National Library of Energy BETA

Sample records for approximate heat contents

  1. West Virginia Heat Content of Natural Gas Deliveries to Consumers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) West Virginia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr...

  2. Hawaii Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Hawaii Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,056 1,055 1,057 1,043 983 983 983 983 983 983 983 983 2014 947 946 947 947 947 947 951 978 990 968 974 962 2015 968 954 947 959 990 1,005 1,011 965 989 996 996 997 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  3. Georgia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Georgia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,014 1,015 1,016 1,015 1,014 1,015 1,016 1,019 1,017 1,016 1,017 1,017 2014 1,018 1,018 1,018 1,018 1,021 1,022 1,023 1,023 1,027 1,026 1,026 1,025 2015 1,025 1,026 1,025 1,026 1,028 1,031 1,030 1,028 1,029 1,028 1,026 1,027 - = No Data Reported; -- = Not Applicable; NA = Not

  4. Delaware Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Delaware Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,050 1,049 1,046 1,048 1,041 1,049 1,058 1,054 1,065 1,064 1,067 1,057 2014 1,052 1,048 1,048 1,051 1,045 1,049 1,063 1,065 1,062 1,063 1,063 1,064 2015 1,061 1,061 1,062 1,051 1,055 1,055 1,044 1,044 1,043 1,051 1,051 1,049 - = No Data Reported; -- = Not Applicable; NA = Not

  5. District of Columbia Heat Content of Natural Gas Deliveries to Consumers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (BTU per Cubic Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) District of Columbia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,030 1,025 1,021 1,014 1,014 1,025 1,034 1,037 1,043 1,041 1,047 1,048 2014 1,041 1,035 1,031 1,038 1,035 1,038 1,038 1,038 1,039 1,041 1,044 1,043 2015 1,045 1,047 1,046 1,044 1,044 1,040 1,037 1,036 1,035 1,045 1,039 1,044 - = No Data Reported; --

  6. Colorado Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Colorado Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,023 1,032 1,030 1,033 1,040 1,051 1,056 1,057 1,058 1,037 1,032 1,033 2014 1,030 1,036 1,038 1,041 1,051 1,050 1,048 1,048 1,050 1,055 1,042 1,051 2015 1,046 1,044 1,051 1,059 1,059 1,070 1,073 1,069 1,076 1,069 1,060 1,051 - = No Data Reported; -- = Not Applicable; NA = Not

  7. Florida Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Florida Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,016 1,015 1,016 1,015 1,016 1,015 1,016 1,016 1,017 1,017 1,018 1,018 2014 1,018 1,018 1,018 1,019 1,019 1,019 1,022 1,023 1,024 1,023 1,024 1,025 2015 1,024 1,025 1,024 1,024 1,026 1,026 1,026 1,024 1,024 1,023 1,023 1,023 - = No Data Reported; -- = Not Applicable; NA = Not

  8. Connecticut Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cubic Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Connecticut Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,018 1,025 1,011 1,022 1,028 1,024 1,032 1,028 1,030 1,030 1,026 1,024 2014 1,015 1,015 1,016 1,019 1,020 1,022 1,022 1,023 1,021 1,020 1,018 1,017 2015 1,017 1,026 1,029 1,026 1,049 1,027 1,027 1,026 1,026 1,028 1,027 1,026 - = No Data Reported; -- = Not Applicable;

  9. Iowa Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Iowa Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,025 1,029 1,029 1,030 1,031 1,030 1,030 1,027 1,028 1,032 1,033 1,032 2014 1,034 1,033 1,034 1,036 1,040 1,039 1,043 1,047 1,044 1,046 1,044 1,045 2015 1,045 1,047 1,047 1,051 1,054 1,060 1,059 1,059 1,058 1,058 1,057 1,056 - = No Data Reported; -- = Not Applicable; NA = Not

  10. U.S. Total Consumption of Heat Content of Natural Gas (BTU per Cubic Foot)

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption of Heat Content of Natural Gas (BTU per Cubic Foot) U.S. Total Consumption of Heat Content of Natural Gas (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,028 1,026 1,028 1,028 1,027 1,027 1,025 2010's 1,023 1,022 1,024 1,027 1,032 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 02/29/2016 Next Release Date: 03/31/2016 Referring Pages:

  11. Louisiana Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cubic Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Louisiana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,015 1,013 1,015 1,015 1,015 1,016 1,016 1,017 1,017 1,016 1,018 1,019 2014 1,017 1,016 1,018 1,021 1,028 1,025 1,029 1,029 1,031 1,034 1,037 1,038 2015 1,030 1,031 1,029 1,029 1,028 1,027 1,028 1,024 1,023 1,023 1,022 1,023 - = No Data Reported; -- = Not Applicable;

  12. Kansas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Kansas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,017 1,017 1,019 1,018 1,018 1,020 1,020 1,020 1,018 1,017 1,016 1,017 2014 1,017 1,017 1,019 1,023 1,022 1,023 1,025 1,025 1,027 1,025 1,028 1,025 2015 1,033 1,034 1,035 1,036 1,044 1,039 1,040 1,042 1,039 1,037 1,035 1,031 - = No Data Reported; -- = Not Applicable; NA = Not

  13. Kentucky Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Kentucky Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,023 1,022 1,023 1,025 1,026 1,027 1,028 1,030 1,031 1,028 1,028 1,033 2014 1,029 1,024 1,026 1,028 1,031 1,037 1,034 1,036 1,038 1,022 1,017 1,019 2015 1,023 1,018 1,015 1,016 1,023 1,021 1,024 1,015 1,020 1,024 1,021 1,024 - = No Data Reported; -- = Not Applicable; NA = Not

  14. Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,015 1,015 1,031 1,021 1,010 997 988 994 1,001 1,026 1,034 1,054 2014 1,048 1,036 1,030 1,022 1,006 993 984 996 1,005 1,019 1,046 1,039 2015 1,047 1,037 1,030 1,023 1,000 1,010 1,034 1,028 1,024 1,033 1,035 1,041 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  15. Illinois Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Illinois Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,013 1,013 1,014 1,015 1,015 1,014 1,015 1,015 1,016 1,017 1,019 1,018 2014 1,020 1,020 1,020 1,020 1,020 1,020 1,022 1,020 1,021 1,021 1,023 1,024 2015 1,027 1,030 1,029 1,028 1,029 1,027 1,027 1,027 1,028 1,028 1,030 1,030 - = No Data Reported; -- = Not Applicable; NA = Not

  16. Indiana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Indiana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,011 1,012 1,013 1,015 1,019 1,020 1,019 1,021 1,020 1,018 1,015 1,014 2014 1,016 1,017 1,019 1,019 1,023 1,023 1,025 1,030 1,028 1,027 1,025 1,029 2015 1,028 1,029 1,031 1,039 1,037 1,043 1,043 1,044 1,041 1,039 1,034 1,033 - = No Data Reported; -- = Not Applicable; NA = Not

  17. Minnesota Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cubic Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Minnesota Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,020 1,021 1,020 1,021 1,026 1,030 1,028 1,029 1,028 1,029 1,029 1,027 2014 1,031 1,027 1,033 1,034 1,038 1,042 1,042 1,051 1,046 1,040 1,038 1,040 2015 1,041 1,034 1,033 1,037 1,044 1,047 1,043 1,041 1,039 1,041 1,045 1,041 - = No Data Reported; -- = Not Applicable;

  18. Mississippi Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cubic Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Mississippi Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,013 1,013 1,014 1,014 1,015 1,018 1,018 1,021 1,022 1,025 1,020 1,020 2014 1,019 1,014 1,019 1,026 1,030 1,034 1,035 1,036 1,035 1,033 1,035 1,034 2015 1,036 1,033 1,031 1,037 1,032 1,030 1,030 1,029 1,031 1,028 1,029 1,030 - = No Data Reported; -- = Not Applicable;

  19. Missouri Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Missouri Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,015 1,014 1,014 1,013 1,014 1,013 1,017 1,015 1,016 1,019 1,013 1,014 2014 1,013 1,013 1,014 1,014 1,011 1,016 1,016 1,018 1,017 1,018 1,017 1,017 2015 1,017 1,020 1,025 1,026 1,024 1,026 1,026 1,026 1,026 1,025 1,024 1,023 - = No Data Reported; -- = Not Applicable; NA = Not

  20. Montana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Montana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,044 1,040 1,032 1,034 1,034 1,044 1,048 1,043 1,047 1,041 1,032 1,031 2014 1,034 1,030 1,030 1,027 1,032 1,030 1,038 1,036 1,040 1,031 1,026 1,030 2015 1,028 1,029 1,028 1,021 1,019 1,030 1,031 1,033 1,032 1,032 1,034 1,034 - = No Data Reported; -- = Not Applicable; NA = Not

  1. Maine Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Maine Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,037 1,032 1,027 1,032 1,028 1,031 1,033 1,030 1,031 1,037 1,032 1,029 2014 1,029 1,030 1,030 1,030 1,033 1,030 1,031 1,039 1,023 1,016 1,025 1,027 2015 1,033 1,035 1,030 1,025 1,022 1,020 1,020 1,018 1,019 1,026 1,025 1,027 - = No Data Reported; -- = Not Applicable; NA = Not

  2. Maryland Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Maryland Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,041 1,037 1,032 1,027 1,037 1,042 1,060 1,056 1,062 1,059 1,061 1,059 2014 1,053 1,048 1,045 1,049 1,047 1,052 1,051 1,051 1,049 1,052 1,057 1,057 2015 1,059 1,061 1,058 1,051 1,058 1,057 1,055 1,049 1,050 1,053 1,049 1,050 - = No Data Reported; -- = Not Applicable; NA = Not

  3. Massachusetts Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cubic Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Massachusetts Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,037 1,033 1,032 1,033 1,035 1,032 1,033 1,034 1,036 1,038 1,033 1,030 2014 1,035 1,032 1,031 1,030 1,030 1,031 1,030 1,029 1,029 1,028 1,029 1,028 2015 1,035 1,035 1,030 1,029 1,027 1,027 1,029 1,028 1,027 1,028 1,029 1,030 - = No Data Reported; -- = Not

  4. Michigan Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Michigan Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,021 1,021 1,022 1,026 1,020 1,022 1,024 1,021 1,019 1,019 1,017 1,019 2014 1,019 1,021 1,021 1,017 1,020 1,019 1,015 1,028 1,022 1,023 1,026 1,029 2015 1,027 1,026 1,030 1,035 1,028 1,033 1,034 1,035 1,036 1,034 1,041 1,040 - = No Data Reported; -- = Not Applicable; NA = Not

  5. ,"New Mexico Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumed" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Heat Content of Natural Gas Consumed",1,"Monthly","12/2015","01/15/2013" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File

  6. ,"Alabama Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumed" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Heat Content of Natural Gas Consumed",1,"Monthly","12/2015","01/15/2013" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File

  7. ,"Alaska Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumed" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Heat Content of Natural Gas Consumed",1,"Monthly","12/2015","01/15/2013" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File

  8. ,"Arizona Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumed" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arizona Heat Content of Natural Gas Consumed",1,"Monthly","12/2015","01/15/2013" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File

  9. ,"Arkansas Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumed" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Heat Content of Natural Gas Consumed",1,"Monthly","12/2015","01/15/2013" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File

  10. ,"California Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumed" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Heat Content of Natural Gas Consumed",1,"Monthly","12/2015","01/15/2013" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File

  11. ,"Colorado Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumed" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Heat Content of Natural Gas Consumed",1,"Monthly","12/2015","01/15/2013" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File

  12. ,"Connecticut Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumed" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Connecticut Heat Content of Natural Gas Consumed",1,"Monthly","12/2015","01/15/2013" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File

  13. ,"Delaware Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumed" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Heat Content of Natural Gas Consumed",1,"Monthly","12/2015","01/15/2013" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File

  14. ,"Florida Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumed" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Florida Heat Content of Natural Gas Consumed",1,"Monthly","12/2015","01/15/2013" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File

  15. ,"Georgia Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumed" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Georgia Heat Content of Natural Gas Consumed",1,"Monthly","12/2015","01/15/2013" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File

  16. ,"Hawaii Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumed" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Hawaii Heat Content of Natural Gas Consumed",1,"Monthly","12/2015","01/15/2013" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File

  17. ,"Idaho Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumed" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Heat Content of Natural Gas Consumed",1,"Monthly","12/2015","01/15/2013" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File

  18. ,"Illinois Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumed" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Heat Content of Natural Gas Consumed",1,"Monthly","12/2015","01/15/2013" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File

  19. ,"Indiana Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumed" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Heat Content of Natural Gas Consumed",1,"Monthly","12/2015","01/15/2013" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File

  20. ,"Iowa Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumed" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Iowa Heat Content of Natural Gas Consumed",1,"Monthly","12/2015","01/15/2013" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File

  1. ,"Kansas Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumed" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Heat Content of Natural Gas Consumed",1,"Monthly","12/2015","01/15/2013" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File

  2. ,"Kentucky Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumed" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Heat Content of Natural Gas Consumed",1,"Monthly","12/2015","01/15/2013" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File

  3. ,"Louisiana Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumed" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Heat Content of Natural Gas Consumed",1,"Monthly","12/2015","01/15/2013" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File

  4. ,"Maine Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumed" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Maine Heat Content of Natural Gas Consumed",1,"Monthly","12/2015","01/15/2013" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File

  5. ,"Maryland Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumed" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Heat Content of Natural Gas Consumed",1,"Monthly","12/2015","01/15/2013" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File

  6. ,"Massachusetts Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumed" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Massachusetts Heat Content of Natural Gas Consumed",1,"Monthly","12/2015","01/15/2013" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File

  7. ,"Michigan Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumed" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Heat Content of Natural Gas Consumed",1,"Monthly","12/2015","01/15/2013" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File

  8. ,"Minnesota Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumed" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Minnesota Heat Content of Natural Gas Consumed",1,"Monthly","12/2015","01/15/2013" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File

  9. ,"Mississippi Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumed" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Heat Content of Natural Gas Consumed",1,"Monthly","12/2015","01/15/2013" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File

  10. ,"Missouri Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumed" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Missouri Heat Content of Natural Gas Consumed",1,"Monthly","12/2015","01/15/2013" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File

  11. ,"Montana Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumed" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Heat Content of Natural Gas Consumed",1,"Monthly","12/2015","01/15/2013" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File

  12. CONTENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8.0 - HOISTING AND RIGGING IN HOSTILE ENVIRONMENTS February 18, 2010 Rev 1 Page 1 CHAPTER 18.0 TABLE OF CONTENTS TABLE OF CONTENTS..................................................................................................................................1 PAGINATION TABLE.....................................................................................................................................1 18.0 HOISTING AND RIGGING IN HOSTILE ENVIRONMENTS

  13. U.S. Heat Content of Natural Gas Deliveries to Electric Power Consumers

    U.S. Energy Information Administration (EIA) Indexed Site

    (BTU per Cubic Foot) Electric Power Consumers (BTU per Cubic Foot) U.S. Heat Content of Natural Gas Deliveries to Electric Power Consumers (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,025 1,027 1,028 1,028 1,027 1,027 1,025 2010's 1,022 1,021 1,022 1,025 1,029 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 02/29/2016 Next Release Date:

  14. U.S. Heat Content of Natural Gas Deliveries to Other Sectors Consumers (BTU

    U.S. Energy Information Administration (EIA) Indexed Site

    per Cubic Foot) Other Sectors Consumers (BTU per Cubic Foot) U.S. Heat Content of Natural Gas Deliveries to Other Sectors Consumers (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,029 1,026 1,028 1,028 1,027 1,027 1,025 2010's 1,023 1,022 1,025 1,028 1,032 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 02/29/2016 Next Release Date: 03/31/2016

  15. CONTENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3.0 - CRITICAL, SPECIAL, & ENGINEERED LIFTS January 4, 2016 Rev 1 Page 1 CHAPTER 3.0 TABLE OF CONTENTS 3.0 CRITICAL LIFTS ....................................................................................................................................... 3 3.1 SCOPE .......................................................................................................................................................... 3 3.2 CRITICAL LIFT DETERMINATION

  16. Contents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program and Book of Abstracts Contents Organizers i-ii Detailed Program iii-viii Oral presentations 1-38 Posters P1-P27 Program Schematic back cover The LAPD Symposium brings together scientists from laser physics, low- temperature plasma chemistry and physics, and nuclear fusion. The Symposium is an important, unique, and fruitful source for cross-fertilization between these fields. Major topics include laser-aided diagnostics for fusion plasmas, industrial process plasmas, and environmental

  17. Contents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 August 2005 Contents Bechtel Nevada achieves 5 million hours! 1 WSI graduates fresh members of security 1 protective forces Handling radiation emergencies 2 SiteLines features a new editor 2 Rocky Flats survey 3 NTS Swift Water Rescue Team practices on the 3 Colorado River Drilling Program overcomes challenges at the NTS 3 Toastmasters: making effective communication a 4 worldwide reality Atomic Testing Museum update 4 Two more successful shots at JASPER 5 Hazardous Substance Inventory users 5

  18. The composition, heating value and renewable share of the energy content of mixed municipal solid waste in Finland

    SciTech Connect (OSTI)

    Horttanainen, M. Teirasvuo, N.; Kapustina, V.; Hupponen, M.; Luoranen, M.

    2013-12-15

    Highlights: • New experimental data of mixed MSW properties in a Finnish case region. • The share of renewable energy of mixed MSW. • The results were compared with earlier international studies. • The average share of renewable energy was 30% and the average LHVar 19 MJ/kg. • Well operating source separation decreases the renewable energy content of MSW. - Abstract: For the estimation of greenhouse gas emissions from waste incineration it is essential to know the share of the renewable energy content of the combusted waste. The composition and heating value information is generally available, but the renewable energy share or heating values of different fractions of waste have rarely been determined. In this study, data from Finnish studies concerning the composition and energy content of mixed MSW were collected, new experimental data on the compositions, heating values and renewable share of energy were presented and the results were compared to the estimations concluded from earlier international studies. In the town of Lappeenranta in south-eastern Finland, the share of renewable energy ranged between 25% and 34% in the energy content tests implemented for two sample trucks. The heating values of the waste and fractions of plastic waste were high in the samples compared to the earlier studies in Finland. These high values were caused by good source separation and led to a low share of renewable energy content in the waste. The results showed that in mixed municipal solid waste the renewable share of the energy content can be significantly lower than the general assumptions (50–60%) when the source separation of organic waste, paper and cardboard is carried out successfully. The number of samples was however small for making extensive conclusions on the results concerning the heating values and renewable share of energy and additional research is needed for this purpose.

  19. Contents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 June/July 2005 Contents Fires burn Nevada Test Site in June NNSA/NSO and Department of Homeland Security break ground at the Nevada Test Site U1h ribbon cutting marks the remarkable New training grounds dedicated at NTS Changes enhance the EAP Unicorn subcritical experiment completes key milestone New communication system takes flight SiteLines goes online DNFSB visits U1a Funnel clouds at the Nevada Test Site Community Environmental Monitor receives EPA award Take Our Daughters and Sons to

  20. ,"U.S. Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    4,"Annual",2015,"06/30/2003" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File Name:","ng_cons_heat_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_cons_heat_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202)

  1. ,"U.S. Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    1,"Monthly","12/2015","01/15/2012" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File Name:","ng_cons_heat_dcu_nus_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_cons_heat_dcu_nus_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202)

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Connecticut Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic...

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","North Carolina Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic...

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption of Heat Content of Natural Gas (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Total Consumption of Heat Content of Natural Gas (BTU per Cubic Foot)",1,"Annual",2014 ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  5. Waste Heat Recovery

    Office of Environmental Management (EM)

    DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 ... 2 4 1.1. Introduction to Waste Heat Recovery ......

  6. Microsoft PowerPoint - mather_twpice_heating_newyork.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manus Clear-Sky Heating Rates (Kday) Shortwave Longwave Net Ice Water Content + Liquid Water Content Radiative Heating Radiative heating profiles for the period January 26 -...

  7. Heat release analysis of engine pressure data

    SciTech Connect (OSTI)

    Gatowski, J.A.; Balles, E.N.; Chun, K.M.; Nelson, F.E.; Ekchian, J.A.; Heywood, J.B.

    1984-01-01

    In analyzing the processes inside the cylinder of an internal combustion engine, the principal diagnostic at the experimenter's disposal is a measured time history of the cylinder pressure. This paper develops, tests, and applies a heat release analysis procedure that maintains simplicity while including the effects of heat transfer, crevice flows and fuel injection. The heat release model uses a one zone description of the cylinder contents with thermodynamic properties represented by a linear approximation. Applications of the analysis to a single-cylinder spark-ignition engine, a special square cross-section visualization spark-ignition engine, and a direct-injection stratified charge engine are presented.

  8. Tips: Heat Pumps | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    climates, providing up to three times more heat than the energy they use. Today's heat pump can reduce your electricity use for heating by approximately 50% compared to...

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumers",52,"Monthly","12/2015","01/15/2012" ,"Data 2","Heat Content of Natural Gas Delivered to Consumers",52,"Annual",2015,"06/30/2003" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File Name:","ngm25vmall.xls" ,"Available from Web

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arizona Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","District of Columbia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Florida Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Georgia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Hawaii Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Iowa Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Massachusetts Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Maine Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Minnesota Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Missouri Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Hampshire Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Jersey Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Nevada Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New York Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Carolina Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Vermont Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Washington Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wisconsin Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","12/2015" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Other Sectors Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Heat Content of Natural Gas Deliveries to Other Sectors Consumers (BTU per Cubic Foot)",1,"Annual",2014 ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Electric Power Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Heat Content of Natural Gas Deliveries to Electric Power Consumers (BTU per Cubic Foot)",1,"Annual",2014 ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016"

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumed" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","District of Columbia Heat Content of Natural Gas Consumed",1,"Monthly","12/2015","01/15/2013" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File

  2. Tips: Heat Pumps | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electric heating, providing up to three times more heat than the energy they use. Today's heat pump can reduce your electricity use for heating by approximately 50% compared to...

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heating Oil Weekly Heating Oil and Propane Prices (October - March)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","La...

  4. Waste Heat Recovery

    Broader source: Energy.gov (indexed) [DOE]

    DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ............................................................................................... 2 4 1.1. Introduction to Waste Heat Recovery .......................................................................................... 2 5 1.2. Challenges and Barriers for Waste Heat Recovery ..................................................................... 13 6 1.3.

  5. Approximate models for the ion-kinetic regime in

    Office of Scientific and Technical Information (OSTI)

    inertial-confinement-fusion capsule implosions (Journal Article) | SciTech Connect Journal Article: Approximate models for the ion-kinetic regime in inertial-confinement-fusion capsule implosions Citation Details In-Document Search This content will become publicly available on May 19, 2016 Title: Approximate models for the ion-kinetic regime in inertial-confinement-fusion capsule implosions "Reduced" (i.e., simplified or approximate) ion-kinetic (RIK) models in

  6. Approximate circuits for increased reliability

    DOE Patents [OSTI]

    Hamlet, Jason R.; Mayo, Jackson R.

    2015-08-18

    Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.

  7. Approximate circuits for increased reliability

    DOE Patents [OSTI]

    Hamlet, Jason R.; Mayo, Jackson R.

    2015-12-22

    Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.

  8. Approximate Model for Turbulent Stagnation Point Flow.

    SciTech Connect (OSTI)

    Dechant, Lawrence

    2016-01-01

    Here we derive an approximate turbulent self-similar model for a class of favorable pressure gradient wedge-like flows, focusing on the stagnation point limit. While the self-similar model provides a useful gross flow field estimate this approach must be combined with a near wall model is to determine skin friction and by Reynolds analogy the heat transfer coefficient. The combined approach is developed in detail for the stagnation point flow problem where turbulent skin friction and Nusselt number results are obtained. Comparison to the classical Van Driest (1958) result suggests overall reasonable agreement. Though the model is only valid near the stagnation region of cylinders and spheres it nonetheless provides a reasonable model for overall cylinder and sphere heat transfer. The enhancement effect of free stream turbulence upon the laminar flow is used to derive a similar expression which is valid for turbulent flow. Examination of free stream enhanced laminar flow suggests that the rather than enhancement of a laminar flow behavior free stream disturbance results in early transition to turbulent stagnation point behavior. Excellent agreement is shown between enhanced laminar flow and turbulent flow behavior for high levels, e.g. 5% of free stream turbulence. Finally the blunt body turbulent stagnation results are shown to provide realistic heat transfer results for turbulent jet impingement problems.

  9. Compare All CBECS Activities: District Heat Use

    U.S. Energy Information Administration (EIA) Indexed Site

    District Heat Use Compare Activities by ... District Heat Use Total District Heat Consumption by Building Type Commercial buildings in the U.S. used a total of approximately 433...

  10. Industrial Process Heating - Technology Assessment

    Office of Environmental Management (EM)

    Industrial Process Heating - Technology Assessment 1 2 Contents 3 4 1. Introduction to the Technology/System ............................................................................................... 2 5 1.1. Industrial Process Heating Overview ............................................................................................ 2 6 2. Technology Assessment and Potential ................................................................................................. 6 7 2.1. Status

  11. Characterization of industrial process waste heat and input heat streams

    SciTech Connect (OSTI)

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heating Oil Weekly Heating Oil and Propane Prices (October - March)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Residential Heating Oil Weekly Heating Oil and Propane Prices (October - March)",29,"Weekly","3/14/2016","10/1/1990" ,"Release Date:","3/16/2016" ,"Next

  13. Heat pipe array heat exchanger

    DOE Patents [OSTI]

    Reimann, Robert C. (Lafayette, NY)

    1987-08-25

    A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

  14. Combined Heat and Power

    Office of Environmental Management (EM)

    Combined Heat and Power 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ............................................................................................... 2 4 1.1 Combined Heat and Power overview ........................................................................................... 2 5 1.2 Benefits of CHP for the Nation ...................................................................................................... 4 6 1.3 Benefits of CHP for

  15. Tips: Heat Pumps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Pumps Tips: Heat Pumps Heat pumps can be a cost-effective choice in moderate climates, especially if you heat your home with electricity. Heat pumps can be a cost-effective choice in moderate climates, especially if you heat your home with electricity. Heat pumps are the most efficient form of electric heating, providing up to three times more heat than the energy they use. Today's heat pump can reduce your electricity use for heating by approximately 50% compared to electric resistance

  16. Maine Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Feb-15 Mar-15 Apr-15 May-15 Jun-15 Jul-15 View History Delivered to Consumers 1,035 1,030 1,025 1,022 1,020 1,020 2013-2015...

  17. Maine Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2009 2010 2011 2012 2013 2014 View History Delivered to Consumers 1,046 1,044 1,047 1,032 1,030 1,029 2007-2014...

  18. Hawaii Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2009 2010 2011 2012 2013 2014 View History Delivered to Consumers 1,040 1,040 1,048 1,046 983 959 2007-2014...

  19. Hawaii Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Feb-15 Mar-15 Apr-15 May-15 Jun-15 Jul-15 View History Delivered to Consumers 954 947 959 990 1,005 1,011 2013-2015...

  20. Alabama Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    8 1,018 1,016 1,017 1,025 1,030

  1. Alaska Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    05 1,013 1,012 1,002 1,002 1,001

  2. Arizona Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    6 1,015 1,021 1,025 1,029 1,039

  3. Arkansas Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    2 1,017 1,015 1,015 1,024 1,028

  4. Washington Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2009 2010 2011 2012 2013 2014 View History Delivered to Consumers 1,030 1,032 1,029 1,028 1,030 1,044 2007-2014...

  5. Washington Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Feb-15 Mar-15 Apr-15 May-15 Jun-15 Jul-15 View History Delivered to Consumers 1,054 1,060 1,062 1,065 1,069 1,070 2013-2015...

  6. Louisiana Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    8 1,024 1,023 1,023 1,022 1,023

  7. Maine Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    20 1,018 1,019 1,026 1,025 1,027

  8. Maryland Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    55 1,049 1,050 1,053 1,049 1,05

  9. Massachusetts Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    9 1,028 1,027 1,028 1,029 1,030

  10. Michigan Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    34 1,035 1,036 1,034 1,041 1,040

  11. Minnesota Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    43 1,041 1,039 1,041 1,045 1,041

  12. Mississippi Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    0 1,029 1,031 1,028 1,029 1,030

  13. Missouri Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    26 1,026 1,026 1,025 1,024 1,023

  14. Montana Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    1 1,033 1,032 1,032 1,034

  15. Nebraska Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    68 1,071 1,068 1,060 1,055 1,053

  16. Nevada Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    44 1,043 1,044 1,043 1,043 1,042

  17. Colorado Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Delivered to Consumers 1,073 1,069 1,076 1,069 1,060 1,051 2013

  18. Delaware Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Delivered to Consumers 1,044 1,044 1,043 1,051 1,051 1,049 2013

  19. Florida Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Delivered to Consumers 1,026 1,024 1,024 1,023 1,023 1,023 2013

  20. Georgia Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Delivered to Consumers 1,030 1,028 1,029 1,028 1,026 1,027 2013

  1. Hawaii Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Delivered to Consumers 1,011 965 989 996 996 997 2013

  2. Idaho Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Delivered to Consumers 1,034 1,028 1,024 1,033 1,035 1,041 2013

  3. Illinois Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Delivered to Consumers 1,027 1,027 1,028 1,028 1,030 1,030 2013

  4. Indiana Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Delivered to Consumers 1,043 1,044 1,041 1,039 1,034 1,033 2013

  5. Iowa Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Delivered to Consumers 1,059 1,059 1,058 1,058 1,057 1,056 2013

  6. Kansas Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Delivered to Consumers 1,040 1,042 1,039 1,037 1,035 1,031 2013

  7. Kentucky Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Delivered to Consumers 1,024 1,015 1,020 1,024 1,021 1,024 2013

  8. Massachusetts Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    35 1,033 1,035 1,033 1,031 1,030

  9. Michigan Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    6 1,014 1,017 1,017 1,021 1,03

  10. Minnesota Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    0 1,010 1,019 1,015 1,033 1,04

  11. Mississippi Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    4 1,010 1,012 1,016 1,029 1,031

  12. Missouri Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    07 1,010 1,012 1,014 1,015 1,023

  13. Montana Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    2 1,016 1,025 1,028 1,026 1,029

  14. Nebraska Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    04 1,011 1,019 1,031 1,039 1,055

  15. Nevada Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    33 1,024 1,029 1,033 1,034 1,04

  16. Ohio Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    4 1,031 1,032 1,046 1,045 1,06

  17. Oklahoma Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    2 1,032 1,030 1,036 1,040 1,04

  18. Oregon Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    15 1,021 1,022 1,015 1,025 1,03

  19. Pennsylvania Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    34 1,036 1,040 1,049 1,047 1,04

  20. Tennessee Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    3 1,014 1,014 1,021 1,026 1,027

  1. Texas Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    8 1,025 1,026 1,027 1,030 1,033

  2. Utah Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    45 1,038 1,043 1,047 1,041 1,044

  3. Vermont Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    07 1,008 1,012 1,015 1,016 1,026

  4. Virginia Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    28 1,027 1,034 1,040 1,041 1,053

  5. Washington Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    32 1,029 1,028 1,030 1,043 1,065

  6. Alabama Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Delivered to Consumers 1,032 1,030 1,030 1,030 1,029 1,029 2013

  7. Alaska Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Delivered to Consumers 1,002 1,002 1,001 1,001 1,001 1,000 2013

  8. Arizona Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Delivered to Consumers 1,038 1,038 1,040 1,042 1,041 1,044 2013

  9. Arkansas Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Delivered to Consumers 1,023 1,022 1,019 1,029 1,014 1,015 2013

  10. California Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Delivered to Consumers 1,037 1,037 1,037 1,035 1,037 1,037 2013

  11. Tennessee Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    27 1,023 1,025 1,032 1,031 1,034

  12. Texas Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    36 1,035 1,036 1,036 1,033 1,030

  13. Ohio Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    69 1,068 1,071 1,071 1,077 1,077

  14. Oklahoma Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    50 1,047 1,049 1,049 1,047 1,050

  15. Oregon Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    39 1,039 1,038 1,036 1,035 1,03

  16. Pennsylvania Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    44 1,044 1,044 1,045 1,046 1,04

  17. Wyoming Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    42 1,044 1,041 1,040 1,046 1,054

  18. California Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    23 1,020 1,022 1,028 1,028 1,035

  19. Colorado Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    19 1,032 1,039 1,042 1,043 1,058

  20. Delaware Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    23 1,025 1,027 1,043 1,054 1,050

  1. Florida Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    19 1,015 1,015 1,016 1,021 1,024

  2. Georgia Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    22 1,018 1,015 1,016 1,022 1,028

  3. Hawaii Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    40 1,048 1,046 983 958 981

  4. Heat Content of Natural Gas Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    4 1,027

  5. Idaho Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    21 1,017 1,015 1,015 1,025

  6. Illinois Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    08 1,011 1,011 1,016 1,021

  7. Indiana Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    2 1,012 1,012 1,015 1,021 1,036

  8. Iowa Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    06 1,009 1,014 1,016 1,038 1,052

  9. Kansas Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    9 1,020 1,022 1,020 1,021 1,037

  10. Kentucky Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    30 1,027 1,030 1,028 1,028 1,025

  11. Louisiana Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    24 1,019 1,015 1,014 1,030 1,032

  12. Maine Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    44 1,047 1,032 1,030 1,028 1,026

  13. Maryland Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    27 1,027 1,037 1,051 1,050 1,055

  14. Utah Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    43 1,043 1,042 1,044 1,044 1,046

  15. Vermont Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    22 1,019 1,020 1,030 1,027 1,02

  16. Virginia Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    56 1,054 1,055 1,053 1,051 1,05

  17. Washington Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    70 1,065 1,066 1,064 1,069 1,073

  18. Wisconsin Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    36 1,040 1,034 1,045 1,043 1,044

  19. Connecticut Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2009 2010 2011 2012 2013 2014 View History Delivered to Consumers 1,019 1,022 1,026 1,031 1,030 1,020 2007-2014...

  20. Connecticut Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Mar-15 Apr-15 May-15 Jun-15 Jul-15 Aug-15 View History Delivered to Consumers 1,029 1,026 1,049 1,027 1,027 1,026 2013-2015...

  1. ,"Nebraska Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusnem.xls" ...

  2. ,"Oregon Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusorm.xls" ...

  3. ,"Wisconsin Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcuswim.xls" ...

  4. ,"Virginia Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusvam.xls" ...

  5. ,"Utah Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusutm.xls" ...

  6. ,"Ohio Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusohm.xls" ...

  7. ,"Tennessee Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcustnm.xls" ...

  8. ,"Washington Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcuswam.xls" ...

  9. ,"Nevada Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusnvm.xls" ...

  10. ,"Oklahoma Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusokm.xls" ...

  11. ,"Wyoming Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcuswym.xls" ...

  12. ,"Vermont Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusvtm.xls" ...

  13. ,"Texas Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcustxm.xls" ...

  14. ,"Pennsylvania Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcuspam.xls" ...

  15. Wisconsin Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    10 1,014 1,019 1,025 1,032 1,039

  16. Wyoming Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    31 1,034 1,034 1,041 1,042 1,05

  17. Plasma Physics Approximations in Ares

    SciTech Connect (OSTI)

    Managan, R. A.

    2015-01-08

    Lee & More derived analytic forms for the transport properties of a plasma. Many hydro-codes use their formulae for electrical and thermal conductivity. The coefficients are complex functions of Fermi-Dirac integrals, Fn( μ/θ ), the chemical potential, μ or ζ = ln(1+e μ/θ ), and the temperature, θ = kT. Since these formulae are expensive to compute, rational function approximations were fit to them. Approximations are also used to find the chemical potential, either μ or ζ . The fits use ζ as the independent variable instead of μ/θ . New fits are provided for Aα (ζ ),Aβ (ζ ), ζ, f(ζ ) = (1 + e-μ/θ)F1/2(μ/θ), F1/2'/F1/2, Fcα, and Fcβ. In each case the relative error of the fit is minimized since the functions can vary by many orders of magnitude. The new fits are designed to exactly preserve the limiting values in the non-degenerate and highly degenerate limits or as ζ→ 0 or ∞. The original fits due to Lee & More and George Zimmerman are presented for comparison.

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"10272015 9:02:05 AM" "Back to Contents","Data 1: Crude Oil Production" "Sourcekey","MCRFPUS1","MCRFPP11","MCRFPFL1","MCRFPNY1","MCRFPPA1","MCRFPV...

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"10272015 9:02:06 AM" "Back to Contents","Data 1: Crude Oil Production" "Sourcekey","MCRFPUS1","MCRFPP11","MCRFPFL1","MCRFPNY1","MCRFPPA1","MCRFPV...

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    to Contents","Data 1: U.S. Refinery & Blender Net Input" "Sourcekey","MTTRIUS1","MCRRIU... "Date","U.S. Refinery and Blender Net Input of Crude Oil and Petroleum ...

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    ...201982" ,"Data 2","Refiner and Blender Net Inputs",6,"Weekly","3182016","49... "Back to Contents","Data 2: Refiner and Blender Net Inputs" "Sourcekey","WBCRINUS2","W...

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    to Contents","Data 1: U.S. Refinery and Blender Net Production" "Sourcekey","MTTRPUS1","M... "Date","U.S. Refinery and Blender Net Production of Crude Oil and Petroleum ...

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Contents","Data 1: Spot Price" "Sourcekey","RNGWHHD","NGMEPG0PLCNUSDMMBTU" "Date","Henry Hub Natural Gas Spot Price (Dollars per Million Btu)","U.S. Natural Gas Liquid ...

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: Price of Liquefied U.S. Natural Gas Re-Exports to Brazil (Dollars per Thousand Cubic Feet)" "Sourcekey","NGMEPG0ERENUS-NBRDMCF"...

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: Liquefied U.S. Natural Gas Exports by Vessel to Japan (Million Cubic Feet)" "Sourcekey","NGMEPG0EVENUS-NJAMMCF" "Date","Liquefied U.S....

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    "Back to Contents","Data 1: Price of Liquefied U.S. Natural Gas Exports by Vessel to Japan (Dollars per Thousand Cubic Feet)" "Sourcekey","NGMEPG0EVENUS-NJADMCF"...

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: Price of Liquefied U.S. Natural Gas Re-Exports to Japan (Dollars per Thousand Cubic Feet)" "Sourcekey","NGMEPG0ERENUS-NJADMCF"...

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    ..."Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"2262016 2:17:08 PM" "Back to Contents","Data 1: Natural Gas Underground Storage ...

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015,"06/30/2003" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File Name:","ng_cons_heat_a_epg0_vgth_btucf_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_cons_heat_a_epg0_vgth_btucf_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202)

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Propane Weekly Heating Oil and Propane Prices (October - March)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Residential Propane Weekly Heating Oil and Propane Prices (October - March)",46,"Weekly","3/14/2016","10/1/1990" ,"Release Date:","3/16/2016" ,"Next Release

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Propane Weekly Heating Oil and Propane Prices (October - March)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wholesale Propane Weekly Heating Oil and Propane Prices (October - March)",21,"Weekly","3/14/2016","10/7/2013" ,"Release Date:","3/16/2016" ,"Next Release

  12. Geothermal district heating and cooling in Vicenza, Italy

    SciTech Connect (OSTI)

    Leoni, P.

    1995-06-01

    The discovery of a large low-enthalpy geothermal water reservoir under the city of Vicenza (110,000 people) in northern Italy, through an oil prospecting venture, opened up the opportunity to install a district heating system with low energy consumption. Although the geothermal water is at 67{degrees}C, this is insufficient for heating the city`s commercial and residential buildings using their existing high-temperature heat distribution systems. Heat pumps are, therefore, used to obtain optimum useful heat energy from the geothermal source. Experience so far suggests that the system can reduce energy consumption by up to 60%, or 3885 MWh/year. The 2000 m deep well was completed in 1983 and is the first such well in Italy to be located within an urban area, making it ideal as a heat source for a district heating system. It produces 100 m{sup 3}/h of low salt-content water. The {open_quotes}Vicenza{close_quotes} geothermal heating and cooling project was developed by {open_quotes}Aziende Industriali Muncipalizzate{close_quotes} from 1988 to 1991, a utility company owned by the city of Vicenza, with the purpose of distributing approximately 40,000 MWh year to residential and commercial buildings. The project includes the installation of a power plant, and a district heating and cooling network. A reduction in the consumption of conventional fuels both for heating and domestic water has been achieved through a highly-efficient thermodynamic system based on reversible heat pumps. The system provides heating in the winter and air conditioning in summer.

  13. ARM - Atmospheric Heat Budget

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ListAtmospheric Heat Budget Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Atmospheric Heat Budget The average temperature of the earth has remained approximately constant at about 15 degrees Celsius during the past century. It is therefore in a state of radiative balance, emitting the same

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    mbblpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_psup_dc_nus_mbblpd_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"3/9/2016 2:54:27 PM" "Back to Contents","Data 1: U.S. Product Supplied for Crude Oil and Petroleum Products"

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    mbblpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_move_exp_dc_nus-z00_mbblpd_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"3/9/2016 2:56:04 PM" "Back to Contents","Data 1: U.S. Exports of Crude Oil and Petroleum Products"

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    mbblpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_move_imp_dc_nus-z00_mbblpd_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"3/9/2016 3:35:39 PM" "Back to Contents","Data 1: U.S. Imports of Crude Oil and Petroleum Products"

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_psup_dc_nus_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"3/9/2016 2:54:26 PM" "Back to Contents","Data 1: U.S. Product Supplied for Crude Oil and Petroleum Products"

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_move_exp_dc_nus-z00_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"3/9/2016 2:56:03 PM" "Back to Contents","Data 1: U.S. Exports of Crude Oil and Petroleum Products"

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_move_imp_dc_nus-z00_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"3/9/2016 3:35:17 PM" "Back to Contents","Data 1: U.S. Imports of Crude Oil and Petroleum Products"

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    mbblpd_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_crd_crpdn_adc_mbblpd_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"3/9/2016 2:54:42 PM" "Back to Contents","Data 1: Crude Oil Production"

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_crd_crpdn_adc_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"3/9/2016 2:54:41 PM" "Back to Contents","Data 1: Crude Oil Production"

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Daily","3/14/2016","1/2/1986" ,"Data 2","Conventional Gasoline",2,"Daily","3/14/2016","6/2/1986" ,"Data 3","RBOB Regular Gasoline",1,"Daily","3/14/2016","3/11/2003" ,"Data 4","No. 2 Heating Oil",1,"Daily","3/14/2016","6/2/1986" ,"Data 5","Ultra-Low-Sulfur No. 2 Diesel

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Weekly","3/11/2016","1/3/1986" ,"Data 2","Conventional Gasoline",2,"Weekly","3/11/2016","6/6/1986" ,"Data 3","RBOB Regular Gasoline",1,"Weekly","3/11/2016","9/12/2003" ,"Data 4","No. 2 Heating Oil",1,"Weekly","3/11/2016","6/6/1986" ,"Data 5","Ultra-Low-Sulfur No. 2 Diesel

  4. An approximation technique for jet impingement flow

    SciTech Connect (OSTI)

    Najafi, Mahmoud; Fincher, Donald; Rahni, Taeibi; Javadi, KH.; Massah, H.

    2015-03-10

    The analytical approximate solution of a non-linear jet impingement flow model will be demonstrated. We will show that this is an improvement over the series approximation obtained via the Adomian decomposition method, which is itself, a powerful method for analysing non-linear differential equations. The results of these approximations will be compared to the Runge-Kutta approximation in order to demonstrate their validity.

  5. Geothermal Heat Pumps- Heating Mode

    Broader source: Energy.gov [DOE]

    In winter, fluid passing through this vertical, closed loop system is warmed by the heat of the earth; this heat is then transferred to the building.

  6. Approximate error conjugation gradient minimization methods

    DOE Patents [OSTI]

    Kallman, Jeffrey S

    2013-05-21

    In one embodiment, a method includes selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, calculating an approximate error using the subset of rays, and calculating a minimum in a conjugate gradient direction based on the approximate error. In another embodiment, a system includes a processor for executing logic, logic for selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, logic for calculating an approximate error using the subset of rays, and logic for calculating a minimum in a conjugate gradient direction based on the approximate error. In other embodiments, computer program products, methods, and systems are described capable of using approximate error in constrained conjugate gradient minimization problems.

  7. Domestic Material Content in Molten-Salt Concentrating Solar Power Plants

    SciTech Connect (OSTI)

    Turchi, Craig; Kurup, Parthiv; Akar, Sertac; Flores, Francisco

    2015-08-26

    This study lists material composition data for two concentrating solar power (CSP) plant designs: a molten-salt power tower and a hypothetical parabolic trough plant, both of which employ a molten salt for the heat transfer fluid (HTF) and thermal storage media. The two designs have equivalent generating and thermal energy storage capacities. The material content of the saltHTF trough plant was approximately 25% lower than a comparably sized conventional oil-HTF parabolic trough plant. The significant reduction in oil, salt, metal, and insulation mass by switching to a salt-HTF design is expected to reduce the capital cost and LCOE for the parabolic trough system.

  8. An improved proximity force approximation for electrostatics

    SciTech Connect (OSTI)

    Fosco, Cesar D.; Instituto Balseiro, Universidad Nacional de Cuyo, R8402AGP Bariloche ; Lombardo, Fernando C.; IFIBA ; Mazzitelli, Francisco D.

    2012-08-15

    A quite straightforward approximation for the electrostatic interaction between two perfectly conducting surfaces suggests itself when the distance between them is much smaller than the characteristic lengths associated with their shapes. Indeed, in the so called 'proximity force approximation' the electrostatic force is evaluated by first dividing each surface into a set of small flat patches, and then adding up the forces due two opposite pairs, the contributions of which are approximated as due to pairs of parallel planes. This approximation has been widely and successfully applied in different contexts, ranging from nuclear physics to Casimir effect calculations. We present here an improvement on this approximation, based on a derivative expansion for the electrostatic energy contained between the surfaces. The results obtained could be useful for discussing the geometric dependence of the electrostatic force, and also as a convenient benchmark for numerical analyses of the tip-sample electrostatic interaction in atomic force microscopes. - Highlights: Black-Right-Pointing-Pointer The proximity force approximation (PFA) has been widely used in different areas. Black-Right-Pointing-Pointer The PFA can be improved using a derivative expansion in the shape of the surfaces. Black-Right-Pointing-Pointer We use the improved PFA to compute electrostatic forces between conductors. Black-Right-Pointing-Pointer The results can be used as an analytic benchmark for numerical calculations in AFM. Black-Right-Pointing-Pointer Insight is provided for people who use the PFA to compute nuclear and Casimir forces.

  9. Susanville District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

  10. Total Space Heating Water Heating Cook-

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing...

  11. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

  12. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  13. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

  14. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

  15. Second derivatives for approximate spin projection methods

    SciTech Connect (OSTI)

    Thompson, Lee M.; Hratchian, Hrant P.

    2015-02-07

    The use of broken-symmetry electronic structure methods is required in order to obtain correct behavior of electronically strained open-shell systems, such as transition states, biradicals, and transition metals. This approach often has issues with spin contamination, which can lead to significant errors in predicted energies, geometries, and properties. Approximate projection schemes are able to correct for spin contamination and can often yield improved results. To fully make use of these methods and to carry out exploration of the potential energy surface, it is desirable to develop an efficient second energy derivative theory. In this paper, we formulate the analytical second derivatives for the Yamaguchi approximate projection scheme, building on recent work that has yielded an efficient implementation of the analytical first derivatives.

  16. Heat collector

    DOE Patents [OSTI]

    Merrigan, Michael A. (Santa Cruz, NM)

    1984-01-01

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  17. Heat collector

    DOE Patents [OSTI]

    Merrigan, M.A.

    1981-06-29

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  18. Acoustically enhanced heat exchange and drying apparatus

    DOE Patents [OSTI]

    Bramlette, T.T.; Keller, J.O.

    1987-07-10

    A heat transfer drying apparatus includes an acoustically augmented heat transfer chamber for receiving material to be dried. The chamber includes a first heat transfer gas inlet, a second heat transfer gas inlet, a material inlet, and a gas outlet which also serves as a dried material and gas outlet. A non-pulsing first heat transfer gas source provides a first drying gas to the acoustically augmented heat transfer chamber through the first heat transfer gas inlet. A valveless, continuous second heat transfer gas source provides a second drying gas to the acoustically augmented heat transfer chamber through the second heat transfer gas inlet. The second drying gas also generates acoustic waves which bring about acoustical coupling with the gases in the acoustically augmented heat transfer chamber. The second drying gas itself oscillates at an acoustic frequency of approximately 180 Hz due to fluid mechanical motion in the gas. The oscillations of the second heat transfer gas coupled to the first heat transfer gas in the acoustically augmented heat transfer chamber enhance heat and mass transfer by convection within the chamber. 3 figs.

  19. Corrosive resistant heat exchanger

    DOE Patents [OSTI]

    Richlen, Scott L. (Annandale, VA)

    1989-01-01

    A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

  20. Relativistic Random Phase Approximation At Finite Temperature

    SciTech Connect (OSTI)

    Niu, Y. F.; Paar, N.; Vretenar, D.; Meng, J.

    2009-08-26

    The fully self-consistent finite temperature relativistic random phase approximation (FTRRPA) has been established in the single-nucleon basis of the temperature dependent Dirac-Hartree model (FTDH) based on effective Lagrangian with density dependent meson-nucleon couplings. Illustrative calculations in the FTRRPA framework show the evolution of multipole responses of {sup 132}Sn with temperature. With increased temperature, in both monopole and dipole strength distributions additional transitions appear in the low energy region due to the new opened particle-particle and hole-hole transition channels.

  1. Investigation of ion and electron heat transport of high- T e ECH heated

    Office of Scientific and Technical Information (OSTI)

    discharges in the large helical device (Journal Article) | SciTech Connect Investigation of ion and electron heat transport of high- T e ECH heated discharges in the large helical device Citation Details In-Document Search This content will become publicly available on January 28, 2017 Title: Investigation of ion and electron heat transport of high- T e ECH heated discharges in the large helical device Authors: Pablant, N. A. ; Satake, S. ; Yokoyama, M. ; Gates, D. A. ; Bitter, M. ;

  2. #HeatChat @Energy: Ask Us Your Home Heating Questions | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy #HeatChat @Energy: Ask Us Your Home Heating Questions #HeatChat @Energy: Ask Us Your Home Heating Questions October 21, 2015 - 10:10am Addthis Check out our <a href="/node/780416">Energy Saver 101 infographic</a> for everything you need to know about home heating. Check out our Energy Saver 101 infographic for everything you need to know about home heating. Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs How can I participate? Ask us

  3. Total Space Heating Water Heating Cook-

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 634 578 46 1 Q 116.4 106.3...

  4. Vitrification of high level nuclear waste inside ambient temperature disposal containers using inductive heating: The SMILE system

    SciTech Connect (OSTI)

    Powell, J.; Reich, M.; Barletta, R.

    1996-03-01

    A new approach, termed SMILE (Small Module Inductively Loaded Energy), for the vitrification of high level nuclear wastes (HLW) is described. Present vitrification systems liquefy the HLW solids and associated frit material in large high temperature melters. The molten mix is then poured into small ({approximately}1 m{sup 3}) disposal canisters, where it solidifies and cools. SMILE eliminates the separate, large high temperature melter. Instead, the BLW solids and frit melt inside the final disposal containers, using inductive heating. The contents then solidify and cool in place. The SMILE modules and the inductive heating process are designed so that the outer stainless can of the module remains at near ambient temperature during the process cycle. Module dimensions are similar to those of present disposal containers. The can is thermally insulated from the high temperature inner container by a thin layer of refractory alumina firebricks. The inner container is a graphite crucible lined with a dense alumina refractory that holds the HLW and fiit materials. After the SMILE module is loaded with a slurry of HLW and frit solids, an external multi-turn coil is energized with 30-cycle AC current. The enclosing external coil is the primary of a power transformer, with the graphite crucible acting as a single turn ``secondary.`` The induced current in the ``secondary`` heats the graphite, which in turn heats the HLW and frit materials. The first stage of the heating process is carried out at an intermediate temperature to drive off remnant liquid water and water of hydration, which takes about 1 day. The small fill/vent tube to the module is then sealed off and the interior temperature raised to the vitrification range, i.e., {approximately}1200C. Liquefaction is complete after approximately 1 day. The inductive heating then ceases and the module slowly loses heat to the environment, allowing the molten material to solidify and cool down to ambient temperature.

  5. PIA - Northeast Home Heating Oil Reserve System (Heating Oil...

    Energy Savers [EERE]

    Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil)...

  6. Check Heat Transfer Surfaces

    Broader source: Energy.gov [DOE]

    This tip sheet discusses the importance of checking heat transfer surfaces in process heating systems.

  7. Absorption Heat Pump Basics

    Broader source: Energy.gov [DOE]

    Absorption heat pumps are essentially air-source heat pumps driven not by electricity, but by a heat source such as natural gas, propane, solar-heated water, or geothermal-heated water. Because natural gas is the most common heat source for absorption heat pumps, they are also referred to as gas-fired heat pumps.

  8. CONTENT MODEL HOW-TO

    Energy Science and Technology Software Center (OSTI)

    003241MLTPL00 Content Model Guidelines  https://github.com/usgin/usginspecs/wiki/Content-Model-Guidelines 

  9. Magnetic reconnection under anisotropic magnetohydrodynamic approximation

    SciTech Connect (OSTI)

    Hirabayashi, K.; Hoshino, M.

    2013-11-15

    We study the formation of slow-mode shocks in collisionless magnetic reconnection by using one- and two-dimensional collisionless MHD codes based on the double adiabatic approximation and the Landau closure model. We bridge the gap between the Petschek-type MHD reconnection model accompanied by a pair of slow shocks and the observational evidence of the rare occasion of in-situ slow shock observations. Our results showed that once magnetic reconnection takes place, a firehose-sense (p{sub ?}>p{sub ?}) pressure anisotropy arises in the downstream region, and the generated slow shocks are quite weak comparing with those in an isotropic MHD. In spite of the weakness of the shocks, however, the resultant reconnection rate is 10%–30% higher than that in an isotropic case. This result implies that the slow shock does not necessarily play an important role in the energy conversion in the reconnection system and is consistent with the satellite observation in the Earth's magnetosphere.

  10. Bayonet heat exchangers in heat-assisted Stirling heat pump

    SciTech Connect (OSTI)

    Yagyu, S.; Fukuyama, Y.; Morikawa, T.; Isshiki, N.; Satoh, I.; Corey, J.; Fellows, C.

    1998-07-01

    The Multi-Temperature Heat Supply System is a research project creating a city energy system with lower environmental load. This system consists of a gas-fueled internal combustion engine and a heat-assisted Stirling heat pump utilizing shaft power and thermal power in a combination of several cylinders. The heat pump is mainly driven by engine shaft power and is partially assisted by thermal power from engine exhaust heat source. Since this heat pump is operated by proportioning the two energy sources to match the characteristics of the driving engine, the system is expected to produce cooling and heating water at high COP. This paper describes heat exchanger development in the project to develop a heat-assisted Stirling heat pump. The heat pump employs the Bayonet type heat exchangers (BHX Type I) for supplying cold and hot water and (BHX Type II) for absorbing exhaust heat from the driving engine. The heat exchanger design concepts are presented and their heat transfer and flow loss characteristics in oscillating gas flow are investigated. The main concern in the BHX Type I is an improvement of gas side heat transfer and the spirally finned tubes were applied to gas side of the heat exchanger. For the BHX Type II, internal heat transfer characteristics are the main concern. Shell-and-tube type heat exchangers are widely used in Stirling machines. However, since brazing is applied to the many tubes for their manufacturing processes, it is very difficult to change flow passages to optimize heat transfer and loss characteristics once they have been made. The challenge was to enhance heat transfer on the gas side to make a highly efficient heat exchanger with fewer parts. It is shown that the Bayonet type heat exchanger can have good performance comparable to conventional heat exchangers.

  11. Comparison of Methods for Calculating Radiative Heat Transfer

    SciTech Connect (OSTI)

    Schock, Alfred; Abbate, M J

    2012-01-19

    Various approximations for calculating radioactive heat transfer between parallel surfaces are evaluated. This is done by applying the approximations based on total emissivities to a special case of known spectral emissivities, for which exact heat transfer calculations are possible. Comparison of results indicates that the best approximation is obtained by basing the emissivity of the receiving surface primarily on the temperature of the emitter. A specific model is shown to give excellent agreement over a very wide range of values.

  12. Fermilab Today - Related Content

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Related Content Subscribe | Contact Fermilab Today | Archive | Classifieds Search GO Classifieds Director's Corner Physics in a Nutshell Frontier Science Result Tip of the Week...

  13. Table of Contents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TABLE OF CONTENTS INTRODUCTION J. B. Natowitz, Director SECTION I: NUCLEAR STRUCTURE, FUNDAMENTAL INTERACTIONS AND ASTROPHYSICS SECTION II: HEAVY ION REACTIONS SECTION III: NUCLEAR...

  14. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaurn, FL)

    1982-01-01

    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  15. Rhode Island Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Feb-15 Mar-15 Apr-15 May-15 Jun-15 Jul-15 View History Delivered to Consumers 1,029 1,029 1,029 1,028 1,028 1,028 2013-2015...

  16. Rhode Island Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2009 2010 2011 2012 2013 2014 View History Delivered to Consumers 1,023 1,017 1,020 1,031 1,032 1,028 2007-2014...

  17. Heat Content of Natural Gas Delivered to Consumers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Total Consumption Electric Power Other Sectors Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History U.S. 1,023 1,022 1,024 1,027 1,030 1,037 2003-2015 Alabama 1,018 1,018 1,016 1,017 1,025 1,030 2007-2015 Alaska 1,005 1,013 1,012 1,002 1,002 1,001 2007-2015 Arizona 1,016 1,015 1,021 1,025 1,029 1,039 2007-2015 Arkansas 1,012 1,017 1,015

  18. U.S. Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,023 1,022 1,024 1,027 1,030 1,037 2003-2015 Total Consumption 1,023 1,022 1,024 1,027 1,032 2003-2014 Electric Power 1,022 1,021 1,022 1,025 1,029 2003-2014 Other Sectors 1,023 1,022 1,025 1,028 1,032 2003-2014

  19. Heat Content of Natural Gas Delivered to Consumers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History U.S. 1,037 1,036 1,037 1,037 1,038 1,038 2012-2015 Alabama 1,032 1,030 1,030 1,030 1,029 1,029 2013-2015 Alaska 1,002 1,002 1,001 1,001 1,001 1,000 2013-2015 Arizona 1,038 1,038 1,040 1,042 1,041 1,044 2013-2015 Arkansas 1,023 1,022 1,019 1,029 1,014 1,015 2013-2015

  20. New Mexico Heat Content of Natural Gas Deliveries to Consumers...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,024 1,025 1,028 2010's 1,021 1,022 1,024 1,030 1,034...

  1. Kansas Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,018 1,034 1,019 2010's 1,019 1,020 1,022 1,020 1,021...

  2. New Hampshire Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    27 1,028 1,028 1,029 1,029 1,030

  3. New Jersey Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    43 1,042 1,041 1,041 1,044 1,044

  4. District of Columbia Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Delivered to Consumers 1,037 1,036 1,035 1,045 1,039 1,044 2013

  5. New Hampshire Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    37 1,040 1,032 1,030 1,032 1,031

  6. New Jersey Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    6 1,026 1,029 1,045 1,042 1,046

  7. New Mexico Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    1 1,022 1,024 1,030 1,035 1,041

  8. North Dakota Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    55 1,073 1,065 1,082 1,064 1,05

  9. West Virginia Heat Content of Natural Gas Deliveries to Consumers...

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,074 1,073 1,082 2010's 1,076 1,083 1,080 1,083 1,073...

  10. Rhode Island Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    17 1,020 1,031 1,032 1,029 1,028

  11. South Carolina Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    26 1,026 1,023 1,019 1,024 1,030

  12. South Dakota Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    05 1,005 1,018 1,023 1,035 1,051

  13. West Virginia Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    76 1,083 1,080 1,083 1,073 1,08

  14. U.S. Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    37 1,036 1,037 1,037 1,038 1,038 2012

  15. New Mexico Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    38 1,049 1,040 1,048 1,042 1,046

  16. North Dakota Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    117 1,095 1,078 1,093 1,097 1,112

  17. Rhode Island Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    28 1,028 1,028 1,028 1,028 1,028

  18. South Carolina Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    31 1,029 1,031 1,031 1,030 1,030

  19. South Dakota Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    62 1,060 1,056 1,053 1,053 1,058

  20. District of Columbia Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    14 1,016 1,029 1,048 1,037 1,044

  1. Heat Content of Natural Gas Consumed by Electric Power Sector

    U.S. Energy Information Administration (EIA) Indexed Site

    2 1,021 1,022 1,025 1,029

  2. Heat Content of Natural Gas Consumed by Other Sectors

    U.S. Energy Information Administration (EIA) Indexed Site

    5 1,028

  3. West Virginia Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    99 1,099 1,102 1,090 1,114 1,090

  4. ,"New Hampshire Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusnhm.xls" ...

  5. ,"South Dakota Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcussdm.xls" ...

  6. ,"New Jersey Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusnjm.xls" ...

  7. ,"Rhode Island Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusrim.xls" ...

  8. ,"South Carolina Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusscm.xls" ...

  9. ,"West Virginia Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcuswvm.xls" ...

  10. ,"North Carolina Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusncm.xls" ...

  11. ,"North Dakota Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusndm.xls" ...

  12. ,"New York Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusnym.xls" ...

  13. New Mexico Heat Content of Natural Gas Deliveries to Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,024 1,025 1,028 2010's 1,021 1,022 1,024 1,030 1,035...

  14. North Carolina Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    2009 2010 2011 2012 2013 2014 View History Delivered to Consumers 1,023 1,015 1,011 1,011 1,013 1,018 2007-2014...

  15. North Carolina Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    May-15 Jun-15 Jul-15 Aug-15 Sep-15 Oct-15 View History Delivered to Consumers 1,035 1,033 1,038 1,037 1,038 1,040 2013-2015...

  16. New York Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Apr-15 May-15 Jun-15 Jul-15 Aug-15 Sep-15 View History Delivered to Consumers 1,034 1,032 1,032 1,031 1,031 1,032 2013-2015...

  17. New York Heat Content of Natural Gas Deliveries to Consumers...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,023 1,021 1,021 2010's 1,022 1,025 1,031 1,033 1,031...

  18. New York Heat Content of Natural Gas Deliveries to Consumers...

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,032 1,031 1,031 1,031 1,034 1,035 1,034 1,033 1,034 1,034 1,033 1,032 2014 1,032 1,031 1,032 1,031 1,031 1,031 1,031...

  19. New York Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2009 2010 2011 2012 2013 2014 View History Delivered to Consumers 1,021 1,022 1,025 1,031 1,033 1,031 2007-2014...

  20. Heat exchanger

    DOE Patents [OSTI]

    Brackenbury, P.J.

    1983-12-08

    A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

  1. Heat exchanger

    DOE Patents [OSTI]

    Brackenbury, Phillip J.

    1986-01-01

    A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

  2. Heat transfer and heat exchangers reference handbook

    SciTech Connect (OSTI)

    Not Available

    1991-01-15

    The purpose of this handbook is to provide Rocky Flats personnel with an understanding of the basic concepts of heat transfer and the operation of heat exchangers.

  3. Heating systems for heating subsurface formations

    DOE Patents [OSTI]

    Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)

    2011-04-26

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  4. TABLE OF CONTENTS

    National Nuclear Security Administration (NNSA)

    AC05-00OR22800 TABLE OF CONTENTS Contents Page # TOC - i SECTION A - SOLICITATION/OFFER AND AWARD ......................................................................... A-i SECTION B - SUPPLIES OR SERVICES AND PRICES/COSTS ........................................................ B-i B.1 SERVICES BEING ACQUIRED ....................................................................................B-2 B.2 TRANSITION COST, ESTIMATED COST, MAXIMUM AVAILABLE FEE, AND AVAILABLE FEE (Modification 295,

  5. RH-TRU Waste Content Codes

    SciTech Connect (OSTI)

    Washington TRU Solutions

    2007-07-01

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: • A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. • A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is “3.” The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR limits based on a 10-day shipping period (rather than the standard 60-day shipping period) may be used as specified in an approved content code. Requests for new or revised content codes may be submitted to the WIPP RH-TRU Payload Engineer for review and approval, provided all RH-TRAMPAC requirements are met.

  6. TABLE OF CONTENTS

    Office of Legacy Management (LM)

    ... compared with approximately 0.72% for natural uranium) and is used for nuclear reactor fuel and in weapons. o Depleted uranium has a lower fraction of U-235 than natural uranium ...

  7. Carbon footprints of heating oil and LPG heating systems

    SciTech Connect (OSTI)

    Johnson, Eric P.

    2012-07-15

    For European homes without access to the natural gas grid, the main fuels-of-choice for heating are heating oil and LPG. How do the carbon footprints of these compare? Existing literature does not clearly answer this, so the current study was undertaken to fill this gap. Footprints were estimated in seven countries that are representative of the EU and constitute two-thirds of the EU-27 population: Belgium, France, Germany, Ireland, Italy, Poland and the UK. Novelties of the assessment were: systems were defined using the EcoBoiler model; well-to-tank data were updated according to most-recent research; and combustion emission factors were used that were derived from a survey conducted for this study. The key finding is that new residential heating systems fuelled by LPG are 20% lower carbon and 15% lower overall-environmental-impact than those fuelled by heating oil. An unexpected finding was that an LPG system's environmental impact is about the same as that of a bio heating oil system fuelled by 100% rapeseed methyl ester, Europe's predominant biofuel. Moreover, a 20/80 blend (by energy content) with conventional heating oil, a bio-heating-oil system generates a footprint about 15% higher than an LPG system's. The final finding is that fuel switching can pay off in carbon terms. If a new LPG heating system replaces an ageing oil-fired one for the final five years of its service life, the carbon footprint of the system's final five years is reduced by more than 50%.

  8. Dual source heat pump

    DOE Patents [OSTI]

    Ecker, Amir L.; Pietsch, Joseph A.

    1982-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

  9. Segmented heat exchanger

    DOE Patents [OSTI]

    Baldwin, Darryl Dean (Lafayette, IN); Willi, Martin Leo (Dunlap, IL); Fiveland, Scott Byron (Metamara, IL); Timmons, Kristine Ann (Chillicothe, IL)

    2010-12-14

    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  10. Contents.key

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Paul Clavin Contents Combustion Waves and Fronts in Flows P. Clavin and G. Searby Cambridge University Press (to appear) Orders of magnitude 2 Lecture 1: 1-1: Overall...

  11. TABLE OF CONTENTS

    Energy Savers [EERE]

    008 High Temperature Superconductivity for Electric Systems Peer Review Final Report i TABLE OF CONTENTS High Temperature Superconductivity for Electric Systems Program Overview ...... 1 The Peer Review................................................................................................................ 3 Review Criteria ................................................................................................................. 5 Guidelines

  12. Table_of_Contents

    Energy Savers [EERE]

    Table of Contents 1. Physical Security .............................................................................................................................. 1-1 101. Headquarters Security Badges ........................................................................................ 101-1 102. HSPD-12 Badges and the PIV Process ........................................................................... 102-1 103. Prohibited Articles

  13. #AskEnergySaver: Home Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heating #AskEnergySaver: Home Heating October 29, 2014 - 12:56pm Addthis This month our experts answered your #AskEnergySaver questions on home heating. | Image courtesy of Sarah Gerrity, Energy Department. This month our experts answered your #AskEnergySaver questions on home heating. | Image courtesy of Sarah Gerrity, Energy Department. Allison Lantero Allison Lantero Digital Content Specialist, Office of Public Affairs Looking for more ways to save energy? Check out Energy Saver for

  14. Remote-Handled Transuranic Content Codes

    SciTech Connect (OSTI)

    Washington TRU Solutions

    2006-12-01

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: • A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. • A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is “3.” The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR limits based on a 10-day shipping period (rather than the standard 60-day shipping period) may be used as specified in an approved content code.

  15. Multiple source heat pump

    DOE Patents [OSTI]

    Ecker, Amir L. (Duncanville, TX)

    1983-01-01

    A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

  16. Investigation of ion and electron heat transport of high- T e...

    Office of Scientific and Technical Information (OSTI)

    Investigation of ion and electron heat transport of high- T e ECH heated discharges in the large helical device Citation Details In-Document Search This content will become...

  17. Residential Cold Climate Heat Pump with Variable-Speed Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unico's cost goal is to achieve a simple payback of less than five years. Project Impact In the United States, approximately 14.4 million dwellings use electricity for heating in ...

  18. Heat Exchangers for Solar Water Heating Systems | Department...

    Energy Savers [EERE]

    Heat Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems Image of a heat exchanger. | Photo from iStockphoto.com Image of a heat exchanger. |...

  19. Table of Contents

    Energy Savers [EERE]

    COMMUNICATIONS REQUIREMENTS OF SMART GRID TECHNOLOGIES October 5, 2010 i Table of Contents I. Introduction and Executive Summary.......................................................... 1 a. Overview of Smart Grid Benefits and Communications Needs................. 2 b. Summary of Recommendations .................................................................... 5 II. Federal Government Smart Grid Initiatives ................................................ 7 a. DOE Request for Information

  20. Concentrating solar heat collector

    SciTech Connect (OSTI)

    Fattor, A.P.

    1980-09-23

    A heat storage unit is integrated with a collection unit providing a heat supply in off-sun times, and includes movable insulation means arranged to provide insulation during off-sun times for the heat storage unit.

  1. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, Gershon (Oak Ridge, TN)

    1984-01-01

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  2. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  3. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 4.1 cents from a week ago to 2.89 per gallon, based on the residential heating fuel survey by the...

  4. Expanded Content Envelope For The Model 9977 Packaging

    SciTech Connect (OSTI)

    Abramczyk, G. A.; Loftin, B. M.; Nathan, S. J.; Bellamy, J. S.

    2013-07-30

    An Addendum was written to the Model 9977 Safety Analysis Report for Packaging adding a new content consisting of DOE-STD-3013 stabilized plutonium dioxide materials to the authorized Model 9977 contents. The new Plutonium Oxide Content (PuO{sub 2}) Envelope will support the Department of Energy shipment of materials between Los Alamos National Laboratory and Savannah River Site facilities. The new content extended the current content envelope boundaries for radioactive material mass and for decay heat load and required a revision to the 9977 Certificate of Compliance prior to shipment. The Addendum documented how the new contents/configurations do not compromise the safety basis presented in the 9977 SARP Revision 2. The changes from the certified package baseline and the changes to the package required to safely transport this material is discussed.

  5. Kethcum District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal...

  6. Midland District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Midland District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Midland District Heating District Heating Low Temperature Geothermal...

  7. Philip District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal...

  8. Pagosa Springs District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low...

  9. How to Solve Schroedinger Problems by Approximating the Potential Function

    SciTech Connect (OSTI)

    Ledoux, Veerle; Van Daele, Marnix

    2010-09-30

    We give a survey over the efforts in the direction of solving the Schroedinger equation by using piecewise approximations of the potential function. Two types of approximating potentials have been considered in the literature, that is piecewise constant and piecewise linear functions. For polynomials of higher degree the approximating problem is not so easy to integrate analytically. This obstacle can be circumvented by using a perturbative approach to construct the solution of the approximating problem, leading to the so-called piecewise perturbation methods (PPM). We discuss the construction of a PPM in its most convenient form for applications and show that different PPM versions (CPM,LPM) are in fact equivalent.

  10. Quasiparticle random-phase approximation with interactions from...

    Office of Scientific and Technical Information (OSTI)

    Quasiparticle random-phase approximation with interactions from the Similarity Renormalization Group Citation Details In-Document Search Title: Quasiparticle random-phase ...

  11. Tests of Monte Carlo Independent Column Approximation in the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meteorological Institute Jarvinen, Heikki Finnish Meteorological Institute Category: Modeling The Monte Carlo Independent Column Approximation (McICA) was recently introduced...

  12. Summation by Parts Finite Difference Approximations for Seismic...

    Office of Scientific and Technical Information (OSTI)

    Conference: Summation by Parts Finite Difference Approximations for Seismic and Seismo-Acoustic Computations Citation Details In-Document Search Title: Summation by Parts Finite...

  13. ANALOG QUANTUM NEURON FOR FUNCTIONS APPROXIMATION A. EZHOV; A...

    Office of Scientific and Technical Information (OSTI)

    FOR FUNCTIONS APPROXIMATION A. EZHOV; A. KHROMOV; G. BERMAN 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; IMPLEMENTATION; NERVE CELLS; WAVEGUIDES We describe a system able...

  14. Woven heat exchanger

    DOE Patents [OSTI]

    Piscitella, R.R.

    1984-07-16

    This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  15. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

  16. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  17. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

  18. Smart, simple energy-saving tips to beat the heat

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications Tribal Affairs Newsroom Search News Articles... Search Smart, simple energy-saving tips to beat the heat 7292015 2:02 PM Tweet Page Content BPA and its electric...

  19. Guide to Geothermal Heat Pumps

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    among the most effcient and comfortable heating and cooling technologies available because they use the earth's natural heat to provide heating, cooling, and often, water heating. ...

  20. Helically coiled tube heat exchanger

    SciTech Connect (OSTI)

    Harris, A.M.

    1981-08-18

    In a heat exchanger such as a steam generator for a nuclear reactor, two or more bundles of helically coiled tubes are arranged in series with the tubes in each bundle integrally continuing through the tube bundles arranged in series therewith. Pitch values for the tubing in any pair of tube bundles, taken transverse to the path of the reactor coolant flow about the tubes, are selected as a ratio of two unequal integers to permit efficient operation of each tube bundle while maintaining the various tube bundles of the heat exchanger within a compact envelope. Preferably, the helix angle and tube pitch parallel to the path of coolant flow are constant for all tubes in a single bundle so that the tubes are of approximately the same length within each bundle.

  1. Contents TRU Waste Celebration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 September 2005 A publication for all members of the NNSA/NSO family Contents TRU Waste Celebration by Katherine Schwartz On July 28, 2005, Bechtel Nevada hosted a function to commemorate the dedication and hard work of every Joanne Norton of meeting the milestone of completion of characterization of all legacy waste drums stored at the NTS for 30 years." , assistant general manager for Environmental Management at BN, was equally pleased. making direct contact with it. the dedicated

  2. NESEA Newsletter Content

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NESEA Newsletter Content Middle School Curriculum Created by Northeast Sustainable Energy Association (NESEA) Click on the links below to take you to the Chapter heading: Solar Panels: The Basics Solar Cells: P-N Junction Solar Panels: Amps, Volts and Power Solar Panels: Manufacture Solar Panels: PV Applications & More Parts of a Solar Cell Getting Started with Gears 123456789012345678901234567890121234567890123 123456789012345678901234567890121234567890123 PREMIER MIDDLE SCHOOL MODEL SOLAR

  3. Properties of the Boltzmann equation in the classical approximation

    SciTech Connect (OSTI)

    Tanji, Naoto; Epelbaum, Thomas; Gelis, Francois; Wu, Bin

    2014-12-30

    We study the Boltzmann equation with elastic point-like scalar interactions in two different versions of the the classical approximation. Although solving numerically the Boltzmann equation with the unapproximated collision term poses no problem, this allows one to study the effect of the ultraviolet cutoff in these approximations. This cutoff dependence in the classical approximations of the Boltzmann equation is closely related to the non-renormalizability of the classical statistical approximation of the underlying quantum field theory. The kinetic theory setup that we consider here allows one to study in a much simpler way the dependence on the ultraviolet cutoff, since one has also access to the non-approximated result for comparison.

  4. Properties of the Boltzmann equation in the classical approximation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Epelbaum, Thomas; Gelis, François; Tanji, Naoto; Wu, Bin

    2014-12-30

    We examine the Boltzmann equation with elastic point-like scalar interactions in two different versions of the the classical approximation. Although solving numerically the Boltzmann equation with the unapproximated collision term poses no problem, this allows one to study the effect of the ultraviolet cutoff in these approximations. This cutoff dependence in the classical approximations of the Boltzmann equation is closely related to the non-renormalizability of the classical statistical approximation of the underlying quantum field theory. The kinetic theory setup that we consider here allows one to study in a much simpler way the dependence on the ultraviolet cutoff, since onemore » has also access to the non-approximated result for comparison.« less

  5. Properties of the Boltzmann equation in the classical approximation

    SciTech Connect (OSTI)

    Epelbaum, Thomas; Gelis, François; Tanji, Naoto; Wu, Bin

    2014-12-30

    We examine the Boltzmann equation with elastic point-like scalar interactions in two different versions of the the classical approximation. Although solving numerically the Boltzmann equation with the unapproximated collision term poses no problem, this allows one to study the effect of the ultraviolet cutoff in these approximations. This cutoff dependence in the classical approximations of the Boltzmann equation is closely related to the non-renormalizability of the classical statistical approximation of the underlying quantum field theory. The kinetic theory setup that we consider here allows one to study in a much simpler way the dependence on the ultraviolet cutoff, since one has also access to the non-approximated result for comparison.

  6. Rotary magnetic heat pump

    DOE Patents [OSTI]

    Kirol, Lance D. (Shelly, ID)

    1988-01-01

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.

  7. Rotary magnetic heat pump

    DOE Patents [OSTI]

    Kirol, L.D.

    1987-02-11

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

  8. Direct fired heat exchanger

    DOE Patents [OSTI]

    Reimann, Robert C. (Lafayette, NY); Root, Richard A. (Spokane, WA)

    1986-01-01

    A gas-to-liquid heat exchanger system which transfers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine, to a liquid, generally an absorbent solution. The heat exchanger system is in a counterflow fluid arrangement which creates a more efficient heat transfer.

  9. PIA - Northeast Home Heating Oil Reserve System (Heating Oil) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PDF icon PIA - Northeast Home Heating Oil Reserve System (Heating Oil) More Documents & Publications PIA - WEB Physical Security Major Application PIA - GovTrip (DOE data) PIA - WEB Unclassified Business Operations General Support

  10. Heat Treating Apparatus

    DOE Patents [OSTI]

    De Saro, Robert (Annandale, NJ); Bateman, Willis (Sutton Colfield, GB)

    2002-09-10

    Apparatus for heat treating a heat treatable material including a housing having an upper opening for receiving a heat treatable material at a first temperature, a lower opening, and a chamber therebetween for heating the heat treatable material to a second temperature higher than the first temperature as the heat treatable material moves through the chamber from the upper to the lower opening. A gas supply assembly is operatively engaged to the housing at the lower opening, and includes a source of gas, a gas delivery assembly for delivering the gas through a plurality of pathways into the housing in countercurrent flow to movement of the heat treatable material, whereby the heat treatable material passes through the lower opening at the second temperature, and a control assembly for controlling conditions within the chamber to enable the heat treatable material to reach the second temperature and pass through the lower opening at the second temperature as a heated material.

  11. Thulium-170 heat source

    DOE Patents [OSTI]

    Walter, Carl E. (Pleasanton, CA); Van Konynenburg, Richard (Livermore, CA); VanSant, James H. (Tracy, CA)

    1992-01-01

    An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

  12. Higher-degree linear approximations of nonlinear systems

    SciTech Connect (OSTI)

    Karahan, S.

    1989-01-01

    In this dissertation, the author develops a new method for obtaining higher degree linear approximations of nonlinear control systems. The standard approach in the analysis and synthesis of nonlinear systems is a first order approximation by a linear model. This is usually performed by obtaining a series expansion of the system at some nominal operating point and retaining only the first degree terms in the series. The accuracy of this approximation depends on how far the system moves away from the normal point, and on the relative magnitudes of the higher degree terms in the series expansion. The approximation is achieved by finding an appropriate nonlinear coordinate transformation-feedback pair to perform the higher degree linearization. With the proposed method, one can improve the accuracy of the approximation up to arbitrarily higher degrees, provided certain solvability conditions are satisfied. The Hunt-Su linearizability theorem makes these conditions precise. This approach is similar to Poincare's Normal Form Theorem in formulation, but different in its solution method. After some mathematical background the author derives a set of equations (called the Homological Equations). A solution to this system of linear equations is equivalent to the solution to the problem of approximate linearization. However, it is generally not possible to solve the system of equations exactly. He outlines a method for systematically finding approximate solutions to these equations using singular value decomposition, while minimizing an error with respect to some defined norm.

  13. Thermoelectric heat exchange element

    DOE Patents [OSTI]

    Callas, James J. (Peoria, IL); Taher, Mahmoud A. (Peoria, IL)

    2007-08-14

    A thermoelectric heat exchange module includes a first substrate including a heat receptive side and a heat donative side and a series of undulatory pleats. The module may also include a thermoelectric material layer having a ZT value of 1.0 or more disposed on at least one of the heat receptive side and the heat donative side, and an electrical contact may be in electrical communication with the thermoelectric material layer.

  14. Improved approximate formulas for flux from cylindrical and rectangular sources

    SciTech Connect (OSTI)

    Wallace, O.J.; Bokharee, S.A.

    1993-03-01

    This report provides two new approximate formulas for the flux at detector points outside the radial and axial extensions of a homogeneous cylindrical source and improved approximate formulas for the flux at points opposite rectangular surface sources. These formulas extend the range of geometries for which analytic approximations may be used by shield design engineers to make rapid scoping studies and check more extensive calculations for reasonableness. These formulas can be used to support skeptical, independent evaluations and are also valuable teaching tools for introducing shield designers to complex shield analyses.

  15. Heat release characteristics of stratified-charge rotary engines

    SciTech Connect (OSTI)

    Dimpelfeld, P.; Humke, A.

    1987-01-01

    A computer program for calculating heat release rates from stratified-charge rotary engines is described. Important aspects of the program include calculation of equilibrium combustion product properties, treatment of both liquid and gas phase fuel in the chamber, heat transfer, leakage past side and apex seals, and crevice effects. Heat release rates are presented from 580 and 70 Series rotary engines. Combustion in the 580 Series engine exhibits two distinct phases. The first phase occurs rapidly, with a duration of approximately 40 shaft degrees. The second phase of combustion proceeds more slowly, with a duration of approximately 70 shaft degrees. Three phases of combustion are observed for the 70 Series engine.

  16. Personalized professional content recommendation

    DOE Patents [OSTI]

    Xu, Songhua

    2015-10-27

    A personalized content recommendation system includes a client interface configured to automatically monitor a user's information data stream transmitted on the Internet. A hybrid contextual behavioral and collaborative personal interest inference engine resident to a non-transient media generates automatic predictions about the interests of individual users of the system. A database server retains the user's personal interest profile based on a plurality of monitored information. The system also includes a server programmed to filter items in an incoming information stream with the personal interest profile and is further programmed to identify only those items of the incoming information stream that substantially match the personal interest profile.

  17. Personalized professional content recommendation

    DOE Patents [OSTI]

    Xu, Songhua

    2015-11-05

    A personalized content recommendation system includes a client interface configured to automatically monitor a user's information data stream transmitted on the Internet. A hybrid contextual behavioral and collaborative personal interest inference engine resident to a non-transient media generates automatic predictions about the interests of individual users of the system. A database server retains the user's personal interest profile based on a plurality of monitored information. The system also includes a server programmed to filter items in an incoming information stream with the personal interest profile and is further programmed to identify only those items of the incoming information stream that substantially match the personal interest profile.

  18. Microsoft Word - contents

    Office of Legacy Management (LM)

    GJO-2001-272-TAR MAC-GWDUR 1.1 UMTRA Ground Water Project Site Observational Work Plan for the Durango, Colorado, UMTRA Project Site January 2002 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Project Number UGW 511-0006-10-000 Document Number U0143200 Work Performed Under DOE Contract Number DE-AC13-96GJ87335 This page intentionally left blank Document Number U0143200 Contents DOE/Grand Junction Office Site Observational Work Plan -Durango, Colorado January

  19. Heat Exchangers for Solar Water Heating Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems Image of a heat exchanger. | Photo from iStockphoto.com Image of a heat exchanger. | Photo from iStockphoto.com Solar water heating systems use heat exchangers to transfer solar energy absorbed in solar collectors to the liquid or air used to heat water or a space. Heat exchangers can be made of steel, copper, bronze, stainless steel, aluminum, or cast iron. Solar heating systems usually use copper,

  20. Integral approximations to classical diffusion and smoothed particle hydrodynamics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Du, Qiang; Lehoucq, R. B.; Tartakovsky, A. M.

    2014-12-31

    The contribution of the paper is the approximation of a classical diffusion operator by an integral equation with a volume constraint. A particular focus is on classical diffusion problems associated with Neumann boundary conditions. By exploiting this approximation, we can also approximate other quantities such as the flux out of a domain. Our analysis of the model equation on the continuum level is closely related to the recent work on nonlocal diffusion and peridynamic mechanics. In particular, we elucidate the role of a volumetric constraint as an approximation to a classical Neumann boundary condition in the presence of physical boundary.more » The volume-constrained integral equation then provides the basis for accurate and robust discretization methods. As a result, an immediate application is to the understanding and improvement of the Smoothed Particle Hydrodynamics (SPH) method.« less

  1. Quasiparticle random-phase approximation with interactions from the

    Office of Scientific and Technical Information (OSTI)

    Similarity Renormalization Group (Journal Article) | SciTech Connect Quasiparticle random-phase approximation with interactions from the Similarity Renormalization Group Citation Details In-Document Search Title: Quasiparticle random-phase approximation with interactions from the Similarity Renormalization Group Authors: Hergert, H. ; Papakonstantinou, P. ; Roth, R. Publication Date: 2011-06-16 OSTI Identifier: 1099608 Type: Publisher's Accepted Manuscript Journal Name: Physical Review C

  2. Summation by Parts Finite Difference Approximations for Seismic and

    Office of Scientific and Technical Information (OSTI)

    Seismo-Acoustic Computations (Conference) | SciTech Connect Conference: Summation by Parts Finite Difference Approximations for Seismic and Seismo-Acoustic Computations Citation Details In-Document Search Title: Summation by Parts Finite Difference Approximations for Seismic and Seismo-Acoustic Computations Authors: Sjogreen, B ; Petersson, N A Publication Date: 2014-08-19 OSTI Identifier: 1165780 Report Number(s): LLNL-PROC-659087 DOE Contract Number: DE-AC52-07NA27344 Resource Type:

  3. Heat transfer system

    DOE Patents [OSTI]

    McGuire, Joseph C. (Richland, WA)

    1982-01-01

    A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  4. Wound tube heat exchanger

    DOE Patents [OSTI]

    Ecker, Amir L. (Duncanville, TX)

    1983-01-01

    What is disclosed is a wound tube heat exchanger in which a plurality of tubes having flattened areas are held contiguous adjacent flattened areas of tubes by a plurality of windings to give a double walled heat exchanger. The plurality of windings serve as a plurality of effective force vectors holding the conduits contiguous heat conducting walls of another conduit and result in highly efficient heat transfer. The resulting heat exchange bundle is economical and can be coiled into the desired shape. Also disclosed are specific embodiments such as the one in which the tubes are expanded against their windings after being coiled to insure highly efficient heat transfer.

  5. Heat transfer system

    DOE Patents [OSTI]

    Not Available

    1980-03-07

    A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  6. CH-TRU Waste Content Codes

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2008-01-16

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  7. Table of Contents

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U U . . S S . . D D E E P P A A R R T T M M E E N N T T O O F F E E N N E E R R G G Y Y O O F F F F I I C C E E O O F F I I N N S S P P E E C C T T O O R R G G E E N N E E R R A A L L Semiannual Report toCongress DOE/IG-0065 April 1 - September 30, 2013 TABLE OF CONTENTS From the Desk of the Inspector General ..................................................... 2 Impacts Key Accomplishments ............................................................................................... 3

  8. Variational principles with Padé approximants for tearing mode analysis

    SciTech Connect (OSTI)

    Cole, Andrew J.; Finn, John M.

    2014-03-15

    Tearing modes occur in several distinct physical regimes, and it is often important to compute the inner layer response for these modes with various effects. There is a need for an approximate and efficient method of solving the inner layer equations in all these regimes. In this paper, we introduce a method of solving the inner layer equations based on using a variational principle with Padé approximants. For all the regimes considered, the main layer equations to be solved are inhomogeneous, and Padé approximants give a convenient and efficient method of satisfying the correct asymptotic behavior at the edge of the layer. Results using this variational principle—Padé approximant method in three of these regimes is presented. These regimes are the constant-? resistive-inertial (RI) regime, the constant-? viscoresistive regime, and the non-constant-? inviscid tearing regime. The last regime includes the constant-? RI regime and the inertial regime. The results show that reasonable accuracy can be obtained very efficiently with Padé approximants having a small number of parameters.

  9. Fusion heating technology

    SciTech Connect (OSTI)

    Cole, A.J.

    1982-06-01

    John Lawson established the criterion that in order to produce more energy from fusion than is necessary to heat the plasma and replenish the radiation losses, a minimum value for both the product of plasma density and confinement time t, and the temperature must be achieved. There are two types of plasma heating: neutral beam and electromagnetic wave heating. A neutral beam system is shown. Main development work on negative ion beamlines has focused on the difficult problem of the production of high current sources. The development of a 30 keV-1 ampere multisecond source module is close to being accomplished. In electromagnetic heating, the launcher, which provides the means of coupling the power to the plasma, is most important. The status of heating development is reviewed. Electron cyclotron resonance heating (ECRH), lower hybrid heating (HHH), and ion cyclotron resonance heating (ICRH) are reviewed.

  10. Geothermal District Heating Economics

    Energy Science and Technology Software Center (OSTI)

    1995-07-12

    GEOCITY is a large-scale simulation model which combines both engineering and economic submodels to systematically calculate the cost of geothermal district heating systems for space heating, hot-water heating, and process heating based upon hydrothermal geothermal resources. The GEOCITY program simulates the entire production, distribution, and waste disposal process for geothermal district heating systems, but does not include the cost of radiators, convectors, or other in-house heating systems. GEOCITY calculates the cost of district heating basedmore » on the climate, population, and heat demand of the district; characteristics of the geothermal resource and distance from the distribution center; well-drilling costs; design of the distribution system; tax rates; and financial conditions.« less

  11. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

  12. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 3.6 cents from a week ago to 3.04 per gallon. That's down 99.4 cents from a year ago, based on the...

  13. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 6.3 cents from a week ago to 2.91 per gallon. That's down 1.10 from a year ago, based on the...

  14. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 7.5 cents from a week ago to 2.84 per gallon. That's down 1.22 from a year ago, based on the...

  15. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 7.6 cents from a week ago to 2.97 per gallon. That's down 1.05 from a year ago, based on the...

  16. Consolidated Electric Cooperative- Heat Pump and Water Heating Rebates

    Broader source: Energy.gov [DOE]

    Consolidated Electric Cooperative provides rebates to residential customers who install electric water heaters, dual-fuel heating system or geothermal heat pumps. A dual-fuel heating systems...

  17. Buildings","All Buildings with Water Heating","Water-Heating...

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Water-Heating Energy Sources, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","All Buildings with Water Heating","Water-Heating Energy Sources Used ...

  18. Abrasion resistant heat pipe

    DOE Patents [OSTI]

    Ernst, Donald M. (Leola, PA)

    1984-10-23

    A specially constructed heat pipe for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  19. Solar heat receiver

    DOE Patents [OSTI]

    Hunt, Arlon J. (Oakland, CA); Hansen, Leif J. (Berkeley, CA); Evans, David B. (Orinda, CA)

    1985-01-01

    A receiver for converting solar energy to heat a gas to temperatures from 700.degree.-900.degree. C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

  20. Solar heat receiver

    DOE Patents [OSTI]

    Hunt, A.J.; Hansen, L.J.; Evans, D.B.

    1982-09-29

    A receiver is described for converting solar energy to heat a gas to temperatures from 700 to 900/sup 0/C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

  1. Abrasion resistant heat pipe

    DOE Patents [OSTI]

    Ernst, D.M.

    1984-10-23

    A specially constructed heat pipe is described for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  2. ARM - Heat Index Calculations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CalculatorsHeat Index Calculations Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Heat Index Calculations Heat Index is an index that combines air temperature and relative humidity to estimate how hot it actually feels. The human body cools off through perspiration, which removes heat from

  3. MA HEAT Loan Overview

    Broader source: Energy.gov [DOE]

    Presents information on the success of Massachusetts's HEAT loan offerings and how the financing tool is funded.

  4. Liquid heat capacity lasers

    DOE Patents [OSTI]

    Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

    2007-05-01

    The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

  5. Pioneering Heat Pump Project

    Broader source: Energy.gov [DOE]

    Project objectives: To install and monitor an innovative WaterFurnace geothermal system that is technologically advanced and evolving; To generate hot water heating from a heat pump that uses non-ozone depleting refrigerant CO2. To demonstrate the energy efficiency of this system ground source heat pump system.

  6. Analysis of Joint Masonry Moisture Content Monitoring

    SciTech Connect (OSTI)

    Ueno, Kohta

    2015-10-01

    Adding insulation to the interior side of walls of masonry buildings in cold (and wet) climates may cause performance and durability problems. Some concerns, such as condensation and freeze-thaw, have known solutions, but wood members embedded in the masonry structure will be colder (and potentially wetter) after an interior insulation retrofit. Moisture content & relative humidity were monitored at joist ends in historic mass brick masonry walls retrofitted with interior insulation in a cold climate (Zone 5A); data were collected from 2012-2015. Eleven joist ends were monitored in all four orientations. One limitation of these results is that the renovation is still ongoing, with limited wintertime construction heating and no permanent occupancy to date. Measurements show that many joists ends remain at high moisture contents, especially at north- and east-facing orientations, with constant 100% RH conditions at the worst cases. These high moisture levels are not conducive for wood durability, but no evidence for actual structural damage has been observed. Insulated versus non-insulated joist pockets do not show large differences. South facing joists have safe (10-15%) moisture contents. Given the uncertainty pointed out by research, definitive guidance on the vulnerability of embedded wood members is difficult to formulate. In high-risk situations, or when a very conservative approach is warranted, the embedded wood member condition can be eliminated entirely, supporting the joist ends outside of the masonry pocket.

  7. The impact of summer heat islands on cooling energy consumption and CO{sub 2} emissions

    SciTech Connect (OSTI)

    Akbari, H.; Huang, J.; Martien, P.; Rainer, L.; Rosenfeld, A.; Taha, H.

    1988-08-01

    It has been well documented that summer heat islands increase the demand for air conditioning. Several studies have suggested developing guidelines to mitigate this negative effect, on both micro- and meso-scales. Reducing summer heat islands saves cooling energy, reduces peak demand, and reduces the emission of CO{sub 2} from electric power plants. This paper summarizes some of the efforts to quantify the effects of techniques to reduce heat islands. In particular, the authors summarize simulations they have made on the effects of plating trees and switching to light colored surfaces in cities. The results indicate that these techniques effectively reduce building cooling loads and peak power in selected US cities, and are the cheapest way to save energy and reduce CO{sub 2} emissions. This paper compares the economics of technologies to mitigate summer heat islands with other types of conservation measures. The authors estimate the cost of energy conserved by planting trees and recoating surfaces on a national level and compare it with the cost of energy conserved by increasing efficiencies in electrical appliances and cars. Early results indicate that the cost of energy saved by controlling heat islands is less than 1{cents}/kWh, more attractive than efficient electric appliances ({approximately} 2{cents}/kWh), and far more attractive than new electric supplies ({approximately}10{cents}/kWh). In transportation, the cost of conserving a gallon of gasoline, though far more attractive than buying gasoline at current prices, is again more expensive than controlling heat islands. By accounting for the carbon content of the fuels used for power generation and transportation, the authors restate these comparisons in terms of cents per avoided pound of carbon emitted as CO{sub 2}. The results show that the cost of avoided CO{sub 2} from planting trees/increasing albedo is about 0.3--1.3{cents}/lb. of carbon; for buying efficient electric appliances, 2.5{cents}/lb. of carbon; and for efficient cars, 10{cents}/lb. of carbon.

  8. Trigonometric Pade approximants for functions with regularly decreasing Fourier coefficients

    SciTech Connect (OSTI)

    Labych, Yuliya A; Starovoitov, Alexander P [Gomel State University, Gomel (Belarus)

    2009-08-31

    Sufficient conditions describing the regular decrease of the coefficients of a Fourier series f(x)=a{sub 0}/2 + {sigma} a{sub n} cos kx are found which ensure that the trigonometric Pade approximants {pi}{sup t}{sub n,m}(x;f) converge to the function f in the uniform norm at a rate which coincides asymptotically with the highest possible one. The results obtained are applied to problems dealing with finding sharp constants for rational approximations. Bibliography: 31 titles.

  9. Heat Pumps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Pumps Heat Pumps Geothermal heat pumps are expensive to install but pay for themselves over time in reduced heating and cooling costs. Learn more about how geothermal heat pumps heat and cool buildings by concentrating the naturally existing heat contained within the earth -- a clean, reliable, and renewable source of energy. In moderate climates, heat pumps can be an energy-efficient alternative to furnaces and air conditioners. Several types of heat pumps are available, including

  10. Home Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heating Home Heating Energy Saver 101 Infographic: Home Heating Energy Saver 101 Infographic: Home Heating Everything you need to know about home heating, including how heating systems work, the different types on the market and proper maintenance. Read more Thermostats Thermostats Save money on heating by automatically setting back your thermostat when you are asleep or away. Read more Wood and Pellet Heating Wood and Pellet Heating Wood and pellets are renewable fuel sources, and modern wood

  11. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard

    1980-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.

  12. AMO Industrial Distributed Energy: Combine Heat and Power: A Clean Energy Solution, August 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Solution Combined Heat and Power August 2012 Combined Heat and Power: A Clean Energy Solution 1 Contents Executive Summary .................................................................................................... 3 Introduction ................................................................................................................ 5 Combined Heat and Power as A Clean Energy Solution ......................................... 7 The Current Status of CHP and Its

  13. A corrosive resistant heat exchanger

    DOE Patents [OSTI]

    Richlen, S.L.

    1987-08-10

    A corrosive and erosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is pumped through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium. 3 figs., 3 tabs.

  14. Development of Versatile Compressor Modeling using Approximation Techniques for Alternative Refrigerants Evaluation

    SciTech Connect (OSTI)

    Abdelaziz, Omar; Shrestha, Som S

    2014-01-01

    Refrigerants are the life-blood of vapor compression systems that are widely used in Heating, Ventilation, Air-Conditioning, and Refrigeration (HVAC&R) applications. The HVAC&R community is currently transitioning from main-stream refrigerants that have high Global Warming Potential (GWP) to alternative lower-GWP refrigerants. During this transition, it is important to account for the life cycle climate performance of alternative refrigerants since their performance will be different than that of higher-GWP refrigerants. This requires the evaluation of the system performance with the new refrigerants. Unfortunately, it is extremely difficult to predict the realistic performance of new alternative refrigerants without experimental validation. One of the main challenges in this regard is modeling the compressor performance with high fidelity due to the complex interaction of operating parameters, geometry, boundary conditions, and fluid properties. High fidelity compressor models are computationally expensive and require significant pre-processing to evaluate the performance of alternative refrigerants. This paper presents a new approach to modeling compressor performance when alternative refrigerants are used. The new modeling concept relies on using existing compressor performance to create an approximate model that captures the dependence of compressor performance on key operating parameters and fluid properties. The model can be built using a myriad of approximation techniques. This paper focuses on Kriging-based techniques to develop higher fidelity approximate compressor models. Baseline and at least one alternative refrigerant performance data are used to build the model. The model accuracy was evaluated by comparing the model results with compressor performance data using other refrigerants. Preliminary results show that the approximate model can predict the compressor mass flow rate and power consumption within 5%.

  15. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, Gershon (Oak Ridge, TN); Perez-Blanco, Horacio (Knoxville, TN)

    1984-01-01

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  16. On how differently the quasi-harmonic approximation works for two isostructural crystals: Thermal properties of periclase and lime

    SciTech Connect (OSTI)

    Erba, A. Dovesi, R.; Shahrokhi, M.; Moradian, R.

    2015-01-28

    Harmonic and quasi-harmonic thermal properties of two isostructural simple oxides (periclase, MgO, and lime, CaO) are computed with ab initio periodic simulations based on the density-functional-theory (DFT). The more polarizable character of calcium with respect to magnesium cations is found to dramatically affect the validity domain of the quasi-harmonic approximation that, for thermal structural properties (such as temperature dependence of volume, V(T), bulk modulus, K(T), and thermal expansion coefficient, α(T)), reduces from [0 K-1000 K] for MgO to just [0 K-100 K] for CaO. On the contrary, thermodynamic properties (such as entropy, S(T), and constant-volume specific heat, C{sub V}(T)) are described reliably at least up to 2000 K and quasi-harmonic constant-pressure specific heat, C{sub P}(T), up to about 1000 K in both cases. The effect of the adopted approximation to the exchange-correlation functional of the DFT is here explicitly investigated by considering five different expressions of three different classes (local-density approximation, generalized-gradient approximation, and hybrids). Computed harmonic thermodynamic properties are found to be almost independent of the adopted functional, whereas quasi-harmonic structural properties are more affected by the choice of the functional, with differences that increase as the system becomes softer.

  17. Heat pump apparatus

    DOE Patents [OSTI]

    Nelson, Paul A. (Wheaton, IL); Horowitz, Jeffrey S. (Woodridge, IL)

    1983-01-01

    A heat pump apparatus including a compact arrangement of individual tubular reactors containing hydride-dehydride beds in opposite end sections, each pair of beds in each reactor being operable by sequential and coordinated treatment with a plurality of heat transfer fluids in a plurality of processing stages, and first and second valves located adjacent the reactor end sections with rotatable members having multiple ports and associated portions for separating the hydride beds at each of the end sections into groups and for simultaneously directing a plurality of heat transfer fluids to the different groups. As heat is being generated by a group of beds, others are being regenerated so that heat is continuously available for space heating. As each of the processing stages is completed for a hydride bed or group of beds, each valve member is rotated causing the heat transfer fluid for the heat processing stage to be directed to that bed or group of beds. Each of the end sections are arranged to form a closed perimeter and the valve member may be rotated repeatedly about the perimeter to provide a continuous operation. Both valves are driven by a common motor to provide a coordinated treatment of beds in the same reactors. The heat pump apparatus is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators but may be used with any source of heat, including a source of low-grade heat.

  18. Approximations of very weak solutions to boundary-value problems.

    SciTech Connect (OSTI)

    Berggren, Martin Olof

    2003-03-01

    Standard weak solutions to the Poisson problem on a bounded domain have square-integrable derivatives, which limits the admissible regularity of inhomogeneous data. The concept of solution may be further weakened in order to define solutions when data is rough, such as for inhomogeneous Dirichlet data that is only square-integrable over the boundary. Such very weak solutions satisfy a nonstandard variational form (u, v) = G(v). A Galerkin approximation combined with an approximation of the right-hand side G defines a finite-element approximation of the very weak solution. Applying conforming linear elements leads to a discrete solution equivalent to the text-book finite-element solution to the Poisson problem in which the boundary data is approximated by L{sub 2}-projections. The L{sub 2} convergence rate of the discrete solution is O(h{sub s}) for some s {element_of} (0,1/2) that depends on the shape of the domain, asserting a polygonal (two-dimensional) or polyhedral (three-dimensional) domain without slits and (only) square-integrable boundary data.

  19. Heat Transfer Fluids for Solar Water Heating Systems | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Illustration of a solar water heater. Illustration of a solar water heater. Heat-transfer fluids carry heat through solar collectors and a heat exchanger to the heat storage tanks...

  20. Active microchannel heat exchanger

    DOE Patents [OSTI]

    Tonkovich, Anna Lee Y. (Pasco, WA) [Pasco, WA; Roberts, Gary L. (West Richland, WA) [West Richland, WA; Call, Charles J. (Pasco, WA) [Pasco, WA; Wegeng, Robert S. (Richland, WA) [Richland, WA; Wang, Yong (Richland, WA) [Richland, WA

    2001-01-01

    The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.

  1. Waste Heat Management Options for Improving Industrial Process Heating

    Broader source: Energy.gov (indexed) [DOE]

    Systems | Department of Energy presentation covers typical sources of waste heat from process heating equipment, characteristics of waste heat streams, and options for recovery including Combined Heat and Power. PDF icon Waste Heat Management Options for Improving Industrial Process Heating Systems (August 20, 2009) More Documents & Publications Energy Systems Reduce Radiation Losses from Heating Equipment Seven Ways to Optimize Your Process Heat System

  2. Capture of Heat Energy from Diesel Engine Exhaust

    SciTech Connect (OSTI)

    Chuen-Sen Lin

    2008-12-31

    Diesel generators produce waste heat as well as electrical power. About one-third of the fuel energy is released from the exhaust manifolds of the diesel engines and normally is not captured for useful applications. This project studied different waste heat applications that may effectively use the heat released from exhaust of Alaskan village diesel generators, selected the most desirable application, designed and fabricated a prototype for performance measurements, and evaluated the feasibility and economic impact of the selected application. Exhaust flow rate, composition, and temperature may affect the heat recovery system design and the amount of heat that is recoverable. In comparison with the other two parameters, the effect of exhaust composition may be less important due to the large air/fuel ratio for diesel engines. This project also compared heat content and qualities (i.e., temperatures) of exhaust for three types of fuel: conventional diesel, a synthetic diesel, and conventional diesel with a small amount of hydrogen. Another task of this project was the development of a computer-aided design tool for the economic analysis of selected exhaust heat recovery applications to any Alaskan village diesel generator set. The exhaust heat recovery application selected from this study was for heating. An exhaust heat recovery system was fabricated, and 350 hours of testing was conducted. Based on testing data, the exhaust heat recovery heating system showed insignificant effects on engine performance and maintenance requirements. From measurements, it was determined that the amount of heat recovered from the system was about 50% of the heat energy contained in the exhaust (heat contained in exhaust was evaluated based on environment temperature). The estimated payback time for 100% use of recovered heat would be less than 3 years at a fuel price of $3.50 per gallon, an interest rate of 10%, and an engine operation of 8 hours per day. Based on experimental data, the synthetic fuel contained slightly less heat energy and fewer emissions. Test results obtained from adding different levels of a small amount of hydrogen into the intake manifold of a diesel-operated engine showed no effect on exhaust heat content. In other words, both synthetic fuel and conventional diesel with a small amount of hydrogen may not have a significant enough effect on the amount of recoverable heat and its feasibility. An economic analysis computer program was developed on Visual Basic for Application in Microsoft Excel. The program was developed to be user friendly, to accept different levels of input data, and to expand for other heat recovery applications (i.e., power, desalination, etc.) by adding into the program the simulation subroutines of the desired applications. The developed program has been validated using experimental data.

  3. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F. (Shaker Heights, OH); Moore, Paul B. (Fedhaven, FL)

    1983-01-01

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  4. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F.; Moore, Paul B.

    1983-06-21

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  5. Miniature heat pumps for portable and distributed space conditioning applications

    SciTech Connect (OSTI)

    Drost, M.K.; Friedrich, M.

    1997-12-31

    The Pacific Northwest National Laboratory (PNNL) is developing a miniature absorption heat pump for a range of microclimate control applications, including manportable cooling and distributed space conditioning. The miniature absorption heat pump will be sized to provide 350 W cooling, will have dimensions of 9 cm x 9 cm x 6 cm, and will weigh approximately 0.65 kg. Compared to a macroscale absorption heat pump, this represents reduction in volume by a factor of 60. A complete manportable cooling system including the heat pump, an air-cooled heat exchanger, batteries, and fuel is estimated to weight between 4 and 5 kg, compared to the 10 kg weight of alternative systems. Size and weight reductions are obtained by developing a device that can simultaneously take advantage of the high heat and mass transfer rates attainable in microscale structures while being large enough to allow electric powered pumping.

  6. Enhanced convective and film boiling heat transfer by surface gas injection

    SciTech Connect (OSTI)

    Duignan, M.R.; Greene, G.A. ); Irvine, T.F., Jr. . Dept. of Mechanical Engineering)

    1992-04-01

    Heat transfer measurements were made for stable film boiling of water over a horizontal, flat stainless steel plate from the minimum film boiling point temperature, T{sub SURFACE} {approximately}500K, to T{sub SURFACE} {approximately}950K. The pressure at the plate was approximately 1 atmosphere and the temperature of the water pool was maintained at saturation. The data were compared to the Berenson film-boiling model, which was developed for minimum film-boiling-point conditions. The model accurately represented the data near the minimum film-boiling point and at the highest temperatures measured, as long it was corrected for the heat transferred by radiation. On the average, the experimental data lay within {plus minus}7% of the model. Measurements of heat transfer were made without film boiling for nitrogen jetting into an overlying pool of water from nine 1-mm- diameter holes, drilled in the heat transfer plate. The heat flux was maintained constant at approximately 26.4 kW/m{sup 2}. For water-pool heights of less than 6cm the heat transfer coefficient deceased linearly with a decrease in heights. Above 6cm the heat transfer coefficient was unaffected. For the entire range of gas velocities measured (0 to 8.5 cm/s), the magnitude of the magnitude of the heat transfer coefficient only changed by approximately 20%. The heat transfer data bound the Konsetov model for turbulent pool heat transfer which was developed for vertical heat transfer surfaces. This agreement suggests that surface orientation may not be important when the gas jets do not locally affect the surface heat transfer. Finally, a database was developed for heat transfer from the plate with both film boiling and gas jetting occurring simultaneously, in a pool of water maintained at its saturation temperature. The effect of passing nitrogen through established film boiling is to increase the heat transfer from that surface. 60 refs.

  7. Enhanced convective and film boiling heat transfer by surface gas injection

    SciTech Connect (OSTI)

    Duignan, M.R.; Greene, G.A.; Irvine, T.F., Jr.

    1992-04-01

    Heat transfer measurements were made for stable film boiling of water over a horizontal, flat stainless steel plate from the minimum film boiling point temperature, T{sub SURFACE} {approximately}500K, to T{sub SURFACE} {approximately}950K. The pressure at the plate was approximately 1 atmosphere and the temperature of the water pool was maintained at saturation. The data were compared to the Berenson film-boiling model, which was developed for minimum film-boiling-point conditions. The model accurately represented the data near the minimum film-boiling point and at the highest temperatures measured, as long it was corrected for the heat transferred by radiation. On the average, the experimental data lay within {plus_minus}7% of the model. Measurements of heat transfer were made without film boiling for nitrogen jetting into an overlying pool of water from nine 1-mm- diameter holes, drilled in the heat transfer plate. The heat flux was maintained constant at approximately 26.4 kW/m{sup 2}. For water-pool heights of less than 6cm the heat transfer coefficient deceased linearly with a decrease in heights. Above 6cm the heat transfer coefficient was unaffected. For the entire range of gas velocities measured [0 to 8.5 cm/s], the magnitude of the magnitude of the heat transfer coefficient only changed by approximately 20%. The heat transfer data bound the Konsetov model for turbulent pool heat transfer which was developed for vertical heat transfer surfaces. This agreement suggests that surface orientation may not be important when the gas jets do not locally affect the surface heat transfer. Finally, a database was developed for heat transfer from the plate with both film boiling and gas jetting occurring simultaneously, in a pool of water maintained at its saturation temperature. The effect of passing nitrogen through established film boiling is to increase the heat transfer from that surface. 60 refs.

  8. ACHILLES: Heat Transfer in PWR Core During LOCA Reflood Phase

    Energy Science and Technology Software Center (OSTI)

    2013-11-01

    1. NAME AND TITLE OF DATA LIBRARY ACHILLES -Heat Transfer in PWR Core During LOCA Reflood Phase. 2. NAME AND TITLE OF DATA RETRIEVAL PROGRAMS N/A 3. CONTRIBUTOR AEA Technology, Winfrith Technology Centre, Dorchester DT2 8DH United Kingdom through the OECD Nuclear Energy Agency Data Bank, Issy-les-Moulineaux, France. 4. DESCRIPTION OF TEST FACILITY The most important features of the Achilles rig were the shroud vessel, which contained the test section, and the downcomer. These maymore » be thought of as representing the core barrel and the annular downcomer in the reactor pressure vessel. The test section comprises a cluster of 69 rods in a square array within a circular shroud vessel. The rod diameter and pitch (9.5 mm and 12.6 mm) were typical of PWR dimensions. The internal diameter of the shroud vessel was 128 mm. Each rod was electrically heated over a length of 3.66 m, which is typical of the nuclear heated length in a PWR fuel rod, and each contained 6 internal thermocouples. These were arranged in one of 8 groupings which concentrated the thermocouples in different axial zones. The spacer grids were at prototypic PWR locations. Each grid had two thermocouples attached to its trailing edge at radial locations. The axial power profile along the rods was an 11 step approximation to a "chopped cosine". The shroud vessel had 5 heating zones whose power could be independently controlled. 5. DESCRIPTION OF TESTS The Achilles experiments investigated the heat transfer in the core of a Pressurized Water Reactor during the re-flood phase of a postulated large break loss of coolant accident. The results provided data to validate codes and to improve modeling. Different types of experiments were carried out which included single phase cooling, re-flood under low flow conditions, level swell and re-flood under high flow conditions. Three series of experiments were performed. The first and the third used the same test section but the second used another test section, similar in all respects except that it contained a partial blockage formed by attaching sleeves (or "balloons") to some of the rods. 6. SOURCE AND SCOPE OF DATA Phenomena Tested - Heat transfer in the core of a PWR during a re-flood phase of postulated large break LOCA. Test Designation - Achilles Rig. The programme includes the following types of experiments: - on an unballooned cluster: -- single phase air flow -- low pressure level swell -- low flooding rate re-flood -- high flooding rate re-flood - on a ballooned cluster containing 80% blockage formed by 16 balloon sleeves -- single phase air flow -- low flooding rate re-flood 7. DISCUSSION OF THE DATA RETRIEVAL PROGRAM N/A 8. DATA FORMAT AND COMPUTER Many Computers (M00019MNYCP00). 9. TYPICAL RUNNING TIME N/A 11. CONTENTS OF LIBRARY The ACHILLES package contains test data and associated data processing software as well as the documentation listed above. 12. DATE OF ABSTRACT November 2013. KEYWORDS: DATABASES, BENCHMARKS, HEAT TRANSFER, LOSS-OF-COLLANT ACCIDENT, PWR REACTORS, REFLOODING« less

  9. ACHILLES: Heat Transfer in PWR Core During LOCA Reflood Phase

    SciTech Connect (OSTI)

    2013-11-01

    1. NAME AND TITLE OF DATA LIBRARY ACHILLES -Heat Transfer in PWR Core During LOCA Reflood Phase. 2. NAME AND TITLE OF DATA RETRIEVAL PROGRAMS N/A 3. CONTRIBUTOR AEA Technology, Winfrith Technology Centre, Dorchester DT2 8DH United Kingdom through the OECD Nuclear Energy Agency Data Bank, Issy-les-Moulineaux, France. 4. DESCRIPTION OF TEST FACILITY The most important features of the Achilles rig were the shroud vessel, which contained the test section, and the downcomer. These may be thought of as representing the core barrel and the annular downcomer in the reactor pressure vessel. The test section comprises a cluster of 69 rods in a square array within a circular shroud vessel. The rod diameter and pitch (9.5 mm and 12.6 mm) were typical of PWR dimensions. The internal diameter of the shroud vessel was 128 mm. Each rod was electrically heated over a length of 3.66 m, which is typical of the nuclear heated length in a PWR fuel rod, and each contained 6 internal thermocouples. These were arranged in one of 8 groupings which concentrated the thermocouples in different axial zones. The spacer grids were at prototypic PWR locations. Each grid had two thermocouples attached to its trailing edge at radial locations. The axial power profile along the rods was an 11 step approximation to a "chopped cosine". The shroud vessel had 5 heating zones whose power could be independently controlled. 5. DESCRIPTION OF TESTS The Achilles experiments investigated the heat transfer in the core of a Pressurized Water Reactor during the re-flood phase of a postulated large break loss of coolant accident. The results provided data to validate codes and to improve modeling. Different types of experiments were carried out which included single phase cooling, re-flood under low flow conditions, level swell and re-flood under high flow conditions. Three series of experiments were performed. The first and the third used the same test section but the second used another test section, similar in all respects except that it contained a partial blockage formed by attaching sleeves (or "balloons") to some of the rods. 6. SOURCE AND SCOPE OF DATA Phenomena Tested - Heat transfer in the core of a PWR during a re-flood phase of postulated large break LOCA. Test Designation - Achilles Rig. The programme includes the following types of experiments: - on an unballooned cluster: -- single phase air flow -- low pressure level swell -- low flooding rate re-flood -- high flooding rate re-flood - on a ballooned cluster containing 80% blockage formed by 16 balloon sleeves -- single phase air flow -- low flooding rate re-flood 7. DISCUSSION OF THE DATA RETRIEVAL PROGRAM N/A 8. DATA FORMAT AND COMPUTER Many Computers (M00019MNYCP00). 9. TYPICAL RUNNING TIME N/A 11. CONTENTS OF LIBRARY The ACHILLES package contains test data and associated data processing software as well as the documentation listed above. 12. DATE OF ABSTRACT November 2013. KEYWORDS: DATABASES, BENCHMARKS, HEAT TRANSFER, LOSS-OF-COLLANT ACCIDENT, PWR REACTORS, REFLOODING

  10. Doorway states in the random-phase approximation

    SciTech Connect (OSTI)

    De Pace, A.; Molinari, A.; Weidenmüller, H.A.

    2014-12-15

    By coupling a doorway state to a sea of random background states, we develop the theory of doorway states in the framework of the random-phase approximation (RPA). Because of the symmetry of the RPA equations, that theory is radically different from the standard description of doorway states in the shell model. We derive the Pastur equation in the limit of large matrix dimension and show that the results agree with those of matrix diagonalization in large spaces. The complexity of the Pastur equation does not allow for an analytical approach that would approximately describe the doorway state. Our numerical results display unexpected features: The coupling of the doorway state with states of opposite energy leads to strong mutual attraction.

  11. Crossing contours in the interacting boson approximation (IBA) symmetry triangle

    SciTech Connect (OSTI)

    McCutchan, E. A.; Casten, R. F.

    2006-11-15

    Constant contours of basic observables are discussed in the context of the interacting boson approximation (IBA) symmetry triangle. Contours that exhibit orthogonal crossing within the triangle are presented as a method for determining a set of parameter values for a particular nucleus and trajectories for isotopic chains. A set of contours that highlights a class of nuclei that are outside the two-parameter IBA-1 Hamitonian space is also presented.

  12. COMPLEXITY & APPROXIMABILITY OF QUANTIFIED & STOCHASTIC CONSTRAINT SATISFACTION PROBLEMS

    SciTech Connect (OSTI)

    H. B. HUNT; M. V. MARATHE; R. E. STEARNS

    2001-06-01

    Let D be an arbitrary (not necessarily finite) nonempty set, let C be a finite set of constant symbols denoting arbitrary elements of D, and let S and T be an arbitrary finite set of finite-arity relations on D. We denote the problem of determining the satisfiability of finite conjunctions of relations in S applied to variables (to variables and symbols in C) by SAT(S) (by SATc(S).) Here, we study simultaneously the complexity of decision, counting, maximization and approximate maximization problems, for unquantified, quantified and stochastically quantified formulas. We present simple yet general techniques to characterize simultaneously, the complexity or efficient approximability of a number of versions/variants of the problems SAT(S), Q-SAT(S), S-SAT(S),MAX-Q-SAT(S) etc., for many different such D,C,S,T. These versions/variants include decision, counting, maximization and approximate maximization problems, for unquantified, quantified and stochastically quantified formulas. Our unified approach is based on the following two basic concepts: (i) strongly-local replacements/reductions and (ii) relational/algebraic representability. Some of the results extend the earlier results in [Pa85,LMP99,CF+93,CF+94] Our techniques and results reported here also provide significant steps towards obtaining dichotomy theorems, for a number of the problems above, including the problems MAX-Q-SAT(S), and MAX-S-SAT(S). The discovery of such dichotomy theorems, for unquantified formulas, has received significant recent attention in the literature [CF+93, CF+94, Cr95, KSW97]. Keywords: NP-hardness; Approximation Algorithms; PSPACE-hardness; Quantified and Stochastic Constraint Satisfaction Problems.

  13. Water-heating dehumidifier

    DOE Patents [OSTI]

    Tomlinson, John J.

    2006-04-18

    A water-heating dehumidifier includes a refrigerant loop including a compressor, at least one condenser, an expansion device and an evaporator including an evaporator fan. The condenser includes a water inlet and a water outlet for flowing water therethrough or proximate thereto, or is affixed to the tank or immersed into the tank to effect water heating without flowing water. The immersed condenser design includes a self-insulated capillary tube expansion device for simplicity and high efficiency. In a water heating mode air is drawn by the evaporator fan across the evaporator to produce cooled and dehumidified air and heat taken from the air is absorbed by the refrigerant at the evaporator and is pumped to the condenser, where water is heated. When the tank of water heater is full of hot water or a humidistat set point is reached, the water-heating dehumidifier can switch to run as a dehumidifier.

  14. Waste Heat Management Options: Industrial Process Heating Systems

    Broader source: Energy.gov (indexed) [DOE]

    Heat Management Options Industrial Process Heating Systems By Dr. Arvind C. Thekdi E-mail: athekdi@e3minc.com E3M, Inc. August 20, 2009 2 Source of Waste Heat in Industries * Steam Generation * Fluid Heating * Calcining * Drying * Heat Treating * Metal Heating * Metal and Non-metal Melting * Smelting, agglomeration etc. * Curing and Forming * Other Heating Waste heat is everywhere! Arvind Thekdi, E3M Inc Arvind Thekdi, E3M Inc 3 Waste Heat Sources from Process Heating Equipment * Hot gases -

  15. Heat storage duration

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1981-01-01

    Both the amount and duration of heat storage in massive elements of a passive building are investigated. Data taken for one full winter in the Balcomb solar home are analyzed with the aid of sub-system simulation models. Heat storage duration is tallied into one-day intervals. Heat storage location is discussed and related to overall energy flows. The results are interpreted and conclusions drawn.

  16. Fluidized bed heat treating system

    DOE Patents [OSTI]

    Ripley, Edward B; Pfennigwerth, Glenn L

    2014-05-06

    Systems for heat treating materials are presented. The systems typically involve a fluidized bed that contains granulated heat treating material. In some embodiments a fluid, such as an inert gas, is flowed through the granulated heat treating medium, which homogenizes the temperature of the heat treating medium. In some embodiments the fluid may be heated in a heating vessel and flowed into the process chamber where the fluid is then flowed through the granulated heat treating medium. In some embodiments the heat treating material may be liquid or granulated heat treating material and the heat treating material may be circulated through a heating vessel into a process chamber where the heat treating material contacts the material to be heat treated. Microwave energy may be used to provide the source of heat for heat treating systems.

  17. Passive solar space heating

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1980-01-01

    An overview of passive solar space heating is presented indicating trends in design, new developments, performance measures, analytical design aids, and monitored building results.

  18. HEATS: Thermal Energy Storage

    SciTech Connect (OSTI)

    2012-01-01

    HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  19. Total Space Heat-

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    12 1 18 (*) 2 1 Q 6 Buildings without Cooling ... 30 1 (*) 4 (*) 14 (*) 4 (*) 1 6 Water-Heating Energy Source Electricity ... 402 21 57 42...

  20. Cover Heated, Open Vessels

    Broader source: Energy.gov [DOE]

    This tip sheet on covering heated, open vessels provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  1. Heat and mass exchanger

    DOE Patents [OSTI]

    Lowenstein, Andrew (Princeton, NJ); Sibilia, Marc J. (Princeton, NJ); Miller, Jeffrey A. (Hopewell, NJ); Tonon, Thomas (Princeton, NJ)

    2007-09-18

    A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

  2. Heat and mass exchanger

    DOE Patents [OSTI]

    Lowenstein, Andrew (Princeton, NJ); Sibilia, Marc J. (Princeton, NJ); Miller, Jeffrey A. (Hopewell, NJ); Tonon, Thomas (Princeton, NJ)

    2011-06-28

    A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

  3. Ductless Heat Pumps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  4. Heat Pump Water Heaters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  5. Heat rejection system

    DOE Patents [OSTI]

    Smith, Gregory C. (Richland, WA); Tokarz, Richard D. (Richland, WA); Parry, Jr., Harvey L. (Richland, WA); Braun, Daniel J. (Richland, WA)

    1980-01-01

    A cooling system for rejecting waste heat consists of a cooling tower incorporating a plurality of coolant tubes provided with cooling fins and each having a plurality of cooling channels therein, means for directing a heat exchange fluid from the power plant through less than the total number of cooling channels to cool the heat exchange fluid under normal ambient temperature conditions, means for directing water through the remaining cooling channels whenever the ambient temperature rises above the temperature at which dry cooling of the heat exchange fluid is sufficient and means for cooling the water.

  6. Heat of Hydration of Low Activity Cementitious Waste Forms

    SciTech Connect (OSTI)

    Nasol, D.

    2015-07-23

    During the curing of secondary waste grout, the hydraulic materials in the dry mix react exothermally with the water in the secondary low-activity waste (LAW). The heat released, called the heat of hydration, can be measured using a TAM Air Isothermal Calorimeter. By holding temperature constant in the instrument, the heat of hydration during the curing process can be determined. This will provide information that can be used in the design of a waste solidification facility. At the Savannah River National Laboratory (SRNL), the heat of hydration and other physical properties are being collected on grout prepared using three simulants of liquid secondary waste generated at the Hanford Site. From this study it was found that both the simulant and dry mix each had an effect on the heat of hydration. It was also concluded that the higher the cement content in the dry materials mix, the greater the heat of hydration during the curing of grout.

  7. Radiative heat transfer in 2D Dirac materials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rodriguez-López, Pablo; Tse, Wang -Kong; Dalvit, Diego A. R.

    2015-05-12

    We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. In conclusion, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials.

  8. Method for creating high carbon content products from biomass oil

    DOE Patents [OSTI]

    Parker, Reginald; Seames, Wayne

    2012-12-18

    In a method for producing high carbon content products from biomass, a biomass oil is added to a cracking reactor vessel. The biomass oil is heated to a temperature ranging from about 100.degree. C. to about 800.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to crack the biomass oil. Tar is separated from the cracked biomass oil. The tar is heated to a temperature ranging from about 200.degree. C. to about 1500.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to reduce the tar to a high carbon content product containing at least about 50% carbon by weight.

  9. Multimegawatt gyrotrons for plasma heating

    SciTech Connect (OSTI)

    Advani, R.; Denison, D.; Kreischer, K.E.; Shapiro, M.A.; Temkin, R.J.

    1999-07-01

    The gyrotron is under development as a high power source for plasma heating at electron cyclotron resonance. For heating large scale plasmas, such as the DIII-D machine at General Atomics, it is advantageous to have high unit power heating sources to reduce the cost and complexity of the system. The authors will present preliminary designs of 1.5 and 2 MW gyrotrons at a frequency of 110 GHz. The gyrotron designs are based on previous successful results at the 1 MW level at frequencies from 110 to 170 GHz. The baseline design is for a TE{sub 28.8} mode cavity with an electron beam of 80 to 110 kV and a current of up to 80A. The expected efficiency exceeds 30% but it should increase to over 50% with a depressed collector. The output beam will be a Gaussian TEM{sub 00} mode in free space. The gyrotron will be investigated experimentally in short pulse operation (approximately 3 microseconds) at MIT and, if successful, will be developed in a 10s pulsed or CW version by industry. There are two competing approaches for the design of multimegawatt gyrotrons: conventional, cylindrical cavity gyrotrons and coaxial cavity gyrotrons. The conventional cavity approach is being considered as an extension of present day gyrotron research at 110 GHz. The coaxial cavity gyrotron is under investigation at MIT with the goal of output powers of 3 MW at 140 GHz. Recent experimental results from the coaxial cavity gyrotron at power levels in excess of 1 MW will be presented.

  10. RH-TRU Waste Content Codes (RH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2007-08-01

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: • A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. • A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is “3.” The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR limits based on a 10-day shipping period (rather than the standard 60-day shipping period) may be used as specified in an approved content code. Requests for new or revised content codes may be submitted to the WIPP RH-TRU Payload Engineer for review and approval, provided all RH-TRAMPAC requirements are met.

  11. COMPLEXITY&APPROXIMABILITY OF QUANTIFIED&STOCHASTIC CONSTRAINT SATISFACTION PROBLEMS

    SciTech Connect (OSTI)

    Hunt, H. B.; Marathe, M. V.; Stearns, R. E.

    2001-01-01

    Let D be an arbitrary (not necessarily finite) nonempty set, let C be a finite set of constant symbols denoting arbitrary elements of D, and let S and T be an arbitrary finite set of finite-arity relations on D. We denote the problem of determining the satisfiability of finite conjunctions of relations in S applied to variables (to variables and symbols in C) by SAT(S) (by SATc(S).) Here, we study simultaneously the complexity of decision, counting, maximization and approximate maximization problems, for unquantified, quantified and stochastically quantified formulas. We present simple yet general techniques to characterize simultaneously, the complexity or efficient approximability of a number of versions/variants of the problems SAT(S), Q-SAT(S), S-SAT(S),MAX-Q-SAT(S) etc., for many different such D,C ,S, T. These versions/variants include decision, counting, maximization and approximate maximization problems, for unquantified, quantified and stochastically quantified formulas. Our unified approach is based on the following two basic concepts: (i) strongly-local replacements/reductions and (ii) relational/algebraic represent ability. Some of the results extend the earlier results in [Pa85,LMP99,CF+93,CF+94O]u r techniques and results reported here also provide significant steps towards obtaining dichotomy theorems, for a number of the problems above, including the problems MAX-&-SAT( S), and MAX-S-SAT(S). The discovery of such dichotomy theorems, for unquantified formulas, has received significant recent attention in the literature [CF+93,CF+94,Cr95,KSW97

  12. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard

    1981-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  13. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard

    1984-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  14. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard

    1984-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to faciliate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  15. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard

    1984-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate intallation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  16. Microchannel heat sink assembly

    DOE Patents [OSTI]

    Bonde, Wayne L. (Livermore, CA); Contolini, Robert J. (Pleasanton, CA)

    1992-01-01

    The present invention provides a microchannel heat sink with a thermal range from cryogenic temperatures to several hundred degrees centigrade. The heat sink can be used with a variety of fluids, such as cryogenic or corrosive fluids, and can be operated at a high pressure. The heat sink comprises a microchannel layer preferably formed of silicon, and a manifold layer preferably formed of glass. The manifold layer comprises an inlet groove and outlet groove which define an inlet manifold and an outlet manifold. The inlet manifold delivers coolant to the inlet section of the microchannels, and the outlet manifold receives coolant from the outlet section of the microchannels. In one embodiment, the manifold layer comprises an inlet hole extending through the manifold layer to the inlet manifold, and an outlet hole extending through the manifold layer to the outlet manifold. Coolant is supplied to the heat sink through a conduit assembly connected to the heat sink. A resilient seal, such as a gasket or an O-ring, is disposed between the conduit and the hole in the heat sink in order to provide a watetight seal. In other embodiments, the conduit assembly may comprise a metal tube which is connected to the heat sink by a soft solder. In still other embodiments, the heat sink may comprise inlet and outlet nipples. The present invention has application in supercomputers, integrated circuits and other electronic devices, and is suitable for cooling materials to superconducting temperatures.

  17. Microchannel heat sink assembly

    DOE Patents [OSTI]

    Bonde, W.L.; Contolini, R.J.

    1992-03-24

    The present invention provides a microchannel heat sink with a thermal range from cryogenic temperatures to several hundred degrees centigrade. The heat sink can be used with a variety of fluids, such as cryogenic or corrosive fluids, and can be operated at a high pressure. The heat sink comprises a microchannel layer preferably formed of silicon, and a manifold layer preferably formed of glass. The manifold layer comprises an inlet groove and outlet groove which define an inlet manifold and an outlet manifold. The inlet manifold delivers coolant to the inlet section of the microchannels, and the outlet manifold receives coolant from the outlet section of the microchannels. In one embodiment, the manifold layer comprises an inlet hole extending through the manifold layer to the inlet manifold, and an outlet hole extending through the manifold layer to the outlet manifold. Coolant is supplied to the heat sink through a conduit assembly connected to the heat sink. A resilient seal, such as a gasket or an O-ring, is disposed between the conduit and the hole in the heat sink in order to provide a watertight seal. In other embodiments, the conduit assembly may comprise a metal tube which is connected to the heat sink by a soft solder. In still other embodiments, the heat sink may comprise inlet and outlet nipples. The present invention has application in supercomputers, integrated circuits and other electronic devices, and is suitable for cooling materials to superconducting temperatures. 13 figs.

  18. Radioisotopic heat source

    DOE Patents [OSTI]

    Jones, G.J.; Selle, J.E.; Teaney, P.E.

    1975-09-30

    Disclosed is a radioisotopic heat source and method for a long life electrical generator. The source includes plutonium dioxide shards and yttrium or hafnium in a container of tantalum-tungsten-hafnium alloy, all being in a nickel alloy outer container, and subjected to heat treatment of from about 1570$sup 0$F to about 1720$sup 0$F for about one h. (auth)

  19. Multigroup Free-atom Doppler-broadening Approximation. Experiment

    SciTech Connect (OSTI)

    Gray, Mark Girard

    2015-11-06

    The multigroup energy Doppler-broadening approximation agrees with continuous energy Dopplerbroadening generally to within ten percent for the total cross sections of 1H, 56Fe, and 235U at 250 lanl. Although this is probably not good enough for broadening from room temperature through the entire temperature range in production use, it is better than any interpolation scheme between temperatures proposed to date, and may be good enough for extrapolation from high temperatures. The method deserves further study since additional improvements are possible.

  20. Compton scattering from positronium and validity of the impulse approximation

    SciTech Connect (OSTI)

    Kaliman, Z.; Pisk, K.; Pratt, R. H.

    2011-05-15

    The cross sections for Compton scattering from positronium are calculated in the range from 1 to 100 keV incident photon energy. The calculations are based on the A{sup 2} term of the photon-electron or photon-positron interaction. Unlike in hydrogen, the scattering occurs from two centers and the interference effect plays an important role for energies below 8 keV. Because of the interference, the criterion for validity of the impulse approximation for positronium is more restrictive compared to that for hydrogen.

  1. Analysis of Joist Masonry Moisture Content Monitoring

    SciTech Connect (OSTI)

    Ueno, Kohta

    2015-10-08

    There are many existing buildings with load-bearing mass masonry walls, whose energy performance could be improved with the retrofit of insulation. However, adding insulation to the interior side of walls of such masonry buildings in cold (and wet) climates may cause performance and durability problems. Some concerns, such as condensation and freeze-thaw have known solutions. But wood members embedded in the masonry structure will be colder (and potentially wetter) after an interior insulation retrofit. Moisture content & relative humidity were monitored at joist ends in historic mass brick masonry walls retrofitted with interior insulation in a cold climate (Zone 5A); data were collected from 2012-2015. Eleven joist ends were monitored in all four orientations. One limitation of these results is that the renovation is still ongoing, with limited wintertime construction heating and no permanent occupancy to date. Measurements show that many joists ends remain at high moisture contents, especially at north- and east-facing orientations, with constant 100% RH conditions at the worst cases. These high moisture levels are not conducive for wood durability, but no evidence for actual structural damage has been observed. Insulated vs. non-insulated joist pockets do not show large differences. South facing joists have safe (10-15%) moisture contents. Given the uncertainty pointed out by research, definitive guidance on the vulnerability of embedded wood members is difficult to formulate. In high-risk situations, or when a very conservative approach is warranted, the embedded wood member condition can be eliminated entirely, supporting the joist ends outside of the masonry pocket.

  2. Knudsen heat capacity

    SciTech Connect (OSTI)

    Babac, Gulru; Reese, Jason M.

    2014-05-15

    We present a “Knudsen heat capacity” as a more appropriate and useful fluid property in micro/nanoscale gas systems than the constant pressure heat capacity. At these scales, different fluid processes come to the fore that are not normally observed at the macroscale. For thermodynamic analyses that include these Knudsen processes, using the Knudsen heat capacity can be more effective and physical. We calculate this heat capacity theoretically for non-ideal monatomic and diatomic gases, in particular, helium, nitrogen, and hydrogen. The quantum modification for para and ortho hydrogen is also considered. We numerically model the Knudsen heat capacity using molecular dynamics simulations for the considered gases, and compare these results with the theoretical ones.

  3. Improved solar heating systems

    DOE Patents [OSTI]

    Schreyer, J.M.; Dorsey, G.F.

    1980-05-16

    An improved solar heating system is described in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75 to 180/sup 0/F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing ad releasing heat for distribution.

  4. Solar heating system

    DOE Patents [OSTI]

    Schreyer, James M. (Oak Ridge, TN); Dorsey, George F. (Concord, TN)

    1982-01-01

    An improved solar heating system in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75.degree. to 180.degree. F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing and releasing heat for distribution.

  5. Heat pipes and use of heat pipes in furnace exhaust

    DOE Patents [OSTI]

    Polcyn, Adam D. (Pittsburgh, PA)

    2010-12-28

    An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

  6. Visual Analysis of Weblog Content

    SciTech Connect (OSTI)

    Gregory, Michelle L.; Payne, Deborah A.; McColgin, Dave; Cramer, Nick O.; Love, Douglas V.

    2007-03-26

    In recent years, one of the advances of the World Wide Web is social media and one of the fastest growing aspects of social media is the blogosphere. Blogs make content creation easy and are highly accessible through web pages and syndication. With their growing influence, a need has arisen to be able to monitor the opinions and insight revealed within their content. In this paper we describe a technical approach for analyzing the content of blog data using a visual analytic tool, IN-SPIRE, developed by Pacific Northwest National Laboratory. We highlight the capabilities of this tool that are particularly useful for information gathering from blog data.

  7. A multiscale two-point flux-approximation method

    SciTech Connect (OSTI)

    Møyner, Olav Lie, Knut-Andreas

    2014-10-15

    A large number of multiscale finite-volume methods have been developed over the past decade to compute conservative approximations to multiphase flow problems in heterogeneous porous media. In particular, several iterative and algebraic multiscale frameworks that seek to reduce the fine-scale residual towards machine precision have been presented. Common for all such methods is that they rely on a compatible primal–dual coarse partition, which makes it challenging to extend them to stratigraphic and unstructured grids. Herein, we propose a general idea for how one can formulate multiscale finite-volume methods using only a primal coarse partition. To this end, we use two key ingredients that are computed numerically: (i) elementary functions that correspond to flow solutions used in transmissibility upscaling, and (ii) partition-of-unity functions used to combine elementary functions into basis functions. We exemplify the idea by deriving a multiscale two-point flux-approximation (MsTPFA) method, which is robust with regards to strong heterogeneities in the permeability field and can easily handle general grids with unstructured fine- and coarse-scale connections. The method can easily be adapted to arbitrary levels of coarsening, and can be used both as a standalone solver and as a preconditioner. Several numerical experiments are presented to demonstrate that the MsTPFA method can be used to solve elliptic pressure problems on a wide variety of geological models in a robust and efficient manner.

  8. JOBAID-LAUNCHING ONLINE CONTENT

    Broader source: Energy.gov [DOE]

    In this jobaid you will learn how to launch Online Content "Items" or Courses. In the LMS you can launch most anything as an "item": documents, courses, webpages and track users that have completed...

  9. Radiant Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heating Systems » Radiant Heating Radiant Heating In-wall radiant heating in a house under construction near Denver. | Photo courtesy of Warren Gretz, NREL. In-wall radiant heating in a house under construction near Denver. | Photo courtesy of Warren Gretz, NREL. Radiant heating systems supply heat directly to the floor or to panels in the wall or ceiling of a house. The systems depend largely on radiant heat transfer -- the delivery of heat directly from the hot surface to the people and

  10. High Efficiency R-744 Commercial Heat Pump Water Heaters

    SciTech Connect (OSTI)

    Elbel, Dr. Stefan W.; Petersen, Michael

    2013-04-25

    The project investigated the development and improvement process of a R744 (CO2) commercial heat pump water heater (HPWH) package of approximately 35 kW. The improvement process covered all main components of the system. More specific the heat exchangers (Internal heat exchanger, Evaporator, Gas cooler) as well as the expansion device and the compressor were investigated. In addition, a comparison to a commercially available baseline R134a unit of the same capacity and footprint was made in order to compare performance as well as package size reduction potential.

  11. ARM - Measurement - Ice water content

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    content ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Ice water content The concentration (mass/vol) of ice water particles in a cloud. Categories Atmospheric State, Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including

  12. ARM - Measurement - Liquid water content

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    content ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Liquid water content The concentration (mass/vol) of liquid water droplets in a cloud. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded

  13. RH-TRU Waste Content Codes (RH TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions

    2007-05-01

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: • A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. • A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is “3.” The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR limits based on a 10-day shipping period (rather than the standard 60-day shipping period) may be used as specified in an approved content code.

  14. Integrating preconcentrator heat controller

    DOE Patents [OSTI]

    Bouchier, Francis A. (Albuquerque, NM); Arakaki, Lester H. (Edgewood, NM); Varley, Eric S. (Albuquerque, NM)

    2007-10-16

    A method and apparatus for controlling the electric resistance heating of a metallic chemical preconcentrator screen, for example, used in portable trace explosives detectors. The length of the heating time-period is automatically adjusted to compensate for any changes in the voltage driving the heating current across the screen, for example, due to gradual discharge or aging of a battery. The total deposited energy in the screen is proportional to the integral over time of the square of the voltage drop across the screen. Since the net temperature rise, .DELTA.T.sub.s, of the screen, from beginning to end of the heating pulse, is proportional to the total amount of heat energy deposited in the screen during the heating pulse, then this integral can be calculated in real-time and used to terminate the heating current when a pre-set target value has been reached; thereby providing a consistent and reliable screen temperature rise, .DELTA.T.sub.s, from pulse-to-pulse.

  15. Micro heat barrier

    DOE Patents [OSTI]

    Marshall, Albert C.; Kravitz, Stanley H.; Tigges, Chris P.; Vawter, Gregory A.

    2003-08-12

    A highly effective, micron-scale micro heat barrier structure and process for manufacturing a micro heat barrier based on semiconductor and/or MEMS fabrication techniques. The micro heat barrier has an array of non-metallic, freestanding microsupports with a height less than 100 microns, attached to a substrate. An infrared reflective membrane (e.g., 1 micron gold) can be supported by the array of microsupports to provide radiation shielding. The micro heat barrier can be evacuated to eliminate gas phase heat conduction and convection. Semi-isotropic, reactive ion plasma etching can be used to create a microspike having a cusp-like shape with a sharp, pointed tip (<0.1 micron), to minimize the tip's contact area. A heat source can be placed directly on the microspikes. The micro heat barrier can have an apparent thermal conductivity in the range of 10.sup.-6 to 10.sup.-7 W/m-K. Multiple layers of reflective membranes can be used to increase thermal resistance.

  16. Heat Exchangers for Solar Water Heating Systems | Department...

    Broader source: Energy.gov (indexed) [DOE]

    from iStockphoto.com Image of a heat exchanger. | Photo from iStockphoto.com Solar water heating systems use heat exchangers to transfer solar energy absorbed in solar...

  17. Approximate Weighted Matching On Emerging Manycore and Multithreaded Architectures

    SciTech Connect (OSTI)

    Halappanavar, Mahantesh; Feo, John T.; Villa, Oreste; Tumeo, Antonino; Pothen, Alex

    2012-11-30

    Graph matching is a prototypical combinatorial problem with many applications in computer science and scientific computing, but algorithms for computing optimal matchings are challenging to parallelize. Approximate matching algorithms provide an alternate route for parallelization, and in many contexts compute near-optimal matchings for large-scale graphs. We present sharedmemory parallel implementations for computing half-approximate weighted matching on state-of-the-art multicore (Intel Nehalem and AMD Magny-Cours), manycore (Nvidia Tesla and Nvidia Fermi) and massively multithreaded (Cray XMT) platforms. We provide two implementations: the first implementation uses shared work queues, and is suited to all these platforms; the second implementation is based on dataflow principles, and exploits the architectural features of the Cray XMT. Using a carefully chosen dataset that exhibits characteristics from a wide range of real-world applications, we show scalable performance across different platforms. In particular, for one instance of the input, an R-MAT graph (RMAT-G), we show speedups of: about 32 on 48 cores of an AMD Magny-Cours; 7 on 8 cores of Intel Nehalem; 3 on Nvidia Tesla and 10 on Nvidia Fermi relative to one core of Intel Nehalem; and 60 on 128 processors of Cray XMT. We demonstrate good weak and strong scaling for graphs with up to a billion edges using up to 12, 800 threads. Given the breadth of this work, we focus on simplicity and portability of software rather than excessive fine-tuning for each platform. To the best of our knowledge, this is the first such large-scale study of the half-approximate weighted matching problem on shared-memory platforms. Driven by the critical enabling role of combinatorial algorithms such as matching in scientific computing and the emergence of informatics applications, there is a growing demand to support irregular computations on current and future computing platforms. In this context, we evaluate the capability of emerging multithreaded platforms to tolerate latency induced by irregular memory access patterns, and to support fine-grained parallelism via light-weight synchronization mechanisms. By contrasting the architectural features of these platforms against the Cray XMT, which is specifically designed to support irregular memory-intensive applications, we delineate the impact of these choices on performance.

  18. ANALYSIS OF THE AXIAL GAP VS FIBERBOARD MOISTURE CONTENT IN A 9975 SHIPPING PACKAGE

    SciTech Connect (OSTI)

    Daugherty, W.

    2013-09-30

    The fiberboard assembly within a 9975 shipping package contains a modest amount of moisture, which can migrate to the cooler regions of the package when an internal heat load is present. Typically, this leads to increased moisture levels in the bottom fiberboard layers, along with elevated chloride levels which can leach from the fiberboard. Concerns have been raised that this condition could lead to corrosion of the stainless steel drum. It has been postulated that checking the axial gap at the top of the package against the current 1 inch maximum criterion provides a sufficient indication regarding the integrity of the fiberboard and drum. This report estimates the increase in axial gap that might be expected for a given moisture increase in the bottom fiberboard layers, and the likelihood that the increase will create a nonconforming condition that will lead to identification of the moisture increase. Using data relating the fiberboard moisture content with the degree of compaction under load, the present analysis indicates that the axial gap will increase by 0.282 inch as the bottom fiberboard layers approach the saturation point. This increase will cause approximately 58% of packages with otherwise nominal package component dimensions to fail the axial gap criterion, based on a survey of axial gap values recorded in K-Area surveillance activities. As the moisture content increases above saturation, the predicted increase in axial gap jumps to 0.405 inch, which would result in 92% or more of all packages failing the axial gap criterion. The data and analysis described in this report are specific to cane fiberboard. While it is expected that softwood fiberboard will behave similarly, such behavior has not yet been demonstrated.

  19. Heat treatment furnace

    DOE Patents [OSTI]

    Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T

    2014-10-21

    A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

  20. Stirling engine heating system

    SciTech Connect (OSTI)

    Johansson, L.N.; Houtman, W.H.; Percival, W.H.

    1988-06-28

    A hot gas engine is described wherein a working gas flows back and forth in a closed path between a relatively cooler compression cylinder side of the engine and a relatively hotter expansion cylinder side of the engine and the path contains means including a heat source and a heat sink acting upon the gas in cooperation with the compression and expansion cylinders to cause the gas to execute a thermodynamic cycle wherein useful mechanical output power is developed by the engine, the improvement in the heat source which comprises a plurality of individual tubes each forming a portion of the closed path for the working gas.