Sample records for apr-jun q4 jul-sep

  1. Sep Nov Jan Mar May Jul Sep Nov Jan Mar May Jul Sep Nov Jan

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 AugustAFRICAN3u ;;;:: A'Salmon,Sep Nov Jan Mar

  2. Observations from The EV Project in Q4 2013

    SciTech Connect (OSTI)

    John Smart

    2014-02-01T23:59:59.000Z

    This is a summary report for The EV Project 4th quarter 2013 reports. It describes electric vehicle driver driving and charging behavior observed in Q4. It is the same report as the previously approved/published Q3 2013 report, only the numbers have been updated. It is for public release and does not have limited distribution.

  3. Microsoft Word - Quarterly_report_Jul_Sep_2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The UGS project website was updated with new information - http:geology.utah.govempshaleoil The PI completed the third quarterly report and emailed it to all interested...

  4. SPEAR 3 Quarterly Report Jul-Sep 2000

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobsJuly through Sept 2000 TABLE OF CONTENTS A.

  5. Microsoft Word - S07079_jul_sep_10.doc

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, Disposal SiteRadiological Assessment ofJuly 1-September

  6. Microsoft Word - S08308_FFA_ jul_sep_2011

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, Disposal SiteRadiologicalInspectionCommunity1 October

  7. Reactor safety research programs. Quarterly report Apr-Jun 81

    SciTech Connect (OSTI)

    Edler, S.K.

    1981-09-01T23:59:59.000Z

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from April 1 through June 30, 1981, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, Ispra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  8. Geometry of an elliptic-difference equation related to Q4

    E-Print Network [OSTI]

    James Atkinson; Phil Howes; Nalini Joshi; Nobutaka Nakazono

    2015-06-15T23:59:59.000Z

    In this paper, we investigate a nonlinear non-autonomous elliptic difference equation, which was constructed by Ramani, Carstea and Grammaticos by integrable deautonomization of a periodic reduction of the discrete Krichever-Novikov equation, or Q4. We show how to construct it as a birational mapping on a rational surface blown up at eight points in $\\mathbb P^1\\times \\mathbb P^1$, and find its affine Weyl symmetry, placing it in the geometric framework of the Painlev\\'e equations. The initial value space is ell-$A_0^{(1)}$ and its symmetry group is $W(F_4^{(1)})$. We show that the deautonomization is consistent with the lattice-geometry of Q4 by giving an alternative construction, which is a reduction from Q4 in the usual sense. A more symmetric reduction of the same kind provides another example of a second-order integrable elliptic difference equation.

  9. Microsoft Word - SPEAR3 Jul-Sep 02 Qtrly Rpt.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Project0CentralProposal3, 2015 NEW8 3.0

  10. Far-ultraviolet observations of comet C/2001 Q4 (NEAT) with FIMS/SPEAR

    SciTech Connect (OSTI)

    Lim, Y.-M.; Min, K.-W. [Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Feldman, P. D. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Han, W. [Korea Astronomy and Space Science Institute (KASI), 776 Daedeokdae-ro, Yuseong-gu, Daejeon 305-348 (Korea, Republic of); Edelstein, J., E-mail: ymlim@kaist.ac.kr [Space Sciences Laboratory, University of California, Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States)

    2014-02-01T23:59:59.000Z

    We present the results of far-ultraviolet observations of comet C/2001 Q4 (NEAT) that were made with the Far-Ultraviolet Imaging Spectrograph on board the Korean satellite STSAT-1. The observations were conducted in two campaigns during its perihelion approach between 2004 May 8 and 15. Based on the scanning mode observations in the wavelength band of 1400-1700 Å, we have constructed an image of the comet with an angular size of 5°×5°, which corresponds to the central coma region. Several important fluorescence emission lines were detected including S I multiplets at 1429 and 1479 Å, C I multiplets at 1561 and 1657 Å, and the CO A{sup 1}?-X{sup 1}?{sup +} Fourth Positive system; we have estimated the production rates of the corresponding species from the fluxes of these emission lines. The estimated production rate of CO was Q {sub CO} = (2.65 ± 0.63) × 10{sup 28} s{sup –1}, which is 6.2%-7.4% of the water production rate and is consistent with earlier predictions. The average carbon production rate was estimated to be Q{sub C} = ?1.59 × 10{sup 28} s{sup –1}, which is ?60% of the CO production rate. However, the observed carbon profile was steeper than that predicted using the two-component Haser model in the inner coma region, while it was consistent with the model in the outer region. The average sulfur production rate was Q{sub S} = (4.03±1.03) × 10{sup 27} s{sup –1}, which corresponds to ?1% of the water production rate.

  11. Light water reactor safety research program. Volume 12: quarterly report, Apr-Jun 79

    SciTech Connect (OSTI)

    Berman, M.

    1980-05-01T23:59:59.000Z

    This report summarizes the progress of the Light Water Reactor Safety Research Program during the 2nd quarter of 1979. Specifically, the report summarizes progress in five major areas of research. They are: (1) the molten core/concrete interactions study; (2) steam explosion research phenomena; (3) statistical LOCA analysis; (4) UHI model development; (5) two-phase jet loads.

  12. Microsoft Word - S10233_AprJun2013QuarterlyReport.docx

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourth Five-Year ReviewDepartment22SitewideApril

  13. WATER PRODUCTION IN COMETS 2001 Q4 (NEAT) AND 2002 T7 (LINEAR) DETERMINED FROM SOHO/SWAN OBSERVATIONS

    SciTech Connect (OSTI)

    Combi, M. R.; Lee, Y. [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109-2143 (United States); Maekinen, J. T. T. [Finnish Meteorological Institute, Box 503, SF-00101 Helsinki (Finland); Bertaux, J.-L.; Quemerais, E. [Centre National de la Recherche Scientifique, Service d'Aeronomie, BP3, 91371 Verrieres le Buisson Cedex (France)], E-mail: mcombi@umich.edu

    2009-06-15T23:59:59.000Z

    The SWAN all-sky camera on the Solar and Heliospheric Observatory (SOHO) spacecraft detected the hydrogen Lyman-alpha (Ly{alpha}) comae of comets 2001 Q4 NEAT and 2002 T7 LINEAR for large portions of their perihelion apparitions in 2003 and 2004. C/2001 Q4 NEAT was observed from 2003 September 14 through 2004 November 2, covering heliocentric distances from 3.23 AU before perihelion to 2.75 AU after, and C/2002 T7 LINEAR was observed from 2003 December 4 through 2004 August 6, covering heliocentric distances from 2.52 AU before perihelion to 2.09 AU after. We combined the full set of comet specific and full-sky observations and used our time-resolved model (TRM), which enables us to extract continuous values of the daily-average value of the water production rate throughout most of this entire period. The average power-law fit to the production rate variation of C/2001 Q4 NEAT with heliocentric distance, r, gives 3.5 x 10{sup 29} r {sup -1.7} and that for C/2002 T7 LINEAR gives 4.6 x 10{sup 29} r {sup -2.0}. Both comets show roughly a factor of 2 asymmetry in activity about perihelion, being more active before perihelion. C/2001 Q4 NEAT showed a production rate outburst about 30 days before perihelion (2004 April 15) and then a large extended increase above the nominal trend from 50 to 70 days after perihelion (2004 July 5-July 25)

  14. 1 EUROSURVEILLANCE Vol . 13 Issues 79 JulSep 2008 www.eurosurveillance.org E uro roun du p s

    E-Print Network [OSTI]

    in Albania, Bosnia-Herzegovina, Czech Republic, Croatia, Greece, Hungary, Russia, Serbia and Slovenia in the EU, Bosnia-Herzegovina, Norway, Russia and Switzerland, a questionnaire was sent to all 30 members

  15. Quarterly Review of Methane from Coal Seams Technology. Volume 8, Number 3, April 1991. Rept. for Jul-Sep 90

    SciTech Connect (OSTI)

    McBane, R.A.; Schwochow, S.D.; Stevens, S.H.

    1991-01-01T23:59:59.000Z

    Contents include reports on: Powder River Basin, Wyoming and Montana; Greater Green River Coal Region, Wyoming and Colorado; Uinta Basin, Utah; Piceance Basin, Colorado; San Juan Basin, Colorado and New Mexico; Raton Basin, Colorado and New Mexico; Black Warrior Basin, Alabama; Experimental Fracturing and Propping of Coal-Implications for Hydraulic Fracture Design; Western Cretaceous Coal Seams Project; Multiple Coal Seams Project; Coalbed Methane Technology Development in the Appalachian Basin; Reservoir Engineering and Analysis and Geologic Evaluation of Critical Production Parameters for Coalbed Methane Resources.

  16. 2012_Q4

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322(EE) |2 National EnergyDepartment of|2START STOP2 -

  17. 2013_Q4.indd

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322(EE) |2Department

  18. Quarterly review of Methane from Coal Seams Technology. Volume 9, Number 2, January 1992. Rept. for Apr-Jun 91

    SciTech Connect (OSTI)

    McBane, R.A.; Schwochow, S.D.; Stevens, S.H.

    1992-01-01T23:59:59.000Z

    The following reports summarize the results of recent exploration, testing, and production in the Wind River Basin, Wyoming; Powder River Basin, Wyoming and Montana; Greater Green River Coal Region, Wyoming and Colorado; Piceance Basin, Colorado; San Juan Basin, Colorado and New Mexico; Raton Basin, Colorado and New Mexico; Black Warrior Basin, Alabama and the Northern and Central Appalachian Basins. Contents also include: Advances in Laboratory Measurement Techniques of Relative Permeability and Capillary Pressure for Coal Seams; Methane from Coal Seams Research; and Technical Events.

  19. Mathematics 1052 Exam 2, May 3rd, 2014 Q1 Q2 Q3 Q4 Q5 Q6 Total Bonus

    E-Print Network [OSTI]

    Kaygun, Atabey

    Mathematics 1052 Exam 2, May 3rd, 2014 Q1 Q2 Q3 Q4 Q5 Q6 Total Bonus 15pts 20pts 10pts 15pts 30pts 10pts 100pts 10pts This exam has 6 questions and a bonus question, for a total of 100 + 10 bonus the integral. Bonus:(10pts) Decide if the following series is convergent or divergent. n=1 1 n· 1+(lnn)2 Page

  20. U.S. Residential Photovoltaic (PV) System Prices, Q4 2013 Benchmarks: Cash Purchase, Fair Market Value, and Prepaid Lease Transaction Prices

    SciTech Connect (OSTI)

    Davidson, C.; James, T. L.; Margolis, R.; Fu, R.; Feldman, D.

    2014-10-01T23:59:59.000Z

    The price of photovoltaic (PV) systems in the United States (i.e., the cost to the system owner) has dropped precipitously in recent years, led by substantial reductions in global PV module prices. This report provides a Q4 2013 update for residential PV systems, based on an objective methodology that closely approximates the book value of a PV system. Several cases are benchmarked to represent common variation in business models, labor rates, and module choice. We estimate a weighted-average cash purchase price of $3.29/W for modeled standard-efficiency, polycrystalline-silicon residential PV systems installed in the United States. This is a 46% decline from the 2013-dollar-adjusted price reported in the Q4 2010 benchmark report. In addition, this report frames the cash purchase price in the context of key price metrics relevant to the continually evolving landscape of third-party-owned PV systems by benchmarking the minimum sustainable lease price and the fair market value of residential PV systems.

  1. Hp-41CV flight performance advisory system (FPAS) for the E-2c, E-2B, and C-2A aircraft. Final technical report Apr-Jun 82

    SciTech Connect (OSTI)

    Ferrell, D.R.

    1982-06-01T23:59:59.000Z

    This report describes follow-on work performed under the auspices of AE 4900, Directed Studies in Aeronautical Engineering at the Naval Postgraduate School, to complement the original design of a Flight Performance Advisory System (FPAS) for the E-2C aircraft. The original design fulfilled the requirements of AE 3001, Aircraft Energy Conservation. AE 3001, offered in the Fall Quarter 1981, and conducted by Professor Allen E. Fuhs, was sponsored in part by the Naval Air Development Center (NADC). NADC desired to obtain the input of several fleet experienced aviators in order to design program code for the HP-41CV handheld, programmable calculator that would benefit pilots by providing them with fuel efficiency parameters in flight. Calculators were made available to the participants with the proviso that a completed and operable code for each aircraft be submitted by the end of the academic quarter, September 1981. Upon completion of the E-2C program, attempts were made to use the calculator in flight. One test was conducted informally in an E-2C at RVAW-110, NAS Miramar. Unfortunately, the voltage field induced in the cockpit by the main lobe of the radar passing over the cockpit caused the calculator to cease functioning. The need to devise shielding for the calculator, plus the desire to simplify and improve the existing code lead to this effort.

  2. FY11 Q4 SHPM Whitepaper DRAFT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the operational response measurements so that changes in the average response of the turbine with respect to rotor position could be investigated. Rotational resampling is the...

  3. Microchannel Receiver Development- FY12 Q4

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this Oregon State University project, funded by SunShot, for the fourth quarter of fiscal year 2012.

  4. FY11 Q4 SHPM Whitepaper DRAFT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-lFederalFY 2008 FOIA -MetricsBudget of Energyf i cN

  5. Multiple Independent Losses of the rpoC1 Intron in Angiosperm Chloroplast Stephen R. Downie; Esmeralda Llanas; Deborah S. Katz-Downie

    E-Print Network [OSTI]

    Downie, Stephen R.

    ; Esmeralda Llanas; Deborah S. Katz-Downie Systematic Botany, Vol. 21, No. 2. (Apr. - Jun., 1996), pp. 135

  6. Advanced Manufacture of Reflectors- FY12 Q4

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this University of Arizona project, funded by SunShot, for the fourth quarter of fiscal year 2012.

  7. CSP Tower Air Brayton Combustor- FY12 Q4

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this SWRI project, funded by SunShot, for the fourth quarter of fiscal year 2012.

  8. Supercritical Carbon Dioxide Turbo-Expander- FY12 Q4

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this SWRI project, funded by SunShot, for the fourth quarter of fiscal year 2012.

  9. Scattering Solar Thermal Concentrators- FY12 Q4

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this Penn State project, funded by SunShot, for the fourth quarter of fiscal year 2012.

  10. Next Generation Solar Collectors for CSP- FY12 Q4

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this 3M project, funded by SunShot, for the fourth quarter of fiscal year 2012.

  11. Poison Control Center Management of Benzocaine Exposures

    E-Print Network [OSTI]

    Suchard, Jeffrey; Rudkin, Scott

    2004-01-01T23:59:59.000Z

    V:3, Jul-Sep 2004 Page 55 Poison Control Center Managementthe American Association of Poison Control Centers (AAPCC)answering the general poison information line of each PCC

  12. Q2 Q3 Q4 Q4 Q3 Q2 Q1 Q1 Q2 Q3 Q4 Q3 Q2 Q1 Q1 Q2 Q3 Q4 Q4 Q3 Q2 Q1

    E-Print Network [OSTI]

    installations totaled 723 MW in Q1 2013, up 33% over Q1 2012 Cumulative operating PV capacity in the U.S. now.00/W Concentrating Solar Power (CSP and CPV) 6 MWac of concentrating solar capacity was installed; cumulative operating CSP and CPV capacity in the U.S. now stands at 552 MWac 2013 will see the most CSP

  13. Site Acquisition Description/ Category Contracting Office Solicitation

    Office of Environmental Management (EM)

    Hanford 222-S Lab Services http:www.emcbc.doe.g ovSEBhanfordlab EMCBC Small Business Fixed Price 40M-60M NA 2282014 12162013 642014 872014 Apr-Jun 2015 Paducah...

  14. Self-Cleaning CSP Optics with EDS- FY12 Q4

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this Boston University project, funded by SunShot, for the fourth quarter of fiscal year 2012.

  15. On the physics of the $so_q(4)$ hydrogen atom

    E-Print Network [OSTI]

    P. G. Castro; R. Kullock

    2015-03-05T23:59:59.000Z

    In this work we investigate the $q$-deformation of the $so(4)$ dynamical symmetry of the hydrogen atom using the theory of the quantum group $su_q(2)$. We derive the energy spectrum in a physically consistent manner and find a degeneracy breaking as well as a smaller Hilbert space. We point out that using the deformed Casimir as was done before leads to inconsistencies in the physical interpretation of the theory.

  16. US LHC Accelerator Project FY2003 Q4 page 1 of 12 US LHC Accelerator Project

    E-Print Network [OSTI]

    Large Hadron Collider Program

    in quadrupole and dipole production, and in cable deliveries from CERN for testing. Based on an earned value Quarter FY 2003 15 December 2003 J. Strait, Project Manager I. Summary Good technical progress continues at Fermilab. We discussed our concerns directly with CERN management during a visit in September. Separately

  17. http://www.eh.doe.gov/nepa/process/ll/95q4.htm

    Broader source: Energy.gov (indexed) [DOE]

    Amarillo, Texas High Explosive Waste Water Treatment Facility at LANL, Los Alamos, New Mexico Decontamination and Dismantlement of the Pinellas Plant, Pinellas, Florida...

  18. Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage- FY12 Q4

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this General Atomics project, funded by SunShot, for the fourth quarter of fiscal year 2012.

  19. U.S. Residential Photovoltaic (PV) System Prices, Q4 2013 Benchmarks...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TP-6A20-62671 October 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for...

  20. FY 2014 Q4 Metrics Report 2014-11-06.xlsx

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6 FY 2007 FYEnergyFossil

  1. Microsoft PowerPoint - SRS Headcount by County of Residence Q4 FY 2013.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your HomeOverviewCleanup IntegrationAUpdateGA County SRNS SRR

  2. High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles - FY12 Q4

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D e e p p a a r r t t mRecompressionBrayton|

  3. /"2009 -Aio de Aoiricnaje a Ral SCALABRINIORTIZ"/ ,!! .e-.q<4: t.?!&NOTA SPU N" LI, t L ~ 6

    E-Print Network [OSTI]

    Maguitman, Ana Gabriela

    >; ?{ :, {':> f.., :;,! #12;BUENOS AIRES, 2 6 Mi$\\[ 2"jOg VISTO, lo disp~iestopor los aitículo.43 y 46 ii?ciso b

  4. 3Q/4Q99 F-Area Hazardous Waste Management Facility Corrective Action Report - Third and Fourth Quarter 1999, Volumes I and II

    SciTech Connect (OSTI)

    Chase, J.

    2000-05-12T23:59:59.000Z

    Savannah River Site (SRS) monitors groundwater quality at the F-Area Hazardous Waste management Facility (HWMF) and provides results of this monitoring to the South Carolina Department of Health and Environmental Control (SCDHEC) semiannually as required by the Resource Conservation and Recovery Act (RCRA) permit. SRS also performs monthly sampling of the Wastewater Treatment Unit (WTU) effluent in accordance with Section C of the Underground Injection Control (UIC) application.

  5. Environ. Sci. Technol. 19Q4,28, 1422-1429 Rapid Kinetics of Cu(I I) Adsorption/Desorption on Goethite

    E-Print Network [OSTI]

    Sparks, Donald L.

    /Desorption on Goethite Paul R. Grossl' and Donald L. Sparks Department of Piant and Soil Sciences, University of Delaware, Washington 99352 The kinetics of Cu2+adsorption/desorption on goethite (a-FeOOH) was evaluated using/desorption on goethite. The rate of these relaxations (7)decreased with an increase in pH, alongthe adsorption edge

  6. 3Q/4Q00 Annual M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwater Monitoring and Corrective-Action Report - Third and Fourth Quarters 2000 - Volumes I, II, and II

    SciTech Connect (OSTI)

    Cole, C.M. Sr.

    2001-04-17T23:59:59.000Z

    This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River Site (SRS) during 2000. This program is required by South Carolina Resource Conservation and Recovery Act (RCRA) Hazardous Waste Permit SC1890008989 and Section 264.100(g) of the South Carolina Hazardous Waste Management Regulations.

  7. 3Q/4Q99 Annual M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwater Monitoring and Corrective-Action Report - Third and Fourth Quarters 1999 - Volumes I, II, and III

    SciTech Connect (OSTI)

    Chase, J.

    2000-04-19T23:59:59.000Z

    This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River Site (SRS) during 1999.

  8. Significant Cost Improvement of Li-Ion Cells Through Non-NMP...

    Broader source: Energy.gov (indexed) [DOE]

    Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Approach 5 Dry coated electrode Electrode design optimization Binder and electrolyte development Process and equipment optimization...

  9. "State","Jan","Feb","Mar","Q1 Total","Apr","May","Jun ","Q2 Total","Jul","Aug","Sep","Q3 Total","Oct","Nov","Dec","Q4 Total","2003 Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data1.3 Total"

  10. "State","Jan","Feb","Mar","Q1 Total","Apr","May","Jun ","Q2 Total","Jul","Aug","Sep","Q3 Total","Oct","Nov","Dec","Q4 Total","2004 Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data1.3 Total"4

  11. "State","Jan","Feb","Mar","Q1 Total","Apr","May","Jun","Q2 Total","Jul","Aug","Sep","Q3 Total","Oct","Nov","Dec","Q4 Total","2002 Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data1.3

  12. High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Receivers for Supercritical Carbon Dioxide Cycles - FY12 Q4 High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles - FY12 Q4 This document summarizes the progress of...

  13. The absence of inactive regions in turbulent flow: Evidence from light scattering experiments

    E-Print Network [OSTI]

    Pak, Hyuk Kyu

    prediction3) for large q,4 hasled to modelswhich imply that the turbulence consists of "active" regions

  14. INDIANA FARMSTEAD ASSESSMENT PROGRAM P u r d u e U n i v e r s i t y C o o p e r a t i v e E x t e n s i o n S e r v i c e We s t L a f a y e t t e , I N 4 7 9 0 7

    E-Print Network [OSTI]

    Holland, Jeffrey

    facilities) located at least 100 feet away and downhill from your well? q q 4. Have all abandoned wells

  15. The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis -- A Reflexively Designed Survey of New-Car-Buying Multi-Vehicle California Households

    E-Print Network [OSTI]

    Turrentine, Thomas; Kurani, Kenneth S.

    2001-01-01T23:59:59.000Z

    by electric and hybrid vehicles", SAETechmcal Papers No.$ not Q 4. If you chose the Hybrid Vehicle - can you specifymay response to hybrid vehicles Finally, we suggest that

  16. NNSA Corporate CPEP Process NNSA Honeywell FM&T PER NNSA/NA-00...

    National Nuclear Security Administration (NNSA)

    "meets expectations." Cyber Security - Honeywell's AOP metrics for Q4 and the year were Green, no issues. All AOP milestones were delivered on time. Cyber Security completed...

  17. What Does a Scattering Pattern Tell US?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scattering Space sample light image Image Space lens Angular Space Q 4p sin(q) l Fourier Transform Scattering Pattern Fourier Transform Phase Problem Scattering Pattern...

  18. Professional Worker Career Experience Survey (PWCES) Data and Metadata

    E-Print Network [OSTI]

    Rosenbloom, Joshua L.; Ash, Ronald A.

    2009-10-06T23:59:59.000Z

    qname,question,QPage,type,DataType,value,answer,Measuring,Source Q1,My current job title is,1,text,text,,,Work History,ITWF Q2,How long have you been in your current position?,1,text,numeric,,,,ITWF Q3,How long have you been with your current... employer?,1,text,numeric,,,Work History,ITWF Q4,My current career field is classified as,1,select,numeric,99,Select One,,ITWF Q4,,1,select,numeric,1,Management/Financial/Professional ,, Q4,,1,select,numeric,2,Computer/Mathematical ,, Q4,,1,select,numeric,3...

  19. One-Dimensional Titanium Dioxide Nanomaterials: Nanowires, Nanorods, and Nanobelts

    E-Print Network [OSTI]

    Wang, Xudong

    One-Dimensional Titanium Dioxide Nanomaterials: Nanowires, Nanorods, and Nanobelts Xudong Wang Methods P 4.4. Top-down Fabrication Techniques Q 4.4.1. Direct Oxidation of Titanium Sheets Q 4 Nanostructures for Energy Storage AD 5.3.1. Lithium Ion Batteries AD 5.3.2. Supercapacitors AE 5

  20. USDOE Technology Transfer, Frequently Asked Questions about Agreement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    under ACT? A3: ACT is available to a full range of sponsors, including start-ups, small and large businesses that provide private funding to sponsor research. Q4: Are...

  1. What Does a Scattering Pattern Tell US?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    amplitude e iwt Phase difference Phase difference S e i (ri Q) A(DK) fi A(Q) Fourier Transform ( ri ) DK Q 4p sin(q) l Lensless Imaging Sample Space Scattering Space...

  2. Final Report on DOE Conference Activities for May 11, 2012 to...

    Broader source: Energy.gov (indexed) [DOE]

    2012 - 1-30-13.pdf More Documents & Publications Inspection Report: DOEIG-0913 Supercritical Carbon Dioxide Turbo-Expander - FY12 Q4 Algal Biofuels Strategy Workshop - Fall Event...

  3. A Least-Squares Transport Equation Compatible with Voids

    E-Print Network [OSTI]

    Hansen, Jon

    2014-04-22T23:59:59.000Z

    . DERIVATION OF EQUATION Let us begin the derivation of our least-squares equation with the first-order monoenergetic transport equation, L? = S? + q 4pi = ?s?+ q 4pi = Q , (2.1) where ? (n/cm2-s-str) is the angular flux, ? (n/cm2-s) is the scalar flux defined... by ? = ? 4pi ? d?, q (n/cm 3-s) is the distributed source, and L is the streaming plus removal operator, L = ?? ? · ?? ? + ?t , (2.2) S is the scattering operator, S = ?s 4pi ? 4pi d? , (2.3) ?t (cm?1) denotes the macroscopic total cross section and ?s...

  4. 3rd quarterly report - July 2007

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2

  5. 4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q24.0

  6. 4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1

  7. 4.2 < 8 >

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

  8. 4.4 < 8 >

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

  9. Bill Bradbury Jennifer Anders

    E-Print Network [OSTI]

    Updated Resource Needs Assessment Draft Resource and Action Plan Public Comment Q3 Q4 Q2 2015 Draft PlanForecast ModelModel EBaseline Energy Efficiency ResourceEnergy Efficiency Resource Potential AssessmentGenerating Resource Potential AssessmentAssessment Supply Side Resource Cost & Availability gygy efficiencyefficiency

  10. JOURNAL DE PHYSIQUE CoZZoque C8, suppZ6ment au n08, Tome 41, aoGt 1980, page C8-163 STUDY OF LIQUID NICKEL-VANADIUM ALLOYS BY NEUTRON DIFFRACTION AND MODEL SIMULATION

    E-Print Network [OSTI]

    Boyer, Edmond

    , 28 i s the scattering angle, X the neutron wave- length, Q = 4n the modulus of the scattering vector NICKEL-VANADIUM ALLOYS BY NEUTRON DIFFRACTION AND MODEL SIMULATION J.L. Lemarchand, J. Bletry and P with model c a l c u l a t i o ~can lead to a quantitative interpreta- tion. In this paper, neutron

  11. Communication and Control for Quantum Circuits

    E-Print Network [OSTI]

    Patel, Yatish

    2010-01-01T23:59:59.000Z

    to Output. Classical bits cx and cz are trans- mitted to thePure Quantum h x y z s t cx yes yes yes yes yes yes yes czH q3 q4 zmeasure Correct c3 X cx q1, q0; cx q1, q2; correct

  12. Purity distribution for bipartite random pure states

    E-Print Network [OSTI]

    O. Giraud

    2007-10-10T23:59:59.000Z

    Analytic expressions for the probability density distribution of the linear entropy and the purity are derived for bipartite pure random quantum states. The explicit distributions for a state belonging to a product of Hilbert spaces of dimensions p and q are given for p=3 and any q>=3, as well as for p=q=4.

  13. ONE+TWO TEST ONE TEST TWO HW 1HW 2 HW 3 HW 4 HW 5 HW ...

    E-Print Network [OSTI]

    Nung Kwan Yip

    2015-04-30T23:59:59.000Z

    L M N O P Q R. ONE+TWO TEST ONE TEST TWO HW 1HW 2 HW 3 HW 4 HW 5 HW 6 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 QX. 100 50. 50. 100. 100. 100. 100. 100. 100.

  14. The Board of Trustees of Oregon State University 526 Kerr Administration Building

    E-Print Network [OSTI]

    Escher, Christine

    policies. Other agenda items include discussion of the FY15 operating budget, 2015-17 state funding process items include review and approval of the FY15 and FY16 committee work plan and meeting schedule and the FY14 Q4 operating management report and review and recommendation for Board approval of a proposed

  15. A manual procedure for assembly sequence planning based on the exploded view method

    E-Print Network [OSTI]

    Rivero, Andres R

    1995-01-01T23:59:59.000Z

    ~, aN bl h NheaolQNLcoNWN p NCh d INI Ihi Q 4 PCNCCI ON Add Ndl bly 777 7? E ddloN bill 777 toe swot Ny NNlol bh y CNINC 4 ~ WIOCNOWOI) 4 Reo lel psd y ONCNNF and Nd ~ OINW looNcNQ 4 sec hty )CORN hnNlseNHy) ( ~ IIINsehhly...

  16. DIS2001 Bologna 2701 May 2001

    E-Print Network [OSTI]

    PDFs Herwig5.9: * MRSA for the proton * SaS1D­LO parametrization of #3; PDFs * GRV­LO parametrization(#22; 2 =Q 2 ) non­pQCD #24; Q -4 Lepto: * MRSA for the proton * direct photons only ­ Dorian Kcira

  17. Second Quarter 2014 Volume 7, number 2

    E-Print Network [OSTI]

    .5% in Q2, 4.1% in Q3, and 2.6% in Q4. March projections for annual average real GDP provided, the Bureau of Labor Statistics (BLS) reported the Consumer Price Index for All Urban Consumers rose 1.1% year- over-year in February, while core inflation was up 1.6% for the same period. Consumer prices

  18. Renewable Energy Finance Tracking Initiative (REFTI): Snapshot of Recent Geothermal Financing Terms, Fourth Quarter 2009 - Second Half 2011

    SciTech Connect (OSTI)

    Lowder, T.; Hubbell, R.; Mendelsohn, M.; Cory, K.

    2012-09-01T23:59:59.000Z

    This report is a review of geothermal project financial terms as reported in the National Renewable Energy Laboratory's Renewable Energy Finance Tracking Initiative (REFTI). The data were collected over seven analysis periods from the fourth quarter (Q4) of 2009 to the second half (2H) of 2011.

  19. Departamento de Cs. e Ingenieria de la Computacion Universidad Nacional del Sur

    E-Print Network [OSTI]

    Simari, Guillermo R.

    razonable para el concepto cuadrado. 2. Un vaso llenado hasta la mitad puede generar una discusi los conceptos difusos lleno, medio-lleno, vac´io y medio-vac´io, tomando como punto de partida el para todo concepto difuso P y Q se verifica que ¬(P Q) = ¬P ¬Q. 4. Suponiendo que el grado de

  20. S()l.9(.....Mws\\.i ,,~-Io;;"(k'-t-v liw.ikJ rea.c;(i6<-.S IAk cevr;;Jtr ~ -two ~~oJrytQl/i; a-... ~ 1{u. r-r{i&/tJ w.eei, ~

    E-Print Network [OSTI]

    Potsdam, Universität

    ..fI,A- 1~.{i!)oQ4ecl. -10::'/ (11 l.,':PNA. Cal,! wti-vt (/k~ b..l ] SetH f)Jo.' 7T ~a.\\ rS,-lMo b'4rk

  1. Formulation of an efficient triangular plate element for laminate analysis

    E-Print Network [OSTI]

    Tucker, Ricky Dale

    1985-01-01T23:59:59.000Z

    aY ( W + ~) By 3y 2 (5) 3 u Bv Bu~ 3v4 Y ? + + xy 3y Bx By 3x aw Yx 2 3 3 z(2 ? + ? + ~) Bx3y 3y 3x Bu Bw Y = + = Y xz Bz Bx x 3v Bw Y + Y yz Bz By y The stresses in a typical lamina 'i' are written in terms of the midplane strains... and curvatures as 1 a x Xy 11 12 16 12 22 26 16 26 66 0 X E xy + z x 'Y (6) r 1 xz Q44 Q4& T yz Q4S Q65 Yx Yy where au Bv au 3v E = ? g E = ? s = ? + x ax ' y 3y ' xy' ay 3x 3 w 2 = ? (? 'x 2 3x xxy = X + ? ) 3x 2 a2 aY xy =-( ? +~) 3...

  2. The influence of temperatures and mechanical treatments on pre- and post-emergence growth of peach and plum seedlings

    E-Print Network [OSTI]

    Alsalih, Kamil Khidher

    1961-01-01T23:59:59.000Z

    , the possibility of variation between speoies SCAPI ICI ~ ~ IA NI A ~ ~ ~ 0 0 0 ~ ~ O IO Ch 33m R R CII CII CII ~ ~ A 4 SI S 0 0 0 '4l Q 4l Q s CII r 0 O ~ ~ as ~8 ~gA ICI IO 0 N Ill OE 0 CIA CIN Ch CO ~ ~ ~ t N ~ ~ 0 CCI ICI 0 0 0...W goeio4 oo ~. f As ooe ~ oero. eheea&eriheIL Q aeero%o areae ia i' piIaoale. Q4e oeaooivagg coal, 4 have hoea oaaee4 Q %he high O~erafeee, '()IIkaeee 4; ea4 0)? . gheee eee4lxlwge 4L4 aos groo ee sapL41p ehoa tirei Osaaeferro4 4e ~ gro hoaa? ?e 4L4...

  3. hepph/9512272 ON THE THEORETICAL STATUS OF

    E-Print Network [OSTI]

    (š)N scattering processes are described by six further structure functions W š;\\Sigma 2 , xW š;\\Sigma 3 , F 2Z structure at short distances. Since both charged leptons (e \\Sigma ; ¯ \\Sigma ) and neutrinos (š; š) may ) collects couplings and propagator terms, e.g. P l \\Sigma ;fl (Q 2 ) = 2�ff 2 =Q 4 , P š;W +(Q 2 ) = G 2 F M

  4. HODGE-THEORETIC INVARIANTS FOR ALGEBRAIC CYCLES MARK GREEN AND PHILLIP GRIFFITHS

    E-Print Network [OSTI]

    ) Spreads; explanation of the idea (3) Construction of the filtration on CHp (X)Q (4) Interpretations, these conjectures would have the following implications for the Chow group CHP (X)Q: (I) There is a filtration CHp (X)Q = F0 CHp (X)Q F1 CHp (X)Q(1.1) · · · Fp CHp (X)Q Fp+1 CHp (X)Q = 0 whose successive

  5. Aspects of Nucleon Compton Scattering

    E-Print Network [OSTI]

    V. Bernard; N. Kaiser; Ulf-G. Meißner; A. Schmidt

    1993-11-24T23:59:59.000Z

    We consider the spin-averaged nucleon forward Compton scattering amplitude in heavy baryon chiral perturbation theory including all terms to order ${\\cal O} (q^4)$. The chiral prediction for the spin-averaged forward Compton scattering amplitude is in good agreement with the data for photon energies $\\omega \\le 110$ MeV. We also evaluate the nucleon electric and magnetic Compton polarizabilities to this order and discuss the uncertainties of the various counter terms entering the chiral expansion of these quantities.

  6. Discovery of oscillatory dynamics of city-size distributions in world

    E-Print Network [OSTI]

    White, Douglas R.

    of pdf thru Skype you can ask questions, thru Humberto he will have a chat box to relay questions I test) China leads by 50 years in its Q values ­ up to 1850 PART III: Scaling Examples: Chinese-results are very similar, as reported for the 1- factor test. Q1 Q3 Q5 Q2 Q4 Q6 #12;7 Multiple measures of Q

  7. Factors influencing the growth of Sclerotium rolfsii in various soils

    E-Print Network [OSTI]

    Menon, Sankara Kochukrishna

    1953-01-01T23:59:59.000Z

    ~ hssishanh taefossox of hho loyarhasah of Plant Sqrsiahogf ael Pnthologye 'glhRS 4 05ICSN%. XgSSII00%4 4 ~ t ~ 4 g 4 4 4 4+ ~ ~ 0 ~ 4 ~ ~ 1 I t 4* ~ +t gggS4F Q%%4%$$ O. 0 0 ~ 4 0 4 4 ~ ~ f 4 % ~ ~ 1 4'1 0 II 856% 4NP %@IIX@) 's ~ ~ ~ s a e'e ~ i o + t a...

  8. How to Observe with LWA-1 Steve Ellingson

    E-Print Network [OSTI]

    Ellingson, Steven W.

    B bandwidth ~ 2/3 rate) Output samples are 8-bit I + 8-bit Q This mode sets the data recorder throughput localization Science Uses Long duration "total power" transients Solar Riometry * Could also be done with beams n = 1..4 Each beam gets two "tunings" (10-88 MHz) Output samples are I4+Q4 250 kSPS -- 19.6 MSPS

  9. MIE 230-Thermodynamics Professor Rothstein

    E-Print Network [OSTI]

    Rothstein, Jonathan

    below. Steam enters the turbine at p1 = 10MPa and T1=640 C and exits at p2=50kPa. Steam leaves Steam Generator 2 3 1 Turbine Condenser Pump p2 = 50kPa p3 = 50kPa sat. liquid . Q4-1 = 200 MW T1 = 640 the steam power plant shown in the figure below. The cycle requires 150MWinQ of heat to operate as shown

  10. A disease of swine caused by a chromobacterium species

    E-Print Network [OSTI]

    Sippel, William Lawrence

    1955-01-01T23:59:59.000Z

    ?Pa(y.?h.b.PO< TABLE OF CONTENTS x? pPOTa?mrOpaP O9, 1gs,'s, w'us,1 VS r9Q6M6V'w4, Q?uM ?g6?'w,uM 9's 864 V,,8 1,swQgV,1 JQ,?g6us?S g8 sAg8,? p4 A's w68sg1,Q,1 65 su55gwg'84 gM? J6Q4'8w, 56Q ' 1gss,Q4'4g68 JQ6V?,M 56Q 49, 56??6Ag8C Q,'s68s7 ?'? p4 'JJ,'Qs 's '8...'8gsM JQ61uwg8C V?u,IV?'w? JgCM,84 A's gs6?'4,1 5Q6M 49, sJ?,,8? P6 '8gM'? g86wu?'4g68 6Q Vg6w9,Mgw'? s4u1g,s 'Q, Q,? w6Q1,1 56Q 49gs V'w4,QguM Vu4 g4s V,9'?g6Q '81 'JJ,'Q'8w, g8 49, s46w? wu?4uQ, w6??,w4g68 ?,81 suJJ6Q4 46 49, suJJ6sg4g68 49...

  11. PowerConsumption(mW) Radio in sleeping state/periodic poll

    E-Print Network [OSTI]

    x q 4 Radio on Radio in sleeping state/periodic poll 1 2 3 H ' Gc ( G8 ( P E A c P '@ 8E 'E ' 9 0 P 5 0( A E 9 8 P0 A ( W 0 (A G '@ 8 ( G & b8 ( I A P 3 3 '8E b A A E G0( 8 P A E 2 B P 3 ' 5 8E ' b A ( ( ' b P ' G G8 V P@ P A A I@ P8 b6 '@ 8 ( G P A V A 6A 5 } A '@ (A P c @ ' ' A E 8 V 30 b

  12. al:=proc(x) if xod: q

    E-Print Network [OSTI]

    Davis, Donald M.

    end: prev:=proc(i) local j: for j from i by -1 while q[j]=0 do od: q [j] end: w:=14: q:=array(1..2^w+2*w): for i from 1 to 2^w+2*w do q[i]:=0 od: r:=array(1..2^w+2*w): for i from 1 to 2^w+2*w do r[i]:=0 od: q[1]:=2^(w+1)-2: q[2]:=2^(w+1)-1: q[3]:=2^(w+1)-1: q[4]:=2^(w+1) +1: r[1]:="Mi": r[2]:="BB": r[3

  13. Analytical solutions of compacting flow past a sphere

    E-Print Network [OSTI]

    Rudge, John F.

    2014-04-03T23:59:59.000Z

    of Laplace’s equation is defined as the solution of ??2? = ?(3)(x) (3.16) where ?(3)(x) is the three-dimensional Dirac delta function. The fundamental solution is ? = 1 4pir (3.17) where r = |x|. This fundamental solution satisfies ?2? = 0 for r > 0... (4.8) where Q gives the total mass flux over the surface r = a and n is the outward normal. It is assumed that vs ? 0 and P ? 0 as |x| ? ?. This has solution A = ? Q 4pi , B = 0, (4.9) 8 John F. Rudge so that vs = Qx 4pir3 , q = 0, P = 0, (4...

  14. Cas A flight 2 13apr98 Cas A Calibration

    E-Print Network [OSTI]

    Cas A flight 2 ­ 13apr98 Cas A Calibration QMAP Flight 2, 10Nov96 th, 13Apr98 . beam pairs ­ 13apr98 calibration spikes a0 a1 a2 a3 a4 frame CAL Ka1 9771.8 ­0.25804 8.62E­06 ­1.23E­10 6.74E­16.3 ± 2.1 0.0456 ± 0.0009 2.0% 0.08 6.37E­07 Q4 89.7 ± 1.4 0.0323 ± 0.0005 1.6% 0.08 4.51E­07 Calibration

  15. Bose-Einstein Correlations in W+W- events at LEP2

    E-Print Network [OSTI]

    The DELPHI Collaboration; J. Abdallah

    2005-07-14T23:59:59.000Z

    Bose-Einstein correlations (BEC) between final state particles in the reaction e+e- -> W+W- -> q_1 anti-q_2 q_3 anti-q_4 have been studied. Data corresponding to a total integrated luminosity of 550 pb^{-1}, recorded by the DELPHI detector at centre-of-mass energies ranging from 189 to 209 GeV, were analysed. An indication for inter-W BEC between like-sign particles has been found at the level of 2.4 standard deviations of the combined statistical and systematic uncertainties.

  16. JOURNAL DE PHYSIQUE Colloque C3, supplkment au n09, Tome 48, septembre 1987

    E-Print Network [OSTI]

    Boyer, Edmond

    law of s c a t t e r i n g function, t h e spinodal theory and the dynamic scaling law. Article n ~ ) / i ) range (0.06rqr6 nm-1) w i t h tRe pulsed c o l d neutron small anqle scatterinq u n c t i o n p t t h e high $ side iin o t o i i y proportional t o q-2, q-4 an! 4-6.but i t obeys

  17. An investigation of the effect of rudder deflection on aircraft motions and tail loads during rolling maneuvers

    E-Print Network [OSTI]

    Sell, John Richard

    1959-01-01T23:59:59.000Z

    , the product of inertia tense I and Q became zero and are dropped from the equations. The equations of motion, referred to the Eulerian axes are now written: 7' F?=, rnI, g ~Q 4/-RVj z F& = mI v 'RU -P4'j r. F, =~[g PV-QU] 73 $ L PI~ -RI~s ~QR... simplifications of the equations of motion of an aircraft were possible. These simplifications are retain- ed in the developments in References 1, 2, and 3, These simplifications are based upon the assumption that the products and squares of disturbance...

  18. An economic study of the experimental response of fertilizer to East Texas Upland native pasture

    E-Print Network [OSTI]

    Grant, Warren Ray

    1956-01-01T23:59:59.000Z

    ikdiaN 10 Pssaak Therweate of Nitro'& o ~ s ~ ~ ~ ~ ~ ~ ~ ~ o ~ ~ ~ ~ ~ ~ ~ 14 L PAIIAIOCi05l FWltgN ~ ~ ~ ~ ~ 4 II ~ 0 0 ~ t 1 ~ ' ~ 0 0 4 l44ISO60 Op4&hR FOi:CDQIS~ LOVOl o ~ ~ ~ y ~ ~ o s ~ Li SS SOSSNIR STSST CF Tm SIISSQNSFLL SSSPOHR & ?SSTIL1...A wryly pro gaia? ~Q4e (Tm ~ Aerehee~ Rioarge) pab farih %e %lee ef 4ialalshiag relarae, igreaeaisls eag agrioalteral ehahA ewe, lese e?11 agroeg M NW aalare et ahe imgaF44RApof relate?ship SNI verba et Xibeeherlieh aa4 hAer soil ferLLiityr research...

  19. Growth of sheets in 3D confinements - a model for the C-S-H meso 2 structure

    E-Print Network [OSTI]

    Etzold, Merlin A.; McDonald, Peter J.; Routh, Alexander F.

    2014-06-21T23:59:59.000Z

    - and dicalcium silicate surfaces on particle aggre-41 gation [8]. Particle based models have also been used by the group of Ulm to successfully interpret nano42 indentation results [9]. Small-angle neutron scattering data of cement paste has been interpreted... -vectors, both curves show a q?4 dependence which corresponds to203 the experimental Porod regime. The simulated data is compared to experimental small-angle neutron204 scattering data for cement from Allen et al. (dashed) [30]. For large and intermediate...

  20. BeamlineEXP1&EXP3 88030.491660

    E-Print Network [OSTI]

    .4 87310.4 88030.491660 92115 BPM3 Spectrometer DipoleB1 94075 96220 97340 2145 1120 455.2 93000 (94062.5) (96207.5)(97327.5) 85830.4 14801030 700 Q5 (Q1EXP3) BPM1BPM2Q4Q1 + H1 Q2Q3 + H2W W 418ToroidT7 Toroid T8 Matrix If the bpm's are calibrated and the resolution known, then the rms energy resolution yields: 1

  1. Optimisations for quadrature representations of finite element tensors through automated code generation

    E-Print Network [OSTI]

    Oelgaard, Kristian B; Wells, G N

    2009-07-20T23:59:59.000Z

    = 1, q = 2 608 13.77 3084 6.62 12412 1.69 52124 0.81 p = 1, q = 3 2660 29.11 12432 12.26 46528 3.30 205424 1.30 p = 1, q = 4 7955 57.90 38007 20.99 155751 5.14 622679 2.04 p = 2, q = 1 314 6.02 3336 1.75 34984 0.40 359984 0.08 p = 2, q = 2 1838 11...

  2. Coal Distribution Database, 2008

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear JanDecade Year-0 Year-1EIA3Q 20093Q4Q

  3. DOE/EIA-0202(87/4Q) Energy Information Administration Short-Term

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline353/06) 2Yonthly Energy : 4 aI6/1Q)7/1Q)3Q)4Q)

  4. DOE/EIA-0202(89/4Q) SHOKT-TERM

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline353/06) 2Yonthly Energy : 42Q) Energy3Q)4Q)

  5. DOE/EIA-0202(90/2Q) SHOET-TERM QUARTERLY PROJECTIONS

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline353/06) 2Yonthly Energy : 42Q) Energy3Q)4Q)0/2Q)

  6. 414_1-1c

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2 Q3 Q4 Q1 Q2 Q3 Q414.1-1C

  7. 41737 Final

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2 Q3 Q4 Q1 Q2 Q3

  8. 42677RPSEA | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2 Q3 Q4 Q1 Q2 Q3

  9. 43029CO2Prod | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2 Q3 Q4 Q1 Q2 Q3Carbon

  10. 43291-1-8-eerc | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2 Q3 Q4 Q1 Q2 Q3CarbonSubtask

  11. 456-Mike.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2 Q3 Q4 Q1 Q2

  12. 4600.2 EERE RD&D

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2 Q3 Q4 Q1 Q2. Identification

  13. 4600.2 FE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2 Q3 Q4 Q1 Q2.

  14. 4600.2 OE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2 Q3 Q4 Q1 Q2.Identification

  15. 4H

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2 Q3 Q4 Q1 Q2.IdentificationH

  16. 4He Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2 Q3 Q4 Q1

  17. 4He Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2 Q3 Q4 Q14He(α, X) (Current

  18. 4Li

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2 Q3 Q4 Q14He(α, X)

  19. 4_scienceFrontiers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2 Q3 Q4 Q14He(α, X)

  20. 4th International Conference Proceedings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2 Q3 Q4 Q14He(α, X)

  1. 5

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2 Q3 Q4 Q14He(α, X)5.0 -

  2. 5

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2 Q3 Q4 Q14He(α, X)5.0 -7.0

  3. 5 - Codes DNS-LES-RANS.key

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2 Q3 Q4 Q14He(α, X)5.0

  4. 5(b)/9(c) Final Revised Policy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2 Q3 Q4 Q14He(α,at

  5. 5(b)/9(c) Record of Decision

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2 Q3 Q4 Q14He(α,atRevised

  6. 5(b)9(c) Administrator's Record of Decision, May 2000

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2 Q3 Q4

  7. 5-Carbon Alcohols for Drop-in Gasoline Replacement - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2 Q3 Q4Portal Vehicles

  8. 5-Week Weight Management Class - HPMC Occupational Health Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2 Q3 Q4Portal

  9. 5-address

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2 Q3 Q4Portal

  10. 5. Développements méthodologiques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2 Q3 Q4PortalAVP Meeting,

  11. 5/3/2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2 Q3 Q4PortalAVP

  12. 500kVsingle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2 Q3 Q4PortalAVPCircuit

  13. 51979 hearing public 012610.ptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2 Q3 Q4PortalAVPCircuitof

  14. S

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 AugustAFRICAN3u ;;;:: A' 3 ct')s . l * q 4 S Q

  15. S U B J E C T

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 AugustAFRICAN3u ;;;:: A' 3 ct')s . l * q 4 S

  16. S-J=--.- Al' AMERICAN B&E CCMP~,

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 AugustAFRICAN3u ;;;:: A' 3 ct')s . l * q 4

  17. S.M. Stoller Corporation and US Department of Energy PINELLAS ENVIRONMENTAL RESTORATION

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 AugustAFRICAN3u ;;;:: A' 3 ct')s . l * q 4for:

  18. Microsoft PowerPoint - C-Mod_quarterly_res_highlights_21.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals fromprocess usedGELustreMeasuresPower &BullQ3 21Q4

  19. Final_report_pub1.pdf

    SciTech Connect (OSTI)

    O'BRIEN, NICHOLAS [Soitec Solar Industries LLC; O'BRIEN, NICHOLAS

    2014-08-15T23:59:59.000Z

    The paper describes Soitecs project to plan,install,qualify and ramp a high volume CPV module manufactruing facility in Southern California. Soitec’s CPV module factory in San Diego was planned with an annual production capacity of 280MWDC. It was scheduled to be operational by the first quarter of 2013, and was expected to create several hundred direct and indirect jobs in the San Diego region. From ground breaking to facility readiness was completed in six months. This enabled the docking of equipment in the Q3’12 time frame. The first 140 MW of capacity was ready for operation in Q4’12. Production of the CX-M500 modules started in Q4 2012. The line yield and factory capacity were ramped in 2013. The annual production capacity demonstration was successfully completed in Q2 2014. The modules manufactured at the plant were used to supply utility scale demand in the US and also world markets.

  20. Energy Efficiency and Conservation Block Grant (EECBG): Better Buildings Neighborhood Program Final Report

    SciTech Connect (OSTI)

    Donnelly, Kat A.

    2014-01-10T23:59:59.000Z

    The Neighbor to Neighbor Energy Challenge (N2N) brought together a consortium of 14 leading clean energy rural, suburban, and low income communities throughout Connecticut. N2N was awarded $4.2 million from the U.S. Department of Energy (DOE) competitive BetterBuildings Neighborhood Program on August 10, 2010 to run a two-year pilot program (plus one year of transition and evaluation) (Award No. EMCBC- 00969-10). N2N tested innovative program models and hypotheses for improving Connecticut’s existing residential energy efficiency programs that are overseen by the ratepayer fund board and administered by CT utilities. N2N’s original goal was to engage 10 percent of households in participating communities to reduce their energy usage by 20 percent through energy upgrades and clean energy measures. N2N planned for customers to complete more comprehensive whole-home energy efficiency and clean energy measures and to achieve broader penetration than existing utility-administered regulated programs. Since this was an ARRA award, we report the following figures on job creation in Table 1. Since N2N is not continuing in its current form, we do not provide figures on job retention. Table 1 N2N Job Creation by Quarter Jobs Created 2010 Q4 6.65 2011 Q1 7.13 2011 Q2 4.98 2011 Q3 9.66 2011 Q4 5.43 2012 Q1 11.11 2012 Q2 6.85 2012 Q3 6.29 2012 Q4 6.77 2013 Q1 5.57 2013 Q2 8.35 2013 Q3 6.52 Total 85.31 The N2N team encountered several gaps in the existing efficiency program performance that hindered meeting N2N’s and DOE’s short-term program goals, as well as the State of Connecticut’s long-term energy, efficiency, and carbon reduction goals. However, despite the slow program start, N2N found evidence of increasing upgrade uptake rates over time, due to delayed customer action of one to two years from N2N introduction to completion of deeper household upgrades. Two main social/behavioral principles have contributed to driving deeper upgrades in CT: 1. Word of mouth, where people share their experience with others, which leads to others to take action; and 2. Self-herding, where people follow past behavior, which leads to deeper and deeper actions within individual households.

  1. Measurement of the Electric Charge of the Top Quark in $\\boldsymbol{t\\bar{t}}$ Events

    E-Print Network [OSTI]

    D0 Collaboration

    2014-09-25T23:59:59.000Z

    We present a measurement of the electric charge of top quarks using $t\\bar{t}$ events produced in $p\\bar{p}$ collisions at the Tevatron. The analysis is based on fully reconstructed $t\\bar{t}$ pairs in lepton+jets final states. Using data corresponding to 5.3 $\\rm fb^{-1}$ of integrated luminosity, we exclude the hypothesis that the top quark has a charge of $Q=-4/3\\,e$ at a significance greater than 5 standard deviations. We also place an upper limit of 0.46 on the fraction of such quarks that can be present in an admixture with the standard model top quarks ($Q=+2/3\\,e$) at a 95\\% confidence level.

  2. Uncertainty Quantification of the Pion-Nucleon Low-Energy Coupling Constants up to Fourth Order in Chiral Perturbation Theory

    E-Print Network [OSTI]

    K. A. Wendt; B. D. Carlsson; A. Ekström

    2014-10-02T23:59:59.000Z

    We extract the statistical uncertainties for the pion-nucleon ($\\pi N$) low energy constants (LECs) up to fourth order $\\mathcal{O}(Q^4)$ in the chiral expansion of the nuclear effective Lagrangian. The LECs are optimized with respect to experimental scattering data. For comparison, we also present an uncertainty quantification that is based solely on \\pin{} scattering phase shifts. Statistical errors on the LECs are critical in order to estimate the subsequent uncertainties in \\textit{ab initio} modeling of light and medium mass nuclei which exploit chiral effective field theory. As an example of the this, we present the first complete predictions with uncertainty quantification of peripheral phase shifts of elastic proton-neutron scattering.

  3. Solution to the algebraic analogue of a differential equation

    E-Print Network [OSTI]

    Moore, Leslie Ray

    1964-01-01T23:59:59.000Z

    recursively yi - yi 1 wi( &~p( yi 1)-yi 1] ?- ? * ~ ~ ~ ) where w (0) 0 and w (x) is defined implicitly by 3-8 ( i( )-1)I, ~(x yi 1)-yi 1] (xyyi 1) I i(x) &P(xyyi 1) yi 1]dx Xe wish to find coefficients dB ~( ]=Qq ~ ~ ~ yk, im0~1~ \\ ~ ~ ) such that k... ~ ~ ITERATIONS B(1 ) ~ I el ~ 12 0 ' 19993839E 01 0 ~ 16680413E 02 0 ' 24923516E-03 Oe29455136E 05 Oo24984200E 01 0 ' 11200686E-02 0 ' 80648009E-04 -Oe25397758E-Q6 0 ' 49807810K QQ Oe59476471K 13 0 ~ 19083943K-Q4 0 ~ 14714612E-06 E(2)e 0 83184451E-03...

  4. Spin effect on parametric decay of oblique Langmuir wave in degenerate magneto-plasmas

    SciTech Connect (OSTI)

    Shahid, M. [Salam Chair in Physics, Government College University, Lahore-54000 (Pakistan) [Salam Chair in Physics, Government College University, Lahore-54000 (Pakistan); Department of Physics, Government College University, Lahore-54000 (Pakistan); Murtaza, G. [Salam Chair in Physics, Government College University, Lahore-54000 (Pakistan)] [Salam Chair in Physics, Government College University, Lahore-54000 (Pakistan)

    2013-08-15T23:59:59.000Z

    The electron spin ?1/2 effects on the parametric decay instability of oblique Langmuir wave into low-frequency electromagnetic shear Alfven wave and Left-Handed Circularly Polarized wave (LHCP) has been investigated in detail, in an electron-ion quantum plasma immersed in the uniform external magnetic field. Incorporating the quantum effects due to electron spin, Fermi pressure and Bohm potential term, the quantum magneto-hydrodynamic (QMHD) model has been used to investigate the linear and nonlinear response of the plasma species for three-wave coupling interaction in a quantum magneto-plasmas. Nonlinear dispersion relations and growth rate of the problem have been derived analytically. It has been shown that the spin of electrons has considerable effect on the growth rate of parametric instability problem even when the external magnetic field B{sub 0} is below the quantum critical magnetic field strength B{sub Q}=4.4138×10{sup 13}G.

  5. Robustness of discrete-time control systems

    E-Print Network [OSTI]

    Aguirre, Gabriel

    1989-01-01T23:59:59.000Z

    (z) are polynomials with real coeificients, such that 1. n;(z) =n, pzs+ +n, P, d(z) = dqzs + + dp, 2. ni(z), . . . , ni(z), d(z) are all relatively prime. 20 Let the vector n; be associated with the polynomial n, (z), such that ni, o 6 Rq+1 At and let... For example, tahe q = 4, r = 3, and l = 1. Then n(s) = n4z + nsz + nsz + nlz+ np, 4 3 2 d(s) = dpz + dsz + dsz + d, z + dp) n'(z) = nsz + nsz + nl 2 + np~ d'(s) = dss + dzs + dls y dp, and Xp = 6 may be written as n' 0 n' n' 1 0 n n n 2 1 0 n' n' n' 3...

  6. Information media used by cotton farmers in producing cotton in a ten-county area of North Central Texas

    E-Print Network [OSTI]

    Anwarul Karim, A. M

    1965-01-01T23:59:59.000Z

    M'Zl QK'~~644~ . Ki@84~p COU&lry B@4CGCBp 'BK+~ ~. KCiFS/3'l&6"8? P8+56f'8 &VXIV'". 50 thigh "80~43QX CQGCKL ~ '. NBQS Q CAt. 4' ?iles: M 49K~~' '%FAN 9X' ~~A';M, "VEST RK4R 5F~'5 hQVSX&7, gMgk': 4&F3, 'Gm:. M~4$M ~~C g". "~Q4QX' VW' 'sZ 5L~XL~'~&9 j l... on M O'Ia Used by Xoixnpea" Uoa ton Farmers fo? 8fz . Ukffeientt Btrapa ixx Uo'Nan Prodcc'tfan e . e" ~ e ~ o ~ ~ r ~ ' 6g Xnformabfon Illadfa Used by addle Age, UQbl;on farmers- fax 8', UJ. Xxex'Gv:g 8taePG e n. Uabtaon Prado''1 Qn a o a -. a...

  7. First order switched-capacitor building blocks for analog circuits

    E-Print Network [OSTI]

    Nguyen, Liem Thanh

    1983-01-01T23:59:59.000Z

    . The amount of charge on each capacitor at the end of this period is: q 1(n) = C1V1(n) () 0 q (n) 0 q 4(n) = C4V (n) (29) (30) (31) (32) Neglecting the current in the inverting terminal of the op amp, assume that the resulting currents from C , C2... (n-1) ? C V (n-1) (34) 4 o 4 o 1 1 2 2 3 3 Taking the z transform of equation (34) gives: C4V - C4V (z)z = ? CIV1(z) + C2V2(z)z - C3V3(z)z (35) Hence, the transfer function in z domain is: Cl zV1(z) C2 V2(z) V (z) = ? ?+ 0 C z-1 C z-1 4...

  8. A comparative salary study of professional engineers employed by Texas State and municipal governments and private industry 

    E-Print Network [OSTI]

    Mauer, William A

    1957-01-01T23:59:59.000Z

    rash% in the Lower 4?oil? earn?4 N~F%~ whil? thea? r?ak?C in the lower qn?rtilo earn?4 $$, 984 Of the oi, vil ?ngin?o& yablie+?apl?~, thee? aek?d in the lower 4?oil??arn?4 $&, 640 whil? theo? r?nk?4 in tho lower quartile e?ra?4 Sgs~~ Xt weQ4?e?n Ad... Cees6ttee& y e sio i n lac Gal Su e 1 Qnl 0 yy+ ~ oonl4 be ?soared? A Qnoationnairo was oonposod) llsiJIg porta of 'ths one at@, 5. sed in the muley the National gooier of Professional Engineers? oonsisting bf Qlxootioaa pertain 1ng to eapl...

  9. Field Notes, Middle America (1956-1968)

    E-Print Network [OSTI]

    Davis, William B.

    2012-04-09T23:59:59.000Z

    jljUlSu IT & dL ISO2s &&dLdI f{. L & ? P'3< a3Lc t xLQc32s_? 42T3{3k VL!e Cat5 j/b) [&vvL,L t e{Q 4Ur te{Qc{3c2YLc p&?2e2&Q X r ?Z t e...

  10. Proposal for Development of the Beamline and ND280 Dector Subsystems for the T2K Experiment

    SciTech Connect (OSTI)

    Jung, Chang-Kee

    2010-02-28T23:59:59.000Z

    This is the final (8th) quarterly progress report (FY2009 Q4) of the T2K US B280 project (DOE Grant DEFG0206ER41416) following the 7th quarterly report submitted to DOE in September, 2009. This report also serves as the final scientific/technical report for the project. In this report, we provide a brief status, progress, and major milestones achieved in the T2K US B280 development and construction project for the period: September 1, 2009 - November 30, 2009. Detailed final update of the budget with actual expenditures will be also included. In order to provide a quantitative evaluation of the project in terms of schedule and cost, earned values are calculated and compared to the planned values as well as the actual costs.

  11. 202-328-5000 www.rff.orgSector Effects of the Shale Gas Revolution in the United States

    E-Print Network [OSTI]

    This paper reviews the impact of the shale gas revolution on the sectors of electricity generation, transportation, and manufacturing in the United States. Natural gas is being substituted for other fuels, particularly coal, in electricity generation, resulting in lower greenhouse gas emissions from this sector. The use of natural gas in the transportation sector is currently negligible but is projected to increase with investments in refueling infrastructure and natural gas vehicle technologies. Petrochemical and other manufacturing industries have responded to lower natural gas prices by investing in domestically located manufacturing projects. This paper also speculates on the impact of a possible shale gas boom in China. Key Words: shale gas, electricity, transportation, and manufacturing JEL Classification Numbers: L71, L9, Q4 © 2013 Resources for the Future. All rights reserved. No portion of this paper may be reproduced without permission of the authors. Discussion papers are research materials circulated by their authors for purposes of information and discussion.

  12. Dry demagnetization cryostat for sub-millikelvin helium experiments: Refrigeration and thermometry

    SciTech Connect (OSTI)

    Todoshchenko, I., E-mail: todo@boojum.hut.fi; Kaikkonen, J.-P.; Hakonen, P. J.; Savin, A. [Low Temperature Laboratory, O.V. Lounasmaa Laboratory, Aalto University, FI-00076 AALTO (Finland); Blaauwgeers, R. [BlueFors Cryogenics Ltd, Arinatie 10, 00370 Helsinki (Finland)

    2014-08-01T23:59:59.000Z

    We demonstrate successful “dry” refrigeration of quantum fluids down to T = 0.16 mK by using copper nuclear demagnetization stage that is pre-cooled by a pulse-tube-based dilution refrigerator. This type of refrigeration delivers a flexible and simple sub-mK solution to a variety of needs including experiments with superfluid {sup 3}He. Our central design principle was to eliminate relative vibrations between the high-field magnet and the nuclear refrigeration stage, which resulted in the minimum heat leak of Q = 4.4 nW obtained in field of 35 mT. For thermometry, we employed a quartz tuning fork immersed into liquid {sup 3}He. We show that the fork oscillator can be considered as self-calibrating in superfluid {sup 3}He at the crossover point from hydrodynamic into ballistic quasiparticle regime.

  13. Dry demagnetization cryostat for sub-millikelvin helium experiments: refrigeration and thermometry

    E-Print Network [OSTI]

    Todoshchenko, I; Blaauwgeers, R; Hakonen, P J; Savin, A

    2014-01-01T23:59:59.000Z

    We demonstrate successful "dry" refrigeration of quantum fluids down to $T=0.16$\\,mK by using copper nuclear demagnetization stage that is pre-cooled by a pulse-tube-based dilution refrigerator. This type of refrigeration delivers a flexible and simple sub-mK solution to a variety of needs including experiments with superfluid $^3$He. Our central design principle was to eliminate relative vibrations between the high-field magnet and the nuclear refrigeration stage, which resulted in the minimum heat leak of $Q=4.4$\\,nW obtained in field of 35\\,mT. For thermometry, we employed a quartz tuning fork immersed into liquid $^3$He. We show that the fork oscillator can be considered as self-calibrating in superfluid $^3$He at the crossover point from hydrodynamic into ballistic quasiparticle regime.

  14. Refinement of freeway surveillance & control techniques by optical speed and occupancy detection

    E-Print Network [OSTI]

    Courage, K. G

    1968-01-01T23:59:59.000Z

    $pv't 1", h 'so''jT 07 7'77TT&(Ar S, p~rv; 7 Saon E: COP'SOJ ' j'CSIPZQ 7 3Y OTTTCAL SPT. " 'D '7'~D OCCU ACT D. '2~CT '-'i& A Thesis KZU77PTS GEANT COOM. ~'"' Subm tted to the Grec', uate Co13eSo o. ' the Texas l&Q4 Ur. iver sty in parti?1... stion. ". , " HRD Record 11o. 15 t, p. 2 t-)'(, lo67. CRAPTER II FFASIBII Ilv Ai, ALYSIS This cha?ter will d. eal with the Zeasibili+y of using a simple opt. i- cal speed trap as a s?pplement to pot detecLion in the measurement of traf'fic flow...

  15. q-quaternions and q-deformed su(2) instantons

    SciTech Connect (OSTI)

    Fiore, Gaetano [Dipartimento di Matematica e Applicazioni, Universita 'Federico II', V. Claudio 21, 80125 Naples (Italy) and INFN Sezione di Napoli, Complesso MSA, V. Cintia, 80126 Naples (Italy)

    2007-10-15T23:59:59.000Z

    We construct (anti-)instanton solutions of a would-be q-deformed su(2) Yang-Mills theory on the quantum Euclidean space R{sub q}{sup 4} [the SO{sub q}(4)-covariant noncommutative space] by reinterpreting the function algebra on the latter as a q-quaternion bialgebra. Since the (anti-)self-duality equations are covariant under the quantum group of deformed rotations, translations, and scale change, by applying the latter we can generate new solutions from the one centered at the origin and with unit size. We also construct multi-instanton solutions. As they depend on noncommuting parameters playing the roles of 'sizes' and 'coordinates of the centers' of the instantons, this indicates that the moduli space of a complete theory should be a noncommutative manifold. Similarly, gauge transformations should be allowed to depend on additional noncommutative parameters.

  16. An investigation of relationships between meso- and synoptic-scale phenomena 

    E-Print Network [OSTI]

    Wood, James Eugene

    1971-01-01T23:59:59.000Z

    . The figure shows the trough sloping westward from '04i . 0, &47' . ' / 'I I la 2:-, f WQQ. ' gf' , I g I. . I . ?, i&9 I +3~o . . --'; (a) 850 mb 34 ) 1- K . g(7!- . I , p6. (c) 500 mb 'r 'I 9" . 3O8 303 , . 3l 2 1 332 (b) 700 mb Fig. 6...'. '. '" "147 ~; C . r, t I' l. , 4 I -s 430 , 1I 1/0 3- 156 147 I 44, , $4 (a) 850 mb '652 6 fy, '". 534~53'4 &0 1540% P q'', -4 65$ 'g' )( C' ~i5~7 (c) 500 mb 0910 ' 88 I, ' ' 8196gp ', 70 -" - . - : . , '- ' ' ' ' ' ' . 'F4 0 . 97p 000...

  17. Properties of the gamma function

    E-Print Network [OSTI]

    Smith, William Boyce

    1960-01-01T23:59:59.000Z

    , 1-4 = u, dt=s I 'ld) I =I (u +u e +l)d 0 /lr) + /n-i + "'+ 12+ I . r~heorem . , e = I [J ~*de ? ) I&-'0) Q] Consider n s& - j (. -&I & d4. = ~ I 0 I ~t-li-+I " (" ~ & 27 Making the change of variable, t=nu, in the first integral, we get...() =~ J ' dt I' c~)f( ~rb r* l. . (M-t t r r l t M vl ). Lvt f(r, t) bv continuous in Q. ~ 4 & a for sech z in s region R. Then I s(. , ~)~~ converges uniformly over R if there exists s non-negative function 2) Let that for snd thus N...

  18. Generating generalized distributions from dynamical simulation

    E-Print Network [OSTI]

    Barth, Eric J.; Laird, Brian Bostian; Leimkuhler, Benedict J.

    2003-03-18T23:59:59.000Z

    virtual momentum related to the actual momentum of the system by p˜5sp.3 The equations of motion generated by the Nose´ Hamiltonian @Eq. ~1!# are dq dt 5M 21p˜/s2, ~2! dp˜ dt 52„V~q!, ~3! ds dt 5 p Q , ~4! dp dt 5 p˜TM21p˜ s3 2gkBT/s . ~5! The Nose´ method... regulates the temperature of the sys- tem through a dynamical time transformation given by dt/dt5s , where t is the Nose´ ~virtual! time and t is real time. The remarkable property of Nose´ dynamics is that mi- crocanonical sampling of the extended phase...

  19. The rate of germination and growth of certain range grasses under experimental conditions

    E-Print Network [OSTI]

    Oxnam, Herbert Richard

    1951-01-01T23:59:59.000Z

    ;"ficienqp co stra~i~~ cry'; rr11 of vP!M dao ~ ~~+9~& for . ". t! acor arrdcm&rrrL!irr, o oc'~tv ic rosa% n. mf ~ ~rrctS. rrn 8xrrm. ". " . "-x' ~'. "~":rx r r 390'3b& "orror'I oro. 'Q sr ud&c !xg . 'oorro. " (1". 1' XXO'!, os~ (13%) srr3 ";~r, ' Vl an '- ~m...$il 'Aqgg5$5 g q gg Q 'Q Q Q 'Q Q Q '4@ 8'44ZC QQQ QSSQQ gang QQSQS 8%$8 %RA~ i 4'4/8 QRR R~gg WH C CC g 0 lac ~ ~ IIC 0 %SASH 8888 gQ gQ Cll W IA g ~gg ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ C4 0Ig QQ'QQ88 QQSQQ ~f Q 'RNCQ a" OO N i4%O ch ~ De...

  20. The effect of benzene hexachloride-DDT spray on the insect population and the cotton plant

    E-Print Network [OSTI]

    Lloyd, Edwin Phillips

    1952-01-01T23:59:59.000Z

    IOXSMI) ~ oatteeasoeoe ~ sasooaaeeo?eeosotap ~ of ~~ ~ed ~ INK ~IILX%4 @5+ W N@l@+~)tasaosesagfoat' ~ aaO3ya9u of T~ ~) (T3O38 E~+mA)ya. . . t a3ao fcneQ 4o he ~ effeet4ve Se ooutraQ5ng the hgt waepLl g@@gcigg @~i~ Bobcat?aul 4hs oottou a~ ~ ~gggg ~? X... pears Caro haa heeu cL yuMcraX 4zemk Rn menp areas frau the uae of Gusts 4o %he uae of ~ fouuuhrhious or cdl ema1sious Ln cotton Sxreo4 eoutaeX. $5s usa 4he msem uaeL to so%vs the geohbe of vol em%4 Beck~ 9e 4he spgf;oe4tou ef e chN4 8ytzya seu ha ep...

  1. T"hy"la Issue 6

    E-Print Network [OSTI]

    Multiple Contributors

    2013-11-27T23:59:59.000Z

    S C J J ,a r t- 0 " D ,D '- t) rt O "J O O a I J J CT I- i| -4 T3 -i) O " - t) 0) -i> O r tX J ? 3" r+ X I? -< H H B W H Ft W O CD CT C (1 r tC HI ^ , r t (l h M 3 ? B Q.I Q 3 H B... Q 4 P O H 3 (D ;J S U W 3 4 M O M O .O a M 3 p v C f+ a 0) C O n m n O S C L - i) !-? ?l- ? 3 W r r H H i+ H H H O J H -3 H -C D O H - CD 3 3 I? '3 H - - b ? I? ' O - 2^ J...

  2. FY12 Quarter 3 Computing Utilization Report – LANL

    SciTech Connect (OSTI)

    Wampler, Cheryl L. [Los Alamos National Laboratory; McClellan, Laura Ann [Los Alamos National Laboratory

    2012-07-25T23:59:59.000Z

    DSW continues to dominate the capacity workload, with a focus in Q3 on common model baselining runs in preparation for the Annual Assessment Review (AAR) of the weapon systems. There remains unmet demand for higher fidelity simulations, and for increased throughput of simulations. Common model baselining activities would benefit from doubling the resolution of the models and running twice as many simulations. Capacity systems were also utilized during the quarter to prepare for upcoming Level 2 milestones. Other notable DSW activities include validation of new physics models and safety studies. The safety team used the capacity resources extensively for projects involving 3D computer simulations for the Furrow series of experiments at DARHT (a Level 2 milestone), fragment impact, surety theme, PANTEX assessments, and the 120-day study. With the more than tripling of classified capacity computing resources with the addition of the Luna system and the safety team's imminent access to the Cielo system, demand has been met for current needs. The safety team has performed successful scaling studies on Luna up to 16K PE size-jobs with linear scaling, running the large 3D simulations required for the analysis of Furrow. They will be investigating scaling studies on the Cielo system with the Lustre file system in Q4. Overall average capacity utilization was impacted by negative effects of the LANL Voluntary Separation Program (VSP) at the beginning of Q3, in which programmatic staffing was reduced by 6%, with further losses due to management backfills and attrition, resulting in about 10% fewer users. All classified systems were impacted in April by a planned 2 day red network outage. ASC capacity workload continues to focus on code development, regression testing, and verification and validation (V&V) studies. Significant capacity cycles were used in preparation for a JOWOG in May and several upcoming L2 milestones due in Q4. A network transition has been underway on the unclassified networks to increase access of all ASC users to the unclassified systems through the Yellow Turquoise Integration (YeTI) project. This will help to alleviate the longstanding shortage of resources for ASC unclassified code development and regression testing, and also make a broader palette of machines available to unclassified ASC users, including PSAAP Alliance users. The Moonlight system will be the first capacity resource to be made available through the YETI project, and will make available a significant increase in cycles, as well as GPGPU accelerator technology. The Turing and Lobo machines will be decommissioned in the next quarter. ASC projects running on Cielo as part of the CCC-3 include turbulence, hydrodynamics, burn, asteroids, polycrystals, capability and runtime performance improvements, and materials including carbon and silicone.

  3. The performance of the small-angle diffractometer, SAND at IPNS.

    SciTech Connect (OSTI)

    Thiyagarajan, P.

    1998-07-17T23:59:59.000Z

    The time-of-flight small-angle diffractometer SAND has been serving the scientific user community since 1996. One notable feature of SAND is its capability to measure the scattered intensity in a wide Q (4{pi}sin{theta}/{lambda}, where 2{theta} is the scattering angle and {lambda} is the wavelength of the neutrons) range of 0.0035 to 0.5 {angstrom}{sup {minus}1} in a single measurement. The optical alignment system makes it easy to set up the instrument and the sample. The cryogenically cooled MgO filter reduces the fast neutrons over two orders of magnitude, while still transmitting over 70% of the cold neutrons. A drum chopper running at 15 Hz suppresses the delayed neutron background. SAND has a variety of ancillary equipment to control the sample environment. In this paper we describe the features of the SAND instrument, compare its data on a few standard samples with those measured at well established centers in the world, and display two scientific examples which take advantage of measuring data in a wide Q-range in a single measurement. With a new set of tight collimators the Q{sub min} can be lowered to 0.002 {angstrom}{sup {minus}1} and the presently installed high-angle bank of detectors will extend the Q{sub max} to 2 {angstrom}{sup {minus}1}.

  4. Minimally non-local nucleon-nucleon potentials with chiral two-pion exchange including Delta resonances

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Piarulli, M; Girlanda, L; Schiavilla, R; Perez, R Navarro; Amaro, J E; Arriola, E Ruiz

    2015-02-01T23:59:59.000Z

    We construct a coordinate-space chiral potential, including $\\Delta$-isobar intermediate states in its two-pion-exchange component up to order $Q^3$ ($Q$ denotes generically the low momentum scale).The contact interactions entering at next-to-leading and next-to-next-to-next-to-leading orders ($Q^2$ and $Q^4$, respectively) are rearranged by Fierz transformations to yield terms at most quadratic in the relative momentum operator of the two nucleons. The low-energy constant multiplying these contact interactions are fitted to the 2013 Granada database, consisting of 2309 $pp$ and 2982 $np$ data (including, respectively, 148 and 218 normalizations) in the laboratory-energy range 0--300 MeV. For the total 5291 $pp$ and $np$ data inmore »this range, we obtain a $\\chi^2$/datum of roughly 1.3 for a set of three models characterized by long- and short-range cutoffs, $R_{\\rm L}$ and $R_{\\rm S}$ respectively, ranging from $(R_{\\rm L},R_{\\rm S})=(1.2,0.8)$ fm down to $(0.8,0.6)$ fm. The long-range (short-range) cutoff regularizes the one- and two-pion exchange (contact) part of the potential.« less

  5. The unexpected role of D waves in low-energy neutral pion photoproduction

    E-Print Network [OSTI]

    C. Fernandez-Ramirez

    2009-12-21T23:59:59.000Z

    It has been commonly assumed that low-energy neutral pion photoproduction from the proton can be described accounting only for S and P waves, and that higher partial waves are irrelevant. We have found that this assumption is not correct and that the inclusion of D waves is necessary to obtain a reliable extraction of the $E_{0+}$ multipole from experimental data. This is due in large measure to the spontaneous breaking of chiral symmetry in QCD which leads to very small S-wave contributions. This makes the usual partial wave expansion less accurate and although D waves are small, their contribution is enhanced through the interference with P waves, which compromises the S-wave extraction from data if D waves are not taken into account. In our work we have used Heavy Baryon Chiral Perturbation Theory to one loop, and up to ${\\cal O}(q^4)$, to account for the S and P waves, while D waves are added in an almost model-independent way using standard Born terms and vector mesons. We also show that higher partial waves do not play an important role.

  6. Thermal conduction by dark matter with velocity and momentum-dependent cross-sections

    E-Print Network [OSTI]

    Aaron C. Vincent; Pat Scott

    2014-04-23T23:59:59.000Z

    We use the formalism of Gould and Raffelt to compute the dimensionless thermal conduction coefficients for scattering of dark matter particles with standard model nucleons via cross-sections that depend on the relative velocity or momentum exchanged between particles. Motivated by models invoked to reconcile various recent results in direct detection, we explicitly compute the conduction coefficients $\\alpha$ and $\\kappa$ for cross-sections that go as $v_{\\rm rel}^2$, $v_{\\rm rel}^4$, $v_{\\rm rel}^{-2}$, $q^2$, $q^4$ and $q^{-2}$, where $v_{\\rm rel}$ is the relative DM-nucleus velocity and $q$ is the momentum transferred in the collision. We find that a $v_{\\rm rel}^{-2}$ dependence can significantly enhance energy transport from the inner solar core to the outer core. The same can true for any $q$-dependent coupling, if the dark matter mass lies within some specific range for each coupling. This effect can complement direct searches for dark matter; combining these results with state-of-the-art Solar simulations should greatly increase sensitivity to certain DM models. It also seems possible that the so-called Solar Abundance Problem could be resolved by enhanced energy transport in the solar core due to such velocity- or momentum-dependent scatterings.

  7. BDOS: An open-ended, basic disk operating system for a Nova/Diablo system

    E-Print Network [OSTI]

    Koontz, Joseph Patrick

    1972-01-01T23:59:59.000Z

    4- Z O LJ 2 Vj 2 Z M X Z K CC CW 0 4J I- 4. Q 4 O H Vj LII Q W 2 ILC CI M i Z C N I- C 4l I4 0 ) O O I- 0 0 W V' CI O C ZQ I- W Vj CC cC 4J Z lfl I C W 2 P I- CY X C 4J I- CJ Na ~ 0 W 4I jN M O jo 3 4I W VJ Z I H I I... QO Z 2OCV 4I Y O jN Z H Z j EP cC 4J Vj CI CC c Q 0 ct I 4l Vj ) Q ct 3 Vl Q O O I- 4J ~ LL C 4J Vj WCCJ N Z 4J VIWr Q N Y o xa HWCCI O I-4J QC QN VJCC j M VJLV N H W Z IJ CC M W j jQ'0 jCNO I- ct cJ ") cC Vj Vj O cC W ~ ? I...

  8. Quantum gravity and inventory accumulation

    E-Print Network [OSTI]

    Scott Sheffield

    2011-08-10T23:59:59.000Z

    We begin by studying inventory accumulation at a LIFO (last-in-first-out) retailer with two products. In the simplest version, the following occur with equal probability at each time step: first product ordered, first product produced, second product ordered, second product produced. The inventory thus evolves as a simple random walk on Z^2. In more interesting versions, a p fraction of customers orders the "freshest available" product regardless of type. We show that the corresponding random walks scale to Brownian motions with diffusion matrices depending on p. We then turn our attention to the critical Fortuin-Kastelyn random planar map model, which gives, for each q>0, a probability measure on random (discretized) two-dimensional surfaces decorated by loops, related to the q-state Potts model. A longstanding open problem is to show that as the discretization gets finer, the surfaces converge in law to a limiting (loop-decorated) random surface. The limit is expected to be a Liouville quantum gravity surface decorated by a conformal loop ensemble, with parameters depending on q. Thanks to a bijection between decorated planar maps and inventory trajectories (closely related to bijections of Bernardi and Mullin), our results about the latter imply convergence of the former in a particular topology. A phase transition occurs at p = 1/2, q=4.

  9. The cardiovascular effects of intravenous hemoglobin administration in dogs

    E-Print Network [OSTI]

    Moody, Gary Monroe

    1979-01-01T23:59:59.000Z

    - 0 A td 8 rd C 0 rd 0 W 0 + rd 4I w rd 0 0 0 tlt A M 6 P O 0 '0 W 8 0 8 0 '6 0 8 rd . n I 8 M rd 0 8 8 Ill rd rd 4I A 8 0 0 E-r W 8 0 0 W III 6 Q r-I V CI 6 Q 4 U 0 0 4I OA Z Q 8 0 0 0 0 +I +I +I +I 0 M M... M 0 0 0 I I 8 8 4I Il t4 I4 A I I 8 M 0 A I I Cl '0 A A I I M '0 0 8 0 0 0 0 0 0 0 0 +I +I +I +I +I +I +I +I 0 0 O 0 H H 0 0 lt +I g W 0 ~ O tent C4 g '0 8 Ul 0 Ew 8 O W 0 8 C E 0 '0 rd 0 g 8 . R . nA 0 0 0 4 8 4r...

  10. Water mass distribution in cyclonic rings

    E-Print Network [OSTI]

    Janopaul, Mona Marie

    1979-01-01T23:59:59.000Z

    ?- t. ( () 0 0 0 LI 0 ( cl c 0 3 ' I 0 0 0 g I) ( 0) (I (I I e) P O'I ffl I 4) Vl 0 ?. CJ I ) 0 (U W Ol J IO 0, H Ol (O )4 Ct) Ol J 4-1 tV W A nl e) cO Ol 008 V W 4 '0 0 0 (O td M OO Ol tO 0 u W '0 tU JJ (O Ol 4J 44 M 0 Ol 04 )4 Cff... 4 CJ ~ 4 LI W 0 M 'J 1 a a g g u t0 W e r O Q H a &n CV 4l CO D CWa3 0 00 W 4J g U 4 '4 m (tf O V N Q 4J 0 (0 tlP N 4J (g) l~ 29 0 '-J I CL (0 GC LLI Ct z rl- LII I 0 "CC. l )'I 8 rd C 0 ~~ 0 Gd O 0I Cd G0 I...

  11. http://homepages.inf.ed.ac.uk/stark Webquines, The Collatz Graph

    E-Print Network [OSTI]

    Stark, Ian

    Iy2bkwAyULxfaPclFmQQllYvBh9qlz zX9B0GIBv1pC4bQAbzpXduFoANZEAG5tzAnVR4UMr7FlaAUT78BkwB5w7mTwaz72CaC8BNIMGR7ADon0HcAAiAfwPuP4OXPz1f/n48vcMevJzoA30HD6cPMIhLB2QwIy2bkwAyULxfaPclFmQQllYvBh9qlz zX9B0GIBv1pC4bQAbzpXduFoANZEAG5tzAnVR4UMr7FlaAUT78BkwB5w7mTwaz72CaC8AGXqkWATDM/QgXx+zBFaUc poMz+hmvqI7gHFRL33yiMhTnqQ4qCzUE1DJVQC0

  12. Minimally non-local nucleon-nucleon potentials with chiral two-pion exchange including Delta resonances

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Piarulli, M; Girlanda, L; Schiavilla, R; Perez, R Navarro; Amaro, J E; Arriola, E Ruiz

    2015-02-01T23:59:59.000Z

    We construct a coordinate-space chiral potential, including $\\Delta$-isobar intermediate states in its two-pion-exchange component up to order $Q^3$ ($Q$ denotes generically the low momentum scale).The contact interactions entering at next-to-leading and next-to-next-to-next-to-leading orders ($Q^2$ and $Q^4$, respectively) are rearranged by Fierz transformations to yield terms at most quadratic in the relative momentum operator of the two nucleons. The low-energy constant multiplying these contact interactions are fitted to the 2013 Granada database, consisting of 2309 $pp$ and 2982 $np$ data (including, respectively, 148 and 218 normalizations) in the laboratory-energy range 0--300 MeV. For the total 5291 $pp$ and $np$ data in this range, we obtain a $\\chi^2$/datum of roughly 1.3 for a set of three models characterized by long- and short-range cutoffs, $R_{\\rm L}$ and $R_{\\rm S}$ respectively, ranging from $(R_{\\rm L},R_{\\rm S})=(1.2,0.8)$ fm down to $(0.8,0.6)$ fm. The long-range (short-range) cutoff regularizes the one- and two-pion exchange (contact) part of the potential.

  13. Properties of the Trans-Neptunian Belt: Statistics From the CFHT Survey

    E-Print Network [OSTI]

    Chadwick A. Trujillo; David C. Jewitt; Jane X. Luu

    2001-05-07T23:59:59.000Z

    We present the results of a wide-field survey designed to measure the size, inclination, and radial distributions of Kuiper Belt Objects (KBOs). The survey found 86 KBOs in 73 square degrees observed to limiting red magnitude 23.7 using the Canada-France-Hawaii Telescope and the 12k x 8k CCD Mosaic camera. For the first time, both ecliptic and off-ecliptic fields were examined to more accurately constrain the inclination distribution of the KBOs. The survey data were processed using an automatic moving object detection algorithm, allowing a careful characterization of the biases involved. In this work, we quantify fundamental parameters of the Classical KBOs (CKBOs), the most numerous objects found in our sample, using the new data and a maximum likelihood simulation. Deriving results from our best-fit model, we find that the size distribution follows a differential power law with exponent q = 4.0 (+0.6)(-0.5) (1 sigma, or 68.27% confidence). In addition, the CKBOs inhabit a very thick disk consistent with a Gaussian distribution of inclinations with a Half-Width of i(1/2) = 20 (+6)(-4) deg (1 sigma). We estimate that there are N = 3.8 (+2.0)(-1.5) x 10^4 (1 sigma) CKBOs larger than 100 km in diameter. We also find compelling evidence for an outer edge to the CKBOs at heliocentric distance R = 50 AU.

  14. Large Bodies in the Kuiper Belt

    E-Print Network [OSTI]

    Chadwick A. Trujillo; Jane X. Luu; Amanda S. Bosh; James L. Elliot

    2001-08-27T23:59:59.000Z

    We present a survey for bright Kuiper Belt Objects (KBOs) and Centaurs, conducted at the Kitt Peak National Observatory (KPNO) 0.9 m telescope with the KPNO 8k Mosaic CCD. The survey imaged 164 sq deg near opposition to a limiting red magnitude of 21.1. Three bright KBOs and one Centaur were found, the brightest KBO having red magnitude 19.7, about 700 km in diameter assuming a dark Centaur-like 4% albedo. We estimate the power-law differential size distribution of the Classical KBOs to have index q = 4.2 (+0.4)(-0.3), with the total number of Classical KBOs with diameters larger than 100 km equal to 4.7 (+1.6)(-1.0) x 10^4. Additionally, we find that if there is a maximum object size in the Kuiper Belt, it must be larger than 1000 km in diameter. By extending our model to larger size bodies, we estimate that 30 (+16)(-12) Charon-sized and 3.2 (+2.8)(-1.7) Pluto-sized Classical KBOs remain undiscovered.

  15. Catalytic fast pyrolysis of lignocellulosic biomass

    SciTech Connect (OSTI)

    Liu, Changjun; Wang, Huamin; Karim, Ayman M.; Sun, Junming; Wang, Yong

    2014-11-21T23:59:59.000Z

    Increasing energy demand, especially in the transportation sector, and soaring CO2 emissions necessitate the exploitation of renewable sources of energy. Despite the large variety of new energy Q3 carriers, liquid hydrocarbon still appears to be the most attractive and feasible form of transportation fuel taking into account the energy density, stability and existing infrastructure. Biomass is an abundant, renewable source of energy; however, utilizing it in a cost-effective way is still a substantial challenge. Lignocellulose is composed of three major biopolymers, namely cellulose, hemicellulose and lignin. Fast pyrolysis of biomass is recognized as an efficient and feasible process to selectively convert lignocellulose into a liquid fuel—bio-oil. However bio-oil from fast pyrolysis contains a large amount of oxygen, distributed in hundreds of oxygenates. These oxygenates are the cause of many negative properties, such as low heating values, high corrosiveness, high viscosity, and instability; they also greatly Q4 limit the application of bio-oil particularly as transportation fuel. Hydrocarbons derived from biomass are most attractive because of their high energy density and compatibility with the existing infrastructure. Thus, converting lignocellulose into transportation fuels via catalytic fast pyrolysis has attracted much attention. Many studies related to catalytic fast pyrolysis of biomass have been published. The main challenge of this process is the development of active and stable catalysts that can deal with a large variety of decomposition intermediates from lignocellulose. This review starts with the current understanding of the chemistry in fast pyrolysis of lignocellulose and focuses on the development of catalysts in catalytic fast pyrolysis. Recent progress in the experimental studies on catalytic fast pyrolysis of biomass is also summarized with the emphasis on bio-oil yields and quality.

  16. Heavy Truck Engine Program

    SciTech Connect (OSTI)

    Nelson, Christopher

    2009-01-08T23:59:59.000Z

    The Heavy Duty Truck Engine Program at Cummins embodied three significant development phases. All phases of work strove to demonstrate a high level of diesel engine efficiency in the face of increasingly stringent emission requirements. Concurrently, aftertreatment system development and refinement was pursued in support of these efficiency demonstrations. The program's first phase focused on the demonstration in-vehicle of a high level of heavy duty diesel engine efficiency (45% Brake Thermal Efficiency) at a typical cruise condition while achieving composite emissions results which met the 2004 U.S. EPA legislated standards. With a combination of engine combustion calibration tuning and the development and application of Urea-based SCR and particulate aftertreatment, these demonstrations were successfully performed by Q4 of 2002. The second phase of the program directed efforts towards an in-vehicle demonstration of an engine system capable of meeting 2007 U.S. EPA legislated emissions requirements while achieving 45% Brake Thermal Efficiency at cruise conditions. Through further combustion optimization, the refinement of Cummins Cooled EGR architecture, the application of a high pressure common rail fuel system and the incorporation of optimized engine parasitics, Cummins Inc. successfully demonstrated these deliverables in Q2 of 2004. The program's final phase set a stretch goal of demonstrating 50% Brake Thermal Efficiency from a heavy duty diesel engine system capable of meeting 2010 U.S. EPA legislated emissions requirements. Cummins chose to pursue this goal through further combustion development and refinement of the Cooled EGR system architecture and also applied a Rankine cycle Waste Heat Recovery technique to convert otherwise wasted thermal energy to useful power. The engine and heat recovery system was demonstrated to achieve 50% Brake Thermal Efficiency while operating at a torque peak condition in second quarter, 2006. The 50% efficient engine system was capable of meeting 2010 emissions requirements through the application of NOx and particulate matter reduction techniques proven earlier in the program.

  17. Phonon-roton modes of liquid 4He beyond the roton in MCM-41

    SciTech Connect (OSTI)

    Azuah, Richard T [NIST Center for Neutron Research (NCRN), Gaithersburg, MD] NIST Center for Neutron Research (NCRN), Gaithersburg, MD; Omar Diallo, Souleymane [ORNL] ORNL; Adams, Mark A. [ISIS Facility, Rutherford Appleton Laboratory (ISIS)] ISIS Facility, Rutherford Appleton Laboratory (ISIS); Kirichek, Oleg [ISIS Facility, Rutherford Appleton Laboratory (ISIS)] ISIS Facility, Rutherford Appleton Laboratory (ISIS); Glyde, Henry R [University of Delaware] University of Delaware

    2013-01-01T23:59:59.000Z

    We present neutron scattering measurements of the phonon-roton (P-R) mode of superfluid 4He confined in 47 A MCM-41 at T = 0.5 K at wave vectors, Q, beyond the roton wave vector (QR = 1.92 A-1). Measurements beyond the roton require access to high wave vectors (up to Q = 4 A-1) with excellent energy resolution and high statistical precision. The present results show for the first time that at T = 0.5 K the P-R mode in MCM-41 extends out to wave-vector Q 3.6 A-1 with the same energy and zero width (within precision) as observed in bulk superfluid 4He. Layer modes in the roton region are also observed. Specifically, the P-R mode energy, !Q, increases with Q for Q > QR and reaches a plateau at a maximum energy !Q = 2 where is the roton energy, = 0.74 0.01 meV in MCM-41. This upper limit means the P-R mode decays to two rotons when its energy exceeds 2 . It also means that the P-R mode does not decay to two layers modes. If the P-R could decay to two layer modes, !Q would plateau at a lower energy, !Q = 2 L where L = 0.60 meV is the energy of the roton like minimum of the layer mode. The observation of the P-R mode with energy up to 2 shows that the P-R mode and the layer modes are independent modes with apparently little interaction between them.

  18. Integrated modelling of steady-state scenarios and heating and current drive mixes for ITER

    SciTech Connect (OSTI)

    Murakami, Masanori [ORNL; Park, Jin Myung [ORNL; Giruzzi, G. [CEA, IRFM, France; Garcia, J. [CEA Cadarache, St. Paul lex Durance, France; Bonoli, P. T. [Massachusetts Institute of Technology (MIT); Budny, R. V. [Princeton Plasma Physics Laboratory (PPPL); Doyle, E. J. [University of California, Los Angeles; Fukuyama, A. [Kyoto University, Japan; Ferron, J.R. [General Atomics, San Diego; Hayashi, N. [Japan Atomic Energy Agency (JAEA), Naka; Honda, M. [Japan Atomic Energy Agency (JAEA), Naka; Hubbard, A. [MIT Plasma Science & Fusion Center, Cambridge, MA 02139 USA; Hong, R. M. [General Atomics, San Diego; Ide, S. [Japan Atomic Energy Agency (JAEA), Naka; Imbeaux, F. [CEA Cadarache, St. Paul lex Durance, France; Jaeger, Erwin Frederick [ORNL; Jernigan, Thomas C [ORNL; Luce, T.C. [General Atomics, San Diego; Na, Y S [Seoul National University of Technology, Korea; Oikawa, T. [ITER Organization, Saint Paul Lez Durance, France; Osborne, T.H. [General Atomics, San Diego; Parail, V. [Association EURATOM-CCFE, Abingdon, UK; Polevoi, A. [ITER Organization, Saint Paul Lez Durance, France; Prater, R. [General Atomics; Sips, A C C [Max Planck Institute for Plasma Physics, Garching, Germany; Shafer, M. W. [University of Wisconsin, Madison; Snipes, J. A. [ITER Organization, Cadarache, France; St. John, H. E. [ITER Organization, Saint Paul Lez Durance, France; Snyder, P. B. [General Atomics, San Diego; Voitsekhovitch, I [UKAEA Fusion, Culham UK

    2011-01-01T23:59:59.000Z

    Recent progress on ITER steady-state (SS) scenario modelling by the ITPA-IOS group is reviewed. Code-to-code benchmarks as the IOS group's common activities for the two SS scenarios (weak shear scenario and internal transport barrier scenario) are discussed in terms of transport, kinetic profiles, and heating and current drive (CD) sources using various transport codes. Weak magnetic shear scenarios integrate the plasma core and edge by combining a theory-based transport model (GLF23) with scaled experimental boundary profiles. The edge profiles (at normalized radius rho = 0.8-1.0) are adopted from an edge-localized mode-averaged analysis of a DIII-D ITER demonstration discharge. A fully noninductive SS scenario is achieved with fusion gain Q = 4.3, noninductive fraction f(NI) = 100%, bootstrap current fraction f(BS) = 63% and normalized beta beta(N) = 2.7 at plasma current I(p) = 8MA and toroidal field B(T) = 5.3 T using ITER day-1 heating and CD capability. Substantial uncertainties come from outside the radius of setting the boundary conditions (rho = 0.8). The present simulation assumed that beta(N)(rho) at the top of the pedestal (rho = 0.91) is about 25% above the peeling-ballooning threshold. ITER will have a challenge to achieve the boundary, considering different operating conditions (T(e)/T(i) approximate to 1 and density peaking). Overall, the experimentally scaled edge is an optimistic side of the prediction. A number of SS scenarios with different heating and CD mixes in a wide range of conditions were explored by exploiting the weak-shear steady-state solution procedure with the GLF23 transport model and the scaled experimental edge. The results are also presented in the operation space for DT neutron power versus stationary burn pulse duration with assumed poloidal flux availability at the beginning of stationary burn, indicating that the long pulse operation goal (3000s) at I(p) = 9 MA is possible. Source calculations in these simulations have been revised for electron cyclotron current drive including parallel momentum conservation effects and for neutral beam current drive with finite orbit and magnetic pitch effects.

  19. Insights into Silicate Carbonation Processes in Water-Bearing Supercritical CO2 Fluids

    SciTech Connect (OSTI)

    Miller, Quin RS; Thompson, Christopher J.; Loring, John S.; Windisch, Charles F.; Bowden, Mark E.; Hoyt, David W.; Hu, Jian Z.; Arey, Bruce W.; Rosso, Kevin M.; Schaef, Herbert T.

    2013-07-01T23:59:59.000Z

    Long-term geologic storage of carbon dioxide (CO2) is considered an integral part to moderating CO2 concentrations in the atmosphere and subsequently minimizing effects of global climate change. Although subsurface injection of CO2 is common place in certain industries, deployment at the scale required for emission reduction is unprecedented and therefore requires a high degree of predictability. Accurately modeling geochemical processes in the subsurface requires experimental derived data for mineral reactions occurring between the CO2, water, and rocks. Most work in this area has focused on aqueous-dominated systems in which dissolved CO2 reacts to form crystalline carbonate minerals. Comparatively little laboratory research has been conducted on reactions occurring between minerals in the host rock and the wet supercritical fluid phase. In this work, we studied the carbonation of wollastonite [CaSiO3] exposed to variably hydrated supercritical CO2 (scCO2) at a range of temperatures (50, 55 and 70 °C) and pressures (90,120 and 160 bar) that simulate conditions in geologic repositories. Mineral transformation reactions were followed by three novel in situ high pressure techniques, including x-ray diffraction that tracked the rate and extents of wollastonite conversion to calcite. Increased dissolved water concentrations in the supercritical CO2 resulted in increased silicate carbonation approaching ~50 wt. %. Development of thin water films on the mineral surface were directly observed with infrared spectroscopy and determined to be critical for facilitating carbonation processes. Even in extreme low water conditions, magic angle spinning nuclear magnetic resonance detected formation of Q3 [Si(OSi)3OH] and Q4 [Si(OSi)4] amorphous silica species. Unlike the thick (<10 ?m) passivating silica layers observed in the fully water saturated scCO2 experiments, images obtained from a focused ion beam sectioned sample indicted these coatings were chemically wollastonite but structurally amorphous. In addition, evidence of an intermediate hydrated amorphous calcium carbonate forming under these conditions further emphasize the importance of understanding geochemical processes occurring in water bearing scCO2 fluids.

  20. PLANETARY AND OTHER SHORT BINARY MICROLENSING EVENTS FROM THE MOA SHORT-EVENT ANALYSIS

    SciTech Connect (OSTI)

    Bennett, D. P. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Sumi, T. [Department of Earth and Space Science, Osaka University, Osaka 560-0043 (Japan); Bond, I. A.; Ling, C. H. [Institute for Information and Mathematical Sciences, Massey University, Auckland 1330 (New Zealand); Kamiya, K.; Abe, F.; Fukui, A.; Furusawa, K.; Itow, Y.; Masuda, K.; Matsubara, Y.; Miyake, N.; Muraki, Y. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601 (Japan); Botzler, C. S.; Rattenbury, N. J. [Department of Physics, University of Auckland, Private Bag 92-019, Auckland 1001 (New Zealand); Korpela, A. V.; Sullivan, D. J. [School of Chemical and Physical Sciences, Victoria University, Wellington (New Zealand); Kilmartin, P. M. [Mt. John Observatory, P.O. Box 56, Lake Tekapo 8770 (New Zealand); Ohnishi, K. [Nagano National College of Technology, Nagano 381-8550 (Japan); Saito, To., E-mail: bennett@nd.edu [Tokyo Metropolitan College of Aeronautics, Tokyo 116-8523 (Japan); Collaboration: MOA Collaboration; and others

    2012-10-01T23:59:59.000Z

    We present the analysis of four candidate short-duration binary microlensing events from the 2006-2007 MOA Project short-event analysis. These events were discovered as a by-product of an analysis designed to find short-timescale single-lens events that may be due to free-floating planets. Three of these events are determined to be microlensing events, while the fourth is most likely caused by stellar variability. For each of the three microlensing events, the signal is almost entirely due to a brief caustic feature with little or no lensing attributable mainly to the lens primary. One of these events, MOA-bin-1, is due to a planet, and it is the first example of a planetary event in which the stellar host is only detected through binary microlensing effects. The mass ratio and separation are q (4.9 {+-} 1.4) Multiplication-Sign 10{sup -3} and s = 2.10 {+-} 0.05, respectively. A Bayesian analysis based on a standard Galactic model indicates that the planet, MOA-bin-1Lb, has a mass of m{sub p} = 3.7 {+-} 2.1 M{sub Jup} and orbits a star of M{sub *} = 0.75{sub -0.41}{sup +}0{sup .33} M{sub Sun} at a semimajor axis of a = 8.3{sub -2.7}{sup +4.5} AU. This is one of the most massive and widest separation planets found by microlensing. The scarcity of such wide-separation planets also has implications for interpretation of the isolated planetary mass objects found by this analysis. If we assume that we have been able to detect wide-separation planets with an efficiency at least as high as that for isolated planets, then we can set limits on the distribution of planets in wide orbits. In particular, if the entire isolated planet sample found by Sumi et al. consists of planets bound in wide orbits around stars, we find that it is likely that the median orbital semimajor axis is >30 AU.

  1. SOUTHEAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP (SECARB)

    SciTech Connect (OSTI)

    Kenneth J. Nemeth

    2004-09-01T23:59:59.000Z

    The Southeast Regional Carbon Sequestration Partnership (SECARB) is on schedule and within budget projections for the work completed during the first year of its two year program. Work during the semiannual period (third and fourth quarter) of the project (April 1--September 30, 2004) was conducted within a ''Task Responsibility Matrix.'' Under Task 1.0 Define Geographic Boundaries of the Region, Texas and Virginia were added during the second quarter of the project and no geographical changes occurred during the third or fourth quarter of the project. Under Task 2.0 Characterize the Region, general mapping and screening of sources and sinks has been completed, with integration and Geographical Information System (GIS) mapping ongoing. The first step focused on the macro level characterization of the region. Subsequent characterization will focus on smaller areas having high sequestration potential. Under Task 3.0 Identify and Address Issues for Technology Deployment, SECARB has completed a preliminary assessment of safety, regulatory, permitting, and accounting frameworks within the region to allow for wide-scale deployment of promising terrestrial and geologic sequestration approaches. Under Task 4.0 Develop Public Involvement and Education Mechanisms, SECARB has conducted a survey and focus group meeting to gain insight into approaches that will be taken to educate and involve the public. Task 5.0 and 6.0 will be implemented beginning October 1, 2004. Under Task 5.0 Identify the Most Promising Capture, Sequestration, and Transport Options, SECARB will evaluate findings from work performed during the first year and shift the focus of the project team from region-wide mapping and characterization to a more detailed screening approach designed to identify the most promising opportunities. Under Task 6.0 Prepare Action Plans for Implementation and Technology Validation Activity, the SECARB team will develop an integrated approach to implementing and setting up measurement, monitoring and verification (MMV) programs for the most promising opportunities. During this semiannual period special attention was provided to Texas and Virginia, which were added to the SECARB region, to ensure a smooth integration of activities with the other 9 states. Milestones completed and submitted during the third and fourth quarter included: Q3-FY04--Complete initial development of plans for GIS; and Q4-FYO4--Complete preliminary action plan and assessment for overcoming public perception issues.

  2. Annual Hanford Seismic Report for Fiscal Year 2010

    SciTech Connect (OSTI)

    Rohay, Alan C.; Clayton, Ray E.; Sweeney, Mark D.; Devary, Joseph L.; Hartshorn, Donald C.

    2010-12-27T23:59:59.000Z

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. During FY 2010, the Hanford Seismic Network recorded 873 triggers on the seismometer system, which included 259 seismic events in the southeast Washington area and an additional 324 regional and teleseismic events. There were 210 events determined to be local earthquakes relevant to the Hanford Site. One hundred and fifty-five earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just west of the Columbia River. The Wooded Island events recorded this fiscal year were a continuation of the swarm events observed during fiscal year 2009 and reported in previous quarterly and annual reports (Rohay et al. 2009a, 2009b, 2009c, 2010a, 2010b, and 2010c). Most events were considered minor (coda-length magnitude [Mc] less than 1.0) with the largest event recorded on February 4, 2010 (3.0Mc). The estimated depths of the Wooded Island events are shallow (averaging approximately 1.5 km deep) placing the swarm within the Columbia River Basalt Group. Based upon the last two quarters (Q3 and Q4) data, activity at the Wooded Island area swarm has largely subsided. Pacific Northwest National Laboratory will continue to monitor for activity at this location. The highest-magnitude events (3.0Mc) were recorded on February 4, 2010 within the Wooded Island swarm (depth 2.4 km) and May 8, 2010 on or near the Saddle Mountain anticline (depth 3.0 km). This latter event is not considered unusual in that earthquakes have been previously recorded at this location, for example, in October 2006 (Rohay et al. 2007). With regard to the depth distribution, 173 earthquakes were located at shallow depths (less than 4 km, most likely in the Columbia River basalts), 18 earthquakes were located at intermediate depths (between 4 and 9 km, most likely in the pre-basalt sediments), and 19 earthquakes were located at depths greater than 9 km, within the crystalline basement. Geographically, 178 earthquakes were located in known swarm areas, 4 earthquakes occurred on or near a geologic structure (Saddle Mountain anticline), and 28 earthquakes were classified as random events. The Hanford Strong Motion Accelerometer (SMA) network was triggered several times by the Wooded Island swarm events and the events located on or near the Saddle Mountain anticline. The maximum acceleration value recorded by the SMA network during fiscal year 2010 occurred February 4, 2010 (Wooded Island swarm event), approximately 2 times lower than the reportable action level for Hanford facilities (2% g) with no action required.