different wavelengths simultaneously with a single crystal.

  9. Prospects for using high power x-rays as a volumetric heat source

    SciTech Connect (OSTI)

    Rosenberg, R.A.; Farrell, W.; Ma, Q.

    1997-09-01

    Third-generation, high-intensity, x-ray synchrotron radiation sources are capable of producing high heat-flux x-ray beams. In many applications finding ways to handle these powers is viewed as a burden. However, there are some technological applications where the deep penetration length of the x-rays may find beneficial uses as a volumetric heat source. In this paper the authors discuss the prospects for using high power x-rays for volumetric heating and report some recent experimental results. The particular applications they focus on are welding and surface heat treatment. The radiation source is an undulator at the Advanced Photon Source (APS). Results of preliminary tests on aluminum, aluminum metal matrix composites, and steel will be presented.

  10. X-Ray Imaging Crystal Spectrometer for Extended X-Ray Sources

    SciTech Connect (OSTI)

    Bitter, Manfred L.; Fraekel, Benjamin; Gorman, James L.; Hill, Kenneth W.; Roquemore, Lane A.; Stodiek, Wolfgang; Goeler, Schweickhard von

    1999-05-01

    Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokamak fusion experiment to provide spatially and temporally resolved data on plasma parameters such as ion temperature, toroidal and poloidal rotation, electron temperature, impurity ion charge-state distributions, and impurity transport. The imaging properties of these spherically or toroidally curved crystals provide both spectrally and spatially resolved X-ray data from the plasma using only one small spherically or toroidally curved crystal, thus eliminating the requirement for a large array of crystal spectrometers and the need to cross-calibrate the various crystals.

  11. Laser-Produced Coherent X-Ray Sources

    SciTech Connect (OSTI)

    Donald Umstadter

    2007-01-31

    We study the generation of x-rays from the interaction of relativistic electrons with ultra-intense laser pulse either directly or via laser generated ion channels. The laser pulse acts as the accelerator and wiggler leading to an all-optical synchrotron-like x-ray source. The mm sized accelerator and micron-sized wiggler leads to a compact source of high brightness, ultrafast x-rays with applications in relativistic nonlinear optics, ultrafast chemistry, biology, inner-shell electronic processes and phase transitions.

  12. Self-cleaning rotating anode X-ray source

    DOE Patents [OSTI]

    Paulikas, Arvydas P.

    1989-01-01

    A self-cleaning rotating anode x-ray source comprising an evacuable housing, a rotatable cylindrical anode within the housing, a source of electrons within the housing which electrons are caused to impinge upon the anode to produce x-rays, and means for ionizing residual particles within the housing and accelerating such ions so as to impinge upon the anode to sputter impurities from the surface thereof.

  13. New Directions in X-Ray Light Sources

    ScienceCinema (OSTI)

    Falcone, Roger

    2010-01-08

    July 15, 2008 Berkeley Lab lecture: Molecular movies of chemical reactions and material phase transformations need a strobe of x-rays, the penetrating light that reveals how atoms and molecules assemble in chemical and biological systems and complex materials. Roger Falcone, Director of the Advanced Light Source,will discuss a new generation of x ray sources that will enable a new science of atomic dynamics on ultrafast timescales.

  14. Self-cleaning rotating anode x-ray source

    DOE Patents [OSTI]

    Paulikas, A.P.

    1987-06-02

    A self-cleaning rotating anode x-ray source comprising and evacuable housing, a rotatable cylindrical anode within the housing, a source of electrons within the housing which electrons are caused to impinge upon the anode to produce x-rays, and means for ionizing residual particles within the housing and accelerating such ions so as to impinge upon the anode to sputter impurities from the surface thereof. 2 figs.

  15. High brightness--multiple beamlets source for patterned X-ray...

    Office of Scientific and Technical Information (OSTI)

    source for patterned X-ray production Citation Details In-Document Search Title: High brightness--multiple beamlets source for patterned X-ray production Techniques for ...

  16. Analysis of Off-Nuclear X-Ray Sources in Galaxy NGC 4945 (Technical...

    Office of Scientific and Technical Information (OSTI)

    Analysis of Off-Nuclear X-Ray Sources in Galaxy NGC 4945 Citation Details In-Document Search Title: Analysis of Off-Nuclear X-Ray Sources in Galaxy NGC 4945 Recently, X-ray ...

  17. X-ray Optics for BES Light Source Facilities

    SciTech Connect (OSTI)

    Mills, Dennis; Padmore, Howard; Lessner, Eliane

    2013-03-27

    Each new generation of synchrotron radiation sources has delivered an increase in average brightness 2 to 3 orders of magnitude over the previous generation. The next evolution toward diffraction-limited storage rings will deliver another 3 orders of magnitude increase. For ultrafast experiments, free electron lasers (FELs) deliver 10 orders of magnitude higher peak brightness than storage rings. Our ability to utilize these ultrabright sources, however, is limited by our ability to focus, monochromate, and manipulate these beams with X-ray optics. X-ray optics technology unfortunately lags behind source technology and limits our ability to maximally utilize even today’s X-ray sources. With ever more powerful X-ray sources on the horizon, a new generation of X-ray optics must be developed that will allow us to fully utilize these beams of unprecedented brightness. The increasing brightness of X-ray sources will enable a new generation of measurements that could have revolutionary impact across a broad area of science, if optical systems necessary for transporting and analyzing X-rays can be perfected. The high coherent flux will facilitate new science utilizing techniques in imaging, dynamics, and ultrahigh-resolution spectroscopy. For example, zone-plate-based hard X-ray microscopes are presently used to look deeply into materials, but today’s resolution and contrast are restricted by limitations of the current lithography used to manufacture nanodiffractive optics. The large penetration length, combined in principle with very high spatial resolution, is an ideal probe of hierarchically ordered mesoscale materials, if zone-plate focusing systems can be improved. Resonant inelastic X-ray scattering (RIXS) probes a wide range of excitations in materials, from charge-transfer processes to the very soft excitations that cause the collective phenomena in correlated electronic systems. However, although RIXS can probe high-energy excitations, the most exciting and

  18. X-ray source safety shutter

    DOE Patents [OSTI]

    Robinet, McLouis

    1977-05-31

    An apparatus is provided for controlling the activation of a high energy radiation source having a shutter. The apparatus includes magnets and magnetically responsive switches appropriately placed and interconnected so that only with the shutter and other parts of the source in proper position can safe emission of radiation out an open shutter occur.

  19. Measuring x-ray spectra of flash radiographic sources

    SciTech Connect (OSTI)

    Gehring, Amanda Elizabeth; Espy, Michelle A.; Haines, Todd Joseph; Mendez, Jacob; Moir, David C.; Sedillo, Robert; Shurter, Roger P.; Volegov, Petr Lvovich; Webb, Timothy J

    2015-11-02

    The x-ray spectra of flash radiographic sources is difficult to measure. The sources measured were Radiographic Integrated Test Stand-6 (370 rad at 1 m; 50 ns pulse) and Dual Axis Radiographic Hydrodynamic Test Facility (DARHT) (550 rad at 1 m; 50 ns pulse). Features of the Compton spectrometer are described, and spectra are shown. Additional slides present data on instrumental calibration.

  20. Movable anode x-ray source with enhanced anode cooling

    DOE Patents [OSTI]

    Bird, Charles R.; Rockett, Paul D.

    1987-01-01

    An x-ray source having a cathode and a disc-shaped anode with a peripheral surface at constant radius from the anode axis opposed to the cathode. The anode has stub axle sections rotatably carried in heat conducting bearing plates which are mounted by thermoelectric coolers to bellows which normally bias the bearing plates to a retracted position spaced from opposing anode side faces. The bellows cooperate with the x-ray source mounting structure for forming closed passages for heat transport fluid. Flow of such fluid under pressure expands the bellows and brings the bearing plates into heat conducting contact with the anode side faces. A worm gear is mounted on a shaft and engages serrations in the anode periphery for rotating the anode when flow of coolant is terminated between x-ray emission events.

  1. Movable anode x-ray source with enhanced anode cooling

    DOE Patents [OSTI]

    Bird, C.R.; Rockett, P.D.

    1987-08-04

    An x-ray source is disclosed having a cathode and a disc-shaped anode with a peripheral surface at constant radius from the anode axis opposed to the cathode. The anode has stub axle sections rotatably carried in heat conducting bearing plates which are mounted by thermoelectric coolers to bellows which normally bias the bearing plates to a retracted position spaced from opposing anode side faces. The bellows cooperate with the x-ray source mounting structure for forming closed passages for heat transport fluid. Flow of such fluid under pressure expands the bellows and brings the bearing plates into heat conducting contact with the anode side faces. A worm gear is mounted on a shaft and engages serrations in the anode periphery for rotating the anode when flow of coolant is terminated between x-ray emission events. 5 figs.

  2. Compact X-ray Light Source Workshop Report

    SciTech Connect (OSTI)

    Thevuthasan, Suntharampillai; Evans, James E.; Terminello, Louis J.; Koppenaal, David W.; Manke, Kristin L.; Plata, Charity

    2012-12-01

    This report, produced jointly by EMSL and FCSD, is the result of a workshop held in September 2011 that examined the utility of a compact x-ray light source (CXLS) in addressing many scientific challenges critical to advancing energy science and technology.

  3. X-ray Science Division: Mission and Goals | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Science Division (XSD) Search Button About Welcome Overview Visiting the APS Mission & Goals Find People Organization Charts Committees Job Openings User Information...

  4. Automatic classification of time-variable X-ray sources

    SciTech Connect (OSTI)

    Lo, Kitty K.; Farrell, Sean; Murphy, Tara; Gaensler, B. M.

    2014-05-01

    To maximize the discovery potential of future synoptic surveys, especially in the field of transient science, it will be necessary to use automatic classification to identify some of the astronomical sources. The data mining technique of supervised classification is suitable for this problem. Here, we present a supervised learning method to automatically classify variable X-ray sources in the Second XMM-Newton Serendipitous Source Catalog (2XMMi-DR2). Random Forest is our classifier of choice since it is one of the most accurate learning algorithms available. Our training set consists of 873 variable sources and their features are derived from time series, spectra, and other multi-wavelength contextual information. The 10 fold cross validation accuracy of the training data is ∼97% on a 7 class data set. We applied the trained classification model to 411 unknown variable 2XMM sources to produce a probabilistically classified catalog. Using the classification margin and the Random Forest derived outlier measure, we identified 12 anomalous sources, of which 2XMM J180658.7–500250 appears to be the most unusual source in the sample. Its X-ray spectra is suggestive of a ultraluminous X-ray source but its variability makes it highly unusual. Machine-learned classification and anomaly detection will facilitate scientific discoveries in the era of all-sky surveys.

  5. Kinematics of Compton backscattering x-ray source for angiography

    SciTech Connect (OSTI)

    Blumberg, L.N.

    1992-05-01

    Calculations of X-Ray production rates, energy spread, and spectrum of Compton-backscattered photons from a Free Electron Laser on an electron beam in a low energy (136-MeV) compact (8.5-m circumference) storage ring indicate that an X-Ray intensity of 34.6 10{sup 7} X-Ray photons per 0.5-mm {times} 0.5-mm pixel for Coronary Angiography near the 33.169-keV iodine K-absorption edge can be achieved in a 4-msec pulse within a scattering cone of 1-mrad half angle. This intensity, at 10-m from the photon-electron interaction point to the patient is about a factor of 10 larger than presently achieved from a 4.5-T superconducting wiggler source in the NSLS 2.5-GeV storage ring and over an area about 5 times larger. The 2.2-keV energy spread of the Compton-backscattered beam is, however, much larger than the 70-eV spread presently attained form the wiggler source and use of a monochromator. The beam spot at the 10-m interaction point-to-patient distance is 20-mm diameter; larger spots are attainable at larger distances but with a corresponding reduction in X-Ray flux. Such a facility could be an inexpensive clinical alternative to present methods of non-invasive Digital Subtraction Angiography (DSA), small enough to be deployed in an urban medical center, and could have other medical, industrial and aerospace applications. Problems with the Compton backscattering source include laser beam heating of the mirror in the FEL oscillator optical cavity, achieving a large enough X-Ray beam spot at the patient, and obtaining radiation damping of the transverse oscillations and longitudinal emittance dilution of the storage ring electron beam resulting from photon-electron collisions without going to higher electron energy where the X-Ray energy spread becomes excessive for DSA. 38 refs.

  6. The X-Ray Source Application (XRSA) Test Cassette for Radiation...

    Office of Scientific and Technical Information (OSTI)

    The X-Ray Source Application (XRSA) Test Cassette for Radiation Exposures at the OMEGA Laser Citation Details In-Document Search Title: The X-Ray Source Application (XRSA) Test ...

  7. Bright x-ray sources from laser irradiation of foams with high...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Bright x-ray sources from laser irradiation of foams with high concentration of Ti Citation Details In-Document Search Title: Bright x-ray sources from laser ...

  8. Analysis of Off-Nuclear X-Ray Sources in Galaxy NGC 4945 (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Analysis of Off-Nuclear X-Ray Sources in Galaxy NGC 4945 Citation Details In-Document Search Title: Analysis of Off-Nuclear X-Ray Sources in Galaxy NGC 4945 ...

  9. High-Ti-concentration aerogels for bright x-ray sources (Technical...

    Office of Scientific and Technical Information (OSTI)

    Ti-concentration aerogels for bright x-ray sources Citation Details In-Document Search Title: High-Ti-concentration aerogels for bright x-ray sources Authors: Perez, F ; Patterson,...

  10. Bright x-ray sources from laser irradiation of foams with high...

    Office of Scientific and Technical Information (OSTI)

    Bright x-ray sources from laser irradiation of foams with high concentration of Ti Citation Details In-Document Search Title: Bright x-ray sources from laser irradiation of foams...

  11. High-Ti-concentration aerogels for bright x-ray sources (Technical...

    Office of Scientific and Technical Information (OSTI)

    Ti-concentration aerogels for bright x-ray sources Citation Details In-Document Search Title: High-Ti-concentration aerogels for bright x-ray sources You are accessing a...

  12. The X-Ray Source Application (XRSA) Test Cassette for Radiation...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: The X-Ray Source Application (XRSA) Test Cassette for Radiation Exposures at the OMEGA Laser Citation Details In-Document Search Title: The X-Ray Source ...

  13. Multi-keV x-ray sources from metal-lined cylindrical hohlraums...

    Office of Scientific and Technical Information (OSTI)

    Multi-keV x-ray sources from metal-lined cylindrical hohlraums Citation Details In-Document Search Title: Multi-keV x-ray sources from metal-lined cylindrical hohlraums As ...

  14. High-Z Non-Equilibrium Physics and Bright X-ray Sources with...

    Office of Scientific and Technical Information (OSTI)

    X-ray Sources with New Laser Targets Citation Details In-Document Search Title: High-Z Non-Equilibrium Physics and Bright X-ray Sources with New Laser Targets You are ...

  15. High brightness--multiple beamlets source for patterned X-ray...

    Office of Scientific and Technical Information (OSTI)

    source for patterned X-ray production Citation Details In-Document Search Title: High brightness--multiple beamlets source for patterned X-ray production You are accessing a ...

  16. X-ray Science Division (XSD) | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    XSD Groups XSD Safety and Training XSD Strategic Plan XSD Visitor Program XSD Intranet X-ray Science Division (XSD) XSD enables world-class research using x-rays by developing...

  17. Bright X-ray Stainless Steel K-shell Source Development at the...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Bright X-ray Stainless Steel K-shell Source Development at the National Ignition Facility Citation Details In-Document Search Title: Bright X-ray Stainless Steel K...

  18. Intense Super-radiant X-rays from a Compact Source using a Nanocathode...

    Office of Scientific and Technical Information (OSTI)

    Intense Super-radiant X-rays from a Compact Source using a Nanocathode Array and Emittance Exchange Citation Details In-Document Search Title: Intense Super-radiant X-rays from a ...

  19. High Brightness, Laser-Driven X-ray Source for Nanoscale Metrology and Femtosecond Dynamics

    SciTech Connect (OSTI)

    Siders, C W; Crane, J K; Semenov, V; Betts, S; Kozioziemski, B; Wharton, K; Wilks, S; Barbee, T; Stuart, B; Kim, D E; An, J; Barty, C

    2007-02-26

    This project developed and demonstrated a new, bright, ultrafast x-ray source based upon laser-driven K-alpha generation, which can produce an x-ray flux 10 to 100 times greater than current microfocus x-ray tubes. The short-pulse (sub-picosecond) duration of this x-ray source also makes it ideal for observing time-resolved dynamics of atomic motion in solids and thin films.

  20. X-ray detectors at the Linac Coherent Light Source

    SciTech Connect (OSTI)

    Blaj, Gabriel; Caragiulo, Pietro; Carini, Gabriella; Carron, Sebastian; Dragone, Angelo; Freytag, Dietrich; Haller, Gunther; Hart, Philip; Hasi, Jasmine; Herbst, Ryan; Herrmann, Sven; Kenney, Chris; Markovic, Bojan; Nishimura, Kurtis; Osier, Shawn; Pines, Jack; Reese, Benjamin; Segal, Julie; Tomada, Astrid; Weaver, Matt

    2015-04-21

    Free-electron lasers (FELs) present new challenges for camera development compared with conventional light sources. At SLAC a variety of technologies are being used to match the demands of the Linac Coherent Light Source (LCLS) and to support a wide range of scientific applications. In this paper an overview of X-ray detector design requirements at FELs is presented and the various cameras in use at SLAC are described for the benefit of users planning experiments or analysts looking at data. Features and operation of the CSPAD camera, which is currently deployed at LCLS, are discussed, and the ePix family, a new generation of cameras under development at SLAC, is introduced.

  1. X-ray detectors at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Blaj, Gabriel; Caragiulo, Pietro; Carini, Gabriella; Carron, Sebastian; Dragone, Angelo; Freytag, Dietrich; Haller, Gunther; Hart, Philip; Hasi, Jasmine; Herbst, Ryan; et al

    2015-04-21

    Free-electron lasers (FELs) present new challenges for camera development compared with conventional light sources. At SLAC a variety of technologies are being used to match the demands of the Linac Coherent Light Source (LCLS) and to support a wide range of scientific applications. In this paper an overview of X-ray detector design requirements at FELs is presented and the various cameras in use at SLAC are described for the benefit of users planning experiments or analysts looking at data. Features and operation of the CSPAD camera, which is currently deployed at LCLS, are discussed, and the ePix family, a newmore » generation of cameras under development at SLAC, is introduced.« less

  2. A rapid noninvasive characterization of CT x-ray sources

    SciTech Connect (OSTI)

    Randazzo, Matt; Tambasco, Mauro

    2015-07-15

    Purpose: The aim of this study is to generate spatially varying half value layers (HVLs) that can be used to construct virtual equivalent source models of computed tomography (CT) x-ray sources for use in Monte Carlo CT dose computations. Methods: To measure the spatially varying HVLs, the authors combined a cylindrical HVL measurement technique with the characterization of bowtie filter relative attenuation (COBRA) geometry. An apparatus given the name “HVL Jig” was fabricated to accurately position a real-time dosimeter off-isocenter while surrounded by concentric cylindrical aluminum filters (CAFs). In this geometry, each projection of the rotating x-ray tube is filtered by an identical amount of high-purity (type 1100 H-14) aluminum while the stationary radiation dose probe records an air kerma rate versus time waveform. The CAFs were progressively nested to acquire exposure data at increasing filtrations to calculate the HVL. Using this dose waveform and known setup geometry, each timestamp was related to its corresponding fan angle. Data were acquired using axial CT protocols (i.e., rotating tube and stationary patient table) at energies of 80, 100, and 120 kVp on a single CT scanner. These measurements were validated against the more laborious conventional step-and-shoot approach (stationary x-ray tube). Results: At each energy, HVL data points from the COBRA-cylinder technique were fit to a trendline and compared with the conventional approach. The average relative difference in HVL between the two techniques was 1.3%. There was a systematic overestimation in HVL due to scatter contamination. Conclusions: The described method is a novel, rapid, accurate, and noninvasive approach that allows one to acquire the spatially varying fluence and HVL data using a single experimental setup in a minimum of three scans. These measurements can be used to characterize the CT beam in terms of the angle-dependent fluence and energy spectra along the bowtie filter

  3. Soft x-ray undulator for the Siam Photon Source

    SciTech Connect (OSTI)

    Rugmai, S.; Dasri, T.; Prawanta, S.; Siriwattanapaitoon, S.; Kwankasem, A.; Sooksrimuang, V.; Chachai, W.; Suradet, N.; Juthong, N.; Tancharakorn, S.

    2007-01-19

    An undulator for production of intense soft x-rays has been designed for the Siam Photon Source. The construction of the undulator has been completed. It is now being characterized and prepared for installation. The device, named U60, is a pure permanent magnet planar undulator, consisting of 41 magnetic periods, with 60 mm period length. Utilization of the undulator radiation in the photon energy range of 30 - 900 eV is expected. The design studies of the magnetic structure, including investigation of perturbations arising from the magnetic field of the device, their effects on the SPS storage ring and compensation schemes are described. A magnetic measurement system has been constructed for magnetic characterization of the device. Partial results of magnetic measurements are presented.

  4. X-Ray Microscopy | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Microscopy X-Ray Microscopy This group exploits the unique capabilities of hard X-ray microscopy to visualize and understand the structure and behavior of hybrid, energy-related, and tailored nanomaterials The Hard X-Ray Nanoprobe, located at Sector 26 of the Advanced Photon Source (APS) and operated by our group and APS, is the only dedicated X-ray microscopy beamline within the portfolios of the nation's Nanoscale Science Research Centers. Our scientific program seeks to understand

  5. Transmission type flat-panel X-ray source using ZnO nanowire field emitters

    SciTech Connect (OSTI)

    Chen, Daokun; Song, Xiaomeng; Zhang, Zhipeng; Chen, Jun; Li, Ziping; She, Juncong; Deng, Shaozhi; Xu, Ningsheng

    2015-12-14

    A transmission type flat-panel X-ray source in diode structure was fabricated. Large-scale patterned ZnO nanowires grown on a glass substrate by thermal oxidation were utilized as field emitters, and tungsten thin film coated on silica glass was used as the transmission anode. Uniform distribution of X-ray generation was achieved, which benefited from the uniform electron emission from ZnO nanowires. Self-ballasting effect induced by the intrinsic resistance of ZnO nanowire and decreasing of screening effect caused by patterned emitters account for the uniform emission. Characteristic X-ray peaks of W-L lines and bremsstrahlung X-rays have been observed under anode voltages at a range of 18–20 kV, the latter of which were the dominant X-ray signals. High-resolution X-ray images with spatial resolution less than 25 μm were obtained by the flat-panel X-ray source. The high resolution was attributed to the small divergence angle of the emitted X-rays from the transmission X-ray source.

  6. DEVELOPMENT OF NEW MID-INFRARED ULTRAFAST LASER SOURCES FOR COMPACT COHERENT X-RAY SOURCES

    SciTech Connect (OSTI)

    Sterling Backus

    2012-05-14

    In this project, we proposed to develop laser based mid-infrared lasers as a potentially robust and reliable source of ultrafast pulses in the mid-infrared region of the spectrum, and to apply this light source to generating bright, coherent, femtosecond-to-attosecond x-ray beams.

  7. THREE NEW GALACTIC CENTER X-RAY SOURCES IDENTIFIED WITH NEAR-INFRARED SPECTROSCOPY

    SciTech Connect (OSTI)

    DeWitt, Curtis; Bandyopadhyay, Reba M.; Eikenberry, Stephen S.; Sarajedini, Ata; Sellgren, Kris; Blum, Robert; Olsen, Knut; Bauer, Franz E.

    2013-11-01

    We have conducted a near-infrared spectroscopic survey of 47 candidate counterparts to X-ray sources discovered by the Chandra X-Ray Observatory near the Galactic center (GC). Though a significant number of these astrometric matches are likely to be spurious, we sought out spectral characteristics of active stars and interacting binaries, such as hot, massive spectral types or emission lines, in order to corroborate the X-ray activity and certify the authenticity of the match. We present three new spectroscopic identifications, including a Be high-mass X-ray binary (HMXB) or a ? Cassiopeiae (Cas) system, a symbiotic X-ray binary, and an O-type star of unknown luminosity class. The Be HMXB/? Cas system and the symbiotic X-ray binary are the first of their classes to be spectroscopically identified in the GC region.

  8. Advanced Photon Source (APS) | U.S. DOE Office of Science (SC...

    Office of Science (SC) Website

    II (NSLS-II) Stanford Synchrotron Radiation Light Source (SSRL) Neutron Scattering ... The APS is one of only four third-generation, hard x-ray synchrotron radiation light ...

  9. Optimal focusing for a linac-based hard x-ray source

    SciTech Connect (OSTI)

    Liu, C.; Krafft, G.; Talman, R.

    2011-03-28

    In spite of having a small average beam current limit, a linac can have features that make it attractive as an x-ray source: high energy, ultralow emittance and energy spread, and flexible beamline optics. Unlike a storage ring, in which an (undulator) radiation source is necessarily short and positioned at an electron beam waist, in a linac the undulator can be long and the electron beam can be adjusted to have a (virtual) waist far downstream toward the x-ray target. Using a planned CEBAF beamline as an example, this paper shows that a factor of 2000 in beam current can be overcome to produce a monochromatic hard x-ray source comparable with, or even exceeding, the performance of an x-ray line at a third generation storage ring. Optimal electron beam focusing conditions for x-ray flux density and brilliance are derived, and are verified by simulations using the SRW code.

  10. In-situ X-ray diffraction system using sources and detectors at fixed angular positions

    DOE Patents [OSTI]

    Gibson, David M.; Gibson, Walter M.; Huang, Huapeng

    2007-06-26

    An x-ray diffraction technique for measuring a known characteristic of a sample of a material in an in-situ state. The technique includes using an x-ray source for emitting substantially divergent x-ray radiation--with a collimating optic disposed with respect to the fixed source for producing a substantially parallel beam of x-ray radiation by receiving and redirecting the divergent paths of the divergent x-ray radiation. A first x-ray detector collects radiation diffracted from the sample; wherein the source and detector are fixed, during operation thereof, in position relative to each other and in at least one dimension relative to the sample according to a-priori knowledge about the known characteristic of the sample. A second x-ray detector may be fixed relative to the first x-ray detector according to the a-priori knowledge about the known characteristic of the sample, especially in a phase monitoring embodiment of the present invention.

  11. X-RAYS FROM THE POWER SOURCES OF THE CEPHEUS A STAR-FORMING REGION

    SciTech Connect (OSTI)

    Pravdo, Steven H.; Tsuboi, Yohko; Uzawa, Akiko; Ezoe, Yuichiro E-mail: tsuboi@phys.chuo-u.ac.j E-mail: ezoe@phys.metro-u.ac.j

    2009-10-20

    We report an observation of X-ray emission from the exciting region of Cepheus A with the Chandra/ACIS instrument. What had been an unresolved X-ray source comprising the putative power sources is now resolved into at least three point-like sources, each with similar X-ray properties and differing radio and submillimeter properties. The sources are HW9, HW3c, and a new source that is undetected at other wavelengths 'h10'. They each have inferred X-ray luminosities >= 10{sup 31} erg s{sup -1} with hard spectra, T >= 10{sup 7} K, and high low-energy absorption equivalent to tens to as much as a hundred magnitudes of visual absorption. The star usually assumed to be the most massive and energetic, HW2, is not detected with an upper limit about seven times lower than the detections. The X-rays may arise via thermal bremsstrahlung in diffuse emission regions associated with a gyrosynchrotron source for the radio emission, or they could arise from powerful stellar winds. We also analyzed the Spitzer/IRAC mid-IR observation from this star formation region and present the X-ray results and mid-IR classifications of the nearby stars. HH 168 is not as underluminous in X-rays as previously reported.

  12. X-RAY OUTFLOWS AND SUPER-EDDINGTON ACCRETION IN THE ULTRALUMINOUS X-RAY SOURCE HOLMBERG IX X-1

    SciTech Connect (OSTI)

    Walton, D. J.; Harrison, F. A.; Miller, J. M.; Reis, R. C.; Fabian, A. C.; Roberts, T. P.; Middleton, M. J.

    2013-08-10

    Studies of X-ray continuum emission and flux variability have not conclusively revealed the nature of ultraluminous X-ray sources (ULXs) at the high-luminosity end of the distribution (those with L{sub X} {>=} 10{sup 40} erg s{sup -1}). These are of particular interest because the luminosity requires either super-Eddington accretion onto a black hole of mass {approx}10 M{sub Sun} or more standard accretion onto an intermediate-mass black hole. Super-Eddington accretion models predict strong outflowing winds, making atomic absorption lines a key diagnostic of the nature of extreme ULXs. To search for such features, we have undertaken a long, 500 ks observing campaign on Holmberg IX X-1 with Suzaku. This is the most sensitive data set in the iron K bandpass for a bright, isolated ULX to date, yet we find no statistically significant atomic features in either emission or absorption; any undetected narrow features must have equivalent widths less than 15-20 eV at 99% confidence. These limits are far below the {approx}>150 eV lines expected if observed trends between mass inflow and outflow rates extend into the super-Eddington regime and in fact rule out the line strengths observed from disk winds in a variety of sub-Eddington black holes. We therefore cannot be viewing the central regions of Holmberg IX X-1 through any substantial column of material, ruling out models of spherical super-Eddington accretion. If Holmberg IX X-1 is a super-Eddington source, any associated outflow must have an anisotropic geometry. Finally, the lack of iron emission suggests that the stellar companion cannot be launching a strong wind and that Holmberg IX X-1 must primarily accrete via Roche-lobe overflow.

  13. Bio-Imaging With Liquid-Metal-Jet X-ray Sources | Stanford Synchrotron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bio-Imaging With Liquid-Metal-Jet X-ray Sources Wednesday, September 9, 2015 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Speaker: Daniel Larsson, Stanford Program Description...

  14. IMPULSIVE PHASE CORONAL HARD X-RAY SOURCES IN AN X3.9 CLASS SOLAR...

    Office of Scientific and Technical Information (OSTI)

    We present the analysis of a pair of unusually energetic coronal hard X-ray (HXR) sources detected by the Reuven Ramaty High Energy Solar Spectroscopic Imager during the impulsive ...

  15. Using the X-FEL as a source to investigate photo-pumped X-ray...

    Office of Scientific and Technical Information (OSTI)

    Title: Using the X-FEL as a source to investigate photo-pumped X-ray lasers Authors: Nilsen, J ; Scott, H A Publication Date: 2010-07-27 OSTI Identifier: 1119910 Report Number(s): ...

  16. High-Z Non-Equilibrium Physics and Bright X-ray Sources with...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: High-Z Non-Equilibrium Physics and Bright X-ray Sources with New Laser Targets Citation Details In-Document Search Title: High-Z Non-Equilibrium Physics and ...

  17. New Directions in X-Ray Light Sources or Fiat Lux: what's under the dome and watching atoms with x-rays (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Falcone, Roger

    2011-04-28

    Summer Lecture Series 2008: Molecular movies of chemical reactions and material phase transformations need a strobe of x-rays, the penetrating light that reveals how atoms and molecules assemble in chemical and biological systems and complex materials. Roger Falcone, Director of the Advanced Light Source,will discuss a new generation of x ray sources that will enable a new science of atomic dynamics on ultrafast timescales.

  18. Optical synchronization system for femtosecond X-ray sources

    DOE Patents [OSTI]

    Wilcox, Russell B.; Holzwarth, Ronald

    2011-12-13

    Femtosecond pump/probe experiments using short X-Ray and optical pulses require precise synchronization between 100 meter-10 km separated lasers in a various experiments. For stabilization in the hundred femtosecond range a CW laser is amplitude modulated at 1-10 GHz, the signal retroreflected from the far end, and the relative phase used to correct the transit time with various implementations. For the sub-10 fsec range the laser frequency itself is upshifted 55 MHz with an acousto-optical modulator, retroreflected, upshifted again and phase compared at the sending end to a 110 MHz reference. Initial experiments indicate less than 1 fsec timing jitter. To lock lasers in the sub-10 fs range two single-frequency lasers separated by several teraHertz will be lock to a master modelocked fiber laser, transmit the two frequencies over fiber, and lock two comb lines of a slave laser to these frequencies, thus synchronizing the two modelocked laser envelopes.

  19. APS Organization Chart | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    APS Organization Chart The Advanced Photon Source (APS) organization comprises three divisions and one project office. Advanced Photon Source Organization Photon Sciences Overview...

  20. Development of a Novel Tunable X-Ray Source for the RPI-LINAC

    SciTech Connect (OSTI)

    Y. Danon; R.C. Block

    2004-11-30

    This document summarizes the results of a three year effort to develop a parametric x-ray (PXR) source. The emphasis of this research was to demonstrate production of high yield monoenergetic x-rays. Production of PXR is accomplished by placing a crystal in a relativistic electron beam. The process was first demonstrated in 1985 in Russia. Numerous papers were written about the characteristics of PXR from both experimental and theoretical perspectives. The advantage of PXR over other monoenergetic x-ray sources is that it is produced at large angle relative to the electron beam and at high intensity. None of the previous work described in the literature capitalized on this effect to study what is required in order to generate an effective monoenergetic x-ray source that can be used for practical applications. The work summarized here describes the process done in order to optimize the PXR production process by selecting an appropriate crystal and the optimal conditions. The research focused on production of 18 keV x-rays which are suitable for mammography however the results are not limited to this application or energy range. We are the first group to demonstrate x-ray imaging using PXR. Such sources can improve current medical imaging modalities. More research is required in order to design a prototype of a compact source.

  1. Beyond crystallography: Diffractive imaging using coherent x-ray light sources

    SciTech Connect (OSTI)

    Miao, J.; Ishikawa, T.; Robinson, I. K.; Murnane, M. M.

    2015-04-30

    X-ray crystallography has been central to the development of many fields of science over the past century. It has now matured to a point that as long as good-quality crystals are available, their atomic structure can be routinely determined in three dimensions. However, many samples in physics, chemistry, materials science, nanoscience, geology, and biology are noncrystalline, and thus their three-dimensional structures are not accessible by traditional x-ray crystallography. Overcoming this hurdle has required the development of new coherent imaging methods to harness new coherent x-ray light sources. Here we review the revolutionary advances that are transforming x-ray sources and imaging in the 21st century.

  2. Bright x-ray stainless steel K-shell source development at the National Ignition Facility

    SciTech Connect (OSTI)

    May, M. J.; Fournier, K. B.; Colvin, J. D.; Barrios, M. A.; Dewald, E. L.; Moody, J.; Patterson, J. R.; Schneider, M.; Widmann, K.; Hohenberger, M.; Regan, S. P.

    2015-06-15

    High x-ray conversion efficiency (XRCE) K-shell sources are being developed for high energy density experiments for use as backlighters and for the testing of materials exposed to high x-ray fluxes and fluences. Recently, sources with high XRCE in the K-shell x-ray energy range of iron and nickel were investigated at the National Ignition Facility (NIF). The x-ray conversion efficiency in the 5–9 keV spectral range was determined to be 6.8% ± 0.3%. These targets were 4.1 mm diameter, 4 mm tall hollow epoxy tubes having a 50 μm thick wall supporting a tube of 3 to 3.5 μm thick stainless steel. The NIF laser deposited ∼460 kJ of 3ω light into the target in a 140 TW, 3.3 ns square pulse. The absolute x-ray emission of the source was measured by two calibrated Dante x-ray spectrometers. Time resolved images filtered for the Fe K-shell were recorded to follow the heating of the target. Time integrated high-resolution spectra were recorded in the K-shell range.

  3. X-ray source assembly having enhanced output stability, and fluid stream analysis applications thereof

    DOE Patents [OSTI]

    Radley, Ian; Bievenue, Thomas J.; Burdett, John H.; Gallagher, Brian W.; Shakshober, Stuart M.; Chen, Zewu; Moore, Michael D.

    2008-06-08

    An x-ray source assembly and method of operation are provided having enhanced output stability. The assembly includes an anode having a source spot upon which electrons impinge and a control system for controlling position of the anode source spot relative to an output structure. The control system can maintain the anode source spot location relative to the output structure notwithstanding a change in one or more operating conditions of the x-ray source assembly. One aspect of the disclosed invention is most amenable to the analysis of sulfur in petroleum-based fuels.

  4. X-ray source assembly having enhanced output stability, and fluid stream analysis applications thereof

    DOE Patents [OSTI]

    Radley, Ian; Bievenue, Thomas J.; Burdett Jr., John H.; Gallagher, Brian W.; Shakshober, Stuart M.; Chen, Zewu; Moore, Michael D.

    2007-04-24

    An x-ray source assembly (2700) and method of operation are provided having enhanced output stability. The assembly includes an anode (2125) having a source spot upon which electrons (2120) impinge and a control system (2715/2720) for controlling position of the anode source spot relative to an output structure. The control system can maintain the anode source spot location relative to the output structure (2710) notwithstanding a change in one or more operating conditions of the x-ray source assembly. One aspect of the disclosed invention is most amenable to the analysis of sulfur in petroleum-based fuels.

  5. Characteristics of a molybdenum X-pinch X-ray source as a probe source for X-ray diffraction studies

    SciTech Connect (OSTI)

    Zucchini, F.; Chauvin, C.; Combes, P.; Sol, D.; Loyen, A.; Roques, B.; Grunenwald, J.; Bland, S. N.

    2015-03-15

    X-ray emission from a molybdenum X-pinch has been investigated as a potential probe for the high pressure states made in dynamic compression experiments. Studies were performed on a novel 300 kA, 400 ns generator which coupled the load directly to a low inductance capacitor and switch combination. The X-pinch load consisted of 4 crossed molybdenum wires of 13 μm diameter, crossed at an angle of 62°. The load height was 10 mm. An initial x-ray burst generated at the wire crossing point, radiated in the soft x-ray range (hυ < 10 keV). This was followed, 2–5 ns later, by at least one harder x-ray burst (hυ > 10 keV) whose power ranged from 1 to 7 MW. Time integrated spectral measurements showed that the harder bursts were dominated by K-alpha emission; though, a lower level, wide band continuum up to at least 30 keV was also present. Initial tests demonstrated that the source was capable of driving Laue diffraction experiments, probing uncompressed samples of LiF and aluminium.

  6. X-ray Diffraction and Multi-Frame Phase Contrast Imaging Diagnostics for IMPULSE at the Advanced Photon Source

    SciTech Connect (OSTI)

    Iverson, Adam; Carlson, Carl; Young, Jason; Curtis, Alden; Jensen, Brian; Ramos, Kyle; Yeager, John; Montgomery, David; Fezza, Kamel

    2013-07-08

    The diagnostic needs of any dynamic loading platform present unique technical challenges that must be addressed in order to accurately measure in situ material properties in an extreme environment. The IMPULSE platform (IMPact system for Ultrafast Synchrotron Experiments) at the Advanced Photon Source (APS) is no exception and, in fact, may be more challenging, as the imaging diagnostics must be synchronized to both the experiment and the 60 ps wide x-ray bunches produced at APS. The technical challenges of time-resolved x-ray diffraction imaging and high-resolution multi-frame phase contrast imaging (PCI) are described in this paper. Example data from recent IMPULSE experiments are shown to illustrate the advances and evolution of these diagnostics with a focus on comparing the performance of two intensified CCD cameras and their suitability for multi-frame PCI. The continued development of these diagnostics is fundamentally important to IMPULSE and many other loading platforms and will benefit future facilities such as the Dynamic Compression Sector at APS and MaRIE at Los Alamos National Laboratory.

  7. Laboratory-size three-dimensional x-ray microscope with Wolter type I mirror optics and an electron-impact water window x-ray source

    SciTech Connect (OSTI)

    Ohsuka, Shinji; Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro; Nakano, Tomoyasu; Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao

    2014-09-15

    We constructed a laboratory-size three-dimensional water window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques, and observed bio-medical samples to evaluate its applicability to life science research fields. It consists of a condenser and an objective grazing incidence Wolter type I mirror, an electron-impact type oxygen Kα x-ray source, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit of around 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm scale three-dimensional fine structures were resolved.

  8. Development of a microfocus x-ray tube with multiple excitation sources

    SciTech Connect (OSTI)

    Maeo, Shuji; Kraemer, Markus; Taniguchi, Kazuo

    2009-03-15

    A microfocus x-ray tube with multiple targets and an electron gun with a focal spot size of 10 {mu}m in diameter has been developed. The electron gun contains a LaB{sub 6} cathode and an Einzel lens. The x-ray tube can be operated at 50 W (50 kV, 1 mA) and has three targets, namely, Cr, W, and Rh on the anode that can be selected completely by moving the anode position. A focal spot size of 10 {mu}m in diameter can be achieved at 0.5 mA current. As demonstration of the usability of a multiexcitation x-ray tube, the fluorescence x-rays have been measured using a powder specimen mixed of TiO{sub 2}, Co, and Zr of the same quantity. The differences of excitation efficiency have clearly appeared according to the change in excitation source. From the results discussed here, it can be expected that the presented x-ray tube will be a powerful tool in microx-ray fluorescence spectrometers and various x-ray instruments.

  9. X-ray grating interferometry with a liquid-metal-jet source

    SciTech Connect (OSTI)

    Thüring, T.; Rutishauser, S.; Stampanoni, M.; Zhou, T.; Lundström, U.; Burvall, A.; Hertz, H. M.; David, C.

    2013-08-26

    A liquid-metal-jet X-ray tube is used in an X-ray phase-contrast microscope based on a Talbot type grating interferometer. With a focal spot size in the range of a few microns and a photon flux of ∼10{sup 12} photons/s×sr, the brightness of such a source is approximately one order of magnitude higher than for a conventional microfocus source. For comparison, a standard microfocus source was used with the same grating interferometer, showing significantly increased visibility for the liquid-metal-jet arrangement. Together with the increased flux, this results in improved signal-to-noise ratio.

  10. APS Upgrade | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    spot, allowing researchers to gather more data in greater detail in less time. Higher energies allow x-rays to penetrate deeper inside materials to reveal crucial information...

  11. Soft x-ray spectromicroscopy development for materials science at the Advanced Light Source

    SciTech Connect (OSTI)

    Warwick, T.; Padmore, H.; Ade, H.; Hitchcock, A.P.; Rightor, E.G.; Tonner, B.P.

    1996-08-01

    Several third generation synchrotron radiation facilities are now operational and the high brightness of these photon sources offers new opportunities for x-ray microscopy. Well developed synchrotron radiation spectroscopy techniques are being applied in new instruments capable of imaging the surface of a material with a spatial resolution smaller than one micron. There are two aspects to this. One is to further the field of surface science by exploring the effects of spatial variations across a surface on a scale not previously accessible to x-ray measurements. The other is to open up new analytical techniques in materials science using x-rays, on a spatial scale comparable to that of the processes or devices to be studied. The development of the spectromicroscopy program at the Advanced Light Source will employ a variety of instruments, some are already operational. Their development and use will be discussed, and recent results will be presented to illustrate their capabilities.

  12. Development of a model of an x-ray tube transmission source

    SciTech Connect (OSTI)

    Goda, Joetta M; Ianakiev, Kiril D; Moss, Cal E

    2009-01-01

    In support of the development of an x-ray tube based source for transmission measurements of UF6 gas, we have developed a one-dimensional, spreadsheet-based model of the source. Starting with the spectrum produced by an x-ray tube we apply the linear attenuation coefficients for various notch filters, the aluminum pipe, and UF6 gas. This model allows calculation of the transmitted spectrum based on the type of filter, the thickness of the filter, the x-ray tube high voltage, the Al pipe thickness, and the UF6 gas pressure. The sensitivity of the magnitude of the transmission peak produced by the notch filter to any of these variables can be explored quickly and easily to narrow the choices for experimental measurements. To validate the spreadsheet based model, comparisons have been made to various experimental data.

  13. Electron beam-based sources of ultrashort x-ray pulses.

    SciTech Connect (OSTI)

    Zholents, A.; Accelerator Systems Division

    2010-09-30

    A review of various methods for generation of ultrashort x-ray pulses using relativistic electron beam from conventional accelerators is presented. Both spontaneous and coherent emission of electrons is considered. The importance of the time-resolved studies of matter at picosecond (ps), femtosecond (fs), and atttosecond (as) time scales using x-rays has been widely recognized including by award of a Nobel Prize in 1999 [Zewa]. Extensive reviews of scientific drivers can be found in [BES1, BES2, BES3, Lawr, Whit]. Several laser-based techniques have been used to generate ultrashort x-ray pulses including laser-driven plasmas [Murn, Alte, Risc, Rose, Zamp], high-order harmonic generation [Schn, Rund, Wang, Arpi], and laser-driven anode sources [Ande]. In addition, ultrafast streak-camera detectors have been applied at synchrotron sources to achieve temporal resolution on the picosecond time scale [Wulf, Lind1]. In this paper, we focus on a different group of techniques that are based on the use of the relativistic electron beam produced in conventional accelerators. In the first part we review several techniques that utilize spontaneous emission of electrons and show how solitary sub-ps x-ray pulses can be obtained at existing storage ring based synchrotron light sources and linacs. In the second part we consider coherent emission of electrons in the free-electron lasers (FELs) and review several techniques for a generation of solitary sub-fs x-ray pulses. Remarkably, the x-ray pulses that can be obtained with the FELs are not only significantly shorter than the ones considered in Part 1, but also carry more photons per pulse by many orders of magnitude.

  14. The X-ray PumpProbe instrument at the LinacCoherent Light Source

    SciTech Connect (OSTI)

    Chollet, Matthieu; Alonso-Mori, Roberto; Cammarata, Marco; Damiani, Daniel; Defever, Jim; Delor, James T.; Feng, Yiping; Glownia, James M.; Langton, J. Brian; Nelson, Silke; Ramsey, Kelley; Robert, Aymeric; Sikorski, Marcin; Song, Sanghoon; Stefanescu, Daniel; Srinivasan, Venkat; Zhu, Diling; Lemke, Henrik T.; Fritz, David M.

    2015-04-21

    The X-ray PumpProbe instrument achieves femtosecond time-resolution with hard X-ray methods using a free-electron laser source. It covers a photon energy range of 424 keV. A femtosecond optical laser system is available across a broad spectrum of wavelengths for generating transient states of matter. The instrument is designed to emphasize versatility and the scientific goals encompass ultrafast physical, chemical and biological processes involved in the transformation of matter and transfer of energy at the atomic scale.

  15. The X-ray Pump–Probe instrument at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chollet, Matthieu; Alonso-Mori, Roberto; Cammarata, Marco; Damiani, Daniel; Defever, Jim; Delor, James T.; Feng, Yiping; Glownia, James M.; Langton, J. Brian; Nelson, Silke; et al

    2015-04-21

    The X-ray Pump–Probe instrument achieves femtosecond time-resolution with hard X-ray methods using a free-electron laser source. It covers a photon energy range of 4–24 keV. A femtosecond optical laser system is available across a broad spectrum of wavelengths for generating transient states of matter. The instrument is designed to emphasize versatility and the scientific goals encompass ultrafast physical, chemical and biological processes involved in the transformation of matter and transfer of energy at the atomic scale.

  16. The X-ray correlation spectroscopy instrument at the Linac Coherent Light Source

    SciTech Connect (OSTI)

    Alonso-Mori, Roberto; Caronna, Chiara; Chollet, Matthieu; Curtis, Robin; Damiani, Daniel S.; Defever, Jim; Feng, Yiping; Flath, Daniel L.; Glownia, James M.; Lee, Sooheyong; Lemke, Henrik T.; Nelson, Silke; Bong, Eric; Sikorski, Marcin; Song, Sanghoon; Srinivasan, Venkat; Stefanescu, Daniel; Zhu, Diling; Robert, Aymeric

    2015-03-03

    The X-ray Correlation Spectroscopy instrument is dedicated to the study of dynamics in condensed matter systems using the unique coherence properties of free-electron lasers. It covers a photon energy range of 4–25 keV. The intrinsic temporal characteristics of the Linac Coherent Light Source, in particular the 120 Hz repetition rate, allow for the investigation of slow dynamics (milliseconds) by means of X-ray photon correlation spectroscopy. Double-pulse schemes could probe dynamics on the picosecond timescale. In addition, a description of the instrument capabilities and recent achievements is presented.

  17. The X-ray correlation spectroscopy instrument at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Alonso-Mori, Roberto; Caronna, Chiara; Chollet, Matthieu; Curtis, Robin; Damiani, Daniel S.; Defever, Jim; Feng, Yiping; Flath, Daniel L.; Glownia, James M.; Lee, Sooheyong; et al

    2015-03-03

    The X-ray Correlation Spectroscopy instrument is dedicated to the study of dynamics in condensed matter systems using the unique coherence properties of free-electron lasers. It covers a photon energy range of 4–25 keV. The intrinsic temporal characteristics of the Linac Coherent Light Source, in particular the 120 Hz repetition rate, allow for the investigation of slow dynamics (milliseconds) by means of X-ray photon correlation spectroscopy. Double-pulse schemes could probe dynamics on the picosecond timescale. In addition, a description of the instrument capabilities and recent achievements is presented.

  18. INTERMEDIATE ENERGY X-RAY (IEX) BEAMLINE AT THE ADVANCED PHOTON...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    INTERMEDIATE ENERGY X-RAY (IEX) BEAMLINE AT THE ADVANCED PHOTON SOURCE Jessica McChesney, APS beamline scientist, connecting the transition edge sensor (TES) detector to the...

  19. Workshops on Science Enabled by a Coherent, CW, Synchrotron X-ray Source, June 2011

    SciTech Connect (OSTI)

    Brock, Joel

    2012-01-03

    In June of 2011 we held six two-day workshops called "XDL-2011: Science at the Hard X-ray Diffraction Limit". The six workshops covered (1) Diffraction-based imaging techniques, (2) Biomolecular structure from non-crystalline materials, (3) Ultra-fast science, (4) High-pressure science, (5) Materials research with nano-beams and (6) X-ray photon correlation spectroscopy (XPCS), In each workshop, invited speaker from around the world presented examples of novel experiments that require a CW, diffraction-limited source. During the workshop, each invited speaker provided a one-page description of the experiment and an illustrative graphic. The experiments identified by the workshops demonstrate the broad and deep scientific case for a CW coherent synchrotron x-ray source. The next step is to perform detailed simulations of the best of these ideas to test them quantitatively and to guide detailed x-ray beam-line designs. These designs are the first step toward developing detailed facility designs and cost estimates.

  20. Demonstration of a 13 keV Kr K-shell X-Ray Source at the National...

    Office of Scientific and Technical Information (OSTI)

    Demonstration of a 13 keV Kr K-shell X-Ray Source at the National Ignition Facility Citation Details In-Document Search Title: Demonstration of a 13 keV Kr K-shell X-Ray Source at...

  1. 12.6 keV Kr K-alpha X-ray Source For High Energy Density Physics...

    Office of Scientific and Technical Information (OSTI)

    12.6 keV Kr K-alpha X-ray Source For High Energy Density Physics Experiments Citation Details In-Document Search Title: 12.6 keV Kr K-alpha X-ray Source For High Energy Density...

  2. Compact x-ray sources for mammographic applications: Monte Carlo simulations of image quality

    SciTech Connect (OSTI)

    Oliva, P.; Golosio, B.; Stumbo, S.; Bravin, A.; Tomassini, P.

    2009-11-15

    Thomson scattering x-ray sources can provide spectral distributions that are ideally suited for mammography with sufficient fluence rates. In this article, the authors investigate the effects of different spectral distributions on the image quality in simulated images of a breast mammographic phantom containing details of different compositions and thicknesses. They simulated monochromatic, quasimonochromatic, and polychromatic x-ray sources in order to define the energy for maximum figure of merit (signal-difference-to-noise ratio squared/mean glandular dose), the effect of an energy spread, and the effect of the presence of higher-order harmonics. The advantages of these sources with respect to conventional polychromatic sources as a function of phantom and detail thickness were also investigated. The results show that the energy for the figure of merit peak is between 16 and 27.4 keV, depending on the phantom thickness and detail composition and thickness. An energy spread of about 1 keV standard deviation, easily achievable with compact x-ray sources, does not appreciably affect the image quality.

  3. A Superbend X-Ray Microdiffraction Beamline at the Advanced Light Source

    SciTech Connect (OSTI)

    Tamura, N.; Kunz, M.; Chen, K.; Celestre, R.S.; MacDowell, A.A.; Warwick, T.

    2009-03-10

    Beamline 12.3.2 at the Advanced Light Source is a newly commissioned beamline dedicated to x-ray microdiffraction. It operates in both monochromatic and polychromatic radiation mode. The facility uses a superconducting bending magnet source to deliver an X-ray spectrum ranging from 5 to 22 keV. The beam is focused down to {approx} 1 um size at the sample position using a pair of elliptically bent Kirkpatrick-Baez mirrors enclosed in a vacuum box. The sample placed on high precision stages can be raster-scanned under the microbeam while a diffraction pattern is taken at each step. The arrays of diffraction patterns are then analyzed to derive distribution maps of phases, strain/stress and/or plastic deformation inside the sample.

  4. 12.6 keV Kr K-alpha X-ray Source For High Energy Density Physics...

    Office of Scientific and Technical Information (OSTI)

    Kr K-alpha X-ray Source For High Energy Density Physics Experiments A high contrast 12.6 keV Kr Kalpha source has been demonstrated on the petawatt-class Titan laser facility. ...

  5. Attosecond x-ray source generation from two-color polarized gating plasmonic field enhancement

    SciTech Connect (OSTI)

    Feng, Liqiang; State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 ; Yuan, Minghu; Chu, Tianshu; Institute for Computational Sciences and Engineering, Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071

    2013-12-15

    The plasmonic field enhancement from the vicinity of metallic nanostructures as well as the polarization gating technique has been utilized to the generation of the high order harmonic and the single attosecond x-ray source. Through numerical solution of the time-dependent Schrödinger equation, for moderate the inhomogeneity and the polarized angle of the two fields, we find that not only the harmonic plateau has been extended and enhanced but also the single short quantum path has been selected to contribute to the harmonic. As a result, a series of 50 as pulses around the extreme ultraviolet and the x-ray regions have been obtained. Furthermore, by investigating the other parameters effects on the harmonic emission, we find that this two-color polarized gating plasmonic field enhancement scheme can also be achieved by the multi-cycle pulses, which is much better for experimental realization.

  6. High brightness--multiple beamlets source for patterned X-ray production

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA); Ji, Qing (Albany, CA); Barletta, William A. (Oakland, CA); Jiang, Ximan (El Cerrito, CA); Ji, Lili (Albany, CA)

    2009-10-27

    Techniques for controllably directing beamlets to a target substrate are disclosed. The beamlets may be either positive ions or electrons. It has been shown that beamlets may be produced with a diameter of 1 .mu.m, with inter-aperture spacings of 12 .mu.m. An array of such beamlets, may be used for maskless lithography. By step-wise movement of the beamlets relative to the target substrate, individual devices may be directly e-beam written. Ion beams may be directly written as well. Due to the high brightness of the beamlets from extraction from a multicusp source, exposure times for lithographic exposure are thought to be minimized. Alternatively, the beamlets may be electrons striking a high Z material for X-ray production, thereafter collimated to provide patterned X-ray exposures such as those used in CAT scans. Such a device may be used for remote detection of explosives.

  7. Attosecond Thomson-scattering x-ray source driven by laser-based electron acceleration

    SciTech Connect (OSTI)

    Luo, W.; Zhuo, H. B.; Yu, T. P.; Ma, Y. Y.; Song, Y. M.; Zhu, Z. C.; Yu, M. Y.

    2013-10-21

    The possibility of producing attosecond x-rays through Thomson scattering of laser light off laser-driven relativistic electron beams is investigated. For a ≤200-as, tens-MeV electron bunch produced with laser ponderomotive-force acceleration in a plasma wire, exceeding 10{sup 6} photons/s in the form of ∼160 as pulses in the range of 3–300 keV are predicted, with a peak brightness of ≥5 × 10{sup 20} photons/(s mm{sup 2} mrad{sup 2} 0.1% bandwidth). Our study suggests that the physical scheme discussed in this work can be used for an ultrafast (attosecond) x-ray source, which is the most beneficial for time-resolved atomic physics, dubbed “attosecond physics.”.

  8. X-ray phase-contrast imaging with an Inverse Compton Scattering source

    SciTech Connect (OSTI)

    Endrizzi, M.; Carpinelli, M.; Oliva, P.; Golosio, B.; Delogu, P.; Stefanini, A.; Gureyev, T. E.; Bottigli, U.

    2010-07-23

    Single-shot in-line phase-contrast imaging with the Inverse Compton Scattering X-ray source available at ATF (Accelerator Test Facility) at Brookhaven National Laboratory is experimentally demonstrated. Phase-contrast images of polymer wires are obtained with a single X-ray pulse whose time length is about 1 picosecond. The edge-enhancement effect is clearly visible in the images and simulations show a quantitative agreement with experimental data. A phase-retrieval step in the image processing leads to a accurate estimation of the projected thickness of our samples. Finally, a single-shot image of a wasp is presented as an example of a biological sample.

  9. Cross calibration of new x-ray films against direct exposure film from 1 to 8 keV using the X-pinch x-ray source

    SciTech Connect (OSTI)

    Chandler, K.M.; Pikuz, S.A.; Shelkovenko, T.A.; Mitchell, M.D.; Hammer, D.A.; Knauer, J.P.

    2005-11-15

    A cross calibration of readily available x-ray sensitive films has been carried out against the calibrated direct exposure film (DEF) which is no longer being manufactured by Kodak. Four-wire X pinches made from various metal wires were used as x-ray sources for this purpose. Tests were carried out for the Kodak films Biomax MS, Biomax XAR, M100, Technical Pan, and T-Max over the energy range of 1-8 keV (12.4-1.5 A wavelength). The same hand-development procedures as described by Henke et al. [J. Opt. Soc. Am. B 3, 1540 (1986)] were followed for all films in every test. Sensitivity curves as a function of wavelength for these films relative DEF are presented. These relative calibrations show that Biomax MS is likely to be the best replacement film for DEF for most purposes over the energy range tested here.

  10. Compact tunable Compton x-ray source from laser-plasma accelerator and plasma mirror

    SciTech Connect (OSTI)

    Tsai, Hai-En; Wang, Xiaoming; Shaw, Joseph M.; Li, Zhengyan; Zgadzaj, Rafal; Henderson, Watson; Downer, M. C.; Arefiev, Alexey V.; Zhang, Xi; Khudik, V.; Shvets, G.

    2015-02-15

    We present an in-depth experimental-computational study of the parameters necessary to optimize a tunable, quasi-monoenergetic, efficient, low-background Compton backscattering (CBS) x-ray source that is based on the self-aligned combination of a laser-plasma accelerator (LPA) and a plasma mirror (PM). The main findings are (1) an LPA driven in the blowout regime by 30 TW, 30 fs laser pulses produce not only a high-quality, tunable, quasi-monoenergetic electron beam, but also a high-quality, relativistically intense (a{sub 0} ∼ 1) spent drive pulse that remains stable in profile and intensity over the LPA tuning range. (2) A thin plastic film near the gas jet exit retro-reflects the spent drive pulse efficiently into oncoming electrons to produce CBS x-rays without detectable bremsstrahlung background. Meanwhile, anomalous far-field divergence of the retro-reflected light demonstrates relativistic “denting” of the PM. Exploiting these optimized LPA and PM conditions, we demonstrate quasi-monoenergetic (50% FWHM energy spread), tunable (75–200 KeV) CBS x-rays, characteristics previously achieved only on more powerful laser systems by CBS of a split-off, counter-propagating pulse. Moreover, laser-to-x-ray photon conversion efficiency (∼6 × 10{sup −12}) exceeds that of any previous LPA-based quasi-monoenergetic Compton source. Particle-in-cell simulations agree well with the measurements.

  11. Analyzer-based phase-contrast imaging system using a micro focus x-ray source

    SciTech Connect (OSTI)

    Zhou, Wei; Majidi, Keivan; Brankov, Jovan G.

    2014-08-15

    Here we describe a new in-laboratory analyzer based phase contrast-imaging (ABI) instrument using a conventional X-ray tube source (CXS) aimed at bio-medical imaging applications. Phase contrast-imaging allows visualization of soft tissue details usually obscured in conventional X-ray imaging. The ABI system design and major features are described in detail. The key advantage of the presented system, over the few existing CXS ABI systems, is that it does not require high precision components, i.e., CXS, X-ray detector, and electro-mechanical components. To overcome a main problem introduced by these components, identified as temperature stability, the system components are kept at a constant temperature inside of three enclosures, thus minimizing the electrical and mechanical thermal drifts. This is achieved by using thermoelectric (Peltier) cooling/heating modules that are easy to control precisely. For CXS we utilized a microfocus X-ray source with tungsten (W) anode material. In addition the proposed system eliminates tungsten's multiple spectral lines by selecting monochromator crystal size appropriately therefore eliminating need for the costly mismatched, two-crystal monochromator. The system imaging was fine-tuned for tungsten Kα{sub 1} line with the energy of 59.3 keV since it has been shown to be of great clinical significance by a number of researchers at synchrotron facilities. In this way a laboratory system that can be used for evaluating and quantifying tissue properties, initially explored at synchrotron facilities, would be of great interest to a larger research community. To demonstrate the imaging capability of our instrument we use a chicken thigh tissue sample.

  12. The Coherent X-ray Imaging (CXI) Instrument at the Linac Coherent Light Source (LCLS)

    SciTech Connect (OSTI)

    Boutet, Sebastien; Williams, Garth J.; ,

    2011-08-16

    The Linac Coherent Light Source (LCLS) has become the first ever operational hard X-ray Free Electron Laser in 2009. It will operate as a user facility capable of delivering unique research opportunities in multiple fields of science. The LCLS and the LCLS Ultrafast Science Instruments (LUSI) construction projects are developing instruments designed to make full use of the capabilities afforded by the LCLS beam. One such instrument is being designed to utilize the LCLS coherent beam to image with high resolution any sub-micron object. This instrument is called the Coherent X-ray Imaging (CXI) instrument. This instrument will provide a flexible optical system capable of tailoring key beam parameters for the users. A suite of shot-to-shot diagnostics will also be provided to characterize the beam on every pulse. The provided instrumentation will include multi-purpose sample environments, sample delivery and a custom detector capable of collecting 2D data at 120 Hz. In this article, the LCLS will be briefly introduced along with the technique of Coherent X-ray Diffractive Imaging (CXDI). A few examples of scientific opportunities using the CXI instrument will be described. Finally, the conceptual layout of the instrument will be presented along with a description of the key requirements for the overall system and specific devices required.

  13. Demonstration of a 13 keV Kr K-shell X-Ray Source at the National...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Demonstration of a 13 keV Kr K-shell X-Ray Source at the National Ignition Facility Citation Details In-Document Search Title: Demonstration of a 13 keV Kr K-shell ...

  14. APS Publications | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Sector(s)CAT(s) beamline(s) where the work was done, and whether or not GUP beam time was used, to apspubs@aps.anl.gov. Reminder for ANL employees: ANL employees are not...

  15. Development of a Laser-Produced Plasma X-ray source for Phase-Contrast Radiography of DT Ice layers

    SciTech Connect (OSTI)

    Izumi, N; Dewald, E; Kozioziemski, B; Landen, O L; Koch, J A

    2008-07-21

    Refraction enhanced x-ray phase contrast imaging is crucial for characterization of deuterium-tritium (DT) ice layer roughness in optically opaque inertial confinement fusion capsules. To observe the time development of DT ice roughness over {approx} second timescales, we need a bright x-ray source that can produce an image faster than the evolution of the ice surface roughness. A laser produced plasma x-ray source is one of the candidates that can meet this requirement. We performed experiments at the Janus laser facility at Lawrence Livermore National Laboratory and assessed the characteristics of the laser produced plasma x-ray source as a potential backlight for in situ target characterization.

  16. Positron Source from Betatron X-rays Emitted in a Plasma Wiggler

    SciTech Connect (OSTI)

    Johnson, D.K.; Clayton, C.E.; Huang, C.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.B.; Zhou, M.; Barnes, C.D.; Decker, F.J.; Hogan, M.J.; Iverson, R.H.; Krejcik, P.; O'Connell, C.L.; Siemann, R.; Walz, D.R.; Deng, S.; Katsouleas, T.C.; Muggli, P.; Oz, E.; /Southern California U.

    2006-04-21

    In the E-167 plasma wakefield accelerator (PWFA) experiments in the Final Focus Test Beam (FFTB) at the Stanford Linear Accelerator Center (SLAC), an ultra-short, 28.5 GeV electron beam field ionizes a neutral column of Lithium vapor. In the underdense regime, all plasma electrons are expelled creating an ion column. The beam electrons undergo multiple betatron oscillations leading to a large flux of broadband synchrotron radiation. With a plasma density of 3 x 10{sup 17}cm{sup -3}, the effective focusing gradient is near 9 MT/m with critical photon energies exceeding 50 MeV for on-axis radiation. A positron source is the initial application being explored for these X-rays, as photo-production of positrons eliminates many of the thermal stress and shock wave issues associated with traditional Bremsstrahlung sources. Photo-production of positrons has been well-studied; however, the brightness of plasma X-ray sources provides certain advantages. In this paper, we present results of the simulated radiation spectra for the E-167 experiments, and compute the expected positron yield.

  17. Intense high repetition rate Mo Kα x-ray source generated from laser solid interaction for imaging application

    SciTech Connect (OSTI)

    Huang, K.; Li, M. H.; Yan, W. C.; Ma, Y.; Zhao, J. R.; Li, Y. F.; Chen, L. M.; Guo, X.; Li, D. Z.; Chen, Y. P.; Zhang, J.

    2014-11-15

    We report an efficient Mo Kα x-ray source produced by interaction of femtosecond Ti: sapphire laser pulses with a solid Molybdenum target working at 1 kHz repetition rate. The generated Mo Kα x-ray intensity reaches to 4.7 × 10{sup 10} photons sr{sup −1} s{sup −1}, corresponding to an average power of 0.8 mW into 2π solid angle. The spatial resolution of this x-ray source is measured to be 26 lp/mm. With the high flux and high spatial resolution characteristics, high resolving in-line x-ray radiography was realized on test objects and large size biological samples within merely half a minute. This experiment shows the possibility of laser plasma hard x-ray source as a new low cost and high resolution system for radiography and its ability of ultrafast x-ray pump-probe study of matter.

  18. New Soft X-ray Beamline (BL10) at the SAGA Light Source

    SciTech Connect (OSTI)

    Yoshimura, D.; Setoyama, H.; Okajima, T.

    2010-06-23

    A new soft X-ray beamline (BL10) at the SAGA Light Source (SAGA-LS) was constructed at the end of 2008. Commissioning of this new beamline started at the beginning of 2009. Synchrotron radiation from a variably polarizing undulator (APPLE-II) can be used in this beamline. The obtained light is monochromatized by a varied-line-spacing plane grating monochromator with the variable included angle mechanism. Its designed resolving power and photon flux are 3,000-10,000 and 10{sup 12}-10{sup 9} photons/s at 300 mA, respectively. The performance test results were generally satisfactory. An overview of the optical design of the beamline and the current status of commissioning are reported.

  19. Cluster beam targets for laser plasma extreme ultraviolet and soft x-ray sources

    DOE Patents [OSTI]

    Kublak, Glenn D.; Richardson, Martin C. (CREOL

    1996-01-01

    Method and apparatus for producing extreme ultra violet (EUV) and soft x-ray radiation from an ultra-low debris plasma source are disclosed. Targets are produced by the free jet expansion of various gases through a temperature controlled nozzle to form molecular clusters. These target clusters are subsequently irradiated with commercially available lasers of moderate intensity (10.sup.11 -10.sup.12 watts/cm.sup.2) to produce a plasma radiating in the region of 0.5 to 100 nanometers. By appropriate adjustment of the experimental conditions the laser focus can be moved 10-30 mm from the nozzle thereby eliminating debris produced by plasma erosion of the nozzle.

  20. Cluster beam targets for laser plasma extreme ultraviolet and soft x-ray sources

    DOE Patents [OSTI]

    Kublak, G.D.; Richardson, M.C.

    1996-11-19

    Method and apparatus for producing extreme ultraviolet (EUV) and soft x-ray radiation from an ultra-low debris plasma source are disclosed. Targets are produced by the free jet expansion of various gases through a temperature controlled nozzle to form molecular clusters. These target clusters are subsequently irradiated with commercially available lasers of moderate intensity (10{sup 11}--10{sup 12} watts/cm{sup 2}) to produce a plasma radiating in the region of 0.5 to 100 nanometers. By appropriate adjustment of the experimental conditions the laser focus can be moved 10--30 mm from the nozzle thereby eliminating debris produced by plasma erosion of the nozzle. 5 figs.

  1. MOTIONS OF HARD X-RAY SOURCES DURING AN ASYMMETRIC ERUPTION

    SciTech Connect (OSTI)

    Liu Chang; Jing Ju; Liu Rui; Deng Na; Wang Haimin; Lee, Jeongwoo

    2010-10-01

    Filament eruptions and hard X-ray (HXR) source motions are commonly observed in solar flares, which provide critical information on the coronal magnetic reconnection. This Letter reports an event on 2005 January 15, in which we found an asymmetric filament eruption and a subsequent coronal mass ejection together with complicated motions of HXR sources during the GOES-class X2.6 flare. The HXR sources initially converge to the magnetic polarity inversion line (PIL), and then move in directions either parallel or perpendicular to the PIL depending on the local field configuration. We distinguish the evolution of the HXR source motion in four phases and associate each of them with distinct regions of coronal magnetic fields as reconstructed using a nonlinear force-free field extrapolation. It is found that the magnetic reconnection proceeds along the PIL toward the regions where the overlying field decreases with height more rapidly. It is also found that not only the perpendicular but the parallel motion of the HXR sources correlates well with the HXR light curve. These results are discussed in favor of the torus instability as an important factor in the eruptive process.

  2. Photon-in photon-out hard X-ray spectroscopy at the Linac Coherent Light Source

    SciTech Connect (OSTI)

    Alonso-Mori, Roberto; Sokaras, Dimosthenis; Zhu, Diling; Kroll, Thomas; Chollet, Mathieu; Feng, Yiping; Glownia, James M.; Kern, Jan; Lemke, Henrik T.; Nordlund, Dennis; Robert, Aymeric; Sikorski, Marcin; Song, Sanghoon; Weng, Tsu -Chien; Bergmann, Uwe

    2015-04-15

    X-ray free-electron lasers (FELs) have opened unprecedented possibilities to study the structure and dynamics of matter at an atomic level and ultra-fast timescale. Many of the techniques routinely used at storage ring facilities are being adapted for experiments conducted at FELs. In order to take full advantage of these new sources several challenges have to be overcome. They are related to the very different source characteristics and its resulting impact on sample delivery, X-ray optics, X-ray detection and data acquisition. Here it is described how photon-in photon-out hard X-ray spectroscopy techniques can be applied to study the electronic structure and its dynamics of transition metal systems with ultra-bright and ultra-short FEL X-ray pulses. In particular, some of the experimental details that are different compared with synchrotron-based setups are discussed and illustrated by recent measurements performed at the Linac Coherent Light Source.

  3. Photon-in photon-out hard X-ray spectroscopy at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Alonso-Mori, Roberto; Sokaras, Dimosthenis; Zhu, Diling; Kroll, Thomas; Chollet, Mathieu; Feng, Yiping; Glownia, James M.; Kern, Jan; Lemke, Henrik T.; Nordlund, Dennis; et al

    2015-04-15

    X-ray free-electron lasers (FELs) have opened unprecedented possibilities to study the structure and dynamics of matter at an atomic level and ultra-fast timescale. Many of the techniques routinely used at storage ring facilities are being adapted for experiments conducted at FELs. In order to take full advantage of these new sources several challenges have to be overcome. They are related to the very different source characteristics and its resulting impact on sample delivery, X-ray optics, X-ray detection and data acquisition. Here it is described how photon-in photon-out hard X-ray spectroscopy techniques can be applied to study the electronic structure andmore » its dynamics of transition metal systems with ultra-bright and ultra-short FEL X-ray pulses. In particular, some of the experimental details that are different compared with synchrotron-based setups are discussed and illustrated by recent measurements performed at the Linac Coherent Light Source.« less

  4. KAPPA DISTRIBUTION MODEL FOR HARD X-RAY CORONAL SOURCES OF SOLAR FLARES

    SciTech Connect (OSTI)

    Oka, M.; Ishikawa, S.; Saint-Hilaire, P.; Krucker, S.; Lin, R. P. [Space Sciences Laboratory, University of California Berkeley (United States)] [Space Sciences Laboratory, University of California Berkeley (United States)

    2013-02-10

    Solar flares produce hard X-ray emission, the photon spectrum of which is often represented by a combination of thermal and power-law distributions. However, the estimates of the number and total energy of non-thermal electrons are sensitive to the determination of the power-law cutoff energy. Here, we revisit an 'above-the-loop' coronal source observed by RHESSI on 2007 December 31 and show that a kappa distribution model can also be used to fit its spectrum. Because the kappa distribution has a Maxwellian-like core in addition to a high-energy power-law tail, the emission measure and temperature of the instantaneous electrons can be derived without assuming the cutoff energy. Moreover, the non-thermal fractions of electron number/energy densities can be uniquely estimated because they are functions of only the power-law index. With the kappa distribution model, we estimated that the total electron density of the coronal source region was {approx}2.4 Multiplication-Sign 10{sup 10} cm{sup -3}. We also estimated without assuming the source volume that a moderate fraction ({approx}20%) of electrons in the source region was non-thermal and carried {approx}52% of the total electron energy. The temperature was 28 MK, and the power-law index {delta} of the electron density distribution was -4.3. These results are compared to the conventional power-law models with and without a thermal core component.

  5. SWIFT X-RAY OBSERVATIONS OF CLASSICAL NOVAE. II. THE SUPER SOFT SOURCE SAMPLE

    SciTech Connect (OSTI)

    Schwarz, Greg J.; Ness, Jan-Uwe; Osborne, J. P.; Page, K. L.; Evans, P. A.; Beardmore, A. P.; Walter, Frederick M.; Andrew Helton, L.; Woodward, Charles E.; Bode, Mike; Starrfield, Sumner; Drake, Jeremy J.

    2011-12-01

    The Swift gamma-ray burst satellite is an excellent facility for studying novae. Its rapid response time and sensitive X-ray detector provides an unparalleled opportunity to investigate the previously poorly sampled evolution of novae in the X-ray regime. This paper presents Swift observations of 52 Galactic/Magellanic Cloud novae. We included the X-Ray Telescope (0.3-10 keV) instrument count rates and the UltraViolet and Optical Telescope (1700-8000 A) filter photometry. Also included in the analysis are the publicly available pointed observations of 10 additional novae the X-ray archives. This is the largest X-ray sample of Galactic/Magellanic Cloud novae yet assembled and consists of 26 novae with Super Soft X-ray emission, 19 from Swift observations. The data set shows that the faster novae have an early hard X-ray phase that is usually missing in slower novae. The Super Soft X-ray phase occurs earlier and does not last as long in fast novae compared to slower novae. All the Swift novae with sufficient observations show that novae are highly variable with rapid variability and different periodicities. In the majority of cases, nuclear burning ceases less than three years after the outburst begins. Previous relationships, such as the nuclear burning duration versus t{sub 2} or the expansion velocity of the eject and nuclear burning duration versus the orbital period, are shown to be poorly correlated with the full sample indicating that additional factors beyond the white dwarf mass and binary separation play important roles in the evolution of a nova outburst. Finally, we confirm two optical phenomena that are correlated with strong, soft X-ray emission which can be used to further increase the efficiency of X-ray campaigns.

  6. Investigating radial wire array Z pinches as a compact x-ray source on the Saturn generator

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ampleford, David J.; Bland, S. N.; Jennings, Christopher A.; Lebedev, S. V.; Chittenden, J. P.; Cuneo, Michael E.; McBride, Ryan D.; Jones, Brent Manley; Hall, G. N.; Suzuki-Vidal, F.; et al

    2015-08-27

    Radial wire array z pinches, where wires are positioned radially outward from a central cathode to a concentric anode, can act as a compact bright x-ray source that could potentially be used to drive a hohlraum. Experiments were performed on the 7-MA Saturn generator using radial wire arrays. These experiments studied a number of potential risks in scaling radial wire arrays up from the 1-MA level, where they have been shown to be a promising compact X-ray source. Data indicates that at 7 MA, radial wire arrays can radiate ~9 TW with 10-ns full-width at half-maximum from a compact pinch.

  7. APS Podcasts | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Art Preservation and Connoisseurship August 14, 2007; mp3 - 1.88MB Franceska Casadio, Art Institute of Chicago: November 3, 2004 The Advanced Photon Source (videomp4) August...

  8. ELECTRON ENERGY PARTITION IN THE ABOVE-THE-LOOPTOP SOLAR HARD X-RAY SOURCES

    SciTech Connect (OSTI)

    Oka, Mitsuo; Krucker, Säm; Hudson, Hugh S.; Saint-Hilaire, Pascal

    2015-02-01

    Solar flares produce non-thermal electrons with energies up to tens of MeVs. To understand the origin of energetic electrons, coronal hard X-ray (HXR) sources, in particular above-the-looptop sources, have been studied extensively. However, it still remains unclear how energies are partitioned between thermal and non-thermal electrons within the above-the-looptop source. Here we show that the kappa distribution, when compared to conventional spectral models, can better characterize the above-the-looptop HXRs (≳15 keV) observed in four different cases. The widely used conventional model (i.e., the combined thermal plus power-law distribution) can also fit the data, but it returns unreasonable parameter values due to a non-physical sharp lower-energy cutoff E{sub c}. In two cases, extreme-ultraviolet data were available from SDO/AIA and the kappa distribution was still consistent with the analysis of differential emission measure. Based on the kappa distribution model, we found that the 2012 July 19 flare showed the largest non-thermal fraction of electron energies about 50%, suggesting equipartition of energies. Considering the results of particle-in-cell simulations, as well as density estimates of the four cases studied, we propose a scenario in which electron acceleration is achieved primarily by collisionless magnetic reconnection, but the electron energy partition in the above-the-looptop source depends on the source density. In low-density above-the-looptop regions (few times 10{sup 9} cm{sup –3}), the enhanced non-thermal tail can remain and a prominent HXR source is created, whereas in higher-densities (>10{sup 10} cm{sup –3}), the non-thermal tail is suppressed or thermalized by Coulomb collisions.

  9. On the variation of solar flare coronal X-ray source sizes with energy

    SciTech Connect (OSTI)

    Jeffrey, Natasha L. S.; Kontar, Eduard P.; Bian, Nicolas H. [School of Physics and Astronomy, University of Glasgow, G12 8QQ Glasgow (United Kingdom); Emslie, A. Gordon, E-mail: n.jeffrey@physics.gla.ac.uk [Department of Physics and Astronomy, Western Kentucky University, Bowling Green, KY 42101 (United States)

    2014-05-20

    Observations with RHESSI have enabled the detailed study of the structure of dense hard X-ray coronal sources in solar flares. The variation of source extent with electron energy has been discussed in the context of streaming of non-thermal particles in a one-dimensional cold target model and the results used to constrain both the physical extent of, and density within, the electron acceleration region. Here, we extend this investigation to a more physically realistic model of electron transport that takes into account the finite temperature of the ambient plasma, the initial pitch angle distribution of the accelerated electrons, and the effects of collisional pitch angle scattering. The finite temperature results in the thermal diffusion of electrons, which leads to the observationally inferred value of the acceleration region volume being an overestimate of its true value. The different directions of the electron trajectories, a consequence of both the non-zero injection pitch angle and scattering within the target, cause the projected propagation distance parallel to the guiding magnetic field to be reduced, so that a one-dimensional interpretation can overestimate the actual density by a factor of up to ?6. The implications of these results for the determination of acceleration region properties (specific acceleration rate, filling factor, etc.) are discussed.

  10. Characterization of spatially resolved high resolution x-ray spectrometers for high energy density physics and light source experiments

    SciTech Connect (OSTI)

    Hill, K. W. Bitter, M.; Delgado-Aparacio, L.; Efthimion, P.; Pablant, N. A.; Lu, J.; Beiersdorfer, P.; Chen, H.; Magee, E.

    2014-11-15

    A high resolution 1D imaging x-ray spectrometer concept comprising a spherically bent crystal and a 2D pixelated detector is being optimized for diagnostics of small sources such as high energy density physics (HEDP) and synchrotron radiation or x-ray free electron laser experiments. This instrument is used on tokamak experiments for Doppler measurements of ion temperature and plasma flow velocity profiles. Laboratory measurements demonstrate a resolving power, E/ΔE of order 10 000 and spatial resolution better than 10 μm. Initial tests of the high resolution instrument on HEDP plasmas are being performed.

  11. Combining THz laser excitation with resonant soft X-ray scattering at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Turner, Joshua J.; Dakovski, Georgi L.; Hoffmann, Matthias C.; Hwang, Harold Y.; Zarem, Alex; Schlotter, William F.; Moeller, Stefan; Minitti, Michael P.; Staub, Urs; Johnson, Steven; et al

    2015-04-11

    This paper describes the development of new instrumentation at the Linac Coherent Light Source for conducting THz excitation experiments in an ultra high vacuum environment probed by soft X-ray diffraction. This consists of a cantilevered, fully motorized mirror system which can provide 600 kV cm? electric field strengths across the sample and an X-ray detector that can span the full Ewald sphere with in-vacuum motion. The scientific applications motivated by this development, the details of the instrument, and spectra demonstrating the field strengths achieved using this newly developed system are discussed.

  12. Combining THz laser excitation with resonant soft X-ray scattering at the Linac Coherent Light Source

    SciTech Connect (OSTI)

    Turner, Joshua J.; Dakovski, Georgi L.; Hoffmann, Matthias C.; Hwang, Harold Y.; Zarem, Alex; Schlotter, William F.; Moeller, Stefan; Minitti, Michael P.; Staub, Urs; Johnson, Steven; Mitra, Ankush; Swiggers, Michele; Noonan, Peter; Curiel, G. Ivan; Holmes, Michael

    2015-04-11

    This paper describes the development of new instrumentation at the Linac Coherent Light Source for conducting THz excitation experiments in an ultra high vacuum environment probed by soft X-ray diffraction. This consists of a cantilevered, fully motorized mirror system which can provide 600 kV cm⁻¹ electric field strengths across the sample and an X-ray detector that can span the full Ewald sphere with in-vacuum motion. The scientific applications motivated by this development, the details of the instrument, and spectra demonstrating the field strengths achieved using this newly developed system are discussed.

  13. National Synchrotron Light Source user`s manual: Guide to the VUV and x-ray beamlines. Fifth edition

    SciTech Connect (OSTI)

    Gmuer, N.F.

    1993-04-01

    The success of the National Synchrotron Light Source is based, in large part, on the size of the user community and the diversity of the scientific and technical disciplines represented by these users. As evidence of this success, the VUV Ring has just celebrated its 10th anniversary and the X-ray Ring will do the same in 1995. In order to enhance this success, the NSLS User`s Manual: Guide to the VUV and X-Ray Beamlines - Fifth Edition, is being published. This Manual presents to the scientific community-at-large the current and projected architecture, capabilities and research programs of the various VUV and X-ray beamlines. Also detailed is the research and computer equipment a General User can expect to find and use at each beamline when working at the NSLS. The Manual is updated periodically in order to keep pace with the constant changes on these beamlines.

  14. Fluctuation X-Ray Scattering

    SciTech Connect (OSTI)

    Saldin, PI: D. K.; Co-I's: J. C. H. Spence and P. Fromme

    2013-01-25

    The work supported by the grant was aimed at developing novel methods of finding the structures of biomolecules using x-rays from novel sources such as the x-ray free electron laser and modern synchrotrons

  15. The Coherent X-ray Imaging instrument at the Linac Coherent Light Source

    SciTech Connect (OSTI)

    Liang, Mengning; Williams, Garth J.; Messerschmidt, Marc; Seibert, M. Marvin; Montanez, Paul A.; Hayes, Matt; Milathianaki, Despina; Aquila, Andrew; Hunter, Mark S.; Koglin, Jason E.; Schafer, Donald W.; Guillet, Serge; Busse, Armin; Bergan, Robert; Olson, William; Fox, Kay; Stewart, Nathaniel; Curtis, Robin; Miahnahri, Alireza Alan; Boutet, Sbastien

    2015-04-15

    The Coherent X-ray Imaging (CXI) instrument specializes in hard X-ray, in-vacuum, high power density experiments in all areas of science. Two main sample chambers, one containing a 100 nm focus and one a 1 m focus, are available, each with multiple diagnostics, sample injection, pumpprobe and detector capabilities. The flexibility of CXI has enabled it to host a diverse range of experiments, from biological to extreme matter.

  16. The Soft X-ray research instrument at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dakovski, Georgi L.; Heimann, Philip; Holmes, Michael; Krupin, Oleg; European XFEL, Hamburg; Minitti, Michael P.; Mitra, Ankush; Moeller, Stefan; Rowen, Michael; Schlotter, William F.; et al

    2015-04-02

    The Soft X-ray Research instrument provides intense ultrashort X-ray pulses in the energy range 280–2000 eV. A diverse set of experimental stations may be installed to investigate a broad range of scientific topics such as ultrafast chemistry, highly correlated materials, magnetism, surface science, and matter under extreme conditions. A brief description of the main instrument components will be given, followed by some selected scientific highlights.

  17. The Coherent X-ray Imaging instrument at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liang, Mengning; Williams, Garth J.; Messerschmidt, Marc; Seibert, M. Marvin; Montanez, Paul A.; Hayes, Matt; Milathianaki, Despina; Aquila, Andrew; Hunter, Mark S.; Koglin, Jason E.; et al

    2015-04-15

    The Coherent X-ray Imaging (CXI) instrument specializes in hard X-ray, in-vacuum, high power density experiments in all areas of science. Two main sample chambers, one containing a 100 nm focus and one a 1 µm focus, are available, each with multiple diagnostics, sample injection, pump–probe and detector capabilities. The flexibility of CXI has enabled it to host a diverse range of experiments, from biological to extreme matter.

  18. DABAM: An open-source database of X-ray mirrors metrology

    SciTech Connect (OSTI)

    Sanchez del Rio, Manuel; Bianchi, Davide; Cocco, Daniele; Glass, Mark; Idir, Mourad; Metz, Jim; Raimondi, Lorenzo; Rebuffi, Luca; Reininger, Ruben; Shi, Xianbo; Siewert, Frank; Spielmann-Jaeggi, Sibylle; Takacs, Peter; Tomasset, Muriel; Tonnessen, Tom; Vivo, Amparo; Yashchuk, Valeriy

    2016-01-01

    An open-source database containing metrology data for X-ray mirrors is presented. It makes available metrology data (mirror heights and slopes profiles) that can be used with simulation tools for calculating the effects of optical surface errors in the performances of an optical instrument, such as a synchrotron beamline. A typical case is the degradation of the intensity profile at the focal position in a beamline due to mirror surface errors. This database for metrology (DABAM) aims to provide to the users of simulation tools the data of real mirrors. The data included in the database are described in this paper, with details of how the mirror parameters are stored. An accompanying software is provided to allow simple access and processing of these data, calculate the most usual statistical parameters, and also include the option of creating input files for most used simulation codes. In conclusion, some optics simulations are presented and discussed to illustrate the real use of the profiles from the database.

  19. DABAM: An open-source database of X-ray mirrors metrology

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sanchez del Rio, Manuel; Bianchi, Davide; Cocco, Daniele; Glass, Mark; Idir, Mourad; Metz, Jim; Raimondi, Lorenzo; Rebuffi, Luca; Reininger, Ruben; Shi, Xianbo; et al

    2016-01-01

    An open-source database containing metrology data for X-ray mirrors is presented. It makes available metrology data (mirror heights and slopes profiles) that can be used with simulation tools for calculating the effects of optical surface errors in the performances of an optical instrument, such as a synchrotron beamline. A typical case is the degradation of the intensity profile at the focal position in a beamline due to mirror surface errors. This database for metrology (DABAM) aims to provide to the users of simulation tools the data of real mirrors. The data included in the database are described in this paper,more » with details of how the mirror parameters are stored. An accompanying software is provided to allow simple access and processing of these data, calculate the most usual statistical parameters, and also include the option of creating input files for most used simulation codes. In conclusion, some optics simulations are presented and discussed to illustrate the real use of the profiles from the database.« less

  20. Scientific Needs for Future X-Ray Sources in the U.S.: A White Paper

    SciTech Connect (OSTI)

    Falcone , Roger; Stohr, Joachim; Bergmann, Uwe; Corlett, John; Galayda, John; Hastings, Jerry; Robert Hettel, Zahid Hussain; Kirz, Janos; McCurdy, Bill; Raubenheimer, Tor; Fernando Sannibale, John Seeman; Shen, Z.-X.; Schoenlein, Robert; Zholents, Alexander; /SLAC /LBL, Berkeley

    2008-10-22

    Many of the important challenges facing humanity, including developing alternative sources of energy and improving health, are being addressed by advances that demand the improved understanding and control of matter. While the visualization, exploration, and manipulation of macroscopic matter have long been technological goals, scientific developments in the twentieth century have focused attention on understanding matter on the atomic scale through the underlying framework of quantum mechanics. Of special interest is matter that consists of natural or artificial nanoscale building blocks defined either by atomic structural arrangements or by electron or spin formations created by collective correlation effects (Figure 1.1). The essence of the challenge to the scientific community has been expressed in five grand challenges for directing matter and energy recently formulated by the Basic Energy Sciences Advisory Committee. These challenges focus on increasing our understanding of, and ultimately control of, matter at the level of atoms, electrons, and spins, as illustrated in Figure 1.1. Meeting these challenges will require new tools that extend our reach into regions of higher spatial, temporal, and energy resolution. Since the fundamental interaction that holds matter together is of electromagnetic origin, it is intuitively clear that electromagnetic radiation is the critical tool in the study of material properties. On the level of atoms, electrons and spins, x rays have proved especially valuable.

  1. Scientific Needs for Future X-ray Sources in the U.S. -- A White Paper

    SciTech Connect (OSTI)

    Falcone, Roger; Stohr, Joachim; Bergmann, Uwe; Corlett, John; Galayda, John; Hastings, Jerry; Hettel, Bob; Hussain, Zahid; Kirz, Janos; McCurdy, Bill; Raubenheimer, Tor; Sannibale, Fernando; Seeman, John; Shen, Z.-X.; Schoenlein, Bob; Zholents, Alexander

    2008-10-16

    Many of the important challenges facing humanity, including developing alternative sources of energy and improving heath, are being addressed by advances that demand the improved understanding and control of matter. While the visualization, exploration, and manipulation of macroscopic matter have long been technological goals, scientific developments in the twentieth century have focused attention on understanding matter on the atomic scale through the underlying framework of quantum mechanics. Of special interest is matter that consists of natural or artificial nanoscale building blocks defined either by atomic structural arrangements or by electron or spin formations created by collective correlation effects. The essence of the challenge to the scientific community has been expressed in five grand challenges for directing matter and energy recently formulated by the Basic Energy Sciences Advisory Committee. These challenges focus on increasing our understanding of, and ultimately control of, matter at the level of atoms, electrons. and spins, as illustrated in Figure 1.1. Meeting these challenges will require new tools that extend our reach into regions of higher spatial, temporal, and energy resolution. Since the fundamental interaction that holds matter together is of electromagnetic origin, it is intuitively clear that electromagnetic radiation is the critical tool in the study of material properties. On the level of atoms, electrons and spins, x rays have proved especially valuable.

  2. APS Engineering Support Division (AES) | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    APS Engineering Support Division (AES) The APS Engineering Support Division provides reliable operations and technical support to the Advanced Photon Source user community. AES...

  3. Recollimation boundary layers as X-ray sources in young stellar jets

    SciTech Connect (OSTI)

    Gnther, Hans Moritz; Li, Zhi-Yun; Schneider, P. C.

    2014-11-01

    Young stars accrete mass from circumstellar disks and, in many cases, the accretion coincides with a phase of massive outflows, which can be highly collimated. Those jets emit predominantly in the optical and IR wavelength range. However, in several cases, X-ray and UV observations reveal a weak but highly energetic component in those jets. X-rays are observed both from stationary regions close to the star and from knots in the jet several hundred AU from the star. In this article, we show semianalytically that a fast stellar wind that is recollimated by the pressure from a slower, more massive disk wind can have the right properties to power stationary X-ray emission. The size of the shocked regions is compatible with observational constraints. Our calculations support a wind-wind interaction scenario for the high-energy emission near the base of young stellar object jets. For the specific case of DG Tau, a stellar wind with a mass-loss rate of 5 10{sup 10} M {sub ?} yr{sup 1} and a wind speed of 800 km s{sup 1} reproduces the observed X-ray spectrum. We conclude that a stellar wind recollimation shock is a viable scenario to power stationary X-ray emission close to the jet launching point.

  4. APS User News | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News & Calendars Users Home APS User News User Announcements Proposal Deadlines and Related Meetings Conferences and Workshops APS Seminars and Meetings APS Committees and Reviews...

  5. Ultrafast X-Ray Coherent Control

    SciTech Connect (OSTI)

    Reis, David

    2009-05-01

    This main purpose of this grant was to develop the nascent #12;eld of ultrafast x-ray science using accelerator-based sources, and originally developed from an idea that a laser could modulate the di#11;racting properties of a x-ray di#11;racting crystal on a fast enough time scale to switch out in time a shorter slice from the already short x-ray pulses from a synchrotron. The research was carried out primarily at the Advanced Photon Source (APS) sector 7 at Argonne National Laboratory and the Sub-Picosecond Pulse Source (SPPS) at SLAC; in anticipation of the Linac Coherent Light Source (LCLS) x-ray free electron laser that became operational in 2009 at SLAC (all National User Facilities operated by BES). The research centered on the generation, control and measurement of atomic-scale dynamics in atomic, molecular optical and condensed matter systems with temporal and spatial resolution . It helped develop the ultrafast physics, techniques and scienti#12;c case for using the unprecedented characteristics of the LCLS. The project has been very successful with results have been disseminated widely and in top journals, have been well cited in the #12;eld, and have laid the foundation for many experiments being performed on the LCLS, the world's #12;rst hard x-ray free electron laser.

  6. Advanced photon source proposal for upgrading the radiation safety of x-ray labs

    SciTech Connect (OSTI)

    Friedman, N.

    1991-07-01

    There are two adjacent x-ray labs in building 360, each having two entrance doors. Lab A240 has two x-ray machines and lab A248 has one. All machines are equipped with sliding safety windows and microswitches to monitor the state of the windows - open or closed. Two modes of operation are possible. (1) Secure Mode in which all safety windows are closed as indicated by the microswitches. This satisfies the interlock system, allowing the high voltage power supply to be turned on. (2) Bypass Mode in which the interlock system is overridden by a key-controlled selector switch and high voltage can be turned on with machine hutch window(s) open. The bypass mode is potentially unsafe because it is possible for an operator to leave a running instrument unattended while the windows are open. Thus, it is possible for someone entering the lab to expose themselves to x-rays.

  7. ANALYSIS OF X-RAY SPECTRA EMITTED FROM THE VENUS ECR ION SOURCE

    SciTech Connect (OSTI)

    Benitez, J.; Leitner, D.

    2008-01-01

    The Versatile Electron Cyclotron resonance ion source for Nuclear Science (VENUS), located at Lawrence Berkeley National Lab’s 88-inch cyclotron, extracts ion beams from a plasma created by ionizing a gas with energetic electrons. Liquid-helium cooled superconducting coils produce magnetic fi elds that confi ne the plasma and high microwave frequencies heat the electrons enough to allow for successive ionizations of the neutral gas atoms. The combination of strong plasma confi nement and high microwave frequencies results in VENUS’ production of record breaking ion beam currents and high charge state distributions. While in operation, VENUS produces signifi cant quantities of bremsstrahlung, in the form of x-rays, primarily through two processes: 1) electron-ion collisions within the plasma, and 2) electrons are lost from the plasma, collide with the plasma chamber wall, and radiate bremsstrahlung due to their sudden deceleration. The bremsstrahlung deposited into the plasma chamber wall is absorbed by the cold mass used to maintain superconductivity in the magnets and poses an additional heat load on the cryostat. In order for VENUS to reach its maximum operating potential of 10 kW of 28 GHz microwave heating frequency, the heat load posed by the emitted bremsstrahlung must be understood. In addition, studying the bremsstrahlung under various conditions will help further our understanding of the dynamics within the plasma. A code has been written, using the Python programming language, to analyze the recorded bremsstrahlung spectra emitted from the extraction end of VENUS. The code outputs a spectral temperature, which is relatively indicative of the temperature of the hot electrons, and total integrated count number corresponding to each spectra. Bremsstrahlung spectra are analyzed and compared by varying two parameters: 1) the heating frequency, 18 GHz and 28 GHz, and 2) the ratio between the minimum magnetic fi eld and the resonant magnetic fi eld, .44 and

  8. Effect of a concave grid mesh in a carbon nanotube-based field emission X-ray source

    SciTech Connect (OSTI)

    Kim, Hyun Suk; Castro, Edward Joseph D.; Lee, Choong Hun

    2014-10-15

    Highlights: • Successful design using a concave grid mesh for the focusing electron. • Much better X-ray image due to the concave grid mesh. • Higher anode current efficiency using the concave grid mesh versus a flat grid mesh. - Abstract: This study introduces a simple approach to improve the X-ray image quality produced by the carbon nanotube (CNT) field emitter X-ray source by altering the geometrical shape of the grid mesh from the conventional flat shape to a concave one in a typical triode structure. The concave shape of the grid electrode increases the effective number of the grid cells in the mesh, which exerted an electric field in the direction of the emitted electrons, thereby increasing the emission current reaching the anode. Furthermore, the curved mesh (concave grid mesh), which was responsible for the extraction of electrons from the field emitter, exhibited a focusing effect on the electron beam trajectory thereby, reducing the focal spot size impinging on the anode and resulted in a better spatial resolution of the X-ray images produced.

  9. Sector 3 : High Resolution X-ray Scattering | Advanced Photon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & workshops IXN Group Useful Links Current APS status ESAF System GUP System X-Ray Science Division My APS Portal Sector 3 : High Resolution X-ray Scattering Sector 3 is...

  10. EVIDENCE FOR POLAR X-RAY JETS AS SOURCES OF MICROSTREAM PEAKS IN THE SOLAR WIND

    SciTech Connect (OSTI)

    Neugebauer, Marcia

    2012-05-01

    It is proposed that the interplanetary manifestations of X-ray jets observed in solar polar coronal holes during periods of low solar activity are the peaks of the so-called microstreams observed in the fast polar solar wind. These microstreams exhibit velocity fluctuations of {+-}35 km s{sup -1}, higher kinetic temperatures, slightly higher proton fluxes, and slightly higher abundances of the low-first-ionization-potential element iron relative to oxygen ions than the average polar wind. Those properties can all be explained if the fast microstreams result from the magnetic reconnection of bright-point loops, which leads to X-ray jets which, in turn, result in solar polar plumes. Because most of the microstream peaks are bounded by discontinuities of solar origin, jets are favored over plumes for the majority of the microstream peaks.

  11. Absorption and Phase Contrast X-Ray Imaging in Paleontology Using Laboratory and Synchrotron Sources

    SciTech Connect (OSTI)

    Bidola, Pidassa; Stockmar, Marco; Achterhold, Klaus; Pfeiffer, Franz; Pacheco, Mirian L.A.F.; Soriano, Carmen; Beckmann, Felix; Herzen, Julia

    2015-10-01

    X-ray micro-computed tomography (CT) is commonly used for imaging of samples in biomedical or materials science research. Owing to the ability to visualize a sample in a nondestructive way, X-ray CT is perfectly suited to inspect fossilized specimens, which are mostly unique or rare. In certain regions of the world where important sedimentation events occurred in the Precambrian geological time, several fossilized animals are studied to understand questions related to their origin, environment, and life evolution. This article demonstrates the advantages of applying absorption and phase-contrast CT on the enigmatic fossil Corumbella werneri, one of the oldest known animals capable of building hard parts, originally discovered in Corumba (Brazil). Different tomographic setups were tested to visualize the fossilized inner structures: a commercial laboratory-based CT device, two synchrotron-based imaging setups using conventional absorption and propagation-based phase contrast, and a commercial X-ray microscope with a lens-coupled detector system, dedicated for radiography and tomography. Based on our results we discuss the strengths and weaknesses of the different imaging setups for paleontological studies.

  12. Advanced Power Sources Ltd APS | Open Energy Information

    Open Energy Info (EERE)

    Sources Ltd APS Jump to: navigation, search Name: Advanced Power Sources Ltd (APS) Place: United Kingdom Product: UK R&D company based at Loughborough University focusing on fuel...

  13. X-ray absorption spectroscopy of aluminum z-pinch plasma with tungsten backlighter planar wire array source

    SciTech Connect (OSTI)

    Osborne, G. C.; Kantsyrev, V. L.; Safronova, A. S.; Esaulov, A. A.; Weller, M. E.; Shrestha, I.; Shlyaptseva, V. V.; Ouart, N. D.

    2012-10-15

    Absorption features from K-shell aluminum z-pinch plasmas have recently been studied on Zebra, the 1.7 MA pulse power generator at the Nevada Terawatt Facility. In particular, tungsten plasma has been used as a semi-backlighter source in the generation of aluminum K-shell absorption spectra by placing a single Al wire at or near the end of a single planar W array. All spectroscopic experimental results were recorded using a time-integrated, spatially resolved convex potassium hydrogen phthalate (KAP) crystal spectrometer. Other diagnostics used to study these plasmas included x-ray detectors, optical imaging, laser shadowgraphy, and time-gated and time-integrated x-ray pinhole imagers. Through comparisons with previous publications, Al K-shell absorption lines are shown to be from much lower electron temperature ({approx}10-40 eV) plasmas than emission spectra ({approx}350-500 eV).

  14. OPTICAL EMISSION OF THE ULTRALUMINOUS X-RAY SOURCE NGC 5408 X-1: DONOR STAR OR IRRADIATED ACCRETION DISK?

    SciTech Connect (OSTI)

    Grise, F.; Kaaret, P.; Corbel, S.; Cseh, D.

    2012-02-01

    We obtained three epochs of simultaneous Hubble Space Telescope (HST)/Wide Field Camera 3 and Chandra observations of the ultraluminous X-ray source (ULX) NGC 5408 X-1. The counterpart of the X-ray source is seen in all HST filters, from the UV through the near-IR (NIR), and for the first time, we resolve the optical nebula around the ULX. We identified a small OB association near the ULX that may be the birthplace of the system. The stellar association is young, {approx}5 Myr, contains massive stars up to 40 M{sub Sun }, and is thus similar to associations seen near other ULXs, albeit younger. The UV/optical/NIR spectral energy distribution (SED) of the ULX counterpart is consistent with that of a B0I supergiant star. We are also able to fit the whole SED from the X-rays to the NIR with an irradiated disk model. The three epochs of data show only marginal variability and thus, we cannot firmly conclude on the nature of the optical emission.

  15. X-ray imaging of subsurface dynamics in high-Z materials at the Diamond Light Source

    SciTech Connect (OSTI)

    Eakins, D. E. Chapman, D. J.

    2014-12-15

    In this paper, we describe a new approach enabling study of subsurface dynamics in high-Z materials using the unique combination of high-energy synchrotron X-rays, a hybrid bunch structure, and a new dynamic loading platform. We detail the design and operation of the purpose-built, portable small bore gas-gun, which was installed on the I12 high-energy beamline at the Diamond Light Source and used to drive compression waves into solid and porous metal targets. Using a hybrid bunch structure and broadband X-ray pulses of up to 300 keV, radiographic snapshots were captured during various dynamic deformation processes in cm-scale specimens, thereby contributing to a more complete understanding of the evolution of mesoscale damage. Importantly, we highlight strategies for overcoming the challenges associated with using high-energy X-rays, and suggest areas for improvement needed to advance dynamic imaging through large-scale samples of relevance to engineering scenarios. These preliminary measurements demonstrate the feasibility of probing highly transient phenomena using the presented methodology.

  16. Quantitative evaluation of single-shot inline phase contrast imaging using an inverse compton x-ray source

    SciTech Connect (OSTI)

    Oliva, P.; Carpinelli, M.; Golosio, B.; Delogu, P.; Endrizzi, M.; Park, J.; Pogorelsky, I.; Yakimenko, V.; Williams, O.; Rosenzweig, J.

    2010-09-27

    Inverse compton scattering (ICS) x-ray sources are of current interest in biomedical imaging. We present an experimental demonstration of inline phase contrast imaging using a single picosecond pulse of the ICS source located at the BNL Accelerator Test Facility. The phase contrast effect is clearly observed. Its qualities are shown to be in agreement with the predictions of theoretical models through comparison of experimental and simulated images of a set of plastic wires of differing composition and size. Finally, we display an application of the technique to a biological sample, confirming the possibility of time-resolved imaging on the picosecond scale.

  17. Soft X-ray microscopy in the spectral region of 'carbon window' with the use of multilayer optics and a laser-plasma source

    SciTech Connect (OSTI)

    Artyukov, I. A. Vinogradov, A. V.; Bugayev, Ye. A.; Devizenko, A. Yu.; Kondratenko, V. V.; Kasyanov, Yu. S.

    2009-11-15

    This paper reports on the fabrication and testing of multilayer mirrors for X-ray optical systems operating in the 'carbon window' region (at wavelengths from 4.5 to 5.0 nm) and the results of their application in soft X-ray imaging of the internal structure of organic objects. The developed approaches to the fabrication and control of graded Co/C multilayer coatings have made it possible to create an X-ray multimirror system with a maximum known entrance aperture and throughput. The use of the developed high-spatial-resolution X-ray optics can significantly extend the field of practical application of soft X-ray absorption microscopy based on compact laser-plasma sources.

  18. Toward Control of Matter: Basic Energy Science Needs for a New Class of X-Ray Light Sources

    SciTech Connect (OSTI)

    Arenholz, Elke; Belkacem, Ali; Cocke, Lew; Corlett, John; Falcone, Roger; Fischer, Peter; Fleming, Graham; Gessner, Oliver; Hasan, M. Zahid; Hussain, Zahid; Kevan, Steve; Kirz, Janos; McCurdy, Bill; Nelson, Keith; Neumark, Dan; Nilsson, Anders; Siegmann, Hans; Stocks, Malcolm; Schafer, Ken; Schoenlein, Robert; Spence, John; Weber, Thorsten

    2008-09-24

    Over the past quarter century, light-source user facilities have transformed research in areas ranging from gas-phase chemical dynamics to materials characterization. The ever-improving capabilities of these facilities have revolutionized our ability to study the electronic structure and dynamics of atoms, molecules, and even the most complex new materials, to understand catalytic reactions, to visualize magnetic domains, and to solve protein structures. Yet these outstanding facilities still have limitations well understood by their thousands of users. Accordingly, over the past several years, many proposals and conceptual designs for"next-generation" x-ray light sources have been developed around the world. In order to survey the scientific problems that might be addressed specifically by those new light sources operating below a photon energy of about 3 keV and to identify the scientific requirements that should drive the design of such facilities, a workshop"Science for a New Class of Soft X-Ray Light Sources" was held in Berkeley in October 2007. From an analysisof the most compelling scientific questions that could be identified and the experimental requirements for answering them, we set out to define, without regard to the specific technologies upon which they might be based, the capabilities such light sources would have to deliver in order to dramatically advance the state of research in the areas represented in the programs of the Department of Energy's Office of Basic Energy Sciences (BES). This report is based on the workshop presentations and discussions.

  19. Characterisation of a MeV Bremsstrahlung x-ray source produced from a high intensity laser for high areal density object radiography

    SciTech Connect (OSTI)

    Courtois, C.; Compant La Fontaine, A.; Bazzoli, S.; Bourgade, J. L.; Gazave, J.; Lagrange, J. M.; Landoas, O.; Dain, L. Le; Pichoff, N.; Edwards, R.; Aedy, C.; Mastrosimone, D.; Pien, G.; Stoeckl, C.

    2013-08-15

    Results of an experiment to characterise a MeV Bremsstrahlung x-ray emission created by a short (<10 ps) pulse, high intensity (1.4 × 10{sup 19} W/cm{sup 2}) laser are presented. X-ray emission is characterized using several diagnostics; nuclear activation measurements, a calibrated hard x-ray spectrometer, and dosimeters. Results from the reconstructed x-ray energy spectra are consistent with numerical simulations using the PIC and Monte Carlo codes between 0.3 and 30 MeV. The intense Bremsstrahlung x-ray source is used to radiograph an image quality indicator (IQI) heavily filtered with thick tungsten absorbers. Observations suggest that internal features of the IQI can be resolved up to an external areal density of 85 g/cm{sup 2}. The x-ray source size, inferred by the radiography of a thick resolution grid, is estimated to be approximately 400 μm (full width half maximum of the x-ray source Point Spread Function)

  20. Bright, Coherent, Ultrafast Soft X-Ray Harmonics Spanning the Water Window from a Tabletop Light Source

    SciTech Connect (OSTI)

    Chen, M.-C.; Arpin, P.; Popmintchev, T.; Gerrity, M.; Zhang, B.; Seaberg, M.; Popmintchev, D.; Murnane, M. M.; Kapteyn, H. C.

    2010-10-22

    We demonstrate fully phase-matched high harmonic emission spanning the water window spectral region important for nano- and bioimaging and a breadth of materials and molecular dynamics studies. We also generate the broadest bright coherent bandwidth ({approx_equal}300 eV) to date from any light source, small or large, that is consistent with a single subfemtosecond burst. The harmonic photon flux at 0.5 keV is 10{sup 3} higher than demonstrated previously. This work extends bright, spatially coherent, attosecond pulses into the soft x-ray region for the first time.

  1. DISCOVERY OF AN ULTRASOFT X-RAY TRANSIENT SOURCE IN THE 2XMM CATALOG: A TIDAL DISRUPTION EVENT CANDIDATE

    SciTech Connect (OSTI)

    Lin Dacheng; Webb, Natalie A.; Barret, Didier; Carrasco, Eleazar R.; Farrell, Sean A.

    2011-09-01

    We have discovered an ultrasoft X-ray transient source, 2XMMi J184725.1-631724, which was detected serendipitously in two XMM-Newton observations in the direction of the center of the galaxy IC 4765-f01-1504 at a redshift of 0.0353. These two observations were separated by 211 days, with the 0.2-10 keV absorbed flux increasing by a factor of about nine. Their spectra are best described by a model dominated by a thermal disk or a single-temperature blackbody component (contributing {approx}>80% of the flux) plus a weak power-law component. The thermal emission has a temperature of a few tens of eV, and the weak power-law component has a photon index of {approx}3.5. Similar to the black hole X-ray binaries in the thermal state, our source exhibits an accretion disk whose luminosity appears to follow the L{proportional_to}T {sup 4} relation. This would indicate that the black hole mass is about 10{sup 5}-10{sup 6} M{sub sun} using the best-fitting inner disk radius. Both XMM-Newton observations show variability of about 21% on timescales of hours, which can be explained as due to fast variations in the mass accretion rate. The source was not detected by ROSAT in an observation in 1992, indicating a variability factor of {approx}>64 over longer timescales. The source was not detected again in X-rays in a Swift observation in 2011 February, implying a flux decrease by a factor of {approx}>12 since the last XMM-Newton observation. The transient nature, in addition to the extreme softness of the X-ray spectra and the inactivity of the galaxy implied by the lack of strong optical emission lines, makes it a candidate tidal disruption event. If this is the case, the first XMM-Newton observation would have been in the rising phase and the second one in the decay phase.

  2. Nitrogen incorporated ultrananocrystalline diamond based field emitter array for a flat-panel x-ray source

    SciTech Connect (OSTI)

    Posada, Chrystian M.; Grant, Edwin J.; Lee, Hyoung K.; Castaño, Carlos H.; Divan, Ralu; Sumant, Anirudha V.; Rosenmann, Daniel; Stan, Liliana

    2014-04-07

    A field emission based flat-panel transmission x-ray source is being developed as an alternative for medical and industrial imaging. A field emitter array (FEA) prototype based on nitrogen incorporated ultrananocrystalline diamond film has been fabricated to be used as the electron source of this flat panel x-ray source. The FEA prototype was developed using conventional microfabrication techniques. The field emission characteristics of the FEA prototype were evaluated. Results indicated that emission current densities of the order of 6 mA/cm{sup 2} could be obtained at electric fields as low as 10 V/μm to 20 V/μm. During the prototype microfabrication process, issues such as delamination of the extraction gate and poor etching of the SiO{sub 2} insulating layer located between the emitters and the extraction layer were encountered. Consequently, alternative FEA designs were investigated. Experimental and simulation data from the first FEA prototype were compared and the results were used to evaluate the performance of alternative single and double gate designs that would yield better field emission characteristics compared to the first FEA prototype. The best simulation results are obtained for the double gate FEA design, when the diameter of the collimator gate is around 2.6 times the diameter of the extraction gate.

  3. SPECTROSCOPIC FOLLOW-UP OF X-RAY SOURCES IN THE ChaMPlane SURVEY: IDENTIFICATION OF A NEW CATACLYSMIC VARIABLE

    SciTech Connect (OSTI)

    Servillat, M.; Grindlay, J.; Van den Berg, M.; Hong, J.; Zhao, P.; Allen, B.

    2012-03-20

    We present a multi-object optical spectroscopy follow-up study of X-ray sources in a field along the Galactic plane (l = 327.{sup 0}42, b = 2.{sup 0}26) which is part of the Chandra Multi-wavelength Plane survey (ChaMPlane). We obtained spectra for 46 stars, including 15 likely counterparts to X-ray sources, and sources showing an H{alpha} color excess. This has led to the identification of a new cataclysmic variable (CV), CXOPS J154305.5-522709, also named ChaMPlane Bright Source 7 (CBS 7), and we identified eight X-ray sources in the field as active late-type stars. CBS 7 was previously studied in X-rays and showed a hard spectrum and two periods: 1.22 {+-} 0.08 hr and 2.43 {+-} 0.26 hr. We present here clear evidence that the source is a CV through the detection of H, He I, and He II emission lines in its optical spectrum. The hard X-ray spectrum and the presence of the He II {lambda}4686 in emission with a large equivalent width suggest a magnetic CV. The near-infrared counterpart is significantly variable, and we found a period consistent with the longest X-ray period at 2.39 {+-} 0.05 hr but not the shortest X-ray period. If this period is the orbital period, this would place the system in the CV period gap. The possible orbital period suggests a dM4 {+-} 1 companion star. The distance is then estimated to be {approx}1 kpc. The system could be a relatively hard and X-ray luminous polar or an intermediate polar, possibly nearly synchronous.

  4. Advanced Research in Diesel Fuel Sprays Using X-rays From The Advanced Photon Source

    SciTech Connect (OSTI)

    Powell, C

    2003-08-24

    The fuel distribution and degree of atomization in the combustion chamber is a primary factor in the formation of emissions in diesel engines. A number of diagnostics to study sprays have been developed over the last twenty years; these are primarily based on visible light measurement techniques. However, visible light scatters strongly from fuel droplets surrounding the spray, which prevents penetration of the light. This has made quantitative measurements of the spray core very difficult, particularly in the relatively dense near- nozzle region [1-3]. For this reason we developed the x-ray technique to study the properties of fuel sprays in a quantitative way [4]. The x-ray technique is not limited by scattering, which allows it to be used to make quantitative measurements of the fuel distribution. These measurements are particularly effective in the region near the nozzle where other techniques fail. This technique has led to a number of new insights into the structure of fuel sprays, including the discovery and quantitative measurement of shock waves generated under some conditions by high-pressure diesel sprays [5]. We also performed the first-ever quantitative measurements of the time-resolved mass distribution in the near-nozzle region, which demonstrated that the spray is atomized only a few nozzle diameters from the orifice [6]. Our recent work has focused on efforts to make measurements under pressurized ambient conditions. We have recently completed a series of measurements at pressures up to 5 bar and are looking at the effect of ambient pressure on the structure of the spray. The enclosed figure shows the mass distributions measured for 1,2, and 5 bar ambient pressures. As expected, the penetration decreases as the pressure increases. This leads to changes in the measured mass distribution, including an increase in the density at the leading edge of the spray. We have also observed a narrowing in the cone angle of the spray core as the pressure

  5. APS Seminars & Meetings | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Series A lunchtime gathering with presentations of the newest results from the experiment hall floor. Speakers are not announced in advance. Monthly APS Colloquium A...

  6. APS User Information | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to APS, site access permission, user agreement, training, contactbio information your research: proposals, ESAFs, EEFs action items: things that need to be addressed before you...

  7. APS Map | Overview | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technical facility: the linear accelerator, the booster synchrotron, the electron storage ring, insertion devices, and the experiment hall. APS systems map Next: Linear Accelerator...

  8. A dedicated superbend x-ray microdiffraction beamline for materials, geo-, and environmental sciences at the advanced light source

    SciTech Connect (OSTI)

    Advanced Light Source; Kunz, Martin; Tamura, Nobumichi; Chen, Kai; MacDowell, Alastair A.; Celestre, Richard S.; Church, Matthew M.; Fakra, Sirine; Domning, Edward E.; Glossinger, James M.; Kirschman, Jonathan L.; Morrison, Gregory Y.; Plate, Dave W.; Smith, Brian V.; Warwick, Tony; Padmore, Howard A.; Ustundag, Ersan; Yashchuk, Valeriy V.

    2009-03-24

    A new facility for microdiffraction strain measurements and microfluorescence mapping has been built on beamline 12.3.2 at the advanced light source of the Lawrence Berkeley National Laboratory. This beamline benefits from the hard x-radiation generated by a 6 T superconducting bending magnet (superbend) This provides a hard x-ray spectrum from 5 to 22 keV and a flux within a 1 mu m spot of ~;;5x109 photons/ s (0.1percent bandwidth at 8 keV). The radiation is relayed from the superbend source to a focus in the experimental hutch by a toroidal mirror. The focus spot is tailored bytwo pairs of adjustable slits, which serve as secondary source point. Inside the lead hutch, a pair of Kirkpatrick-Baez (KB) mirrors placed in a vacuum tank refocuses the secondary slit source onto the sample position. A new KB-bending mechanism with active temperature stabilization allows for more reproducible and stable mirror bending and thus mirror focusing. Focus spots around 1 um are routinely achieved and allow a variety of experiments, which have in common the need of spatial resolution. The effective spatial resolution (~;;0.2 mu m) is limited by a convolution of beam size, scan-stage resolution, and stage stability. A four-bounce monochromator consisting of two channel-cut Si(111) crystals placed between the secondary source and KB-mirrors allows for easy changes between white-beam and monochromatic experiments while maintaining a fixed beam position. High resolution stage scans are performed while recording a fluorescence emission signal or an x-ray diffraction signal coming from either a monochromatic or a white focused beam. The former allows for elemental mapping, whereas the latter is used to produce two-dimensional maps of crystal-phases, -orientation, -texture, and -strain/stress. Typically achieved strain resolution is in the order of 5x10-5 strain units. Accurate sample positioning in the x-ray focus spot is achieved with a commercial laser-triangulation unit. A Si

  9. Efficient multi-keV x-ray source generated by nanosecond laser pulse irradiated multi-layer thin foils target

    SciTech Connect (OSTI)

    Tu, Shao-yong; Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900 ; Hu, Guang-yue Zhao, Bin; Zheng, Jian; Miao, Wen-yong; Yuan, Yong-teng; Zhan, Xia-yu; Hou, Li-fei; Jiang, Shao-en; Ding, Yong-kun

    2014-04-15

    A new target configuration is proposed to generate efficient multi-keV x-ray source using multiple thin foils as x-ray emitters. The target was constructed with several layers of thin foils, which were placed with a specific, optimized spacing. The thin foils are burned though one by one by a nanosecond-long laser pulse, which produced a very large, hot, underdense plasma. One-dimensional radiation hydrodynamic simulations show that the emission region and the multi-keV x-ray flux generated by multi-layer thin foil target are similar to that of the low-density gas or foam target, which is currently a bright multi-keV x-ray source generated by laser heating. Detailed analysis of a range of foil thicknesses showed that a layer-thickness of 0.1 μm is thin enough to generate an efficient multi-keV x-ray source. Additionally, this type of target can be easily manufactured, compared with the complex techniques for fabrication of low-density foam targets. Our preliminary experimental results also verified that the size of multi-keV x-ray emission region could be enhanced significantly by using a multi-layer Ti thin foil target.

  10. A novel vacuum spectrometer for total reflection x-ray fluorescence analysis with two exchangeable low power x-ray sources for the analysis of low, medium, and high Z elements in sequence

    SciTech Connect (OSTI)

    Wobrauschek, P. Prost, J.; Ingerle, D.; Kregsamer, P.; Streli, C.; Misra, N. L.

    2015-08-15

    The extension of the detectable elemental range with Total Reflection X-ray Fluorescence (TXRF) analysis is a challenging task. In this paper, it is demonstrated how a TXRF spectrometer is modified to analyze elements from carbon to uranium. Based on the existing design of a vacuum TXRF spectrometer with a 12 specimen sample changer, the following components were renewed: the silicon drift detector with 20 mm{sup 2} active area and having a special ultra-thin polymer window allowing the detection of elements from carbon upwards. Two exchangeable X-ray sources guarantee the efficient excitation of both low and high Z elements. These X-ray sources were two light-weighted easily mountable 35 W air-cooled low-power tubes with Cr and Rh anodes, respectively. The air cooled tubes and the Peltier-cooled detector allowed to construct a transportable tabletop spectrometer with compact dimensions, as neither liquid nitrogen cooling for the detector nor a water cooling circuit and a bulky high voltage generator for the X-ray tubes are required. Due to the excellent background conditions as a result of the TXRF geometry, detection limits of 150 ng for C, 12 ng for F, and 3.3 ng for Na have been obtained using Cr excitation in vacuum. For Rh excitation, the detection limits of 90 pg could be achieved for Sr. Taking 10 to 20 μl of sample volume, extrapolated detection limits in the ng/g (ppb) range are resulting in terms of concentration.

  11. Developing a bright 17 keV x-ray source for probing high-energy-density states of matter at high spatial resolution

    SciTech Connect (OSTI)

    Huntington, C. M.; Park, H.-S.; Maddox, B. R.; Barrios, M. A.; Benedetti, R.; Braun, D. G.; Landen, O. L.; Wehrenberg, C. E.; Remington, B. A.; Hohenberger, M.; Regan, S. P.

    2015-04-15

    A set of experiments were performed on the National Ignition Facility (NIF) to develop and optimize a bright, 17 keV x-ray backlighter probe using laser-irradiated Nb foils. High-resolution one-dimensional imaging was achieved using a 15 μm wide slit in a Ta substrate to aperture the Nb He{sub α} x-rays onto an open-aperture, time integrated camera. To optimize the x-ray source for imaging applications, the effect of laser pulse shape and spatial profile on the target was investigated. Two laser pulse shapes were used—a “prepulse” shape that included a 3 ns, low-intensity laser foot preceding the high-energy 2 ns square main laser drive, and a pulse without the laser foot. The laser spatial profile was varied by the use of continuous phase plates (CPPs) on a pair of shots compared to beams at best focus, without CPPs. A comprehensive set of common diagnostics allowed for a direct comparison of imaging resolution, total x-ray conversion efficiency, and x-ray spectrum between shots. The use of CPPs was seen to reduce the high-energy tail of the x-ray spectrum, whereas the laser pulse shape had little effect on the high-energy tail. The measured imaging resolution was comparably high for all combinations of laser parameters, but a higher x-ray flux was achieved without phase plates. This increased flux was the result of smaller laser spot sizes, which allowed us to arrange the laser focal spots from multiple beams and produce an x-ray source which was more localized behind the slit aperture. Our experiments are a first demonstration of point-projection geometry imaging at NIF at the energies (>10 keV) necessary for imaging denser, higher-Z targets than have previously been investigated.

  12. X-ray shearing interferometer

    DOE Patents [OSTI]

    Koch, Jeffrey A.

    2003-07-08

    An x-ray interferometer for analyzing high density plasmas and optically opaque materials includes a point-like x-ray source for providing a broadband x-ray source. The x-rays are directed through a target material and then are reflected by a high-quality ellipsoidally-bent imaging crystal to a diffraction grating disposed at 1.times. magnification. A spherically-bent imaging crystal is employed when the x-rays that are incident on the crystal surface are normal to that surface. The diffraction grating produces multiple beams which interfere with one another to produce an interference pattern which contains information about the target. A detector is disposed at the position of the image of the target produced by the interfering beams.

  13. Inelastic X-ray and Nuclear Resonant Scattering | Advanced Photon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    XSD-IXN XSD-IXN Home Staff Inelastic X-ray and Nuclear Resonant Scattering The Inelastic X-ray and Nuclear Resonant Scattering group operates beamlines at APS Sectors 3, 9 and 30....

  14. Determining X-ray source intensity and confidence bounds in crowded fields

    SciTech Connect (OSTI)

    Primini, F. A.; Kashyap, V. L.

    2014-11-20

    We present a rigorous description of the general problem of aperture photometry in high-energy astrophysics photon-count images, in which the statistical noise model is Poisson, not Gaussian. We compute the full posterior probability density function for the expected source intensity for various cases of interest, including the important cases in which both source and background apertures contain contributions from the source, and when multiple source apertures partially overlap. A Bayesian approach offers the advantages of allowing one to (1) include explicit prior information on source intensities, (2) propagate posterior distributions as priors for future observations, and (3) use Poisson likelihoods, making the treatment valid in the low-counts regime. Elements of this approach have been implemented in the Chandra Source Catalog.

  15. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging

  16. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging

  17. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging

  18. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging

  19. Phase-sensitive X-ray imager

    DOE Patents [OSTI]

    Baker, Kevin Louis

    2013-01-08

    X-ray phase sensitive wave-front sensor techniques are detailed that are capable of measuring the entire two-dimensional x-ray electric field, both the amplitude and phase, with a single measurement. These Hartmann sensing and 2-D Shear interferometry wave-front sensors do not require a temporally coherent source and are therefore compatible with x-ray tubes and also with laser-produced or x-pinch x-ray sources.

  20. ANALYSIS OF A STATE CHANGING SUPERSOFT X-RAY SOURCE IN M31 (Journal...

    Office of Scientific and Technical Information (OSTI)

    Future observations of this and other state changers can provide the information needed to determine the nature(s) of these intriguing new sources. Authors: Patel, B. 1 ; Di ...

  1. Optimizing laser produced plasmas for efficient extreme ultraviolet and soft X-ray light sources

    SciTech Connect (OSTI)

    Sizyuk, Tatyana; Hassanein, Ahmed [Center for Materials under Extreme Environment, School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

    2014-08-15

    Photon sources produced by laser beams with moderate laser intensities, up to 10{sup 14?}W/cm{sup 2}, are being developed for many industrial applications. The performance requirements for high volume manufacture devices necessitate extensive experimental research supported by theoretical plasma analysis and modeling predictions. We simulated laser produced plasma sources currently being developed for several applications such as extreme ultraviolet lithography using 13.5%??1% nm bandwidth, possibly beyond extreme ultraviolet lithography using 6. nm wavelengths, and water-window microscopy utilizing 2.48?nm (La-?) and 2.88?nm (He-?) emission. We comprehensively modeled plasma evolution from solid/liquid tin, gadolinium, and nitrogen targets as three promising materials for the above described sources, respectively. Results of our analysis for plasma characteristics during the entire course of plasma evolution showed the dependence of source conversion efficiency (CE), i.e., laser energy to photons at the desired wavelength, on plasma electron density gradient. Our results showed that utilizing laser intensities which produce hotter plasma than the optimum emission temperatures allows increasing CE for all considered sources that, however, restricted by the reabsorption processes around the main emission region and this restriction is especially actual for the 6.?nm sources.

  2. X-band RF Photoinjector for Laser Compton X-ray and Gamma-ray Sources

    SciTech Connect (OSTI)

    Marsh, R. A.; Anderson, G. G.; Anderson, S. G.; Gibson, D. J.; Barty, C. J.

    2015-05-06

    Extremely bright narrow bandwidth gamma-ray sources are expanding the application of accelerator technology and light sources in new directions. An X-band test station has been commissioned at LLNL to develop multi-bunch electron beams. This multi-bunch mode will have stringent requirements for the electron bunch properties including low emittance and energy spread, but across multiple bunches. The test station is a unique facility featuring a 200 MV/m 5.59 cell X-band photogun powered by a SLAC XL4 klystron driven by a Scandinova solid-state modulator. This paper focuses on its current status including the generation and initial characterization of first electron beam. Design and installation of the inverse-Compton scattering interaction region and upgrade paths will be discussed along with future applications.

  3. Development of extreme ultraviolet and soft x-ray multilayer optics for scientific studies with femtosecond/attosecond sources

    SciTech Connect (OSTI)

    Aquila, Andrew Lee

    2009-05-21

    The development of multilayer optics for extreme ultraviolet (EUV) radiation has led to advancements in many areas of science and technology, including materials studies, EUV lithography, water window microscopy, plasma imaging, and orbiting solar physics imaging. Recent developments in femtosecond and attosecond EUV pulse generation from sources such as high harmonic generation lasers, combined with the elemental and chemical specificity provided by EUV radiation, are opening new opportunities to study fundamental dynamic processes in materials. Critical to these efforts is the design and fabrication of multilayer optics to transport, focus, shape and image these ultra-fast pulses This thesis describes the design, fabrication, characterization, and application of multilayer optics for EUV femtosecond and attosecond scientific studies. Multilayer mirrors for bandwidth control, pulse shaping and compression, tri-material multilayers, and multilayers for polarization control are described. Characterization of multilayer optics, including measurement of material optical constants, reflectivity of multilayer mirrors, and metrology of reflected phases of the multilayer, which is critical to maintaining pulse size and shape, were performed. Two applications of these multilayer mirrors are detailed in the thesis. In the first application, broad bandwidth multilayers were used to characterize and measure sub-100 attosecond pulses from a high harmonic generation source and was performed in collaboration with the Max-Planck institute for Quantum Optics and Ludwig- Maximilians University in Garching, Germany, with Professors Krausz and Kleineberg. In the second application, multilayer mirrors with polarization control are useful to study femtosecond spin dynamics in an ongoing collaboration with the T-REX group of Professor Parmigiani at Elettra in Trieste, Italy. As new ultrafast x-ray sources become available, for example free electron lasers, the multilayer designs

  4. Real-time, high-resolution x-ray diffraction measurements on shocked crystals at a synchrotron facility

    SciTech Connect (OSTI)

    Gupta, Y. M.; Turneaure, Stefan J.; Perkins, K.; Zimmerman, K.; Arganbright, N.; Shen, G.; Chow, P.

    2012-12-15

    The Advanced Photon Source (APS) at Argonne National Laboratory was used to obtain real-time, high-resolution x-ray diffraction measurements to determine the microscopic response of shock-compressed single crystals. Disk shaped samples were subjected to plane shock wave compression by impacting them with half-inch diameter, flat-faced projectiles. The projectiles were accelerated to velocities ranging between 300 and 1200 m/s using a compact powder gun designed specifically for use at a synchrotron facility. The experiments were designed to keep the sample probed volume under uniaxial strain and constant stress for a duration longer than the 153.4 ns spacing between x-ray bunches. X-rays from a single pulse (<100 ps duration) out of the periodic x-ray pulses emitted by the synchrotron were used for the diffraction measurements. A synchronization and x-ray detection technique was developed to ensure that the measured signal was obtained unambiguously from the desired x-ray pulse incident on the sample while the sample was in a constant uniaxial strain state. The synchronization and x-ray detection techniques described can be used for a variety of x-ray measurements on shock compressed solids and liquids at the APS. Detailed procedures for applying the Bragg-Brentano parafocusing approach to single crystals at the APS are presented. Analytic developments to determine the effects of crystal substructure and non-ideal geometry on the diffraction pattern position and shape are presented. Representative real-time x-ray diffraction data, indicating shock-induced microstructural changes, are presented for a shock-compressed Al(111) sample. The experimental developments presented here provided, in part, the impetus for the Dynamic Compression Sector (DCS) currently under development at the APS. Both the synchronization/x-ray detection methods and the analysis equations for high-resolution single crystal x-ray diffraction can be used at the DCS.

  5. X-ray crystallographic analysis of adipocyte fatty acid binding...

    Office of Scientific and Technical Information (OSTI)

    X-ray crystallographic analysis of adipocyte fatty acid binding protein (aP2) modified ... LIFE SCIENCES; ALDEHYDES; CARBOXYLIC ACIDS; CRYSTAL STRUCTURE; IN VIVO; INFLAMMATION; ...

  6. Laser-free RF-gun as a combined source of THz and ps-sub-ps X-rays

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Agustsson, R.; Boucher, S.; Finn, O.; Hartzell, J.; Ruelas, M.; Smirnov, A. V.; Storms, S.; Ning, Z.; Murokh, A.; Campese, T.; et al

    2015-01-01

    A coherent, mm-sub-mm-wave source driven by a RF electron gun is proposed for wide research applications as well as auxiliary inspection and screening, safe imaging, cancer diagnostics, surface defectoscopy, and enhanced time-domain spectroscopy. It allows generation of high peak and average THz-sub-THz radiation power provided by beam pre-bunching and chirping in the RF gun followed by microbunching in magnetic compressor, and resonant Cherenkov radiation of an essentially flat beam in a robust, ~inch-long, planar, mm-sub-mm gap structure. The proof-of-principle has been successfully demonstrated in Phase I on a 5 MeV beam of L-band thermionic injector of Idaho Accelerator Center. Themore » system can also deliver an intense, ps-sub-ps bursts of low-to-moderate dose of relativistic electrons and X-ray radiation produced by the same beam required for pulsed radiolysis as well as to enhance screening efficiency, throughput and safety.« less

  7. Laser-free RF-gun as a combined source of THz and ps-sub-ps X-rays

    SciTech Connect (OSTI)

    Agustsson, R.; Boucher, S.; Finn, O.; Hartzell, J.; Ruelas, M.; Smirnov, A. V.; Storms, S.; Ning, Z.; Murokh, A.; Campese, T.; Faillace, L.; Verma, A.; Kim, Y.; Buaphad, P.; Andrews, A.; Berls, B.; Eckman, C.; Folkman, K.; Knowles-Swingle, A.; O’Neill, C.; Smith, M.; Grandsaert, T.; van der Geer, B.; de Loos, M.; Berg, W. J.; Sereno, N. S.; Sun, Y.; Zholents, A. A.

    2015-01-01

    A coherent, mm-sub-mm-wave source driven by a RF electron gun is proposed for wide research applications as well as auxiliary inspection and screening, safe imaging, cancer diagnostics, surface defectoscopy, and enhanced time-domain spectroscopy. It allows generation of high peak and average THz-sub-THz radiation power provided by beam pre-bunching and chirping in the RF gun followed by microbunching in magnetic compressor, and resonant Cherenkov radiation of an essentially flat beam in a robust, ~inch-long, planar, mm-sub-mm gap structure. The proof-of-principle has been successfully demonstrated in Phase I on a 5 MeV beam of L-band thermionic injector of Idaho Accelerator Center. The system can also deliver an intense, ps-sub-ps bursts of low-to-moderate dose of relativistic electrons and X-ray radiation produced by the same beam required for pulsed radiolysis as well as to enhance screening efficiency, throughput and safety.

  8. NUSTAR AND XMM-NEWTON OBSERVATIONS OF THE EXTREME ULTRALUMINOUS X-RAY SOURCE NGC 5907 ULX1: A VANISHING ACT

    SciTech Connect (OSTI)

    Walton, D. J.; Stern, D.; Harrison, F. A.; Fuerst, F.; Grefenstette, B. W.; Madsen, K. K.; Rana, V.; Bachetti, M.; Barret, D.; Webb, N.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Hailey, C. J.; Middleton, M. J.; Roberts, T. P.; Sutton, A. D.; Zhang, W.

    2015-02-01

    We present results obtained from two broadband X-ray observations of the extreme ultraluminous X-ray source (ULX) NGC 5907 ULX1, known to have a peak X-ray luminosity of ∼5 × 10{sup 40} erg s{sup –1}. These XMM-Newton and NuSTAR observations, separated by only ∼4 days, revealed an extreme level of short-term flux variability. In the first epoch, NGC 5907 ULX1 was undetected by NuSTAR, and only weakly detected (if at all) with XMM-Newton, while in the second NGC 5907 ULX1 was clearly detected at high luminosity by both missions. This implies an increase in flux of ∼2 orders of magnitude or more during this ∼4 day window. We argue that this is likely due to a rapid rise in the mass accretion rate, rather than to a transition from an extremely obscured to an unobscured state. During the second epoch we observed the broadband 0.3-20.0 keV X-ray luminosity to be (1.55 ± 0.06) × 10{sup 40} erg s{sup –1}, similar to the majority of the archival X-ray observations. The broadband X-ray spectrum obtained from the second epoch is inconsistent with the low/hard accretion state observed in Galactic black hole binaries, but is well modeled with a simple accretion disk model incorporating the effects of photon advection. This strongly suggests that when bright, NGC 5907 ULX1 is a high-Eddington accretor.

  9. X-ray lithography using holographic images

    DOE Patents [OSTI]

    Howells, Malcolm R.; Jacobsen, Chris

    1995-01-01

    A non-contact X-ray projection lithography method for producing a desired X-ray image on a selected surface of an X-ray-sensitive material, such as photoresist material on a wafer, the desired X-ray image having image minimum linewidths as small as 0.063 .mu.m, or even smaller. A hologram and its position are determined that will produce the desired image on the selected surface when the hologram is irradiated with X-rays from a suitably monochromatic X-ray source of a selected wavelength .lambda.. On-axis X-ray transmission through, or off-axis X-ray reflection from, a hologram may be used here, with very different requirements for monochromaticity, flux and brightness of the X-ray source. For reasonable penetration of photoresist materials by X-rays produced by the X-ray source, the wavelength X, is preferably chosen to be no more than 13.5 nm in one embodiment and more preferably is chosen in the range 1-5 nm in the other embodiment. A lower limit on linewidth is set by the linewidth of available microstructure writing devices, such as an electron beam.

  10. X-ray transmissive debris shield

    DOE Patents [OSTI]

    Spielman, Rick B.

    1996-01-01

    An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

  11. X-ray transmissive debris shield

    DOE Patents [OSTI]

    Spielman, R.B.

    1996-05-21

    An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

  12. Diagnostics for the optimization of an 11 keV inverse Compton scattering x-ray source

    SciTech Connect (OSTI)

    Chauchat, A.-S.; Brasile, J.-P; Le Flanchec, V.; Negre, J.-P.; Binet, A.; Ortega, J.-M.

    2013-04-19

    In a scope of a collaboration between Thales Communications and Security and CEA DAM DIF, 11 keV Xrays were produced by inverse Compton scattering on the ELSA facility. In this type of experiment, X-ray observation lies in the use of accurate electron and laser beam interaction diagnostics and on fitted X-ray detectors. The low interaction probability between < 100 {mu}m width, 12 ps [rms] length electron and photon pulses requires careful optimization of pulse spatial and temporal covering. Another issue was to observe 11 keV X-rays in the ambient radioactive noise of the linear accelerator. For that, we use a very sensitive detection scheme based on radio luminescent screens.

  13. ON THE NATURE OF THE GAMMA-RAY SOURCE 2FGL J1823.8+4312: THE DISCOVERY OF A NEW CLASS OF EXTRAGALACTIC X-RAY SOURCES

    SciTech Connect (OSTI)

    Massaro, F.; Digel, S. W.; Funk, S.; Paggi, A.; D'Abrusco, R.; Grindlay, J. E.; Smith, Howard A.; Tosti, G.

    2012-10-01

    One of the unsolved mysteries of gamma-ray astronomy concerns the nature of unidentified gamma-ray sources. Recently, using the Second Fermi LAT source catalog (2FGL) and the Wide-field Infrared Survey Explorer (WISE) archive, we discovered that the WISE counterparts of gamma-ray blazars, a class of active galactic nuclei, delineate a region (the WISE Gamma-ray Strip) in three-dimensional infrared color space well separated from the locus of other astronomical objects. Based on this result, we built an association procedure to recognize if there are WISE blazar candidates within the positional uncertainty region of the unidentified gamma-ray sources. Here we report on our analysis of 2FGL J1823.8+4312, a gamma-ray active galactic nucleus of uncertain type associated with the X-ray source 1RXS J182418.7+430954 according to the 2FGL, to verify whether it is a blazar. Applying our association method we found two sources with IR colors typical of gamma-ray blazars, located within the 99.9% confidence region of 2FGL J1823.8+4312: WISE J182352.33+431452.5 and WISE J182409.25+431404.7. We then searched in the Chandra, NVSS, and SDSS archival observations for their counterparts. We discovered that WISE J182352.33+431452.5, our preferred gamma-ray blazar candidate according to our WISE association procedure, is detected in the optical and in the X-rays but not in the radio, making it extremely unusual if it is a blazar. Given its enigmatic spectral energy distribution, we considered the possibility that it is a 'radio-faint blazar' or the prototype of a new class of extragalactic sources; our conclusion is independent of whether WISE J182352.33+431452.5 is the actual counterpart of 2FGL J1823.8+4312.

  14. On the Nature of the Gamma-ray Source 2FGL J1823.8 4312: The Discovery of a New Class of Extragalactic X-ray Sources

    SciTech Connect (OSTI)

    Massaro, Francesco

    2012-08-03

    One of the unsolved mysteries of gamma-ray astronomy concerns the nature of the unidentified gamma-ray sources. Recently, using the Second Fermi LAT source catalog (2FGL) and the Wide-field Infrared Survey Explorer (WISE) archive, we discovered that the WISE counterparts of gamma-ray blazars, a class of active galactic nuclei, delineate a region (the WISE Gamma-ray Strip) in the 3-dimensional infrared color space well separated from the locus of the other astronomical objects. Based on this result, we built an association procedure to recognize if there areWISE blazar candidates within the positional uncertainty region of the unidentified gamma-ray sources. Here we report on our analysis of 2FGL J1823.8+4312, a gamma-ray active galactic nucleus of uncertain type associated with the X-ray source 1RXS J182418.7+430954 according to the 2FGL, to verify whether it is a blazar. Applying our association method we found two sources with IR colors typical of gamma-ray blazars, located within the 99.9% confidence region of 2FGL J1823.8+4312: WISE J182352.33+431452.5 and WISE J182409.25+431404.7. Then we searched in the Chandra, NVSS and SDSS archival observations for their counterparts. We discovered that WISE J182352.33+431452.5, our preferred gamma-ray blazar candidate according to our WISE association procedure, is detected in the optical and in the X-rays but not in the radio, making it extremely unusual if it is a blazar. Given its enigmatic spectral energy distribution, we considered the possibility that it is a 'radio faint blazar' or the prototype of a new class of extragalactic sources, our conclusion is independent of whether WISE J182352.33+431452.5 is the actual counterpart of 2FGL J1823.8+4312.

  15. SU-D-207-03: Development of 4D-CBCT Imaging System with Dual Source KV X-Ray Tubes

    SciTech Connect (OSTI)

    Nakamura, M; Ishihara, Y; Matsuo, Y; Ueki, N; Iizuka, Y; Mizowaki, T; Hiraoka, M

    2015-06-15

    Purpose: The purposes of this work are to develop 4D-CBCT imaging system with orthogonal dual source kV X-ray tubes, and to determine the imaging doses from 4D-CBCT scans. Methods: Dual source kV X-ray tubes were used for the 4D-CBCT imaging. The maximum CBCT field of view was 200 mm in diameter and 150 mm in length, and the imaging parameters were 110 kV, 160 mA and 5 ms. The rotational angle was 105°, the rotational speed of the gantry was 1.5°/s, the gantry rotation time was 70 s, and the image acquisition interval was 0.3°. The observed amplitude of infrared marker motion during respiration was used to sort each image into eight respiratory phase bins. The EGSnrc/BEAMnrc and EGSnrc/DOSXYZnrc packages were used to simulate kV X-ray dose distributions of 4D-CBCT imaging. The kV X-ray dose distributions were calculated for 9 lung cancer patients based on the planning CT images with dose calculation grid size of 2.5 x 2.5 x 2.5 mm. The dose covering a 2-cc volume of skin (D2cc), defined as the inner 5 mm of the skin surface with the exception of bone structure, was assessed. Results: A moving object was well identified on 4D-CBCT images in a phantom study. Given a gantry rotational angle of 105° and the configuration of kV X-ray imaging subsystems, both kV X-ray fields overlapped at a part of skin surface. The D2cc for the 4D-CBCT scans was in the range 73.8–105.4 mGy. Linear correlation coefficient between the 1000 minus averaged SSD during CBCT scanning and D2cc was −0.65 (with a slope of −0.17) for the 4D-CBCT scans. Conclusion: We have developed 4D-CBCT imaging system with dual source kV X-ray tubes. The total imaging dose with 4D-CBCT scans was up to 105.4 mGy.

  16. X-Ray Diagnostics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    including film developing and scanning, and image plate scanning. Related images X-ray framing camera being loaded into the TIM in the Trident North Target Area. X-ray framing...

  17. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). ...

  18. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light ...

  19. X-Ray Diagnostics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Diagnostics X-Ray Diagnostics Maintenance of existing devices and development of advanced concepts Contact John Oertel (505) 665-3246 Email Hot, dense matter produced by intense laser interaction with a solid target often produces x-rays with energies from 100 eV to those exceeding 100 keV. A suite of diagnostics and methods have been deployed at Trident to diagnose the x-ray emission from laser-matter interaction experiments, or to use the x-rays as a probe of dense matter. These

  20. XMM-NEWTON X-RAY AND ULTRAVIOLET OBSERVATIONS OF THE FAST NOVA V2491 Cyg DURING THE SUPERSOFT SOURCE PHASE

    SciTech Connect (OSTI)

    Ness, J.-U.; Osborne, J. P.; Page, K. L.; Beardmore, A. P.; Dobrotka, A.; Drake, J. J.; Pinto, C.; Detmers, R. G.; Schwarz, G.; Bode, M. F.; Starrfield, S.; Hernanz, M.; Sala, G.; Krautter, J.; Woodward, C. E.

    2011-05-20

    Two XMM-Newton observations of the fast classical nova V2491 Cyg were carried out in short succession on days 39.93 and 49.62 after discovery, during the supersoft source (SSS) phase, yielding simultaneous X-ray and UV light curves and high-resolution X-ray spectra. The first X-ray light curve is highly variable, showing oscillations with a period of 37.2 minutes after an extended factor of three decline lasting {approx}3 hr, while the second X-ray light curve is less variable. The cause of the dip is currently unexplained and has most likely the same origin as similar events in the early SSS light curves of the novae V4743 Sgr and RS Oph, as it occurred on the same timescale. The oscillations are not present during the dip minimum and also not in the second observation. The UV light curves are variable but contain no dips and no period. High-resolution X-ray spectra are presented for four intervals of differing intensity. All spectra are atmospheric continua with deep absorption lines and absorption edges. Two interstellar lines of O I and N I are clearly seen at their rest wavelengths, while a large number of high-ionization absorption lines are found at blueshifts indicating an expansion velocity of 3000-3400 km s{sup -1}, which does not change significantly during the epochs of observation. Comparisons with the slower nova V4743 Sgr and the symbiotic recurrent nova RS Oph are presented. The SSS spectrum of V4743 Sgr is much softer with broader and more complex photospheric absorption lines. The ejecta are extended, allowing us to view a larger range of the radial velocity profile. Meanwhile, the absorption lines in RS Oph are as narrow as in V2491 Cyg, but they are less blueshifted. A remarkable similarity in the continua of V2491 Cyg and RS Oph is found. The only differences are smaller line shifts and additional emission lines in RS Oph that are related to the presence of a dense stellar wind from the evolved companion. Three unidentified absorption lines are

  1. Tunable coherent soft X-ray source based on the generation of high-order harmonic of femtosecond laser radiation in gas-filled capillaries

    SciTech Connect (OSTI)

    Malkov, Yu A; Yashunin, D A; Kiselev, A M; Stepanov, A N; Andreev, N E

    2014-05-30

    We have carried out experimental and theoretical investigations of a tunable coherent soft X-ray radiation source in the 30 – 52 nm wavelength range based on the generation of high-order harmonics of femtosecond laser radiation propagating in a dielectric xenon-filled capillary. The long path of laser pulse propagation through the capillary permits tuning the generated harmonic wavelengths to almost completely span the range under consideration. (interaction of radiation with matter)

  2. Development and calibration of mirrors and gratings for the Soft X-ray materials science beamline at the Linac Coherent Light Source free-electron laser

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Soufli, Regina; Fernandez-Perea, Monica; Baker, Sherry L.; Robinson, Jeff C.; Gullikson, Eric M.; Heimann, Philip; Yashchuk, Valerie V.; McKinney, Wayne R.; Schlotter, William F.; Rowen, Michael

    2012-04-18

    This article discusses the development and calibration of the x-ray reflective and diffractive elements for the Soft X-ray Materials Science (SXR) beamline of the Linac Coherent Light Source (LCLS) free-electron laser (FEL), designed for operation in the 500 – 2000 eV region. The surface topography of three Si mirror substrates and two Si diffraction grating substrates was examined by atomic force microscopy (AFM) and optical profilometry. The figure of the mirror substrates was also verified via surface slope measurements with a long trace profiler. A boron carbide (B4C) coating especially optimized for the LCLS FEL conditions was deposited on allmore » SXR mirrors and gratings. Coating thickness uniformity of 0.14 nm root mean square (rms) across clear apertures extending to 205 mm length was demonstrated for all elements, as required to preserve the coherent wavefront of the LCLS source. The reflective performance of the mirrors and the diffraction efficiency of the gratings were calibrated at beamline 6.3.2 at the Advanced Light Source synchrotron. To verify the integrity of the nanometer-scale grating structure, the grating topography was examined by AFM before and after coating. This is to our knowledge the first time B4C-coated diffraction gratings are demonstrated for operation in the soft x-ray region.« less

  3. High resolution absorption spectroscopy of exploding wire plasmas using an x-pinch x-ray source and spherically bent crystal

    SciTech Connect (OSTI)

    Knapp, P. F.; Pikuz, S. A.; Shelkovenko, T. A.; Hammer, D. A.; Hansen, S. B.

    2011-06-15

    We present here the use of absorption spectroscopy of the continuum radiation from x-pinch-produced point x-ray sources as a diagnostic to investigate the properties of aluminum plasmas created by pulsed power machines. This technique is being developed to determine the charge state, temperature, and density as a function of time and space under conditions that are inaccessible to x-ray emission spectroscopic diagnostics. The apparatus and its characterization are described, and the spectrometer dispersion, magnification, and resolution are calculated and compared with experimental results. Spectral resolution of about 5000 and spatial resolution of about 20 {mu}m are demonstrated. This spectral resolution is the highest available to date in an absorption experiment. The beneficial properties of the x-pinch x-ray source as the backlighter for this diagnostic are the small source size (<5 {mu}m), smooth continuum radiation, and short pulse duration (<0.1 ns). Results from a closely spaced (1 mm) exploding wire pair are shown and the general features are discussed.

  4. Ultrabright multikilovolt x-ray source: saturated amplification on noble gas transition arrays from hollow atom states

    DOE Patents [OSTI]

    Rhodes, Charles K.; Boyer, Keith

    2004-02-17

    An apparatus and method for the generation of ultrabright multikilovolt x-rays from saturated amplification on noble gas transition arrays from hollow atom states is described. Conditions for x-ray amplification in this spectral region combine the production of cold, high-Z matter, with the direct, selective multiphoton excitation of hollow atoms from clusters using ultraviolet radiation and a nonlinear mode of confined, self-channeled propagation in plasmas. Data obtained is consistent with the presence of saturated amplification on several transition arrays of the hollow atom Xe(L) spectrum (.lambda..about.2.9 .ANG.). An estimate of the peak brightness achieved is .about.10.sup.29 .gamma..multidot.s.sup.-1.multidot.mm.sup.-2.multidot.mr.sup.-2 (0.1% Bandwidth).sup.-1, that is .about.10.sup.5 -fold higher than presently available synchotron technology.

  5. Controlling X-rays With Light

    SciTech Connect (OSTI)

    Glover, Ernie; Hertlein, Marcus; Southworth, Steve; Allison, Tom; van Tilborg, Jeroen; Kanter, Elliot; Krassig, B.; Varma, H.; Rude, Bruce; Santra, Robin; Belkacem, Ali; Young, Linda

    2010-08-02

    Ultrafast x-ray science is an exciting frontier that promises the visualization of electronic, atomic and molecular dynamics on atomic time and length scales. A largelyunexplored area of ultrafast x-ray science is the use of light to control how x-rays interact with matter. In order to extend control concepts established for long wavelengthprobes to the x-ray regime, the optical control field must drive a coherent electronic response on a timescale comparable to femtosecond core-hole lifetimes. An intense field is required to achieve this rapid response. Here an intense optical control pulse isobserved to efficiently modulate photoelectric absorption for x-rays and to create an ultrafast transparency window. We demonstrate an application of x-ray transparencyrelevant to ultrafast x-ray sources: an all-photonic temporal cross-correlation measurement of a femtosecond x-ray pulse. The ability to control x-ray/matterinteractions with light will create new opportunities at current and next-generation x-ray light sources.

  6. A dual-channel, curved-crystal spectrograph for petawatt laser, x-ray backlighter source studies

    SciTech Connect (OSTI)

    Theobald, W.; Stoeckl, C.; Jaanimagi, P. A.; Nilson, P. M.; Storm, M.; Meyerhofer, D. D.; Sangster, T. C.; Hey, D.; MacKinnon, A. J.; Park, H.-S.; Patel, P. K.; Shepherd, R.; Snavely, R. A.; Key, M. H.; King, J. A.; Zhang, B.; Stephens, R. B.; Akli, K. U.; Highbarger, K.; Daskalova, R. L.; and others

    2009-08-15

    A dual-channel, curved-crystal spectrograph was designed to measure time-integrated x-ray spectra in the {approx}1.5 to 2 keV range (6.2-8.2 A wavelength) from small-mass, thin-foil targets irradiated by the VULCAN petawatt laser focused up to 4x10{sup 20} W/cm{sup 2}. The spectrograph consists of two cylindrically curved potassium-acid-phthalate crystals bent in the meridional plane to increase the spectral range by a factor of {approx}10 compared to a flat crystal. The device acquires single-shot x-ray spectra with good signal-to-background ratios in the hard x-ray background environment of petawatt laser-plasma interactions. The peak spectral energies of the aluminum He{sub {alpha}} and Ly{sub {alpha}} resonance lines were {approx}1.8 and {approx}1.0 mJ/eV sr ({approx}0.4 and 0.25 J/A sr), respectively, for 220 J, 10 ps laser irradiation.

  7. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless X-Ray Imaging in Reflection Lensless X-Ray Imaging in Reflection Print Wednesday, 26 October 2011 00:00 The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are

  8. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that

  9. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that

  10. Characterization of a hybrid target multi-keV x-ray source by a multi-parameter statistical analysis of titanium K-shell emission

    SciTech Connect (OSTI)

    Primout, M.; Babonneau, D.; Jacquet, L.; Gilleron, F.; Peyrusse, O.; Fournier, K. B.; Marrs, R.; May, M. J.; Heeter, R. F.; Wallace, R. J.

    2015-11-10

    We studied the titanium K-shell emission spectra from multi-keV x-ray source experiments with hybrid targets on the OMEGA laser facility. Using the collisional-radiative TRANSPEC code, dedicated to K-shell spectroscopy, we reproduced the main features of the detailed spectra measured with the time-resolved MSPEC spectrometer. We developed a general method to infer the Ne, Te and Ti characteristics of the target plasma from the spectral analysis (ratio of integrated Lyman-α to Helium-α in-band emission and the peak amplitude of individual line ratios) of the multi-keV x-ray emission. Finally, these thermodynamic conditions are compared to those calculated independently by the radiation-hydrodynamics transport code FCI2.

  11. Characterization of a hybrid target multi-keV x-ray source by a multi-parameter statistical analysis of titanium K-shell emission

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Primout, M.; Babonneau, D.; Jacquet, L.; Gilleron, F.; Peyrusse, O.; Fournier, K. B.; Marrs, R.; May, M. J.; Heeter, R. F.; Wallace, R. J.

    2015-11-10

    We studied the titanium K-shell emission spectra from multi-keV x-ray source experiments with hybrid targets on the OMEGA laser facility. Using the collisional-radiative TRANSPEC code, dedicated to K-shell spectroscopy, we reproduced the main features of the detailed spectra measured with the time-resolved MSPEC spectrometer. We developed a general method to infer the Ne, Te and Ti characteristics of the target plasma from the spectral analysis (ratio of integrated Lyman-α to Helium-α in-band emission and the peak amplitude of individual line ratios) of the multi-keV x-ray emission. Finally, these thermodynamic conditions are compared to those calculated independently by the radiation-hydrodynamics transportmore » code FCI2.« less

  12. High speed x-ray beam chopper

    DOE Patents [OSTI]

    McPherson, Armon; Mills, Dennis M.

    2002-01-01

    A fast, economical, and compact x-ray beam chopper with a small mass and a small moment of inertia whose rotation can be synchronized and phase locked to an electronic signal from an x-ray source and be monitored by a light beam is disclosed. X-ray bursts shorter than 2.5 microseconds have been produced with a jitter time of less than 3 ns.

  13. X-ray laser microscope apparatus

    DOE Patents [OSTI]

    Suckewer, Szymon; DiCicco, Darrell S.; Hirschberg, Joseph G.; Meixler, Lewis D.; Sathre, Robert; Skinner, Charles H.

    1990-01-01

    A microscope consisting of an x-ray contact microscope and an optical microscope. The optical, phase contrast, microscope is used to align a target with respect to a source of soft x-rays. The source of soft x-rays preferably comprises an x-ray laser but could comprise a synchrotron or other pulse source of x-rays. Transparent resist material is used to support the target. The optical microscope is located on the opposite side of the transparent resist material from the target and is employed to align the target with respect to the anticipated soft x-ray laser beam. After alignment with the use of the optical microscope, the target is exposed to the soft x-ray laser beam. The x-ray sensitive transparent resist material whose chemical bonds are altered by the x-ray beam passing through the target mater GOVERNMENT LICENSE RIGHTS This invention was made with government support under Contract No. De-FG02-86ER13609 awarded by the Department of Energy. The Government has certain rights in this invention.

  14. CROSS-CORRELATING COSMIC INFRARED AND X-RAY BACKGROUND FLUCTUATIONS: EVIDENCE OF SIGNIFICANT BLACK HOLE POPULATIONS AMONG THE CIB SOURCES

    SciTech Connect (OSTI)

    Cappelluti, N.; Comastri, A.; Kashlinsky, A.; Mather, J. C.; Moseley, S. H.; Arendt, R. G.; Finoguenov, A.; Fazio, G. G.; Hasinger, G.; Miyaji, T.

    2013-05-20

    In order to understand the nature of the sources producing the recently uncovered cosmic infrared background (CIB) fluctuations, we study cross-correlations between the fluctuations in the source-subtracted CIB from Spitzer/IRAC data and the unresolved cosmic X-ray background from deep Chandra observations. Our study uses data from the EGS/AEGIS field, where both data sets cover an {approx_equal} 8' Multiplication-Sign 45' region of the sky. Our measurement is the cross-power spectrum between the IR and X-ray data. The cross-power signal between the IRAC maps at 3.6 {mu}m and 4.5 {mu}m and the Chandra [0.5-2] keV data has been detected, at angular scales {approx}> 20'', with an overall significance of {approx_equal} 3.8{sigma} and {approx_equal} 5.6{sigma}, respectively. At the same time we find no evidence of significant cross-correlations at the harder Chandra bands. The cross-correlation signal is produced by individual IR sources with 3.6 {mu}m and 4.5 {mu}m magnitudes m{sub AB} {approx}> 25-26 and [0.5-2] keV X-ray fluxes <<7 Multiplication-Sign 10{sup -17} erg cm{sup 2} s{sup -1}. We determine that at least 15%-25% of the large scale power of the CIB fluctuations is correlated with the spatial power spectrum of the X-ray fluctuations. If this correlation is attributed to emission from accretion processes at both IR and X-ray wavelengths, this implies a much higher fraction of accreting black holes than among the known populations. We discuss the various possible origins for the cross-power signal and show that neither local foregrounds nor the known remaining normal galaxies and active galactic nuclei can reproduce the measurements. These observational results are an important new constraint on theoretical modeling of the near-IR CIB fluctuations.

  15. New developments in micro-X-ray diffraction and X-ray absorption spectroscopy for high-pressure research at 16-BM-D at the Advanced Photon Source

    SciTech Connect (OSTI)

    Park, Changyong Popov, Dmitry; Ikuta, Daijo; Lin, Chuanlong; Kenney-Benson, Curtis; Rod, Eric; Bommannavar, Arunkumar; Shen, Guoyin

    2015-07-15

    The monochromator and focusing mirrors of the 16-BM-D beamline, which is dedicated to high-pressure research with micro-X-ray diffraction (micro-XRD) and X-ray absorption near edge structure (XANES) (6-45 keV) spectroscopy, have been recently upgraded. Monochromatic X-rays are selected by a Si (111) double-crystal monochromator operated in an artificial channel-cut mode and focused to 5 μm × 5 μm (FWHM) by table-top Kirkpatrick-Baez type mirrors located near the sample stage. The typical X-ray flux is ∼5 × 10{sup 8} photons/s at 30 keV. The instrumental resolution, Δq/q{sub max}, reaches to 2 × 10{sup −3} and is tunable through adjustments of the detector distance and X-ray energy. The setup is stable and reproducible, which allows versatile application to various types of experiments including resistive heating and cryogenic cooling as well as ambient temperature compression. Transmission XANES is readily combined with micro-XRD utilizing the fixed-exit feature of the monochromator, which allows combined XRD-XANES measurements at a given sample condition.

  16. Chest x-Rays

    Broader source: Energy.gov [DOE]

    The B-reading is a special reading of a standard chest x-ray film performed by a physician certified by the National Institute for Occupational Safety and Health (NIOSH). The reading looks for changes on the chest x-ray that may indicate exposure and disease caused by agents such as asbestos or silica.

  17. X-ray beamsplitter

    DOE Patents [OSTI]

    Ceglio, Natale M.; Stearns, Daniel S.; Hawryluk, Andrew M.; Barbee, Jr., Troy W.

    1989-01-01

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5-50 pairs of alternate Mo/Si layers with a period of 20-250 A. The support membrane is 10-200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window.

  18. X-ray beamsplitter

    DOE Patents [OSTI]

    Ceglio, N.M.; Stearns, D.G.; Hawryluk, A.M.; Barbee, T.W. Jr.

    1987-08-07

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5--50 pairs of alternate Mo/Si layers with a period of 20--250 A. The support membrane is 10--200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window. 6 figs.

  19. 7 Resolution in Protein 2-Dimentional-Crystal X-Ray Diffraction at Linac Coherent Light Source

    SciTech Connect (OSTI)

    Pedrini, Bill; Tsai, Ching-Ju; Capitani, Guido; Padeste, Celestino; Hunter, Mark; Zatsepin, Nadia A.; Barty, Anton; Benner, Henry; Boutet, Sebastien; Feld, Geoffrey K.; Hau-Riege, Stefan; Kirian, Rick; Kupitz, Christopher; Messerschmidt, Marc; Ogren, John I.; Pardini, Tommaso; Segelke, Brent; Williams, Garth J.; Spence , John C.; Abela, Rafael; Coleman, Matthew A.; Evans, James E.; Schertler, Gebhard; Frank, Matthias; Li, Xiao-Dan

    2014-06-09

    Membrane proteins arranged as two-dimensional (2D) crystals in the lipid en- vironment provide close-to-physiological structural information, which is essential for understanding the molecular mechanisms of protein function. X-ray diffraction from individual 2D crystals did not represent a suitable investigation tool because of radiation damage. The recent availability of ultrashort pulses from X-ray Free Electron Lasers (X-FELs) has now provided a mean to outrun the damage. Here we report on measurements performed at the LCLS X-FEL on bacteriorhodopsin 2D crystals mounted on a solid support and kept at room temperature. By merg- ing data from about a dozen of single crystal diffraction images, we unambiguously identified the diffraction peaks to a resolution of 7 A, thus improving the observable resolution with respect to that achievable from a single pattern alone. This indicates that a larger dataset will allow for reliable quantification of peak intensities, and in turn a corresponding increase of resolution. The presented results pave the way to further X-FEL studies on 2D crystals, which may include pump-probe experiments at subpicosecond time resolution.

  20. X-ray generator

    DOE Patents [OSTI]

    Dawson, John M.

    1976-01-01

    Apparatus and method for producing coherent secondary x-rays that are controlled as to direction by illuminating a mixture of high z and low z gases with an intense burst of primary x-rays. The primary x-rays are produced with a laser activated plasma, and these x-rays strip off the electrons of the high z atoms in the lasing medium, while the low z atoms retain their electrons. The neutral atoms transfer electrons to highly excited states of the highly striped high z ions giving an inverted population which produces the desired coherent x-rays. In one embodiment, a laser, light beam provides a laser spark that produces the intense burst of coherent x-rays that illuminates the mixture of high z and low z gases, whereby the high z atoms are stripped while the low z ones are not, giving the desired mixture of highly ionized and neutral atoms. To this end, the laser spark is produced by injecting a laser light beam, or a plurality of beams, into a first gas in a cylindrical container having an adjacent second gas layer co-axial therewith, the laser producing a plasma and the intense primary x-rays in the first gas, and the second gas containing the high and low atomic number elements for receiving the primary x-rays, whereupon the secondary x-rays are produced therein by stripping desired ions in a neutral gas and transfer of electrons to highly excited states of the stripped ions from the unionized atoms. Means for magnetically confining and stabilizing the plasma are disclosed for controlling the direction of the x-rays.

  1. X-ray Attenuation and Absorption Calculations.

    Energy Science and Technology Software Center (OSTI)

    1988-02-25

    This point-source, polychromatic, discrete energy X-ray transport and energy deposition code system calculates first-order spectral estimates of X-ray energy transmission through slab materials and the associated spectrum of energy absorbed by the material.

  2. Compound refractive X-ray lens

    DOE Patents [OSTI]

    Nygren, David R.; Cahn, Robert; Cederstrom, Bjorn; Danielsson, Mats; Vestlund, Jonas

    2000-01-01

    An apparatus and method for focusing X-rays. In one embodiment, his invention is a commercial-grade compound refractive X-ray lens. The commercial-grade compound refractive X-ray lens includes a volume of low-Z material. The volume of low-Z material has a first surface which is adapted to receive X-rays of commercially-applicable power emitted from a commercial-grade X-ray source. The volume of low-Z material also has a second surface from which emerge the X-rays of commercially-applicable power which were received at the first surface. Additionally, the commercial-grade compound refractive X-ray lens includes a plurality of openings which are disposed between the first surface and the second surface. The plurality of openings are oriented such that the X-rays of commercially-applicable power which are received at the first surface, pass through the volume of low-Z material and through the plurality openings. In so doing, the X-rays which emerge from the second surface are refracted to a focal point.

  3. X-ray laser

    DOE Patents [OSTI]

    Nilsen, Joseph

    1991-01-01

    An X-ray laser (10) that lases between the K edges of carbon and oxygen, i.e. between 44 and 23 Angstroms, is provided. The laser comprises a silicon (12) and dysprosium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like dysprosium ions (34) are resonantly photo-pumped to their upper X-ray laser state by line emission from hydrogen-like silicon ions (32). The novel X-ray laser should prove especially useful for the microscopy of biological specimens.

  4. X-Ray Detection

    Office of Scientific and Technical Information (OSTI)

    ratio, I I on I off , recorded with plus (+, blue) and minus (-, red) x-ray helicities. This measurement was taken at -5 mA, which corresponds to a current...

  5. High-Energy X-Ray Diffraction Analysis Tool

    Energy Science and Technology Software Center (OSTI)

    2011-11-29

    The functionality of heRXD includes the following: distance and angular calibration and viewing flat-panel detector images used for X-ray diffraction; image (polar) rebinning or "caking"; line position fitting in powder diffraction images; image segmentation or "blob finding"; crystal orentation indesing; and lattice vector refinement. These functionalities encompass a critical set analyzing teh data for high-energy diffraction measurements that are currently performed at synchrotron sources such as the Advanced Photon Source (APS). The software design modularmore » and open source under LGPL. The intent is to provide a common framework and graphical user interface that has the ability to utillize internal as well as external subroutines to provide various optins for performing the fuctionalities listed above. The software will initially be deployed at several national user facilities--including APS, ALS, and CHESS--and then made available for download using a hosting service such as sourceforge.« less

  6. Transient x-ray diffraction and its application to materials science and x-ray optics

    SciTech Connect (OSTI)

    Hauer, A.A.; Kopp, R.; Cobble, J.; Kyrala, G.; Springer, R.

    1997-12-01

    Time resolved x-ray diffraction and scattering have been applied to the measurement of a wide variety of physical phenomena from chemical reactions to shock wave physics. Interest in this method has heightened in recent years with the advent of versatile, high power, pulsed x-ray sources utilizing laser plasmas, electron beams and other methods. In this article, we will describe some of the fundamentals involved in time resolved x-ray diffraction, review some of the history of its development, and describe some recent progress in the field. In this article we will emphasize the use of laser-plasmas as the x-ray source for transient diffraction.

  7. Using Light to Control How X Rays Interact with Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    While x-ray transparency will have immediate applications at x-ray light sources, the important result is that the findings lay a foundation for a broader spectrum of applications. ...

  8. Effects of electron recirculation on a hard x-ray source observed during the interaction of a high intensity laser pulse with thin Au targets

    SciTech Connect (OSTI)

    Compant La Fontaine, A.; Courtois, C.; Lefebvre, E.; Bourgade, J. L.; Landoas, O.; Thorp, K.; Stoeckl, C.

    2013-12-15

    The interaction of a high intensity laser pulse on the preplasma of a high-Z solid target produced by the pulse's pedestal generates high-energy electrons. These electrons subsequently penetrate inside the solid target and produce bremsstrahlung photons, generating an x-ray source which can be used for photonuclear studies or to radiograph high area density objects. The source characteristics are compared for targets with thin (20 μm) and thick (100 μm) Au foils on the Omega EP laser at Laboratory for Laser Energetics. Simulations using the particle-in-cell code CALDER show that for a 20 μm thickness Au target, electrons perform multiple round-trips in the target under the effect of the laser ponderomotive potential and the target electrostatic potential. These relativistic electrons have random transverse displacements, with respect to the target normal, attributed to electrostatic fluctuation fields. As a result, the x-ray spot size is increased by a factor 2 for thin target compared to thick targets, in agreement with experimental results. In addition, the computed doses agree with the measured ones provided that electron recirculation in the thin target is taken into account. A dose increase by a factor 1.7 is then computed by allowing for recirculation. In the 100 μm target case, on the other hand, this effect is found to be negligible.

  9. Intranet | APS X-ray Science Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IT Helpdesk Stockroom Catalog | Shopping Cart | Stockroom (Bldg. 401) 2-9082 Key Request Phone Request Argonne Internal Resources: 401 Grill Inside Argonne AMOS, GatePass,...

  10. X-ray Imaging Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    microscopy (PEEM), angle resolved photoemission spectroscopy (ARPES), coherent diffraction imaging, x-ray microscopy, micro-tomography, holographic imaging, and x-ray...

  11. X-ray fluorescence mapping

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Microscopy and Imaging: X-ray Fluorescence Mapping Of increasing scientific interest is the detection, quantification and mapping of elemental content of samples, often down...

  12. Rise time measurement for ultrafast X-ray pulses

    DOE Patents [OSTI]

    Celliers, Peter M.; Weber, Franz A.; Moon, Stephen J.

    2005-04-05

    A pump-probe scheme measures the rise time of ultrafast x-ray pulses. Conventional high speed x-ray diagnostics (x-ray streak cameras, PIN diodes, diamond PCD devices) do not provide sufficient time resolution to resolve rise times of x-ray pulses on the order of 50 fs or less as they are being produced by modern fast x-ray sources. Here, we are describing a pump-probe technique that can be employed to measure events where detector resolution is insufficient to resolve the event. The scheme utilizes a diamond plate as an x-ray transducer and a p-polarized probe beam.

  13. Rise Time Measurement for Ultrafast X-Ray Pulses

    DOE Patents [OSTI]

    Celliers, Peter M.; Weber, Franz A.; Moon, Stephen J.

    2005-04-05

    A pump-probe scheme measures the rise time of ultrafast x-ray pulses. Conventional high speed x-ray diagnostics (x-ray streak cameras, PIN diodes, diamond PCD devices) do not provide sufficient time resolution to resolve rise times of x-ray pulses on the order of 50 fs or less as they are being produced by modern fast x-ray sources. Here, we are describing a pump-probe technique that can be employed to measure events where detector resolution is insufficient to resolve the event. The scheme utilizes a diamond plate as an x-ray transducer and a p-polarized probe beam.

  14. APS Science 2009.

    SciTech Connect (OSTI)

    Gibson, J. M; Mills, D. M.; Gerig, R.

    2010-05-01

    It is my pleasure to introduce the 2009 annual report of the Advanced Photon Source. This was a very good year for us. We operated with high reliability and availability, despite growing problems with obsolete systems, and our users produced a record output of publications. The number of user experiments increased by 14% from 2008 to more than 3600. We congratulate the recipients of the 2009 Nobel Prize in Chemistry-Venkatraman Ramakrishnan (Cambridge Institute for Medical Research), Thomas Steitz (Yale University), and Ada Yonath (Weizmann Institute) - who did a substantial amount of this work at APS beamlines. Thanks to the efforts of our users and staff, and the ongoing counsel of the APS Scientific Advisory Committee, we made major progress in advancing our planning for the upgrade of the APS (APS-U), producing a proposal that was positively reviewed. We hope to get formal approval in 2010 to begin the upgrade. With advocacy from our users and the support of our sponsor, the Office of Basic Energy Sciences in the Department of Energy (DOE) Office of Science, our operating budgets have grown to the level needed to more adequately staff our beamlines. We were also extremely fortunate to have received $7.9 M in American Recovery and Reinvestment Act ('stimulus') funding to acquire new detectors and improve several of our beamlines. The success of the new Linac Coherent Light Source at Stanford, the world's first x-ray free-electron laser, made us particularly proud since the undulators were designed and built by the APS. Among other highlights, we note that more than one-quarter of the 46 Energy Frontier Research Centers, funded competitively across the U.S. in 2009 by the DOE, included the Advanced Photon Source in their proposed work, which shows that synchrotron radiation, and the APS in particular, are central to energy research. While APS research covers everything from fundamental to applied science (reflected by the highlights in this report), the challenge

  15. Femtosecond X-ray protein nanocrystallography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source (4). ... We mitigate the problem of radiation damage in crystallography by using pulses briefer ...

  16. The Soft X-ray Research instrument at the Linac Coherent Light...

    Office of Scientific and Technical Information (OSTI)

    The Soft X-ray Research instrument at the Linac Coherent Light Source Georgi L. ... Fremont, CA 94539, USA. Keywords: FEL; X-ray; ultrafast; spectroscopy; materials science. ...

  17. The contribution of z ≲ 6 sources to the spatial coherence in the unresolved cosmic near-infrared and X-ray backgrounds

    SciTech Connect (OSTI)

    Helgason, K.; Ricotti, M.; Cappelluti, N.; Hasinger, G.; Kashlinsky, A.

    2014-04-10

    A spatial clustering signal has been established in Spitzer/IRAC measurements of the unresolved cosmic near-infrared background (CIB) out to large angular scales, ∼1°. This CIB signal, while significantly exceeding the contribution from the remaining known galaxies, was further found to be coherent at a highly statistically significant level with the unresolved soft cosmic X-ray background (CXB). This measurement probes the unresolved CXB to very faint source levels using deep near-IR source subtraction. We study contributions from extragalactic populations at low to intermediate redshifts to the measured positive cross-power signal of the CIB fluctuations with the CXB. We model the X-ray emission from active galactic nuclei (AGNs), normal galaxies, and hot gas residing in virialized structures, calculating their CXB contribution including their spatial coherence with all infrared emitting counterparts. We use a halo model framework to calculate the auto and cross-power spectra of the unresolved fluctuations based on the latest constraints of the halo occupation distribution and the biasing of AGNs, galaxies, and diffuse emission. At small angular scales (≲ 1'), the 4.5 μm versus 0.5-2 keV coherence can be explained by shot noise from galaxies and AGNs. However, at large angular scales (∼10'), we find that the net contribution from the modeled populations is only able to account for ∼3% of the measured CIB×CXB cross-power. The discrepancy suggests that the CIB×CXB signal originates from the same unknown source population producing the CIB clustering signal out to ∼1°.

  18. X-ray microtomography

    SciTech Connect (OSTI)

    Landis, Eric N.; Keane, Denis T.

    2010-12-15

    In this tutorial, we describe X-ray microtomography as a technique to nondestructively characterize material microstructure in three dimensions at a micron level spatial resolution. While commercially available laboratory scale instrumentation is available, we focus our attention on synchrotron-based systems, where we can exploit a high flux, monochromatic X-ray beam to produce high fidelity three-dimensional images. A brief description of the physics and the mathematical analysis behind the technique is followed by example applications to specific materials characterization problems, with a particular focus on the utilization of three-dimensional image processing that can be used to extract a wide range of useful information.

  19. APS Science 2006.

    SciTech Connect (OSTI)

    Gibson, J. M.; Fenner, R. B.; Long, G.; Borland, M.; Decker, G.

    2007-05-24

    In my five years as the Director of the Advanced Photon Source (APS), I have been fortunate to see major growth in the scientific impact from the APS. This year I am particularly enthusiastic about prospects for our longer-term future. Every scientific instrument must remain at the cutting edge to flourish. Our plans for the next generation of APS--an APS upgrade--got seriously in gear this year with strong encouragement from our users and sponsors. The most promising avenue that has emerged is the energy-recovery linac (ERL) (see article on page xx), for which we are beginning serious R&D. The ERL{at}APS would offer revolutionary performance, especially for x-ray imaging and ultrafast science, while not seriously disrupting the existing user base. I am very proud of our accelerator physics and engineering staff, who not only keep the current APS at the forefront, but were able to greatly impress our international Machine Advisory Committee with the quality of their work on the possible upgrade option (see page xx). As we prepare for long-term major upgrades, our plans to develop and optimize all the sectors at APS in the near future are advancing. Several new beamlines saw first light this year, including a dedicated powder diffraction beamline (11-BM), two instruments for inelastic x-ray scattering at sector 30, and the Center for Nanoscale Materials (CNM) Nanoprobe beamline at sector 26. Our partnership in the first x-ray free-electron laser (LCLS) to be built at Stanford contributes to revolutionary growth in ultrafast science (see page xx), and we are developing a pulse chirping scheme to get ps pulses at sector 7 of the APS within a year or so. In this report, you will find selected highlights of scientific research at the APS from calendar year 2006. The highlighted work covers diverse disciplines, from fundamental to applied science. In the article on page xx you can see the direct impact of APS research on technology. Several new products have emerged from

  20. X-Ray Data from the X-Ray Data Booklet Online

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thompson, Albert C.; Attwood, David T.; Gullikson, Eric M.; Howells, Malcolm R.; Kortright, Jeffrey B.; Robinson, Arthur L.; Underwood, James H.; Kim, Kwang-Je; Kirz, Janos; Lindau, Ingolf; Pianetta, Piero; Winick, Herman; Williams, Gwyn P.; Scofield, James H.

    The original X-Ray Data Booklet, published in 1985, became a classic reference source. The online version has been significantly revised and updated to reflect today's science. Hundreds of pages of authoritative data provide the x-ray properties of elements, information on synchrotron radiation, scattering processes, optics and detectors, and other related calculations, formulas, and data tables.

  1. APS Science 2007.

    SciTech Connect (OSTI)

    Not Available

    2008-05-30

    This report provides research highlights from the Advanced Photon Source (APS). Although these highlights represent less than 10% of the published work from the APS in 2007, they give a flavor of the diversity and impact of user research at the facility. In the strategic planning the aim is to foster the growth of existing user communities and foresee new areas of research. This coming year finds the APS engaged in putting together, along with the users, a blueprint for the next five years, and making the case for a set of prioritized investments in beamlines, the accelerator, and infrastructure, each of which will be transformational in terms of scientific impact. As this is written plans are being formulated for an important user workshop on October 20-21, 2008, to prioritize strategic plans. The fruit from past investments can be seen in this report. Examples include the creation of a dedicated beamline for x-ray photon correlation spectroscopy at Sector 8, the evolution of dedicated high-energy x-ray scattering beamlines at sectors 1 and 11, a dedicated imaging beamline at Sector 32, and new beamlines for inelastic scattering and powder diffraction. A single-pulse facility has been built in collaboration with Sector 14 (BioCARS) and Phil Anfinrud at the National Institutes of Health, which will offer exceptionally high flux for single-pulse diffraction. The nanoprobe at Sector 26, built and operated jointly by the Argonne Center for Nanoscale Materials and the X-ray Operations and Research (XOR) section of the APS X-ray Science Division, has come on line to define the state of the art in nanoscience.

  2. X-ray beam finder

    DOE Patents [OSTI]

    Gilbert, H.W.

    1983-06-16

    An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

  3. TU-A-9A-07: X-Ray Acoustic Computed Tomography (XACT): 100% Sensitivity to X-Ray Absorption

    SciTech Connect (OSTI)

    Xiang, L; Ahmad, M; Nikoozadeh, A; Pratx, G; Khuri-Yakub, B; Xing, L

    2014-06-15

    Purpose: To assess whether X-ray acoustic computed tomography (XACT) is more sensitive to X-ray absorption than that of the conventional X-ray imaging. Methods: First, a theoretical model was built to analyze the X-ray absorption sensitivity of XACT imaging and conventional X-ray imaging. Second, an XACT imaging system was developed to evaluate the X-ray induced acoustic signal generation as well as the sensitivity improvement over transmission x-ray imaging. Ultra-short x-ray pulses (60-nanosecond) were generated from an X-ray source operated at the energy of 150 kVp with a 10-Hz repetition rate. The X-ray pulse was synchronized with the acoustic detection via a x-ray scintillation triggering to acquire the X-ray induced acoustic signal. Results: Theoretical analysis shows that X-ray induced acoustic signal is sensitive only to the X-ray absorption, while completely insensitive to out the X-ray scattering and fluorescence. XACT has reduced background and increased contrast-to-noise ratio, and therefore has increased sensitivity compared to transmission x-ray imaging. For a 50-μm size, gadolinium insertion in tissue exposed to 40 keV X-rays; the sensitivity of XACT imaging is about 28.9 times higher than that of conventional X-ray imaging. Conclusion: X-ray acoustic computer tomography (XACT) as a new imaging modality combines X-ray absorption contrast and high ultrasonic resolution in a single modality. It is feasible to improve the imaging sensitivity with XACT imaging compared with conventional X-ray imaging. Taking advantage of the high ultrasonic resolution, it is possible to perform 3-D imaging with a single x-ray pulse with arrays of transducers without any mechanical motion of the imaging system. This single-shot capability offers the potential of reducing radiation dose by a factor of 1000, and imaging 100 times faster when compared to the conventional X-ray CT, and thus revolutionizing x-ray imaging applications in medicine and biology. The authors

  4. Sub-picosecond X-Rays from CEBAF at Jefferson Lab

    SciTech Connect (OSTI)

    Alex Bogacz; Jim Boyce; Jim Clarke; David Douglas; Andrew Hutton; Geoffrey Krafft; Lia Merminga; George Neil; Mike Poole; Sue Smith; Vic Suller; Gwyn Williams

    2004-05-01

    A high brightness sub-picosecond x-ray source can be created by installing an undulator at Jefferson Lab's CEBAF, a nuclear physics electron accelerator. Although the beam current is only 100 microamps, the electron beam has an extremely small emittance and energy spread, with the result that one can produce x-ray beams tunable over the range 5-30keV with an average brightness quite comparable to beamlines at the Advanced Photon Source (APS) at Argonne National Lab. In addition, with rms bunch lengths measured down to 85 fsecs, peak brightness values are much higher than at the APS. Furthermore, this x-ray source has similar emittance in both horizontal and vertical directions, (a so-called round beam) making it of very high potential for many applications. In order to determine if indeed such a source is worth pursuing we present ''tuning curve'' calculations of peak and average flux and brightness for an undulator on CEBAF. They are compared with similar calculations for a dipole and for undulator-A at the APS. Finally we calculate the impact of such a device on the CEBAF beam itself and find it to be much smaller than the natural energy spread of the beam.

  5. Insertion Devices & Brilliance | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    light sources. Some, like the Advanced Light Source in California and the SuperACO in France, provide radiation in the ultravioletsoft x-ray part of the spectrum. The 7-GeV APS...

  6. Small Angle X-Ray Scattering Detector

    DOE Patents [OSTI]

    Hessler, Jan P.

    2004-06-15

    A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., qmax/qmin approx=lO0.

  7. Soft-x-ray

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Soft-x-ray emission, plasma equilibrium, and fluctuation studies on Madison Symmetric Torus C. Xiao Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin and Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Canada P. Franz Consorzio RFX-Associazione EURATOM ENEA Sulla Fusione, Italy and Istituto Nazionale di Fisica della Materia, Unita' di Ricerca di Padova, Italy B. E. Chapman and D. Craig Department of Physics, University of

  8. Modeling of ns and ps laser-induced soft X-ray sources using nitrogen gas puff target

    SciTech Connect (OSTI)

    Vrba, P.; Vrbova, M.; Zakharov, S. V.

    2014-07-15

    Gas puff laser plasma is studied as a source of water window radiation with 2.88?nm wavelength, corresponding to quantum transition 1s{sup 2} ? 1s2p of helium-like nitrogen ions. Spatial development of plasma induced by Nd:YAG laser beam is simulated by 2D Radiation-Magneto-Hydro-Dynamic code Z*. The results for nitrogen gas layer (0.72?mm thickness, 1?bar pressure) and two different laser pulses (600 mJ/7?ns and 525 mJ/170 ps), corresponding to the experiments done in Laser Laboratory Gottingen are presented.

  9. APS: Lighting up the future

    SciTech Connect (OSTI)

    Potent, V.J.

    1993-09-01

    Work on the Advanced Photon Source (APS) at Argonne National Laboratory (ANL) involves the construction and supporting research and development for a national user facility for synchrotron radiation research in the x-ray region. The facility, when operational in 1997, will provide super-intense x-ray beams for many areas of basic research and will serve the entire US x-ray research community of several thousand users. This paper describes the pertinent features of the design, construction and planned operation of the facility; and the impact quality has had in these areas. In addition, the introduction of several quality management techniques such as total quality management, reliability/availability planning, and user interface are discussed concerning their status and success.

  10. Magnetic Materials | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Internal Magnetic Materials The Magnetic Material Group (MMG) is part of the X-ray Science Division (XSD) at the Advanced Photon Source (APS). Our research focuses on the...

  11. Generation of circularly polarized radiation from a compact plasma-based extreme ultraviolet light source for tabletop X-ray magnetic circular dichroism studies

    SciTech Connect (OSTI)

    Wilson, Daniel; Rudolf, Denis Juschkin, Larissa; Weier, Christian; Adam, Roman; Schneider, Claus M.; Winkler, Gerrit; Frmter, Robert; Danylyuk, Serhiy; Bergmann, Klaus; Grtzmacher, Detlev

    2014-10-15

    Generation of circularly polarized light in the extreme ultraviolet (EUV) spectral region (about 25 eV250 eV) is highly desirable for applications in spectroscopy and microscopy but very challenging to achieve in a small-scale laboratory. We present a compact apparatus for generation of linearly and circularly polarized EUV radiation from a gas-discharge plasma light source between 50 eV and 70 eV photon energy. In this spectral range, the 3p absorption edges of Fe (54 eV), Co (60 eV), and Ni (67 eV) offer a high magnetic contrast often employed for magneto-optical and electron spectroscopy as well as for magnetic imaging. We simulated and designed an instrument for generation of linearly and circularly polarized EUV radiation and performed polarimetric measurements of the degree of linear and circular polarization. Furthermore, we demonstrate first measurements of the X-ray magnetic circular dichroism at the Co 3p absorption edge with a plasma-based EUV light source. Our approach opens the door for laboratory-based, element-selective spectroscopy of magnetic materials and spectro-microscopy of ferromagnetic domains.

  12. LONG-TERM SPECTRAL VARIATIONS OF ULTRALUMINOUS X-RAY SOURCES IN THE INTERACTING GALAXY SYSTEMS M 51 AND NGC 4490/85

    SciTech Connect (OSTI)

    Yoshida, Tessei; Ebisawa, Ken; Tsujimoto, Masahiro [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210 (Japan); Matsushita, Kyoko [Department of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601 (Japan); Kawaguchi, Toshihiro, E-mail: yoshida.tessei@ac.jaxa.j [Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan)

    2010-10-10

    Variable ultraluminous X-ray sources (ULXs), which are considered to be black hole binaries (BHBs), are known to show state transitions similar to Galactic BHBs. However, the relation between the ULX states and the Galactic BHB states is still unclear, primarily due to the less well-understood behaviors of ULXs in contrast to the Galactic BHBs. Here, we report a statistical X-ray spectral study of 34 energy spectra from seven bright ULXs in the interacting galaxy systems M 51 and NGC 4490/85, using archive data from multiple Chandra and XMM-Newton observations spanning a few years. In order to compare them with Galactic BHB states, we applied representative spectral models of BHBs-a power-law (PL), a multi-color disk blackbody (MCD), and a slim-disk model-to all the ULX spectra. We found a hint of a bimodal structure in the luminosity distribution of the samples, suggesting that ULXs have two states that respectively have typical luminosities of (3-6)x 10{sup 39} and (1.5-3)x 10{sup 39} ergs s{sup -1}. Most spectra in the brighter state are explained by the MCD or the slim-disk model, whereas those in the fainter state are explained by the PL model. In particular, the slim-disk model successfully explains the observed spectral variations of NGC 4490/85 ULX-6 and ULX-8 by changes of the mass accretion rate to a black hole of an estimated mass of <40 M{sub sun}. From the best-fit model parameters of each state, we speculate that the brighter state in these two ULXs corresponds to the brightest state of Galactic BHBs, which is often called the 'apparently standard state'. The fainter state of the ULXs has a PL-shaped spectrum, but the photon index range is much wider than that seen in any single state of Galactic BHBs. We thus speculate that it is a state unique to ULXs. Some sources show much fainter and steeper spectra than the faint state, which we identified as yet another state.

  13. Ambient Pressure Photoelectron Spectroscopy Using Soft X-ray and Hard

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-ray, and its applications in electrochemistry | Stanford Synchrotron Radiation Lightsource Ambient Pressure Photoelectron Spectroscopy Using Soft X-ray and Hard X-ray, and its applications in electrochemistry Friday, December 14, 2012 - 3:30pm SSRL, Bldg. 137, room 322 Zhi Liu The synchrotron based ambient pressure x-ray photoelectron spectroscopy (AP-XPS) endstation[1] pioneered at ALS based on differentially pumped electron energy analyzer has been recognized by scientific communities as

  14. SMB, X-ray Emission Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    include X-ray Emission Spectroscopy (XES), Resonant Inelastic X-ray Scattering (RIXS), High Energy Resolution Fluorescence Detection (HERFD) and X-ray Raman Spectroscopy (XRS). ...

  15. Apparatus for monitoring X-ray beam alignment

    DOE Patents [OSTI]

    Steinmeyer, P.A.

    1991-10-08

    A self-contained, hand-held apparatus is provided for monitoring alignment of an X-ray beam in an instrument employing an X-ray source. The apparatus includes a transducer assembly containing a photoresistor for providing a range of electrical signals responsive to a range of X-ray beam intensities from the X-ray beam being aligned. A circuit, powered by a 7.5 VDC power supply and containing an audio frequency pulse generator whose frequency varies with the resistance of the photoresistor, is provided for generating a range of audible sounds. A portion of the audible range corresponds to low X-ray beam intensity. Another portion of the audible range corresponds to high X-ray beam intensity. The transducer assembly may include an a photoresistor, a thin layer of X-ray fluorescent material, and a filter layer transparent to X-rays but opaque to visible light. X-rays from the beam undergoing alignment penetrate the filter layer and excite the layer of fluorescent material. The light emitted from the fluorescent material alters the resistance of the photoresistor which is in the electrical circuit including the audio pulse generator and a speaker. In employing the apparatus, the X-ray beam is aligned to a complete alignment by adjusting the X-ray beam to produce an audible sound of the maximum frequency. 2 figures.

  16. Apparatus for monitoring X-ray beam alignment

    DOE Patents [OSTI]

    Steinmeyer, Peter A.

    1991-10-08

    A self-contained, hand-held apparatus is provided for minitoring alignment of an X-ray beam in an instrument employing an X-ray source. The apparatus includes a transducer assembly containing a photoresistor for providing a range of electrical signals responsive to a range of X-ray beam intensities from the X-ray beam being aligned. A circuit, powered by a 7.5 VDC power supply and containing an audio frequency pulse generator whose frequency varies with the resistance of the photoresistor, is provided for generating a range of audible sounds. A portion of the audible range corresponds to low X-ray beam intensity. Another portion of the audible range corresponds to high X-ray beam intensity. The transducer assembly may include an a photoresistor, a thin layer of X-ray fluorescent material, and a filter layer transparent to X-rays but opaque to visible light. X-rays from the beam undergoing alignment penetrate the filter layer and excite the layer of fluorescent material. The light emitted from the fluorescent material alters the resistance of the photoresistor which is in the electrical circuit including the audio pulse generator and a speaker. In employing the apparatus, the X-ray beam is aligned to a complete alignment by adjusting the X-ray beam to produce an audible sound of the maximum frequency.

  17. Radiobiological studies using gamma and x rays.

    SciTech Connect (OSTI)

    Potter, Charles Augustus; Longley, Susan W.; Scott, Bobby R. [Lovelace Respiratory Research Institute, Albuquerque, NM; Lin, Yong [Lovelace Respiratory Research Institute, Albuquerque, NM; Wilder, Julie [Lovelace Respiratory Research Institute, Albuquerque, NM; Hutt, Julie A. [Lovelace Respiratory Research Institute, Albuquerque, NM; Padilla, Mabel T. [Lovelace Respiratory Research Institute, Albuquerque, NM; Gott, Katherine M. [Lovelace Respiratory Research Institute, Albuquerque, NM

    2013-02-01

    There are approximately 500 self-shielded research irradiators used in various facilities throughout the U.S. These facilities use radioactive sources containing either 137Cs or 60Co for a variety of biological investigations. A report from the National Academy of Sciences[1] described the issues with security of particular radiation sources and the desire for their replacement. The participants in this effort prepared two peer-reviewed publications to document the results of radiobiological studies performed using photons from 320-kV x rays and 137Cs on cell cultures and mice. The effectiveness of X rays was shown to vary with cell type.

  18. X-ray compass for determining device orientation

    DOE Patents [OSTI]

    Da Silva, L.B.; Matthews, D.L.; Fitch, J.P.; Everett, M.J.; Colston, B.W.; Stone, G.F.

    1999-06-15

    An apparatus and method for determining the orientation of a device with respect to an x-ray source are disclosed. In one embodiment, the present invention is coupled to a medical device in order to determine the rotational orientation of the medical device with respect to the x-ray source. In such an embodiment, the present invention is comprised of a scintillator portion which is adapted to emit photons upon the absorption of x-rays emitted from the x-ray source. An x-ray blocking portion is coupled to the scintillator portion. The x-ray blocking portion is disposed so as to vary the quantity of x-rays which penetrate the scintillator portion based upon the particular rotational orientation of the medical device with respect to the x-ray source. A photon transport mechanism is also coupled to the scintillator portion. The photon transport mechanism is adapted to pass the photons emitted from the scintillator portion to an electronics portion. By analyzing the quantity of the photons, the electronics portion determines the rotational orientation of the medical device with respect to the x-ray source. 25 figs.

  19. X-ray compass for determining device orientation

    DOE Patents [OSTI]

    Da Silva, Luiz B.; Matthews, Dennis L.; Fitch, Joseph P.; Everett, Matthew J.; Colston, Billy W.; Stone, Gary F.

    1999-01-01

    An apparatus and method for determining the orientation of a device with respect to an x-ray source. In one embodiment, the present invention is coupled to a medical device in order to determine the rotational orientation of the medical device with respect to the x-ray source. In such an embodiment, the present invention is comprised of a scintillator portion which is adapted to emit photons upon the absorption of x-rays emitted from the x-ray source. An x-ray blocking portion is coupled to the scintillator portion. The x-ray blocking portion is disposed so as to vary the quantity of x-rays which penetrate the scintillator portion based upon the particular rotational orientation of the medical device with respect to the x-ray source. A photon transport mechanism is also coupled to the scintillator portion. The photon transport mechanism is adapted to pass the photons emitted from the scintillator portion to an electronics portion. By analyzing the quantity of the photons, the electronics portion determines the rotational orientation of the medical device with respect to the x-ray source.

  20. Soft x-ray reduction camera for submicron lithography

    DOE Patents [OSTI]

    Hawryluk, A.M.; Seppala, L.G.

    1991-03-26

    Soft x-ray projection lithography can be performed using x-ray optical components and spherical imaging lenses (mirrors), which form an x-ray reduction camera. The x-ray reduction is capable of projecting a 5x demagnified image of a mask onto a resist coated wafer using 4.5 nm radiation. The diffraction limited resolution of this design is about 135 nm with a depth of field of about 2.8 microns and a field of view of 0.2 cm[sup 2]. X-ray reflecting masks (patterned x-ray multilayer mirrors) which are fabricated on thick substrates and can be made relatively distortion free are used, with a laser produced plasma for the source. Higher resolution and/or larger areas are possible by varying the optic figures of the components and source characteristics. 9 figures.

  1. Soft x-ray reduction camera for submicron lithography

    DOE Patents [OSTI]

    Hawryluk, Andrew M.; Seppala, Lynn G.

    1991-01-01

    Soft x-ray projection lithography can be performed using x-ray optical components and spherical imaging lenses (mirrors), which form an x-ray reduction camera. The x-ray reduction is capable of projecting a 5x demagnified image of a mask onto a resist coated wafer using 4.5 nm radiation. The diffraction limited resolution of this design is about 135 nm with a depth of field of about 2.8 microns and a field of view of 0.2 cm.sup.2. X-ray reflecting masks (patterned x-ray multilayer mirrors) which are fabricated on thick substrates and can be made relatively distortion free are used, with a laser produced plasma for the source. Higher resolution and/or larger areas are possible by varying the optic figures of the components and source characteristics.

  2. Solar X-ray physics

    SciTech Connect (OSTI)

    Bornmann, P.L. )

    1991-01-01

    Research on solar X-ray phenomena performed by American scientists during 1987-1990 is reviewed. Major topics discussed include solar images observed during quiescent times, the processes observed during solar flares, and the coronal, interplanetary, and terrestrial phenomena associated with solar X-ray flares. Particular attention is given to the hard X-ray emission observed at the start of the flare, the energy transfer to the soft X-ray emitting plasma, the late resolution of the flare as observed in soft X-ray, and the rate of occurrence of solar flares as a function of time and latitude. Pertinent aspects of nonflaring, coronal X-ray emission and stellar flares are also discussed. 175 refs.

  3. Femtosecond nanocrystallography using X-ray lasers for membrane protein

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    structure determination Femtosecond nanocrystallography using X-ray lasers for membrane protein structure determination Authors: Fromme, P., and Spence, J. C. H. Title: Femtosecond nanocrystallography using X-ray lasers for membrane protein structure determination Source: Current Opinion in Structural Biology Year: 2011 Volume: 21 Pages: 509-516 ABSTRACT: The invention of free electron X-ray lasers has opened a new era for membrane protein structure determination with the recent first

  4. X-ray interferometry with spherically bent crystals (abstract)

    SciTech Connect (OSTI)

    Koch, Jeffrey A.

    2001-01-01

    Recent progress in manufacturing high-quality spherically bent crystals allows highly monochromatic x-ray beams to be produced, and allows efficient x-ray imaging with {mu}m-scale resolution. This article explores some of the constraints for x-ray interferometry utilizing spherically bent crystals and laser-produced plasma sources, and discusses several shearing interferometer concepts that might be experimentally investigated.

  5. X-ray lithography using holographic images

    DOE Patents [OSTI]

    Howells, M.S.; Jacobsen, C.

    1997-03-18

    Methods for forming X-ray images having 0.25 {micro}m minimum line widths on X-ray sensitive material are presented. A holographic image of a desired circuit pattern is projected onto a wafer or other image-receiving substrate to allow recording of the desired image in photoresist material. In one embodiment, the method uses on-axis transmission and provides a high flux X-ray source having modest monochromaticity and coherence requirements. A layer of light-sensitive photoresist material on a wafer with a selected surface is provided to receive the image(s). The hologram has variable optical thickness and variable associated optical phase angle and amplitude attenuation for transmission of the X-rays. A second embodiment uses off-axis holography. The wafer receives the holographic image by grazing incidence reflection from a hologram printed on a flat metal or other highly reflecting surface or substrate. In this second embodiment, an X-ray beam with a high degree of monochromaticity and spatial coherence is required. 15 figs.

  6. X-ray lithography using holographic images

    DOE Patents [OSTI]

    Howells, Malcolm S.; Jacobsen, Chris

    1997-01-01

    Methods for forming X-ray images having 0.25 .mu.m minimum line widths on X-ray sensitive material are presented. A holgraphic image of a desired circuit pattern is projected onto a wafer or other image-receiving substrate to allow recording of the desired image in photoresist material. In one embodiment, the method uses on-axis transmission and provides a high flux X-ray source having modest monochromaticity and coherence requirements. A layer of light-sensitive photoresist material on a wafer with a selected surface is provided to receive the image(s). The hologram has variable optical thickness and variable associated optical phase angle and amplitude attenuation for transmission of the X-rays. A second embodiment uses off-axis holography. The wafer receives the holographic image by grazing incidence reflection from a hologram printed on a flat metal or other highly reflecting surface or substrate. In this second embodiment, an X-ray beam with a high degree of monochromaticity and spatial coherence is required.

  7. X-Ray Science Education

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TV Network external link DNA Interactive external link Reciprocal Net external link X-ray Science Courses and Programs Various educational efforts are closely related to the...

  8. Characteristics of miniature electronic brachytherapy x-ray sources based on TG-43U1 formalism using Monte Carlo simulation techniques

    SciTech Connect (OSTI)

    Safigholi, Habib; Faghihi, Reza; Jashni, Somaye Karimi; Meigooni, Ali S.

    2012-04-15

    Purpose: The goal of this study is to determine a method for Monte Carlo (MC) characterization of the miniature electronic brachytherapy x-ray sources (MEBXS) and to set dosimetric parameters according to TG-43U1 formalism. TG-43U1 parameters were used to get optimal designs of MEBXS. Parameters that affect the dose distribution such as anode shapes, target thickness, target angles, and electron beam source characteristics were evaluated. Optimized MEBXS designs were obtained and used to determine radial dose functions and 2D anisotropy functions in the electron energy range of 25-80 keV. Methods: Tungsten anode material was considered in two different geometries, hemispherical and conical-hemisphere. These configurations were analyzed by the 4C MC code with several different optimization techniques. The first optimization compared target thickness layers versus electron energy. These optimized thicknesses were compared with published results by Ihsan et al.[Nucl. Instrum. Methods Phys. Res. B 264, 371-377 (2007)]. The second optimization evaluated electron source characteristics by changing the cathode shapes and electron energies. Electron sources studied included; (1) point sources, (2) uniform cylinders, and (3) nonuniform cylindrical shell geometries. The third optimization was used to assess the apex angle of the conical-hemisphere target. The goal of these optimizations was to produce 2D-dose anisotropy functions closer to unity. An overall optimized MEBXS was developed from this analysis. The results obtained from this model were compared to known characteristics of HDR {sup 125}I, LDR {sup 103}Pd, and Xoft Axxent electronic brachytherapy source (XAEBS) [Med. Phys. 33, 4020-4032 (2006)]. Results: The optimized anode thicknesses as a function of electron energy is fitted by the linear equation Y ({mu}m) = 0.0459X (keV)-0.7342. The optimized electron source geometry is obtained for a disk-shaped parallel beam (uniform cylinder) with 0.9 mm radius. The TG-43

  9. Advanced Research in Diesel Fuel Sprays Using X-rays from the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research in Diesel Fuel Sprays Using X-rays from the Advanced Photon Source Advanced Research in Diesel Fuel Sprays Using X-rays from the Advanced Photon Source 2003 DEER ...

  10. Polychromatic x-ray micro- and nanodiffraction for spatially-resolved structural studies.

    SciTech Connect (OSTI)

    Budai, J. D.; Liu, W.; Tischler, J. Z.; Pan, Z. W.; Larson, B. C.; Yang, W.; Norton, D. P.; Ice, G. E.; ORNL; Univ. of Georgia; Univ.of Florida; Carnegie Inst. of Washington

    2008-01-01

    The availability of intense, focused synchrotron X-ray microbeams has enabled new techniques for materials investigations with sub-micron spatial resolution. The scanning microbeam setup we have developed at the XOR-UNI beamline at the Advanced Photon Source (APS) is versatile in that it provides 1D, 2D or 3D scans (including depth resolution), and can alternate between polychromatic- and monochromatic-beam modes. Focusing in both modes uses elliptical Kirkpatrick-Baez (K-B) reflecting mirrors. Beam diameters of {approx} 500 nm FWHM are now routine, and 90 nm focus has been demonstrated. In white-beam mode, a CCD detector records a complete Laue diffraction pattern, which is analyzed with an automated indexing program. These X-ray diffraction patterns provide real-space maps of the local lattice structure, crystal orientation, grain morphology, and strain tensor. Spatially-resolved X-ray microdiffraction studies are now providing previously unavailable measurements of local microstructures. These measurements, in turn, yield new insights in several classic fields of materials science. This paper will illustrate the application of polychromatic scanning X-ray microscopy with examples from 1D, 2D and 3D materials systems. In 1D systems, we have mapped the structure and orientation of an individual ZnO nanorod along with the associated Ge catalyst particle used to control the nanocrystal growth. In 2D systems, X-ray microdiffraction studies have revealed the mechanisms for local crystallographic tilting in epitaxial oxide films grown on textured Ni substrates for superconducting applications. In 3D systems, X-ray microscopy investigations have included in-situ studies of microstructural evolution during thermal grain growth in polycrystalline aluminum. In general, these spatially-resolved measurements provide important new insights and are valuable as input for theoretical and computer modeling studies of a wide range of material processes.

  11. Polychromatic X-ray Micro- and Nanodiffraction for Spatially-Resolved Structural Studies

    SciTech Connect (OSTI)

    Budai, John D; Liu, W.; Tischler, Jonathan Zachary; Pan, Zhengwei; Norton, David P.; Larson, Ben C; Yang, Wenge; Ice, Gene E

    2008-01-01

    The availability of intense, focused synchrotron X-ray microbeams has enabled new techniques for materials investigations with sub-micron spatial resolution. The scanning microbeam setup we have developed at the XOR-UNI beamline at the Advanced Photon Source (APS) is versatile in that it provides 1D, 2D or 3D scans (including depth resolution), and can alternate between polychromatic- and monochromatic-beam modes. Focusing in both modes uses elliptical Kirkpatrick-Baez (K-B) reflecting mirrors. Beam diameters of {approx} 500 nm FWHM are now routine, and 90 nm focus has been demonstrated. In white-beam mode, a CCD detector records a complete Laue diffraction pattern, which is analyzed with an automated indexing program. These X-ray diffraction patterns provide real-space maps of the local lattice structure, crystal orientation, grain morphology, and strain tensor. Spatially-resolved X-ray microdiffraction studies are now providing previously unavailable measurements of local microstructures. These measurements, in turn, yield new insights in several classic fields of materials science. This paper will illustrate the application of polychromatic scanning X-ray microscopy with examples from 1D, 2D and 3D materials systems. In 1D systems, we have mapped the structure and orientation of an individual ZnO nanorod along with the associated Ge catalyst particle used to control the nanocrystal growth. In 2D systems, X-ray microdiffraction studies have revealed the mechanisms for local crystallographic tilting in epitaxial oxide films grown on textured Ni substrates for superconducting applications. In 3D systems, X-ray microscopy investigations have included in-situ studies of microstructural evolution during thermal grain growth in polycrystalline aluminum. In general, these spatially-resolved measurements provide important new insights and are valuable as input for theoretical and computer modeling studies of a wide range of material processes.

  12. A laboratory-based hard x-ray monochromator for high-resolution x-ray emission spectroscopy and x-ray absorption near edge structure measurements

    SciTech Connect (OSTI)

    Seidler, G. T. Mortensen, D. R.; Remesnik, A. J.; Pacold, J. I.; Ball, N. A.; Barry, N.; Styczinski, M.; Hoidn, O. R.

    2014-11-15

    We report the development of a laboratory-based Rowland-circle monochromator that incorporates a low power x-ray (bremsstrahlung) tube source, a spherically bent crystal analyzer, and an energy-resolving solid-state detector. This relatively inexpensive, introductory level instrument achieves 1-eV energy resolution for photon energies of ∼5 keV to ∼10 keV while also demonstrating a net efficiency previously seen only in laboratory monochromators having much coarser energy resolution. Despite the use of only a compact, air-cooled 10 W x-ray tube, we find count rates for nonresonant x-ray emission spectroscopy comparable to those achieved at monochromatized spectroscopy beamlines at synchrotron light sources. For x-ray absorption near edge structure, the monochromatized flux is small (due to the use of a low-powered x-ray generator) but still useful for routine transmission-mode studies of concentrated samples. These results indicate that upgrading to a standard commercial high-power line-focused x-ray tube or rotating anode x-ray generator would result in monochromatized fluxes of order 10{sup 6}–10{sup 7} photons/s with no loss in energy resolution. This work establishes core technical capabilities for a rejuvenation of laboratory-based hard x-ray spectroscopies that could have special relevance for contemporary research on catalytic or electrical energy storage systems using transition-metal, lanthanide, or noble-metal active species.

  13. Femtosecond X-ray protein nanocrystallography

    SciTech Connect (OSTI)

    Chapman, Henry N.; Barty, Anton; White, Thomas A.; Aquila, Andrew; Schulz, Joachim; DePonte, Daniel P.; Martin, Andrew V.; Coppola, Nicola; Liang, Mengning; Caleman, Carl; Gumprecht, Lars; Stern, Stephan; Nass, Karol; Fromme, Petra; Hunter, Mark S.; Grotjohann, Ingo; Fromme, Raimund; Kirian, Richard A.; Weierstall, Uwe; Doak, R. Bruce; Schmidt, Kevin E.; Wang, Xiaoyu; Spence, John C. H.; Schlichting, Ilme; Epp, Sascha W.; Rolles, Daniel; Rudenko, Artem; Foucar, Lutz; Rudek, Benedikt; Erk, Benjamin; Schmidt, Carlo; Hömke, André; Strüder, Lothar; Ullrich, Joachim; Krasniqi, Faton; Lomb, Lukas; Shoeman, Robert L.; Bott, Mario; Barends, Thomas R. M.; Kuhnel, Kai-Uwe; Schroter, Claus-Dieter; Hartmann, Robert; Holl, Peter; Reich, Christian; Soltau, Heike; Kimmel, Nils; Weidenspointner, Georg; Pietschner, Daniel; Hauser, Günter; Herrmann, Sven; Schaller, Gerhard; Schopper, Florian; Andritschke, Robert; Boutet, Sébastien; Krzywinski, Jacek; Bostedt, Christoph; Messerschmidt, Marc; Bozek, John D.; Williams, Garth J.; Bogan, Michael J.; Hampton, Christina Y.; Sierra, Raymond G.; Starodub, Dmitri; Gorke, Hubert; Hau-Riege, Stefan P.; Frank, Matthias; Maia, Filipe R. N. C.; Hajdu, Janos; Timneanu, Nicusor; Seibert, M. Marvin; Andreasson, Jakob; Rocker, Andrea; Jönsson, Olof; Svenda, Martin; Holton, James M.; Marchesini, Stefano; Neutze, Richard; Schorb, Sebastian; Rupp, Daniela; Adolph, Marcus; Gorkhover, Tais; Andersson, Inger; Barthelmess, Miriam; Bajt, Saša; Hirsemann, Helmut; Potdevin, Guillaume; Graafsma, Heinz; Nilsson, Björn

    2011-02-03

    X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction ‘snapshots’ are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (~200 nm to 2 μm in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage.

  14. Advanced Research in Diesel Fuel Sprays Using X-rays from the Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photon Source | Department of Energy Research in Diesel Fuel Sprays Using X-rays from the Advanced Photon Source Advanced Research in Diesel Fuel Sprays Using X-rays from the Advanced Photon Source 2003 DEER Conference Presentation: Argonne National Laboratory 2003_deer_powell.pdf (925.28 KB) More Documents & Publications Vehicle Technologies Office Merit Review 2014: Fuel Injection and Spray Research Using X-Ray Diagnostics X-Ray Characterization of Diesel Sprays and the Effects of

  15. Ultrashort x-ray backlighters and applications

    SciTech Connect (OSTI)

    Umstadter, D., University of Michigan

    1997-08-01

    Previously, using ultrashort laser pulses focused onto solid targets, we have experimentally studied a controllable ultrafast broadband radiation source in the extreme ultraviolet for time-resolved dynamical studies in ultrafast science [J. Workman, A. Maksimchuk, X. Llu, U. Ellenberger, J. S. Coe, C.-Y. Chien, and D. Umstadter, ``Control of Bright Picosecond X-Ray Emission from Intense Sub- Picosecond Laser-Plasma Interactions,`` Phys. Rev. Lett. 75, 2324 (1995)]. Once armed with a bright ultrafast broadband continuum x-ray source and appropriate detectors, we used the source as a backlighter to study a remotely produced plasma. The application of the source to a problem relevant to high-density matter completes the triad: creating and controlling, efficiently detecting, and applying the source. This work represented the first use of an ultrafast laser- produced x-ray source as a time-resolving probe in an application relevant to atomic, plasma and high-energy-density matter physics. Using the x-ray source as a backlighter, we adopted a pump-probe geometry to investigate the dynamic changes in electronic structure of a thin metallic film as it is perturbed by an ultrashort laser pulse. Because the laser deposits its energy in a skin depth of about 100 {Angstrom} before expansion occurs, up to gigabar pressure shock waves lasting picosecond in duration have been predicted to form in these novel plasmas. This raises the possibility of studying high- energy-density matter relevant to inertial confinement fusion (ICF) and astrophysics in small-scale laboratory experiments. In the past, time-resolved measurements of K-edge shifts in plasmas driven by nanosecond pulses have been used to infer conditions in highly compressed materials. In this study, we used 100-fs laser pulses to impulsively drive shocks into a sample (an untamped 1000 {Angstrom} aluminum film on 2000 {Angstrom} of parylene-n), measuring L-edge shifts.

  16. Small Angle X-Ray Scattering Detector

    DOE Patents [OSTI]

    Hessler, Jan P.

    2004-06-15

    A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., q.sub.max /q.sub.min.congruent.100.

  17. X-ray microtomographic scanners

    SciTech Connect (OSTI)

    Syryamkin, V. I. Klestov, S. A.

    2015-11-17

    The article studies the operating procedures of an X-ray microtomographic scanner and the module of reconstruction and analysis 3D-image of a test sample in particular. An algorithm for 3D-image reconstruction based on image shadow projections and mathematical methods of the processing are described. Chapter 1 describes the basic principles of X-ray tomography and general procedures of the device developed. Chapters 2 and 3 are devoted to the problem of resources saving by the system during the X-ray tomography procedure, which is achieved by preprocessing of the initial shadow projections. Preprocessing includes background noise removing from the images, which reduces the amount of shadow projections in general and increases the efficiency of the group shadow projections compression. In conclusion, the main applications of X-ray tomography are presented.

  18. X-Ray Interactions with Matter from the Center for X-Ray Optics...

    Office of Scientific and Technical Information (OSTI)

    X-Ray Interactions with Matter from the Center for X-Ray Optics (CXRO) Title: X-Ray Interactions with Matter from the Center for X-Ray Optics (CXRO) The primary interactions of ...

  19. High resolution energy-sensitive digital X-ray

    DOE Patents [OSTI]

    Nygren, David R.

    1995-01-01

    An apparatus and method for detecting an x-ray and for determining the depth of penetration of an x-ray into a semiconductor strip detector. In one embodiment, a semiconductor strip detector formed of semiconductor material is disposed in an edge-on orientation towards an x-ray source such that x-rays From the x-ray source are incident upon and substantially perpendicular to the front edge of the semiconductor strip detector. The semiconductor strip detector is formed of a plurality of segments. The segments are coupled together in a collinear arrangement such that the semiconductor strip detector has a length great enough such that substantially all of the x-rays incident on the front edge of the semiconductor strip detector interact with the semiconductor material which forms the semiconductor strip detector. A plurality of electrodes are connected to the semiconductor strip detect or such that each one of the of semiconductor strip detector segments has at least one of the of electrodes coupled thereto. A signal processor is also coupled to each one of the electrodes. The present detector detects an interaction within the semiconductor strip detector, between an x-ray and the semiconductor material, and also indicates the depth of penetration of the x-ray into the semiconductor strip detector at the time of the interaction.

  20. High resolution energy-sensitive digital X-ray

    DOE Patents [OSTI]

    Nygren, D.R.

    1995-07-18

    An apparatus and method for detecting an x-ray and for determining the depth of penetration of an x-ray into a semiconductor strip detector. In one embodiment, a semiconductor strip detector formed of semiconductor material is disposed in an edge-on orientation towards an x-ray source such that x-rays from the x-ray source are incident upon and substantially perpendicular to the front edge of the semiconductor strip detector. The semiconductor strip detector is formed of a plurality of segments. The segments are coupled together in a collinear arrangement such that the semiconductor strip detector has a length great enough such that substantially all of the x-rays incident on the front edge of the semiconductor strip detector interact with the semiconductor material which forms the semiconductor strip detector. A plurality of electrodes are connected to the semiconductor strip detector such that each one of the semiconductor strip detector segments has at least one of the of electrodes coupled thereto. A signal processor is also coupled to each one of the electrodes. The present detector detects an interaction within the semiconductor strip detector, between an x-ray and the semiconductor material, and also indicates the depth of penetration of the x-ray into the semiconductor strip detector at the time of the interaction. 5 figs.

  1. Electromechanical x-ray generator

    DOE Patents [OSTI]

    Watson, Scott A; Platts, David; Sorensen, Eric B

    2016-05-03

    An electro-mechanical x-ray generator configured to obtain high-energy operation with favorable energy-weight scaling. The electro-mechanical x-ray generator may include a pair of capacitor plates. The capacitor plates may be charged to a predefined voltage and may be separated to generate higher voltages on the order of hundreds of kV in the AK gap. The high voltage may be generated in a vacuum tube.

  2. Neutron and X-ray Detectors

    SciTech Connect (OSTI)

    Carini, Gabriella; Denes, Peter; Gruener, Sol; Lessner, Elianne

    2012-08-01

    The Basic Energy Sciences (BES) X-ray and neutron user facilities attract more than 12,000 researchers each year to perform cutting-edge science at these state-of-the-art sources. While impressive breakthroughs in X-ray and neutron sources give us the powerful illumination needed to peer into the nano- to mesoscale world, a stumbling block continues to be the distinct lag in detector development, which is slowing progress toward data collection and analysis. Urgently needed detector improvements would reveal chemical composition and bonding in 3-D and in real time, allow researchers to watch “movies” of essential life processes as they happen, and make much more efficient use of every X-ray and neutron produced by the source The immense scientific potential that will come from better detectors has triggered worldwide activity in this area. Europe in particular has made impressive strides, outpacing the United States on several fronts. Maintaining a vital U.S. leadership in this key research endeavor will require targeted investments in detector R&D and infrastructure. To clarify the gap between detector development and source advances, and to identify opportunities to maximize the scientific impact of BES user facilities, a workshop on Neutron and X-ray Detectors was held August 1-3, 2012, in Gaithersburg, Maryland. Participants from universities, national laboratories, and commercial organizations from the United States and around the globe participated in plenary sessions, breakout groups, and joint open-discussion summary sessions. Sources have become immensely more powerful and are now brighter (more particles focused onto the sample per second) and more precise (higher spatial, spectral, and temporal resolution). To fully utilize these source advances, detectors must become faster, more efficient, and more discriminating. In supporting the mission of today’s cutting-edge neutron and X-ray sources, the workshop identified six detector research challenges

  3. Combining THz laser excitation with resonant soft X-ray scattering...

    Office of Scientific and Technical Information (OSTI)

    resonant soft X-ray scattering at the Linac Coherent Light Source Citation Details In-Document Search Title: Combining THz laser excitation with resonant soft X-ray scattering ...

  4. The Soft X-ray research instrument at the Linac Coherent Light...

    Office of Scientific and Technical Information (OSTI)

    The Soft X-ray research instrument at the Linac Coherent Light Source Citation Details In-Document Search Title: The Soft X-ray research instrument at the Linac Coherent Light ...

  5. Photon-in photon-out hard X-ray spectroscopy at the Linac Coherent...

    Office of Scientific and Technical Information (OSTI)

    different source characteristics and its resulting impact on sample delivery, X-ray optics, X-ray detection and data acquisition. Here it is described how photon-in photon-out...

  6. X-Ray Tools for Battery Development and Testing: Case Studies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Tools for Battery Development and Testing: Case Studies Case studies of the use of X-ray techniques for battery development and testing at the Advanced Photon Source PDF icon...

  7. Best X-Ray Tools for Battery Development and Testing | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Best X-Ray Tools for Battery Development and Testing Argonne's Advanced Photon Source has a suite of best-in-class X-ray techniques and lab space to tackle the most difficult...

  8. Automatic tool alignment in a backscatter X-ray scanning system

    DOE Patents [OSTI]

    Garretson, Justin; Hobart, Clinton G.; Gladwell, Thomas S.; Monda, Mark J.

    2015-11-17

    Technologies pertaining to backscatter x-ray scanning systems are described herein. The backscatter x-ray scanning system includes an x-ray source, which directs collimated x-rays along a plurality of output vectors towards a target. A detector detects diffusely reflected x-rays subsequent to respective collimated x-rays impacting the target, and outputs signals indicative of parameters of the detected x-rays. An image processing system generates an x-ray image based upon parameters of the detected x-rays, wherein each pixel in the image corresponds to a respective output vector. A user selects a particular portion of the image, and a medical device is positioned such that its directional axis is coincident with the output vector corresponding to at least one pixel in the portion of the image.

  9. Automatic tool alignment in a backscatter x-ray scanning system

    DOE Patents [OSTI]

    Garretson, Justin; Hobart, Clinton G.; Gladwell, Thomas S.; Monda, Mark J.

    2015-06-16

    Technologies pertaining to backscatter x-ray scanning systems are described herein. The backscatter x-ray scanning system includes an x-ray source, which directs collimated x-rays along a plurality of output vectors towards a target. A detector detects diffusely reflected x-rays subsequent to respective collimated x-rays impacting the target, and outputs signals indicative of parameters of the detected x-rays. An image processing system generates an x-ray image based upon parameters of the detected x-rays, wherein each pixel in the image corresponds to a respective output vector. A user selects a particular portion of the image, and a tool is positioned such that its directional axis is coincident with the output vector corresponding to at least one pixel in the portion of the image.

  10. A mirror for lab-based quasi-monochromatic parallel x-rays

    SciTech Connect (OSTI)

    Nguyen, Thanhhai; Lu, Xun; Lee, Chang Jun; Jeon, Insu; Jung, Jin-Ho; Jin, Gye-Hwan; Kim, Sung Youb

    2014-09-15

    A multilayered parabolic mirror with six W/Al bilayers was designed and fabricated to generate monochromatic parallel x-rays using a lab-based x-ray source. Using this mirror, curved bright bands were obtained in x-ray images as reflected x-rays. The parallelism of the reflected x-rays was investigated using the shape of the bands. The intensity and monochromatic characteristics of the reflected x-rays were evaluated through measurements of the x-ray spectra in the band. High intensity, nearly monochromatic, and parallel x-rays, which can be used for high resolution x-ray microscopes and local radiation therapy systems, were obtained.

  11. SMB, X-ray Absorption Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Absorption Spectroscopy X-ray Absorption Spectroscopy X-ray absorption spectroscopy (XAS) is a well-established technique for simultaneous local geometric and electronic structure...

  12. X-Ray Diffraction Microscopy of Magnetic Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This method can be used at any coherent light source, such as x-ray free-electron lasers, where ultra-short pulses would freeze-frame magnetic changes, offering the potential for ...

  13. X-ray radiography for container inspection

    DOE Patents [OSTI]

    Katz, Jonathan I.; Morris, Christopher L.

    2011-06-07

    Arrangements of X-ray inspection systems are described for inspecting high-z materials in voluminous objects such as containers. Inspection methods may involve generating a radiographic image based on detected attenuation corresponding to a pulsed beams of radiation transmitted through a voluminous object. The pulsed beams of radiation are generated by a high-energy source and transmitted substantially downward along an incident angle, of approximately 1.degree. to 30.degree., to a vertical axis extending through the voluminous object. The generated radiographic image may be analyzed to detect on localized high attenuation representative of high-z materials and to discriminate high-z materials from lower and intermediate-z materials on the basis of the high density and greater attenuation of high-z material for higher energy (3-10 MeV) X-rays, and the compact nature of threatening masses of fissionable materials.

  14. X-ray Tube with Magnetic Electron Steering - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Find More Like This Return to Search X-ray Tube with Magnetic Electron Steering Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (802 KB) Technology Marketing Summary Sandia National Laboratories has created an improved efficiency compact X-ray source to address a wide range of applications. The high average power large area X-ray tube provides increased X-ray generation efficiency

  15. LCLS X-ray mirror measurements using a large aperture visible light

    Office of Scientific and Technical Information (OSTI)

    interferometer (Conference) | SciTech Connect Conference: LCLS X-ray mirror measurements using a large aperture visible light interferometer Citation Details In-Document Search Title: LCLS X-ray mirror measurements using a large aperture visible light interferometer Synchrotron or FEL X-ray mirrors are required to deliver an X-ray beam from its source to an experiment location, without contributing significantly to wave front distortion. Accurate mirror figure measurements are required prior

  16. Characterization of X-ray generator beam profiles.

    SciTech Connect (OSTI)

    Mitchell, Dean J; Harding, Lee T.; Thoreson, Gregory G.; Theisen, Lisa Anne; Parmeter, John Ethan; Thompson, Kyle Richard

    2013-07-01

    T to compute the radiography properties of various materials, the flux profiles of X-ray sources must be characterized. This report describes the characterization of X-ray beam profiles from a Kimtron industrial 450 kVp radiography system with a Comet MXC-45 HP/11 bipolar oil-cooled X-ray tube. The empirical method described here uses a detector response function to derive photon flux profiles based on data collected with a small cadmium telluride detector. The flux profiles are then reduced to a simple parametric form that enables computation of beam profiles for arbitrary accelerator energies.

  17. Soft-x-ray spectroscopy study of nanoscale materials

    SciTech Connect (OSTI)

    Guo, J.-H.

    2005-07-30

    The ability to control the particle size and morphology of nanoparticles is of crucial importance nowadays both from a fundamental and industrial point of view considering the tremendous amount of high-tech applications. Controlling the crystallographic structure and the arrangement of atoms along the surface of nanostructured material will determine most of its physical properties. In general, electronic structure ultimately determines the properties of matter. Soft X-ray spectroscopy has some basic features that are important to consider. X-ray is originating from an electronic transition between a localized core state and a valence state. As a core state is involved, elemental selectivity is obtained because the core levels of different elements are well separated in energy, meaning that the involvement of the inner level makes this probe localized to one specific atomic site around which the electronic structure is reflected as a partial density-of-states contribution. The participation of valence electrons gives the method chemical state sensitivity and further, the dipole nature of the transitions gives particular symmetry information. The new generation synchrotron radiation sources producing intensive tunable monochromatized soft X-ray beams have opened up new possibilities for soft X-ray spectroscopy. The introduction of selectively excited soft X-ray emission has opened a new field of study by disclosing many new possibilities of soft X-ray resonant inelastic scattering. In this paper, some recent findings regarding soft X-ray absorption and emission studies of various nanostructured systems are presented.

  18. NEW X-RAY DETECTIONS OF WNL STARS

    SciTech Connect (OSTI)

    Skinner, Stephen L.; Zhekov, Svetozar A.; Guedel, Manuel; Schmutz, Werner; Sokal, Kimberly R.

    2012-05-15

    Previous studies have demonstrated that putatively single nitrogen-type Wolf-Rayet stars (WN stars) without known companions are X-ray sources. However, almost all WN star X-ray detections so far have been of earlier WN2-WN6 spectral subtypes. Later WN7-WN9 subtypes (also known as WNL stars) have proved more difficult to detect, an important exception being WR 79a (WN9ha). We present here new X-ray detections of the WNL stars WR 16 (WN8h) and WR 78 (WN7h). These new results, when combined with previous detections, demonstrate that X-ray emission is present in WN stars across the full range of spectral types, including later WNL stars. The two WN8 stars observed to date (WR 16 and WR 40) show unusually low X-ray luminosities (L{sub x} ) compared to other WN stars, and it is noteworthy that they also have the lowest terminal wind speeds (v{sub {infinity}}). Existing X-ray detections of about a dozen WN stars reveal a trend of increasing L{sub x} with wind luminosity L{sub wind} = (1/2)M-dot v{sup 2}{sub {infinity}}, suggesting that wind kinetic energy may play a key role in establishing X-ray luminosity levels in WN stars.

  19. Laboratory-based micro-X-ray fluorescence setup using a von Hamos crystal spectrometer and a focused beam X-ray tube

    SciTech Connect (OSTI)

    Kayser, Y.; B?achucki, W.; Dousse, J.-Cl.; Hoszowska, J.; Neff, M.; Romano, V.

    2014-04-15

    The high-resolution von Hamos bent crystal spectrometer of the University of Fribourg was upgraded with a focused X-ray beam source with the aim of performing micro-sized X-ray fluorescence (XRF) measurements in the laboratory. The focused X-ray beam source integrates a collimating optics mounted on a low-power micro-spot X-ray tube and a focusing polycapillary half-lens placed in front of the sample. The performances of the setup were probed in terms of spatial and energy resolution. In particular, the fluorescence intensity and energy resolution of the von Hamos spectrometer equipped with the novel micro-focused X-ray source and a standard high-power water-cooled X-ray tube were compared. The XRF analysis capability of the new setup was assessed by measuring the dopant distribution within the core of Er-doped SiO{sub 2} optical fibers.

  20. Hard x-ray delay line for x-ray photon correlation spectroscopy...

    Office of Scientific and Technical Information (OSTI)

    Hard x-ray delay line for x-ray photon correlation spectroscopy and jitter-free pump-probe experiments at LCLS Citation Details In-Document Search Title: Hard x-ray delay line for...

  1. Reabsorption of Soft X-Ray Emission at High X-Ray Free-Electron...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Reabsorption of Soft X-Ray Emission at High X-Ray Free-Electron Laser Fluences Citation Details In-Document Search Title: Reabsorption of Soft X-Ray Emission at ...

  2. Femtosecond X-ray Absorption Spectroscopy at a Hard X-ray Free...

    Office of Scientific and Technical Information (OSTI)

    Femtosecond X-ray Absorption Spectroscopy at a Hard X-ray Free Electron Laser: Application to Spin Crossover Dynamics Citation Details In-Document Search Title: Femtosecond X-ray...

  3. Microgap x-ray detector

    DOE Patents [OSTI]

    Wuest, Craig R.; Bionta, Richard M.; Ables, Elden

    1994-01-01

    An x-ray detector which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope.

  4. Microgap x-ray detector

    DOE Patents [OSTI]

    Wuest, C.R.; Bionta, R.M.; Ables, E.

    1994-05-03

    An x-ray detector is disclosed which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope. 3 figures.

  5. Evaluation of partial coherence correction in X-ray ptychography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Burdet, Nicolas; Shi, Xiaowen; Parks, Daniel; Clark, Jesse N.; Huang, Xiaojing; Kevan, Stephen D.; Robinson, Ian K.

    2015-02-23

    Coherent X-ray Diffraction Imaging (CDI) and X-ray ptychography both heavily rely on the high degree of spatial coherence of the X-ray illumination for sufficient experimental data quality for reconstruction convergence. Nevertheless, the majority of the available synchrotron undulator sources have a limited degree of partial coherence, leading to reduced data quality and a lower speckle contrast in the coherent diffraction patterns. It is still an open question whether experimentalists should compromise the coherence properties of an X-ray source in exchange for a higher flux density at a sample, especially when some materials of scientific interest are relatively weak scatterers. Amoreprevious study has suggested that in CDI, the best strategy for the study of strong phase objects is to maintain a high degree of coherence of the illuminating X-rays because of the broadening of solution space resulting from the strong phase structures. In this article, we demonstrate the first systematic analysis of the effectiveness of partial coherence correction in ptychography as a function of the coherence properties, degree of complexity of illumination (degree of phase diversity of the probe) and sample phase complexity. We have also performed analysis of how well ptychographic algorithms refine X-ray probe and complex coherence functions when those variables are unknown at the start of reconstructions, for noise-free simulated data, in the case of both real-valued and highly-complex objects.less

  6. New developments in high pressure x-ray spectroscopy beamline at High Pressure Collaborative Access Team

    SciTech Connect (OSTI)

    Xiao, Y. M. Chow, P.; Boman, G.; Bai, L. G.; Rod, E.; Bommannavar, A.; Kenney-Benson, C.; Sinogeikin, S.; Shen, G. Y.

    2015-07-15

    The 16 ID-D (Insertion Device - D station) beamline of the High Pressure Collaborative Access Team at the Advanced Photon Source is dedicated to high pressure research using X-ray spectroscopy techniques typically integrated with diamond anvil cells. The beamline provides X-rays of 4.5-37 keV, and current available techniques include X-ray emission spectroscopy, inelastic X-ray scattering, and nuclear resonant scattering. The recent developments include a canted undulator upgrade, 17-element analyzer array for inelastic X-ray scattering, and an emission spectrometer using a polycapillary half-lens. Recent development projects and future prospects are also discussed.

  7. Beyond 3-D X-ray Imaging: Methodology Development and Applications in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Material Science | Stanford Synchrotron Radiation Lightsource Beyond 3-D X-ray Imaging: Methodology Development and Applications in Material Science Thursday, September 6, 2012 - 10:45am SLAC, Bldg. 137, Room 226 Yijin Liu Seminar There was a revolutionary development of X-ray imaging over the past few decades. The most substantial advancements in this field are closely related to the availability of the new generation of X-ray sources and the advanced X-ray optics. The advanced X-ray Optics

  8. X-Ray Nanoimaging: Instruments and Methods

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Nanoimaging: Instruments and Methods X-Ray Nanoimaging: Instruments and Methods Print To be held as part of SPIE. http://spie.org/OP318 August 28-29, 2013; San Diego, California, USA

  9. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light ... wavelengths relevant to atomic and molecular phenomena) with the advantages of ...

  10. Neutron and X-ray Scattering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutron and X-ray Scattering Neutron and X-ray Scattering When used together, neutrons and high-energy x-rays provide a supremely powerful scientific tool for mining details about the structure of materials. Combining neutrons and high-energy x-rays to explore the frontiers of materials in extreme environments. Illuminating previously inaccessible time and spatial scales. Enabling in situ research to design, discover, and control materials. Get Expertise Donald Brown Email Pushing the limits of

  11. X-ray Image Bank Open for Business - NERSC Center News, Feb 22...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    use light sources to shoot intense x-ray beams into molecules, such as proteins, in order to understand their shapes and structures. The resulting diffraction patterns are...

  12. Scientists tune X-rays with tiny mirrors | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences and Director of the Advanced Photon Source. "This is a premier example of the innovation that results from collaboration between nanoscientists and X-ray scientists."...

  13. Investigation of the hard x-ray background in backlit pinhole imagers

    SciTech Connect (OSTI)

    Fein, J. R. Holloway, J. P.; Peebles, J. L.; Keiter, P. A.; Klein, S. R.; Kuranz, C. C.; Manuel, M. J.-E.; Drake, R. P.

    2014-11-15

    Hard x-rays from laser-produced hot electrons (>10 keV) in backlit pinhole imagers can give rise to a background signal that decreases signal dynamic range in radiographs. Consequently, significant uncertainties are introduced to the measured optical depth of imaged plasmas. Past experiments have demonstrated that hard x-rays are produced when hot electrons interact with the high-Z pinhole substrate used to collimate the softer He-? x-ray source. Results are presented from recent experiments performed on the OMEGA-60 laser to further study the production of hard x-rays in the pinhole substrate and how these x-rays contribute to the background signal in radiographs. Radiographic image plates measured hard x-rays from pinhole imagers with Mo, Sn, and Ta pinhole substrates. The variation in background signal between pinhole substrates provides evidence that much of this background comes from x-rays produced in the pinhole substrate itself. A Monte Carlo electron transport code was used to model x-ray production from hot electrons interacting in the pinhole substrate, as well as to model measurements of x-rays from the irradiated side of the targets, recorded by a bremsstrahlung x-ray spectrometer. Inconsistencies in inferred hot electron distributions between the different pinhole substrate materials demonstrate that additional sources of hot electrons beyond those modeled may produce hard x-rays in the pinhole substrate.

  14. Cryotomography x-ray microscopy state

    DOE Patents [OSTI]

    Le Gros, Mark; Larabell, Carolyn A.

    2010-10-26

    An x-ray microscope stage enables alignment of a sample about a rotation axis to enable three dimensional tomographic imaging of the sample using an x-ray microscope. A heat exchanger assembly provides cooled gas to a sample during x-ray microscopic imaging.

  15. X-rays from a microsecond X-pinch

    SciTech Connect (OSTI)

    Appartaim, R. K.

    2013-08-28

    The characteristics of x-rays emitted by X-pinches driven by discharging a current of ∼320 kA with a quarter period of 1 μs in crossed 25 μm wires have been investigated. The x-ray emissions are studied using filtered silicon photodiodes, diamond radiation detectors, and pinhole cameras. The results show that predominantly x-rays from the microsecond X-pinch tend to be emitted in two distinct sets of bursts. The first is predominantly “soft,” i.e., with photon energy hν < 5 keV, followed by a second set of bursts beginning up to 100 ns following the initial bursts, and usually consisting of higher photon energies. Our results show, however, that the x-ray emissions do not contain a significant component with hν > 10 keV as might be expected from electron beam activity within the plasma or from the X-pinch diode. High-resolution images obtained with the observed x-rays suggest a well-defined small source of soft x-rays that demonstrates the potential of the microsecond X-pinch.

  16. Normal incidence X-ray mirror for chemical microanalysis

    DOE Patents [OSTI]

    Carr, Martin J.; Romig, Jr., Alton D.

    1990-01-01

    A non-planar, focusing mirror, to be utilized in both electron column instruments and micro-x-ray fluorescence instruments for performing chemical microanalysis on a sample, comprises a concave, generally spherical base substrate and a predetermined number of alternating layers of high atomic number material and low atomic number material contiguously formed on the base substrate. The thickness of each layer is an integral multiple of the wavelength being reflected and may vary non-uniformly according to a predetermined design. The chemical analytical instruments in which the mirror is used also include a predetermined energy source for directing energy onto the sample and a detector for receiving and detecting the x-rays emitted from the sample; the non-planar mirror is located between the sample and detector and collects the x-rays emitted from the sample at a large solid angle and focuses the collected x-rays to the sample. For electron column instruments, the wavelengths of interest lie above 1.5 nm, while for x-ray fluorescence instruments, the range of interest is below 0.2 nm. Also, x-ray fluorescence instruments include an additional non-planar focusing mirror, formed in the same manner as the previously described m The invention described herein was made in the performance of work under contract with the Department of Energy, Contract No. DE-AC04-76DP00789, and the United States Government has rights in the invention pursuant to this contract.

  17. Lasers, extreme UV and soft X-ray

    SciTech Connect (OSTI)

    Nilsen, Joseph

    2015-09-20

    Three decades ago, large ICF lasers that occupied entire buildings were used as the energy sources to drive the first X-ray lasers. Today X-ray lasers are tabletop, spatially coherent, high-repetition rate lasers that enable many of the standard optical techniques such as interferometry to be extended to the soft X-ray regime between wavelengths of 10 and 50 nm. Over the last decade X-ray laser performance has been improved by the use of the grazing incidence geometry, diode-pumped solid-state lasers, and seeding techniques. The dominant X-ray laser schemes are the monopole collisional excitation lasers either driven by chirped pulse amplification (CPA) laser systems or capillary discharge. The CPA systems drive lasing in neon-like or nickel-like ions, typically in the 10 – 30 nm range, while the capillary system works best for neon-like argon at 46.9 nm. Most researchers use nickel-like ion lasers near 14 nm because they are well matched to the Mo:Si multilayer mirrors that have peak reflectivity near 13 nm and are used in many applications. As a result, the last decade has seen the birth of the X-ray free electron laser (XFEL) that can reach wavelengths down to 0.15 nm and the inner-shell Ne laser at 1.46 nm.

  18. Lasers, extreme UV and soft X-ray

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nilsen, Joseph

    2015-09-20

    Three decades ago, large ICF lasers that occupied entire buildings were used as the energy sources to drive the first X-ray lasers. Today X-ray lasers are tabletop, spatially coherent, high-repetition rate lasers that enable many of the standard optical techniques such as interferometry to be extended to the soft X-ray regime between wavelengths of 10 and 50 nm. Over the last decade X-ray laser performance has been improved by the use of the grazing incidence geometry, diode-pumped solid-state lasers, and seeding techniques. The dominant X-ray laser schemes are the monopole collisional excitation lasers either driven by chirped pulse amplification (CPA)more » laser systems or capillary discharge. The CPA systems drive lasing in neon-like or nickel-like ions, typically in the 10 – 30 nm range, while the capillary system works best for neon-like argon at 46.9 nm. Most researchers use nickel-like ion lasers near 14 nm because they are well matched to the Mo:Si multilayer mirrors that have peak reflectivity near 13 nm and are used in many applications. As a result, the last decade has seen the birth of the X-ray free electron laser (XFEL) that can reach wavelengths down to 0.15 nm and the inner-shell Ne laser at 1.46 nm.« less

  19. Pixel Array Detector for Time-Resolved X-ray Science, September 1, 1997 - September 14, 2000

    SciTech Connect (OSTI)

    Gruner, Sol M.

    2000-11-07

    Progress on the design, fabrication, testing and assembly of two-layer Pixel Array Detectors (PADs) is described. The PADs are developed for challenging time-resolved X-ray imaging applications at synchrotron radiation X-ray sources.

  20. X-ray metrology and performance of a 45-cm long x-ray deformable mirror

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Poyneer, Lisa A.; Brejnholt, Nicolai F.; Hill, Randall; Jackson, Jessie; Hagler, Lisle; Celestre, Richard; Feng, Jun

    2016-05-20

    We describe experiments with a 45-cm long x-ray deformable mirror (XDM) that have been conducted in End Station 2, Beamline 5.3.1 at the Advanced Light Source. A detailed description of the hardware implementation is provided. We explain our one-dimensional Fresnel propagation code that correctly handles grazing incidence and includes a model of the XDM. This code is used to simulate and verify experimental results. Initial long trace profiler metrology of the XDM at 7.5 keV is presented. The ability to measure a large (150-nm amplitude) height change on the XDM is demonstrated. The results agree well with the simulated experimentmore » at an error level of 1 μrad RMS. Lastly, direct imaging of the x-ray beam also shows the expected change in intensity profile at the detector.« less

  1. Using “Tender” x-ray ambient pressure x-Ray photoelectron spectroscopy as a direct probe of solid-liquid interface

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Axnanda, Stephanus; Crumlin, Ethan J.; Mao, Baohua; Rani, Sana; Chang, Rui; Karlsson, Patrik G.; Edwards, Mårten O. M.; Lundqvist, Måns; Moberg, Robert; Ross, Phil; et al

    2015-05-07

    We report a new method to probe the solid-liquid interface through the use of a thin liquid layer on a solid surface. An ambient pressure XPS (AP-XPS) endstation that is capable of detecting high kinetic energy photoelectrons (7 keV) at a pressure up to 110 Torr has been constructed and commissioned. Additionally, we have deployed a “dip & pull” method to create a stable nanometers-thick aqueous electrolyte on platinum working electrode surface. Combining the newly constructed AP-XPS system, “dip & pull” approach, with a “tender” X-ray synchrotron source (2 keV–7 keV), we are able to access the interface between liquidmore » and solid dense phases with photoelectrons and directly probe important phenomena occurring at the narrow solid-liquid interface region in an electrochemical system. Using this approach, we have performed electrochemical oxidation of the Pt electrode at an oxygen evolution reaction (OER) potential. Under this potential, we observe the formation of both Pt²⁺ and Pt⁴⁺ interfacial species on the Pt working electrode in situ. We believe this thin-film approach and the use of “tender” AP-XPS highlighted in this study is an innovative new approach to probe this key solid-liquid interface region of electrochemistry.« less

  2. Spherical grating based x-ray Talbot interferometry

    SciTech Connect (OSTI)

    Cong, Wenxiang E-mail: xiy2@rpi.edu Xi, Yan E-mail: xiy2@rpi.edu Wang, Ge E-mail: xiy2@rpi.edu

    2015-11-15

    Purpose: Grating interferometry is a state-of-the-art x-ray imaging approach, which can acquire information on x-ray attenuation, phase shift, and small-angle scattering simultaneously. Phase-contrast imaging and dark-field imaging are very sensitive to microstructural variation and offers superior contrast resolution for biological soft tissues. However, a common x-ray tube is a point-like source. As a result, the popular planar grating imaging configuration seriously restricts the flux of photons and decreases the visibility of signals, yielding a limited field of view. The purpose of this study is to extend the planar x-ray grating imaging theory and methods to a spherical grating scheme for a wider range of preclinical and clinical applications. Methods: A spherical grating matches the wave front of a point x-ray source very well, allowing the perpendicular incidence of x-rays on the grating to achieve a higher visibility over a larger field of view than the planer grating counterpart. A theoretical analysis of the Talbot effect for spherical grating imaging is proposed to establish a basic foundation for x-ray spherical gratings interferometry. An efficient method of spherical grating imaging is also presented to extract attenuation, differential phase, and dark-field images in the x-ray spherical grating interferometer. Results: Talbot self-imaging with spherical gratings is analyzed based on the Rayleigh–Sommerfeld diffraction formula, featuring a periodic angular distribution in a polar coordinate system. The Talbot distance is derived to reveal the Talbot self-imaging pattern. Numerical simulation results show the self-imaging phenomenon of a spherical grating interferometer, which is in agreement with the theoretical prediction. Conclusions: X-ray Talbot interferometry with spherical gratings has a significant practical promise. Relative to planar grating imaging, spherical grating based x-ray Talbot interferometry has a larger field of view and

  3. The History of X-ray Free-Electron Lasers

    SciTech Connect (OSTI)

    Pellegrini, C.; /UCLA /SLAC

    2012-06-28

    The successful lasing at the SLAC National Accelerator Laboratory of the Linear Coherent Light Source (LCLS), the first X-ray free-electron laser (X-ray FEL), in the wavelength range 1.5 to 15 {angstrom}, pulse duration of 60 to few femtoseconds, number of coherent photons per pulse from 10{sup 13} to 10{sup 11}, is a landmark event in the development of coherent electromagnetic radiation sources. Until now electrons traversing an undulator magnet in a synchrotron radiation storage ring provided the best X-ray sources. The LCLS has set a new standard, with a peak X-ray brightness higher by ten orders of magnitudes and pulse duration shorter by three orders of magnitudes. LCLS opens a new window in the exploration of matter at the atomic and molecular scales of length and time. Taking a motion picture of chemical processes in a few femtoseconds or less, unraveling the structure and dynamics of complex molecular systems, like proteins, are some of the exciting experiments made possible by LCLS and the other X-ray FELs now being built in Europe and Asia. In this paper, we describe the history of the many theoretical, experimental and technological discoveries and innovations, starting from the 1960s and 1970s, leading to the development of LCLS.

  4. RYLLA. [X-ray transport code

    SciTech Connect (OSTI)

    Hyde, R.A.

    1983-06-08

    This paper describes a computer code, RYLLA, which models the deposition of x-rays into thin metal slabs, and transports the resulting photoelectrons, finding the distribution of electrons leaving the slab from both the front and back surfaces. The slab must be homogeneous, but can contain a mixture of up to 5 different elements. Due to the short electron mean free path at low electron energies, RYLLA should be used only for studying thin slabs, roughly < 100 mg/cm/sup 2/ for low Z metals, and < 10 mg/cm/sup 2/ for high Z metals. X-ray energies should be in the range of 1 to 150 keV, as they are deposited only via photoionization and Compton scattering processes. Following photoionization, a hole exists in the electron cloud of the absorbing atom. This fills either by Auger or fluoresence, resulting in lower energy holes which are also filled. Fluoresence photons are transported and absorbed in the same manner as the primary photons, except that they are isotropically produced. Once all photons have been transported and absorbed, and all holes have been filled, a space- and energy-dependent electron source spectrum has been obtained. This is used in a discrete ordinate expansion solution of the 1-D transport equation, which gives the output electron spectra at the two slab surfaces. This paper discusses both the physics and coding of RYLLA. Examples of user input are given, as are some comparisons with other codes.

  5. New Homogeneous Standards by Atomic Layer Deposition for Synchrotron X-ray Fluorescence and Absorption Spectroscopies.

    SciTech Connect (OSTI)

    Butterworth, A.L.; Becker, N.; Gainsforth, Z.; Lanzirotti, A.; Newville, M.; Proslier, T.; Stodolna, J.; Sutton, S.; Tyliszczak, T.; Westphal, A.J.; Zasadzinski, J.

    2012-03-13

    Quantification of synchrotron XRF analyses is typically done through comparisons with measurements on the NIST SRM 1832/1833 thin film standards. Unfortunately, these standards are inhomogeneous on small scales at the tens of percent level. We are synthesizing new homogeneous multilayer standards using the Atomic Layer Deposition technique and characterizing them using multiple analytical methods, including ellipsometry, Rutherford Back Scattering at Evans Analytical, Synchrotron X-ray Fluorescence (SXRF) at Advanced Photon Source (APS) Beamline 13-ID, Synchrotron X-ray Absorption Spectroscopy (XAS) at Advanced Light Source (ALS) Beamlines 11.0.2 and 5.3.2.1 and by electron microscopy techniques. Our motivation for developing much-needed cross-calibration of synchrotron techniques is borne from coordinated analyses of particles captured in the aerogel of the NASA Stardust Interstellar Dust Collector (SIDC). The Stardust Interstellar Dust Preliminary Examination (ISPE) team have characterized three sub-nanogram, {approx}1{micro}m-sized fragments considered as candidates to be the first contemporary interstellar dust ever collected, based on their chemistries and trajectories. The candidates were analyzed in small wedges of aerogel in which they were extracted from the larger collector, using high sensitivity, high spatial resolution >3 keV synchrotron x-ray fluorescence spectroscopy (SXRF) and <2 keV synchrotron x-ray transmission microscopy (STXM) during Stardust ISPE. The ISPE synchrotron techniques have complementary capabilities. Hard X-ray SXRF is sensitive to sub-fg mass of elements Z {ge} 20 (calcium) and has a spatial resolution as low as 90nm. X-ray Diffraction data were collected simultaneously with SXRF data. Soft X-ray STXM at ALS beamline 11.0.2 can detect fg-mass of most elements, including cosmochemically important oxygen, magnesium, aluminum and silicon, which are invisible to SXRF in this application. ALS beamline 11.0.2 has spatial resolution

  6. A paediatric X-ray exposure chart

    SciTech Connect (OSTI)

    Knight, Stephen P

    2014-09-15

    The aim of this review was to develop a radiographic optimisation strategy to make use of digital radiography (DR) and needle phosphor computerised radiography (CR) detectors, in order to lower radiation dose and improve image quality for paediatrics. This review was based on evidence-based practice, of which a component was a review of the relevant literature. The resulting exposure chart was developed with two distinct groups of exposure optimisation strategies – body exposures (for head, trunk, humerus, femur) and distal extremity exposures (elbow to finger, knee to toe). Exposure variables manipulated included kilovoltage peak (kVp), target detector exposure and milli-ampere-seconds (mAs), automatic exposure control (AEC), additional beam filtration, and use of antiscatter grid. Mean dose area product (DAP) reductions of up to 83% for anterior–posterior (AP)/posterior–anterior (PA) abdomen projections were recorded postoptimisation due to manipulation of multiple-exposure variables. For body exposures, the target EI and detector exposure, and thus the required mAs were typically 20% less postoptimisation. Image quality for some distal extremity exposures was improved by lowering kVp and increasing mAs around constant entrance skin dose. It is recommended that purchasing digital X-ray equipment with high detective quantum efficiency detectors, and then optimising the exposure chart for use with these detectors is of high importance for sites performing paediatric imaging. Multiple-exposure variables may need to be manipulated to achieve optimal outcomes.

  7. The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Focus The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into Focus The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into Focus Print Wednesday, 26 March 2008 00:00 Studying the world of the ultrasmall and the ultrafast is at the frontier of scientific research. Two x-ray approaches can be used for ultrafast examinations. The first entails developing sources that have short x-ray pulses such as free-electron lasers and slicing sources, which will provide the

  8. X-RAY EMISSION FROM MAGNETIC MASSIVE STARS

    SciTech Connect (OSTI)

    Naz, Yal; Petit, Vronique; Rinbrand, Melanie; Owocki, Stan; Cohen, David; Ud-Doula, Asif; Wade, Gregg A.

    2014-11-01

    Magnetically confined winds of early-type stars are expected to be sources of bright and hard X-rays. To clarify the systematics of the observed X-ray properties, we have analyzed a large series of Chandra and XMM-Newton observations, corresponding to all available exposures of known massive magnetic stars (over 100 exposures covering ?60% of stars compiled in the catalog of Petit et al.). We show that the X-ray luminosity is strongly correlated with the stellar wind mass-loss rate, with a power-law form that is slightly steeper than linear for the majority of the less luminous, lower- M-dot B stars and flattens for the more luminous, higher- M-dot O stars. As the winds are radiatively driven, these scalings can be equivalently written as relations with the bolometric luminosity. The observed X-ray luminosities, and their trend with mass-loss rates, are well reproduced by new MHD models, although a few overluminous stars (mostly rapidly rotating objects) exist. No relation is found between other X-ray properties (plasma temperature, absorption) and stellar or magnetic parameters, contrary to expectations (e.g., higher temperature for stronger mass-loss rate). This suggests that the main driver for the plasma properties is different from the main determinant of the X-ray luminosity. Finally, variations of the X-ray hardnesses and luminosities, in phase with the stellar rotation period, are detected for some objects and they suggest that some temperature stratification exists in massive stars' magnetospheres.

  9. X-ray transmissive debris shield

    DOE Patents [OSTI]

    Spielman, Rick B.

    1994-01-01

    A composite window structure is described for transmitting x-ray radiation and for shielding radiation generated debris. In particular, separate layers of different x-ray transmissive materials are laminated together to form a high strength, x-ray transmissive debris shield which is particularly suited for use in high energy fluences. In one embodiment, the composite window comprises alternating layers of beryllium and a thermoset polymer.

  10. X-Ray Characterization of Diesel Sprays and the Effects of Nozzle Geometry

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Sprays and the Effects of Nozzle Geometry X-Ray Characterization of Diesel Sprays and the Effects of Nozzle Geometry 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Argonne National Laboratory 2004_deer_powell.pdf (375.63 KB) More Documents & Publications Advanced Research in Diesel Fuel Sprays Using X-rays from the Advanced Photon Source Spray Structure Measured with X-Ray Radiography Vehicle Technologies Office Merit Review 2014: Fuel

  11. Automatic detection of bone fragments in poultry using multi-energy x-rays

    DOE Patents [OSTI]

    Gleason, Shaun S.; Paulus, Michael J.; Mullens, James A.

    2002-04-09

    At least two linear arrays of x-ray detectors are placed below a conveyor belt in a poultry processing plant. Multiple-energy x-ray sources illuminate the poultry and are detected by the detectors. Laser profilometry is used to measure the poultry thickness as the x-ray data is acquired. The detector readout is processed in real time to detect the presence of small highly attenuating fragments in the poultry, i.e., bone, metal, and cartilage.

  12. Method and apparatus for micromachining using hard X-rays

    DOE Patents [OSTI]

    Siddons, David Peter; Johnson, Erik D.; Guckel, Henry; Klein, Jonathan L.

    1997-10-21

    An X-ray source such as a synchrotron which provides a significant spectral content of hard X-rays is used to expose relatively thick photoresist such that the portions of the photoresist at an exit surface receive at least a threshold dose sufficient to render the photoresist susceptible to a developer, while the entrance surface of the photoresist receives an exposure which does not exceed a power limit at which destructive disruption of the photoresist would occur. The X-ray beam is spectrally shaped to substantially eliminate lower energy photons while allowing a substantial flux of higher energy photons to pass through to the photoresist target. Filters and the substrate of the X-ray mask may be used to spectrally shape the X-ray beam. Machining of photoresists such as polymethylmethacrylate to micron tolerances may be obtained to depths of several centimeters, and multiple targets may be exposed simultaneously. The photoresist target may be rotated and/or translated in the beam to form solids of rotation and other complex three-dimensional structures.

  13. Method and apparatus for micromachining using hard X-rays

    DOE Patents [OSTI]

    Siddons, D.P.; Johnson, E.D.; Guckel, H.; Klein, J.L.

    1997-10-21

    An X-ray source such as a synchrotron which provides a significant spectral content of hard X-rays is used to expose relatively thick photoresist such that the portions of the photoresist at an exit surface receive at least a threshold dose sufficient to render the photoresist susceptible to a developer, while the entrance surface of the photoresist receives an exposure which does not exceed a power limit at which destructive disruption of the photoresist would occur. The X-ray beam is spectrally shaped to substantially eliminate lower energy photons while allowing a substantial flux of higher energy photons to pass through to the photoresist target. Filters and the substrate of the X-ray mask may be used to spectrally shape the X-ray beam. Machining of photoresists such as polymethylmethacrylate to micron tolerances may be obtained to depths of several centimeters, and multiple targets may be exposed simultaneously. The photoresist target may be rotated and/or translated in the beam to form solids of rotation and other complex three-dimensional structures. 21 figs.

  14. Gamma Radiation & X-Rays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gamma Radiation and X-Rays 1. Gamma radiation and X-rays are electromagnetic radiation like visible light, radio waves, and ultraviolet light. These electromagnetic radiations differ only in the amount of energy they have. Gamma rays and X-rays are the most energetic of these. 2. Gamma radiation is able to travel many meters in air and many centimeters in human tissue. It readily penetrates most materials and is sometimes called "penetrating radiation." 3. X-rays are like gamma rays.

  15. X-ray microscopy. Beyond ensemble averages

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ice, Gene E.; Budai, John D.

    2015-06-23

    This work exemplifies emerging tools to characterize local materials structure and dynamics, made possible by powerful X-ray synchrotron and transmission electron microscopy methods.

  16. SMB, X-Ray Spectroscopy & Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home » X-Ray Spectroscopy & Imaging X-Ray Spectroscopy & Imaging SSRL has five hard X-ray Spectroscopy beamlines and three Microfocus Imaging beamlines dedicated to Biological and Biomedical research funded by the NIH and DOE-BER. The SMB group supports and develops technical instrumentation and theoretical methods for state-of-the-art tender and hard X-ray spectroscopy and EXAFS studies on metalloproteins, cofactors and metals in medicine. The SMB group has also contributed to the

  17. Gamma and X-ray Dosimetric Method

    DOE Patents [OSTI]

    Taplin, G.V.; Douglas, C.H.

    1954-06-29

    This patent application concerns a highly stable two-phase liquid system for use in a colorimetric dosimeter for measuring X-ray and gamma radiation.

  18. A COMPARISON OF X-RAY AND MID-INFRARED SELECTION OF OBSCURED ACTIVE GALACTIC NUCLEI

    SciTech Connect (OSTI)

    Eckart, Megan E.; Harrison, Fiona A.; McGreer, Ian D.; Helfand, David J.; Stern, Daniel

    2010-01-01

    We compare the relative merits of active galactic nuclei (AGNs) selection at X-ray and mid-infrared wavelengths using data from moderately deep fields observed by both Chandra and Spitzer. The X-ray-selected AGN sample and associated photometric and spectroscopic optical follow-up are drawn from a subset of fields studied as part of the Serendipitous Extragalactic X-ray Source Identification (SEXSI) program. Mid-infrared data in these fields are derived from targeted and archival Spitzer imaging, and mid-infrared AGN selection is accomplished primarily through application of the Infrared Array Camera (IRAC) color-color AGN 'wedge' selection technique. Nearly all X-ray sources in these fields which exhibit clear spectroscopic signatures of AGN activity have mid-infrared colors consistent with IRAC AGN selection. These are predominantly the most luminous X-ray sources. X-ray sources that lack high-ionization and/or broad lines in their optical spectra are far less likely to be selected as AGNs by mid-infrared color selection techniques. The fraction of X-ray sources identified as AGNs in the mid-infrared increases monotonically as the X-ray luminosity increases. Conversely, only 22% of mid-infrared-selected AGNs are detected at X-ray energies in the moderately deep ((t{sub exp}) approx 100 ks) SEXSI Chandra data. We hypothesize that IRAC sources with AGN colors that lack X-ray detections are predominantly high-luminosity AGNs that are obscured and/or lie at high redshift. A stacking analysis of X-ray-undetected sources shows that objects in the mid-infrared AGN selection wedge have average X-ray fluxes in the 2-8 keV band 3 times higher than sources that fall outside the wedge. Their X-ray spectra are also harder. The hardness ratio of the wedge-selected stack is consistent with moderate intrinsic obscuration, but is not suggestive of a highly obscured, Compton-thick source population. It is evident from this comparative study that in order to create a complete

  19. Breakthroughs in photonics 2013: X-ray optics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Soufli, Regina

    2014-04-01

    Here, this review discusses the latest advances in extreme ultraviolet/X-ray optics development, which are motivated by the availability and demands of new X-ray sources and scientific and industrial applications. Among the breakthroughs highlighted are the following: i) fabrication, metrology, and mounting technologies for large-area optical substrates with improved figure, roughness, and focusing properties; ii) multilayer coatings with especially optimized layer properties, achieving improved reflectance, stability, and out-of-band suppression; and iii) nanodiffractive optics with improved efficiency and resolution.

  20. X-ray Diffraction from Membrane Protein Nanocrystals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-ray Diffraction from Membrane Protein Nanocrystals Authors: Hunter, M.S., DePonte, D.P., Shapiro, D.A., Kirian, R.A., Wang, X., Starodub, D., Marchesini, S., Weierstall, U., Doak, R.B., Spence, J.C.H., and Fromme, P. Title: X-ray Diffraction from Membrane Protein Nanocrystals Source: Biophysical Journal Year: 2011 Volume: 100 Pages: 198-206 ABSTRACT: Membrane proteins constitute >30% of the proteins in an average cell, and yet the number of currently known structures of unique membrane

  1. The First Angstrom X-Ray Free-Electron Laser

    SciTech Connect (OSTI)

    Galayda, John; /SLAC

    2012-08-24

    The Linac Coherent Light Source produced its first x-ray laser beam on 10 April 2009. Today it is routinely producing x-ray pulses with energy >2 mJ across the operating range from 820-8,200 eV. The facility has begun operating for atomic/molecular/optical science experiments. Performance of the facility in its first user run (1 October - 21 December) and current machine development activities will be presented. Early results from the preparations for the start of the second user run is also reported.

  2. X-ray radiography with highly charged ions

    DOE Patents [OSTI]

    Marrs, Roscoe E. (Livermore, CA)

    2000-01-01

    An extremely small (1-250 micron FWHM) beam of slow highly charged ions deexciting on an x-ray production target generates x-ray monochromatic radiation that is passed through a specimen and detected for imaging. The resolution of the x-ray radiograms is improved and such detection is achieved with relatively low dosages of radiation passing through the specimen. An apparatus containing an electron beam ion trap (and modifications thereof) equipped with a focusing column serves as a source of ions that generate radiation projected onto an image detector. Electronic and other detectors are able to detect an increased amount of radiation per pixel than achieved by previous methods and apparati.

  3. Progress in Development of Kharkov X-Ray Generator Nestor

    SciTech Connect (OSTI)

    Androsov, V.; Bulyak, V.; Dovbnya, A.; Drebot, I.; Gladkikh, P.; Grevtsev, V.; Grigorev, Yu.; Gvozd, A.; Ivashchenko, V.; Karnaukhov, I.; Kovalyova, N.; Kozin, V.; Lapshin, V.; Lyashchenko, V.; Markov, V.; Mocheshnikov, N.; Mytsykov, A.; Neklyudov, I.; Peev, F.; Rezaev, A.; Shcherbakov, A.; /Kharkov, KIPT /SLAC, SSRL /Eindhoven, Tech. U. /Lebedev Inst. /Kurdyumova Inst. Metalophysics

    2005-09-14

    The sources of the X-rays based on Compton scattering of intense Nd:YAG laser beam on electron beam circulating in a storage ring with beam energy 43-225 MeV is under construction in NSC KIPT. In the paper the progress in development and construction of Kharkov X-ray generator NESTOR is presented. The current status of the main facility system design and development are described. New scheme and main parameters of injection system are presented. The status of power supply system and control system is described. The facility is going to be in operation in the middle of 2007 and generated X-rays flux is expected to be of about 10{sup 13} phot/s.

  4. Imaging X-ray Thomson Scattering Spectrometer Design and Demonstration

    SciTech Connect (OSTI)

    Gamboa, E.J.; Huntington, C.M.; Trantham, M.R.; Keiter, P.A; Drake, R.P.; Montgomery, David; Benage, John F.; Letzring, Samuel A.

    2012-05-04

    In many laboratory astrophysics experiments, intense laser irradiation creates novel material conditions with large, one-dimensional gradients in the temperature, density, and ionization state. X-ray Thomson scattering is a powerful technique for measuring these plasma parameters. However, the scattered signal has previously been measured with little or no spatial resolution, which limits the ability to diagnose inhomogeneous plasmas. We report on the development of a new imaging x-ray Thomson spectrometer (IXTS) for the Omega laser facility. The diffraction of x-rays from a toroidally-curved crystal creates high-resolution images that are spatially resolved along a one-dimensional profile while spectrally dispersing the radiation. This focusing geometry allows for high brightness while localizing noise sources and improving the linearity of the dispersion. Preliminary results are presented from a scattering experiment that used the IXTS to measure the temperature profile of a shocked carbon foam.

  5. Hard disk drive based microsecond x-ray chopper for characterization of ionization chambers and photodiodes

    SciTech Connect (OSTI)

    Müller, O. Lützenkirchen-Hecht, D.; Frahm, R.

    2015-03-15

    A fast X-ray chopper capable of producing ms long X-ray pulses with a typical rise time of few μs was realized. It is ideally suited to investigate the temporal response of X-ray detectors with response times of the order of μs to ms, in particular, any kind of ionization chambers and large area photo diodes. The drive mechanism consists of a brushless DC motor and driver electronics from a common hard disk drive, keeping the cost at an absolute minimum. Due to its simple construction and small dimensions, this chopper operates at home lab based X-ray tubes and synchrotron radiation sources as well. The dynamics of the most important detectors used in time resolved X-ray absorption spectroscopy, namely, ionization chambers and Passivated Implanted Planar Silicon photodiodes, were investigated in detail. The results emphasize the applicability of this X-ray chopper.

  6. Spectral brilliance of parametric X-rays at the FAST facility

    SciTech Connect (OSTI)

    Sen, Tanaji; Seiss, Todd

    2015-06-22

    We discuss the generation of parametric X-rays in the new photoinjector at the FAST (Fermilab Accelerator Science and Technology) facility in Fermilab. These experiments will be conducted in addition to channeling X-ray radiation experiments. The low emittance electron beam makes this facility a promising source for creating brilliant X-rays. We discuss the theoretical model and present detailed calculations of the intensity spectrum, energy and angular widths and spectral brilliance under different conditions. Furthermore, we report on expected results with parametric X-rays generated while under channeling conditions.

  7. The World's First Free-Electron X-ray Laser | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The World's First Free-Electron X-ray Laser The World's First Free-Electron X-ray Laser August 17, 2010 - 6:19pm Addthis The World's First Free-Electron X-ray Laser John Schueler John Schueler Former New Media Specialist, Office of Public Affairs Yesterday, Secretary Chu participated in the dedication of the world's first free-electron and most powerful X-ray laser, the Linac Coherent Light Source (LCLS). In light of this occasion (pun intended), we posted an in-depth look at the innovative

  8. K-alpha conversion efficiency measurments for x-ray scattering in inertial confinement fusion plasmas

    SciTech Connect (OSTI)

    Kritcher, A L; Neumayer, P; Urry, M K; Robey, H; Niemann, C; Landen, O L; Morse, E; Glenzer, S H

    2006-11-21

    The conversion efficiency of ultra short-pulse laser radiation to K-{alpha} x-rays has been measured for various chlorine-containing targets to be used as x-ray scattering probes of dense plasmas. The spectral and temporal properties of these sources will allow spectrally-resolved x-ray scattering probing with picosecond temporal resolution required for measuring the plasma conditions in inertial confinement fusion experiments. Simulations of x-ray scattering spectra from these plasmas show that fuel capsule density, capsule ablator density, and shock timing information may be inferred.

  9. Phased Contrast X-Ray Imaging

    ScienceCinema (OSTI)

    Erin Miller

    2012-12-31

    The Pacific Northwest National Laboratory is developing a range of technologies to broaden the field of explosives detection. Phased contrast X-ray imaging, which uses silicon gratings to detect distortions in the X-ray wave front, may be applicable to mail or luggage scanning for explosives; it can also be used in detecting other contraband, small-parts inspection, or materials characterization.

  10. Proposed New Accelerator Design for Homeland Security X-Ray Applications

    SciTech Connect (OSTI)

    Clayton, James; Shedlock, Daniel; Langeveld, Willem G.J.; Bharadwaj, Vinod; Nosochkov, Yuri

    2015-08-07

    In the security and inspection market, there is a push towards highly mobile, reduced-dose active interrogation scanning and imaging systems to allow operation in urban environments. To achieve these goals, the accelerator system design needs to be smaller than existing systems. A smaller radiation exclusion zone may be accomplished through better beam collimation and an integrated, x-ray-source/detector-array assembly to allow feedback and control of an intensity-modulated x-ray source. A shaped low-Z target in the x-ray source can be used to generate a more forward peaked x-ray beam. Electron-beam steering can then be applied to direct the forward-peaked x rays toward areas in the cargo with high attenuation. This paper presents an exploratory study to identify components and upgrades that would be required to meet the desired specifications, as well as the best technical approach to design and build a prototype.

  11. The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The first entails developing sources that have short x-ray pulses such as free-electron lasers and slicing sources, which will provide the ultrafast temporal information. The other ...

  12. Probing convex polygons with X-rays

    SciTech Connect (OSTI)

    Edelsbrunner, H.; Skiena, S.S. )

    1988-10-01

    An X-ray probe through a polygon measures the length of intersection between a line and the polygon. This paper considers the properties of various classes of X-ray probes, and shows how they interact to give finite strategies for completely describing convex n-gons. It is shown that (3n/2)+6 probes are sufficient to verify a specified n-gon, while for determining convex polygons (3n-1)/2 X-ray probes are necessary and 5n+O(1) sufficient, with 3n+O(1) sufficient given that a lower bound on the size of the smallest edge of P is known.

  13. Sandia National Laboratories: X-ray vision

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Sandia-developed X-Ray Toolkit, or XTK, is a specialized X-ray visualization tool to help bomb disposal squads make fast, accurate, and precise assessments of potentially dangerous devices such as pipe bombs and IEDs. The image here, captured via the XTK software package using its unique image-stitching capability, shows the inner workings of a mock IED. Facebook Twitter YouTube Flickr RSS News X-ray vision By Nancy Salem Photography By Randy Montoya Thursday, September 01, 2016 Sandia, UNM

  14. A criterion for the dynamical to kinematical transition of x-ray diffraction on a bent crystal

    SciTech Connect (OSTI)

    Kushnir, V.I.; Macrander, A.T.

    1993-09-01

    It is well known that the peak reflectivity of a bent crystal, generally speaking, is smaller than that of a plane crystal, and it goes to zero when the crystal curvature goes to infinity. The reason for this is the transition between dynamical and kinematical diffraction that takes place as the crystal curvature increases. The physical explanation is as follows: the deviation from exact Bragg position along the beam changes so fast that the thickness over which the beam is within a Darwin width becomes too small to reflect the beam. Bent crystals are widely used as focusing elements in X-ray optics, and estimation of whether or not a bent crystal is still perfect enough to provide good reflectivity is of great importance. Currently the Advanced Photon Source (APS) is considering a number of bent crystals as focusing elements for future APS beamlines, including a sagittaly focusing monochromator and bent backscattering analyzer for inelastic X-ray scattering experiments. A criterion is given in answer to the question: To what extent is it possible to bend a crystal without loss of X-ray peak reflectivity? An expression based on the work of Chukhovskii, Gabrielyan and Petrashen, is formulated that applies to anisotropic cubic crystal and that can be used not only for conventional asymmetric Bragg diffraction, but also for inclined crystal diffraction. The following special cases are treated as examples: isotropic crystal, standard symmetrical Bragg diffraction, extremely asymmetric diffraction, and backscattering with Bragg angles near 90{degree}. In addition, an asymptotic behavior for high energies is detailed.

  15. X-Ray Measurements Of A Thermo Scientific P385 DD Neutron Generator

    SciTech Connect (OSTI)

    Wharton, C. J.; Seabury, E. H.; Chichester, D. L.; Caffrey, A. J.; Simpson, J.; Lemchak, M.

    2011-06-01

    Idaho National Laboratory is experimenting with electrical neutron generators, as potential replacements for californium-252 radioisotopic neutron sources in its PINS prompt gamma-ray neutron activation analysis (PGNAA) system for the identification of military chemical warfare agents and explosives. In addition to neutron output, we have recently measured the x-ray output of the Thermo Scientific P385 deuterium-deuterium neutron generator. X rays are a normal byproduct from neutron generators, but depending on their intensity and energy, x rays can interfere with gamma rays from the object under test, increase gamma-spectrometer dead time, and reduce PGNAA system throughput. The P385 x-ray energy spectrum was measured with a high-purity germanium (HPGe) detector, and a broad peak is evident at about 70 keV. To identify the source of the x rays within the neutron generator assembly, it was scanned by collimated scintillation detectors along its long axis. At the strongest x-ray emission points, the generator also was rotated 60 deg. between measurements. The scans show the primary source of x-ray emission from the P385 neutron generator is an area 60 mm from the neutron production target, in the vicinity of the ion source. Rotation of the neutron generator did not significantly alter the x-ray count rate, and its x-ray emission appears to be axially symmetric. A thin lead shield, 3.2 mm (1/8 inch) thick, reduced the 70-keV generator x rays to negligible levels.

  16. X-rays Illuminate Ancient Archimedes Text

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... DailyIndia.com: http:www.dailyindia.comshow48286.phpX-rays-illuminate-Archimedes-writings North Korea Times: http:story.northkoreatimes.comp.xct9ciddd8845aa60952db2id...

  17. X-Ray Nanoimaging: Instruments and Methods

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Nanoimaging: Instruments and Methods To be held as part of SPIE. http://spie.org/OP318 August 28-29, 2013; San Diego, California, USA

  18. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wednesday, 26 October 2011 00:00 The advent of x-ray free-electron laser (XFEL) light ... wavelengths relevant to atomic and molecular phenomena) with the advantages of ...

  19. X-ray grid-detector apparatus

    DOE Patents [OSTI]

    Boone, John M.; Lane, Stephen M.

    1998-01-27

    A hybrid grid-detector apparatus for x-ray systems wherein a microchannel plate structure has an air-interspaced grid portion and a phosphor/optical fluid-filled grid portion. The grids are defined by multiple adjacent channels separated by lead-glass septa. X-rays entering the air-interspaced grid portion at an angle of impingement upon the septa are attenuated, while non-impinging x-rays pass through to the phosphor/fluid filled portion. X-ray energy is converted to luminescent energy in the phosphor/fluid filled portion and the resultant beams of light are directed out of the phosphor/optical fluid filled portion to an imaging device.

  20. X-Ray Nanoimaging: Instruments and Methods

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Nanoimaging: Instruments and Methods To be held as part of SPIE. http:spie.orgOP318 August 28-29, 2013; San Diego, California, USA

  1. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    be reconstructed by a single Fourier transform; this is known as Fourier transform holography. The problem of getting sufficiently coherent x-rays onto and off of the sample in a...

  2. X-ray image intensifier phosphor

    DOE Patents [OSTI]

    D'Silva, A.P.; Fassel, V.A.

    1975-12-01

    Y/sub 1-x/Gd/sub x/.PO$sub 4$:Tb$sup 3+$ is an effective phosphor for use in X-ray intensifier screens and in nuclear radiation detection systems.

  3. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Imaging by Soft X-Ray Diffraction Microscopy Biological Imaging by Soft X-Ray Diffraction Microscopy Print Wednesday, 30 November 2005 00:00 Electron and x-ray...

  4. Optimization efforts in gated x-ray intensifiers (Conference...

    Office of Scientific and Technical Information (OSTI)

    Optimization efforts in gated x-ray intensifiers Citation Details In-Document Search Title: Optimization efforts in gated x-ray intensifiers Gated x-ray intensifiers are often ...

  5. X-ray laser driven gold targets

    SciTech Connect (OSTI)

    Petrova, Tz. B. Whitney, K. G.; Davis, J.

    2014-03-15

    The femtosecond population dynamics of gold irradiated by a coherent high-intensity (>10{sup 17} W/cm{sup 2}) x-ray laser pulse is investigated theoretically. There are two aspects to the assembled model. One is the construction of a detailed model of platinum-like gold inclusive of all inner-shell states that are created by photoionization of atomic gold and decay either by radiative or Auger processes. Second is the computation of the population dynamics that ensues when an x-ray pulse is absorbed in gold. The hole state generation depends on the intensity and wavelength of the driving x-ray pulse. The excited state populations reached during a few femtosecond timescales are high enough to generate population inversions, whose gain coefficients are calculated. These amplified lines in the emitted x-ray spectrum provide important diagnostics of the radiation dynamics and also suggest a nonlinear way to increase the frequency of the coherent output x-ray pulses relative to the frequency of the driver input x-ray pulse.

  6. A compact x-ray free electron laser

    SciTech Connect (OSTI)

    Barletta, W.A. . Center for Advanced Accelerators Physics Lawrence Livermore National Lab., CA ); Atac, M.; Cline, D.B.; Kolonko, J. . Center for Advanced Accelerators Physics); Bhowmik, A.; Bobbs, B.; Cover, R.A.; Dixon, F.P.; Rakowsky, G. . Rocketdyne Div.); Gallardo

    1988-01-01

    We present a design concept and simulation of the performance of a compact x-ray, free electron laser driven by ultra-high gradient rf-linacs. The accelerator design is based on recent advances in high gradient technology by a LLNL/SLAC/LBL collaboration and on the development of bright, high current electron sources by BNL and LANL. The GeV electron beams generated with such accelerators can be converted to soft x-rays in the range from 2--10 nm by passage through short period, high field strength wigglers as are being designed at Rocketdyne Linear light sources of this type can produce trains of picosecond (or shorter) pulses of extremely high spectral brilliance suitablee for flash holography of biological specimens in vivo and for studies of fast chemical reactions. 12 refs., 8 figs., 4 tabs.

  7. Category:X-Ray Diffraction (XRD) | Open Energy Information

    Open Energy Info (EERE)

    X-Ray Diffraction (XRD) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the X-Ray Diffraction (XRD) page? For detailed information on...

  8. Direct synchrotron x-ray measurements of local strain fields...

    Office of Scientific and Technical Information (OSTI)

    Accepted Manuscript: Direct synchrotron x-ray measurements of local strain fields in ... September 3, 2016 Title: Direct synchrotron x-ray measurements of local strain fields in ...

  9. Generation of Coherent X-Ray Radiation through Modulation Compression...

    Office of Scientific and Technical Information (OSTI)

    Generation of Coherent X-Ray Radiation through Modulation Compression Citation Details In-Document Search Title: Generation of Coherent X-Ray Radiation through Modulation Compression ...

  10. Experimental X-ray characterization of Gekko XII laser propagation...

    Office of Scientific and Technical Information (OSTI)

    Experimental X-ray characterization of Gekko XII laser propagation through very low ... Citation Details In-Document Search Title: Experimental X-ray characterization of Gekko ...

  11. Integrated X-ray Reflectivity Measurements for Elliptically Curved...

    Office of Scientific and Technical Information (OSTI)

    Title: Integrated X-ray Reflectivity Measurements for Elliptically Curved PET Crystals The elliptically curved pentaerythritol (PET) crystals used in the Supersnout 2 X-ray ...

  12. Simultaneous cryo X-ray ptychographic and fluorescence microscopy...

    Office of Scientific and Technical Information (OSTI)

    Accepted Manuscript: Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae Prev Next Title: Simultaneous cryo X-ray ptychographic and fluorescence ...

  13. A Spatially Resolving X-ray Crystal Spectrometer for Measurement...

    Office of Scientific and Technical Information (OSTI)

    394 PPPL- 4394 A Spatially Resolving X-ray Crystal Spectrometer for Measurement of ... Fusion Links A spatially resolving x-ray crystal spectrometer for measurement of ...

  14. Development of a Spatially Resolving X-Ray Crystal Spectrometer...

    Office of Scientific and Technical Information (OSTI)

    Development of a Spatially Resolving X-Ray Crystal Spectrometer For Measurement of ... Links Development of a spatially resolving x-ray crystal spectrometer for measurement of ...

  15. Development Of a Spatially Resolving X-ray Crystal Spectrometer...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Development Of a Spatially Resolving X-ray Crystal Spectrometer For ... Title: Development Of a Spatially Resolving X-ray Crystal Spectrometer For Measurement Of ...

  16. Integrated X-Ray Reflectivity Measurements for Elliptically Curved...

    Office of Scientific and Technical Information (OSTI)

    Integrated X-Ray Reflectivity Measurements for Elliptically Curved PET Crystals Citation Details In-Document Search Title: Integrated X-Ray Reflectivity Measurements for ...

  17. X-ray transient absorption and picosecond IR spectroscopy of...

    Office of Scientific and Technical Information (OSTI)

    X-ray transient absorption and picosecond IR spectroscopy of fulvalene(tetracarbonyl)diruthenium on photoexcitation Citation Details In-Document Search Title: X-ray transient ...

  18. Experimental X-ray characterization of Gekko XII laser propagation...

    Office of Scientific and Technical Information (OSTI)

    Experimental X-ray characterization of Gekko XII laser propagation through very low ... Title: Experimental X-ray characterization of Gekko XII laser propagation through very low ...

  19. X-Ray Microcomputed Tomography for the Durability Characterization...

    Office of Scientific and Technical Information (OSTI)

    Conference: X-Ray Microcomputed Tomography for the Durability Characterization of Limestone Aggregate Citation Details In-Document Search Title: X-Ray Microcomputed Tomography for...

  20. Method for improve x-ray diffraction determinations of residual stress in nickel-base alloys

    DOE Patents [OSTI]

    Berman, Robert M.; Cohen, Isadore

    1990-01-01

    A process for improving the technique of measuring residual stress by x-ray diffraction in pieces of nickel-base alloys which comprises covering part of a predetermined area of the surface of a nickel-base alloy with a dispersion, exposing the covered and uncovered portions of the surface of the alloy to x-rays by way of an x-ray diffractometry apparatus, making x-ray diffraction determinations of the exposed surface, and measuring the residual stress in the alloy based on these determinations. The dispersion is opaque to x-rays and serves a dual purpose since it masks off unsatisfactory signals such that only a small portion of the surface is measured, and it supplies an internal standard by providing diffractogram peaks comparable to the peaks of the nickel alloy so that the alloy peaks can be very accurately located regardless of any sources of error external to the sample.

  1. Method for improving x-ray diffraction determinations of residual stress in nickel-base alloys

    DOE Patents [OSTI]

    Berman, R.M.; Cohen, I.

    1988-04-26

    A process for improving the technique of measuring residual stress by x-ray diffraction in pieces of nickel-base alloys is discussed. Part of a predetermined area of the surface of a nickel-base alloy is covered with a dispersion. This exposes the covered and uncovered portions of the surface of the alloy to x-rays by way of an x-ray diffractometry apparatus, making x-ray diffraction determinations of the exposed surface, and measuring the residual stress in the alloy based on these determinations. The dispersion is opaque to x-rays and serves a dual purpose, since it masks off unsatisfactory signals such that only a small portion of the surface is measured, and it supplies an internal standard by providing diffractogram peaks comparable to the peaks of the nickel alloy so that the alloy peaks can be very accurately located regardless of any sources of error external to the sample. 2 figs.

  2. Compound refractive lenses as prefocusing optics for X-ray FEL radiation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Heimann, Philip; MacDonald, Michael; Nagler, Bob; Lee, Hae Ja; Galtier, Eric; Arnold, Brice; Xing, Zhou

    2016-01-27

    The performance of X-ray free-electron laser beamlines may be limited by the angular aperture. Compound refractive lenses (CRLs) can be employed to prefocus the X-ray beam, thereby increasing the beamline transmission. A prefocusing CRL was implemented in the X-ray transport of the Matter under Extreme Conditions Instrument at the Linac Coherent Light Source. A significant improvement in the beamline transmission was calculated over the 3–10 keV photon energy range. At 5 keV, the relative X-ray intensity was measured and a factor of four increase was seen in the beamline transmission. As a result, the X-ray focus was also determined bymore » the ablation imprint method.« less

  3. High power x-ray welding of metal-matrix composites

    DOE Patents [OSTI]

    Rosenberg, Richard A.; Goeppner, George A.; Noonan, John R.; Farrell, William J.; Ma, Qing

    1999-01-01

    A method for joining metal-matrix composites (MMCs) by using high power x-rays as a volumetric heat source is provided. The method involves directing an x-ray to the weld line between two adjacent MMCs materials to create an irradiated region or melt zone. The x-rays have a power density greater than about 10.sup.4 watts/cm.sup.2 and provide the volumetric heat required to join the MMC materials. Importantly, the reinforcing material of the metal-matrix composites remains uniformly distributed in the melt zone, and the strength of the MMCs are not diminished. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys.

  4. Single-crystal diamond refractive lens for focusing X-rays in two dimensions

    SciTech Connect (OSTI)

    Antipov, S.; Baryshev, Sergey; Butler, J. E.; Antipova, O.; Liu, Zunping; Stoupin, S.

    2016-01-01

    The fabrication and performance evaluation of single-crystal diamond refractive X-ray lenses of which the surfaces are paraboloids of revolution for focusing X-rays in two dimensions simultaneously are reported. The lenses were manufactured using a femtosecond laser micromachining process and tested using X-ray synchrotron radiation. Such lenses were stacked together to form a standard compound refractive lens (CRL). Owing to the superior physical properties of the material, diamond CRLs could become indispensable wavefront-preserving primary focusing optics for X-ray free-electron lasers and the next-generation synchrotron storage rings. They can be used for highly efficient refocusing of the extremely bright X-ray sources for secondary optical schemes with limited aperture such as nanofocusing Fresnel zone plates and multilayer Laue lenses.

  5. The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Focus The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into Focus Print Studying the world of the ultrasmall and the ultrafast is at the frontier of scientific research. Two x-ray approaches can be used for ultrafast examinations. The first entails developing sources that have short x-ray pulses such as free-electron lasers and slicing sources, which will provide the ultrafast temporal information. The other approach is to develop a detector that is fast enough to resolve

  6. The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Focus The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into Focus Print Studying the world of the ultrasmall and the ultrafast is at the frontier of scientific research. Two x-ray approaches can be used for ultrafast examinations. The first entails developing sources that have short x-ray pulses such as free-electron lasers and slicing sources, which will provide the ultrafast temporal information. The other approach is to develop a detector that is fast enough to resolve

  7. The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Focus The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into Focus Print Studying the world of the ultrasmall and the ultrafast is at the frontier of scientific research. Two x-ray approaches can be used for ultrafast examinations. The first entails developing sources that have short x-ray pulses such as free-electron lasers and slicing sources, which will provide the ultrafast temporal information. The other approach is to develop a detector that is fast enough to resolve

  8. The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Focus The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into Focus Print Studying the world of the ultrasmall and the ultrafast is at the frontier of scientific research. Two x-ray approaches can be used for ultrafast examinations. The first entails developing sources that have short x-ray pulses such as free-electron lasers and slicing sources, which will provide the ultrafast temporal information. The other approach is to develop a detector that is fast enough to resolve

  9. The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Focus The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into Focus Print Studying the world of the ultrasmall and the ultrafast is at the frontier of scientific research. Two x-ray approaches can be used for ultrafast examinations. The first entails developing sources that have short x-ray pulses such as free-electron lasers and slicing sources, which will provide the ultrafast temporal information. The other approach is to develop a detector that is fast enough to resolve

  10. 7 Resolution in Protein 2-Dimentional-Crystal X-Ray Diffraction...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: 7 Resolution in Protein 2-Dimentional-Crystal X-Ray Diffraction at Linac Coherent Light Source Citation Details In-Document Search Title: 7 Resolution in...

  11. The X-ray correlation spectroscopy instrument at the Linac Coherent...

    Office of Scientific and Technical Information (OSTI)

    characteristics of the Linac Coherent Light Source, in particular the 120 Hz repetition rate, allow for the investigation of slow dynamics (milliseconds) by means of X-ray photon...

  12. THE CHANDRA PLANETARY NEBULA SURVEY (ChanPlaNS). III. X-RAY EMISSION...

    Office of Scientific and Technical Information (OSTI)

    X-ray emission components that are unlikely to be due to photospheric emission from the hot central stars (CSPN). Instead, we demonstrate that these sources are well modeled by...

  13. Workshop: Time Resolved X-Ray Science at High Repetition Rate | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation Lightsource Time Resolved X-Ray Science at High Repetition Rate Saturday, October 22, 2011 - 8:30am SSRL Conference Room 137-322 In conjunction with the 2011 LCLS/SSRL User Meeting, SSRL and the APS will jointly host a two-day workshop focused on opportunities with short-pulse, high-repetition rate X-ray Science. The workshop will feature international speakers and panel experts presenting the scientific basis, preliminary results and future potential of high rep-rate

  14. Chandra X-ray Observations of WZ Sge in Superoutburst

    SciTech Connect (OSTI)

    Wheatley, P J; Mauche, C W

    2004-10-13

    We present seven separate Chandra observations of the 2001 superoutburst of WZ Sge. The high-energy outburst was dominated by intense EUV emission lines, which we interpret as boundary layer emission scattered into our line of sight in an accretion disc wind. The direct boundary layer emission was hidden from view, presumably by the accretion disc. The optical outburst orbital hump was detected in the EUV, but the common superhump was not, indicating a geometric mechanism in the former and a dissipative mechanism in the latter. X-rays detected during outburst were not consistent with boundary layer emission and we argue that there must be a second source of X-rays in dwarf novae in outburst.

  15. PROPX: An X-ray Manipulation Program

    SciTech Connect (OSTI)

    Kyrala, G.A.

    1992-05-01

    An interactive micro-computer program that performs some manipulations on an input x-ray spectrum is introduced and described. The program is used to calculate the effect of absorption of filters, transmission through fibers, responsivity of photocathodes, responsivity of absorptive detectors, folding of responses, plotting of cross sections, and calculation, as a function of electron temperature, of the response due to a bremsstrahlung spectrum. Fluorescence from the targets is not included. Two different x-ray libraries are offered, one covers the x-ray range 30--10,000 eV with 288 energy points, and the other covers the energy range 10 eV to 1 MeV with 250 energy points per decade. 7 refs.

  16. X-ray Synchrotron Radiation in a Plasma Wiggler

    SciTech Connect (OSTI)

    Wang, Shuoquin; /UCLA /SLAC, SSRL

    2005-09-27

    A relativistic electron beam can radiate due to its betatron motion inside an ion channel. The ion channel is induced by the electron bunch as it propagates through an underdense plasma. In the theory section of this thesis the formation of the ion channel, the trajectories of beam electrons inside the ion channel, the radiation power and the radiation spectrum of the spontaneous emission are studied. The comparison between different plasma wiggler schemes is made. The difficulties in realizing stimulated emission as the beam traverses the ion channel are investigated, with particular emphasis on the bunching mechanism, which is important for the ion channel free electron laser. This thesis reports an experiment conducted at the Stanford Linear Accelerator Center (SLAC) to measure the betatron X-ray radiations for the first time. They first describe the construction and characterization of the lithium plasma source. In the experiment, the transverse oscillations of the SLAC 28.5 GeV electron beam traversing through a 1.4 meter long lithium plasma source are clearly seen. These oscillations lead to a quadratic density dependence of the spontaneously emitted betatron X-ray radiation. The divergence angle of the X-ray radiation is measured. The absolute photon yield and the spectral brightness at 14.2 KeV photon energy are estimated and seen to be in reasonable agreement with theory.

  17. APS Beamline 4-ID-C

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Source. Research on this beamline focuses on the study of magnetic properties of interfaces and dilute systems using x-ray spectroscopy techniques at energies between 500 to...

  18. Project Title: Radiochemical Analysis by High Sensitivity Dual-Optic Micro X-ray Fluorescence

    SciTech Connect (OSTI)

    Havrilla, George J.; Gao, Ning

    2002-06-01

    A novel dual-optic micro X-ray fluorescence instrument will be developed to do radiochemical analysis of high-level radioactive wastes at DOE sites such as Savannah River Site and Hanford. This concept incorporates new X-ray optical elements such as monolithic polycapillaries and double bent crystals, which focus X-rays. The polycapillary optic can be used to focus X-rays emitted by the X-ray tube thereby increasing the X-ray flux on the sample over 1000 times. Polycapillaries will also be used to collect the X-rays from the excitation site and screen the radiation background from the radioactive species in the specimen. This dual-optic approach significantly reduces the background and increases the analyte signal thereby increasing the sensitivity of the analysis. A doubly bent crystal used as the focusing optic produces focused monochromatic X-ray excitation, which eliminates the bremsstrahlung background from the X-ray source. The coupling of the doubly bent crystal for monochromatic excitation with a polycapillary for signal collection can effectively eliminate the noise background and radiation background from the specimen. The integration of these X-ray optics increases the signal-to-noise and thereby increases the sensitivity of the analysis for low-level analytes. This work will address a key need for radiochemical analysis of high-level waste using a non-destructive, multi-element, and rapid method in a radiation environment. There is significant potential that this instrumentation could be capable of on-line analysis for process waste stream characterization at DOE sites.

  19. HARD X-RAY OBSERVATIONS OF A JET AND ACCELERATED ELECTRONS IN THE CORONA

    SciTech Connect (OSTI)

    Glesener, Lindsay; Lin, R. P.; Krucker, Saem, E-mail: glesener@ssl.berkeley.edu [Space Science Laboratory, UC Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States)

    2012-07-20

    We report the first hard X-ray observation of a solar jet on the limb with flare footpoints occulted, so that faint emission from accelerated electrons in the corona can be studied in detail. In this event on 2003 August 21, RHESSI observed a double coronal hard X-ray source in the pre-impulsive phase at both thermal and nonthermal energies. In the impulsive phase, the first of two hard X-ray bursts consists of a single thermal/nonthermal source coinciding with the lower of the two earlier sources, and the second burst shows an additional nonthermal, elongated source, spatially and temporally coincident with the coronal jet. Analysis of the jet hard X-ray source shows that collisional losses by accelerated electrons can deposit enough energy to generate the jet. The hard X-ray time profile above 20 keV matches that of the accompanying Type III and broadband gyrosynchrotron radio emission, indicating both accelerated electrons escaping outward along the jet path and electrons trapped in the flare loop. The double coronal hard X-ray source, the open field lines indicated by Type III bursts, and the presence of a small post-flare loop are consistent with significant electron acceleration in an interchange reconnection geometry.

  20. Differential phase contrast X-ray imaging system and components

    DOE Patents [OSTI]

    Stutman, Daniel; Finkenthal, Michael

    2014-07-01

    A differential phase contrast X-ray imaging system includes an X-ray illumination system, a beam splitter arranged in an optical path of the X-ray illumination system, and a detection system arranged in an optical path to detect X-rays after passing through the beam splitter.

  1. Reflection soft X-ray microscope and method

    DOE Patents [OSTI]

    Suckewer, S.; Skinner, C.H.; Rosser, R.

    1993-01-05

    A reflection soft X-ray microscope is provided by generating soft X-ray beams, condensing the X-ray beams to strike a surface of an object at a predetermined angle, and focusing the X-ray beams reflected from the surface onto a detector, for recording an image of the surface or near surface features of the object under observation.

  2. Reflection soft X-ray microscope and method

    DOE Patents [OSTI]

    Suckewer, Szymon; Skinner, Charles H.; Rosser, Roy

    1993-01-01

    A reflection soft X-ray microscope is provided by generating soft X-ray beams, condensing the X-ray beams to strike a surface of an object at a predetermined angle, and focusing the X-ray beams reflected from the surface onto a detector, for recording an image of the surface or near surface features of the object under observation.

  3. Transportation Beamline at the Advanced Photon Source | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Transportation Beamline at the Advanced Photon Source Argonne's dedicated transportation research beamline at Argonne's Advanced Photon Source (APS) allows researchers to use the powerful X-ray beams created by the APS to penetrate materials and reveal details that cannot otherwise be seen. Transportation researchers use this tool to peer inside liquid sprays from fuel injectors for diesel engines. With a greater understanding of fuel spray composition, researchers have the

  4. Phase-contrast imaging using ultrafast x-rays in laser-shocked materials

    SciTech Connect (OSTI)

    Workman, Jonathan B; Cobble, James A; Flippo, Kirk; Gautier, Donald C; Montgomery, David S; Offermann, Dustin T

    2010-01-01

    High-energy x-rays, > 10-keV, can be efficiently produced from ultrafast laser target interactions with many applications to dense target materials in Inertial Confinement Fusion (ICF) and High-Energy Density Physics (HEDP). These same x-rays can also be applied to measurements of low-density materials inside high-density hohlraum environments. In the experiments presented, high-energy x-ray images of laser-shocked polystyrene are produced through phase contrast imaging. The plastic targets are nominally transparent to traditional x-ray absorption but show detailed features in regions of high density gradients due to refractive effects often called phase contrast imaging. The 200-TW Trident laser is used both to produce the x-ray source and to shock the polystyrene target. X-rays at 17-keV produced from 2-ps, 100-J laser interactions with a 12-micron molybdenum wire are used to produce a small source size, required for optimizing refractive effects. Shocks are driven in the 1-mm thick polystyrene target using 2-ns, 250-J, 532-nm laser drive with phase plates. X-ray images of shocks compare well to 1-D hydro calculations, HELIOS-CR.

  5. Energy resolved X-ray grating interferometry

    SciTech Connect (OSTI)

    Thuering, T.; Stampanoni, M.; Institute for Biomedical Engineering, Swiss Federal Institute of Technology, Zurich ; Barber, W. C.; Iwanczyk, J. S.; Seo, Y.; Alhassen, F.

    2013-05-13

    Although compatible with polychromatic radiation, the sensitivity in X-ray phase contrast imaging with a grating interferometer is strongly dependent on the X-ray spectrum. We used an energy resolving detector to quantitatively investigate the dependency of the noise from the spectral bandwidth and to consequently optimize the system-by selecting the best energy band matching the experimental conditions-with respect to sensitivity maximization and, eventually, dose. Further, since theoretical calculations of the spectrum are usually limited due to non-ideal conditions, an energy resolving detector accurately quantifies the spectral changes induced by the interferometer including flux reduction and beam hardening.

  6. Apparatus for generating x-ray holograms

    DOE Patents [OSTI]

    Rhodes, C.K.; Boyer, K.; Solem, J.C.; Haddad, W.S.

    1990-09-11

    Apparatus for x-ray microholography of living biological materials. A Fourier transform holographic configuration is described as being most suitable for the 3-dimensional recording of the physical characteristics of biological specimens. The use of a spherical scatterer as a reference and a charge-coupled device two-dimensional detector array placed in the forward direction relative to the incident x-radiation for viewing electromagnetic radiation simultaneously scattered from both the specimen and the reference scatterer permits the ready reconstruction of the details of the specimen from the fringe pattern detected by the charge-coupled device. For example, by using a nickel reference scatter at 4.5 nm, sufficient reference illumination is provided over a wide enough angle to allow similar resolution in both transverse and longitudinal directions. Both laser and synchrotron radiation sources are feasible for generating microholographs. Operation in the water window (2.4 to 4.5 nm) should provide maximum contrast for features of the specimen and spatial resolution on the order of the wavelength of x-radiation should be possible in all three dimensions, which is sufficient for the visualization of many biological features. It is anticipated that the present apparatus will find utility in other areas as well where microscopic physical details of a specimen are important. A computational procedure which enables the holographic data collected by the detector to be used to correct for misalignments introduced by inexact knowledge of the relative positions of the spherical reference scatterer and the sample under investigation has been developed. If the correction is performed prior to reconstruction, full compensation can be achieved and a faithfully reconstructed image produced. 7 figs.

  7. Apparatus for generating x-ray holograms

    DOE Patents [OSTI]

    Rhodes, Charles K.; Boyer, Keith; Solem, Johndale C.; Haddad, Waleed S.

    1990-01-01

    Apparatus for x-ray microholography of living biological materials. A Fourier transform holographic configuration is described as being most suitable for the 3-dimensional recording of the physical characteristics of biological specimens. The use of a spherical scatterer as a reference and a charge-coupled device two-dimensional detector array placed in the forward direction relative to the incident x-radiation for viewing electromagnetic radiation simultaneously scattered from both the specimen and the reference scatterer permits the ready reconstruction of the details of the specimen from the fringe pattern detected by the charge-coupled device. For example, by using a nickel reference scatter at 4.5 nm, sufficient reference illumination is provided over a wide enough angle to allow similar resolution in both transverse and longitudinal directions. Both laser and synchrotron radiation sources are feasible for generating microholographs. Operation in the water window (2.4 to 4.5 nm) should provide maximum contrast for features of the specimen and spatial resolution on the order of the wavelength of x-radiation should be possible in all three dimensions, which is sufficient for the visualization of many biological features. It is anticipated that the present apparatus will find utility in other areas as well where microscopic physical details of a specimen are important. A computational procedure which enables the holographic data collected by the detector to be used to correct for misalignments introduced by inexact knowledge of the relative positions of the spherical reference scatterer and the sample under investigation has been developed. If the correction is performed prior to reconstruction, full compensation can be achieved and a faithfully reconstructed image produced.

  8. Lab Breakthrough: X-ray Laser Captures Atoms and Molecules in Action |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy X-ray Laser Captures Atoms and Molecules in Action Lab Breakthrough: X-ray Laser Captures Atoms and Molecules in Action July 18, 2012 - 12:51pm Addthis The Linac Coherent Light Source at SLAC is the world's most powerful X-ray laser, which helps researchers understand the extreme conditions found in the hearts of stars and giant planets guiding research into nuclear fusion, the mechanism that powers the sun. View the entire Lab Breakthrough playlist. Michael Hess Michael

  9. X-ray focal spot locating apparatus and method

    DOE Patents [OSTI]

    Gilbert, Hubert W.

    1985-07-30

    An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

  10. Multiple wavelength X-ray monochromators

    DOE Patents [OSTI]

    Steinmeyer, P.A.

    1992-11-17

    An improved apparatus and method is provided for separating input x-ray radiation containing first and second x-ray wavelengths into spatially separate first and second output radiation which contain the first and second x-ray wavelengths, respectively. The apparatus includes a crystalline diffractor which includes a first set of parallel crystal planes, where each of the planes is spaced a predetermined first distance from one another. The crystalline diffractor also includes a second set of parallel crystal planes inclined at an angle with respect to the first set of crystal planes where each of the planes of the second set of parallel crystal planes is spaced a predetermined second distance from one another. In one embodiment, the crystalline diffractor is comprised of a single crystal. In a second embodiment, the crystalline diffractor is comprised of a stack of two crystals. In a third embodiment, the crystalline diffractor includes a single crystal that is bent for focusing the separate first and second output x-ray radiation wavelengths into separate focal points. 3 figs.

  11. Multiple wavelength X-ray monochromators

    DOE Patents [OSTI]

    Steinmeyer, Peter A.

    1992-11-17

    An improved apparatus and method is provided for separating input x-ray radiation containing first and second x-ray wavelengths into spatially separate first and second output radiation which contain the first and second x-ray wavelengths, respectively. The apparatus includes a crystalline diffractor which includes a first set of parallel crystal planes, where each of the planes is spaced a predetermined first distance from one another. The crystalline diffractor also includes a second set of parallel crystal planes inclined at an angle with respect to the first set of crystal planes where each of the planes of the second set of parallel crystal planes is spaced a predetermined second distance from one another. In one embodiment, the crystalline diffractor is comprised of a single crystal. In a second embodiment, the crystalline diffractor is comprised of a stack of two crystals. In a third embodiment, the crystalline diffractor includes a single crystal that is bent for focussing the separate first and second output x-ray radiation wavelengths into separate focal points.

  12. SLAC All Access: X-ray Microscope

    ScienceCinema (OSTI)

    Nelson, Johanna; Liu, Yijin

    2014-06-13

    SLAC physicists Johanna Nelson and Yijin Liu give a brief overview of the X-ray microscope at the Stanford Synchrotron Radiation Lightsource (SSRL) that is helping improve rechargeable-battery technology by letting researchers peek into the inner workings of batteries as they operate.

  13. X-ray spectroscopy of manganese clusters

    SciTech Connect (OSTI)

    Grush, M.M.

    1996-06-01

    Much of this thesis represents the groundwork necessary in order to probe Mn clusters more productively than with conventional Mn K-edge XAS and is presented in Part 1. Part 2 contains the application of x-ray techniques to Mn metalloproteins and includes a prognosis at the end of each chapter. Individual Mn oxidation states are more readily distinguishable in Mn L-edge spectra. An empirical mixed valence simulation routine for determining the average Mn oxidation state has been developed. The first Mn L-edge spectra of a metalloprotein were measured and interpreted. The energy of Mn K{beta} emission is strongly correlated with average Mn oxidation state. K{beta} results support oxidation states of Mn(III){sub 2}(IV){sub 2} for the S{sub 1} state of Photosystem II chemical chemically reduced preparations contain predominantly Mn(II). A strength and limitation of XAS is that it probes all of the species of a particular element in a sample. It would often be advantageous to selectively probe different forms of the same element. The first demonstration that chemical shifts in x-ray fluorescence energies can be used to obtain oxidation state-selective x-ray absorption spectra is presented. Spin-dependent spectra can also be used to obtain a more simplified picture of local structure. The first spin-polarized extended x-ray absorption fine structure using Mn K{beta} fluorescence detection is shown.

  14. X-ray Thomson Scattering from Dense Plasmas

    SciTech Connect (OSTI)

    Glenzer, S

    2007-05-14

    Advances in the development of laser-produced x-ray sources have enabled a new class of high-energy density physics experiments. Powerful narrow-bandwidth x rays penetrate through short-lived hot dense states of matter and probe the physical properties with spectrally resolved x-ray scattering. Experiments from isochorically-heated plasmas with electron densities in the range of solid density and above have been demonstrated allowing for the first time exploration of the microscopic properties of dense matter regime close to strongly-coupled and Fermi degenerate conditions. Backscatter measurements have accessed the non-collective Compton scattering regime, which provides accurate diagnostic information on the temperature, density and ionization states. The forward scattering spectrum has been shown to measure the collective plasmon oscillations. Besides extracting the standard plasma parameters, density and temperature, forward scattering yields new observables such as a direct measure of collisions, quantum effects and detailed balance. In this talk, we will discuss new results important for applications of this technique for novel experiments in a wide range of research areas such as inertial confinement fusion, radiation-hydrodynamics, material science, and laboratory astrophysics.

  15. X-ray transport and radiation response assessment (XTRRA) experiments at the National Ignition Facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fournier, K. B.; Brown, Jr., C. G.; Yeoman, M. F.; Fisher, J. H.; Seiler, S. W.; Hinshelwood, D.; Compton, S.; Holdener, F. R.; Kemp, G. E.; Newlander, C. D.; et al

    2016-08-10

    Our team has developed an experimental platform to evaluate the x-ray-generated stress and impulse in materials. Experimental activities include x-ray source development, design of the sample mounting hardware and sensors interfaced to the NIF’s diagnostics insertion system, and system integration into the facility. This paper focuses on the X-ray Transport and Radiation Response Assessment (XTRRA) test cassettes built for these experiments. The test cassette is designed to position six samples at three predetermined distances from the source, each known to within ±1% accuracy. Built in calorimeters give in situ measurements of the x-ray environment along the sample lines of sight.more » We discuss the measured accuracy of sample responses, as well as planned modifications to the XTRRA cassette.« less

  16. Note: Dynamic strain field mapping with synchrotron X-ray digital image correlation

    SciTech Connect (OSTI)

    Lu, L.; Fan, D.; Luo, S. N.; Bie, B. X.; Ran, X. X.; Qi, M. L.; Parab, N.; Sun, J. Z.; Liao, H. J.; Hudspeth, M. C.; Claus, B.; Fezzaa, K.; Sun, T.; Chen, W.; Gong, X. L.

    2014-07-15

    We present a dynamic strain field mapping method based on synchrotron X-ray digital image correlation (XDIC). Synchrotron X-ray sources are advantageous for imaging with exceptional spatial and temporal resolutions, and X-ray speckles can be produced either from surface roughness or internal inhomogeneities. Combining speckled X-ray imaging with DIC allows one to map strain fields with high resolutions. Based on experiments on void growth in Al and deformation of a granular material during Kolsky bar/gas gun loading at the Advanced Photon Source beamline 32ID, we demonstrate the feasibility of dynamic XDIC. XDIC is particularly useful for dynamic, in-volume, measurements on opaque materials under high strain-rate, large, deformation.

  17. X-ray tomographic image magnification process, system and apparatus therefor

    DOE Patents [OSTI]

    Kinney, John H.; Bonse, Ulrich K.; Johnson, Quintin C.; Nichols, Monte C.; Saroyan, Ralph A.; Massey, Warren N.; Nusshardt, Rudolph

    1993-01-01

    A computerized three-dimensional x-ray tomographic microscopy system is disclosed, comprising: a) source means for providing a source of parallel x-ray beams, b) staging means for staging and sequentially rotating a sample to be positioned in the path of the c) x-ray image magnifier means positioned in the path of the beams downstream from the sample, d) detecting means for detecting the beams after being passed through and magnified by the image magnifier means, and e) computing means for analyzing values received from the detecting means, and converting the values into three-dimensional representations. Also disclosed is a process for magnifying an x-ray image, and apparatus therefor.

  18. X-ray tomographic image magnification process, system and apparatus therefor

    DOE Patents [OSTI]

    Kinney, J.H.; Bonse, U.K.; Johnson, Q.C.; Nichols, M.C.; Saroyan, R.A.; Massey, W.N.; Nusshardt, R.

    1993-09-14

    A computerized three-dimensional x-ray tomographic microscopy system is disclosed, comprising: (a) source means for providing a source of parallel x-ray beams, (b) staging means for staging and sequentially rotating a sample to be positioned in the path of the (c) x-ray image magnifier means positioned in the path of the beams downstream from the sample, (d) detecting means for detecting the beams after being passed through and magnified by the image magnifier means, and (e) computing means for analyzing values received from the detecting means, and converting the values into three-dimensional representations. Also disclosed is a process for magnifying an x-ray image, and apparatus therefor. 25 figures.

  19. Characteristic x-ray emission from undermines plasmas irradiated by ultra-intense lasers

    SciTech Connect (OSTI)

    Niemann, Christoph

    2012-05-05

    Between FY09 and FY11 we have conducted more than a dozen three-week experimental campaigns at high-power laser facilities around the world to investigate laser-channeling through x-ray and optical imaging and the conversion from laser-energy to xrays. We have performed simultaneous two-wavelength x-ray imaging (K-alpha and He-alpha) to distinguish the hot-plasma region (hot-spot) from the laser-produced electrons (K-alpha). In addition, we have initiated a new collaboration with SNL and have performed first shots on the 100 TW beamlet chamber to commission a fast x-ray streak camera to be used to investigate the temporal evolution of our K-alpha sources. We also collaborated on campaigns at the Rutherford Appleton Laboratory (UK) and the LANL Trident laser to employ laser produced x-ray sources for Thomson scattering off dense matter.

  20. Photoionization-pumped, Ne II, x-ray laser studies project. Final report

    SciTech Connect (OSTI)

    Richardson, M.C.; Hagelstein, P.L.; Eckart, M.J.; Forsyth, J.M.; Gerrassimenko, M.; Soures, J.M.

    1984-01-01

    The energetics of this pumping scheme are shown. Short-pulse (50 to 100 ps) laser irradiation of an appropriate x-ray flashlamp medium generates broad-band emission in the range of 300 to 800 eV which preferentially photoionizes Ne to the /sup 2/S state of Ne II creating an inversion at approximately 27 eV. Although this approach does not depend on precise spectral overlap between the x-ray pump radiation and the medium to be pumped, it does require that the x-ray medium remain un-ionized prior to photoionization by the soft x-ray emission. Well-controlled focus conditions are required to ensure that the x-ray medium is not subjected to electron or x-ray preheat prior to irradiation by the soft x-ray source. The magnitude of the population inversion is predicted to be critically dependent upon rapid photoionization of the two states; therefore, ultra-short pulse irradiation of the laser flashlamps is required.

  1. X-ray enhancement and long-term evolution of swift J1822.31606

    SciTech Connect (OSTI)

    Benli, Onur; al??kan, ?.; Ertan, .; Alpar, M. A. [Sabanc? University, Orhanl?-Tuzla, ?stanbul 34956 (Turkey); Trmper, J. E. [Max-Planck-Institut fr extraterrestrische Physik, Geissenbachstrasse, 85740 Garching bei Mnchen (Germany); Kylafis, N. D., E-mail: onurbenli@sabanciuniv.edu [Physics Department and Institute of Theoretical and Computational Physics, University of Crete, 71003 Heraklion, Crete (Greece)

    2013-12-01

    We investigate the X-ray enhancement and the long-term evolution of the recently discovered second 'low-B magnetar' Swift J1822.3-1606 in the frame of the fallback disk model. During a soft gamma burst episode, the inner disk matter is pushed back to larger radii, forming a density gradient at the inner disk. Subsequent relaxation of the inner disk could account for the observed X-ray enhancement light curve of Swift J1822.3-1606. We obtain model fits to the X-ray data with basic disk parameters similar to those employed to explain the X-ray outburst light curves of other anomalous X-ray pulsars and soft gamma repeaters. The long period (8.4 s) of the neutron star can be reached by the effect of the disk torques in the long-term accretion phase ((1-3) 10{sup 5} yr). The currently ongoing X-ray enhancement could be due to a transient accretion epoch, or the source could still be in the accretion phase in quiescence. Considering these different possibilities, we determine the model curves that could represent the long-term rotational and the X-ray luminosity evolution of Swift J1822.3-1606, which constrain the strength of the magnetic dipole field to the range of (1-2) 10{sup 12} G on the surface of the neutron star.

  2. X-ray photonic microsystems for the manipulation of synchrotron light

    SciTech Connect (OSTI)

    Mukhopadhyay, D.; Walko, D. A.; Jung, I. W.; Schwartz, C. P.; Wang, Jin; López, D.; Shenoy, G. K.

    2015-05-05

    In this study, photonic microsystems played an essential role in the development of integrated photonic devices, thanks to their unique spatiotemporal control and spectral shaping capabilities. Similar capabilities to markedly control and manipulate X-ray radiation are highly desirable but practically impossible due to the massive size of the silicon single-crystal optics currently used. Here we show that micromechanical systems can be used as X-ray optics to create and preserve the spatial, temporal and spectral correlation of the X-rays. We demonstrate that, as X-ray reflective optics they can maintain the wavefront properties with nearly 100% reflectivity, and as a dynamic diffractive optics they can generate nanosecond time windows with over 100-kHz repetition rates. Since X-ray photonic microsystems can be easily incorporated into lab-based and next-generation synchrotron X-ray sources, they bring unprecedented design flexibility for future dynamic and miniature X-ray optics for focusing, wavefront manipulation, multicolour dispersion, and pulse slicing.

  3. Bandpass x-ray diode and x-ray multiplier detector

    DOE Patents [OSTI]

    Wang, C.L.

    1982-09-27

    An absorption-edge of an x-ray absorption filter and a quantum jump of a photocathode determine the bandpass characteristics of an x-ray diode detector. An anode, which collects the photoelectrons emitted by the photocathode, has enhanced amplification provided by photoelectron-multiplying means which include dynodes or a microchannel-plate electron-multiplier. Suppression of undesired high frequency response for a bandpass x-ray diode is provided by subtracting a signal representative of energies above the passband from a signal representative of the overall response of the bandpass diode.

  4. X-rays only when you want them: Optimized pump–probe experiments using pseudo-single-bunch operation

    SciTech Connect (OSTI)

    Hertlein, M. P.; Scholl, A.; Cordones, A. A.; Lee, J. H.; Engelhorn, K.; Glover, T. E.; Barbrel, B.; Sun, C.; Steier, C.; Portmann, G.; Robin, D. S.

    2015-04-02

    Laser pump–X-ray probe experiments require control over the X-ray pulse pattern and timing. Here, the first use of pseudo-single-bunch mode at the Advanced Light Source in picosecond time-resolved X-ray absorption experiments on solutions and solids is reported. In this mode the X-ray repetition rate is fully adjustable from single shot to 500 kHz, allowing it to be matched to typical laser excitation pulse rates. Suppressing undesired X-ray pulses considerably reduces detector noise and improves signal to noise in time-resolved experiments. In addition, dose-induced sample damage is considerably reduced, easing experimental setup and allowing the investigation of less robust samples. Single-shot X-ray exposures of a streak camera detector using a conventional non-gated charge-coupled device (CCD) camera are also demonstrated.

  5. X-rays only when you want them: Optimized pump–probe experiments using pseudo-single-bunch operation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hertlein, M. P.; Scholl, A.; Cordones, A. A.; Lee, J. H.; Engelhorn, K.; Glover, T. E.; Barbrel, B.; Sun, C.; Steier, C.; Portmann, G.; et al

    2015-04-02

    Laser pump–X-ray probe experiments require control over the X-ray pulse pattern and timing. Here, the first use of pseudo-single-bunch mode at the Advanced Light Source in picosecond time-resolved X-ray absorption experiments on solutions and solids is reported. In this mode the X-ray repetition rate is fully adjustable from single shot to 500 kHz, allowing it to be matched to typical laser excitation pulse rates. Suppressing undesired X-ray pulses considerably reduces detector noise and improves signal to noise in time-resolved experiments. In addition, dose-induced sample damage is considerably reduced, easing experimental setup and allowing the investigation of less robust samples. Single-shotmore » X-ray exposures of a streak camera detector using a conventional non-gated charge-coupled device (CCD) camera are also demonstrated.« less

  6. Principles of femtosecond X-ray/optical cross-correlation with X-ray induced transient optical reflectivity in solids

    SciTech Connect (OSTI)

    Eckert, S. E-mail: martin.beye@helmholtz-berlin.de; Beye, M. E-mail: martin.beye@helmholtz-berlin.de; Pietzsch, A.; Quevedo, W.; Hantschmann, M.; Ochmann, M.; Huse, N.; Ross, M.; Khalil, M.; Minitti, M. P.; Turner, J. J.; Moeller, S. P.; Schlotter, W. F.; Dakovski, G. L.; Föhlisch, A.

    2015-02-09

    The discovery of ultrafast X-ray induced optical reflectivity changes enabled the development of X-ray/optical cross correlation techniques at X-ray free electron lasers worldwide. We have now linked through experiment and theory the fundamental excitation and relaxation steps with the transient optical properties in finite solid samples. Therefore, we gain a thorough interpretation and an optimized detection scheme of X-ray induced changes to the refractive index and the X-ray/optical cross correlation response.

  7. Novel X-ray imaging diagnostics of high energy nanosecond pulse accelerators.

    SciTech Connect (OSTI)

    Smith, Graham W.; Gallegos, Roque Rosauro; Hohlfelder, Robert James; Beutler, David Eric; Dudley, John; Seymour, Calvin L. G.; Bell, John D.

    2004-08-01

    Pioneering x-ray imaging has been undertaken on a number of AWE's and Sandia National Laboratories radiation effects x-ray simulators. These simulators typically yield a single very short (<50ns) pulse of high-energy (MeV endpoint energy bremsstrahlung) x-ray radiation with doses in the kilorad (krad(Si)) region. X-ray source targets vary in size from 2 to 25cm diameter, dependent upon the particular simulator. Electronic imaging of the source x-ray emission under dynamic conditions yields valuable information upon how the simulator is performing. The resultant images are of interest to the simulator designer who may configure new x-ray source converter targets and diode designs. The images can provide quantitative information about machine performance during radiation effects testing of components under active conditions. The effects testing program is a valuable interface for validation of high performance computer codes and models for the radiation effects community. A novel high-energy x-ray imaging spectrometer is described whereby the spectral energy (0.1 to 2.5MeV) profile may be discerned from the digitally recorded and viewable images via a pinhole/scintillator/CCD imaging system and knowledge of the filtration parameters. Unique images, analysis and a preliminary evaluation of the capability of the spectrometer are presented. Further, a novel time resolved imaging system is described that captures a sequence of high spatial resolution temporal images, with zero interframe time, in the nanosecond timeframe, of our source x-rays.

  8. Versatile atomic force microscopy setup combined with micro-focused X-ray beam

    SciTech Connect (OSTI)

    Slobodskyy, T. Tholapi, R.; Liefeith, L.; Hansen, W.; Zozulya, A. V. Fester, M.; Sprung, M.

    2015-06-15

    Micro-focused X-ray beams produced by third generation synchrotron sources offer new perspective of studying strains and processes at nanoscale. Atomic force microscope setup combined with a micro-focused synchrotron beam allows precise positioning and nanomanipulation of nanostructures under illumination. In this paper, we report on integration of a portable commercial atomic force microscope setup into a hard X-ray synchrotron beamline. Details of design, sample alignment procedure, and performance of the setup are presented.

  9. Advanced Photon Source experimental beamline Safety Assessment Document: Addendum to the Advanced Photon Source Accelerator Systems Safety Assessment Document (APS-3.2.2.1.0)

    SciTech Connect (OSTI)

    1995-01-01

    This Safety Assessment Document (SAD) addresses commissioning and operation of the experimental beamlines at the Advanced Photon Source (APS). Purpose of this document is to identify and describe the hazards associated with commissioning and operation of these beamlines and to document the measures taken to minimize these hazards and mitigate the hazard consequences. The potential hazards associated with the commissioning and operation of the APS facility have been identified and analyzed. Physical and administrative controls mitigate identified hazards. No hazard exists in this facility that has not been previously encountered and successfully mitigated in other accelerator and synchrotron radiation research facilities. This document is an updated version of the APS Preliminary Safety Analysis Report (PSAR). During the review of the PSAR in February 1990, the APS was determined to be a Low Hazard Facility. On June 14, 1993, the Acting Director of the Office of Energy Research endorsed the designation of the APS as a Low Hazard Facility, and this Safety Assessment Document supports that designation.

  10. X-Ray Cargo Inspection: Status and Trends

    SciTech Connect (OSTI)

    Chen Gongyin; Bjorkholm, Paul; Fox, Timothy R.; Wilson, Zane; Bonsergent, Xavier

    2009-03-10

    Over the past several years, x-ray cargo inspection has experienced tremendous growth. There are several hundred systems in use world wide and a few new units are installed every week. Fielded systems are mostly located in north and West Africa, Middle East, Europe (especially Russia), East Asia, and South America. The majority of systems are powered by Varian M3, M6 or M9 Linac x-ray sources. The spatial resolution of these systems is typically 3-5 mm, penetration ranges from around 200 mm to 450 mm of steel and contrast sensitivity is typically 1-4%. Inspection throughput ranges from about 20 trucks per hour to 200 trucks per hour. Currently the systems are primarily used to fight import tax evasion and smuggling of controlled substances. There are a few clear trends: Imaging performance has been steadily improving; a variety of systems have been developed to fit different needs; also, there is a strong effort in material discrimination, or even identification and automatic detection. The last, but not least trend is a shift to security applications. The US government has launched major efforts such as CAARS and JINII to fight nuclear threat and systems that can automatically detect a small amount of high atomic number materials are being developed. This paper only covers RF linear accelerator based X-ray sources, which prevail in the industry. Induction accelerators (Betatrons) have some limited use in low-end imaging systems and high duty factors sources have recently been proposed for study.

  11. MA AP MA MA MA AP AP MA MA MA AP AP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AP MA MA MA AP AP MA MA MA AP AP low low low AP MA Run PAMM AP Low alpha University Holidays APPAMM Spear Down Hrs S 30 31 S 30 5260 832 6092 2013 2014 Scheduled Hours Users...

  12. KCAT, Xradia, ALS and APS Performance Summary

    SciTech Connect (OSTI)

    Waters, A; Martz, H; Brown, W

    2004-09-30

    At Lawrence Livermore National Laboratory (LLNL) particular emphasis is being placed on the nondestructive characterization (NDC) of components, subassemblies and assemblies of millimeter-size extent with micrometer-size features (mesoscale). These mesoscale objects include materials that vary widely in composition, density, geometry and embedded features. Characterizing these mesoscale objects is critical for corroborating the physics codes that underlie LLNL's Stockpile Stewardship mission. In this report we present results from our efforts to quantitatively characterize the performance of several x-ray systems in an effort to benchmark existing systems and to determine which systems may have the best potential for our mesoscale imaging needs. Several different x-ray digital radiography (DR) and computed tomography (CT) systems exist that may be applicable to our mesoscale object characterization requirements, including microfocus and synchrotron systems. The systems we have benchmarked include KCAT (LLNL developed) and Xradia {mu}XCT (Xradia, Inc., Concord, CA), both microfocus systems, and Beamline 1-ID at the Advance Photon Source (APS) and the Tomography Beamline at the Advanced Light Source (ALS), both synchrotron based systems. The ALS Tomography Beamline is a new installation, and the data presented and analyzed here is some of the first to be acquired at the facility. It is important to note that the ALS system had not yet been optimized at the time we acquired data. Results for each of these systems has been independently documented elsewhere. In this report we summarize and compare the characterization results for these systems.

  13. High-resolution ab initio three-dimensional x-ray diffraction microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chapman, Henry N.; Barty, Anton; Marchesini, Stefano; Noy, Aleksandr; Hau-Riege, Stefan P.; Cui, Congwu; Howells, Malcolm R.; Rosen, Rachel; He, Haifeng; Spence, John C. H.; et al

    2006-01-01

    Coherent x-ray diffraction microscopy is a method of imaging nonperiodic isolated objects at resolutions limited, in principle, by only the wavelength and largest scattering angles recorded. We demonstrate x-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the three-dimensional diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a nonperiodic object. We also construct two-dimensional images of thick objects with greatly increased depth of focus (without loss of transverse spatialmore » resolution). These methods can be used to image biological and materials science samples at high resolution with x-ray undulator radiation and establishes the techniques to be used in atomic-resolution ultrafast imaging at x-ray free-electron laser sources.« less

  14. Fat to muscle ratio measurements with dual energy x-ray absorbtiometry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, A.; Luo, J.; Wang, A.; Broadbent, C.; Zhong, J.; Dilmanian, F. A.; Zafonte, F.; Zhong, Z.

    2015-03-14

    Accurate measurement of the fat-to-muscle ratio in animal model is important for obesity research. In addition, an efficient way to measure the fat to muscle ratio in animal model using dual-energy absorptiometry is presented in this paper. A radioactive source exciting x-ray fluorescence from a target material is used to provide the two x-ray energies needed. The x-rays, after transmitting through the sample, are measured with an energy-sensitive Ge detector. Phantoms and specimens were measured. The results showed that the method was sensitive to the fat to muscle ratios with good linearity. A standard deviation of a few percent inmore » the fat to muscle ratio could be observed with the x-ray dose of 0.001 mGy.« less

  15. Sample holder for X-ray diffractometry

    DOE Patents [OSTI]

    Hesch, Victor L.

    1992-01-01

    A sample holder for use with X-ray diffractometers with the capability to rotate the sample, as well as to adjust the position of the sample in the x, y, and z directions. Adjustment in the x direction is accomplished through loosening set screws, moving a platform, and retightening the set screws. Motion translators are used for adjustment in the y and z directions. An electric motor rotates the sample, and receives power from the diffractometer.

  16. Evaluating the variability of ceramics with x-ray fluorescence

    SciTech Connect (OSTI)

    Crown, P.L.; Schwalbe, L.A.; London, J.R.

    1984-01-01

    Our assessment of prehistoric trade in ceramics depends on our ability to identify and distinguish different sources of manufacture. For the American Southwest, archaeologists have proposed various models of ceramic manufacture and exchange. Until recently, conflicting hypotheses were tested mainly on the basis of petrographic analysis of nonplastic tempering materials. We have extended these analyses to include x-ray fluorescence (XRF). XRF provides a fast and inexpensive means of analyzing large numbers of samples. Since 1982, approximately 500 prehistoric sherds and 40 prepared clay and mineral samples have been examined with XRF. Multivariate statistical techniques have been applied to help identify groupings of samples with possible archaeological significance.

  17. Growing Cutting-edge X-ray Optics

    ScienceCinema (OSTI)

    Ray Conley

    2013-07-17

    Ever imagined that an Xbox controller could help open a window into a world spanning just one billionth of a meter? Brookhaven Lab's Ray Conley grows cutting-edge optics called multilayer Laue lenses (MLL) one atomic layer at a time to focus high-energy x-rays to within a single nanometer. To achieve this focusing feat, Ray uses a massive, custom-built atomic deposition device, an array of computers, and a trusty Xbox controller. These lenses will be deployed at the Lab's National Synchrotron Light Source II, due to begin shining super-bright light on pressing scientific puzzles in 2015

  18. High-intensity double-pulse X-ray free-electron laser

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Marinelli, A.; Ratner, D.; Lutman, A. A.; Turner, J.; Welch, J.; Decker, F. J.; Loos, H.; Behrens, C.; Gilevich, S.; Miahnahri, A. A.; et al

    2015-03-06

    The X-ray free-electron laser has opened a new era for photon science, improving the X-ray brightness by ten orders of magnitude over previously available sources. Similar to an optical laser, the spectral and temporal structure of the radiation pulses can be tailored to the specific needs of many experiments by accurately manipulating the lasing medium, that is, the electron beam. Here we report the generation of mJ-level two-colour hard X-ray pulses of few femtoseconds duration with an XFEL driven by twin electron bunches at the Linac Coherent Light Source. This performance represents an improvement of over an order of magnitudemore » in peak power over state-of-the-art two-colour XFELs. The unprecedented intensity and temporal coherence of this new two-colour X-ray free-electron laser enable an entirely new set of scientific applications, ranging from X-ray pump/X-ray probe experiments to the imaging of complex biological samples with multiple wavelength anomalous dispersion.« less

  19. High-intensity double-pulse X-ray free-electron laser

    SciTech Connect (OSTI)

    Marinelli, A.; Ratner, D.; Lutman, A. A.; Turner, J.; Welch, J.; Decker, F. J.; Loos, H.; Behrens, C.; Gilevich, S.; Miahnahri, A. A.; Vetter, S.; Maxwell, T. J.; Ding, Y.; Coffee, R.; Wakatsuki, S.; Huang, Z.

    2015-03-06

    The X-ray free-electron laser has opened a new era for photon science, improving the X-ray brightness by ten orders of magnitude over previously available sources. Similar to an optical laser, the spectral and temporal structure of the radiation pulses can be tailored to the specific needs of many experiments by accurately manipulating the lasing medium, that is, the electron beam. Here we report the generation of mJ-level two-colour hard X-ray pulses of few femtoseconds duration with an XFEL driven by twin electron bunches at the Linac Coherent Light Source. This performance represents an improvement of over an order of magnitude in peak power over state-of-the-art two-colour XFELs. The unprecedented intensity and temporal coherence of this new two-colour X-ray free-electron laser enable an entirely new set of scientific applications, ranging from X-ray pump/X-ray probe experiments to the imaging of complex biological samples with multiple wavelength anomalous dispersion.

  20. Spectral encoding method for measuring the relative arrival time between x-ray/optical pulses

    SciTech Connect (OSTI)

    Bionta, M. R.; Hartmann, N.; Weaver, M.; French, D.; Glownia, J. M.; Bostedt, C.; Chollet, M.; Ding, Y.; Fritz, D. M.; Fry, A. R.; Krzywinski, J.; Lemke, H. T.; Messerschmidt, M.; Schorb, S.; Zhu, D.; White, W. E.; Nicholson, D. J.; Cryan, J. P.; Baker, K.; Kane, D. J.; and others

    2014-08-15

    The advent of few femtosecond x-ray light sources brings promise of x-ray/optical pump-probe experiments that can measure chemical and structural changes in the 10100 fs time regime. Widely distributed timing systems used at x-ray Free-Electron Laser facilities are typically limited to above 50 fs fwhm jitter in active x-ray/optical synchronization. The approach of single-shot timing measurements is used to sort results in the event processing stage. This has seen wide use to accommodate the insufficient precision of active stabilization schemes. In this article, we review the current technique for measure-and-sort at the Linac Coherent Light Source at the SLAC National Accelerator Laboratory. The relative arrival time between an x-ray pulse and an optical pulse is measured near the experimental interaction region as a spectrally encoded cross-correlation signal. The cross-correlation provides a time-stamp for filter-and-sort algorithms used for real-time sorting. Sub-10 fs rms resolution is common in this technique, placing timing precision at the same scale as the duration of the shortest achievable x-ray pulses.

  1. Using a Microcapillary Refractive X-Ray Lens for Focusing And Imaging

    SciTech Connect (OSTI)

    Dudchik, Y.I.; Komarov, F.F.; Piestrup, M.A.; Gary, C.K.; Park, H.; Cremer, J.T.

    2009-06-03

    The microcapillary lens, formed by air bubbles in a hollow core glass capillary filled with epoxy, is a novel design of a compound refractive lens for X-rays. The epoxy enclosed between two air bubbles has the form of a biconcave lens and acts as a positive lens for X-rays. Each individual lens is spherical with radius of curvature equal to the inner radius of the capillary. Up to 500 individual biconcave lenses can be formed in a single capillary with diameters from 50 to 500 {mu}m. Due to the small radius of curvatures that can be achieved, microcapillary lenses typically have shorter focal lengths than those made by compression or injection molding. For example, microcapillary lenses with a focal length about 5 cm for 8 keV X-rays and 50-micron aperture are readily available. We have produced a set of lenses in a 200-micron inner-diameter glass capillary with 100--350 individual microlenses and measured their parameters at the Stanford Synchrotron Radiation Laboratory and at the Advanced Photon Source. Our investigations have also shown that the lenses are suitable for imaging applications with an X-ray tube as a source of X-rays. A simple X-ray microscope is discussed. The microscope consists of a copper anode X-ray tube, X-ray lens and CCD-camera. The object, lens and CCD-camera were placed in-line at distances to satisfy the lens formula. It is shown that the field of view of the microscope is about 1 mm and resolution is equal to 3--5 {mu}m.

  2. SOFT X-RAY IRRADIATION OF PURE CARBON MONOXIDE INTERSTELLAR ICE ANALOGUES

    SciTech Connect (OSTI)

    Ciaravella, A.; Candia, R.; Collura, A.; Jimenez-Escobar, A.; Munoz Caro, G. M.; Cecchi-Pestellini, C.; Giarrusso, S.; Barbera, M.

    2012-02-10

    There is an increasing evidence for the existence of large organic molecules in the interstellar and circumstellar medium. Very few among such species are readily formed in conventional gas-phase chemistry under typical conditions of interstellar clouds. Attention has therefore focused on interstellar ices as a potential source of these relatively complex species. Laboratory experiments show that irradiation of interstellar ice analogues by fast particles or ultraviolet radiation can induce significant chemical complexity. However, stars are sources of intense X-rays at almost every stage of their formation and evolution. Such radiation may thus provide chemical changes in regions where ultraviolet radiation is severely inhibited. After H{sub 2}O, CO is often the most abundant component of icy grain mantles in dense interstellar clouds and circumstellar disks. In this work we present irradiation of a pure carbon monoxide ice using a soft X-ray spectrum peaked at 0.3 keV. Analysis of irradiated samples shows formation of CO{sub 2}, C{sub 2}O, C{sub 3}O{sub 2}, C{sub 3}, C{sub 4}O, and CO{sub 3}/C{sub 5}. Comparison of X-rays and ultraviolet irradiation experiments, of the same energy dose, shows that X-rays are more efficient than ultraviolet radiation in producing new species. With the exception of CO{sub 2}, X-ray photolysis induces formation of a larger number of products with higher abundances, e.g., C{sub 3}O{sub 2} column density is about one order of magnitude higher in the X-ray experiment. To our knowledge this is the first report on X-ray photolysis of CO ices. The present results show that X-ray irradiation represents an efficient photo-chemical way to convert simple ices to more complex species.

  3. Linac Coherent Light Source (LCLS) | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Linac Coherent Light Source (LCLS) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Advanced Light Source (ALS) Advanced Photon Source (APS) Linac Coherent Light Source (LCLS) National Synchrotron Light Source II (NSLS-II) Stanford Synchrotron Radiation Light Source (SSRL) Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES Home

  4. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in...

  5. X-Ray Diffraction Microscopy of Magnetic Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing...

  6. Ambient Pressure Photoelectron Spectroscopy Using Soft X-ray...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ambient Pressure Photoelectron Spectroscopy Using Soft X-ray and Hard X-ray, and its applications in electrochemistry Friday, December 14, 2012 - 3:30pm SSRL, Bldg. 137, room 322...

  7. ALS X-Rays Shine a New Light on Catalysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS X-Rays Shine a New Light on Catalysis ALS X-Rays Shine a New Light on Catalysis Print Thursday, 21 May 2015 11:16 Electrocatalysts are responsible for expediting reactions in...

  8. Enabling X-ray free electron laser crystallography for challenging...

    Office of Scientific and Technical Information (OSTI)

    Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals Citation Details In-Document Search Title: Enabling X-ray ...

  9. NIF and OMEGA X-Ray Environments Summary (Technical Report) ...

    Office of Scientific and Technical Information (OSTI)

    NIF and OMEGA X-Ray Environments Summary Citation Details In-Document Search Title: NIF and OMEGA X-Ray Environments Summary Abstract not provided. Authors: Fournier, K. B. 1 + ...

  10. A Spatially Resolving X-ray Crystal Spectrometer for Measurement...

    Office of Scientific and Technical Information (OSTI)

    A Spatially Resolving X-ray Crystal Spectrometer for Measurement of Ion-temperature and ... Citation Details In-Document Search Title: A Spatially Resolving X-ray Crystal ...

  11. Crystallization and preliminary X-ray crystallographic studies...

    Office of Scientific and Technical Information (OSTI)

    X-ray crystallographic studies of Drep-3, a DFF-related protein from Drosophila melanogaster Citation Details In-Document Search Title: Crystallization and preliminary X-ray ...

  12. Structure and Reactivity of X-ray Amorphous Uranyl Peroxide,...

    Office of Scientific and Technical Information (OSTI)

    Published Article: Structure and Reactivity of X-ray Amorphous Uranyl Peroxide, U 2 O 7 Prev Next Title: Structure and Reactivity of X-ray Amorphous Uranyl Peroxide, U 2 O 7 ...

  13. X-ray imaging of Nonlinear Resonant Gyrotropic Magnetic Vortex...

    Office of Scientific and Technical Information (OSTI)

    X-ray imaging of Nonlinear Resonant Gyrotropic Magnetic Vortex Core Motion in Circular Permalloy Disks Citation Details In-Document Search Title: X-ray imaging of Nonlinear ...

  14. X-ray photonic microsystems for the manipulation of synchrotron...

    Office of Scientific and Technical Information (OSTI)

    (MEMS) when combined with micro-optics have found a wide range of photonics applications. ... for X-rays, a new generation of photonics microsystems for X-ray wavelengths will ...

  15. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in ...

  16. X-Ray Diffraction Microscopy of Magnetic Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing ...

  17. NIF and OMEGA X-Ray Environments Summary (Technical Report) ...

    Office of Scientific and Technical Information (OSTI)

    NIF and OMEGA X-Ray Environments Summary Citation Details In-Document Search Title: NIF and OMEGA X-Ray Environments Summary You are accessing a document from the Department of ...

  18. X-Ray Diffraction Microscopy of Magnetic Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the

  19. X-Ray Diffraction Microscopy of Magnetic Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the

  20. X-Ray Diffraction Microscopy of Magnetic Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the

  1. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations

  2. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations

  3. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations

  4. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations

  5. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations

  6. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations

  7. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations

  8. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations

  9. X-Ray Interactions with Matter from the Center for X-Ray Optics (CXRO)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Henke, B. L.; Gullikson, E. M.; Davis, J. C.

    The primary interactions of low-energy x-rays within condensed matter, viz. photoabsorption and coherent scattering, are described for photon energies outside the absorption threshold regions by using atomic scattering factors. The atomic scattering factors may be accurately determined from the atomic photoabsorption cross sections using modified Kramers-Kronig dispersion relations. From a synthesis of the currently available experimental data and recent theoretical calculations for photoabsorption, the angle-independent, forward-scattering components of the atomic scattering factors have been thus semiempirically determined and tabulated here for 92 elements and for the region 50-30,000 eV. Atomic scattering factors for all angles of coherent scattering and at the higher photon energies are obtained from these tabulated forward-scattering values by adding a simple angle-dependent form-factor correction. The incoherent scattering contributions that become significant for the light elements at the higher photon energies are similarly determined. The basic x-ray interaction relations that are used in applied x-ray physics are presented here in terms of the atomic scattering factors. The bulk optical constants are also related to the atomic scattering factors. These atomic and optical relations are applied to the detailed calculation of the reflectivity characteristics of a series of practical x-ray mirror, multilayer, and crystal monochromators. Comparisons of the results of this semiempirical,"atom-like", description of x-ray interactions for the low-energy region with those of experiment and ab initio theory are presented.

  10. Proposed new accelerator design for homeland security x-ray applications

    SciTech Connect (OSTI)

    Clayton, James; Shedlock, Daniel; Langeveld, Willem G.J.; Bharadwaj, Vinod; Nosochkov, Yuri

    2015-01-01

    Two goals for security scanning of cargo and freight are the ability to determine the type of material that is being imaged, and to do so at low radiation dose. One commonly used technique to determine the effective Z of the cargo is dual-energy imaging, i.e. imaging with different x-ray energy spectra. Another technique uses the fact that the transmitted x-ray spectrum itself also depends on the effective Z. Spectroscopy is difficult because the energy of individual x rays needs to be measured in a very high count-rate environment. Typical accelerators for security applications offer large but short bursts of x-rays, suitable for current-mode integrated imaging. In order to perform x-ray spectroscopy, a new accelerator design is desired that has the following features: 1) increased duty factor in order to spread out the arrival of x-rays at the detector array over time; 2) x-ray intensity modulation from one delivered pulse to the next by adjusting the accelerator electron beam instantaneous current so as to deliver adequate signal without saturating the spectroscopic detector; and 3) the capability to direct the (forward peaked) x-ray intensity towards high-attenuation areas in the cargo (fan-beam-steering). Current sources are capable of 0.1% duty factor, although usually they are operated at significantly lower duty factors (~0.04%), but duty factors in the range 0.4-1.0% are desired. The higher duty factor can be accomplished, e.g., by moving from 300 pulses per second (pps) to 1000 pps and/or increasing the pulse duration from a typical 4 ?s to 10 ?s. This paper describes initial R&D to examine cost effective modifications that could be performed on a typical accelerator for these purposes, as well as R&D for fan-beam steering.

  11. Absolute x-ray yields from laser-irradiated germanium-doped low-density aerogels

    SciTech Connect (OSTI)

    Fournier, K. B.; Satcher, J. H.; May, M. J.; Poco, J. F.; Sorce, C. M.; Colvin, J. D.; Hansen, S. B.; MacLaren, S. A.; Moon, S. J.; Davis, J. F. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Girard, F.; Villette, B.; Primout, M.; Babonneau, D. [Commissariat a l'Energie Atomique-Direction des Application Militaires (CEA/DAM), Ile-de-France, F91297 Arpajon (France); Coverdale, C. A.; Beutler, D. E. [Sandia National Laboratory, Albuquerque, New Mexico 87185 (United States)

    2009-05-15

    The x-ray yields from laser-irradiated germanium-doped ultra-low-density aerogel plasmas have been measured in the energy range from sub-keV to {approx_equal}15 keV at the OMEGA laser facility at the Laboratory for Laser Energetics, University of Rochester. The targets' x-ray yields have been studied for variation in target size, aerogel density, laser pulse length, and laser intensity. For targets that result in plasmas with electron densities in the range of {approx_equal}10% of the critical density for 3{omega} light, one can expect 10-11 J/sr of x rays with energies above 9 keV, and 600-800 J/sr for energies below 3.5 keV. In addition to the x-ray spectral yields, the x-ray temporal waveforms have been measured and it is observed that the emitted x rays generally follow the delivered laser power, with late-time enhancements of emitted x-ray power correlated with hydrodynamic compression of the hot plasma. Further, the laser energy reflected from the target by plasma instabilities is found to be 2%-7% of the incident energy for individual beam intensities {approx_equal}10{sup 14}-10{sup 15} W/cm{sup 2}. The propagation of the laser heating in the target volume has been characterized with two-dimensional imaging. Source-region heating is seen to be correlated with the temporal profile of the emitted x-ray power.

  12. Table-top soft x-ray imaging of nanometric films

    SciTech Connect (OSTI)

    Calegari, F.; Stagira, S.; D'Andrea, C.; Valentini, G.; Vozzi, C.; Nisoli, M.; De Silvestri, S.; Poletto, L.; Villoresi, P.; Faenov, A.; Pikuz, T.

    2006-09-11

    Profiles of nanometric aluminum and parylene foils have been characterized by soft x-ray contact imaging using a laser-plasma source and a LiF crystal as detector. Due to the characteristic emission of this source in a 2{pi} angle, it was possible to obtain the sample image in a wider field of view with respect to coherent sources. LiF crystal is a cheap and robust imaging detector for soft x-ray radiation, that allows one to get high spatial resolution images of thin films with thickness from hundreds down to a few tens of nanometers.

  13. High efficiency, high quality x-ray optic based on ellipsoidally bent highly oriented pyrolytic graphite crystal for ultrafast x-ray diffraction experiments

    SciTech Connect (OSTI)

    Uschmann, I.; Nothelle, U.; Foerster, E.; Arkadiev, V.; Langhoff, N.; Antonov, A.; Grigorieva, I.; Steinkopf, R.; Gebhardt, A

    2005-08-20

    By the use of a thin highly oriented pyrolytic graphite crystal (HOPG) bent to a high-performance ellipsoidal shape it was possible to focus monochromatic x-rays of 4.5 keV photon energy with an efficiency of 0.0033, which is 30 times larger than for previously used bent crystals. Isotropic TiK{sub a}lpha radiation of a 150 {mu}m source was focused onto a 450 {mu}m spot. The size of the focal spot can be explained by broadening due to the mosaic crystal rocking curve. The rocking curve width (FWHM) of the thin graphite foil was determined to 0.11 deg. . The estimated temporal broadening of an ultrashort Kalpha pulse by the crystal is not larger than 300 fs. These properties make the x-ray optic very attractive for ultrafast time-resolved x-ray measurements.

  14. 1-ID Home Page | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1-ID Home Infrastructure Techniques Data Analysis Publications X-ray Resources Materials Physics and Engineering Group Useful Links Current APS status ESAF System GUP System X-Ray...

  15. Different X-ray spectral evolution for black hole X-ray binaries in dual tracks of radio-X-ray correlation

    SciTech Connect (OSTI)

    Cao, Xiao-Feng; Wu, Qingwen; Dong, Ai-Jun

    2014-06-10

    Recently, an 'outlier' track of radio-X-ray correlation was found, which is much steeper than the former universal correlation, where dual tracks were speculated to be triggered by different accretion processes. In this work, we test this issue by exploring hard X-ray spectral evolution in four black-hole X-ray binaries with multiple, quasi-simultaneous radio and X-ray observations. First, we find that hard X-ray photon indices, Γ, are negatively and positively correlated with X-ray fluxes when the X-ray flux, F{sub 3-9} {sub keV}, is below and above a critical flux, F{sub X,} {sub crit}, which are consistent with predictions of the advection-dominated accretion flow and the disk-corona model, respectively. Second, and most importantly, we find that the radio-X-ray correlations are also clearly different when the X-ray fluxes are higher and lower than the critical flux as defined by X-ray spectral evolution. The data points with F{sub 3-9} {sub keV} ≳ F{sub X,} {sub crit} have a steeper radio-X-ray correlation (F{sub X}∝F{sub R}{sup b} and b ∼ 1.1-1.4), which roughly forms the ''outlier'' track. However, the data points with anti-correlation of Γ – F{sub 3-9} {sub keV} either stay in the universal track with b ∼ 0.61 or stay in the transition track (from the universal to 'outlier' tracks or vice versa). Therefore, our results support that the universal and ''outlier'' tracks of radio-X-ray correlations are regulated by radiatively inefficient and radiatively efficient accretion model, respectively.

  16. PHERMEX: pulsed high energy radiographic machine emitting x-rays

    SciTech Connect (OSTI)

    Dick, R.D.

    1983-01-01

    The PHERMEX facility used to provide flash radiographs of explosives and explosive-driven metal systems is described. With this facility, precision radiographs of large objects containing materials with high atomic number and high density are attainable. PHERMEX encompass the high-current, three-cavity, 30-MeV linear electron accelerator; the 50-MHz radio-frequency power source to drive the cavities; timing, and signal detection system; and a data-acquisition system. Some unique features of PHERMEX are reliability; very intense sub-microsecond bremsstrahlung source rich in 4- to 8-MeV x rays; less than 1.0-mm-diam spot size; precision determination of edges, discontinuities, and areal-mass distribution; and flash radiographs of large explosive systems close to the x-ray target. Some aspects of the PHERMEX-upgrading program are discussed. The program will result in (1) an increased electron-beam energy to about 50 MeV, (2) the use of an electron-gun pulser that is capable of producing three-time-adjustable pulses for obtaining three radiographic pictures of a single explosive event, (3) an increased electron injection energy of 1.25 MeV, (4) the capability for recording high-speed signals, and (5) the use of computers to assist the monitoring and control of the data-acquisition system and the PHERMEX accelerator.

  17. PHERMEX: Pulsed High-Energy Radiographic Machine Emitting X rays

    SciTech Connect (OSTI)

    Dick, R.D.

    1981-01-01

    The PHERMEX facility used to provide flash radiographs of explosives and explosive-driven metal systems is described. With this facility, precision radiographs of large objects containing materials with high atomic number and high density are attainable. PHERMEX encompasses the high-current, three-cavity, 30-MeV linear electron accelerator; the 50-MHz-radiofrequency power source to drive the cavities; timing, firing, and signal detection system; and a data-acquisition system. Some unique features of PHERMEX are reliability; very intensive submicrosecond bremsstrahlung source rich in 4- to 8-MeV x rays; less than 1.0-mm-diam spot size; precision determination of edges, discontinuities, and areal-mass distribution; and flash radiographs of large explosive systems close to the x-ray target. Some aspects of the PHERMEX-upgrading program are discussed. The program will result (1) in an increased electron-beam energy to about 50 MeV, (2) the use of an electron-gun pulser that is capable of producing three time-adjustable pulses for obtaining three radiographic pictures of a single explosive event, (3) an increased electron injection energy of 1.25 MeV, (4) the capability for recording high-speed signals, and (5) the use of computers to assist the monitoring and control of the data-acquisition system and the PHERMEX accelerator.

  18. Learning to Apply Metrology Principles to the Measurement of X-ray Intensities in the 500 eV to 110 keV Energy Range

    SciTech Connect (OSTI)

    Haugh, M. J.; Pond, T.; Silbernagel, C.; Torres, P.; Marlett, K.; Goldin, F.; Cyr, S.

    2011-02-08

    National Security Technologies, LLC (NSTec), Livermore Operations, has two optical radiation calibration laboratories accredited by “the National Voluntary Laboratories Accreditation Program (NVLAP) which is the accrediting body of” the National Institute of Standards and Technology (NIST), and is now working towards accreditation for its X-ray laboratories. NSTec operates several laboratories with X-ray sources that generate X-rays in the energy range from 50 eV to 115 keV. These X-ray sources are used to characterize and calibrate diagnostics and diagnostic components used by the various national laboratories, particularly for plasma analysis on the Lawrence Livermore National Laboratory (LLNL) National Ignition Facility (NIF). Because X-ray photon flux measurement methods that can be accredited, i.e., traceable to NIST, have not been developed for sources operating in these energy ranges, NSTec, NIST, and the National Voluntary Accreditation Program (NVLAP) together have defined a path toward the development and validation of accredited metrology methods for X-ray energies. The methodology developed for the high energy X-ray (HEX) Laboratory was NSTec’s starting point for X-ray metrology accreditation and will be the basis for the accredited processes in the other X-ray laboratories. This paper will serve as a teaching tool, by way of this example using the NSTec X-ray sources, for the process and methods used in developing an accredited traceable metrology.

  19. Intense x-ray machine for penetrating radiography

    SciTech Connect (OSTI)

    Lucht, R.A.; Eckhouse, S.

    1989-01-01

    Penetrating radiography has been used for many years in the nuclear weapons research programs. In frequently penetrating radiography has been used in conventional weapons research programs. For example the Los Alamos PHERMEX machine was used to view uranium rods penetrating steel for the GAU-8 program, and the Ector machine was used to see low-density regions in forming metal jets. The armor/anti-armor program at Los Alamos has created a need for an intense flash x-ray machine that can be dedicated to conventional weapons research. The Balanced Technology Initiative, through DARPA, has funded the design and construction of such a machine at Los Alamos. It will be an 8- to 10-MeV diode machine capable of delivering a dose of 500 R at 1 m with a spot size of less than 5 mm. The machine used an 87.5-stage low-inductance Marx generator that charges up a 7.4-/Omega/, 32-ns water line. The water line is discharged through a self-breakdown oil switch into a 12.4-/Omega/ water line that rings up the voltage into the high-impendance x-ray diode. A long (233-cm) vacuum drift tube is used to separate the large-diameter oil-insulated diode region from the x-ray source area that may be exposed to high overpressures by the explosive experiments. The electron beam is self-focused at the target area using a low-pressure background gas. 15 refs., 11 figs.

  20. Digital X-ray Pipe Inspector Software

    Energy Science and Technology Software Center (OSTI)

    2009-10-29

    The Digital X-ray Pipe Inspector software requires a digital x-ray image of a pipe as input to the program, such as the image in Attachment A Figure 1. The image may be in a variety of software formats such as bitmap, jpeg, tiff, DICOM or DICONDE. The software allows the user to interactively select a region of interest from the image for analysis. This software is used to analyze digital x-ray images of pipes tomore » evaluate loss of wall thickness. The software specifically provides tools to analyze the image in (a) the pipe walls, (b) between the pipe walls. Traditional software uses only the information at the pipe wall while this new software also evaluates the image between the pipewalls. This makes the inspection process faster, more thorough, more efficient, and reduces expensive reshots. Attachment A Figure 2 shows a region of interest (a green box) drawn by the user around an anomaly in the pipe wall. This area is automatically analyzed by the external pipe wall tool with the result shown in Attachment A Figure 3. The edges of the pipe wall are detected and highlighted in yellow and areas where the wall thickness in less the the minimum wall threshold are shown in red. These measurements are typically made manually in other software programs, which lead to errors and inconsistency because the location of the edges are estimated by the user. Attachment A Figure 4 shows a region of interest (a green box) drawn by the user between the pipe walls. As can be seen there are intensity anomalies that correspond to wall defects. However, this information is not used directly by other software programs. In order to fully investigate these anomalies, the pipe would be reinspected in a different orientation to attempt to obtain a view of the anomaly in the pipe wall rather than the interior of the pipe. The pipe may need to be x-rayed a number of times to obtain the correct orientation. This is very costly and time consuming. The new software can perform the

  1. Holographic Methods in X-ray Crystallography

    Energy Science and Technology Software Center (OSTI)

    1995-07-28

    The holographic method makes use of partially modeled electron density and experimentally-measured structure factor amplitudes to recover electron density corresponding to the unmodeled part of a crystal structure. This paper describes a fast algorithm that makes it possible to apply the holographic method to sizable crystallographic problems. The algorithm uses positivity constraints on the electron density, and can incorporate a target electron density, making it similar to solvent flattening. Using both synthetic and experimental data,more » we assess the potential for applying the holographic method to macromolecular x-ray crystallography.« less

  2. High resolution biomedical imaging system with direct detection of x-rays via a charge coupled device

    DOE Patents [OSTI]

    Atac, Muzaffer; McKay, Timothy A.

    1998-01-01

    An imaging system is provided for direct detection of x-rays from an irradiated biological tissue. The imaging system includes an energy source for emitting x-rays toward the biological tissue and a charge coupled device (CCD) located immediately adjacent the biological tissue and arranged transverse to the direction of irradiation along which the x-rays travel. The CCD directly receives and detects the x-rays after passing through the biological tissue. The CCD is divided into a matrix of cells, each of which individually stores a count of x-rays directly detected by the cell. The imaging system further includes a pattern generator electrically coupled to the CCD for reading a count from each cell. A display device is provided for displaying an image representative of the count read by the pattern generator from the cells of the CCD.

  3. High resolution biomedical imaging system with direct detection of x-rays via a charge coupled device

    DOE Patents [OSTI]

    Atac, M.; McKay, T.A.

    1998-04-21

    An imaging system is provided for direct detection of x-rays from an irradiated biological tissue. The imaging system includes an energy source for emitting x-rays toward the biological tissue and a charge coupled device (CCD) located immediately adjacent the biological tissue and arranged transverse to the direction of irradiation along which the x-rays travel. The CCD directly receives and detects the x-rays after passing through the biological tissue. The CCD is divided into a matrix of cells, each of which individually stores a count of x-rays directly detected by the cell. The imaging system further includes a pattern generator electrically coupled to the CCD for reading a count from each cell. A display device is provided for displaying an image representative of the count read by the pattern generator from the cells of the CCD. 13 figs.

  4. Variable magnification with Kirkpatrick-Baez optics for synchrotron X-ray microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jach, Terrence; Bakulin, Alex S.; Durbin, Stephen M.; Pedulla, Joseph; Macrander, Albert

    2006-05-01

    In this study, we describe the distinction between the operation of a short focal length x-ray microscope forming a real image with a laboratory source (convergent illumination) and with a highly collimated intense beam from a synchrotron light source (Kohler illumination).

  5. Method and apparatus for enhanced sensitivity filmless medical x-ray imaging, including three-dimensional imaging

    DOE Patents [OSTI]

    Parker, Sherwood

    1995-01-01

    A filmless X-ray imaging system includes at least one X-ray source, upper and lower collimators, and a solid-state detector array, and can provide three-dimensional imaging capability. The X-ray source plane is distance z.sub.1 above upper collimator plane, distance z.sub.2 above the lower collimator plane, and distance z.sub.3 above the plane of the detector array. The object to be X-rayed is located between the upper and lower collimator planes. The upper and lower collimators and the detector array are moved horizontally with scanning velocities v.sub.1, v.sub.2, v.sub.3 proportional to z.sub.1, z.sub.2 and z.sub.3, respectively. The pattern and size of openings in the collimators, and between detector positions is proportional such that similar triangles are always defined relative to the location of the X-ray source. X-rays that pass through openings in the upper collimator will always pass through corresponding and similar openings in the lower collimator, and thence to a corresponding detector in the underlying detector array. Substantially 100% of the X-rays irradiating the object (and neither absorbed nor scattered) pass through the lower collimator openings and are detected, which promotes enhanced sensitivity. A computer system coordinates repositioning of the collimators and detector array, and X-ray source locations. The computer system can store detector array output, and can associate a known X-ray source location with detector array output data, to provide three-dimensional imaging. Detector output may be viewed instantly, stored digitally, and/or transmitted electronically for image viewing at a remote site.

  6. Method and apparatus for enhanced sensitivity filmless medical x-ray imaging, including three-dimensional imaging

    DOE Patents [OSTI]

    Parker, S.

    1995-10-24

    A filmless X-ray imaging system includes at least one X-ray source, upper and lower collimators, and a solid-state detector array, and can provide three-dimensional imaging capability. The X-ray source plane is distance z{sub 1} above upper collimator plane, distance z{sub 2} above the lower collimator plane, and distance z{sub 3} above the plane of the detector array. The object to be X-rayed is located between the upper and lower collimator planes. The upper and lower collimators and the detector array are moved horizontally with scanning velocities v{sub 1}, v{sub 2}, v{sub 3} proportional to z{sub 1}, z{sub 2} and z{sub 3}, respectively. The pattern and size of openings in the collimators, and between detector positions is proportional such that similar triangles are always defined relative to the location of the X-ray source. X-rays that pass through openings in the upper collimator will always pass through corresponding and similar openings in the lower collimator, and thence to a corresponding detector in the underlying detector array. Substantially 100% of the X-rays irradiating the object (and neither absorbed nor scattered) pass through the lower collimator openings and are detected, which promotes enhanced sensitivity. A computer system coordinates repositioning of the collimators and detector array, and X-ray source locations. The computer system can store detector array output, and can associate a known X-ray source location with detector array output data, to provide three-dimensional imaging. Detector output may be viewed instantly, stored digitally, and/or transmitted electronically for image viewing at a remote site. 5 figs.

  7. Transverse Coherence of the LCLS X-Ray Beam

    SciTech Connect (OSTI)

    Not Available

    2010-12-01

    Self-amplifying spontaneous radiation free-electron lasers, such as the LCLS or the European X-FEL, rely on the incoherent, spontaneous radiation as the seed for the amplifying process. Though this method overcomes the need for an external seed source one drawback is the incoherence of the effective seed signal. The FEL process allows for a natural growth of the coherence because the radiation phase information is spread out within the bunch due to slippage and diffraction of the radiation field. However, at short wavelengths this spreading is not sufficient to achieve complete coherence. In this presentation we report on the results of numerical simulations of the LCLS X-ray FEL. From the obtained radiation field distribution the coherence properties are extracted to help to characterize the FEL as a light source.

  8. Faint X-ray binaries and their optical counterparts in M31

    SciTech Connect (OSTI)

    Vulic, N.; Gallagher, S. C.; Barmby, P.

    2014-08-01

    X-ray binaries (XRBs) are probes of both star formation and stellar mass, but more importantly remain one of the only direct tracers of the compact object population. To investigate the XRB population in M31, we utilized all 121 publicly available observations of M31 totalling over 1 Ms from Chandra's ACIS instrument. We studied 83 star clusters in the bulge using the year 1 star cluster catalogue from the Panchromatic Hubble Andromeda Treasury Survey. We found 15 unique star clusters that matched to 17 X-ray point sources within 1'' (3.8 pc). This population is composed predominantly of globular cluster low-mass XRBs, with one previously unidentified star cluster X-ray source. Star clusters that were brighter and more compact preferentially hosted an X-ray source. Specifically, logistic regression showed that the F475W magnitude was the most important predictor followed by the effective radius, while color (F475WF814W) was not statistically significant. We also completed a matching analysis of 1566 H II regions and found 10 unique matches to 9 X-ray point sources within 3'' (11 pc). The H II regions hosting X-ray point sources were on average more compact than unmatched H II regions, but logistic regression concluded that neither the radius nor H? luminosity was a significant predictor. Four matches have no previous classification and thus are high-mass XRB candidates. A stacking analysis of both star clusters and H II regions resulted in non-detections, giving typical upper limits of ?10{sup 32} erg s{sup 1}, which probes the quiescent XRB regime.

  9. Design and characterization of electron beam focusing for X-ray generation in novel medical imaging architecture

    SciTech Connect (OSTI)

    Bogdan Neculaes, V. Zou, Yun; Zavodszky, Peter; Inzinna, Louis; Zhang, Xi; Conway, Kenneth; Caiafa, Antonio; Frutschy, Kristopher; Waters, William; De Man, Bruno

    2014-05-15

    A novel electron beam focusing scheme for medical X-ray sources is described in this paper. Most vacuum based medical X-ray sources today employ a tungsten filament operated in temperature limited regime, with electrostatic focusing tabs for limited range beam optics. This paper presents the electron beam optics designed for the first distributed X-ray source in the world for Computed Tomography (CT) applications. This distributed source includes 32 electron beamlets in a common vacuum chamber, with 32 circular dispenser cathodes operated in space charge limited regime, where the initial circular beam is transformed into an elliptical beam before being collected at the anode. The electron beam optics designed and validated here are at the heart of the first Inverse Geometry CT system, with potential benefits in terms of improved image quality and dramatic X-ray dose reduction for the patient.

  10. Computer simulation of the CSPAD, ePix10k, and RayonixMX170HS X-ray detectors

    SciTech Connect (OSTI)

    Tina, Adrienne

    2015-08-21

    The invention of free-electron lasers (FELs) has opened a door to an entirely new level of scientific research. The Linac Coherent Light Source (LCLS) at SLAC National Accelerator Laboratory is an X-ray FEL that houses several instruments, each with its own unique X-ray applications. This light source is revolutionary in that while its properties allow for a whole new range of scientific opportunities, it also poses numerous challenges. For example, the intensity of a focused X-ray beam is enough to damage a sample in one mere pulse; however, the pulse speed and extreme brightness of the source together are enough to obtain enough information about that sample, so that no further measurements are necessary. An important device in the radiation detection process, particularly for X-ray imaging, is the detector. The power of the LCLS X-rays has instigated a need for better performing detectors. The research conducted for this project consisted of the study of X-ray detectors to imitate their behaviors in a computer program. The analysis of the Rayonix MX170-HS, CSPAD, and ePix10k in particular helped to understand their properties. This program simulated the interaction of X-ray photons with these detectors to discern the patterns of their responses. A scientist’s selection process of a detector for a specific experiment is simplified from the characterization of the detectors in the program.

  11. X-ray tests of a two-dimensional stigmatic imaging scheme with variable magnifications

    SciTech Connect (OSTI)

    Lu, J.; Bitter, M.; Hill, K. W.; Delgado-Aparicio, L. F.; Efthimion, P. C.; Pablant, N. A.; Beiersdorfer, P.; Caughey, T. A.; Brunner, J.

    2014-11-15

    A two-dimensional stigmatic x-ray imaging scheme, consisting of two spherically bent crystals, one concave and one convex, was recently proposed [M. Bitter et al., Rev. Sci. Instrum. 83, 10E527 (2012)]. The Bragg angles and the radii of curvature of the two crystals of this imaging scheme are matched to eliminate the astigmatism and to satisfy the Bragg condition across both crystal surfaces for a given x-ray energy. In this paper, we consider more general configurations of this imaging scheme, which allow us to vary the magnification for a given pair of crystals and x-ray energy. The stigmatic imaging scheme has been validated for the first time by imaging x-rays generated by a micro-focus x-ray source with source size of 8.4 ?m validated by knife-edge measurements. Results are presented from imaging the tungsten L?1 emission at 8.3976 keV, using a convex Si-422 crystal and a concave Si-533 crystal with 2d-spacings of 2.21707 and 1.65635 and radii of curvature of 500 1 mm and 823 1 mm, respectively, showing a spatial resolution of 54.9 ?m. This imaging scheme is expected to be of interest for the two-dimensional imaging of laser produced plasmas.

  12. Sequential single shot X-ray photon correlation spectroscopy at the SACLA free electron laser

    SciTech Connect (OSTI)

    Lehmkühler, Felix; Kwaśniewski, Paweł; Roseker, Wojciech; Fischer, Birgit; Schroer, Martin A.; Tono, Kensuke; Katayama, Tetsuo; Sprung, Michael; Sikorski, Marcin; Song, Sanghoon; Glownia, James; Chollet, Matthieu; Nelson, Silke; Robert, Aymeric; Gutt, Christian; Yabashi, Makina; Ishikawa, Tetsuya; Grübel, Gerhard

    2015-11-27

    In this study, hard X-ray free electron lasers allow for the first time to access dynamics of condensed matter samples ranging from femtoseconds to several hundred seconds. In particular, the exceptional large transverse coherence of the X-ray pulses and the high time-averaged flux promises to reach time and length scales that have not been accessible up to now with storage ring based sources. However, due to the fluctuations originating from the stochastic nature of the self-amplified spontaneous emission (SASE) process the application of well established techniques such as X-ray photon correlation spectroscopy (XPCS) is challenging. Here we demonstrate a single-shot based sequential XPCS study on a colloidal suspension with a relaxation time comparable to the SACLA free-electron laser pulse repetition rate. High quality correlation functions could be extracted without any indications for sample damage. This opens the way for systematic sequential XPCS experiments at FEL sources.

  13. Spatial resolution of imaging plate with flash X-rays and its utilization for radiography

    SciTech Connect (OSTI)

    Shaikh, A. M.; Romesh, C.; Kolage, T. S.; Sharma, Archana

    2015-06-24

    A flash X-ray source developed using pulsed electron accelerator with electron energy range of 400keV to 1030keV and a field emission cathode is characterized using X-ray imaging plates. Spatial resolution of the imaging system is measured using edge spread function fitted to data obtained from radiograph of Pb step wedge. A spatial resolution of 150±6 µm is obtained. The X-ray beam size is controlled by the anode-cathode configuration. Optimum source size of ∼13±2 mm diameter covering an area with intensity of ∼27000 PSL/mm{sup 2} is obtained on the imaging plate kept at a distance of ∼200 mm from the tip of the anode. It is used for recording radiographs of objects like satellite cable cutter, aero-engine turbine blade and variety of pyro-devices used in aerospace industry.

  14. Constant-current charging supplies for the Advanced Photon Source (APS) linear accelerator modulators

    SciTech Connect (OSTI)

    Fuja, R.; Grelick, A.E.; Meyer, D.

    1997-06-01

    The APS linac beam energy must be stable to within {+-}1% to match the energy acceptance of the positron accumulator ring. The klystron pulse modulators must therefore provide a pulse-to-pulse repeatability of 0.1% in order for the beam to have the required energy stability. The modulators have had difficulty achieving the necessary repeatability since the pulse forming network (PFN) charging scheme does not include a deQing circuit. Several of the major charging circuit components are also less reliable than desired. In order to increase operating reliability and to improve pulse-to-pulse stability, it is planned to replace the high voltage power supplies in all modulators with constant-current power supplies. A new modulator charging supply that contains two EMI series 303 constant-current power supplies was constructed. Each of these EMI supplies delivers 1.5 A at up to 40 kV. One supply is sufficient for linac operation at up to 45 Hz, and two supplies in parallel enable linac operation at the nominal rf repetition rate of 60 Hz. This paper discusses test results from the new modulator, and also describes the existing modulators and their performance limitations.

  15. X-ray and γ-ray studies of the millisecond pulsar and possible X-ray binary/radio pulsar transition object PSR J1723-2837

    SciTech Connect (OSTI)

    Bogdanov, Slavko; Esposito, Paolo; Crawford III, Fronefield; Possenti, Andrea; McLaughlin, Maura A.; Freire, Paulo

    2014-01-20

    We present X-ray observations of the 'redback' eclipsing radio millisecond pulsar (MSP) and candidate radio pulsar/X-ray binary transition object PSR J1723-2837. The X-ray emission from the system is predominantly non-thermal and exhibits pronounced variability as a function of orbital phase, with a factor of ∼2 reduction in brightness around superior conjunction. Such temporal behavior appears to be a defining characteristic of this variety of peculiar MSP binaries and is likely caused by a partial geometric occultation by the main-sequence-like companion of a shock within the binary. There is no indication of diffuse X-ray emission from a bow shock or pulsar wind nebula associated with the pulsar. We also report on a search for point source emission and γ-ray pulsations in Fermi Large Area Telescope data using a likelihood analysis and photon probability weighting. Although PSR J1723-2837 is consistent with being a γ-ray point source, due to the strong Galactic diffuse emission at its position a definitive association cannot be established. No statistically significant pulsations or modulation at the orbital period are detected. For a presumed detection, the implied γ-ray luminosity is ≲5% of its spin-down power. This indicates that PSR J1723-2837 is either one of the least efficient γ-ray producing MSPs or, if the detection is spurious, the γ-ray emission pattern is not directed toward us.

  16. DISCOVERY OF EXTENDED X-RAY EMISSION AROUND THE HIGHLY MAGNETIC RRAT J1819-1458

    SciTech Connect (OSTI)

    Rea, N.; McLaughlin, M. A.; Gaensler, B. M.; Slane, P. O.; Stella, L.; Israel, G. L.; Reynolds, S. P.; Burgay, M.; Possenti, A.; Chatterjee, S.

    2009-09-20

    We report on the discovery of extended X-ray emission around the high magnetic field rotating radio transient J1819-1458. Using a 30 ks Chandra ACIS-S observation, we found significant evidence for extended X-ray emission with a peculiar shape: a compact region out to {approx}5.''5, and more diffuse emission extending out to {approx}13'' from the source. The most plausible interpretation is a nebula somehow powered by the pulsar, although the small number of counts prevents a conclusive answer on the nature of this emission. RRAT J1819-1458's spin-down energy loss rate (E-dot{sub rot}{approx}3 x 10{sup 32} erg s{sup -1}) is much lower than that of other pulsars with observed spin-down-powered pulsar wind nebulae (PWNe), and implies a rather high X-ray efficiency of eta{sub X}ident toL{sub pwn:0.5-8keV}/E-dot{sub rot}{approx}0.2 at converting spin-down power into the PWN X-ray emission. This suggests the need of an additional source of energy rather than the spin-down power alone, such as the high magnetic energy of this source. Furthermore, this Chandra observation allowed us to refine the positional accuracy of RRAT J1819-1458 to a radius of {approx}0.''3, and confirms the presence of X-ray pulsations and the {approx}1 keV absorption line, previously observed in the X-ray emission of this source.

  17. Gray scale x-ray mask

    DOE Patents [OSTI]

    Morales, Alfredo M.; Gonzales, Marcela

    2006-03-07

    The present invention describes a method for fabricating an embossing tool or an x-ray mask tool, providing microstructures that smoothly vary in height from point-to-point in etched substrates, i.e., structure which can vary in all three dimensions. The process uses a lithographic technique to transfer an image pattern in the surface of a silicon wafer by exposing and developing the resist and then etching the silicon substrate. Importantly, the photoresist is variably exposed so that when developed some of the resist layer remains. The remaining undeveloped resist acts as an etchant barrier to the reactive plasma used to etch the silicon substrate and therefore provides the ability etch structures of variable depths.

  18. Gated monochromatic x-ray imager

    SciTech Connect (OSTI)

    Oertel, J.A.; Archuleta, T.; Clark, L.

    1995-09-01

    We have recently developed a gated monochromatic x-ray imaging diagnostic for the national Inertial-Confinement Fusion (ICF) program. This new imaging system will be one of the primary diagnostics to be utilized on University of Rochester`s Omega laser fusion facility. The new diagnostic is based upon a Kirkpatrick-Baez (KB) microscope dispersed by diffraction crystals, as first described by Marshall and Su. The dispersed images are gated by four individual proximity focused microchannel plates and recorded on film. Spectral coverage is tunable up to 8 keV, spectral resolution has been measured at 20 eV, temporal resolution is 80 ps, and spatial resolution is better than 10 {mu}m.

  19. A computational study of x-ray emission from high-Z x-ray sources...

    Office of Scientific and Technical Information (OSTI)

    MLA APA Chicago Bibtex Export Metadata Endnote Excel CSV XML Save to My Library Send to Email Send to Email Email address: Content: Close Send Cite: MLA Format Close Cite: ...

  20. Fabrication process for a gradient index x-ray lens

    DOE Patents [OSTI]

    Bionta, R.M.; Makowiecki, D.M.; Skulina, K.M.

    1995-01-17

    A process is disclosed for fabricating high efficiency x-ray lenses that operate in the 0.5-4.0 keV region suitable for use in biological imaging, surface science, and x-ray lithography of integrated circuits. The gradient index x-ray optics fabrication process broadly involves co-sputtering multi-layers of film on a wire, followed by slicing and mounting on block, and then ion beam thinning to a thickness determined by periodic testing for efficiency. The process enables the fabrication of transmissive gradient index x-ray optics for the 0.5-4.0 keV energy range. This process allows the fabrication of optical elements for the next generation of imaging and x-ray lithography instruments in the soft x-ray region. 13 figures.