National Library of Energy BETA

Sample records for approximate boiling range

  1. Low-energy parameters of neutron-neutron interaction in the effective-range approximation

    SciTech Connect (OSTI)

    Babenko, V. A.; Petrov, N. M. [National Academy of Sciences of Ukraine, Bogolyubov Institute for Theoretical Physics (Ukraine)

    2013-06-15

    The effect of the mass difference between the charged and neutral pions on the low-energy parameters of nucleon-nucleon interaction in the {sup 1}S{sub 0} state is studied in the effective-range approximation. On the basis of experimental values of the singlet parameters of neutron-proton scattering and the experimental value of the virtual-state energy for the neutron-neutron systemin the {sup 1}S{sub 0} state, the following values were obtained for the neutron-neutron scattering length and effective range: a{sub nn} = -16.59(117) fm and r{sub nn} = 2.83(11) fm. The calculated values agree well with present-day experimental results.

  2. BOILING REACTORS

    DOE Patents [OSTI]

    Untermyer, S.

    1962-04-10

    A boiling reactor having a reactivity which is reduced by an increase in the volume of vaporized coolant therein is described. In this system unvaporized liquid coolant is extracted from the reactor, heat is extracted therefrom, and it is returned to the reactor as sub-cooled liquid coolant. This reduces a portion of the coolant which includes vaporized coolant within the core assembly thereby enhancing the power output of the assembly and rendering the reactor substantially self-regulating. (AEC)

  3. Window-based method for approximating the Hausdorff in three-dimensional range imagery

    DOE Patents [OSTI]

    Koch, Mark W.

    2009-06-02

    One approach to pattern recognition is to use a template from a database of objects and match it to a probe image containing the unknown. Accordingly, the Hausdorff distance can be used to measure the similarity of two sets of points. In particular, the Hausdorff can measure the goodness of a match in the presence of occlusion, clutter, and noise. However, existing 3D algorithms for calculating the Hausdorff are computationally intensive, making them impractical for pattern recognition that requires scanning of large databases. The present invention is directed to a new method that can efficiently, in time and memory, compute the Hausdorff for 3D range imagery. The method uses a window-based approach.

  4. Enhanced convective and film boiling heat transfer by surface gas injection

    SciTech Connect (OSTI)

    Duignan, M.R.; Greene, G.A. ); Irvine, T.F., Jr. . Dept. of Mechanical Engineering)

    1992-04-01

    Heat transfer measurements were made for stable film boiling of water over a horizontal, flat stainless steel plate from the minimum film boiling point temperature, T{sub SURFACE} {approximately}500K, to T{sub SURFACE} {approximately}950K. The pressure at the plate was approximately 1 atmosphere and the temperature of the water pool was maintained at saturation. The data were compared to the Berenson film-boiling model, which was developed for minimum film-boiling-point conditions. The model accurately represented the data near the minimum film-boiling point and at the highest temperatures measured, as long it was corrected for the heat transferred by radiation. On the average, the experimental data lay within {plus minus}7% of the model. Measurements of heat transfer were made without film boiling for nitrogen jetting into an overlying pool of water from nine 1-mm- diameter holes, drilled in the heat transfer plate. The heat flux was maintained constant at approximately 26.4 kW/m{sup 2}. For water-pool heights of less than 6cm the heat transfer coefficient deceased linearly with a decrease in heights. Above 6cm the heat transfer coefficient was unaffected. For the entire range of gas velocities measured (0 to 8.5 cm/s), the magnitude of the magnitude of the heat transfer coefficient only changed by approximately 20%. The heat transfer data bound the Konsetov model for turbulent pool heat transfer which was developed for vertical heat transfer surfaces. This agreement suggests that surface orientation may not be important when the gas jets do not locally affect the surface heat transfer. Finally, a database was developed for heat transfer from the plate with both film boiling and gas jetting occurring simultaneously, in a pool of water maintained at its saturation temperature. The effect of passing nitrogen through established film boiling is to increase the heat transfer from that surface. 60 refs.

  5. Enhanced convective and film boiling heat transfer by surface gas injection

    SciTech Connect (OSTI)

    Duignan, M.R.; Greene, G.A.; Irvine, T.F., Jr.

    1992-04-01

    Heat transfer measurements were made for stable film boiling of water over a horizontal, flat stainless steel plate from the minimum film boiling point temperature, T{sub SURFACE} {approximately}500K, to T{sub SURFACE} {approximately}950K. The pressure at the plate was approximately 1 atmosphere and the temperature of the water pool was maintained at saturation. The data were compared to the Berenson film-boiling model, which was developed for minimum film-boiling-point conditions. The model accurately represented the data near the minimum film-boiling point and at the highest temperatures measured, as long it was corrected for the heat transferred by radiation. On the average, the experimental data lay within {plus_minus}7% of the model. Measurements of heat transfer were made without film boiling for nitrogen jetting into an overlying pool of water from nine 1-mm- diameter holes, drilled in the heat transfer plate. The heat flux was maintained constant at approximately 26.4 kW/m{sup 2}. For water-pool heights of less than 6cm the heat transfer coefficient deceased linearly with a decrease in heights. Above 6cm the heat transfer coefficient was unaffected. For the entire range of gas velocities measured [0 to 8.5 cm/s], the magnitude of the magnitude of the heat transfer coefficient only changed by approximately 20%. The heat transfer data bound the Konsetov model for turbulent pool heat transfer which was developed for vertical heat transfer surfaces. This agreement suggests that surface orientation may not be important when the gas jets do not locally affect the surface heat transfer. Finally, a database was developed for heat transfer from the plate with both film boiling and gas jetting occurring simultaneously, in a pool of water maintained at its saturation temperature. The effect of passing nitrogen through established film boiling is to increase the heat transfer from that surface. 60 refs.

  6. Scalar relativistic computations of nuclear magnetic shielding and g-shifts with the zeroth-order regular approximation and range-separated hybrid density functionals

    SciTech Connect (OSTI)

    Aquino, Fredy W.; Govind, Niranjan; Autschbach, Jochen

    2011-10-01

    Density functional theory (DFT) calculations of NMR chemical shifts and molecular g-tensors with Gaussian-type orbitals are implemented via second-order energy derivatives within the scalar relativistic zeroth order regular approximation (ZORA) framework. Nonhybrid functionals, standard (global) hybrids, and range-separated (Coulomb-attenuated, long-range corrected) hybrid functionals are tested. Origin invariance of the results is ensured by use of gauge-including atomic orbital (GIAO) basis functions. The new implementation in the NWChem quantum chemistry package is verified by calculations of nuclear shielding constants for the heavy atoms in HX (X=F, Cl, Br, I, At) and H2X (X = O, S, Se, Te, Po), and Te chemical shifts in a number of tellurium compounds. The basis set and functional dependence of g-shifts is investigated for 14 radicals with light and heavy atoms. The problem of accurately predicting F NMR shielding in UF6-nCln, n = 1 to 6, is revisited. The results are sensitive to approximations in the density functionals, indicating a delicate balance of DFT self-interaction vs. correlation. For the uranium halides, the results with the range-separated functionals are mixed.

  7. Geysering in boiling channels

    SciTech Connect (OSTI)

    Aritomi, Masanori; Takemoto, Takatoshi; Chiang, Jing-Hsien

    1995-09-01

    A concept of natural circulation BWRs such as the SBWR has been proposed and seems to be promising in that the primary cooling system can be simplified. The authors have been investigating thermo-hydraulic instabilities which may appear during the start-up in natural circulation BWRs. In our previous works, geysering was investigated in parallel boiling channels for both natural and forced circulations, and its driving mechanism and the effect of system pressure on geysering occurrence were made clear. In this paper, geysering is investigated in a vertical column and a U-shaped vertical column heated in the lower parts. It is clarified from the results that the occurrence mechanism of geysering and the dependence of system pressure on geysering occurrence coincide between parallel boiling channels in circulation systems and vertical columns in non-circulation systems.

  8. Exploring the limit of accuracy for density functionals based on the generalized gradient approximation: Local, global hybrid, and range-separated hybrid functionals with and without dispersion corrections

    SciTech Connect (OSTI)

    Mardirossian, Narbe; Head-Gordon, Martin

    2014-05-14

    The limit of accuracy for semi-empirical generalized gradient approximation (GGA) density functionals is explored by parameterizing a variety of local, global hybrid, and range-separated hybrid functionals. The training methodology employed differs from conventional approaches in 2 main ways: (1) Instead of uniformly truncating the exchange, same-spin correlation, and opposite-spin correlation functional inhomogeneity correction factors, all possible fits up to fourth order are considered, and (2) Instead of selecting the optimal functionals based solely on their training set performance, the fits are validated on an independent test set and ranked based on their overall performance on the training and test sets. The 3 different methods of accounting for exchange are trained both with and without dispersion corrections (DFT-D2 and VV10), resulting in a total of 491 508 candidate functionals. For each of the 9 functional classes considered, the results illustrate the trade-off between improved training set performance and diminished transferability. Since all 491 508 functionals are uniformly trained and tested, this methodology allows the relative strengths of each type of functional to be consistently compared and contrasted. The range-separated hybrid GGA functional paired with the VV10 nonlocal correlation functional emerges as the most accurate form for the present training and test sets, which span thermochemical energy differences, reaction barriers, and intermolecular interactions involving lighter main group elements.

  9. Effect of surface roughness and polymeric additive on nucleate pool boiling at subatmospheric pressures

    SciTech Connect (OSTI)

    Tewari, P.K.; Verma, R.K.; Ramani, M.P.S.; Mahajan, S.P.

    1986-09-01

    This investigation pertains to boiling heat transfer from a submerged flat surface at subatmospheric and atmospheric pressures in the presence of hydroxy ethyl cellulose (HEC) as a polymeric additive in small doses. Boiling was carried out in presence of the additive on smooth and rough aluminium surfaces having effective cavity size within the range as predicted by Hsu model and the pressure was kept in the range of 8 - 100 KN/sq.m (abs). Effects of surface roughness, saturation pressure and polymer concentration on boiling heat transfer were studied and the results were compared with Rohsenow's correlation.

  10. Validation Data Plan Implementation: Subcooled Flow Boiling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validation Data Plan Implementation: Subcooled Flow Boiling Case Study Anh Bui and Nam ... INLMIS-12-27303 September 2012 Validation Data Plan Implementation: Subcooled Flow ...

  11. CHIMNEY FOR BOILING WATER REACTOR

    DOE Patents [OSTI]

    Petrick, M.

    1961-08-01

    A boiling-water reactor is described which has vertical fuel-containing channels for forming steam from water. Risers above the channels increase the head of water radially outward, whereby water is moved upward through the channels with greater force. The risers are concentric and the radial width of the space between them is somewhat small. There is a relatively low rate of flow of water up through the radially outer fuel-containing channels, with which the space between the risers is in communication. (AE C)

  12. Lattice Boltzmann modeling of boiling heat transfer: The boiling curve and the effects of wettability

    SciTech Connect (OSTI)

    Li, Q.; Kang, Q. J.; Francois, M. M.; He, Y. L.; Luo, K. H.

    2015-03-03

    A hybrid thermal lattice Boltzmann (LB) model is presented to simulate thermal multiphase flows with phase change based on an improved pseudopotential LB approach (Li et al., 2013). The present model does not suffer from the spurious term caused by the forcing-term effect, which was encountered in some previous thermal LB models for liquid–vapor phase change. Using the model, the liquid–vapor boiling process is simulated. The boiling curve together with the three boiling stages (nucleate boiling, transition boiling, and film boiling) is numerically reproduced in the LB community for the first time. The numerical results show that the basic features and the fundamental characteristics of boiling heat transfer are well captured, such as the severe fluctuation of transient heat flux in the transition boiling and the feature that the maximum heat transfer coefficient lies at a lower wall superheat than that of the maximum heat flux. Moreover, the effects of the heating surface wettability on boiling heat transfer are investigated. It is found that an increase in contact angle promotes the onset of boiling but reduces the critical heat flux, and makes the boiling process enter into the film boiling regime at a lower wall superheat, which is consistent with the findings from experimental studies.

  13. Lattice Boltzmann modeling of boiling heat transfer: The boiling curve and the effects of wettability

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Q.; Kang, Q. J.; Francois, M. M.; He, Y. L.; Luo, K. H.

    2015-03-03

    A hybrid thermal lattice Boltzmann (LB) model is presented to simulate thermal multiphase flows with phase change based on an improved pseudopotential LB approach (Li et al., 2013). The present model does not suffer from the spurious term caused by the forcing-term effect, which was encountered in some previous thermal LB models for liquid–vapor phase change. Using the model, the liquid–vapor boiling process is simulated. The boiling curve together with the three boiling stages (nucleate boiling, transition boiling, and film boiling) is numerically reproduced in the LB community for the first time. The numerical results show that the basic featuresmore » and the fundamental characteristics of boiling heat transfer are well captured, such as the severe fluctuation of transient heat flux in the transition boiling and the feature that the maximum heat transfer coefficient lies at a lower wall superheat than that of the maximum heat flux. Moreover, the effects of the heating surface wettability on boiling heat transfer are investigated. It is found that an increase in contact angle promotes the onset of boiling but reduces the critical heat flux, and makes the boiling process enter into the film boiling regime at a lower wall superheat, which is consistent with the findings from experimental studies.« less

  14. Experimental Investigation of Subcooled Flow Boiling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Experimental Investigation of Subcooled Flow Boiling Yassin A. Hassan TAMU September 30, 2013 CASL-8-2013-0214-000 TEXAS A&M UNIVERSITY Experimental Investigation of Subcooled Flow Boiling Milestone Report PI: Yassin A. Hassan 9/30/2013 CASL-U-2013-0214-000 Contents Introduction ....................................................................................................................................................... 5 Experimental Setup

  15. Great Boiling Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Great Boiling Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Great Boiling Springs Geothermal Area Contents 1 Area Overview 2 History and...

  16. Modeling acid-gas generation from boiling chloride brines (Journal...

    Office of Scientific and Technical Information (OSTI)

    Modeling acid-gas generation from boiling chloride brines Citation Details In-Document Search Title: Modeling acid-gas generation from boiling chloride brines This study ...

  17. Boiling water reactor-full length emergency core cooling heat...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Boiling water reactor-full length emergency core cooling heat transfer ... Citation Details In-Document Search Title: Boiling water reactor-full length emergency ...

  18. 2010 Inspection and Status Report for the Boiling Nuclear Superheater...

    Office of Legacy Management (LM)

    Annual Inspection - Boiling Nuclear Superheat (BONUS) Site, Rincn, Puerto Rico October 2013 Page 1 2013 Inspection and Status Report for the Former Boiling Nuclear Superheater...

  19. PACCAR CRADA: Experimental Investigation in Coolant Boiling in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Power Electronics of Electric Vehicles with Small Channel Coolant Boiling Cooling Boiling in Head Region - PACCAR Integrated Underhood Thermal and External Aerodynamics- Cummins

  20. CRADA with PACCAR Experimental Investigation in Coolant Boiling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Circular Tube Efficient Cooling in Engines with Nucleated Boiling Cooling Boiling in Head Region - PACCAR Integrated Underhood Thermal and External Aerodynamics- Cummins

  1. Preliminary design study of small long life boiling water reactor...

    Office of Scientific and Technical Information (OSTI)

    boiling water reactor (BWR) with tight lattice thorium nitride fuel Citation Details In-Document Search Title: Preliminary design study of small long life boiling water reactor ...

  2. CASL-U-2015-0040-000 Initial Boiling Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    40-000 Initial Boiling Water Reactor (BWR) Input Specifications Scott Palmtag Core Physics February 28, 2015 Initial Boiling Water Reactor (BWR) Input Specification Consortium for ...

  3. Numerical Simulations of Boiling Jet Impingement Cooling in Power Electronics

    SciTech Connect (OSTI)

    Narumanchi, S.; Troshko, A.; Hassani, V.; Bharathan, D.

    2006-12-01

    This paper explores turbulent boiling jet impingement for cooling power electronic components in hybrid electric vehicles.

  4. SUPERHEATING IN A BOILING WATER REACTOR

    DOE Patents [OSTI]

    Treshow, M.

    1960-05-31

    A boiling-water reactor is described in which the steam developed in the reactor is superheated in the reactor. This is accomplished by providing means for separating the steam from the water and passing the steam over a surface of the fissionable material which is not in contact with the water. Specifically water is boiled on the outside of tubular fuel elements and the steam is superheated on the inside of the fuel elements.

  5. CONTINUOUS ANALYZER UTILIZING BOILING POINT DETERMINATION

    DOE Patents [OSTI]

    Pappas, W.S.

    1963-03-19

    A device is designed for continuously determining the boiling point of a mixture of liquids. The device comprises a distillation chamber for boiling a liquid; outlet conduit means for maintaining the liquid contents of said chamber at a constant level; a reflux condenser mounted above said distillation chamber; means for continuously introducing an incoming liquid sample into said reflux condenser and into intimate contact with vapors refluxing within said condenser; and means for measuring the temperature of the liquid flowing through said distillation chamber. (AEC)

  6. Subcooled Flow Boiling Heat Transfer to Water and Ethylene Glycol...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Subcooled Flow Boiling Heat Transfer to Water and Ethylene GlycolWater Mixtures in a Bottom-Heated Tube Title Subcooled Flow Boiling Heat Transfer to Water and Ethylene Glycol...

  7. PNNL Enhanced Pool-Boiling Heat Transfer Using Nanostructured Surfaces

    ScienceCinema (OSTI)

    None

    2012-12-31

    Close-up video of boiling taking place on a nanostructured surface in a controlled laboratory experiment.

  8. Pressure drop, heat transfer, critical heat flux, and flow stability of two-phase flow boiling of water and ethylene glycol/water mixtures - final report for project "Efficent cooling in engines with nucleate boiling."

    SciTech Connect (OSTI)

    Yu, W.; France, D. M.; Routbort, J. L.

    2011-01-19

    Because of its order-of-magnitude higher heat transfer rates, there is interest in using controllable two-phase nucleate boiling instead of conventional single-phase forced convection in vehicular cooling systems to remove ever increasing heat loads and to eliminate potential hot spots in engines. However, the fundamental understanding of flow boiling mechanisms of a 50/50 ethylene glycol/water mixture under engineering application conditions is still limited. In addition, it is impractical to precisely maintain the volume concentration ratio of the ethylene glycol/water mixture coolant at 50/50. Therefore, any investigation into engine coolant characteristics should include a range of volume concentration ratios around the nominal 50/50 mark. In this study, the forced convective boiling heat transfer of distilled water and ethylene glycol/water mixtures with volume concentration ratios of 40/60, 50/50, and 60/40 in a 2.98-mm-inner-diameter circular tube has been investigated in both the horizontal flow and the vertical flow. The two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux of the test fluids were determined experimentally over a range of the mass flux, the vapor mass quality, and the inlet subcooling through a new boiling data reduction procedure that allowed the analytical calculation of the fluid boiling temperatures along the experimental test section by applying the ideal mixture assumption and the equilibrium assumption along with Raoult's law. Based on the experimental data, predictive methods for the two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux under engine application conditions were developed. The results summarized in this final project report provide the necessary information for designing and implementing nucleate-boiling vehicular cooling systems.

  9. Enhanced Pool-Boiling Heat Transfer Using Nanostructured Surfaces...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    creates optimal surface wettability characteristics that allow better capillary flow of water on the liquid boiling surfaces often used to cool electronics. the dense...

  10. Geothermal Technology Breakthrough in Alaska: Harvesting Heat below Boiling Temperatures

    Broader source: Energy.gov [DOE]

    The Energy Department is supporting geothermal exploration at lower temperatures, thanks to a technology breakthrough that allows geothermal energy to be produced at temperatures below the boiling...

  11. Resistivity During Boiling in the SB-15-D Core from the Geysers Geothermal Field: The Effects of Capillarity

    SciTech Connect (OSTI)

    Roberts, J.; Duba, A.; Bonner, B.; Kasameyer, P.

    1997-01-01

    In a laboratory study of cores from borehole SB-15-D in The Geysers geothermal area, we measured the electrical resistivity of metashale with and without pore-pressure control, with confining pressures up to 100 bars and temperatures between 20 and 150 C, to determine how the pore-size distribution and capillarity affected boiling. We observed a gradual increase in resistivity when the downstream pore pressure or confining pressure decreased below the phase boundary of free water. For the conditions of this experiment, boiling, as indicated by an increase in resistivity, is initiated at pore pressures of approximately 0.5 to 1 bar (0.05 to 0.1 MPa) below the free-water boiling curve, and it continues to increase gradually as pressure is lowered to atmospheric. A simple model of the effects of capillarity suggests that at 145 C, less than 15% of the pore water can boil in these rocks. If subsequent experiments bear out these preliminary observations, then boiling within a geothermal reservoir is controlled not just by pressure and temperature but also by pore-size distribution. Thus, it may be possible to determine reservoir characteristics by monitoring changes in electrical resistivity as reservoir conditions change.

  12. (Boiling water reactor (BWR) CORA experiments)

    SciTech Connect (OSTI)

    Ott, L.J.

    1990-10-16

    To participate in the 1990 CORA Workshop at Kernforschungszentrum Karlsruhe (KfK) GmbH, Karlsruhe, FRG, on October 1--4, and to participate in detailed discussions on October 5 with the KfK CORA Boiling Water Reactor (BWR) experiments. The traveler attended the 1990 CORA Workshop at KfK, FRG. Participation included the presentation of a paper on work performed by the Boiling Water Reactor Core Melt Progression Phenomena Program at Oak Ridge National Laboratory (ORNL) on posttest analyses of CORA BWR experiments. The Statement of Work (November 1989) for the BWR Core Melt Progression Phenomena Program provides for pretest and posttest analyses of the BWR CORA experiments performed at KfK. Additionally, it is intended that ORNL personnel participate in the planning process for future CORA BWR experiments. For these purposes, meetings were held with KfK staff to discuss such topics as (1) experimental test schedule, (2) BWR test conduct, (3) perceived BWR experimental needs, and (4) KfK operational staff needs with respect to ORNL support. 19 refs.

  13. Conversion of direct process high-boiling residue to monosilanes

    DOE Patents [OSTI]

    Brinson, Jonathan Ashley (Vale of Glamorgan, GB); Crum, Bruce Robert (Madison, IN); Jarvis, Jr., Robert Frank (Midland, MI)

    2000-01-01

    A process for the production of monosilanes from the high-boiling residue resulting from the reaction of hydrogen chloride with silicon metalloid in a process typically referred to as the "direct process." The process comprises contacting a high-boiling residue resulting from the reaction of hydrogen chloride and silicon metalloid, with hydrogen gas in the presence of a catalytic amount of aluminum trichloride effective in promoting conversion of the high-boiling residue to monosilanes. The present process results in conversion of the high-boiling residue to monosilanes. At least a portion of the aluminum trichloride catalyst required for conduct of the process may be formed in situ during conduct of the direct process and isolation of the high-boiling residue.

  14. Correlations estimate volume distilled using gravity, boiling point

    SciTech Connect (OSTI)

    Moreno, A.; Consuelo Perez de Alba, M. del; Manriquez, L.; Guardia Mendoz, P. de la

    1995-10-23

    Mathematical nd graphic correlations have been developed for estimating cumulative volume distilled as a function of crude API gravity and true boiling point (TBP). The correlations can be used for crudes with gravities of 21--34{degree} API and boiling points of 150--540 C. In distillation predictions for several mexican and Iraqi crude oils, the correlations have exhibited accuracy comparable to that of laboratory measurements. The paper discusses the need for such a correlation and the testing of the correlation.

  15. Approximate option pricing

    SciTech Connect (OSTI)

    Chalasani, P.; Saias, I.; Jha, S.

    1996-04-08

    As increasingly large volumes of sophisticated options (called derivative securities) are traded in world financial markets, determining a fair price for these options has become an important and difficult computational problem. Many valuation codes use the binomial pricing model, in which the stock price is driven by a random walk. In this model, the value of an n-period option on a stock is the expected time-discounted value of the future cash flow on an n-period stock price path. Path-dependent options are particularly difficult to value since the future cash flow depends on the entire stock price path rather than on just the final stock price. Currently such options are approximately priced by Monte carlo methods with error bounds that hold only with high probability and which are reduced by increasing the number of simulation runs. In this paper the authors show that pricing an arbitrary path-dependent option is {number_sign}-P hard. They show that certain types f path-dependent options can be valued exactly in polynomial time. Asian options are path-dependent options that are particularly hard to price, and for these they design deterministic polynomial-time approximate algorithms. They show that the value of a perpetual American put option (which can be computed in constant time) is in many cases a good approximation to the value of an otherwise identical n-period American put option. In contrast to Monte Carlo methods, the algorithms have guaranteed error bounds that are polynormally small (and in some cases exponentially small) in the maturity n. For the error analysis they derive large-deviation results for random walks that may be of independent interest.

  16. Flow Boiling Carolyn Coyle, Jacopo Buongiorno, Thomas McKrell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8-000 Synthesis of CRUD and its Effects On Pool and Subcooled Flow Boiling Carolyn Coyle, Jacopo Buongiorno, Thomas McKrell Massachusetts Institute of Technology, Cambridge, MA, USA March 31, 2015 CASL-U-2015-0068-000 Synthesis of CRUD and its Effects On Pool and Subcooled Flow Boiling CASL L3 Milestone Report Carolyn Coyle, Jacopo Buongiorno * , Thomas McKrell Massachusetts Institute of Technology, Cambridge, MA, USA * jacopo@mit.edu CASL-U-2015-0068-000 ABSTRACT Previous studies have

  17. Technology, safety and costs of decommissioning a Reference Boiling Water Reactor Power Station. Main report. Volume 1

    SciTech Connect (OSTI)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWe.

  18. Acoustic emission feedback control for control of boiling in a microwave oven

    DOE Patents [OSTI]

    White, Terry L.

    1991-01-01

    An acoustic emission based feedback system for controlling the boiling level of a liquid medium in a microwave oven is provided. The acoustic emissions from the medium correlated with surface boiling is used to generate a feedback control signal proportional to the level of boiling of the medium. This signal is applied to a power controller to automatically and continuoulsly vary the power applied to the oven to control the boiling at a selected level.

  19. Modeling acid-gas generation from boiling chloride brines

    SciTech Connect (OSTI)

    Zhang, Guoxiang; Spycher, Nicolas; Sonnenthal, Eric; Steefel, Carl

    2009-11-16

    This study investigates the generation of HCl and other acid gases from boiling calcium chloride dominated waters at atmospheric pressure, primarily using numerical modeling. The main focus of this investigation relates to the long-term geologic disposal of nuclear waste at Yucca Mountain, Nevada, where pore waters around waste-emplacement tunnels are expected to undergo boiling and evaporative concentration as a result of the heat released by spent nuclear fuel. Processes that are modeled include boiling of highly concentrated solutions, gas transport, and gas condensation accompanied by the dissociation of acid gases, causing low-pH condensate. Simple calculations are first carried out to evaluate condensate pH as a function of HCl gas fugacity and condensed water fraction for a vapor equilibrated with saturated calcium chloride brine at 50-150 C and 1 bar. The distillation of a calcium-chloride-dominated brine is then simulated with a reactive transport model using a brine composition representative of partially evaporated calcium-rich pore waters at Yucca Mountain. Results show a significant increase in boiling temperature from evaporative concentration, as well as low pH in condensates, particularly for dynamic systems where partial condensation takes place, which result in enrichment of HCl in condensates. These results are in qualitative agreement with experimental data from other studies. The combination of reactive transport with multicomponent brine chemistry to study evaporation, boiling, and the potential for acid gas generation at the proposed Yucca Mountain repository is seen as an improvement relative to previously applied simpler batch evaporation models. This approach allows the evaluation of thermal, hydrological, and chemical (THC) processes in a coupled manner, and modeling of settings much more relevant to actual field conditions than the distillation experiment considered. The actual and modeled distillation experiments do not represent

  20. LIQUID PROPANE GAS (LPG) STORAGE AREA BOILING LIQUID EXPANDING VAPOR EXPLOSION (BLEVE) ANALYSIS

    SciTech Connect (OSTI)

    PACE, M.E.

    2004-01-13

    The PHA and the FHAs for the SWOC MDSA (HNF-14741) identified multiple accident scenarios in which vehicles powered by flammable gases (e.g., propane), or combustible or flammable liquids (e.g., gasoline, LPG) are involved in accidents that result in an unconfined vapor cloud explosion (UVCE) or in a boiling liquid expanding vapor explosion (BLEVE), respectively. These accident scenarios are binned in the Bridge document as FIR-9 scenarios. They are postulated to occur in any of the MDSA facilities. The LPG storage area will be in the southeast corner of CWC that is relatively remote from store distaged MAR. The location is approximately 30 feet south of MO-289 and 250 feet east of 2401-W by CWC Gate 10 in a large staging area for unused pallets and equipment.

  1. Effect of surface oxidation on the onset of nucleate boiling in a materials test reactor coolant channel

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Forrest, Eric C.; Don, Sarah M.; Hu, Lin -Wen; Buongiorno, Jacopo; McKrell, Thomas J.

    2016-02-29

    The onset of nucleate boiling (ONB) serves as the thermal-hydraulic operating limit for many research and test reactors. However, boiling incipience under forced convection has not been well-characterized in narrow channel geometries or for oxidized surface conditions. This study presents experimental data for the ONB in vertical upflow of deionized (DI) water in a simulated materials test reactor (MTR) coolant channel. The channel gap thickness and aspect ratio were 1.96 mm and 29:1, respectively. Boiling surface conditions were carefully controlled and characterized, with both heavily oxidized and native oxide surfaces tested. Measurements were performed for mass fluxes ranging from 750more » to 3000 kg/m2s and for subcoolings ranging from 10 to 45°C. ONB was identified using a combination of high-speed visual observation, surface temperature measurements, and channel pressure drop measurements. Surface temperature measurements were found to be most reliable in identifying the ONB. For the nominal (native oxide) surface, results indicate that the correlation of Bergles and Rohsenow, when paired with the appropriate single-phase heat transfer correlation, adequately predicts the ONB heat flux. Furthermore, incipience on the oxidized surface occurred at a higher heat flux and superheat than on the plain surface.« less

  2. Efficiency of a solar collector with internal boiling

    SciTech Connect (OSTI)

    Neeper, D.A.

    1986-01-01

    The behavior of a solar collector with a boiling fluid is analyzed to provide a simple algebraic model for future systems simulations, and to provide guidance for testing. The efficiency equation is developed in a form linear in the difference between inlet and saturation (boiling) temperatures, whereas the expression upon which ASHRAE Standard 109P is based utilizes the difference between inlet and ambient temperatures. The coefficient of the revised linear term is a weak function of collector parameters, weather, and subcooling of the working fluid. For a glazed flat-plate collector with metal absorber, the coefficient is effectively constant. Therefore, testing at multiple values of insolation and subcooling, as specified by ASHRAE 109P, should not be necessary for most collectors. The influences of collector properties and operating conditions on efficiency are examined.

  3. SELF-REGULATING BOILING-WATER NUCLEAR REACTORS

    DOE Patents [OSTI]

    Ransohoff, J.A.; Plawchan, J.D.

    1960-08-16

    A boiling-water reactor was designed which comprises a pressure vessel containing a mass of water, a reactor core submerged within the water, a reflector tank disposed within the reactor, the reflector tank being open at the top to the interior of the pressure vessel, and a surge tank connected to the reflector tank. In operation the reflector level changes as a function of the pressure witoin the reactor so that the reactivity of the reactor is automatically controlled.

  4. An improved proximity force approximation for electrostatics

    SciTech Connect (OSTI)

    Fosco, Cesar D.; Instituto Balseiro, Universidad Nacional de Cuyo, R8402AGP Bariloche ; Lombardo, Fernando C.; IFIBA ; Mazzitelli, Francisco D.

    2012-08-15

    A quite straightforward approximation for the electrostatic interaction between two perfectly conducting surfaces suggests itself when the distance between them is much smaller than the characteristic lengths associated with their shapes. Indeed, in the so called 'proximity force approximation' the electrostatic force is evaluated by first dividing each surface into a set of small flat patches, and then adding up the forces due two opposite pairs, the contributions of which are approximated as due to pairs of parallel planes. This approximation has been widely and successfully applied in different contexts, ranging from nuclear physics to Casimir effect calculations. We present here an improvement on this approximation, based on a derivative expansion for the electrostatic energy contained between the surfaces. The results obtained could be useful for discussing the geometric dependence of the electrostatic force, and also as a convenient benchmark for numerical analyses of the tip-sample electrostatic interaction in atomic force microscopes. - Highlights: Black-Right-Pointing-Pointer The proximity force approximation (PFA) has been widely used in different areas. Black-Right-Pointing-Pointer The PFA can be improved using a derivative expansion in the shape of the surfaces. Black-Right-Pointing-Pointer We use the improved PFA to compute electrostatic forces between conductors. Black-Right-Pointing-Pointer The results can be used as an analytic benchmark for numerical calculations in AFM. Black-Right-Pointing-Pointer Insight is provided for people who use the PFA to compute nuclear and Casimir forces.

  5. Experimental investigation on the flow instability behavior of a multi-channel boiling natural circulation loop at low-pressures

    SciTech Connect (OSTI)

    Jain, Vikas; Nayak, A.K.; Vijayan, P.K.; Saha, D.; Sinha, R.K.

    2010-09-15

    Natural circulation as a mode of heat removal is being considered as a prominent passive feature in the innovative nuclear reactor designs, particularly in boiling-water-reactors, due to its simplicity and economy. However, boiling natural circulation system poses many challenges to designer due to occurrence of various kinds of instabilities such as excursive instability, density wave oscillations, flow pattern transition instability, geysering and metastable states in parallel channels. This problem assumes greater significance particularly at low-pressures i.e. during startup, where there is great difference in the properties of two phases. In light of this, a parallel channel loop has been designed and installed that has a geometrical resemblance to the pressure-tube-type boiling-water-reactor, to investigate into the behavior of boiling natural circulation. The loop comprises of four identical parallel channels connected between two common plenums i.e. steam drum and header. The recirculation path is provided by a single downcomer connected between steam drum and header. Experiments have been conducted over a wide range of power and pressures (1-10 bar). Two distinct unstable zones are observed with respect to power i.e. corresponding to low power (Type-I) and high power (Type-II) with a stable zone at intermediate powers. The nature of oscillations in terms of their amplitude and frequency and their evolution for Type-I and Type-II instabilities are studied with respect to the effect of heater power and pressure. This paper discusses the evolution of unstable and stable behavior along with the nature of flow oscillation in the channels and the effect of pressure on it. (author)

  6. Approximate circuits for increased reliability

    DOE Patents [OSTI]

    Hamlet, Jason R.; Mayo, Jackson R.

    2015-08-18

    Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.

  7. Approximate circuits for increased reliability

    DOE Patents [OSTI]

    Hamlet, Jason R.; Mayo, Jackson R.

    2015-12-22

    Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.

  8. Knowledge and abilities catalog for nuclear power plant operators: boiling water reactors

    SciTech Connect (OSTI)

    Not Available

    1986-09-01

    The Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Boiling-Water Reactors (BWR) (NUREG-1123) provides the basis for the development of content-valid licensing examinations for reactor operators (ROs) and senior reactor operators (SROs). The examinations developed using the BWR Catalog and Examiners' Handbook for Developing Operator Licensing Examinations (NUREG-1121) will cover those topics listed under Title 10, Code of Federal Regulations, Part 55. The BWR Catalog contains approximately 7000 knowledge and ability (K/A) statements for ROs and SROs at boiling water reactors. Each K/A statement has been rated for its importance to the safe operation of the plant in a manner ensuring personnel and public health and safety. The BWR K/A Catalog is organized into five major sections: Plant-wide Generic Knowledge and Ability Statements, Plant Systems grouped by Safety Function, Emergency and Abnormal Plant Evolutions, Components, and Theory. The BWR Catalog represents a modification of the form and content of the K/A Catalog for Nuclear Power Plant Operators: Pressurized Water Reactors (NUREG-1122). First, categories of knowledge and ability statements have been redefined. Second, the scope of the definition of emergency and abnormal plant evolutions has been revised in line with a symptom-based approach. Third, K/As related to the operational applications of theory have been incorporated into the delineations for both plant systems and emergency and abnormal plant evolutions, while K/As pertaining to theory fundamental to plant operation have been delineated in a separate theory section. Finally, the components section has been revised.

  9. Knowledge and abilities catalog for nuclear power plant operators: Boiling water reactors, Revision 1

    SciTech Connect (OSTI)

    1995-08-01

    The Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Boiling-Water Reactors (BWRs) (NUREG-1123, Revision 1) provides the basis for the development of content-valid licensing examinations for reactor operators (ROs) and senior reactor operators (SROs). The examinations developed using the BWR Catalog along with the Operator Licensing Examiner Standards (NUREG-1021) and the Examiner`s Handbook for Developing Operator Licensing Written Examinations (NUREG/BR-0122), will cover the topics listed under Title 10, Code of Federal Regulations, Part 55 (10 CFR 55). The BWR Catalog contains approximately 7,000 knowledge and ability (K/A) statements for ROs and SROs at BWRs. The catalog is organized into six major sections: Organization of the Catalog, Generic Knowledge and Ability Statements, Plant Systems grouped by Safety Functions, Emergency and Abnormal Plant Evolutions, Components, and Theory. Revision 1 to the BWR Catalog represents a modification in form and content of the original catalog. The K/As were linked to their applicable 10 CFR 55 item numbers. SRO level K/As were identified by 10 CFR 55.43 item numbers. The plant-wide generic and system generic K/As were combined in one section with approximately one hundred new K/As. Component Cooling Water and Instrument Air Systems were added to the Systems Section. Finally, High Containment Hydrogen Concentration and Plant Fire On Site evolutions added to the Emergency and Abnormal Plant Evolutions section.

  10. DIRECT-CYCLE, BOILING-WATER NUCLEAR REACTOR

    DOE Patents [OSTI]

    Harrer, J.M.; Fromm, L.W. Jr.; Kolba, V.M.

    1962-08-14

    A direct-cycle boiling-water nuclear reactor is described that employs a closed vessel and a plurality of fuel assemblies, each comprising an outer tube closed at its lower end, an inner tube, fuel rods in the space between the tubes and within the inner tube. A body of water lying within the pressure vessel and outside the fuel assemblies is converted to saturated steam, which enters each fuel assembly at the top and is converted to superheated steam in the fuel assembly while it is passing therethrough first downward through the space between the inner and outer tubes of the fuel assembly and then upward through the inner tube. (AEC)

  11. Union job fight boiling at DOE cleanup sites

    SciTech Connect (OSTI)

    Setzer, S.W.

    1993-11-15

    The US DOE is facing a growing jurisdictional dispute over which unions will perform the majority of clean-up work at its facilities. Unions affiliated with the AFL-CIO Metal Trades Council representing operations employees at the sites believe they have a fundamental right to work. Unions in the AFL-CIO's Building and Construction Trades Dept. insist that they have a clear mandate under federal labor law and the Davis-Bacon Act. The issue has heated up in recent weeks at the policy level and is boiling in a contentious dispute at DOE's Fernald site in Ohio.

  12. Boiling water neutronic reactor incorporating a process inherent safety design

    DOE Patents [OSTI]

    Forsberg, Charles W.

    1987-01-01

    A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (non-borated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.

  13. Water inventory management in condenser pool of boiling water reactor

    DOE Patents [OSTI]

    Gluntz, D.M.

    1996-03-12

    An improved system for managing the water inventory in the condenser pool of a boiling water reactor has means for raising the level of the upper surface of the condenser pool water without adding water to the isolation pool. A tank filled with water is installed in a chamber of the condenser pool. The water-filled tank contains one or more holes or openings at its lowermost periphery and is connected via piping and a passive-type valve (e.g., squib valve) to a high-pressure gas-charged pneumatic tank of appropriate volume. The valve is normally closed, but can be opened at an appropriate time following a loss-of-coolant accident. When the valve opens, high-pressure gas inside the pneumatic tank is released to flow passively through the piping to pressurize the interior of the water-filled tank. In so doing, the initial water contents of the tank are expelled through the openings, causing the water level in the condenser pool to rise. This increases the volume of water available to be boiled off by heat conducted from the passive containment cooling heat exchangers. 4 figs.

  14. Boiling water neutronic reactor incorporating a process inherent safety design

    DOE Patents [OSTI]

    Forsberg, C.W.

    1985-02-19

    A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (nonborated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two water volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.

  15. Water inventory management in condenser pool of boiling water reactor

    DOE Patents [OSTI]

    Gluntz, Douglas M.

    1996-01-01

    An improved system for managing the water inventory in the condenser pool of a boiling water reactor has means for raising the level of the upper surface of the condenser pool water without adding water to the isolation pool. A tank filled with water is installed in a chamber of the condenser pool. The water-filled tank contains one or more holes or openings at its lowermost periphery and is connected via piping and a passive-type valve (e.g., squib valve) to a high-pressure gas-charged pneumatic tank of appropriate volume. The valve is normally closed, but can be opened at an appropriate time following a loss-of-coolant accident. When the valve opens, high-pressure gas inside the pneumatic tank is released to flow passively through the piping to pressurize the interior of the water-filled tank. In so doing, the initial water contents of the tank are expelled through the openings, causing the water level in the condenser pool to rise. This increases the volume of water available to be boiled off by heat conducted from the passive containment cooling heat exchangers. 4 figs.

  16. Lattice Boltzmann Methods to Address Fundamental Boiling and Two-Phase Problems

    SciTech Connect (OSTI)

    Uddin, Rizwan

    2012-01-01

    This report presents the progress made during the fourth (no cost extension) year of this three-year grant aimed at the development of a consistent Lattice Boltzmann formulation for boiling and two-phase flows. During the first year, a consistent LBM formulation for the simulation of a two-phase water-steam system was developed. Results of initial model validation in a range of thermo-dynamic conditions typical for Boiling Water Reactors (BWRs) were shown. Progress was made on several fronts during the second year. Most important of these included the simulation of the coalescence of two bubbles including the surface tension effects. Work during the third year focused on the development of a new lattice Boltzmann model, called the artificial interface lattice Boltzmann model (AILB model) for the 3 simulation of two-phase dynamics. The model is based on the principle of free energy minimization and invokes the Gibbs-Duhem equation in the formulation of non-ideal forcing function. This was reported in detail in the last progress report. Part of the efforts during the last (no-cost extension) year were focused on developing a parallel capability for the 2D as well as for the 3D codes developed in this project. This will be reported in the final report. Here we report the work carried out on testing the AILB model for conditions including the thermal effects. A simplified thermal LB model, based on the thermal energy distribution approach, was developed. The simplifications are made after neglecting the viscous heat dissipation and the work done by pressure in the original thermal energy distribution model. Details of the model are presented here, followed by a discussion of the boundary conditions, and then results for some two-phase thermal problems.

  17. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 1. Main report. Technical report, September 1977-October 1979

    SciTech Connect (OSTI)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE.

  18. L3:THM.CLS.P7.09 Advancements on Wall Boiling Modeling in CFD: Leveraging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Advancements on Wall Boiling Modeling in CFD: Leveraging New Understanding from MIT Flow Boiling Facility Lindsey Gilman, Emilio Baglietto MIT Completed: August 30, 2013 CASL-8-2013-0185-000 ADVANCEMENTS ON WALL BOILING MODELING IN CFD: LEVERAGING NEW UNDERSTANDING FROM MIT FLOW BOILING FACILITY Lindsey Gilman, Emilio Baglietto August 30, 2013 (Rev. 0) Massachusetts Institute of Technology Cambridge, MA, USA August 2013 CASL-U-2013-0185-000 EXECUTIVE SUMMARY This milestone introduces advanced

  19. Feasibility study on the thorium fueled boiling water breeder reactor

    SciTech Connect (OSTI)

    PetrusTakaki, N.

    2012-07-01

    The feasibility of (Th,U)O 2 fueled, boiling water breeder reactor based on conventional BWR technology has been studied. In order to determine the potential use of water cooled thorium reactor as a competitive breeder, this study evaluated criticality, breeding and void reactivity coefficient in response to changes made in MFR and fissile enrichments. The result of the study shows that while using light water as moderator, low moderator to fuel volume ratio (MFR=0.5), it was possible to breed fissile fuel in negative void reactivity condition. However the burnup value was lower than the value of the current LWR. On the other hand, heavy water cooled reactor shows relatively wider feasible breeding region, which lead into possibility of designing a core having better neutronic and economic performance than light water with negative void reactivity coefficient. (authors)

  20. Analysis of scrams and forced outages at boiling water reactors

    SciTech Connect (OSTI)

    Earle, R. T.; Sullivan, W. P.; Miller, K. R.; Schwegman, W. J.

    1980-07-01

    This report documents the results of a study of scrams and forced outages at General Electric Boiling Water Reactors (BWRs) operating in the United States. This study was conducted for Sandia Laboratories under a Light Water Reactor Safety Program which it manages for the United States Department of Energy. Operating plant data were used to identify the causes of scrams and forced outages. Causes of scrams and forced outages have been summarized as a function of operating plant and plant age and also ranked according to the number of events per year, outage time per year, and outage time per event. From this ranking, identified potential improvement opportunities were evaluated to determine the associated benefits and impact on plant availability.

  1. BOILING WATER REACTOR WITH FEED WATER INJECTION NOZZLES

    DOE Patents [OSTI]

    Treshow, M.

    1963-04-30

    This patent covers the use of injection nozzles for pumping water into the lower ends of reactor fuel tubes in which water is converted directly to steam. Pumping water through fuel tubes of this type of boiling water reactor increases its power. The injection nozzles decrease the size of pump needed, because the pump handles only the water going through the nozzles, additional water being sucked into the tubes by the nozzles independently of the pump from the exterior body of water in which the fuel tubes are immersed. The resulting movement of exterior water along the tubes holds down steam formation, and thus maintains the moderator effectiveness, of the exterior body of water. (AEC)

  2. Nucleate boiling pressure drop in an annulus: Book 7

    SciTech Connect (OSTI)

    Not Available

    1992-11-01

    The application of the work described in this report is the production reactors at the Savannah River Site, and the context is nuclear reactor safety. The Loss of Coolant Accident (LOCA) scenario considered involves a double-ended break of a primary coolant pipe in the reactor. During a LOCA, the flow through portions of the reactor may reverse direction or be greatly reduced, depending upon the location of the break. The reduced flow rate of coolant (D{sub 2}O) through the fuel assembly channels of the reactor -- downflow in this situation -- can lead to boiling and to the potential for flow instabilities which may cause some of the fuel assembly channels to overheat and melt. That situation is to be avoided. The experimental approach is to provide a test annulus which simulates geometry, materials, and flow conditions in a Mark-22 fuel assembly (Coolant Channel 3) to the extent possible. The annulus has a full-scale geometry, and in fat uses SRL dummy hardware for the inner annulus wall in the ribbed geometry. The materials aluminum. The annulus is uniformly heated in the axial direction, but the circumferential heat flux can be varied to provide ``power tilt`` or asymmetric heating of the inner and outer annulus walls. The test facility uses H{sub 2}O rather than D{sub 2}O, but it includes the effects of dissolved helium gas present in the reactor. The key analysis approaches are: To compare the minima in the measured demand curves with analytical criteria, in particular the Saha-Zuber (1974) model; and to compare the pressure and temperature as a function of length in the annulus with an integral model for flow boiling in a heated channel. This document consists solely of tables of temperature measurements; minima, maxima, averages and standard deviations being measured.

  3. Nucleate boiling pressure drop in an annulus: Book 6

    SciTech Connect (OSTI)

    Not Available

    1992-11-01

    The application of the work described in this report is the production reactors at the Savannah River Site, and the context is nuclear reactor safety. The Loss of Coolant Accident (LOCA) scenario considered involves a double-ended break of a primary coolant pipe in the reactor. During a LOCA, the flow through portions of the reactor may reverse direction or be greatly reduced, depending upon the location of the break. The reduced flow rate of coolant (D{sub 2}O) through the fuel assembly channels of the reactor -- downflow in this situation -- can lead to boiling and to the potential for flow instabilities which may cause some of the fuel assembly channels to overheat and melt. That situation is to be avoided. The experimental approach is to provide a test annulus which simulates geometry, materials, and flow conditions in a Mark-22 fuel assembly (Coolant Channel 3) to the extent possible. The annulus has a full-scale geometry, and in fat uses SRL dummy hardware for the inner annulus wall in the ribbed geometry. The materials aluminum. The annulus is uniformly heated in the axial direction, but the circumferential heat flux can be varied to provide ``power tilt`` or asymmetric heating of the inner and outer annulus walls. The test facility uses H{sub 2}O rather than D{sub 2}O, but it includes the effects of dissolved helium gas present in the reactor. The key analysis approaches are: To compare the minima in the measured demand curves with analytical criteria, in particular the Saha-Zuber (1974) model; and to compare the pressure and temperature as a function of length in the annulus with an integral model for flow boiling in a heated channel. This document consists of a summary of temperature measurements to include recorded minima, maxima, averages and standard deviations.

  4. Metallurgical failure analysis of a propane tank boiling liquid expanding vapor explosion (BLEVE).

    SciTech Connect (OSTI)

    Kilgo, Alice C.; Eckelmeyer, Kenneth Hall; Susan, Donald Francis

    2005-01-01

    A severe fire and explosion occurred at a propane storage yard in Truth or Consequences, N.M., when a truck ran into the pumping and plumbing system beneath a large propane tank. The storage tank emptied when the liquid-phase excess flow valve tore out of the tank. The ensuing fire engulfed several propane delivery trucks, causing one of them to explode. A series of elevated-temperature stress-rupture tears developed along the top of a 9800 L (2600 gal) truck-mounted tank as it was heated by the fire. Unstable fracture then occurred suddenly along the length of the tank and around both end caps, along the girth welds connecting the end caps to the center portion of the tank. The remaining contents of the tank were suddenly released, aerosolized, and combusted, creating a powerful boiling liquid expanding vapor explosion (BLEVE). Based on metallography of the tank pieces, the approximate tank temperature at the onset of the BLEVE was determined. Metallurgical analysis of the ruptured tank also permitted several hypotheses regarding BLEVE mechanisms to be evaluated. Suggestions are made for additional work that could provide improved predictive capabilities regarding BLEVEs and for methods to decrease the susceptibility of propane tanks to BLEVEs.

  5. Plasma Physics Approximations in Ares

    SciTech Connect (OSTI)

    Managan, R. A.

    2015-01-08

    Lee & More derived analytic forms for the transport properties of a plasma. Many hydro-codes use their formulae for electrical and thermal conductivity. The coefficients are complex functions of Fermi-Dirac integrals, Fn( μ/θ ), the chemical potential, μ or ζ = ln(1+e μ/θ ), and the temperature, θ = kT. Since these formulae are expensive to compute, rational function approximations were fit to them. Approximations are also used to find the chemical potential, either μ or ζ . The fits use ζ as the independent variable instead of μ/θ . New fits are provided for Aα (ζ ),Aβ (ζ ), ζ, f(ζ ) = (1 + e-μ/θ)F1/2(μ/θ), F1/2'/F1/2, Fcα, and Fcβ. In each case the relative error of the fit is minimized since the functions can vary by many orders of magnitude. The new fits are designed to exactly preserve the limiting values in the non-degenerate and highly degenerate limits or as ζ→ 0 or ∞. The original fits due to Lee & More and George Zimmerman are presented for comparison.

  6. New flow boiling heat transfer model for hydrocarbons evaporating inside horizontal tubes

    SciTech Connect (OSTI)

    Chen, G. F.; Gong, M. Q.; Wu, J. F.; Zou, X.; Wang, S.

    2014-01-29

    Hydrocarbons have high thermodynamic performances, belong to the group of natural refrigerants, and they are the main components in mixture Joule-Thomson low temperature refrigerators (MJTR). New evaluations of nucleate boiling contribution and nucleate boiling suppression factor in flow boiling heat transfer have been proposed for hydrocarbons. A forced convection heat transfer enhancement factor correlation incorporating liquid velocity has also been proposed. In addition, the comparisons of the new model and other classic models were made to evaluate its accuracy in heat transfer prediction.

  7. An experimental study of pool boiling heat transfer in reduced gravity

    SciTech Connect (OSTI)

    Shatto, D.P.; Renzi, K.I.; Peterson, G.P.; Morris, T.K.; Aaron, J.W.

    1996-12-31

    Experiments were performed in which pool boiling of pure water at reduced pressures was observed for behavior of the critical heatflux (CHF) and nucleate boiling heat transfer coefficients in a reduced gravitational environment. The experiments took place while alternating between microgravity and g/g{sub o} = 1.8 during parabolic flights aboard the NASA 930 (KC-135A). Heat transfer data were also obtained at Martian gravity levels (g/g{sub o} = 1/3). Parts of the test chamber were constructed of transparent materials to allow viewing and recording of the various boiling regimes encountered during the experiments. Results indicate that the onset of nucleate boiling occurred at lower heat fluxes in reduced gravity, resulting in higher two-phase heat transfer coefficients for g/g{sub o} < 1 than for g/g{sub o} = 1.8. In addition, the results indicate a significant reduction in the critical heat flux under reduced gravity conditions.

  8. CASL-U-2015-0248-000 Modeling Boiling Water Reactor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8-000 Modeling Boiling Water Reactor Designs using MPACT Andrew P. Fitzgerald Brendan ... lattices from the Peach Bottom Unit 2 Reactor Cycles 1 and 2. ATRIUM TM 10 simulations ...

  9. Multi-cycle boiling water reactor fuel cycle optimization

    SciTech Connect (OSTI)

    Ottinger, K.; Maldonado, G.I.

    2013-07-01

    In this work a new computer code, BWROPT (Boiling Water Reactor Optimization), is presented. BWROPT uses the Parallel Simulated Annealing (PSA) algorithm to solve the out-of-core optimization problem coupled with an in-core optimization that determines the optimum fuel loading pattern. However it uses a Haling power profile for the depletion instead of optimizing the operating strategy. The result of this optimization is the optimum new fuel inventory and the core loading pattern for the first cycle considered in the optimization. Several changes were made to the optimization algorithm with respect to other nuclear fuel cycle optimization codes that use PSA. Instead of using constant sampling probabilities for the solution perturbation types throughout the optimization as is usually done in PSA optimizations the sampling probabilities are varied to get a better solution and/or decrease runtime. The new fuel types available for use can be sorted into an array based on any number of parameters so that each parameter can be incremented or decremented, which allows for more precise fuel type selection compared to random sampling. Also, the results are sorted by the new fuel inventory of the first cycle for ease of comparing alternative solutions. (authors)

  10. Boiling-Water Reactor internals aging degradation study. Phase 1

    SciTech Connect (OSTI)

    Luk, K.H.

    1993-09-01

    This report documents the results of an aging assessment study for boiling water reactor (BWR) internals. Major stressors for BWR internals are related to unsteady hydrodynamic forces generated by the primary coolant flow in the reactor vessel. Welding and cold-working, dissolved oxygen and impurities in the coolant, applied loads and exposures to fast neutron fluxes are other important stressors. Based on results of a component failure information survey, stress corrosion cracking (SCC) and fatigue are identified as the two major aging-related degradation mechanisms for BWR internals. Significant reported failures include SCC in jet-pump holddown beams, in-core neutron flux monitor dry tubes and core spray spargers. Fatigue failures were detected in feedwater spargers. The implementation of a plant Hydrogen Water Chemistry (HWC) program is considered as a promising method for controlling SCC problems in BWR. More operating data are needed to evaluate its effectiveness for internal components. Long-term fast neutron irradiation effects and high-cycle fatigue in a corrosive environment are uncertainty factors in the aging assessment process. BWR internals are examined by visual inspections and the method is access limited. The presence of a large water gap and an absence of ex-core neutron flux monitors may handicap the use of advanced inspection methods, such as neutron noise vibration measurements, for BWR.

  11. Development of 1000 MWe Advanced Boiling Water Reactor

    SciTech Connect (OSTI)

    Kazuo Hisajima; Ken Uchida; Keiji Matsumoto; Koichi Kondo; Shigeki Yokoyama; Takuya Miyagawa [Toshiba Corporation (Japan)

    2006-07-01

    1000 MWe Advanced Boiling Water Reactor has only two main steam lines and six reactor internal pumps, whereas 1350 MWe ABWR has four main steam lines and ten reactor internal pumps. In order to confirm how the differences affect hydrodynamic conditions in the dome and lower plenum of the reactor pressure vessel, fluid analyses have been performed. The results indicate that there is not substantial difference between 1000 MWe ABWR and 1350 MWe ABWR. The primary containment vessel of the ABWR consists of the drywell and suppression chamber. The suppression chamber stores water to suppress pressure increase in the primary containment vessel and to be used as the source of water for the emergency core cooling system following a loss-of-coolant accident. Because the reactor pressure vessel of 1000 MWe ABWR is smaller than that of 1350 MWe ABWR, there is room to reduce the size of the primary containment vessel. It has been confirmed feasible to reduce inner diameter of the primary containment vessel from 29 m of 1350 MWe ABWR to 26.5 m. From an economic viewpoint, a shorter outage that results in higher availability of the plant is preferable. In order to achieve 20-day outage that results in 97% of availability, improvement of the systems for removal of decay heat is introduced that enables to stop all the safety-related decay heat removal systems except at the beginning of an outage. (authors)

  12. Camera Inspection Arm for Boiling Water Reactors - 13330

    SciTech Connect (OSTI)

    Martin, Scott; Rood, Marc

    2013-07-01

    Boiling Water Reactor (BWR) outage maintenance tasks can be time-consuming and hazardous. Reactor facilities are continuously looking for quicker, safer, and more effective methods of performing routine inspection during these outages. In 2011, S.A. Technology (SAT) was approached by Energy Northwest to provide a remote system capable of increasing efficiencies related to Reactor Pressure Vessel (RPV) internal inspection activities. The specific intent of the system discussed was to inspect recirculation jet pumps in a manner that did not require manual tooling, and could be performed independently of other ongoing inspection activities. In 2012, SAT developed a compact, remote, camera inspection arm to create a safer, more efficient outage environment. This arm incorporates a compact and lightweight design along with the innovative use of bi-stable composite tubes to provide a six-degree of freedom inspection tool capable of reducing dose uptake, reducing crew size, and reducing the overall critical path for jet pump inspections. The prototype camera inspection arm unit is scheduled for final testing in early 2013 in preparation for the Columbia Generating Station refueling outage in the spring of 2013. (authors)

  13. Aging study of boiling water reactor high pressure injection systems

    SciTech Connect (OSTI)

    Conley, D.A.; Edson, J.L.; Fineman, C.F.

    1995-03-01

    The purpose of high pressure injection systems is to maintain an adequate coolant level in reactor pressure vessels, so that the fuel cladding temperature does not exceed 1,200{degrees}C (2,200{degrees}F), and to permit plant shutdown during a variety of design basis loss-of-coolant accidents. This report presents the results of a study on aging performed for high pressure injection systems of boiling water reactor plants in the United States. The purpose of the study was to identify and evaluate the effects of aging and the effectiveness of testing and maintenance in detecting and mitigating aging degradation. Guidelines from the United States Nuclear Regulatory Commission`s Nuclear Plant Aging Research Program were used in performing the aging study. Review and analysis of the failures reported in databases such as Nuclear Power Experience, Licensee Event Reports, and the Nuclear Plant Reliability Data System, along with plant-specific maintenance records databases, are included in this report to provide the information required to identify aging stressors, failure modes, and failure causes. Several probabilistic risk assessments were reviewed to identify risk-significant components in high pressure injection systems. Testing, maintenance, specific safety issues, and codes and standards are also discussed.

  14. Pebble Bed Boiling Water Reactor Concept With Superheated Steam

    SciTech Connect (OSTI)

    Tsiklauri, G.; Newman, D.; Meriwether, G.; Korolev, V. [Pacific Northwest National Laboratory, P.O. Box 999 Richland, WA 99352 (United States)

    2002-07-01

    An Advanced Nuclear Reactor concept is presented which extends Boiling Water Reactor technology with micro-fuel elements (MFE) and produces superheated steam. A nuclear plant with MFE is highly efficient and safe, due to ceramic-clad nuclear fuel. Water is used as both moderator and coolant. The fuel consists of spheres of about 1.5 mm diameter of UO{sub 2} with several external coatings of different carbonaceous materials. The outer coating of the particles is SiC, manufactured with chemical vapor disposition (CVD) technology. Endurance of the integrity of the SiC coating in water, air and steam has been demonstrated experimentally in Germany, Russia and Japan. This paper describes a result of a preliminary design and analysis of 3750 MWt (1500 MWe) plant with standard pressure of 16 MPa, which is widely achieved in the vessel of pressurized-water type reactors. The superheated steam outlet temperature of 550 deg. C elevates the steam cycle to high thermal efficiency of 42%. (authors)

  15. Enhancement of pool boiling from a vertical rod using guide disks

    SciTech Connect (OSTI)

    Whitehouse, J.C.

    1992-11-01

    This report provides experimental and theoretical investigation of the boiling process which used a system of evenly spaced disks to constrain the path of bubbles from point origin to point of collapse. The experiments identified five distinct heat-transfer regimes, two of which (flange and strobe) are unique to this geometry and cannot be explained by conventional heat-transfer correlations. Bubble and wave models developed for flange and strobe boiling, respectively, predict these phenomena with reasonable success.

  16. Enhancement of pool boiling from a vertical rod using guide disks

    SciTech Connect (OSTI)

    Whitehouse, J.C.

    1992-01-01

    This report provides experimental and theoretical investigation of the boiling process which used a system of evenly spaced disks to constrain the path of bubbles from point origin to point of collapse. The experiments identified five distinct heat-transfer regimes, two of which (flange and strobe) are unique to this geometry and cannot be explained by conventional heat-transfer correlations. Bubble and wave models developed for flange and strobe boiling, respectively, predict these phenomena with reasonable success.

  17. CASL - Initial Modeling and Analysis of the Departure from Nucleate Boiling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Challenge Problem Initial Modeling and Analysis of the Departure from Nucleate Boiling Challenge Problem Yixing Sung, Jin Yan, Zeses E. Karoutas of Westinghouse Electric Company LLC Anh V. Bui, Hongbin Zhang of Idaho National Laboratories Nam Dinh of North Carolina State University Departure from Nucleate Boiling (DNB) is one of the safety-related Challenge Problems (CP) that CASL is addressing in support of Pressurized Water Reactor (PWR) power uprate, high fuel burnup and plant lifetime

  18. Thermal-hydraulic instabilities in pressure tube graphite - moderated boiling water reactors

    SciTech Connect (OSTI)

    Tsiklauri, G.; Schmitt, B.

    1995-09-01

    Thermally induced two-phase instabilities in non-uniformly heated boiling channels in RBMK-1000 reactor have been analyzed using RELAP5/MOD3 code. The RELAP5 model of a RBMK-1000 reactor was developed to investigate low flow in a distribution group header (DGH) supplying 44 fuel pressure tubes. The model was evaluated against experimental data. The results of the calculations indicate that the period of oscillation for the high power tube varied from 3.1s to 2.6s, over the power range of 2.0 MW to 3.0 MW, respectively. The amplitude of the flow oscillation for the high powered tube varied from +100% to -150% of the tube average flow. Reverse flow did not occur in the lower power tubes. The amplitude of oscillation in the subcooled region at the inlet to the fuel region is higher than in the saturated region at the outlet. In the upper fuel region and outlet connectors the flow oscillations are dissipated. The threshold of flow instability for the high powered tubes of a RBMK reactor is compared to Japanese data and appears to be in good agreement.

  19. Passive gamma analysis of the boiling-water-reactor assemblies

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vo, D.; Favalli, A.; Grogan, B.; Jansson, P.; Liljenfeldt, H.; Mozin, V.; Schwalbach, P.; Sjöland, A.; Tobin, S.; Trellue, H.; et al

    2016-06-04

    This research focused on the analysis of a set of stationary passive gamma measurements taken on the spent nuclear fuel assemblies from a boiling water reactor (BWR) using pulse height analysis data acquisition. The measurements were performed on 25 different BWR assemblies in 2014 at Sweden’s Central Interim Storage Facility for Spent Nuclear Fuel (Clab). This study was performed as part of the Next Generation of Safeguards Initiative–Spent Fuel project to research the application of nondestructive assay (NDA) to spent fuel assemblies. The NGSI–SF team is working to achieve the following technical goals more easily and efficiently than in themore » past using nondestructive assay (NDA) measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. The final objective of this project is to quantify the capability of several integrated NDA instruments to meet the aforementioned goals using the combined signatures of neutrons, gamma rays, and heat. This report presents a selection of the measured data and summarizes an analysis of the results. Specifically, trends in the count rates measured for spectral lines from the following isotopes were analyzed as a function of the declared burnup and cooling time: 137Cs, 154Eu, 134Cs, and to a lesser extent, 106Ru and 144Ce. From these measured count rates, predictive algorithms were developed to enable the estimation of the burnup and cooling time. Furthermore, these algorithms were benchmarked on a set of assemblies not included in the standard assemblies set used by this research team.« less

  20. Communication: Improved pair approximations in local coupled-cluster methods

    SciTech Connect (OSTI)

    Schwilk, Max; Werner, Hans-Joachim; Usvyat, Denis

    2015-03-28

    In local coupled cluster treatments the electron pairs can be classified according to the magnitude of their energy contributions or distances into strong, close, weak, and distant pairs. Different approximations are introduced for the latter three classes. In this communication, an improved simplified treatment of close and weak pairs is proposed, which is based on long-range cancellations of individually slowly decaying contributions in the amplitude equations. Benchmark calculations for correlation, reaction, and activation energies demonstrate that these approximations work extremely well, while pair approximations based on local second-order Møller-Plesset theory can lead to errors that are 1-2 orders of magnitude larger.

  1. Improved approximate formulas for flux from cylindrical and rectangular sources

    SciTech Connect (OSTI)

    Wallace, O.J.; Bokharee, S.A.

    1993-03-01

    This report provides two new approximate formulas for the flux at detector points outside the radial and axial extensions of a homogeneous cylindrical source and improved approximate formulas for the flux at points opposite rectangular surface sources. These formulas extend the range of geometries for which analytic approximations may be used by shield design engineers to make rapid scoping studies and check more extensive calculations for reasonableness. These formulas can be used to support skeptical, independent evaluations and are also valuable teaching tools for introducing shield designers to complex shield analyses.

  2. Effect of rolling motion on critical heat flux for subcooled flow boiling in vertical tube

    SciTech Connect (OSTI)

    Hwang, J. S.; Park, I. U.; Park, M. Y.; Park, G. C.

    2012-07-01

    This paper presents defining characteristics of the critical heat flux (CHF) for the boiling of R-134a in vertical tube operation under rolling motion in marine reactor. It is important to predict CHF of marine reactor having the rolling motion in order to increase the safety of the reactor. Marine Reactor Moving Simulator (MARMS) tests are conducted to measure the critical heat flux using R-134a flowing upward in a uniformly heated vertical tube under rolling motion. MARMS was rotated by motor and mechanical power transmission gear. The CHF tests were performed in a 9.5 mm I.D. test section with heated length of 1 m. Mass fluxes range from 285 to 1300 kg m{sup -2}s{sup -1}, inlet subcooling from 3 to 38 deg. C and outlet pressures from 13 to 24 bar. Amplitudes of rolling range from 15 to 40 degrees and periods from 6 to 12 sec. To convert the test conditions of CHF test using R-134a in water, Katto's fluid-to-fluid modeling was used in present investigation. A CHF correlation is presented which accounts for the effects of pressure, mass flux, inlet subcooling and rolling angle over all conditions tested. Unlike existing transient CHF experiments, CHF ratio of certain mass flux and pressure are different in rolling motion. For the mass fluxes below 500 kg m{sup -2}s{sup -1} at 13, 16 (region of relative low mass flux), CHF ratio was decreased but was increased above that mass flux (region of relative high mass flux). Moreover, CHF tend to enhance in entire mass flux at 24 bar. (authors)

  3. An approximation technique for jet impingement flow

    SciTech Connect (OSTI)

    Najafi, Mahmoud; Fincher, Donald; Rahni, Taeibi; Javadi, KH.; Massah, H.

    2015-03-10

    The analytical approximate solution of a non-linear jet impingement flow model will be demonstrated. We will show that this is an improvement over the series approximation obtained via the Adomian decomposition method, which is itself, a powerful method for analysing non-linear differential equations. The results of these approximations will be compared to the Runge-Kutta approximation in order to demonstrate their validity.

  4. Second post-Newtonian approximation of Einstein-aether theory

    SciTech Connect (OSTI)

    Xie Yi; Huang Tianyi

    2008-06-15

    In this paper, second post-Newtonian approximation of Einstein-aether theory is obtained by Chandrasekhar's approach. Five parametrized post-Newtonian parameters in first post-Newtonian approximation are presented after a time transformation and they are identical with previous works, in which {gamma}=1, {beta}=1, and two preferred-frame parameters remain. Meanwhile, in second post-Newtonian approximation, a parameter, which represents third order nonlinearity for gravity, is zero--the same as in general relativity. For an application for future deep space laser ranging missions, we reduce the metric coefficients for light propagation in a case of N point masses as a simplified model of the Solar System. The resulting light deflection angle in second post-Newtonian approximation poses another constraint on the Einstein-aether theory.

  5. Boil-off experiments with the EIR-NEPTUN Facility: Analysis and code assessment overview report

    SciTech Connect (OSTI)

    Aksan, S.N.; Stierli, F.; Analytis, G.T.

    1992-03-01

    The NEPTUN data discussed in this report are from core uncovery (boil-off) experiments designed to investigate the mixture level decrease and the heat up of the fuel rod simulators above the mixture level for conditions simulating core boil-off for a nuclear reactor under small break loss-of-coolant accident conditions. The first series of experiments performed in the NEPTUN test facility consisted of ten boil-off (uncovery) and one adiabatic heat-up tests. In these tests three parameters were varied: rod power, system pressure and initial coolant subcooling. The NEPTUN experiments showed that the external surface thermocouples do not cause a significant cooling influence in the rods to which they are attached under boil-off conditions. The reflooding tests performed later on indicated that the external surface thermocouples have some effect during reflooding for NEPTUN electrically heated rod bundle. Peak cladding temperatures are reduced by about 30--40C and quench times occur 20--70 seconds earlier than rods with embedded thermocouples. Additionally, the external surface-thermocouples give readings up to 20 K lower than those obtained with internal surface thermocouples (in the absence of external thermocouples) in the peak cladding temperature zone. Some of the boil-off data obtained from the NEPTUN test facility are used for the assessment of the thermal-hydraulic transient computer codes. These calculations were performed extensively using the frozen version of TRAC-BD1/MOD1 (version 22). A limited number of assessment calculations were done with RELAP5/MOD2 (version 36.02). In this report the main results and conclusions of these calculations are presented with the identification of problem areas in relation to models relevant to boil-off phenomena. On the basis of further analysis and calculations done, changing some of the models such as the bubbly/slug flow interfacial friction correlation which eliminate some of the problems are recommended.

  6. Design and Testing of Vacuum Breaker Check Valve for Simplified Boiling Water Reactor

    SciTech Connect (OSTI)

    Ishii, M.; Xu, Y.; Revankar, S.T.

    2002-07-01

    A new design of the vacuum breaker check valve was developed to replace the mechanical valve in a simplified boiling water reactor. Scaling and design calculations were performed to obtain the geometry of new passive hydraulic vacuum breaker check valve. In order to check the valve performance, a RELAP5 model of the simplified boiling water reactor system with the new valve was developed. The valve was implemented in an integral facility, PUMA and was tested for large break loss of coolant accident. (authors)

  7. Natural Convection and Boiling for Cooling SRP Reactors During Loss of Circulation Conditions

    SciTech Connect (OSTI)

    Buckner, M.R.

    2001-06-26

    This study investigated natural convection and boiling as a means of cooling SRP reactors in the event of a loss of circulation accident. These studies show that single phase natural convection cooling of SRP reactors in shutdown conditions with the present piping geometry is probably not feasible.

  8. Modeling the onset of flow instability for subcooled boiling in downflow

    SciTech Connect (OSTI)

    Qureshi, Z. ); Barry, J.J.; Crowley, C.J. )

    1990-01-01

    A postulated loss-of-coolant accident (LOCA) scenario for the Savannah River Plant (SRP) production reactors involves a double-ended break of a reactor primary coolant pipe. The flow of coolant (D{sub 2}O) in the reactor may decrease in such an event. As the flow into the reactor decreases, boiling may occur, followed by dryout and failure of the fuel due to overheating. A typical SRP fuel assembly consists of multiple concentric tubes containing the fuel and target materials. Coolant passes through the annular passages in the assembly in downflow. Under normal operating conditions, the flow rate is maintained high enough to suppress or minimize subcooled boiling, i.e. the flow remains essentially single phase throughout. At high coolant flow rates, the flow is single phase or partially developed subcooled boiling, and the pressure drop decreases with decreasing flow rate. Here friction dominates the pressure gradient, and the flow is stable. Below a certain flow rate, however, pressure drop may increase with decreasing flow rate. This occurs when significant voids are produced by boiling, resulting in a large acceleration component to the pressure drop. The negative slope of the curve leads to an instability because the pressure drop cannot adjust to compensate -- the flow is driven to a lower value. Overheating of the channel may result. 15 refs., 14 figs.

  9. Validation and Calibration of Nuclear Thermal Hydraulics Multiscale Multiphysics Models - Subcooled Flow Boiling Study

    SciTech Connect (OSTI)

    Anh Bui; Nam Dinh; Brian Williams

    2013-09-01

    In addition to validation data plan, development of advanced techniques for calibration and validation of complex multiscale, multiphysics nuclear reactor simulation codes are a main objective of the CASL VUQ plan. Advanced modeling of LWR systems normally involves a range of physico-chemical models describing multiple interacting phenomena, such as thermal hydraulics, reactor physics, coolant chemistry, etc., which occur over a wide range of spatial and temporal scales. To a large extent, the accuracy of (and uncertainty in) overall model predictions is determined by the correctness of various sub-models, which are not conservation-laws based, but empirically derived from measurement data. Such sub-models normally require extensive calibration before the models can be applied to analysis of real reactor problems. This work demonstrates a case study of calibration of a common model of subcooled flow boiling, which is an important multiscale, multiphysics phenomenon in LWR thermal hydraulics. The calibration process is based on a new strategy of model-data integration, in which, all sub-models are simultaneously analyzed and calibrated using multiple sets of data of different types. Specifically, both data on large-scale distributions of void fraction and fluid temperature and data on small-scale physics of wall evaporation were simultaneously used in this works calibration. In a departure from traditional (or common-sense) practice of tuning/calibrating complex models, a modern calibration technique based on statistical modeling and Bayesian inference was employed, which allowed simultaneous calibration of multiple sub-models (and related parameters) using different datasets. Quality of data (relevancy, scalability, and uncertainty) could be taken into consideration in the calibration process. This work presents a step forward in the development and realization of the CIPS Validation Data Plan at the Consortium for Advanced Simulation of LWRs to enable

  10. Approximate error conjugation gradient minimization methods

    DOE Patents [OSTI]

    Kallman, Jeffrey S

    2013-05-21

    In one embodiment, a method includes selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, calculating an approximate error using the subset of rays, and calculating a minimum in a conjugate gradient direction based on the approximate error. In another embodiment, a system includes a processor for executing logic, logic for selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, logic for calculating an approximate error using the subset of rays, and logic for calculating a minimum in a conjugate gradient direction based on the approximate error. In other embodiments, computer program products, methods, and systems are described capable of using approximate error in constrained conjugate gradient minimization problems.

  11. Boiling water reactor fuel behavior at burnup of 26 GWd/tonne U under reactivity-initiated accident conditions

    SciTech Connect (OSTI)

    Nakamura, Takehiko; Yoshinaga, Makio . Dept. of Reactor Safety Research); Sobajima, Makoto ); Ishijima, Kiyomi; Fujishiro, Toshio . Dept. of Reactor Safety Research)

    1994-10-01

    Irradiated boiling water reactor (BWR) fuel behavior under reactivity-initiated accident (RIA) conditions was investigated in the Nuclear Safety Research Reactor (NSRR) of the Japan Atomic Energy Research Institute. Short test fuel rods, refabricated from a commercial 7 x 7 type BWR fuel rod at a burnup of 26 GWd/ tonne U, were pulse irradiated in the NSRR under simulated cooled startup RIA conditions of the BWRs. Thermal energy from 230 J/g fuel (55 cal/g fuel) to 410 J/g fuel (98 cal/g fuel) was promptly subjected to the test fuel rods by pulse irradiation within [approximately] 10 ms. The peak fuel enthalpies are believed to be the same as the prompt energy depositions. The test fuel rods demonstrated characteristic behavior of the irradiated fuel rods under the accident conditions, such as enhanced pellet cladding mechanical interaction (PCMI) and fission gas release. However, all the fuel rods survived the accident conditions with considerable margins. Simulations by the FRAP-T6 code and fresh fuel rod tests under the same RIA conditions highlighted the burnup effects on the accident fuel performance. The tests and the simulation suggested that the BWR fuel would possibly fail by a cladding burst due to fission gas release during the cladding temperature escalation rather than the PCMI under the cold startup RIA conditions of a severe power burst.

  12. Modeling and numerical simulation of oscillatory two-phase flows, with application to boiling water nuclear reactors

    SciTech Connect (OSTI)

    Rosa, M.P.; Podowski, M.Z.

    1995-09-01

    This paper is concerned with the analysis of dynamics and stability of boiling channels and systems. The specific objectives are two-fold. One of them is to present the results of a study aimed at analyzing the effects of various modeling concepts and numerical approaches on the transient response and stability of parallel boiling channels. The other objective is to investigate the effect of closed-loop feedback on stability of a boiling water reactor (BWR). Various modeling and computational issues for parallel boiling channels are discussed, such as: the impact of the numerical discretization scheme for the node containing the moving boiling boundary on the convergence and accuracy of computations, and the effects of subcooled boiling and other two-phase flow phenomena on the predictions of marginal stability conditions. Furthermore, the effects are analyzed of local loss coefficients around the recirculation loop of a boiling water reactor on stability of the reactor system. An apparent paradox is explained concerning the impact of changing single-phase losses on loop stability. The calculations have been performed using the DYNOBOSS computer code. The results of DYNOBOSS validation against other computer codes and experimental data are shown.

  13. Simultaneous boiling and spreading of liquefied petroleum gas on water. Final report, December 12, 1978-March 31, 1981

    SciTech Connect (OSTI)

    Chang, H.R.; Reid, R.C.

    1981-04-01

    An experimental and theoretical investigation was carried out to study the boiling and spreading of liquid nitrogen, liquid methane and liquefied petroleum gas (LPG) on water in a one-dimensional configuration. Primary emphasis was placed on the LPG studies. Experimental work involved the design and construction of a spill/spread/boil apparatus which permitted the measurement of spreading and local boil-off rates. With the equations of continuity and momentum transfer, a mathematical model was developed to describe the boiling-spreading phenomena of cryogens spilled on water. The model accounted for a decrease in the density of the cryogenic liquid due to bubble formation. The boiling and spreading rates of LPG were found to be the same as those of pure propane. An LPG spill was characterized by the very rapid and violent boiling initially and highly irregular ice formation on the water surface. The measured local boil-off rates of LPG agreed reasonably well with theoretical predictions from a moving boundary heat transfer model. The spreading velocity of an LPG spill was found to be constant and determined by the size of the distributor opening. The maximum spreading distance was found to be unaffected by the spilling rate. These observations can be explained by assuming that the ice formation on the water surface controls the spreading of LPG spills. While the mathematical model did not predict the spreading front adequately, it predicted the maximum spreading distance reasonably well.

  14. A Survey of Techniques for Approximate Computing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mittal, Sparsh

    2016-03-18

    Approximate computing trades off computation quality with the effort expended and as rising performance demands confront with plateauing resource budgets, approximate computing has become, not merely attractive, but even imperative. Here, we present a survey of techniques for approximate computing (AC). We discuss strategies for finding approximable program portions and monitoring output quality, techniques for using AC in different processing units (e.g., CPU, GPU and FPGA), processor components, memory technologies etc., and programming frameworks for AC. Moreover, we classify these techniques based on several key characteristics to emphasize their similarities and differences. Finally, the aim of this paper is tomore » provide insights to researchers into working of AC techniques and inspire more efforts in this area to make AC the mainstream computing approach in future systems.« less

  15. The Monte Carlo Independent Column Approximation Model Intercomparison

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project (McMIP) The Monte Carlo Independent Column Approximation Model Intercomparison Project (McMIP) Barker, Howard Meteorological Service of Canada Cole, Jason Meteorological Service of Canada Raisanen, Petri Finnish Meteorological Institute Pincus, Robert NOAA-CIRES Climate Diagnostics Center Morcrette, Jean-Jacques European Centre for Medium-Range Weather Forecasts Li, Jiangnan Canadian Center for Climate Modelling Stephens, Graeme Colorado State University Vaillancourt, Paul

  16. SAR ambiguous range suppression.

    SciTech Connect (OSTI)

    Doerry, Armin Walter

    2006-09-01

    Pulsed Radar systems suffer range ambiguities, that is, echoes from pulses transmitted at different times arrive at the receiver simultaneously. Conventional mitigation techniques are not always adequate. However, pulse modulation schemes exist that allow separation of ambiguous ranges in Doppler space, allowing easy filtering of problematic ambiguous ranges.

  17. RADIO RANGING DEVICE

    DOE Patents [OSTI]

    Nieset, R.T.

    1961-05-16

    A radio ranging device is described. It utilizes a super regenerative detector-oscillator in which echoes of transmitted pulses are received in proper phase to reduce noise energy at a selected range and also at multiples of the selected range.

  18. Multi-scale Control and Enhancement of Reactor Boiling Heat Flux by Reagents and Nanoparticles

    SciTech Connect (OSTI)

    Manglik, R M; Athavale, A; Kalaikadal, D S; Deodhar, A; Verma, U

    2011-09-02

    The phenomenological characterization of the use of non-invasive and passive techniques to enhance the boiling heat transfer in water has been carried out in this extended study. It provides fundamental enhanced heat transfer data for nucleate boiling and discusses the associated physics with the aim of addressing future and next-generation reactor thermal-hydraulic management. It essentially addresses the hypothesis that in phase-change processes during boiling, the primary mechanisms can be related to the liquid-vapor interfacial tension and surface wetting at the solidliquid interface. These interfacial characteristics can be significantly altered and decoupled by introducing small quantities of additives in water, such as surface-active polymers, surfactants, and nanoparticles. The changes are fundamentally caused at a molecular-scale by the relative bulk molecular dynamics and adsorption-desorption of the additive at the liquid-vapor interface, and its physisorption and electrokinetics at the liquid-solid interface. At the micro-scale, the transient transport mechanisms at the solid-liquid-vapor interface during nucleation and bubblegrowth can be attributed to thin-film spreading, surface-micro-cavity activation, and micro-layer evaporation. Furthermore at the macro-scale, the heat transport is in turn governed by the bubble growth and distribution, macro-layer heat transfer, bubble dynamics (bubble coalescence, collapse, break-up, and translation), and liquid rheology. Some of these behaviors and processes are measured and characterized in this study, the outcomes of which advance the concomitant fundamental physics, as well as provide insights for developing control strategies for the molecular-scale manipulation of interfacial tension and surface wetting in boiling by means of polymeric reagents, surfactants, and other soluble surface-active additives.

  19. Experiment and RELAP5 Analysis for the Downcomer Boiling of APR1400 under LBLOCA

    SciTech Connect (OSTI)

    Dong Won Lee; Hee Cheon No; Eu Hwak Lee; Seung Jong Oh; Chul-Hwa Song

    2004-07-01

    The direct vessel injection (DVI) mode of a safety injection system is adopted instead of a conventional cold leg injection (CLI) mode as one of the advanced design features of the APR1400 (Advanced Power Reactor 1400 MW). From the calculation results of RELAP5 with full plant, it is found out that the sudden boiling happens in the downcomer due to heat transfer from the reactor vessel wall and it can affect the reactor safety. In the present study, experimental tests are carried out to observe the actual boiling phenomena in the downcomer and to validate RELAP5. The heated wall of test section has its thickness of 8.2 cm and the same material as the prototype (APR1400) with chrome coating against rusting. From the experiment, we visually observe the vapor jetting near the heated wall with small bubble migration to the bulk region and liquid circulation. The data shows a rapid wall temperature drop generating a large amount of vapor initially. The calculation results of RELAP5 using the three nodal schemes are compared with experimental ones in aspects of water level, void fraction, wall temperatures and phase velocities. It turns out that the double nodal scheme with circulation produces better results than the nodal scheme without circulation to simulate the boiling phenomena in the downcomer. (authors)

  20. Automatic range selector

    DOE Patents [OSTI]

    McNeilly, Clyde E.

    1977-01-04

    A device is provided for automatically selecting from a plurality of ranges of a scale of values to which a meter may be made responsive, that range which encompasses the value of an unknown parameter. A meter relay indicates whether the unknown is of greater or lesser value than the range to which the meter is then responsive. The rotatable part of a stepping relay is rotated in one direction or the other in response to the indication from the meter relay. Various positions of the rotatable part are associated with particular scales. Switching means are sensitive to the position of the rotatable part to couple the associated range to the meter.

  1. Test Plan for the Boiling Water Reactor Dry Cask Simulator

    SciTech Connect (OSTI)

    Durbin, Samuel; Lindgren, Eric R.

    2015-11-01

    canister. The symmetric single assembly geometry with well-controlled boundary conditions simplifies interpretation of results. Various configurations of outer concentric ducting will be used to mimic conditions for above and below-ground storage configurations of vertical, dry cask systems with canisters. Radial and axial temperature profiles will be measured for a wide range of decay power and helium cask pressures. Of particular interest is the evaluation of the effect of increased helium pressure on allowable heat load and the effect of simulated wind on a simplified below ground vent configuration. While incorporating the best available information, this test plan is subject to changes due to improved understanding from modeling or from as-built deviations to designs. As-built conditions and actual procedures will be documented in the final test report.

  2. RangeTables.xls

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (MeVcm²/mg) LET vs. Range in Si for 25 MeV SEE Beams (low LET) 4 He 14 N 0 0.5 1 1.5 0 600 1200 1800 2400 3000 3600 4 He 14 N 22 Ne 0 1 2 3 4 5 6 7 8 9 10 0 100 200 300 400 500 600 700 800 900 1000 1100 LET (MeVcm²/mg) Range in Silicon (µm) LET vs. Range in Si for 25 MeV SEE Beams (low LET) After aramica window and 30 mm of air 4 He 14 N 0 0.5 1 1.5 0 600 1200 1800 2400 3000 3600 Range in Silicon (µm) 129 Xe 30 40 50 60 (MeVcm²/mg) LET vs. Range in Si for 25 MeV SEE Beams After aramica

  3. Second derivatives for approximate spin projection methods

    SciTech Connect (OSTI)

    Thompson, Lee M.; Hratchian, Hrant P.

    2015-02-07

    The use of broken-symmetry electronic structure methods is required in order to obtain correct behavior of electronically strained open-shell systems, such as transition states, biradicals, and transition metals. This approach often has issues with spin contamination, which can lead to significant errors in predicted energies, geometries, and properties. Approximate projection schemes are able to correct for spin contamination and can often yield improved results. To fully make use of these methods and to carry out exploration of the potential energy surface, it is desirable to develop an efficient second energy derivative theory. In this paper, we formulate the analytical second derivatives for the Yamaguchi approximate projection scheme, building on recent work that has yielded an efficient implementation of the analytical first derivatives.

  4. RangeTables.xlsx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vcm²/mg) LET vs. Range in Si for 15 MeV SEE Beams (low LET) 4 He 14 N 0 0.5 1 1.5 0 200 400 600 800 1000 1200 1400 Range in Silicon (µm) 4 He 14 N 20 Ne 0 1 2 3 4 5 0 50 100 150 200 250 300 350 400 450 LET (MeV Range in Silicon (µm) After aramica window and 30 mm of air 141 Pr 165 Ho 181 Ta 197 Au 50 60 70 80 90 100 Vcm²/mg) LET vs. Range in Si for 15 MeV SEE Beams After aramica window and 30 mm of air 40 Ar 84 Kr 129 Xe 63 Cu 109 Ag 0 10 20 30 40 50 0 25 50 75 100 125 150 175 200 225 250

  5. Compton scattering from positronium and validity of the impulse approximation

    SciTech Connect (OSTI)

    Kaliman, Z.; Pisk, K.; Pratt, R. H.

    2011-05-15

    The cross sections for Compton scattering from positronium are calculated in the range from 1 to 100 keV incident photon energy. The calculations are based on the A{sup 2} term of the photon-electron or photon-positron interaction. Unlike in hydrogen, the scattering occurs from two centers and the interference effect plays an important role for energies below 8 keV. Because of the interference, the criterion for validity of the impulse approximation for positronium is more restrictive compared to that for hydrogen.

  6. Multigroup Free-atom Doppler-broadening Approximation. Experiment

    SciTech Connect (OSTI)

    Gray, Mark Girard

    2015-11-06

    The multigroup energy Doppler-broadening approximation agrees with continuous energy Dopplerbroadening generally to within ten percent for the total cross sections of 1H, 56Fe, and 235U at 250 lanl. Although this is probably not good enough for broadening from room temperature through the entire temperature range in production use, it is better than any interpolation scheme between temperatures proposed to date, and may be good enough for extrapolation from high temperatures. The method deserves further study since additional improvements are possible.

  7. Neutronic evaluation of a non-fertile fuel for the disposition of weapons-grade plutonium in a boiling water reactor

    SciTech Connect (OSTI)

    Sterbentz, J.W.

    1994-10-01

    A new non-fertile, weapons-grade plutonium oxide fuel concept is developed and evaluated for deep burn applications in a boiling water reactor environment using the General Electric 8x8 Advanced Boiling Water Reactor (ABWR) fuel assembly dimensions and pitch. Detailed infinite lattice fuel burnup results and neutronic performance characteristics are given and although preliminary in nature, clearly demonstrate the fuel`s potential as an effective means to expedite the disposition of plutonium in existing light water reactors. The new non-fertile fuel concept is an all oxide composition containing plutonia, zirconia, calcia, and erbia having the following design weight percentages: 8.3; 80.4; 9.7; and 1.6. This fuel composition in an infinite fuel lattice operating at linear heat generation rates of 6.0 or 12.0 kW/ft per rod can remain critical for up to 1,200 and 600 Effective Full Power Days (EFPD), respectively, and achieve a burnup of 7.45 {times} 10{sup 20} f/cc. These burnups correspond to a 71--73% total plutonium isotope destruction and a 91--94% destruction of the {sup 239}Pu isotope for the 0--40% moderator steam void condition. Total plutonium destruction greater than 73% is possible with a fuel management scheme that allows subcritical fuel assemblies to be driven by adjacent high reactivity assemblies. The fuel exhibits very favorable neutron characteristics from beginning-of-life (BOL) to end-of-life (EOL). Prompt fuel Doppler coefficient of reactivity are negative, with values ranging between {minus}0.4 to {minus}2.0 pcm/K over the temperature range of 900 to 2,200 K. The ABWR fuel lattice remains in an undermoderated condition for both hot operational and cold startup conditions over the entire fuel burnup lifetime.

  8. Analysis of the magnetic corrosion product deposits on a boiling water reactor cladding

    SciTech Connect (OSTI)

    Orlov, Andrey; Degueldre, Claude; Kaufmann, Wilfried

    2013-01-15

    The buildup of corrosion product deposits (CRUD) on the fuel cladding of the boiling water reactor (BWR) before and after zinc injection has been investigated by applying local experimental analytical techniques. Under the BWR water chemistry conditions, Zn addition together with the presence of Ni and Mn induce the formation of (Zn,Ni,Mn)[Fe{sub 2}O{sub 4}] spinel solid solutions. X-ray absorption spectroscopy (XAS) revealed inversion ratios of cation distribution in spinels deposited from the solid solution. Based on this information, a two-site ferrite spinel solid solution model is proposed. Electron probe microanalysis (EPMA) and extended X-ray absorption fine structure (EXAFS) findings suggest the zinc-rich ferrite spinels formation on BWR fuel cladding mainly at lower pin. - Graphical Abstract: Analysis of spinels in corrosion product deposits on boiling water reactor fuel rod. Combining EPMA and XAFS results: schematic representation of the ferrite spinels in terms of the end members and their extent of inversion. Note that the ferrites are represented as a surface between the normal (upper plane, M[Fe{sub 2}]O{sub 4}) and the inverse (lower plane, Fe[MFe]O{sub 4}). Actual compositions red Black-Small-Square for the specimen at low elevation (810 mm), blue Black-Small-Square for the specimen at mid elevation (1800 mm). The results have an impact on the properties of the CRUD material. Highlights: Black-Right-Pointing-Pointer Buildup of corrosion product deposits on fuel claddings of a boiling water reactor (BWR) are investigated. Black-Right-Pointing-Pointer Under BWR water conditions, Zn addition with Ni and Mn induced formation of (Zn,Ni,Mn)[Fe{sub 2}O{sub 4}]. Black-Right-Pointing-Pointer X-Ray Adsorption Spectroscopy (XAS) revealed inversion of cations in spinel solid solutions. Black-Right-Pointing-Pointer Zinc-rich ferrite spinels are formed on BWR fuel cladding mainly at lower pin elevations.

  9. RangeTables.xlsx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    30 35 40 45 eVcm²/mg) LET vs. Range in Si for 40 MeV SEE Beams 14 N 20 Ne 40 Ar 0 3 6 9 0 400 800 1200 1600 2000 2400 1 H 0 0.1 0.2 40 Ar 78 Kr 0 5 10 15 20 0 100 200 300 400 500 600 700 800 900 1000 1100 LET (Me Range in Silicon (µm) After aramica window and 30 mm of air 0 1000 2000 3000 4000 5000 6000 7000 8000

  10. Relativistic Random Phase Approximation At Finite Temperature

    SciTech Connect (OSTI)

    Niu, Y. F.; Paar, N.; Vretenar, D.; Meng, J.

    2009-08-26

    The fully self-consistent finite temperature relativistic random phase approximation (FTRRPA) has been established in the single-nucleon basis of the temperature dependent Dirac-Hartree model (FTDH) based on effective Lagrangian with density dependent meson-nucleon couplings. Illustrative calculations in the FTRRPA framework show the evolution of multipole responses of {sup 132}Sn with temperature. With increased temperature, in both monopole and dipole strength distributions additional transitions appear in the low energy region due to the new opened particle-particle and hole-hole transition channels.

  11. Modeling Single-Phase and Boiling Liquid Jet Impingement Cooling in Power Electronics

    SciTech Connect (OSTI)

    Narumanchi, S. V. J.; Hassani, V.; Bharathan, D.

    2005-12-01

    Jet impingement has been an attractive cooling option in a number of industries over the past few decades. Over the past 15 years, jet impingement has been explored as a cooling option in microelectronics. Recently, interest has been expressed by the automotive industry in exploring jet impingement for cooling power electronics components. This technical report explores, from a modeling perspective, both single-phase and boiling jet impingement cooling in power electronics, primarily from a heat transfer viewpoint. The discussion is from the viewpoint of the cooling of IGBTs (insulated-gate bipolar transistors), which are found in hybrid automobile inverters.

  12. A study of out-of-phase power instabilities in boiling water reactors

    SciTech Connect (OSTI)

    March-Leuba, J.; Blakeman, E.D.

    1988-06-20

    This paper presents a study of the stability of subcritical neutronic modes in boiling water reactors that can result in out-of-phase power oscillations. A mechanism has been identified for this type of oscillation, and LAPUR code has been modified to account for it. Numerical results show that there is a region in the power-flow operating map where an out-or-phase stability mode is likely even if the core-wide mode is stable. 4 refs., 7 figs.

  13. Local pressure gradients due to incipience of boiling in subcooled flows

    SciTech Connect (OSTI)

    Ruggles, A.E.; McDuffee, J.L.

    1995-09-01

    Models for vapor bubble behavior and nucleation site density during subcooled boiling are integrated with boundary layer theory in order to predict the local pressure gradient and heat transfer coefficient. Models for bubble growth rate and bubble departure diameter are used to scale the movement of displaced liquid in the laminar sublayer. An added shear stress, analogous to a turbulent shear stress, is derived by considering the liquid movement normal to the heated surface. The resulting mechanistic model has plausible functional dependence on wall superheat, mass flow, and heat flux and agrees well with data available in the literature.

  14. RADIO RANGING DEVICE

    DOE Patents [OSTI]

    Bogle, R.W.

    1960-11-22

    A description is given of a super-regenerative oscillator ranging device provided with radiating and receiving means and being capable of indicating the occurrence of that distance between itself and a reflecting object which so phases the received echo of energy of a preceding emitted oscillation that the intervals between oscillations become uniform.

  15. Light beam range finder

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1998-01-01

    A "laser tape measure" for measuring distance which includes a transmitter such as a laser diode which transmits a sequence of electromagnetic pulses in response to a transmit timing signal. A receiver samples reflections from objects within the field of the sequence of visible electromagnetic pulses with controlled timing, in response to a receive timing signal. The receiver generates a sample signal in response to the samples which indicates distance to the object causing the reflections. The timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the reflection such that the time between transmission of pulses in the sequence in sampling by the receiver sweeps over a range of delays. The transmit timing signal causes the transmitter to transmit the sequence of electromagnetic pulses at a pulse repetition rate, and the received timing signal sweeps over the range of delays in a sweep cycle such that reflections are sampled at the pulse repetition rate and with different delays in the range of delays, such that the sample signal represents received reflections in equivalent time. The receiver according to one aspect of the invention includes an avalanche photodiode and a sampling gate coupled to the photodiode which is responsive to the received timing signal. The transmitter includes a laser diode which supplies a sequence of visible electromagnetic pulses. A bright spot projected on to the target clearly indicates the point that is being measured, and the user can read the range to that point with precision of better than 0.1%.

  16. Light beam range finder

    DOE Patents [OSTI]

    McEwan, T.E.

    1998-06-16

    A ``laser tape measure`` for measuring distance is disclosed which includes a transmitter such as a laser diode which transmits a sequence of electromagnetic pulses in response to a transmit timing signal. A receiver samples reflections from objects within the field of the sequence of visible electromagnetic pulses with controlled timing, in response to a receive timing signal. The receiver generates a sample signal in response to the samples which indicates distance to the object causing the reflections. The timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the reflection such that the time between transmission of pulses in the sequence in sampling by the receiver sweeps over a range of delays. The transmit timing signal causes the transmitter to transmit the sequence of electromagnetic pulses at a pulse repetition rate, and the received timing signal sweeps over the range of delays in a sweep cycle such that reflections are sampled at the pulse repetition rate and with different delays in the range of delays, such that the sample signal represents received reflections in equivalent time. The receiver according to one aspect of the invention includes an avalanche photodiode and a sampling gate coupled to the photodiode which is responsive to the received timing signal. The transmitter includes a laser diode which supplies a sequence of visible electromagnetic pulses. A bright spot projected on to the target clearly indicates the point that is being measured, and the user can read the range to that point with precision of better than 0.1%. 7 figs.

  17. Semiclassical approximation to supersymmetric quantum gravity

    SciTech Connect (OSTI)

    Kiefer, Claus; Lueck, Tobias; Moniz, Paulo

    2005-08-15

    We develop a semiclassical approximation scheme for the constraint equations of supersymmetric canonical quantum gravity. This is achieved by a Born-Oppenheimer type of expansion, in analogy to the case of the usual Wheeler-DeWitt equation. The formalism is only consistent if the states at each order depend on the gravitino field. We recover at consecutive orders the Hamilton-Jacobi equation, the functional Schroedinger equation, and quantum gravitational correction terms to this Schroedinger equation. In particular, the following consequences are found: (i) the Hamilton-Jacobi equation and therefore the background spacetime must involve the gravitino, (ii) a (many-fingered) local time parameter has to be present on super Riem {sigma} (the space of all possible tetrad and gravitino fields) (iii) quantum supersymmetric gravitational corrections affect the evolution of the very early Universe. The physical meaning of these equations and results, in particular, the similarities to and differences from the pure bosonic case, are discussed.

  18. Performance of Charcoal Cookstoves for Haiti Part 1: Results from the Water Boiling Test

    SciTech Connect (OSTI)

    Booker, Kayje; Han, Tae Won; Granderson, Jessica; Jones, Jennifer; Lsk, Kathleen; Yang, Nina; Gadgil, Ashok

    2011-06-01

    In April 2010, a team of scientists and engineers from Lawrence Berkeley National Lab (LBNL) and UC Berkeley, with support from the Darfur Stoves Project (DSP), undertook a fact-finding mission to Haiti in order to assess needs and opportunities for cookstove intervention. Based on data collected from informal interviews with Haitians and NGOs, the team, Scott Sadlon, Robert Cheng, and Kayje Booker, identified and recommended stove testing and comparison as a high priority need that could be filled by LBNL. In response to that recommendation, five charcoal stoves were tested at the LBNL stove testing facility using a modified form of version 3 of the Shell Foundation Household Energy Project Water Boiling Test (WBT). The original protocol is available online. Stoves were tested for time to boil, thermal efficiency, specific fuel consumption, and emissions of CO, CO{sub 2}, and the ratio of CO/CO{sub 2}. In addition, Haitian user feedback and field observations over a subset of the stoves were combined with the experiences of the laboratory testing technicians to evaluate the usability of the stoves and their appropriateness for Haitian cooking. The laboratory results from emissions and efficiency testing and conclusions regarding usability of the stoves are presented in this report.

  19. Magnetic thaw-down and boil-off due to magneto acceptors in 2DEG

    SciTech Connect (OSTI)

    Chaubet, C.; Raymond, A.; Bisotto, I.; Harmand, J. C.; Kubisa, M.; Zawadzki, W.

    2013-12-04

    The Quantum Hall Effect (QHE) and Shubnikov-de Haas effect are investigated experimentally using n type modulation-doped GaAs/GaAlAs quantum wells (QWs) additionally doped in the well with beryllium acceptor atoms. It is presently shown that the localized magneto-acceptor (MA) states which possess discrete energies above the corresponding Landau levels (LLs) lead to two observable effects in magneto-transport: magnetic thaw-down and magnetic boil-off of 2D electrons. Both effects are related to the fact that electrons occupying the localized MA states cannot conduct. Thus in the thaw-down effect the electrons fall down from the MA states to the free Landau states. This leads to a shift of the Hall plateau towards higher magnetic fields as a consequence of an increase of the 2D electron density N{sub S}. In the boil-off effect the electrons are pushed from the free Landau states to the empty MA states under high enough Hall electric field. This process has an avalanche character leading to a dramatic increase of magneto-resistance, consequence of a decrease of N{sub S}.

  20. Modeling the Thermal Mechanical Behavior of a 300 K Vacuum Vesselthat is Cooled by Liquid Hydrogen in Film Boiling

    SciTech Connect (OSTI)

    Yang, S.Q.; Green, M.A.; Lau, W.

    2004-05-07

    This report discusses the results from the rupture of a thin window that is part of a 20-liter liquid hydrogen vessel. This rupture will spill liquid hydrogen onto the walls and bottom of a 300 K cylindrical vacuum vessel. The spilled hydrogen goes into film boiling, which removes the thermal energy from the vacuum vessel wall. This report analyzes the transient heat transfer in the vessel and calculates the thermal deflection and stress that will result from the boiling liquid in contact with the vessel walls. This analysis was applied to aluminum and stainless steel vessels.

  1. Neutron range spectrometer

    DOE Patents [OSTI]

    Manglos, S.H.

    1988-03-10

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are colliminated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. 1 fig.

  2. Holographic thermalization with initial long range correlation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lin, Shu

    2016-01-19

    Here, we studied the evolution of the Wightman correlator in a thermalizing state modeled by AdS3-Vaidya background. A prescription was given for calculating the Wightman correlator in coordinate space without using any approximation. For equal-time correlator , we obtained an enhancement factor v2 due to long range correlation present in the initial state. This was missed by previous studies based on geodesic approximation. Moreover, we found that the long range correlation in initial state does not lead to significant modification to thermalization time as compared to known results with generic initial state. We also studied the spatially integrated Wightman correlatormore » and showed evidence on the distinction between long distance and small momentum physics for an out-of-equilibrium state. We also calculated the radiation spectrum of particles weakly coupled to O and found that lower frequency mode approaches thermal spectrum faster than high frequency mode.« less

  3. Property:Wave Period Range(s) | Open Energy Information

    Open Energy Info (EERE)

    Property Edit with form History Property:Wave Period Range(s) Jump to: navigation, search Property Name Wave Period Range(s) Property Type String Pages using the property "Wave...

  4. Magnetic reconnection under anisotropic magnetohydrodynamic approximation

    SciTech Connect (OSTI)

    Hirabayashi, K.; Hoshino, M.

    2013-11-15

    We study the formation of slow-mode shocks in collisionless magnetic reconnection by using one- and two-dimensional collisionless MHD codes based on the double adiabatic approximation and the Landau closure model. We bridge the gap between the Petschek-type MHD reconnection model accompanied by a pair of slow shocks and the observational evidence of the rare occasion of in-situ slow shock observations. Our results showed that once magnetic reconnection takes place, a firehose-sense (p{sub ?}>p{sub ?}) pressure anisotropy arises in the downstream region, and the generated slow shocks are quite weak comparing with those in an isotropic MHD. In spite of the weakness of the shocks, however, the resultant reconnection rate is 10%30% higher than that in an isotropic case. This result implies that the slow shock does not necessarily play an important role in the energy conversion in the reconnection system and is consistent with the satellite observation in the Earth's magnetosphere.

  5. Approximate Model for Turbulent Stagnation Point Flow.

    SciTech Connect (OSTI)

    Dechant, Lawrence

    2016-01-01

    Here we derive an approximate turbulent self-similar model for a class of favorable pressure gradient wedge-like flows, focusing on the stagnation point limit. While the self-similar model provides a useful gross flow field estimate this approach must be combined with a near wall model is to determine skin friction and by Reynolds analogy the heat transfer coefficient. The combined approach is developed in detail for the stagnation point flow problem where turbulent skin friction and Nusselt number results are obtained. Comparison to the classical Van Driest (1958) result suggests overall reasonable agreement. Though the model is only valid near the stagnation region of cylinders and spheres it nonetheless provides a reasonable model for overall cylinder and sphere heat transfer. The enhancement effect of free stream turbulence upon the laminar flow is used to derive a similar expression which is valid for turbulent flow. Examination of free stream enhanced laminar flow suggests that the rather than enhancement of a laminar flow behavior free stream disturbance results in early transition to turbulent stagnation point behavior. Excellent agreement is shown between enhanced laminar flow and turbulent flow behavior for high levels, e.g. 5% of free stream turbulence. Finally the blunt body turbulent stagnation results are shown to provide realistic heat transfer results for turbulent jet impingement problems.

  6. Range imaging laser radar

    DOE Patents [OSTI]

    Scott, M.W.

    1990-06-19

    A laser source is operated continuously and modulated periodically (typically sinusoidally). A receiver imposes another periodic modulation on the received optical signal, the modulated signal being detected by an array of detectors of the integrating type. Range to the target determined by measuring the phase shift of the intensity modulation on the received optical beam relative to a reference. The receiver comprises a photoemitter for converting the reflected, periodically modulated, return beam to an accordingly modulated electron stream. The electron stream is modulated by a local demodulation signal source and subsequently converted back to a photon stream by a detector. A charge coupled device (CCD) array then averages and samples the photon stream to provide an electrical signal in accordance with the photon stream. 2 figs.

  7. Range imaging laser radar

    DOE Patents [OSTI]

    Scott, Marion W.

    1990-01-01

    A laser source is operated continuously and modulated periodically (typicy sinusoidally). A receiver imposes another periodic modulation on the received optical signal, the modulated signal being detected by an array of detectors of the integrating type. Range to the target determined by measuring the phase shift of the intensity modulation on the received optical beam relative to a reference. The receiver comprises a photoemitter for converting the reflected, periodically modulated, return beam to an accordingly modulated electron stream. The electron stream is modulated by a local demodulation signal source and subsequently converted back to a photon stream by a detector. A charge coupled device (CCD) array then averages and samples the photon stream to provide an electrical signal in accordance with the photon stream.

  8. Exploring the Random Phase Approximately for materials chemistry and physics

    SciTech Connect (OSTI)

    Ruzsinsky, Adrienn

    2015-03-23

    This proposal focuses on improved accuracy for the delicate energy differences of interest in materials chemistry with the fully nonlocal random phase approximation (RPA) in a density functional context. Could RPA or RPA-like approaches become standard methods of first-principles electronic-structure calculation for atoms, molecules, solids, surfaces, and nano-structures? Direct RPA includes the full exact exchange energy and a nonlocal correlation energy from the occupied and unoccupied Kohn-Sham orbitals and orbital energies, with an approximate but universal description of long-range van der Waals attraction. RPA also improves upon simple pair-wise interaction potentials or vdW density functional theory. This improvement is essential to capture accurate energy differences in metals and different phases of semiconductors. The applications in this proposal are challenges for the simpler approximations of Kohn-Sham density functional theory, which are part of the current “standard model” for quantum chemistry and condensed matter physics. Within this project we already applied RPA on different structural phase transitions on semiconductors, metals and molecules. Although RPA predicts accurate structural parameters, RPA has proven not equally accurate in all kinds of structural phase transitions. Therefore a correction to RPA can be necessary in many cases. We are currently implementing and testing a nonempirical, spatially nonlocal, frequency-dependent model for the exchange-correlation kernel in the adiabatic-connection fluctuation-dissipation context. This kernel predicts a nearly-exact correlation energy for the electron gas of uniform density. If RPA or RPA-like approaches prove to be reliably accurate, then expected increases in computer power may make them standard in the electronic-structure calculations of the future.

  9. Bond selective chemistry beyond the adiabatic approximation

    SciTech Connect (OSTI)

    Butler, L.J.

    1993-12-01

    One of the most important challenges in chemistry is to develop predictive ability for the branching between energetically allowed chemical reaction pathways. Such predictive capability, coupled with a fundamental understanding of the important molecular interactions, is essential to the development and utilization of new fuels and the design of efficient combustion processes. Existing transition state and exact quantum theories successfully predict the branching between available product channels for systems in which each reaction coordinate can be adequately described by different paths along a single adiabatic potential energy surface. In particular, unimolecular dissociation following thermal, infrared multiphoton, or overtone excitation in the ground state yields a branching between energetically allowed product channels which can be successfully predicted by the application of statistical theories, i.e. the weakest bond breaks. (The predictions are particularly good for competing reactions in which when there is no saddle point along the reaction coordinates, as in simple bond fission reactions.) The predicted lack of bond selectivity results from the assumption of rapid internal vibrational energy redistribution and the implicit use of a single adiabatic Born-Oppenheimer potential energy surface for the reaction. However, the adiabatic approximation is not valid for the reaction of a wide variety of energetic materials and organic fuels; coupling between the electronic states of the reacting species play a a key role in determining the selectivity of the chemical reactions induced. The work described below investigated the central role played by coupling between electronic states in polyatomic molecules in determining the selective branching between energetically allowed fragmentation pathways in two key systems.

  10. Range Resources | Open Energy Information

    Open Energy Info (EERE)

    Range Resources Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleRangeResources&oldid612320...

  11. Neutron range spectrometer

    DOE Patents [OSTI]

    Manglos, Stephen H.

    1989-06-06

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are collimnated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. The computer solves the following equation in the analysis: ##EQU1## where: N(x).DELTA.x=the number of neutron interactions measured between a position x and x+.DELTA.x, A.sub.i (E.sub.i).DELTA.E.sub.i =the number of incident neutrons with energy between E.sub.i and E.sub.i +.DELTA.E.sub.i, and C=C(E.sub.i)=N .sigma.(E.sub.i) where N=the number density of absorbing atoms in the position sensitive counter means and .sigma. (E.sub.i)=the average cross section of the absorbing interaction between E.sub.i and E.sub.i +.DELTA.E.sub.i.

  12. Passive containment cooling system with drywell pressure regulation for boiling water reactor

    DOE Patents [OSTI]

    Hill, Paul R.

    1994-01-01

    A boiling water reactor having a regulating valve for placing the wetwell in flow communication with an intake duct of the passive containment cooling system. This subsystem can be adjusted to maintain the drywell pressure at (or slightly below or above) wetwell pressure after the initial reactor blowdown transient is over. This addition to the PCCS design has the benefit of eliminating or minimizing steam leakage from the drywell to the wetwell in the longer-term post-LOCA time period and also minimizes the temperature difference between drywell and wetwell. This in turn reduces the rate of long-term pressure buildup of the containment, thereby extending the time to reach the design pressure limit.

  13. Passive containment cooling system with drywell pressure regulation for boiling water reactor

    DOE Patents [OSTI]

    Hill, P.R.

    1994-12-27

    A boiling water reactor is described having a regulating valve for placing the wetwell in flow communication with an intake duct of the passive containment cooling system. This subsystem can be adjusted to maintain the drywell pressure at (or slightly below or above) wetwell pressure after the initial reactor blowdown transient is over. This addition to the PCCS design has the benefit of eliminating or minimizing steam leakage from the drywell to the wetwell in the longer-term post-LOCA time period and also minimizes the temperature difference between drywell and wetwell. This in turn reduces the rate of long-term pressure buildup of the containment, thereby extending the time to reach the design pressure limit. 4 figures.

  14. Statistical modeling support for calibration of a multiphysics model of subcooled boiling flows

    SciTech Connect (OSTI)

    Bui, A. V.; Dinh, N. T.; Nourgaliev, R. R.; Williams, B. J.

    2013-07-01

    Nuclear reactor system analyses rely on multiple complex models which describe the physics of reactor neutronics, thermal hydraulics, structural mechanics, coolant physico-chemistry, etc. Such coupled multiphysics models require extensive calibration and validation before they can be used in practical system safety study and/or design/technology optimization. This paper presents an application of statistical modeling and Bayesian inference in calibrating an example multiphysics model of subcooled boiling flows which is widely used in reactor thermal hydraulic analysis. The presence of complex coupling of physics in such a model together with the large number of model inputs, parameters and multidimensional outputs poses significant challenge to the model calibration method. However, the method proposed in this work is shown to be able to overcome these difficulties while allowing data (observation) uncertainty and model inadequacy to be taken into consideration. (authors)

  15. Effect of nonuniformity of subcooled boiling flow on the onset of thermoacoustic vibrations

    SciTech Connect (OSTI)

    Gerliga, V.A.; Skalozubov, V.I.; Lesin, V.Y. )

    1991-01-01

    This paper develops the hypothesis that the factor responsible for the onset of thermoacoustic vibrations in two-phase bubble flow is positive work by bubbles condensing in the flow core. It is shown that the predicted threshold of generation of these vibrations depends strongly on the accuracy of description of the steady-state distribution of parameters of bubbles and the liquid. The results predicted on the basis of a two-zone nonequilibrium polydisperse model are compared with those given by the uniform-flow model and an equation representing the condition of applicability of one-dimensional models for predicting the steady-state parameters of nonequilibrium boiling flows is derived.

  16. Approximate simulation of CO[sub 2] and H[sub 2]S absorption into aqueous alkanolamines

    SciTech Connect (OSTI)

    Glasscock, D.A.; Rochelle, G.T. . Dept. of Chemical Engineering)

    1993-08-01

    Rigorous and approximate methods are compared for the simulation of CO[sub 2] absorption into aqueous alkanolamine mixtures of methyldiethanolamine and diethanolamine. In addition, data for the mixtures containing monoethanolamine and the simultaneous absorption of CO[sub 2] and H[sub 2]S are presented. For the rigorous approach, the simplified eddy diffusivity theory is used to simulate the liquid-phase hydrodynamic characteristics. The approximation methods examined are the pseudo-first-order approximation, the interpolation approximation of Wellek et al. (1978), the algebraic combined flux (ACFLUX) approximation and the modified combined flux (MCFLUX) approximation. The latter approximation utilizes the reaction zone concept to determine the kinetic preference of the absorbing gas at the gas-liquid interface. Under the range of conditions studied, the MCFLUX approximation predicts very accurately the CO[sub 2] and H[sub 2]S flux rates in mixed amine systems, as compared with the rigorous solution of the differential equations.

  17. Approximate Weighted Matching On Emerging Manycore and Multithreaded Architectures

    SciTech Connect (OSTI)

    Halappanavar, Mahantesh; Feo, John T.; Villa, Oreste; Tumeo, Antonino; Pothen, Alex

    2012-11-30

    Graph matching is a prototypical combinatorial problem with many applications in computer science and scientific computing, but algorithms for computing optimal matchings are challenging to parallelize. Approximate matching algorithms provide an alternate route for parallelization, and in many contexts compute near-optimal matchings for large-scale graphs. We present sharedmemory parallel implementations for computing half-approximate weighted matching on state-of-the-art multicore (Intel Nehalem and AMD Magny-Cours), manycore (Nvidia Tesla and Nvidia Fermi) and massively multithreaded (Cray XMT) platforms. We provide two implementations: the first implementation uses shared work queues, and is suited to all these platforms; the second implementation is based on dataflow principles, and exploits the architectural features of the Cray XMT. Using a carefully chosen dataset that exhibits characteristics from a wide range of real-world applications, we show scalable performance across different platforms. In particular, for one instance of the input, an R-MAT graph (RMAT-G), we show speedups of: about 32 on 48 cores of an AMD Magny-Cours; 7 on 8 cores of Intel Nehalem; 3 on Nvidia Tesla and 10 on Nvidia Fermi relative to one core of Intel Nehalem; and 60 on 128 processors of Cray XMT. We demonstrate good weak and strong scaling for graphs with up to a billion edges using up to 12, 800 threads. Given the breadth of this work, we focus on simplicity and portability of software rather than excessive fine-tuning for each platform. To the best of our knowledge, this is the first such large-scale study of the half-approximate weighted matching problem on shared-memory platforms. Driven by the critical enabling role of combinatorial algorithms such as matching in scientific computing and the emergence of informatics applications, there is a growing demand to support irregular computations on current and future computing platforms. In this context, we evaluate the capability

  18. Design of a boiling water reactor equilibrium core using thorium-uranium fuel

    SciTech Connect (OSTI)

    Francois, J-L.; Nunez-Carrera, A.; Espinosa-Paredes, G.; Martin-del-Campo, C.

    2004-10-06

    In this paper the design of a Boiling Water Reactor (BWR) equilibrium core using thorium is presented; a heterogeneous blanket-seed core arrangement concept was adopted. The design was developed in three steps: in the first step two different assemblies were designed based on the integrated blanket-seed concept, they are the blanket-dummy assembly and the blanket-seed assembly. The integrated blanketseed concept comes from the fact that the blanket and the seed rods are located in the same assembly, and are burned-out in a once-through cycle. In the second step, a core design was developed to achieve an equilibrium cycle of 365 effective full power days in a standard BWR with a reload of 104 fuel assemblies designed with an average 235U enrichment of 7.5 w/o in the seed sub-lattice. The main operating parameters, like power, linear heat generation rate and void distributions were obtained as well as the shutdown margin. It was observed that the analyzed parameters behave like those obtained in a standard BWR. The shutdown margin design criterion was fulfilled by addition of a burnable poison region in the assembly. In the third step an in-house code was developed to evaluate the thorium equilibrium core under transient conditions. A stability analysis was also performed. Regarding the stability analysis, five operational states were analyzed; four of them define the traditional instability region corner of the power-flow map and the fifth one is the operational state for the full power condition. The frequency and the boiling length were calculated for each operational state. The frequency of the analyzed operational states was similar to that reported for BWRs; these are close to the unstable region that occurs due to the density wave oscillation phenomena in some nuclear power plants. Four transient analyses were also performed: manual SCRAM, recirculation pumps trip, main steam isolation valves closure and loss of feed water. The results of these transients are

  19. Many-Group Cross-Section Adjustment Techniques for Boiling Water Reactor Adaptive Simulation

    SciTech Connect (OSTI)

    Jessee, Matthew Anderson

    2011-01-01

    Computational capability has been developed to adjust multigroup neutron cross sections, including self-shielding correction factors, to improve the fidelity of boiling water reactor (BWR) core modeling and simulation. The method involves propagating multigroup neutron cross-section uncertainties through various BWR computational models to evaluate uncertainties in key core attributes such as core k{sub eff}, nodal power distributions, thermal margins, and in-core detector readings. Uncertainty-based inverse theory methods are then employed to adjust multigroup cross sections to minimize the disagreement between BWR core modeling predictions and observed (i.e., measured) plant data. For this paper, observed plant data are virtually simulated in the form of perturbed three-dimensional nodal power distributions with the perturbations sized to represent actual discrepancies between predictions and real plant data. The major focus of this work is to efficiently propagate multigroup neutron cross-section uncertainty through BWR lattice physics and core simulator calculations. The data adjustment equations are developed using a subspace approach that exploits the ill-conditioning of the multigroup cross-section covariance matrix to minimize computation and storage burden. Tikhonov regularization is also employed to improve the conditioning of the data adjustment equations. Expressions are also provided for posterior covariance matrices of both the multigroup cross-section and core attributes uncertainties.

  20. Improvements of fuel failure detection in boiling water reactors using helium measurements

    SciTech Connect (OSTI)

    Larsson, I.; Sihver, L.; Grundin, A.; Helmersson, J. O.

    2012-07-01

    To certify a continuous and safe operation of a boiling water reactor, careful surveillance of fuel integrity is of high importance. The detection of fuel failures can be performed by off-line gamma spectroscopy of off-gas samples and/or by on-line nuclide specific monitoring of gamma emitting noble gases. To establish the location of a leaking fuel rod, power suppression testing can be used. The accuracy of power suppression testing is dependent on the information of the delay time and the spreading of the released fission gases through the systems before reaching the sampling point. This paper presents a method to improve the accuracy of power suppression testing by determining the delay time and gas spreading profile. To estimate the delay time and examine the spreading of the gas in case of a fuel failure, helium was injected in the feed water system at Forsmark 3 nuclear power plant. The measurements were performed by using a helium detector system based on a mass spectrometer installed in the off-gas system. The helium detection system and the results of the experiment are presented in this paper. (authors)

  1. Advanced fuel assembly characterization capabilities based on gamma tomography at the Halden boiling water reactor

    SciTech Connect (OSTI)

    Holcombe, S.; Eitrheim, K.; Svaerd, S. J.; Hallstadius, L.; Willman, C.

    2012-07-01

    Characterization of individual fuel rods using gamma spectroscopy is a standard part of the Post Irradiation Examinations performed on experimental fuel at the Halden Boiling Water Reactor. However, due to handling and radiological safety concerns, these measurements are presently carried out only at the end of life of the fuel, and not earlier than several days or weeks after its removal from the reactor core. In order to enhance the fuel characterization capabilities at the Halden facilities, a gamma tomography measurement system is now being constructed, capable of characterizing fuel assemblies on a rod-by-rod basis in a more timely and efficient manner. Gamma tomography for measuring nuclear fuel is based on gamma spectroscopy measurements and tomographic reconstruction techniques. The technique, previously demonstrated on irradiated commercial fuel assemblies, is capable of determining rod-by-rod information without the need to dismantle the fuel. The new gamma tomography system will be stationed close to the Halden reactor in order to limit the need for fuel transport, and it will significantly reduce the time required to perform fuel characterization measurements. Furthermore, it will allow rod-by-rod fuel characterization to occur between irradiation cycles, thus allowing for measurement of experimental fuel repeatedly during its irradiation lifetime. The development of the gamma tomography measurement system is a joint project between the Inst. for Energy Technology - OECD Halden Reactor Project, Westinghouse (Sweden), and Uppsala Univ.. (authors)

  2. Enhancement of Heat Transfer with Pool and Spray Impingement Boiling on Microporous and Nanowire Surface Coatings

    SciTech Connect (OSTI)

    Thiagarajan, S. J.; Wang, W.; Yang, R.; Narumanchi, S.; King, C.

    2010-09-01

    The DOE National Renewable Energy Laboratory (NREL) is leading a national effort to develop next-generation cooling technologies for hybrid vehicle electronics. The goal is to reduce the size, weight, and cost of power electronic modules that convert direct current from batteries to alternating current for the motor, and vice versa. Aggressive thermal management techniques help to increase power density and reduce weight and volume, while keeping chip temperatures within acceptable limits. The viability of aggressive cooling schemes such as spray and jet impingement in conjunction with enhanced surfaces is being explored. Here, we present results from a series of experiments with pool and spray boiling on enhanced surfaces, such as a microporous layer of copper and copper nanowires, using HFE-7100 as the working fluid. Spray impingement on the microporous coated surface showed an enhancement of 100%-300% in the heat transfer coefficient at a given wall superheat with respect to spray impingement on a plain surface under similar operating conditions. Critical heat flux also increased by 7%-20%, depending on flow rates.

  3. Study of plutonium disposition using existing GE advanced Boiling Water Reactors

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    The end of the cold war and the resulting dismantlement of nuclear weapons has resulted in the need for the US to dispose of 50 to 100 metric tons of excess of plutonium in a safe and proliferation resistant manner. A number of studies, including the recently released National Academy of Sciences (NAS) study, have recommended conversion of plutonium into spent nuclear fuel with its high radiation barrier as the best means of providing permanent conversion and long-term diversion resistance to this material. The NAS study ``Management and Disposition of Excess Weapons Plutonium identified Light Water Reactor spent fuel as the most readily achievable and proven form for the disposition of excess weapons plutonium. The study also stressed the need for a US disposition program which would enhance the prospects for a timely reciprocal program agreement with Russia. This summary provides the key findings of a GE study where plutonium is converted into Mixed Oxide (MOX) fuel and a typical 1155 MWe GE Boiling Water Reactor (BWR) is utilized to convert the plutonium to spent fuel. A companion study of the Advanced BWR has recently been submitted. The MOX core design work that was conducted for the ABWR enabled GE to apply comparable fuel design concepts and consequently achieve full MOX core loading which optimize plutonium throughput for existing BWRs.

  4. Thermalhydraulic calculation for boiling water reactor and its natural circulation component

    SciTech Connect (OSTI)

    Trianti, Nuri Nurjanah,; Su’ud, Zaki; Arif, Idam; Permana, Sidik

    2015-09-30

    Thermalhydraulic of reactor core is the thermal study on fluids within the core reactor, i.e. analysis of the thermal energy transfer process produced by fission reaction from fuel to the reactor coolant. This study include of coolant temperature and reactor power density distribution. The purposes of this analysis in the design of nuclear power plant are to calculate the coolant temperature distribution and the chimney height so natural circulation could be occurred. This study was used boiling water reactor (BWR) with cylinder type reactor core. Several reactor core properties such as linear power density, mass flow rate, coolant density and inlet temperature has been took into account to obtain distribution of coolant density, flow rate and pressure drop. The results of calculation are as follows. Thermal hydraulic calculations provide the uniform pressure drop of 1.1 bar for each channels. The optimum mass flow rate to obtain the uniform pressure drop is 217g/s. Furthermore, from the calculation it could be known that outlet temperature is 288°C which is the saturated fluid’s temperature within the system. The optimum chimney height for natural circulation within the system is 14.88 m.

  5. Decontamination and decommissioning of the Experimental Boiling Water Reactor (EBWR): Project final report, Argonne National Laboratory

    SciTech Connect (OSTI)

    Fellhauer, C.R.; Boing, L.E.; Aldana, J.

    1997-03-01

    The Final Report for the Decontamination and Decommissioning (D&D) of the Argonne National Laboratory - East (ANL-E) Experimental Boiling Water Reactor (EBWR) facility contains the descriptions and evaluations of the activities and the results of the EBWR D&D project. It provides the following information: (1) An overall description of the ANL-E site and EBWR facility. (2) The history of the EBWR facility. (3) A description of the D&D activities conducted during the EBWR project. (4) A summary of the final status of the facility, including the final and confirmation surveys. (5) A summary of the final cost, schedule, and personnel exposure associated with the project, including a summary of the total waste generated. This project report covers the entire EBWR D&D project, from the initiation of Phase I activities to final project closeout. After the confirmation survey, the EBWR facility was released as a {open_quotes}Radiologically Controlled Area,{close_quotes} noting residual elevated activity remains in inaccessible areas. However, exposure levels in accessible areas are at background levels. Personnel working in accessible areas do not need Radiation Work Permits, radiation monitors, or other radiological controls. Planned use for the containment structure is as an interim transuranic waste storage facility (after conversion).

  6. Charge-conjugation symmetric complete impulse approximation for...

    Office of Scientific and Technical Information (OSTI)

    from the spectator quark (referred to as the relativistic impulse approximation). In this study we also include the contributions from the poles of the quark which interacts with ...

  7. How to Solve Schroedinger Problems by Approximating the Potential Function

    SciTech Connect (OSTI)

    Ledoux, Veerle; Van Daele, Marnix

    2010-09-30

    We give a survey over the efforts in the direction of solving the Schroedinger equation by using piecewise approximations of the potential function. Two types of approximating potentials have been considered in the literature, that is piecewise constant and piecewise linear functions. For polynomials of higher degree the approximating problem is not so easy to integrate analytically. This obstacle can be circumvented by using a perturbative approach to construct the solution of the approximating problem, leading to the so-called piecewise perturbation methods (PPM). We discuss the construction of a PPM in its most convenient form for applications and show that different PPM versions (CPM,LPM) are in fact equivalent.

  8. Quasiparticle random-phase approximation with interactions from...

    Office of Scientific and Technical Information (OSTI)

    Quasiparticle random-phase approximation with interactions from the Similarity Renormalization Group Citation Details In-Document Search Title: Quasiparticle random-phase ...

  9. A Multithreaded Algorithm for Network Alignment Via Approximate...

    Office of Scientific and Technical Information (OSTI)

    The best current approaches are entirely heuristic, and are iterative in nature. They generate real-valued heuristic approximations that must be rounded to find integer solutions. ...

  10. ANALOG QUANTUM NEURON FOR FUNCTIONS APPROXIMATION A. EZHOV; A...

    Office of Scientific and Technical Information (OSTI)

    FOR FUNCTIONS APPROXIMATION A. EZHOV; A. KHROMOV; G. BERMAN 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; IMPLEMENTATION; NERVE CELLS; WAVEGUIDES We describe a system able...

  11. Stress and Fracture Mechanics Analyses of Boiling Water Reactor and Pressurized Water Reactor Pressure Vessel Nozzles

    SciTech Connect (OSTI)

    Yin, Shengjun; Bass, Bennett Richard; Stevens, Gary; Kirk, Mark

    2011-01-01

    This paper describes stress analysis and fracture mechanics work performed to assess boiling water reactor (BWR) and pressurized water reactor (PWR) nozzles located in the reactor pressure vessel (RPV) adjacent to the core beltline region. Various RPV nozzle geometries were investigated: 1. BWR recirculation outlet nozzle; 2. BWR core spray nozzle3 3. PWR inlet nozzle; ; 4. PWR outlet nozzle; and 5. BWR partial penetration instrument nozzle. The above nozzle designs were selected based on their proximity to the core beltline region, i.e., those nozzle configurations that are located close enough to the core region such that they may receive sufficient fluence prior to end-of-license (EOL) to require evaluation as part of establishing the allowed limits on heatup, cooldown, and hydrotest (leak test) conditions. These nozzles analyzed represent one each of the nozzle types potentially requiring evaluation. The purpose of the analyses performed on these nozzle designs was as follows: To model and understand differences in pressure and thermal stress results using a two-dimensional (2-D) axi-symmetric finite element model (FEM) versus a three-dimensional (3-D) FEM for all nozzle types. In particular, the ovalization (stress concentration) effect of two intersecting cylinders, which is typical of RPV nozzle configurations, was investigated; To verify the accuracy of a selected linear elastic fracture mechanics (LEFM) hand solution for stress intensity factor for a postulated nozzle corner crack for both thermal and pressure loading for all nozzle types; To assess the significance of attached piping loads on the stresses in the nozzle corner region; and To assess the significance of applying pressure on the crack face with respect to the stress intensity factor for a postulated nozzle corner crack.

  12. Nondestructive assay of spent boiling water reactor fuel by active neutron interrogation

    SciTech Connect (OSTI)

    Blakeman, E.D.; Ricker, C.W.; Ragan, G.L.; Difilippo, F.C.; Slaughter, G.G.

    1981-01-01

    Spent boiling water reactor (BWR) fuel from Dresden I was assayed for total fissile mass, using the active neutron interrogation method. The nondestructive assay (NDA) system used has four Sb-Be sources for interrogation of the fuels; the induced fission neutrons from the fuel are counted by four lead-shielded methane-filled proportional counters biased above the energy of the source neutrons. Spent fuel rods containing 9 kg of heavy metal were chopped into 5-cm segments and loaded into three 1-liter cans. The three cans were assayed in seven combinations of one, two, or three cans, enabling an evaluation of the precision and accuracy of the NDA system for different amounts of fissile material. The fissile mass in each combination was determined by comparing the induced-fission-neutron counts with the counts obtained from a known standard comprising chopped segments of unirradiated Dresden fuel. These masses were compared to the masses determined by chemical analyses of the spent fuel. The results from the nondestructive assays agreed with results from the chemical analyses to within 2 to 3%. Similar agreement was obtained when two combinations of canned spent fuel were used as standards for the nondesctuctive assays. The assay of BWR spent fuel served as a test of the NDA system which was developed at the Oak Ridge National Laboratory for the assay of spent liquid metal fast breeder reactor (LMFBR) fuel subassemblies at the heat-end of a reprocessing plant. Results of previous experiments and calculations reported earlier using simulated LMFBR fuel subassemblies indicated that the NDA system can measure the fissile masses of spent fuel subassemblies to within an accuracy of 3%. Results of the assays of spent BWR fuel reported herein support this conclusion.

  13. Study of plutonium disposition using the GE Advanced Boiling Water Reactor (ABWR)

    SciTech Connect (OSTI)

    1994-04-30

    The end of the cold war and the resulting dismantlement of nuclear weapons has resulted in the need for the U.S. to disposition 50 to 100 metric tons of excess of plutonium in parallel with a similar program in Russia. A number of studies, including the recently released National Academy of Sciences (NAS) study, have recommended conversion of plutonium into spent nuclear fuel with its high radiation barrier as the best means of providing long-term diversion resistance to this material. The NAS study {open_quotes}Management and Disposition of Excess Weapons Plutonium{close_quotes} identified light water reactor spent fuel as the most readily achievable and proven form for the disposition of excess weapons plutonium. The study also stressed the need for a U.S. disposition program which would enhance the prospects for a timely reciprocal program agreement with Russia. This summary provides the key findings of a GE study where plutonium is converted into Mixed Oxide (MOX) fuel and a 1350 MWe GE Advanced Boiling Water Reactor (ABWR) is utilized to convert the plutonium to spent fuel. The ABWR represents the integration of over 30 years of experience gained worldwide in the design, construction and operation of BWRs. It incorporates advanced features to enhance reliability and safety, minimize waste and reduce worker exposure. For example, the core is never uncovered nor is any operator action required for 72 hours after any design basis accident. Phase 1 of this study was documented in a GE report dated May 13, 1993. DOE`s Phase 1 evaluations cited the ABWR as a proven technical approach for the disposition of plutonium. This Phase 2 study addresses specific areas which the DOE authorized as appropriate for more in-depth evaluations. A separate report addresses the findings relative to the use of existing BWRs to achieve the same goal.

  14. MODULAR AND FULL SIZE SIMPLIFIED BOILING WATER REACTOR DESIGN WITH FULLY PASSIVE SAFETY SYSTEMS

    SciTech Connect (OSTI)

    M. Ishii; S. T. Revankar; T. Downar; Y. Xu, H. J. Yoon; D. Tinkler; U. S. Rohatgi

    2003-06-16

    OAK B204 The overall goal of this three-year research project was to develop a new scientific design of a compact modular 200 MWe and a full size 1200 MWe simplified boiling water reactors (SBWR). Specific objectives of this research were: (1) to perform scientific designs of the core neutronics and core thermal-hydraulics for a small capacity and full size simplified boiling water reactor, (2) to develop a passive safety system design, (3) improve and validate safety analysis code, (4) demonstrate experimentally and analytically all design functions of the safety systems for the design basis accidents (DBA) and (5) to develop the final scientific design of both SBWR systems, 200 MWe (SBWR-200) and 1200 MWe (SBWR-1200). The SBWR combines the advantages of design simplicity and completely passive safety systems. These advantages fit well within the objectives of NERI and the Department of Energy's focus on the development of Generation III and IV nuclear power. The 3-year research program was structured around seven tasks. Task 1 was to perform the preliminary thermal-hydraulic design. Task 2 was to perform the core neutronic design analysis. Task 3 was to perform a detailed scaling study and obtain corresponding PUMA conditions from an integral test. Task 4 was to perform integral tests and code evaluation for the DBA. Task 5 was to perform a safety analysis for the DBA. Task 6 was to perform a BWR stability analysis. Task 7 was to perform a final scientific design of the compact modular SBWR-200 and the full size SBWR-1200. A no cost extension for the third year was requested and the request was granted and all the project tasks were completed by April 2003. The design activities in tasks 1, 2, and 3 were completed as planned. The existing thermal-hydraulic information, core physics, and fuel lattice information was collected on the existing design of the simplified boiling water reactor. The thermal-hydraulic design were developed. Based on a detailed integral

  15. On the approximations of the distribution function of fusion alpha particles

    SciTech Connect (OSTI)

    Bilato, R. Brambilla, M.; Poli, E.

    2014-10-15

    The solution of the drift-kinetic equation for fusion-born alpha particles is derived in the limit of dominant parallel streaming, and it is related to the usual slowing-down distribution function. The typical approximations of the fast tail of fusion-born alpha particles are briefly compared and discussed. In particular, approximating the distribution function of fast-alpha particles with an equivalent Maxwellian is inaccurate to describe absorption of radio-frequency waves in the ion-cyclotron range of frequencies.

  16. Properties of the Boltzmann equation in the classical approximation

    SciTech Connect (OSTI)

    Tanji, Naoto; Epelbaum, Thomas; Gelis, Francois; Wu, Bin

    2014-12-30

    We study the Boltzmann equation with elastic point-like scalar interactions in two different versions of the the classical approximation. Although solving numerically the Boltzmann equation with the unapproximated collision term poses no problem, this allows one to study the effect of the ultraviolet cutoff in these approximations. This cutoff dependence in the classical approximations of the Boltzmann equation is closely related to the non-renormalizability of the classical statistical approximation of the underlying quantum field theory. The kinetic theory setup that we consider here allows one to study in a much simpler way the dependence on the ultraviolet cutoff, since one has also access to the non-approximated result for comparison.

  17. Properties of the Boltzmann equation in the classical approximation

    SciTech Connect (OSTI)

    Epelbaum, Thomas; Gelis, François; Tanji, Naoto; Wu, Bin

    2014-12-30

    We examine the Boltzmann equation with elastic point-like scalar interactions in two different versions of the the classical approximation. Although solving numerically the Boltzmann equation with the unapproximated collision term poses no problem, this allows one to study the effect of the ultraviolet cutoff in these approximations. This cutoff dependence in the classical approximations of the Boltzmann equation is closely related to the non-renormalizability of the classical statistical approximation of the underlying quantum field theory. The kinetic theory setup that we consider here allows one to study in a much simpler way the dependence on the ultraviolet cutoff, since one has also access to the non-approximated result for comparison.

  18. Properties of the Boltzmann equation in the classical approximation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Epelbaum, Thomas; Gelis, François; Tanji, Naoto; Wu, Bin

    2014-12-30

    We examine the Boltzmann equation with elastic point-like scalar interactions in two different versions of the the classical approximation. Although solving numerically the Boltzmann equation with the unapproximated collision term poses no problem, this allows one to study the effect of the ultraviolet cutoff in these approximations. This cutoff dependence in the classical approximations of the Boltzmann equation is closely related to the non-renormalizability of the classical statistical approximation of the underlying quantum field theory. The kinetic theory setup that we consider here allows one to study in a much simpler way the dependence on the ultraviolet cutoff, since onemore » has also access to the non-approximated result for comparison.« less

  19. Extended range chemical sensing apparatus

    DOE Patents [OSTI]

    Hughes, Robert C. (Albuquerque, NM); Schubert, W. Kent (Albuquerque, NM)

    1994-01-01

    An apparatus for sensing chemicals over extended range of concentrations. In particular, first and second sensors each having separate, but overlapping ranges for sensing concentrations of hydrogen are provided. Preferably, the first sensor is a MOS solid state device wherein the metal electrode or gate is a nickel alloy. The second sensor is a chemiresistor comprising a nickel alloy.

  20. Extended range chemical sensing apparatus

    DOE Patents [OSTI]

    Hughes, R.C.; Schubert, W.K.

    1994-01-18

    An apparatus is described for sensing chemicals over extended range of concentrations. In particular, first and second sensors each having separate, but overlapping ranges for sensing concentrations of hydrogen are provided. Preferably, the first sensor is a MOS solid state device wherein the metal electrode or gate is a nickel alloy. The second sensor is a chemiresistor comprising a nickel alloy. 6 figures.

  1. Higher-degree linear approximations of nonlinear systems

    SciTech Connect (OSTI)

    Karahan, S.

    1989-01-01

    In this dissertation, the author develops a new method for obtaining higher degree linear approximations of nonlinear control systems. The standard approach in the analysis and synthesis of nonlinear systems is a first order approximation by a linear model. This is usually performed by obtaining a series expansion of the system at some nominal operating point and retaining only the first degree terms in the series. The accuracy of this approximation depends on how far the system moves away from the normal point, and on the relative magnitudes of the higher degree terms in the series expansion. The approximation is achieved by finding an appropriate nonlinear coordinate transformation-feedback pair to perform the higher degree linearization. With the proposed method, one can improve the accuracy of the approximation up to arbitrarily higher degrees, provided certain solvability conditions are satisfied. The Hunt-Su linearizability theorem makes these conditions precise. This approach is similar to Poincare's Normal Form Theorem in formulation, but different in its solution method. After some mathematical background the author derives a set of equations (called the Homological Equations). A solution to this system of linear equations is equivalent to the solution to the problem of approximate linearization. However, it is generally not possible to solve the system of equations exactly. He outlines a method for systematically finding approximate solutions to these equations using singular value decomposition, while minimizing an error with respect to some defined norm.

  2. Experimental Investigation on the Effects of Coolant Concentration on Sub-Cooled Boiling and Crud Deposition on Reactor Cladding at Prototypical PWR Operating Conditions

    SciTech Connect (OSTI)

    Schultis, J., Kenneth; Fenton, Donald, L.

    2006-10-20

    Increasing demand for energy necessitates nuclear power units to increase power limits. This implies significant changes in the design of the core of the nuclear power units, therefore providing better performance and safety in operations. A major hindrance to the increase of nuclear reactor performance especially in Pressurized Deionized water Reactors (PWR) is Axial Offset Anomaly (AOA)--the unexpected change in the core axial power distribution during operation from the predicted distribution. This problem is thought to be occur because of precipitation and deposition of lithiated compounds like boric acid (H{sub 2}BO{sub 3}) and lithium metaborate (LiBO{sub 2}) on the fuel rod cladding. Deposited boron absorbs neutrons thereby affecting the total power distribution inside the reactor. AOA is thought to occur when there is sufficient build-up of crud deposits on the cladding during subcooled nucleate boiling. Predicting AOA is difficult as there is very little information regarding the heat and mass transfer during subcooled nucleate boiling. An experimental investigation was conducted to study the heat transfer characteristics during subcooled nucleate boiling at prototypical PWR conditions. Pool boiling tests were conducted with varying concentrations of lithium metaborate (LiBO{sub 2}) and boric acid (H{sub 2}BO{sub 3}) solutions in deionized water. The experimental data collected includes the effect of coolant concentration, subcooling, system pressure and heat flux on pool the boiling heat transfer coefficient. The analysis of particulate deposits formed on the fuel cladding surface during subcooled nucleate boiling was also performed. The results indicate that the pool boiling heat transfer coefficient degrades in the presence of boric acid and lithium metaborate compared to pure deionized water due to lesser nucleation. The pool boiling heat transfer coefficients decreased by about 24% for 5000 ppm concentrated boric acid solution and by 27% for 5000 ppm

  3. An evaluation of alternative reactor vessel cutting technologies for the experimental boiling water reactor at Argonne National Laboratory

    SciTech Connect (OSTI)

    Boing, L.E.; Henley, D.R. ); Manion, W.J.; Gordon, J.W. )

    1989-12-01

    Metal cutting techniques that can be used to segment the reactor pressure vessel of the Experimental Boiling Water Reactor (EBWR) at Argonne National Laboratory (ANL) have been evaluated by Nuclear Energy Services. Twelve cutting technologies are described in terms of their ability to perform the required task, their performance characteristics, environmental and radiological impacts, and cost and schedule considerations. Specific recommendations regarding which technology should ultimately be used by ANL are included. The selection of a cutting method was the responsibility of the decommissioning staff at ANL, who included a relative weighting of the parameters described in this document in their evaluation process. 73 refs., 26 figs., 69 tabs.

  4. Application of the Isotope Ratio Method to a Boiling Water Reactor

    SciTech Connect (OSTI)

    Frank, Douglas P.; Gerlach, David C.; Gesh, Christopher J.; Hurley, David E.; Meriwether, George H.; Mitchell, Mark R.; Reid, Bruce D.

    2010-08-11

    production in a boiling water reactor fuel bundle based on measurements taken from the corresponding fuel assembly channel. Our preliminary results are in good agreement with the actual operating history of the reactor during the cycle that the fuel bundle was resident in the core.

  5. Comparing Simulation Results with Traditional PRA Model on a Boiling Water Reactor Station Blackout Case Study

    SciTech Connect (OSTI)

    Zhegang Ma; Diego Mandelli; Curtis Smith

    2011-07-01

    A previous study used RELAP and RAVEN to conduct a boiling water reactor station black-out (SBO) case study in a simulation based environment to show the capabilities of the risk-informed safety margin characterization methodology. This report compares the RELAP/RAVEN simulation results with traditional PRA model results. The RELAP/RAVEN simulation run results were reviewed for their input parameters and output results. The input parameters for each simulation run include various timing information such as diesel generator or offsite power recovery time, Safety Relief Valve stuck open time, High Pressure Core Injection or Reactor Core Isolation Cooling fail to run time, extended core cooling operation time, depressurization delay time, and firewater injection time. The output results include the maximum fuel clad temperature, the outcome, and the simulation end time. A traditional SBO PRA model in this report contains four event trees that are linked together with the transferring feature in SAPHIRE software. Unlike the usual Level 1 PRA quantification process in which only core damage sequences are quantified, this report quantifies all SBO sequences, whether they are core damage sequences or success (i.e., non core damage) sequences, in order to provide a full comparison with the simulation results. Three different approaches were used to solve event tree top events and quantify the SBO sequences: W process flag, default process flag without proper adjustment, and default process flag with adjustment to account for the success branch probabilities. Without post-processing, the first two approaches yield incorrect results with a total conditional probability greater than 1.0. The last approach accounts for the success branch probabilities and provides correct conditional sequence probabilities that are to be used for comparison. To better compare the results from the PRA model and the simulation runs, a simplified SBO event tree was developed with only four top

  6. Integral approximations to classical diffusion and smoothed particle hydrodynamics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Du, Qiang; Lehoucq, R. B.; Tartakovsky, A. M.

    2014-12-31

    The contribution of the paper is the approximation of a classical diffusion operator by an integral equation with a volume constraint. A particular focus is on classical diffusion problems associated with Neumann boundary conditions. By exploiting this approximation, we can also approximate other quantities such as the flux out of a domain. Our analysis of the model equation on the continuum level is closely related to the recent work on nonlocal diffusion and peridynamic mechanics. In particular, we elucidate the role of a volumetric constraint as an approximation to a classical Neumann boundary condition in the presence of physical boundary.more » The volume-constrained integral equation then provides the basis for accurate and robust discretization methods. As a result, an immediate application is to the understanding and improvement of the Smoothed Particle Hydrodynamics (SPH) method.« less

  7. Exact and approximate Kohn-Sham potentials in ensemble density...

    Office of Scientific and Technical Information (OSTI)

    Title: Exact and approximate Kohn-Sham potentials in ensemble density-functional theory Authors: Yang, Zeng-hui ; Trail, John R. ; Pribram-Jones, Aurora ; Burke, Kieron ; Needs, ...

  8. Explicit approximations to estimate the perturbative diffusivity in the presence of convectivity and damping. II. Semi-infinite cylindrical approximations

    SciTech Connect (OSTI)

    Berkel, M. van; Hogeweij, G. M. D.; Tamura, N.; Ida, K.; Zwart, H. J.; Inagaki, S.; Baar, M. R. de

    2014-11-15

    In this paper, a number of new explicit approximations are introduced to estimate the perturbative diffusivity (χ), convectivity (V), and damping (τ) in a cylindrical geometry. For this purpose, the harmonic components of heat waves induced by localized deposition of modulated power are used. The approximations are based upon the heat equation in a semi-infinite cylindrical domain. The approximations are based upon continued fractions, asymptotic expansions, and multiple harmonics. The relative error for the different derived approximations is presented for different values of frequency, transport coefficients, and dimensionless radius. Moreover, it is shown how combinations of different explicit formulas can yield good approximations over a wide parameter space for different cases, such as no convection and damping, only damping, and both convection and damping. This paper is the second part (Part II) of a series of three papers. In Part I, the semi-infinite slab approximations have been treated. In Part III, cylindrical approximations are treated for heat waves traveling towards the center of the plasma.

  9. Final safety evaluation report related to the certification of the advanced boiling water reactor design. Volume 1: Main report

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    This safety evaluation report (SER) documents the technical review of the US Advanced Boiling Water Reactor (ABWR) standard design by the US Nuclear Regulatory Commission (NRC) staff. The application for the ABWR design was initially submitted by the General Electric Company, now GE Nuclear Energy (GE), in accordance with the procedures of Appendix O of Part 50 of Title 10 of the Code of Federal Regulations (10 CFR Part 50). Later GE requested that its application be considered as an application for design approval and subsequent design certification pursuant to 10 CFR {section} 52.45. The ABWR is a single-cycle, forced-circulation, boiling water reactor (BWR) with a rated power of 3,926 megawatts thermal (MWt) and a design power of 4,005 MWt. To the extent feasible and appropriate, the staff relied on earlier reviews for those ABWR design features that are substantially the same as those previously considered. Unique features of the ABWR design include internal recirculation pumps, fine-motion control rod drives, microprocessor-based digital logic and control systems, and digital safety systems. On the basis of its evaluation and independent analyses, the NRC staff concludes that, subject to satisfactory resolution of the confirmatory items identified in Section 1.8 of this SER, GE`s application for design certification meets the requirements of Subpart B of 10 CFR Part 52 that are applicable and technically relevant to the US ABWR standard design.

  10. Final safety evaluation report related to the certification of the advanced boiling water reactor design. Volume 2: Appendices

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    This safety evaluation report (SER) documents the technical review of the US Advanced Boiling Water Reactor (ABWR) standard design by the US Nuclear Regulatory Commission (NRC) staff. The application for the ABWR design was initially submitted by the General Electric Company, now GE Nuclear Energy (GE), in accordance with the procedures of Appendix O of Part 50 of Title 10 of the code of Federal Regulations (10 CFR Part 50). Later GE requested that its application be considered as an application for design approval and subsequent design certification pursuant to 10 CFR {section} 52.45. The ABWR is a single-cycle, forced-circulation, boiling water reactor (BWR) with a rated power of 3,926 megawatts thermal (MWt) and a design power of 4,005 MWt. To the extent feasible and appropriate, the staff relied on earlier reviews for those ABWR design features that are substantially the same as those previously considered. Unique features of the ABWR design include internal recirculation pumps, fine-motion control rod drives, microprocessor-based digital logic and control systems, and digital safety systems. On the basis of its evaluation and independent analyses, the NRC staff concludes that, subject to satisfactory resolution of the confirmatory items identified in Section 1.8 of this SER, GE`s application for design certification meets the requirements of Subpart B of 10 CFR Part 52 that are applicable and technically relevant to the US ABWR standard design.

  11. Explicit approximations to estimate the perturbative diffusivity in the presence of convectivity and damping. I. Semi-infinite slab approximations

    SciTech Connect (OSTI)

    Berkel, M. van; Zwart, H. J.; Tamura, N.; Ida, K.; Hogeweij, G. M. D.; Inagaki, S.; Baar, M. R. de

    2014-11-15

    In this paper, a number of new approximations are introduced to estimate the perturbative diffusivity (χ), convectivity (V), and damping (τ) in cylindrical geometry. For this purpose, the harmonic components of heat waves induced by localized deposition of modulated power are used. The approximations are based on semi-infinite slab approximations of the heat equation. The main result is the approximation of χ under the influence of V and τ based on the phase of two harmonics making the estimate less sensitive to calibration errors. To understand why the slab approximations can estimate χ well in cylindrical geometry, the relationships between heat transport models in slab and cylindrical geometry are studied. In addition, the relationship between amplitude and phase with respect to their derivatives, used to estimate χ, is discussed. The results are presented in terms of the relative error for the different derived approximations for different values of frequency, transport coefficients, and dimensionless radius. The approximations show a significant region in which χ, V, and τ can be estimated well, but also regions in which the error is large. Also, it is shown that some compensation is necessary to estimate V and τ in a cylindrical geometry. On the other hand, errors resulting from the simplified assumptions are also discussed showing that estimating realistic values for V and τ based on infinite domains will be difficult in practice. This paper is the first part (Part I) of a series of three papers. In Part II and Part III, cylindrical approximations based directly on semi-infinite cylindrical domain (outward propagating heat pulses) and inward propagating heat pulses in a cylindrical domain, respectively, will be treated.

  12. RANGE INCREASER FOR PNEUMATIC GAUGES

    DOE Patents [OSTI]

    Fowler, A.H.; Seaborn, G.B. Jr.

    1960-09-27

    An improved pneumatic gage is offered in which the linear range has been increased without excessive air consumption. This has been accomplished by providing an expansible antechamber connected to the nozzle of the gage so that the position of the nozzle with respect to the workpiece is varied automatically by variation in pressure within the antechamber. This arrangement ensures that the nozzle-to-workpiece clearance is maintained within certain limits, thus obtaining a linear relation of air flow to nozzle-to-workpiece clearance over a wider range.

  13. Dispersed-flow film boiling in rod-bundle geometry: steady-state heat-transfer data and correlation comparisons. [PWR; BWR

    SciTech Connect (OSTI)

    Yoder, G. L.; Morris, D. G.; Mullins, C. B.; Ott, L. J.; Reed, D. A.

    1982-03-01

    Assessment of six film boiling correlations and one single-phase vapor correlation has been made using data from 22 steady state upflow rod bundle tests (series 3.07.9). Bundle fluid conditions were calculated using energy and mass conservation considerations. Results of the steady state film boiling tests support the conclusions reached in the analysis of prior transient tests 3.03.6AR, 3.06.6B, and 3.08.6C. Comparisons between experimentally determined and correlation-predicted heat transfer coefficients, are presented.

  14. Variational principles with Pad approximants for tearing mode analysis

    SciTech Connect (OSTI)

    Cole, Andrew J.; Finn, John M.

    2014-03-15

    Tearing modes occur in several distinct physical regimes, and it is often important to compute the inner layer response for these modes with various effects. There is a need for an approximate and efficient method of solving the inner layer equations in all these regimes. In this paper, we introduce a method of solving the inner layer equations based on using a variational principle with Pad approximants. For all the regimes considered, the main layer equations to be solved are inhomogeneous, and Pad approximants give a convenient and efficient method of satisfying the correct asymptotic behavior at the edge of the layer. Results using this variational principlePad approximant method in three of these regimes is presented. These regimes are the constant-? resistive-inertial (RI) regime, the constant-? viscoresistive regime, and the non-constant-? inviscid tearing regime. The last regime includes the constant-? RI regime and the inertial regime. The results show that reasonable accuracy can be obtained very efficiently with Pad approximants having a small number of parameters.

  15. Amplifier circuit operable over a wide temperature range

    DOE Patents [OSTI]

    Kelly, Ronald D.; Cannon, William L.

    1979-01-01

    An amplifier circuit having stable performance characteristics over a wide temperature range from approximately 0.degree. C up to as high as approximately 500.degree. C, such as might be encountered in a geothermal borehole. The amplifier utilizes ceramic vacuum tubes connected in directly coupled differential amplifier pairs having a common power supply and a cathode follower output stage. In an alternate embodiment, for operation up to 500.degree. C, positive and negative power supplies are utilized to provide improved gain characteristics, and all electrical connections are made by welding. Resistor elements in this version of the invention are specially heat treated to improve their stability with temperature.

  16. Approximate Bisimulation-Based Reduction of Power System Dynamic Models

    SciTech Connect (OSTI)

    Stankovic, AM; Dukic, SD; Saric, AT

    2015-05-01

    In this paper we propose approximate bisimulation relations and functions for reduction of power system dynamic models in differential- algebraic (descriptor) form. The full-size dynamic model is obtained by linearization of the nonlinear transient stability model. We generalize theoretical results on approximate bisimulation relations and bisimulation functions, originally derived for a class of constrained linear systems, to linear systems in descriptor form. An algorithm for transient stability assessment is proposed and used to determine whether the power system is able to maintain the synchronism after a large disturbance. Two benchmark power systems are used to illustrate the proposed algorithm and to evaluate the applicability of approximate bisimulation relations and bisimulation functions for reduction of the power system dynamic models.

  17. Fokker-Planck approximation of monoenergetic transport processes

    SciTech Connect (OSTI)

    Boergers, C.; Larsen, E.W.

    1994-12-31

    For transport problems with highly forward-peaked scattering, the transport equation is often approximated by the Fokker-Planck equation or, if large-angle scattering is deemed sufficiently important, by the Boltzmann-Fokker-Planck equation. In this paper, we state a simple, necessary, and sufficient condition for the validity of the simpler Fokker-Planck approximation for monoenergetic particle transport. We also show that for screened Rutherford scattering, the Fokker-Planck approximation is only marginally valid and is inaccurate unless the scattering is extremely forward peaked. (The same is true for more sophisticated models of elastic scattering of charged particles. In this paper, we restrict ourselves to screened Rutherford scattering for simplicity). More details on the results presented here will be given in forthcoming publications.

  18. Trigonometric Pade approximants for functions with regularly decreasing Fourier coefficients

    SciTech Connect (OSTI)

    Labych, Yuliya A; Starovoitov, Alexander P [Gomel State University, Gomel (Belarus)

    2009-08-31

    Sufficient conditions describing the regular decrease of the coefficients of a Fourier series f(x)=a{sub 0}/2 + {sigma} a{sub n} cos kx are found which ensure that the trigonometric Pade approximants {pi}{sup t}{sub n,m}(x;f) converge to the function f in the uniform norm at a rate which coincides asymptotically with the highest possible one. The results obtained are applied to problems dealing with finding sharp constants for rational approximations. Bibliography: 31 titles.

  19. On the approximation of crack shapes found during inservice inspection

    SciTech Connect (OSTI)

    Bhate, S.R.; Chawla, D.S.; Kushwaha, H.S.

    1997-04-01

    This paper addresses the characterization of axial internal flaw found during inservice inspection of a pipe. J-integral distribution for various flaw shapes is obtained using line spring finite, element method. The peak J-value and its distribution across the crack is found to be characteristic feature of each shape. The triangular shape yields peak J-value away from the center, the point of depth. The elliptic approximation results in large overestimate of J-value for unsymmetric flaws. Triangular approximation is recommended for such flaws so that further service can be obtained from the component.

  20. Range determination for scannerless imaging

    DOE Patents [OSTI]

    Muguira, Maritza Rosa; Sackos, John Theodore; Bradley, Bart Davis; Nellums, Robert

    2000-01-01

    A new method of operating a scannerless range imaging system (e.g., a scannerless laser radar) has been developed. This method is designed to compensate for nonlinear effects which appear in many real-world components. The system operates by determining the phase shift of the laser modulation, which is a physical quantity related physically to the path length between the laser source and the detector, for each pixel of an image.

  1. Range gated strip proximity sensor

    DOE Patents [OSTI]

    McEwan, T.E.

    1996-12-03

    A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance. 6 figs.

  2. Range gated strip proximity sensor

    DOE Patents [OSTI]

    McEwan, Thomas E.

    1996-01-01

    A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance.

  3. An improved thin film approximation to accurately determine the optical conductivity of graphene from infrared transmittance

    SciTech Connect (OSTI)

    Weber, J. W.; Bol, A. A. [Department of Applied Physics, Eindhoven University of Technology, Den Dolech 2, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Sanden, M. C. M. van de [Department of Applied Physics, Eindhoven University of Technology, Den Dolech 2, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Dutch Institute for Fundamental Energy Research (DIFFER), Nieuwegein (Netherlands)

    2014-07-07

    This work presents an improved thin film approximation to extract the optical conductivity from infrared transmittance in a simple yet accurate way. This approximation takes into account the incoherent reflections from the backside of the substrate. These reflections are shown to have a significant effect on the extracted optical conductivity and hence on derived parameters as carrier mobility and density. By excluding the backside reflections, the error for these parameters for typical chemical vapor deposited (CVD) graphene on a silicon substrate can be as high as 17% and 45% for the carrier mobility and density, respectively. For the mid- and near-infrared, the approximation can be simplified such that the real part of the optical conductivity is extracted without the need for a parameterization of the optical conductivity. This direct extraction is shown for Fourier transform infrared (FTIR) transmittance measurements of CVD graphene on silicon in the photon energy range of 3707000?cm{sup ?1}. From the real part of the optical conductivity, the carrier density, mobility, and number of graphene layers are determined but also residue, originating from the graphene transfer, is detected. FTIR transmittance analyzed with the improved thin film approximation is shown to be a non-invasive, easy, and accurate measurement and analysis method for assessing the quality of graphene and can be used for other 2-D materials.

  4. Excitation energies along a range-separated adiabatic connection

    SciTech Connect (OSTI)

    Rebolini, Elisa Toulouse, Julien Savin, Andreas; Teale, Andrew M.; Helgaker, Trygve

    2014-07-28

    We present a study of the variation of total energies and excitation energies along a range-separated adiabatic connection. This connection links the non-interacting Kohn–Sham electronic system to the physical interacting system by progressively switching on the electron–electron interactions whilst simultaneously adjusting a one-electron effective potential so as to keep the ground-state density constant. The interactions are introduced in a range-dependent manner, first introducing predominantly long-range, and then all-range, interactions as the physical system is approached, as opposed to the conventional adiabatic connection where the interactions are introduced by globally scaling the standard Coulomb interaction. Reference data are reported for the He and Be atoms and the H{sub 2} molecule, obtained by calculating the short-range effective potential at the full configuration-interaction level using Lieb's Legendre-transform approach. As the strength of the electron–electron interactions increases, the excitation energies, calculated for the partially interacting systems along the adiabatic connection, offer increasingly accurate approximations to the exact excitation energies. Importantly, the excitation energies calculated at an intermediate point of the adiabatic connection are much better approximations to the exact excitation energies than are the corresponding Kohn–Sham excitation energies. This is particularly evident in situations involving strong static correlation effects and states with multiple excitation character, such as the dissociating H{sub 2} molecule. These results highlight the utility of long-range interacting reference systems as a starting point for the calculation of excitation energies and are of interest for developing and analyzing practical approximate range-separated density-functional methodologies.

  5. Approximations of very weak solutions to boundary-value problems.

    SciTech Connect (OSTI)

    Berggren, Martin Olof

    2003-03-01

    Standard weak solutions to the Poisson problem on a bounded domain have square-integrable derivatives, which limits the admissible regularity of inhomogeneous data. The concept of solution may be further weakened in order to define solutions when data is rough, such as for inhomogeneous Dirichlet data that is only square-integrable over the boundary. Such very weak solutions satisfy a nonstandard variational form (u, v) = G(v). A Galerkin approximation combined with an approximation of the right-hand side G defines a finite-element approximation of the very weak solution. Applying conforming linear elements leads to a discrete solution equivalent to the text-book finite-element solution to the Poisson problem in which the boundary data is approximated by L{sub 2}-projections. The L{sub 2} convergence rate of the discrete solution is O(h{sub s}) for some s {element_of} (0,1/2) that depends on the shape of the domain, asserting a polygonal (two-dimensional) or polyhedral (three-dimensional) domain without slits and (only) square-integrable boundary data.

  6. Study of Pu consumption in advanced light water reactors: Evaluation of GE advanced boiling water reactor plants - compilation of Phase 1B task reports

    SciTech Connect (OSTI)

    1993-09-15

    This report contains an extensive evaluation of GE advanced boiling water reactor plants prepared for United State Department of Energy. The general areas covered in this report are: core and system performance; fuel cycle; infrastructure and deployment; and safety and environmental approval.

  7. Experimental and Thermalhydraulic Code Assessment of the Transient Behavior of the Passive Condenser System in an Advanced Boiling Water Reactor

    SciTech Connect (OSTI)

    S.T. Revankar; W. Zhou; Gavin Henderson

    2008-07-08

    The main goal of the project was to study analytically and experimentally the condensation heat transfer for the passive condenser system such as GE Economic Simplified Boiling Water Reactor (ESBWR). The effect of noncondensable gas in condenser tube and the reduction of secondary pool water level to the condensation heat transfer coefficient was the main focus in this research. The objectives of this research were to : 1) obtain experimental data on the local and tube averaged condensation heat transfer rates for the PCCS with non-condensable and with change in the secondary pool water, 2) assess the RELAP5 and TRACE computer code against the experimental data, and 3) develop mathematical model and ehat transfer correlation for the condensation phenomena for system code application. The project involves experimentation, theoretical model development and verification, and thermal- hydraulic codes assessment.

  8. Influence of lubricant oil on heat transfer performance of refrigerant flow boiling inside small diameter tubes. Part II: Correlations

    SciTech Connect (OSTI)

    Wei, Wenjian; Ding, Guoliang; Hu, Haitao; Wang, Kaijian

    2007-10-15

    The predictive ability of the available state-of-the-art heat transfer correlations of refrigerant-oil mixture is evaluated with the present experiment data of small tubes with inside diameter of 6.34 mm and 2.50 mm. Most of these correlations can be used to predict the heat transfer coefficient of 6.34 mm tube, but none of them can predict heat transfer coefficient of 2.50 mm tube satisfactorily. A new correlation of two-phase heat transfer multiplier with local properties of refrigerant-oil mixture is developed. This correlation approaches the actual physical mechanism of flow boiling heat transfer of refrigerant-oil mixture and can reflect the actual co-existing conditions of refrigerant and lubricant oil. More than 90% of the experiment data of both test tubes have less than {+-}20% deviation from the prediction values of the new correlations. (author)

  9. Summary and bibliography of safety-related events at boiling-water nuclear power plants as reported in 1980

    SciTech Connect (OSTI)

    McCormack, K.E.; Gallaher, R.B.

    1982-03-01

    This document presents a bibliography that contains 100-word abstracts of event reports submitted to the US Nuclear Regulatory Commission concerning operational events that occurred at boiling-water-reactor nuclear power plants in 1980. The 1547 abstracts included on microfiche in this bibliography describe incidents, failures, and design or construction deficiencies that were experienced at the facilities. These abstracts are arranged alphabetically by reactor name and then chronologically for each reactor. Full-size keyword and permuted-title indexes to facilitate location of individual abstracts are provided following the text. Tables that summarize the information contained in the bibliography are also provided. The information in the tables includes a listing of the equipment items involved in the reported events and the associated number of reports for each item. Similar information is given for the various kinds of instrumentation and systems, causes of failures, deficiencies noted, and the time of occurrence (i.e., during refueling, operation, testing, or construction).

  10. Extended-range tiltable micromirror

    DOE Patents [OSTI]

    Allen, James J.; Wiens, Gloria J.; Bronson, Jessica R.

    2009-05-05

    A tiltable micromirror device is disclosed in which a micromirror is suspended by a progressive linkage with an electrostatic actuator (e.g. a vertical comb actuator or a capacitive plate electrostatic actuator) being located beneath the micromirror. The progressive linkage includes a pair of torsion springs which are connected together to operate similar to a four-bar linkage with spring joints. The progressive linkage provides a non-linear spring constant which can allow the micromirror to be tilted at any angle within its range substantially free from any electrostatic instability or hysteretic behavior.

  11. Investigation of the physical and numerical foundations of two-fluid representation of sodium boiling with applications to LMFBR experiments

    SciTech Connect (OSTI)

    No, H.C.; Kazimi, M.S.

    1983-03-01

    This work involves the development of physical models for the constitutive relations of a two-fluid, three-dimensional sodium boiling code, THERMIT-6S. The code is equipped with a fluid conduction model, a fuel pin model, and a subassembly wall model suitable for stimulating LMFBR transient events. Mathematically rigorous derivations of time-volume averaged conservation equations are used to establish the differential equations of THERMIT-6S. These equations are then discretized in a manner identical to the original THERMIT code. A virtual mass term is incorporated in THERMIT-6S to solve the ill-posed problem. Based on a simplified flow regime, namely cocurrent annular flow, constitutive relations for two-phase flow of sodium are derived. The wall heat transfer coefficient is based on momentum-heat transfer analogy and a logarithmic law for liquid film velocity distribution. A broad literature review is given for two-phase friction factors. It is concluded that entrainment can account for some of the discrepancies in the literature. Mass and energy exchanges are modelled by generalization of the turbulent flux concept. Interfacial drag coefficients are derived for annular flows with entrainment. Code assessment is performed by simulating three experiments for low flow-high power accidents and one experiment for low flow/low power accidents in the LMFBR. While the numerical results for pre-dryout are in good agreement with the data, those for post-dryout reveal the need for improvement of the physical models. The benefits of two-dimensional non-equilibrium representation of sodium boiling are studied.

  12. Live Fire Range Environmental Assessment

    SciTech Connect (OSTI)

    1993-08-01

    The Central Training Academy (CTA) is a DOE Headquarters Organization located in Albuquerque, New Mexico, with the mission to effectively and efficiently educate and train personnel involved in the protection of vital national security interests of DOE. The CTA Live Fire Range (LFR), where most of the firearms and tactical training occurs, is a complex separate from the main campus. The purpose of the proposed action is to expand the LFR to allow more options of implementing required training. The Department of Energy has prepared this Environmental Assessment (EA) for the proposed construction and operation of an expanded Live Fire Range Facility at the Central Training Academy in Albuquerque, New Mexico. Based on the analysis in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement is not required and DOE is issuing this Finding of No Significant Impact (FONSI).

  13. Thermal effects and sudden decay approximation in the curvaton scenario

    SciTech Connect (OSTI)

    Kitajima, Naoya; Takesako, Tomohiro; Yokoyama, Shuichiro; Langlois, David; Takahashi, Tomo E-mail: langlois@apc.univ-paris7.fr E-mail: takesako@icrr.u-tokyo.ac.jp

    2014-10-01

    We study the impact of a temperature-dependent curvaton decay rate on the primordial curvature perturbation generated in the curvaton scenario. Using the familiar sudden decay approximation, we obtain an analytical expression for the curvature perturbation after the decay of the curvaton. We then investigate numerically the evolution of the background and of the perturbations during the decay. We first show that the instantaneous transfer coefficient, related to the curvaton energy fraction at the decay, can be extended into a more general parameter, which depends on the net transfer of the curvaton energy into radiation energy or, equivalently, on the total entropy ratio after the complete curvaton decay. We then compute the curvature perturbation and compare this result with the sudden decay approximation prediction.

  14. Data approximation using a blending type spline construction

    SciTech Connect (OSTI)

    Dalmo, Rune; Bratlie, Jostein

    2014-11-18

    Generalized expo-rational B-splines (GERBS) is a blending type spline construction where local functions at each knot are blended together by C{sup k}-smooth basis functions. One way of approximating discrete regular data using GERBS is by partitioning the data set into subsets and fit a local function to each subset. Partitioning and fitting strategies can be devised such that important or interesting data points are interpolated in order to preserve certain features. We present a method for fitting discrete data using a tensor product GERBS construction. The method is based on detection of feature points using differential geometry. Derivatives, which are necessary for feature point detection and used to construct local surface patches, are approximated from the discrete data using finite differences.

  15. Doorway states in the random-phase approximation

    SciTech Connect (OSTI)

    De Pace, A.; Molinari, A.; Weidenmüller, H.A.

    2014-12-15

    By coupling a doorway state to a sea of random background states, we develop the theory of doorway states in the framework of the random-phase approximation (RPA). Because of the symmetry of the RPA equations, that theory is radically different from the standard description of doorway states in the shell model. We derive the Pastur equation in the limit of large matrix dimension and show that the results agree with those of matrix diagonalization in large spaces. The complexity of the Pastur equation does not allow for an analytical approach that would approximately describe the doorway state. Our numerical results display unexpected features: The coupling of the doorway state with states of opposite energy leads to strong mutual attraction.

  16. Crossing contours in the interacting boson approximation (IBA) symmetry triangle

    SciTech Connect (OSTI)

    McCutchan, E. A.; Casten, R. F.

    2006-11-15

    Constant contours of basic observables are discussed in the context of the interacting boson approximation (IBA) symmetry triangle. Contours that exhibit orthogonal crossing within the triangle are presented as a method for determining a set of parameter values for a particular nucleus and trajectories for isotopic chains. A set of contours that highlights a class of nuclei that are outside the two-parameter IBA-1 Hamitonian space is also presented.

  17. COMPLEXITY & APPROXIMABILITY OF QUANTIFIED & STOCHASTIC CONSTRAINT SATISFACTION PROBLEMS

    SciTech Connect (OSTI)

    H. B. HUNT; M. V. MARATHE; R. E. STEARNS

    2001-06-01

    Let D be an arbitrary (not necessarily finite) nonempty set, let C be a finite set of constant symbols denoting arbitrary elements of D, and let S and T be an arbitrary finite set of finite-arity relations on D. We denote the problem of determining the satisfiability of finite conjunctions of relations in S applied to variables (to variables and symbols in C) by SAT(S) (by SATc(S).) Here, we study simultaneously the complexity of decision, counting, maximization and approximate maximization problems, for unquantified, quantified and stochastically quantified formulas. We present simple yet general techniques to characterize simultaneously, the complexity or efficient approximability of a number of versions/variants of the problems SAT(S), Q-SAT(S), S-SAT(S),MAX-Q-SAT(S) etc., for many different such D,C,S,T. These versions/variants include decision, counting, maximization and approximate maximization problems, for unquantified, quantified and stochastically quantified formulas. Our unified approach is based on the following two basic concepts: (i) strongly-local replacements/reductions and (ii) relational/algebraic representability. Some of the results extend the earlier results in [Pa85,LMP99,CF+93,CF+94] Our techniques and results reported here also provide significant steps towards obtaining dichotomy theorems, for a number of the problems above, including the problems MAX-Q-SAT(S), and MAX-S-SAT(S). The discovery of such dichotomy theorems, for unquantified formulas, has received significant recent attention in the literature [CF+93, CF+94, Cr95, KSW97]. Keywords: NP-hardness; Approximation Algorithms; PSPACE-hardness; Quantified and Stochastic Constraint Satisfaction Problems.

  18. Coverage Range Retiree Only Retiree

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coverage Range Retiree Only Retiree and Spouse $10,000 7.00 $ 10.80 $ $20,000 14.00 $ 21.60 $ $25,000 17.50 $ 27.00 $ $30,000 21.00 $ 32.40 $ $40,000 28.00 $ 43.20 $ $50,000 35.00 $ 54.00 $ $60,000 42.00 $ 64.80 $ $70,000 49.00 $ 75.60 $ $80,000 56.00 $ 86.40 $ $90,000 63.00 $ 97.20 $ $100,000 70.00 $ 108.00 $ $150,000 105.00 $ 162.00 $ $200,000 140.00 $ 216.00 $ $250,000 175.00 $ 270.00 $ LANL Annual AD&D Retiree Insurance Premiums (Rates shown are paid by the participant)

  19. The extraordinary wave excitation in microwave gas breakdown in the adiabatic approximation

    SciTech Connect (OSTI)

    Ghorbanalilu, M.; Shokri, B.

    2008-09-15

    Making use of the electron distribution function formed in the interaction of high-frequency microwave (MW) pulsed fields with a rarefied neutral gas [M. Ghorbanalilu, Phys. Plasmas. 13, 102110 (2006)], the dielectric permittivity tensor of the produced plasma is derived under the condition that the ions are cold and nonmagnetized. According to the adiabatic approximation and using the dielectric permittivity tensor elements the dispersion relations for ordinary and extraordinary excited waves are found. The numerical solution of the dispersion relation shows that the extraordinary modes are unstable in such a nonequilibrium system. These modes are generated in a wide range of wavelengths by tuning the MW field amplitude and magnetic field strength.

  20. Wide-range voltage modulation

    SciTech Connect (OSTI)

    Rust, K.R.; Wilson, J.M.

    1992-06-01

    The Superconducting Super Collider`s Medium Energy Booster Abort (MEBA) kicker modulator will supply a current pulse to the abort magnets which deflect the proton beam from the MEB ring into a designated beam stop. The abort kicker will be used extensively during testing of the Low Energy Booster (LEB) and the MEB rings. When the Collider is in full operation, the MEBA kicker modulator will abort the MEB beam in the event of a malfunction during the filling process. The modulator must generate a 14-{mu}s wide pulse with a rise time of less than 1 {mu}s, including the delay and jitter times. It must also be able to deliver a current pulse to the magnet proportional to the beam energy at any time during ramp-up of the accelerator. Tracking the beam energy, which increases from 12 GeV at injection to 200 GeV at extraction, requires the modulator to operate over a wide range of voltages (4 kV to 80 kV). A vacuum spark gap and a thyratron have been chosen for test and evaluation as candidate switches for the abort modulator. Modulator design, switching time delay, jitter and pre-fire data are presented.

  1. COMPLEXITY&APPROXIMABILITY OF QUANTIFIED&STOCHASTIC CONSTRAINT SATISFACTION PROBLEMS

    SciTech Connect (OSTI)

    Hunt, H. B.; Marathe, M. V.; Stearns, R. E.

    2001-01-01

    Let D be an arbitrary (not necessarily finite) nonempty set, let C be a finite set of constant symbols denoting arbitrary elements of D, and let S and T be an arbitrary finite set of finite-arity relations on D. We denote the problem of determining the satisfiability of finite conjunctions of relations in S applied to variables (to variables and symbols in C) by SAT(S) (by SATc(S).) Here, we study simultaneously the complexity of decision, counting, maximization and approximate maximization problems, for unquantified, quantified and stochastically quantified formulas. We present simple yet general techniques to characterize simultaneously, the complexity or efficient approximability of a number of versions/variants of the problems SAT(S), Q-SAT(S), S-SAT(S),MAX-Q-SAT(S) etc., for many different such D,C ,S, T. These versions/variants include decision, counting, maximization and approximate maximization problems, for unquantified, quantified and stochastically quantified formulas. Our unified approach is based on the following two basic concepts: (i) strongly-local replacements/reductions and (ii) relational/algebraic represent ability. Some of the results extend the earlier results in [Pa85,LMP99,CF+93,CF+94O]u r techniques and results reported here also provide significant steps towards obtaining dichotomy theorems, for a number of the problems above, including the problems MAX-&-SAT( S), and MAX-S-SAT(S). The discovery of such dichotomy theorems, for unquantified formulas, has received significant recent attention in the literature [CF+93,CF+94,Cr95,KSW97

  2. Comparisons of characteristic timescales and approximate models for Brownian magnetic nanoparticle rotations

    SciTech Connect (OSTI)

    Reeves, Daniel B. Weaver, John B.

    2015-06-21

    Magnetic nanoparticles are promising tools for a host of therapeutic and diagnostic medical applications. The dynamics of rotating magnetic nanoparticles in applied magnetic fields depend strongly on the type and strength of the field applied. There are two possible rotation mechanisms and the decision for the dominant mechanism is often made by comparing the equilibrium relaxation times. This is a problem when particles are driven with high-amplitude fields because they are not necessarily at equilibrium at all. Instead, it is more appropriate to consider the “characteristic timescales” that arise in various applied fields. Approximate forms for the characteristic time of Brownian particle rotations do exist and we show agreement between several analytical and phenomenological-fit models to simulated data from a stochastic Langevin equation approach. We also compare several approximate models with solutions of the Fokker-Planck equation to determine their range of validity for general fields and relaxation times. The effective field model is an excellent approximation, while the linear response solution is only useful for very low fields and frequencies for realistic Brownian particle rotations.

  3. Structural physical approximations of unphysical maps and generalized quantum measurements

    SciTech Connect (OSTI)

    Fiurasek, Jaromir

    2002-11-01

    We investigate properties of the structural physical approximation (SPA) of the partial transposition map recently introduced by Horodecki and Ekert [Phys. Rev. Lett. 89, 127902 (2002)]. We focus on the case of two-qubit states and show that in this case the map has the structure of a generalized quantum measurement followed by the preparation of a suitable output state. We also introduce SPA for a map that transforms two copies of density matrix of a single qubit onto a square of that matrix. We prove that also this map is essentially a generalized quantum measurement.

  4. A multiscale two-point flux-approximation method

    SciTech Connect (OSTI)

    Myner, Olav Lie, Knut-Andreas

    2014-10-15

    A large number of multiscale finite-volume methods have been developed over the past decade to compute conservative approximations to multiphase flow problems in heterogeneous porous media. In particular, several iterative and algebraic multiscale frameworks that seek to reduce the fine-scale residual towards machine precision have been presented. Common for all such methods is that they rely on a compatible primaldual coarse partition, which makes it challenging to extend them to stratigraphic and unstructured grids. Herein, we propose a general idea for how one can formulate multiscale finite-volume methods using only a primal coarse partition. To this end, we use two key ingredients that are computed numerically: (i) elementary functions that correspond to flow solutions used in transmissibility upscaling, and (ii) partition-of-unity functions used to combine elementary functions into basis functions. We exemplify the idea by deriving a multiscale two-point flux-approximation (MsTPFA) method, which is robust with regards to strong heterogeneities in the permeability field and can easily handle general grids with unstructured fine- and coarse-scale connections. The method can easily be adapted to arbitrary levels of coarsening, and can be used both as a standalone solver and as a preconditioner. Several numerical experiments are presented to demonstrate that the MsTPFA method can be used to solve elliptic pressure problems on a wide variety of geological models in a robust and efficient manner.

  5. Steam Line Break and Station Blackout Transients for Proliferation-Resistant Hexagonal Tight Lattice Boiling Water Reactor

    SciTech Connect (OSTI)

    Rohatgi, Upendra S. [Brookhaven National Laboratory (United States); Jo, Jae H. [Brookhaven National Laboratory (United States); Chung, Bub Dong [Brookhaven National Laboratory (United States); Takahashi, Hiroshi [Brookhaven National Laboratory (United States); Downar, Thomas J. [Purdue University (United States)

    2004-01-15

    Safety analyses of a proliferation-resistant, economically competitive, high-conversion boiling water reactor (HCBWR) fueled with fissile plutonium and fertile thorium oxide fuel elements, and with passive safety systems, are presented here. The HCBWR developed here is characterized by a very tight lattice with a relatively small water volume fraction in the core that therefore operates with a fast reactor neutron spectrum and a considerably improved neutron economy compared to the current generation of light water reactors. The tight lattice core has a very narrow flow channel with a hydraulic diameter less than half of the regular boiling water reactor (BWR) core and, thus, presents a special challenge to core cooling because of reduced water inventory and high friction in the core. The primary safety concern when reducing the moderator-to-fuel ratio and when using a tightly packed lattice arrangement is to maintain adequate cooling of the core during both normal operation and accident scenarios.In the preliminary HCBWR design, the core is placed in a vessel with a large chimney section, and the vessel is connected to the isolation condenser system (ICS). The vessel is placed in containment with the gravity driven cooling system (GDCS) and passive containment cooling system (PCCS) in a configuration similar to General Electric's simplified BWR (SBWR). The safety systems are similar to those of the SBWR; the ICS and PCCS are scaled with power. An internal recirculation pump is placed in the downcomer to augment the buoyancy head provided by the chimney since the buoyancy provided by the chimney alone could not generate sufficient recirculation in the vessel as the tight lattice configuration results in much larger friction in the core than with the SBWR.The constitutive relationships for RELAP5 are assessed for narrow channels, and as a result the heat transfer package is modified. The modified RELAP5 is used to simulate and analyze two of the most limiting events

  6. Exchange-correlation energy from pairing matrix fluctuation and the particle-particle random phase approximation

    SciTech Connect (OSTI)

    Aggelen, Helen van; Department of Chemistry, Duke University, Durham, North Carolina 27708 ; Yang, Yang; Yang, Weitao

    2014-05-14

    Despite their unmatched success for many applications, commonly used local, semi-local, and hybrid density functionals still face challenges when it comes to describing long-range interactions, static correlation, and electron delocalization. Density functionals of both the occupied and virtual orbitals are able to address these problems. The particle-hole (ph-) Random Phase Approximation (RPA), a functional of occupied and virtual orbitals, has recently known a revival within the density functional theory community. Following up on an idea introduced in our recent communication [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013)], we formulate more general adiabatic connections for the correlation energy in terms of pairing matrix fluctuations described by the particle-particle (pp-) propagator. With numerical examples of the pp-RPA, the lowest-order approximation to the pp-propagator, we illustrate the potential of density functional approximations based on pairing matrix fluctuations. The pp-RPA is size-extensive, self-interaction free, fully anti-symmetric, describes the strong static correlation limit in H{sub 2}, and eliminates delocalization errors in H{sub 2}{sup +} and other single-bond systems. It gives surprisingly good non-bonded interaction energies competitive with the ph-RPA with the correct R{sup ?6} asymptotic decay as a function of the separation R, which we argue is mainly attributable to its correct second-order energy term. While the pp-RPA tends to underestimate absolute correlation energies, it gives good relative energies: much better atomization energies than the ph-RPA, as it has no tendency to underbind, and reaction energies of similar quality. The adiabatic connection in terms of pairing matrix fluctuation paves the way for promising new density functional approximations.

  7. Explosive boiling of Ge{sub 35}Sb{sub 10}S{sub 55} glass induced by a CW laser

    SciTech Connect (OSTI)

    Knotek, P.; Tichy, L.

    2013-09-01

    Graphical abstract: - Highlights: Interaction of the CW 785 nm laser with chalcogenide GeSbS glass. First demonstration of the explosive boiling induced by CW laser in glass. Different processes as photo-induced oxidation, expansion, and viscosity-flow observed. Applied diagnostics SEM, DHM, AFM, force spectroscopy, and micro-Raman spectroscopy. Damage threshold determined at 1.2 10{sup 24}s{sup ?1} cm{sup ?3} of absorbed photons. - Abstract: The response of bulk Ge{sub 35}Sb{sub 10}S{sub 55} glass to illumination by a continuous wave (CW) laser, sub-band-gap photons, was studied specifically with an atomic force microscopy including a force spectroscopy, with a digital holographic microscopy and with a scanning electron microscopy. Depending on the number of photons absorbed, photo-expansion, photo-oxidation and explosive boiling were observed.

  8. Analytic derivation of an approximate SU(3) symmetry inside the symmetry triangle of the interacting boson approximation model

    SciTech Connect (OSTI)

    Bonatsos, Dennis; Karampagia, S.; Casten, R. F.

    2011-05-15

    Using a contraction of the SU(3) algebra to the algebra of the rigid rotator in the large-boson-number limit of the interacting boson approximation (IBA) model, a line is found inside the symmetry triangle of the IBA, along which the SU(3) symmetry is preserved. The line extends from the SU(3) vertex to near the critical line of the first-order shape/phase transition separating the spherical and prolate deformed phases, and it lies within the Alhassid-Whelan arc of regularity, the unique valley of regularity connecting the SU(3) and U(5) vertices in the midst of chaotic regions. In addition to providing an explanation for the existence of the arc of regularity, the present line represents an example of an analytically determined approximate symmetry in the interior of the symmetry triangle of the IBA. The method is applicable to algebraic models possessing subalgebras amenable to contraction. This condition is equivalent to algebras in which the equilibrium ground state and its rotational band become energetically isolated from intrinsic excitations, as typified by deformed solutions to the IBA for large numbers of valence nucleons.

  9. Surface wake in the random-phase approximation

    SciTech Connect (OSTI)

    Garcia de Abajo, F.J. ); Echenique, P.M. )

    1993-11-01

    The scalar-electric-potential distribution set up by an ion traveling in the vicinity of a plane solid-vacuum interface, that is, the surface-wake potential, is investigated with the specular-reflection model to describe the response of the surface and with the random-phase approximation for the dielectric function of the bulk material. This permits us to address the study of the low-velocity surface wake: the static potential is found to have a dip at the position of the ion; that dip is shifted towards the direction opposite to the velocity vector for velocities smaller than the threshold of creation of plasmons ([approx]1.3[ital v][sub [ital F

  10. Above-threshold ionization beyond the dipole approximation

    SciTech Connect (OSTI)

    Klaiber, Michael; Hatsagortsyan, Karen Z.; Keitel, Christoph H.

    2005-03-01

    A generalization of the analytical theory of above-threshold ionization in the single active electron approximation is developed while taking into account leading non-dipole and relativistic corrections in the starting Hamiltonian. Special interest is placed on the high energy part of the photoelectron spectrum which consists of a plateau and a characteristic cutoff. It is shown that the correction due to the magnetic component of the laser field gives rise to a decrease of the plateau height, an increase of the maximal cutoff energy, and a drift of the emitted electrons in propagation direction of the laser field. Furthermore, the influence of the relativistic mass shift may become non-neglible by reducing the cutoff energy significantly. Spin effects or the Zitterbewegung play a comparably minor role in the investigated parameter regime of suboptical frequencies and high but not ultra-high laser intensities.

  11. Mixed series in ultraspherical polynomials and their approximation properties

    SciTech Connect (OSTI)

    Sharapudinov, I I

    2003-04-30

    New (mixed) series in ultraspherical polynomials P{sub n}{sup {alpha}}{sup ,{alpha}}(x) are introduced. The basic difference between a mixed series in the polynomials P{sub n}{sup {alpha}}{sup ,{alpha}}(x) and a Fourier series in the same polynomials is as follows: a mixed series contains terms of the form (2{sup r}f{sub r,k}{sup {alpha}})/(k+2{alpha}){sup [r]}) P{sub k+r}{sup {alpha}}{sup -r,{alpha}}{sup -r}(x), where 1{<=}r is an integer and f{sub r,k}{sup {alpha}} is the kth Fourier coefficient of the derivative f{sup (r)}(x) with respect to the ultraspherical polynomials P{sub k}{sup {alpha}}{sup ,{alpha}}(x). It is shown that the partial sums Y{sub n+2r}{sup {alpha}}(f,x) of a mixed series in the polynomial P{sub k}{sup {alpha}}{sup ,{alpha}}(x) contrast favourably with Fourier sums S{sub n}{sup {alpha}}(f,x) in the same polynomials as regards their approximation properties in classes of differentiable and analytic functions, and also in classes of functions of variable smoothness. In particular, the Y{sub n+2r}{sup {alpha}}(f,x) can be used for the simultaneous approximation of a function f(x) and its derivatives of orders up to (r- 1), whereas the S{sub n}{sup {alpha}}(f,x) are not suitable for this purpose.

  12. Study of Pu consumption in Advanced Light Water Reactors. Evaluation of GE Advanced Boiling Water Reactor plants

    SciTech Connect (OSTI)

    Not Available

    1993-05-13

    Timely disposal of the weapons plutonium is of paramount importance to permanently safeguarding this material. GE`s 1300 MWe Advanced Boiling Water Reactor (ABWR) has been designed to utilize fill] core loading of mixed uranium-plutonium oxide fuel. Because of its large core size, a single ABWR reactor is capable of disposing 100 metric tons of plutonium within 15 years of project inception in the spiking mode. The same amount of material could be disposed of in 25 years after the start of the project as spent fuel, again using a single reactor, while operating at 75 percent capacity factor. In either case, the design permits reuse of the stored spent fuel assemblies for electrical energy generation for the remaining life of the plant for another 40 years. Up to 40 percent of the initial plutonium can also be completely destroyed using ABWRS, without reprocessing, either by utilizing six ABWRs over 25 years or by expanding the disposition time to 60 years, the design life of the plants and using two ABWRS. More complete destruction would require the development and testing of a plutonium-base fuel with a non-fertile matrix for an ABWR or use of an Advanced Liquid Metal Reactor (ALMR). The ABWR, in addition, is fully capable of meeting the tritium target production goals with already developed target technology.

  13. Preliminary design study of small long life boiling water reactor (BWR) with tight lattice thorium nitride fuel

    SciTech Connect (OSTI)

    Trianti, Nuri E-mail: szaki@fi.itba.c.id; Su'ud, Zaki E-mail: szaki@fi.itba.c.id; Arif, Idam E-mail: szaki@fi.itba.c.id; Riyana, EkaSapta

    2014-09-30

    Neutronic performance of small long-life boiling water reactors (BWR) with thorium nitride based fuel has been performed. A recent study conducted on BWR in tight lattice environments (with a lower moderator percentage) produces small power reactor which has some specifications, i.e. 10 years operation time, power density of 19.1 watt/cc and maximum excess reactivity of about 4%. This excess reactivity value is smaller than standard reactivity of conventional BWR. The use of hexagonal geometry on the fuel cell of BWR provides a substantial effect on the criticality of the reactor to obtain a longer operating time. Supported by a tight concept lattice where the volume fraction of the fuel is greater than the moderator and fuel, Thorium Nitride give good results for fuel cell design on small long life BWR. The excess reactivity of the reactor can be reduced with the addition of gadolinium as burnable poisons. Therefore the hexagonal tight lattice fuel cell design of small long life BWR that has a criticality more than 20 years of operating time has been obtained.

  14. Influence of lubricant oil on heat transfer performance of refrigerant flow boiling inside small diameter tubes. Part I: Experimental study

    SciTech Connect (OSTI)

    Wei, Wenjian; Ding, Guoliang; Hu, Haitao; Wang, Kaijian

    2007-10-15

    Two-phase flow pattern and heat transfer characteristics of refrigerant-oil mixture flow boiling inside small tubes with inside diameters of 6.34 mm and 2.50 mm are investigated experimentally. The test condition of nominal oil concentration is from 0% to 5%, mass flux from 200 to 400 kg m{sup -2} s{sup -1}, heat flux from 3.2 to 14 kW m{sup -2}, evaporation temperature of 5 C, inlet quality from 0.1 to 0.8, and quality change from 0.1 to 0.2. Wavy, wavy-annular, annular and mist-annular flow pattern in 6.34 mm tube are observed, while only slug-annular and annular flow pattern are observed in 2.50 mm tube. Oil presence can make annular flow to form early and to retard to diminish in quality direction at nominal oil concentration {>=}3%. Augmentation effect of oil on heat transfer coefficient becomes weakened or even diminishes for small diameter tube while detrimental effect of oil on small tube performance becomes more significant than large tube. For both test tubes, variation of heat transfer coefficient and enhanced factor with oil concentration is irregular. Two-phase heat transfer multiplier with refrigerant-oil mixture properties increases consistently and monotonically with local oil concentration at different vapor quality. (author)

  15. Simulation of in-core neutron noise measurements for axial void profile reconstruction in boiling water reactors

    SciTech Connect (OSTI)

    Dykin, V.; Pazsit, I.

    2012-07-01

    A possibility to reconstruct the axial void profile from the simulated in-core neutron noise which is caused by density fluctuations in a Boiling Water Reactor (BWR) heated channel is considered. For this purpose, a self-contained model of the two-phase flow regime is constructed which has quantitatively and qualitatively similar properties to those observed in real BWRs. The model is subsequently used to simulate the signals of neutron detectors induced by the corresponding perturbations in the flow density. The bubbles are generated randomly in both space and time using Monte-Carlo techniques. The axial distribution of the bubble production is chosen such that the mean axial void fraction and void velocity follow the actual values of BWRs. The induced neutron noise signals are calculated and then processed by the standard signal analysis methods such as Auto-Power Spectral Density (APSD) and Cross-Power Spectral Density (CPSD). Two methods for axial void and velocity profiles reconstruction are discussed: the first one is based on the change of the break frequency of the neutron auto-power spectrum with axial core elevation, while the second refers to the estimation of transit times of propagating steam fluctuations between different axial detector positions. This paper summarizes the principles of the model and presents a numerical testing of the qualitative applicability to estimate the required parameters for the reconstruction of the void fraction profile from the neutron noise measurements. (authors)

  16. Final safety evaluation report related to the certification of the Advanced Boiling Water Reactor design. Supplement 1

    SciTech Connect (OSTI)

    1997-05-01

    This report supplements the final safety evaluation report (FSER) for the US Advanced Boiling Water Reactor (ABWR) standard design. The FSER was issued by the US Nuclear Regulatory Commission (NRC) staff as NUREG-1503 in July 1994 to document the NRC staff`s review of the US ABWR design. The US ABWR design was submitted by GE Nuclear Energy (GE) in accordance with the procedures of Subpart B to Part 52 of Title 10 of the Code of Federal Regulations. This supplement documents the NRC staff`s review of the changes to the US ABWR design documentation since the issuance of the FSER. GE made these changes primarily as a result of first-of-a-kind-engineering (FOAKE) and as a result of the design certification rulemaking for the ABWR design. On the basis of its evaluations, the NRC staff concludes that the confirmatory issues in NUREG-1503 are resolved, that the changes to the ABWR design documentation are acceptable, and that GE`s application for design certification meets the requirements of Subpart B to 10 CFR Part 52 that are applicable and technically relevant to the US ABWR design.

  17. Development, implementation and assessment of specific, two-fluid closure laws for inverted-annular film-boiling

    SciTech Connect (OSTI)

    Cachard, F. de

    1995-09-01

    Inverted-Annular Film-Boiling (IAFB) is one of the post-burnout heat transfer modes taking place during the reflooding phase of the loss-of-coolant accident, when the liquid at the quench front is subcooled. Under IAFB conditions, a continuous, liquid core is separated from the wall by a superheated vapour film. the heat transfer rate in IAFB is influenced by the flooding rate, liquid subcooling, pressure, and the wall geometry and temperature. These influences can be accounted by a two-fluid model with physically sound closure laws for mass, momentum and heat transfers between the wall, the vapour film, the vapour-liquid interface, and the liquid core. Such closure laws have been developed and adjusted using IAFB-relevant experimental results, including heat flux, wall temperature and void fraction data. The model is extensively assessed against data from three independent sources. A total of 46 experiments have been analyzed. The overall predictions are good. The IAFB-specific closure laws proposed have also intrinsic value, and may be used in other two-fluid models. They should allow to improve the description of post-dryout, low quality heat transfer by the safety codes.

  18. Front Range Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    search Logo: Front Range Energy LLC Name: Front Range Energy LLC Address: 31375 Great Western Dr Place: Windsor, Colorado Zip: 80550 Region: Rockies Area Sector: Biofuels...

  19. Radar range measurements in the atmosphere.

    SciTech Connect (OSTI)

    Doerry, Armin Walter

    2013-02-01

    The earth's atmosphere affects the velocity of propagation of microwave signals. This imparts a range error to radar range measurements that assume the typical simplistic model for propagation velocity. This range error is a function of atmospheric constituents, such as water vapor, as well as the geometry of the radar data collection, notably altitude and range. Models are presented for calculating atmospheric effects on radar range measurements, and compared against more elaborate atmospheric models.

  20. Determination of recombination radius in Si for binary collision approximation codes

    SciTech Connect (OSTI)

    Vizkelethy, Gyorgy; Foiles, Stephen M.

    2015-09-11

    Displacement damage caused by ions or neutrons in microelectronic devices can have significant effect on the performance of these devices. Therefore, it is important to predict not only the displacement damage profile, but also its magnitude precisely. Analytical methods and binary collision approximation codes working with amorphous targets use the concept of displacement energy, the energy that a lattice atom has to receive to create a permanent replacement. It was found that this “displacement energy” is direction dependent; it can range from 12 to 32 eV in silicon. Obviously, this model fails in BCA codes that work with crystalline targets, such as Marlowe. Marlowe does not use displacement energy; instead, it uses lattice binding energy only and then pairs the interstitial atoms with vacancies. Then based on the configuration of the Frenkel pairs it classifies them as close, near, or distant pairs, and considers the distant pairs the permanent replacements. Unfortunately, this separation is an ad hoc assumption, and the results do not agree with molecular dynamics calculations. After irradiation, there is a prompt recombination of interstitials and vacancies if they are nearby, within a recombination radius. In order to implement this recombination radius in Marlowe, we used the comparison of MD and Marlowe calculation in a range of ion energies in single crystal silicon target. As a result, the calculations showed that a single recombination radius of ~7.4 Å in Marlowe for a range of ion energies gives an excellent agreement with MD.

  1. Markov Jump Processes Approximating a Non-Symmetric Generalized Diffusion

    SciTech Connect (OSTI)

    Limic, Nedzad

    2011-08-15

    Consider a non-symmetric generalized diffusion X( Dot-Operator ) in Double-Struck-Capital-R {sup d} determined by the differential operator A(x) = -{Sigma}{sub ij} {partial_derivative}{sub i}a{sub ij}(x){partial_derivative}{sub j} + {Sigma}{sub i} b{sub i}(x){partial_derivative}{sub i}. In this paper the diffusion process is approximated by Markov jump processes X{sub n}( Dot-Operator ), in homogeneous and isotropic grids G{sub n} Subset-Of Double-Struck-Capital-R {sup d}, which converge in distribution in the Skorokhod space D([0,{infinity}), Double-Struck-Capital-R {sup d}) to the diffusion X( Dot-Operator ). The generators of X{sub n}( Dot-Operator ) are constructed explicitly. Due to the homogeneity and isotropy of grids, the proposed method for d{>=}3 can be applied to processes for which the diffusion tensor {l_brace}a{sub ij}(x){r_brace}{sub 11}{sup dd} fulfills an additional condition. The proposed construction offers a simple method for simulation of sample paths of non-symmetric generalized diffusion. Simulations are carried out in terms of jump processes X{sub n}( Dot-Operator ). For piece-wise constant functions a{sub ij} on Double-Struck-Capital-R {sup d} and piece-wise continuous functions a{sub ij} on Double-Struck-Capital-R {sup 2} the construction and principal algorithm are described enabling an easy implementation into a computer code.

  2. Thermally-assisted-occupation density functional theory with generalized-gradient approximations

    SciTech Connect (OSTI)

    Chai, Jeng-Da

    2014-05-14

    We extend the recently proposed thermally-assisted-occupation density functional theory (TAO-DFT) [J.-D. Chai, J. Chem. Phys. 136, 154104 (2012)] to generalized-gradient approximation (GGA) exchange-correlation density functionals. Relative to our previous TAO-LDA (i.e., the local density approximation to TAO-DFT), the resulting TAO-GGAs are significantly superior for a wide range of applications, such as thermochemistry, kinetics, and reaction energies. For noncovalent interactions, TAO-GGAs with empirical dispersion corrections are shown to yield excellent performance. Due to their computational efficiency for systems with strong static correlation effects, TAO-LDA and TAO-GGAs are applied to study the electronic properties (e.g., the singlet-triplet energy gaps, vertical ionization potentials, vertical electron affinities, fundamental gaps, and symmetrized von Neumann entropy) of acenes with different number of linearly fused benzene rings (up to 100), which is very challenging for conventional electronic structure methods. The ground states of acenes are shown to be singlets for all the chain lengths studied here. With the increase of acene length, the singlet-triplet energy gaps, vertical ionization potentials, and fundamental gaps decrease monotonically, while the vertical electron affinities and symmetrized von Neumann entropy (i.e., a measure of polyradical character) increase monotonically.

  3. Viking Range: Order (2014-CE-23014)

    Broader source: Energy.gov [DOE]

    DOE ordered Viking Range, LLC to pay a $8,000 civil penalty after finding Viking Range had failed to certify that certain models of cooking products comply with the applicable energy conservation standards.

  4. American Range: Order (2014-CE-23006)

    Broader source: Energy.gov [DOE]

    DOE ordered American Range Corporation to pay a $8,000 civil penalty after finding American Range had failed to certify that certain models of cooking products comply with the applicable energy conservation standards.

  5. Range Fuels Commercial-Scale Biorefinery

    Broader source: Energy.gov [DOE]

    The Range Fuels commercial-scale biorefinery will use a variety of feedstocks to create cellulosic ethanol, methanol, and power.

  6. Determination of recombination radius in Si for binary collision approximation codes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vizkelethy, Gyorgy; Foiles, Stephen M.

    2015-09-11

    Displacement damage caused by ions or neutrons in microelectronic devices can have significant effect on the performance of these devices. Therefore, it is important to predict not only the displacement damage profile, but also its magnitude precisely. Analytical methods and binary collision approximation codes working with amorphous targets use the concept of displacement energy, the energy that a lattice atom has to receive to create a permanent replacement. It was found that this “displacement energy” is direction dependent; it can range from 12 to 32 eV in silicon. Obviously, this model fails in BCA codes that work with crystalline targets,more » such as Marlowe. Marlowe does not use displacement energy; instead, it uses lattice binding energy only and then pairs the interstitial atoms with vacancies. Then based on the configuration of the Frenkel pairs it classifies them as close, near, or distant pairs, and considers the distant pairs the permanent replacements. Unfortunately, this separation is an ad hoc assumption, and the results do not agree with molecular dynamics calculations. After irradiation, there is a prompt recombination of interstitials and vacancies if they are nearby, within a recombination radius. In order to implement this recombination radius in Marlowe, we used the comparison of MD and Marlowe calculation in a range of ion energies in single crystal silicon target. As a result, the calculations showed that a single recombination radius of ~7.4 Å in Marlowe for a range of ion energies gives an excellent agreement with MD.« less

  7. American Range: Proposed Penalty (2014-CE-23006)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that American Range Corporation failed to certify cooking products as compliant with the applicable energy conservation standards.

  8. Viking Range: Proposed Penalty (2014-CE-23014)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Viking Range, LLC failed to certify cooking products as compliant with the applicable energy conservation standards.

  9. Magnetotellurics At Northern Basin & Range Region (Pritchett...

    Open Energy Info (EERE)

    Activity Date Usefulness useful DOE-funding Unknown Notes NOTE: These are theoreticalcomputer simulation tests of various methods on eight hypothetical 'model' basing-and-range...

  10. Correcting radar range measurements for atmospheric propagation...

    Office of Scientific and Technical Information (OSTI)

    Title: Correcting radar range measurements for atmospheric propagation effects. Abstract not provided. Authors: Doerry, Armin Walter Publication Date: 2013-12-01 OSTI Identifier: ...

  11. Range Design Criteria- June 4, 2012

    Broader source: Energy.gov [DOE]

    This document contains the currently-approved firearms "Range Design Criteria" referred to on DOE O 473.3, Protection Program Operations

  12. Preliminary Feasibility, Design, and Hazard Analysis of a Boiling Water Test Loop Within the Idaho National Laboratory Advanced Test Reactor National Scientific User Facility

    SciTech Connect (OSTI)

    Douglas M. Gerstner

    2009-05-01

    The Advanced Test Reactor (ATR) is a pressurized light-water reactor with a design thermal power of 250 MW. The principal function of the ATR is to provide a high neutron flux for testing reactor fuels and other materials. The ATR and its support facilities are located at the Idaho National Laboratory (INL). A Boiling Water Test Loop (BWTL) is being designed for one of the irradiation test positions within the. The objective of the new loop will be to simulate boiling water reactor (BWR) conditions to support clad corrosion and related reactor material testing. Further it will accommodate power ramping tests of candidate high burn-up fuels and fuel pins/rods for the commercial BWR utilities. The BWTL will be much like the pressurized water loops already in service in 5 of the 9 “flux traps” (region of enhanced neutron flux) in the ATR. The loop coolant will be isolated from the primary coolant system so that the loop’s temperature, pressure, flow rate, and water chemistry can be independently controlled. This paper presents the proposed general design of the in-core and auxiliary BWTL systems; the preliminary results of the neutronics and thermal hydraulics analyses; and the preliminary hazard analysis for safe normal and transient BWTL and ATR operation.

  13. Range gated imaging experiments using gated intensifiers

    SciTech Connect (OSTI)

    McDonald, T.E. Jr.; Yates, G.J.; Cverna, F.H.; Gallegos, R.A.; Jaramillo, S.A.; Numkena, D.M.; Payton, J.; Pena-Abeyta, C.R.

    1999-03-01

    A variety of range gated imaging experiments using high-speed gated/shuttered proximity focused microchannel plate image intensifiers (MCPII) are reported. Range gated imaging experiments were conducted in water for detection of submerged mines in controlled turbidity tank test and in sea water for the Naval Coastal Sea Command/US Marine Corps. Field experiments have been conducted consisting of kilometer range imaging of resolution targets and military vehicles in atmosphere at Eglin Air Force Base for the US Air Force, and similar imaging experiments, but in smoke environment, at Redstone Arsenal for the US Army Aviation and Missile Command (AMCOM). Wavelength of the illuminating laser was 532 nm with pulse width ranging from 6 to 12 ns and comparable gate widths. These tests have shown depth resolution in the tens of centimeters range from time phasing reflected LADAR images with MCPII shutter opening.

  14. Volume higher; spot price ranges widen

    SciTech Connect (OSTI)

    1994-11-01

    This article is the October 1994 uranium market summary. During this reporting period, volume on the spot concentrates market doubled. Twelve deals took place: three in the spot concentrates market, one in the medium and long-term market, four in the conversion market, and four in the enrichment market. The restricted price range widened due to higher prices at the top end of the range, while the unrestricted price range widened because of lower prices at the bottom end. Spot conversion prices were higher, and enrichment prices were unchanged.

  15. Nuclear Physics Long Range Plan | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Physics Long Range Plan Nuclear Physics Long Range Plan June 26, 2014 For a couple of years now, we have been waiting to get started on the next nuclear physics long range plan (LRP). What does that mean? Well, those involved in nuclear physics in the United States expect to participate periodically in a process that culminates in the writing, and eventual submission by the Nuclear Science Advisory Committee (NSAC), of a report that will lay out the broad path for the field for the next

  16. Techniques for optically compressing light intensity ranges

    DOE Patents [OSTI]

    Rushford, M.C.

    1989-03-28

    A pin hole camera assembly for use in viewing an object having a relatively large light intensity range, for example a crucible containing molten uranium in an atomic vapor laser isotope separator (AVLIS) system is disclosed herein. The assembly includes means for optically compressing the light intensity range appearing at its input sufficient to make it receivable and decipherable by a standard video camera. A number of different means for compressing the intensity range are disclosed. These include the use of photogray glass, the use of a pair of interference filters, and the utilization of a new liquid crystal notch filter in combination with an interference filter. 18 figs.

  17. Techniques for optically compressing light intensity ranges

    DOE Patents [OSTI]

    Rushford, Michael C.

    1989-01-01

    A pin hole camera assembly for use in viewing an object having a relatively large light intensity range, for example a crucible containing molten uranium in an atomic vapor laser isotope separator (AVLIS) system is disclosed herein. The assembly includes means for optically compressing the light intensity range appearing at its input sufficient to make it receivable and decipherable by a standard video camera. A number of different means for compressing the intensity range are disclosed. These include the use of photogray glass, the use of a pair of interference filters, and the utilization of a new liquid crystal notch filter in combination with an interference filter.

  18. Help:Range blocks | Open Energy Information

    Open Energy Info (EERE)

    accounts editing from these IP addresses will also be blocked, unless you check the box to only block anonymous editors. Range blocking is enabled on all Wikimedia wikis; to...

  19. Range Fuels Biorefinery Groundbreaking | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and state legislators who exhibit the kind of leadership you've shown in developing America's new energy future. ... Range Fuels are blending science and technology in order to ...

  20. Programmable near-infrared ranging system

    DOE Patents [OSTI]

    Everett, Jr., Hobart R.

    1989-01-01

    A high angular resolution ranging system particularly suitable for indoor plications involving mobile robot navigation and collision avoidance uses a programmable array of light emitters that can be sequentially incremented by a microprocessor. A plurality of adjustable level threshold detectors are used in an optical receiver for detecting the threshold level of the light echoes produced when light emitted from one or more of the emitters is reflected by a target or object in the scan path of the ranging system.

  1. Quasichemical analysis of the cluster-pair approximation for the thermodynamics of proton hydration

    SciTech Connect (OSTI)

    Pollard, Travis; Beck, Thomas L.

    2014-06-14

    A theoretical analysis of the cluster-pair approximation (CPA) is presented based on the quasichemical theory of solutions. The sought single-ion hydration free energy of the proton includes an interfacial potential contribution by definition. It is shown, however, that the CPA involves an extra-thermodynamic assumption that does not guarantee uniform convergence to a bulk free energy value with increasing cluster size. A numerical test of the CPA is performed using the classical polarizable AMOEBA force field and supporting quantum chemical calculations. The enthalpy and free energy differences are computed for the kosmotropic Na{sup +}/F{sup −} ion pair in water clusters of size n = 5, 25, 105. Additional calculations are performed for the chaotropic Rb{sup +}/I{sup −} ion pair. A small shift in the proton hydration free energy and a larger shift in the hydration enthalpy, relative to the CPA values, are predicted based on the n = 105 simulations. The shifts arise from a combination of sequential hydration and interfacial potential effects. The AMOEBA and quantum chemical results suggest an electrochemical surface potential of water in the range −0.4 to −0.5 V. The physical content of single-ion free energies and implications for ion-water force field development are also discussed.

  2. Discrete Dipole Approximation for Low-Energy Photoelectron Emission from NaCl Nanoparticles

    SciTech Connect (OSTI)

    Berg, Matthew J.; Wilson, Kevin R.; Sorensen, Chris; Chakrabarti, Amit; Ahmed, Musahid

    2011-09-22

    This work presents a model for the photoemission of electrons from sodium chloride nanoparticles 50-500 nm in size, illuminated by vacuum ultraviolet light with energy ranging from 9.4-10.9 eV. The discrete dipole approximation is used to calculate the electromagnetic field inside the particles, from which the two-dimensional angular distribution of emitted electrons is simulated. The emission is found to favor the particle?s geometrically illuminated side, and this asymmetry is compared to previous measurements performed at the Lawrence Berkeley National Laboratory. By modeling the nanoparticles as spheres, the Berkeley group is able to semi-quantitatively account for the observed asymmetry. Here however, the particles are modeled as cubes, which is closer to their actual shape, and the interaction of an emitted electron with the particle surface is also considered. The end result shows that the emission asymmetry for these low-energy electrons is more sensitive to the particle-surface interaction than to the specific particle shape, i.e., a sphere or cube.

  3. Cosmic histories of star formation and reionization: an analysis with a power-law approximation

    SciTech Connect (OSTI)

    Yu, Yun-Wei; Cheng, K.S.; Chu, M.C.; Yeung, S. E-mail: hrspksc@hku.hk E-mail: terryys@gmail.com

    2012-07-01

    With a simple power-law approximation of high-redshift (?>3.5) star formation history, i.e., ?-dot {sub *}(z)?[(1+z)/4.5]{sup ??}, we investigate the reionization of intergalactic medium (IGM) and the consequent Thomson scattering optical depth for cosmic microwave background (CMB) photons. A constraint on the evolution index ? is derived from the CMB optical depth measured by the Wilkinson Microwave Anisotropy Probe (WMAP) experiment, which reads ? ? 2.18 lg N{sub ?}?3.89, where the free parameter N{sub ?} is the number of the escaped ionizing ultraviolet photons per baryon. At the same time, the redshift z{sub f} at which the IGM is fully ionized can also be expressed as a function of ? as well as N{sub ?}. By further taking into account the implication of the Gunn-Peterson trough observations to quasars for the full reionization redshift, i.e., 6?range of (2.05.8)%.

  4. Approximate Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    space, get 33%-50% power savings Implemented These Ideas in Crayon System Crayon Software Architecture Cairo is a standard, widely-used graphics API Firefox, Graphviz, Poppler, ......

  5. Battery Electric Vehicles: Range Optimization and Diversification for the U.S. Drivers

    SciTech Connect (OSTI)

    Lin, Zhenhong

    2012-01-01

    Properly selecting the driving range is critical for accurately predicting the market acceptance and the resulting social benefits of BEVs. Analysis of transportation technology transition could be biased against battery electric vehicles (BEV) and mislead policy making, if BEVs are not represented with optimal ranges. This study proposes a coherent method to optimize the BEV driving range by minimizing the range-related cost, which is formulated as a function of range, battery cost, energy prices, charging frequency, access to backup vehicles, and the cost and refueling hassle of operating the backup vehicle. This method is implemented with a sample of 36,664 drivers, representing U.S. new car drivers, based on the 2009 National Household Travel Survey data. Key findings are: 1) Assuming the near term (2015) battery cost at $405/kWh, about 98% of the sampled drivers are predicted to prefer a range below 200 miles, and about 70% below 100 miles. The most popular 20-mile band of range is 57 to77 miles, unsurprisingly encompassing the Leaf s EPA-certified 73-mile range. With range limited to 4 or 7 discrete options, the majority are predicted to choose a range below 100 miles. 2) Found as a statistically robust rule of thumb, the BEV optimal range is approximately 0.6% of one s annual driving distance. 3) Reducing battery costs could motivate demand for larger range, but improving public charging may cause the opposite. 4) Using a single range to represent BEVs in analysis could significantly underestimate their competitiveness e.g. by $3226/vehicle if BEVs are represented with 73-mile range only or by $7404/BEV if with 150-mile range only. Range optimization and diversification into 4 or 7 range options reduce such analytical bias by 78% or 90%, respectively.

  6. Corrective action investigation plan for CAU Number 453: Area 9 Landfill, Tonopah Test Range

    SciTech Connect (OSTI)

    1997-05-14

    This Corrective Action Investigation Plan (CAIP) contains the environmental sample collection objectives and criteria for conducting site investigation activities at the Area 9 Landfill, Corrective Action Unit (CAU) 453/Corrective Action (CAS) 09-55-001-0952, which is located at the Tonopah Test Range (TTR). The TTR, included in the Nellis Air Force Range, is approximately 255 kilometers (140 miles) northwest of Las Vegas, Nevada. The Area 9 Landfill is located northwest of Area 9 on the TTR. The landfill cells associated with CAU 453 were excavated to receive waste generated from the daily operations conducted at Area 9 and from range cleanup which occurred after test activities.

  7. Medium-range order in hydrogenated amorphous silicon measured by fluctuation microscopy

    SciTech Connect (OSTI)

    Voyles, P. M.; Treacy, M. M. J.; Jin, H.-C.; Abelson, J. R.; Gibson, J. M.; Guha, S.; Crandall, R. S.

    2000-04-17

    The authors have characterized with fluctuation electron microscopy the medium-range order of hydrogenated amorphous silicon thin films deposited by a variety of methods. Films were deposited by reactive magnetron sputtering, hot-wire chemical vapor deposition, and plasma enhanced chemical vapor deposition with and without H{sub 2} dilution of the SiH{sub 4} precursor gas. All of the films show the signature of the paracrystalline structure typical of amorphous Si. There are small variations in the degree of medium-range order with deposition methods and H{sub 2} content. The PECVD film grown with high H{sub 2} dilution contains Si crystals {approximately} 5 nm in diameter at a density of {approximately} 10{sup 9} cm{sup 2}. The amorphous matrix surrounding these crystals shows no difference in medium-range order from the standard PECVD film.

  8. Extended range radiation dose-rate monitor

    DOE Patents [OSTI]

    Valentine, Kenneth H.

    1988-01-01

    An extended range dose-rate monitor is provided which utilizes the pulse pileup phenomenon that occurs in conventional counting systems to alter the dynamic response of the system to extend the dose-rate counting range. The current pulses from a solid-state detector generated by radiation events are amplified and shaped prior to applying the pulses to the input of a comparator. The comparator generates one logic pulse for each input pulse which exceeds the comparator reference threshold. These pulses are integrated and applied to a meter calibrated to indicate the measured dose-rate in response to the integrator output. A portion of the output signal from the integrator is fed back to vary the comparator reference threshold in proportion to the output count rate to extend the sensitive dynamic detection range by delaying the asymptotic approach of the integrator output toward full scale as measured by the meter.

  9. Numerical analysis of the spatial range of the Kondo effect

    SciTech Connect (OSTI)

    Busser, C. A.; Martins, G. B.; Ribeiro, L. Costa; Vernek, E.; Anda, E. V.; Dagotto, Elbio R

    2010-01-01

    The spatial length of the Kondo screening is still a controversial issue related to Kondo physics. While renormalization-group and Bethe-Ansatz solutions have provided detailed information about the thermodynamics of magnetic impurities, they are insufficient to study the effect on the surrounding electrons, i.e., the spatial range of the correlations created by the Kondo effect between the localized magnetic moment and the conduction electrons. The objective of this work is to present a quantitative way of measuring the extension of these correlations by studying their effect directly on the local density of states (LDOS) at arbitrary distances from the impurity. The numerical techniques used, the embedded cluster approximation, the finite-U slave bosons, and numerical renormalization group, calculate the Green s functions in real space. With this information, one can calculate how the local density of states away from the impurity is modified by its presence, below and above the Kondo temperature, and then estimate the range of the disturbances in the noninteracting Fermi sea due to the Kondo effect, and how it changes with the Kondo temperature TK. The results obtained agree with results obtained through spin-spin correlations, showing that the LDOS captures the phenomenology of the Kondo cloud as well.

  10. Wide-range radiation dose monitor

    DOE Patents [OSTI]

    Kopp, Manfred K.

    1986-01-01

    A radiation dose-rate monitor is provided which operates in a conventional linear mode for radiation in the 0 to 0.5 R/h range and utilizes a nonlinear mode of operation for sensing radiation from 0.5 R/h to over 500 R/h. The nonlinear mode is achieved by a feedback circuit which adjusts the high voltage bias of the proportional counter, and hence its gas gain, in accordance with the amount of radiation being monitored. This allows compression of readout onto a single scale over the range of 0 to greater than 500 R/h without scale switching operations.

  11. Wide-range radiation dose monitor

    DOE Patents [OSTI]

    Kopp, M.K.

    1984-09-20

    A radiation dose-rate monitor is provided which operates in a conventional linear mode for radiation in the 0 to 0.5 R/h range and utilizes a nonlinear mode of operation for sensing radiation from 0.5 R/h to over 500 R/h. The nonlinear mode is achieved by a feedback circuit which adjusts the high voltage bias of the proportional counter, and hence its gas gain, in accordance with the amount of radiation being monitored. This allows compression of readout onto a single scale over the range of 0 to greater than 500 R/h without scale switching operations.

  12. Safety assessment of outdoor live fire range

    SciTech Connect (OSTI)

    1989-05-01

    The following Safety Assessment (SA) pertains to the outdoor live fire range facility (LFR). The purpose of this facility is to supplement the indoor LFR. In particular it provides capacity for exercises that would be inappropriate on the indoor range. This SA examines the risks that are attendant to the training on the outdoor LFR. The outdoor LFR used by EG&G Mound is privately owned. It is identified as the Miami Valley Shooting Grounds. Mondays are leased for the exclusive use of EG&G Mound.

  13. Estimating boiling water reactor decommissioning costs: A user`s manual for the BWR Cost Estimating Computer Program (CECP) software. Final report

    SciTech Connect (OSTI)

    Bierschbach, M.C.

    1996-06-01

    Nuclear power plant licensees are required to submit to the US Nuclear Regulatory Commission (NRC) for review their decommissioning cost estimates. This user`s manual and the accompanying Cost Estimating Computer Program (CECP) software provide a cost-calculating methodology to the NRC staff that will assist them in assessing the adequacy of the licensee submittals. The CECP, designed to be used on a personal computer, provides estimates for the cost of decommissioning boiling water reactor (BWR) power stations to the point of license termination. Such cost estimates include component, piping, and equipment removal costs; packaging costs; decontamination costs; transportation costs; burial costs; and manpower costs. In addition to costs, the CECP also calculates burial volumes, person-hours, crew-hours, and exposure person-hours associated with decommissioning.

  14. Boiling Water Reactor Fuel Behavior Under Reactivity-Initiated-Accident Conditions at Burnup of 41 to 45 GWd/tonne U

    SciTech Connect (OSTI)

    Nakamura, Takehiko; Yoshinaga, Makio; Takahashi, Masato; Okonogi, Kazunari; Ishijima, Kiyomi

    2000-02-15

    Boiling water reactor (BWR) fuel at burnup of 41 to 45 GWd/tonne U was pulse irradiated in the Nuclear Safety Research Reactor (NSRR) to investigate fuel behavior under cold startup reactivity-initiated-accident conditions. Current Japanese BWR fuel, 8 x 8BJ type (Step I), from Fukushima-Daiichi Unit 3 was refabricated into short segments, and the test rods were promptly subjected to thermal energy from 293 to 607 J/g (70 to 145 cal/g) within {approx}20 ms. The fuel cladding was ductile enough to survive the prompt deformation due to pellet cladding mechanical interaction, while the plastic hoop strain reached 1.5% at the peak location. Transient fission gas release by the pulse irradiation varied from 3.1 to 8.2%, depending on the peak fuel enthalpy and the steady-state operation conditions.

  15. Approximate models for the ion-kinetic regime in inertial-confinement-fusion capsule implosions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hoffman, Nelson M.; Zimmerman, George B.; Molvig, Kim; Rinderknecht, Hans G.; Rosenberg, Michael J.; Albright, B. J.; Simakov, Andrei N.; Sio, Hong; Zylstra, Alex B.; Johnson, Maria Gatu; et al

    2015-05-19

    “Reduced” (i.e., simplified or approximate) ion-kinetic (RIK) models in radiation-hydrodynamic simulations permit a useful description of inertial-confinement-fusion (ICF) implosions where kinetic deviations from hydrodynamic behavior are important. For implosions in or near the kinetic regime (i.e., when ion mean free paths are comparable to the capsule size), simulations using a RIK model give a detailed picture of the time- and space-dependent structure of imploding capsules, allow an assessment of the relative importance of various kinetic processes during the implosion, enable explanations of past and current observations, and permit predictions of the results of future experiments. The RIK simulation method describedmore » here uses moment-based reduced kinetic models for transport of mass, momentum, and energy by long-mean-free-path ions, a model for the decrease of fusion reactivity owing to the associated modification of the ion distribution function, and a model of hydrodynamic turbulent mixing. The transport models are based on local gradient-diffusion approximations for the transport of moments of the ion distribution functions, with coefficients to impose flux limiting or account for transport modification. After calibration against a reference set of ICF implosions spanning the hydrodynamic-to-kinetic transition, the method has useful, quantifiable predictive ability over a broad range of capsule parameter space. Calibrated RIK simulations show that an important contributor to ion species separation in ICF capsule implosions is the preferential flux of longer-mean-free-path species out of the fuel and into the shell, leaving the fuel relatively enriched in species with shorter mean free paths. Also, the transport of ion thermal energy is enhanced in the kinetic regime, causing the fuel region to have a more uniform, lower ion temperature, extending over a larger volume, than implied by clean simulations. We expect that the success of our simple

  16. Approximate models for the ion-kinetic regime in inertial-confinement-fusion capsule implosions

    SciTech Connect (OSTI)

    Hoffman, Nelson M.; Zimmerman, George B.; Molvig, Kim; Rinderknecht, Hans G.; Rosenberg, Michael J.; Albright, B. J.; Simakov, Andrei N.; Sio, Hong; Zylstra, Alex B.; Johnson, Maria Gatu; Séguin, Fredrick H.; Frenje, Johan A.; Li, C. K.; Petrasso, Richard D.; Higdon, David M.; Srinivasan, Gowri; Glebov, Vladimir Yu.; Stoeckl, Christian; Seka, Wolf; Sangster, T. Craig

    2015-05-19

    “Reduced” (i.e., simplified or approximate) ion-kinetic (RIK) models in radiation-hydrodynamic simulations permit a useful description of inertial-confinement-fusion (ICF) implosions where kinetic deviations from hydrodynamic behavior are important. For implosions in or near the kinetic regime (i.e., when ion mean free paths are comparable to the capsule size), simulations using a RIK model give a detailed picture of the time- and space-dependent structure of imploding capsules, allow an assessment of the relative importance of various kinetic processes during the implosion, enable explanations of past and current observations, and permit predictions of the results of future experiments. The RIK simulation method described here uses moment-based reduced kinetic models for transport of mass, momentum, and energy by long-mean-free-path ions, a model for the decrease of fusion reactivity owing to the associated modification of the ion distribution function, and a model of hydrodynamic turbulent mixing. The transport models are based on local gradient-diffusion approximations for the transport of moments of the ion distribution functions, with coefficients to impose flux limiting or account for transport modification. After calibration against a reference set of ICF implosions spanning the hydrodynamic-to-kinetic transition, the method has useful, quantifiable predictive ability over a broad range of capsule parameter space. Calibrated RIK simulations show that an important contributor to ion species separation in ICF capsule implosions is the preferential flux of longer-mean-free-path species out of the fuel and into the shell, leaving the fuel relatively enriched in species with shorter mean free paths. Also, the transport of ion thermal energy is enhanced in the kinetic regime, causing the fuel region to have a more uniform, lower ion temperature, extending over a larger volume, than implied by clean simulations. We expect that the success of our simple approach

  17. A simple approximation for the current-voltage characteristics of high-power, relativistic diodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ekdahl, Carl

    2016-06-10

    A simple approximation for the current-voltage characteristics of a relativistic electron diode is presented. The approximation is accurate from non-relativistic through relativistic electron energies. Although it is empirically developed, it has many of the fundamental properties of the exact diode solutions. Lastly, the approximation is simple enough to be remembered and worked on almost any pocket calculator, so it has proven to be quite useful on the laboratory floor.

  18. An experimental study on sub-cooled flow boiling CHF of R134a at low pressure condition with atmospheric pressure (AP) plasma assisted surface modification

    SciTech Connect (OSTI)

    Kim, Seung Jun; Zou, Ling; Jones, Barclay G.

    2015-02-01

    In this study, sub-cooled flow boiling critical heat flux tests at low pressure were conducted in a rectangular flow channel with one uniformly heated surface, using simulant fluid R-134a as coolant. The experiments were conducted under the following conditions: (1) inlet pressure (P) of 400-800 kPa, (2) mass flux (G) of 124-248 kg/m2s, (3) inlet sub-cooling enthalpy (ΔHi) of 12~ 26 kJ/kg. Parametric trends of macroscopic system parameters (G, P, Hi) were examined by changing inlet conditions. Those trends were found to be generally consistent with previous understandings of CHF behavior at low pressure condition (i.e. reduced pressure less than 0.2). A fluid-to-fluid scaling model was utilized to convert the test data obtained with the simulant fluid (R-134a) into the prototypical fluid (water). The comparison between the converted CHF of equivalent water and CHF look-up table with same operation conditions were conducted, which showed good agreement. Furthermore, the effect of surface wettability on CHF was also investigated by applying atmospheric pressure plasma (AP-Plasma) treatment to modify the surface characteristic. With AP-Plasma treatment, the change of microscopic surface characteristic was measured in terms of static contact angle. The static contact angle was reduced from 80° on original non-treated surface to 15° on treated surface. An enhancement of 18% on CHF values under flow boiling conditions were observed on AP-Plasma treated surfaces compared to those on non-treated heating surfaces.

  19. Wide temperature range seal for demountable joints

    DOE Patents [OSTI]

    Sixsmith, H.; Valenzuela, J.A.; Nutt, W.E.

    1991-07-23

    The present invention is directed to a seal for demountable joints operating over a wide temperature range down to liquid helium temperatures. The seal has anti-extrusion guards which prevent extrusion of the soft ductile sealant material, which may be indium or an alloy thereof. 6 figures.

  20. Impulse radar with swept range gate

    DOE Patents [OSTI]

    McEwan, T.E.

    1998-09-08

    A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with a typical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna, so a background subtraction is not needed, simplifying the circuitry while improving performance. Techniques are used to reduce clutter in the receive signal, such as decoupling the receive and transmit cavities by placing a space between them, using conductive or radiative damping elements on the cavities, and using terminating plates on the sides of the openings. The antennas can be arranged in a side-by-side parallel spaced apart configuration or in a coplanar opposed configuration which significantly reduces main bang coupling. 25 figs.

  1. Impulse radar with swept range gate

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1998-09-08

    A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with a typical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna (10), so a background subtraction is not needed, simplifying the circuitry while improving performance. Techniques are used to reduce clutter in the receive signal, such as decoupling the receive (24) and transmit cavities (22) by placing a space between them, using conductive or radiative damping elements on the cavities, and using terminating plates on the sides of the openings. The antennas can be arranged in a side-by-side parallel spaced apart configuration or in a coplanar opposed configuration which significantly reduces main bang coupling.

  2. Compact range for variable-zone measurements

    DOE Patents [OSTI]

    Burnside, Walter D.; Rudduck, Roger C.; Yu, Jiunn S.

    1988-08-02

    A compact range for testing antennas or radar targets includes a source for directing energy along a feedline toward a parabolic reflector. The reflected wave is a spherical wave with a radius dependent on the distance of the source from the focal point of the reflector.

  3. Wide temperature range seal for demountable joints

    DOE Patents [OSTI]

    Sixsmith, Herbert; Valenzuela, Javier A.; Nutt, William E.

    1991-07-23

    The present invention is directed to a seal for demountable joints operating over a wide temperature range down to liquid helium temperatures. The seal has anti-extrusion guards which prevent extrusion of the soft ductile sealant material, which may be indium or an alloy thereof.

  4. Compact range for variable-zone measurements

    DOE Patents [OSTI]

    Burnside, Walter D.; Rudduck, Roger C.; Yu, Jiunn S.

    1988-01-01

    A compact range for testing antennas or radar targets includes a source for directing energy along a feedline toward a parabolic reflector. The reflected wave is a spherical wave with a radius dependent on the distance of the source from the focal point of the reflector.

  5. Compact range for variable-zone measurements

    DOE Patents [OSTI]

    Burnside, W.D.; Rudduck, R.C.; Yu, J.S.

    1987-02-27

    A compact range for testing antennas or radar targets includes a source for directing energy along a feedline toward a parabolic reflector. The reflected wave is a spherical wave with a radius dependent on the distance of the source from the focal point of the reflector. 2 figs.

  6. Method and apparatus for coherent burst ranging

    DOE Patents [OSTI]

    Wachter, Eric A.; Fisher, Walter G.

    1998-01-01

    A high resolution ranging method is described utilizing a novel modulated waveform, hereafter referred to as coherent burst modulation. In the coherent burst method, high frequency modulation of an acoustic or electromagnetic transmitter, such as a laser, is performed at a modulation frequency. This modulation frequency is transmitted quasi-continuously in the form of interrupted bursts of radiation. Energy from the transmitter is directed onto a target, interacts with the target, and the returning energy is collected. The encoded burst pattern contained in the collected return signal is detected coherently by a receiver that is tuned so as to be principally sensitive to the modulation frequency. The receiver signal is processed to determine target range using both time-of-flight of the burst envelope and phase shift of the high frequency modulation. This approach effectively decouples the maximum unambiguous range and range resolution relationship of earlier methods, thereby allowing high precision ranging to be conducted at arbitrarily long distances using at least one burst of encoded energy. The use of a receiver tuned to the high frequency modulation contained within the coherent burst vastly improves both sensitivity in the detection of the target return signal and rejection of background interferences, such as ambient acoustic or electromagnetic noise. Simultaneous transmission at several energies (or wavelengths) is possible by encoding each energy with a separate modulation frequency or pattern; electronic demodulation at the receiver allows the return pattern for each energy to be monitored independently. Radial velocity of a target can also be determined by monitoring change in phase shift of the return signal as a function of time.

  7. Method and apparatus for coherent burst ranging

    DOE Patents [OSTI]

    Wachter, E.A.; Fisher, W.G.

    1998-04-28

    A high resolution ranging method is described utilizing a novel modulated waveform, hereafter referred to as coherent burst modulation. In the coherent burst method, high frequency modulation of an acoustic or electromagnetic transmitter, such as a laser, is performed at a modulation frequency. This modulation frequency is transmitted quasi-continuously in the form of interrupted bursts of radiation. Energy from the transmitter is directed onto a target, interacts with the target, and the returning energy is collected. The encoded burst pattern contained in the collected return signal is detected coherently by a receiver that is tuned so as to be principally sensitive to the modulation frequency. The receiver signal is processed to determine target range using both time-of-flight of the burst envelope and phase shift of the high frequency modulation. This approach effectively decouples the maximum unambiguous range and range resolution relationship of earlier methods, thereby allowing high precision ranging to be conducted at arbitrarily long distances using at least one burst of encoded energy. The use of a receiver tuned to the high frequency modulation contained within the coherent burst vastly improves both sensitivity in the detection of the target return signal and rejection of background interferences, such as ambient acoustic or electromagnetic noise. Simultaneous transmission at several energies (or wavelengths) is possible by encoding each energy with a separate modulation frequency or pattern; electronic demodulation at the receiver allows the return pattern for each energy to be monitored independently. Radial velocity of a target can also be determined by monitoring change in phase shift of the return signal as a function of time. 12 figs.

  8. Wide range radioactive gas concentration detector

    DOE Patents [OSTI]

    Anderson, David F.

    1984-01-01

    A wide range radioactive gas concentration detector and monitor which is capable of measuring radioactive gas concentrations over a range of eight orders of magnitude. The device of the present invention is designed to have an ionization chamber which is sufficiently small to give a fast response time for measuring radioactive gases but sufficiently large to provide accurate readings at low concentration levels. Closely spaced parallel plate grids provide a uniform electric field in the active region to improve the accuracy of measurements and reduce ion migration time so as to virtually eliminate errors due to ion recombination. The parallel plate grids are fabricated with a minimal surface area to reduce the effects of contamination resulting from absorption of contaminating materials on the surface of the grids. Additionally, the ionization chamber wall is spaced a sufficient distance from the active region of the ionization chamber to minimize contamination effects.

  9. Interpretation of long-range interatomic force

    SciTech Connect (OSTI)

    Buldum, A.; Ciraci, S.; Fong, C.Y.; Nelson, J.S.

    1999-02-01

    Recent direct mechanical measurements of atomic force microscopy showed that the force between the silicon tip and the silicon sample is long range in the attractive region and its magnitude at maximum is relatively smaller. These features disagree with previous theoretical predictions based on the {ital ab initio} calculations. We investigated the nature of forces between a silicon tip and the silicon (111)-(2{times}1) surface by performing first-principles pseudopotential and classical molecular dynamics calculations and by calculating the van der Waals interaction. The first two methods give forces that are short range in nature. Fair agreement between the experiment and theory is obtained when the van der Waals interaction is included. The effect of the tip induced deformation is analyzed. {copyright} {ital 1999} {ital The American Physical Society}

  10. MULTI-SCALE MODELING AND APPROXIMATION ASSISTED OPTIMIZATION OF BARE TUBE HEAT EXCHANGERS

    SciTech Connect (OSTI)

    Bacellar, Daniel; Ling, Jiazhen; Aute, Vikrant; Radermacher, Reinhard; Abdelaziz, Omar

    2014-01-01

    Air-to-refrigerant heat exchangers are very common in air-conditioning, heat pump and refrigeration applications. In these heat exchangers, there is a great benefit in terms of size, weight, refrigerant charge and heat transfer coefficient, by moving from conventional channel sizes (~ 9mm) to smaller channel sizes (< 5mm). This work investigates new designs for air-to-refrigerant heat exchangers with tube outer diameter ranging from 0.5 to 2.0mm. The goal of this research is to develop and optimize the design of these heat exchangers and compare their performance with existing state of the art designs. The air-side performance of various tube bundle configurations are analyzed using a Parallel Parameterized CFD (PPCFD) technique. PPCFD allows for fast-parametric CFD analyses of various geometries with topology change. Approximation techniques drastically reduce the number of CFD evaluations required during optimization. Maximum Entropy Design method is used for sampling and Kriging method is used for metamodeling. Metamodels are developed for the air-side heat transfer coefficients and pressure drop as a function of tube-bundle dimensions and air velocity. The metamodels are then integrated with an air-to-refrigerant heat exchanger design code. This integration allows a multi-scale analysis of air-side performance heat exchangers including air-to-refrigerant heat transfer and phase change. Overall optimization is carried out using a multi-objective genetic algorithm. The optimal designs found can exhibit 50 percent size reduction, 75 percent decrease in air side pressure drop and doubled air heat transfer coefficients compared to a high performance compact micro channel heat exchanger with same capacity and flow rates.

  11. Interacting-boson-approximation study on the nuclear structural factor in double-charge-exchange reactions

    SciTech Connect (OSTI)

    Wu, H.; Wang, R.; Liu, Y.; Zhao, E. , P.O. Box 8730, Beijing Physics Department, Suzhou University, Suzhou Institute of High Energy Physics, Academia Sinica, Beijing Institute of Theoretical Physics, Academia Sinica, Beijing )

    1992-04-01

    The double-charge-exchange (DCX) reaction with Ca isotopes as targets is studied by employing the interacting-boson approximation (IBA). A comparison between the IBA and the shell-model results shows that IBA is a good approximation of the shell model in describing the DCX reactions.

  12. Momentum and energy approximations for elementary squeeze-film damper flows

    SciTech Connect (OSTI)

    Crandall, S.H.; El-shafei, A.

    1993-09-01

    To provide understanding of the effects of inertia on squeeze-film damper performance, two elementary flow patterns are studied. These elementary flows each depend on a single generalized motion coordinate whereas general planar motions of a damper are described by two independent generalized coordinates. Momentum and energy approximations for the elementary flows are compared with exact solutions. It is shown that the energy approximation, not previously applied to squeeze films, is superior to the momentum approximation in that at low Reynolds number the energy approximations agree with the exact solutions to first order in the Reynolds number whereas there are 20 percent errors in the first-order terms of the momentum approximations. 17 refs.

  13. Long Range Interactions in Nanoscale Science

    SciTech Connect (OSTI)

    French, Roger H; Parsegian, V Adrian; Podgonik, Rudolph; Rajter, Rick; Jagota, Anand; Luo, Jian; Asthagiri, Dilip; Chaudhury, Manoj; Chiang, Yet-Ming; Granick, Steve; Kalinin, Sergei V; Kardar, Mehran; Kjellander, Roland; Langreth, David C.; Lewis, Jennifer; Lustig, Steve; Wesolowski, David J; Wettlaufer, John; Ching, Wai-Yim; Finnis, Mike; Houlihan, Frank; Von Lilienfeld, O. Anatole; Van Oss, Carel; Zemb, Thomas

    2010-01-01

    Our understanding of the long range electrodynamic, electrostatic, and polar interactions that dominate the organization of small objects at separations beyond an interatomic bond length is reviewed. From this basic-forces perspective, a large number of systems are described from which one can learn about these organizing forces and how to modulate them. The many practical systems that harness these nanoscale forces are then surveyed. The survey reveals not only the promise of new devices and materials, but also the possibility of designing them more effectively.

  14. Fan-less long range alpha detector

    DOE Patents [OSTI]

    MacArthur, D.W.; Bounds, J.A.

    1994-05-10

    A fan-less long range alpha detector is disclosed which operates by using an electrical field between a signal plane and the surface or substance to be monitored for air ions created by collisions with alpha radiation. Without a fan, the detector can operate without the possibility of spreading dust and potential contamination into the atmosphere. A guard plane between the signal plane and the electrically conductive enclosure and maintained at the same voltage as the signal plane, reduces leakage currents. The detector can easily monitor soil, or other solid or liquid surfaces. 2 figures.

  15. Fan-less long range alpha detector

    DOE Patents [OSTI]

    MacArthur, Duncan W.; Bounds, John A.

    1994-01-01

    A fan-less long range alpha detector which operates by using an electrical field between a signal plane and the surface or substance to be monitored for air ions created by collisions with alpha radiation. Without a fan, the detector can operate without the possibility of spreading dust and potential contamination into the atmosphere. A guard plane between the signal plane and the electrically conductive enclosure and maintained at the same voltage as the signal plane, reduces leakage currents. The detector can easily monitor soil, or other solid or liquid surfaces.

  16. Tonopah Test Range 2030 Meeting Summary Report

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2009-04-01

    Corrective Action Sites (CASs) and Corrective Action Units (CAUs) at the Tonopah Test Range (TTR) may be placed into three categories: Closed, Closed in Place, or Closure in Progress. CASs and CAUs where contaminants were either not detected or were cleaned up to within regulatory action levels are summarized. CASs and CAUs where contaminants and/or waste have been closed in place are summarized. There is also a table that summarizes the contaminant that has been closed at each site, if land-use restrictions are present, and if post-closure inspections are required.

  17. Convergence properties of polynomial chaos approximations for L2 random variables.

    SciTech Connect (OSTI)

    Field, Richard V., Jr. (.,; .); Grigoriu, Mircea (Cornell University, Ithaca, NY)

    2007-03-01

    Polynomial chaos (PC) representations for non-Gaussian random variables are infinite series of Hermite polynomials of standard Gaussian random variables with deterministic coefficients. For calculations, the PC representations are truncated, creating what are herein referred to as PC approximations. We study some convergence properties of PC approximations for L{sub 2} random variables. The well-known property of mean-square convergence is reviewed. Mathematical proof is then provided to show that higher-order moments (i.e., greater than two) of PC approximations may or may not converge as the number of terms retained in the series, denoted by n, grows large. In particular, it is shown that the third absolute moment of the PC approximation for a lognormal random variable does converge, while moments of order four and higher of PC approximations for uniform random variables do not converge. It has been previously demonstrated through numerical study that this lack of convergence in the higher-order moments can have a profound effect on the rate of convergence of the tails of the distribution of the PC approximation. As a result, reliability estimates based on PC approximations can exhibit large errors, even when n is large. The purpose of this report is not to criticize the use of polynomial chaos for probabilistic analysis but, rather, to motivate the need for further study of the efficacy of the method.

  18. First and second order approximations to stage numbers in multicomponent enrichment cascades

    SciTech Connect (OSTI)

    Scopatz, A.

    2013-07-01

    This paper describes closed form, Taylor series approximations to the number product stages in a multicomponent enrichment cascade. Such closed form approximations are required when a symbolic, rather than a numeric, algorithm is used to compute the optimal cascade state. Both first and second order approximations were implemented. The first order solution was found to be grossly incorrect, having the wrong functional form over the entire domain. On the other hand, the second order solution shows excellent agreement with the 'true' solution over the domain of interest. An implementation of the symbolic, second order solver is available in the free and open source PyNE library. (authors)

  19. On the relationships between Michaelis–Menten kinetics, reverse Michaelis–Menten kinetics, Equilibrium Chemistry Approximation kinetics and quadratic kinetics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tang, J. Y.

    2015-09-03

    The Michaelis–Menten kinetics and the reverse Michaelis–Menten kinetics are two popular mathematical formulations used in many land biogeochemical models to describe how microbes and plants would respond to changes in substrate abundance. However, the criteria of when to use which of the two are often ambiguous. Here I show that these two kinetics are special approximations to the Equilibrium Chemistry Approximation kinetics, which is the first order approximation to the quadratic kinetics that solves the equation of enzyme-substrate complex exactly for a single enzyme single substrate biogeochemical reaction with the law of mass action and the assumption of quasi-steady-state formore » the enzyme-substrate complex and that the product genesis from enzyme-substrate complex is much slower than the equilibration between enzyme-substrate complexes, substrates and enzymes. In particular, I showed that the derivation of the Michaelis–Menten kinetics does not consider the mass balance constraint of the substrate, and the reverse Michaelis–Menten kinetics does not consider the mass balance constraint of the enzyme, whereas both of these constraints are taken into account in the Equilibrium Chemistry Approximation kinetics. By benchmarking against predictions from the quadratic kinetics for a wide range of substrate and enzyme concentrations, the Michaelis–Menten kinetics was found to persistently under-predict the normalized sensitivity ∂ ln v / ∂ ln k2+ of the reaction velocity v with respect to the maximum product genesis rate k2+, persistently over-predict the normalized sensitivity ∂ ln v / ∂ ln k1+ of v with respect to the intrinsic substrate affinity k1+, persistently over-predict the normalized sensitivity ∂ ln v / ∂ ln [ E ]T of v with respect the total enzyme concentration [ E ]T and persistently under-predict the normalized sensitivity ∂ ln v / ∂ ln [ S ]T of v with respect to the total substrate concentration [ S ]T. Meanwhile, the

  20. Ultrasonic ranging and data telemetry system

    DOE Patents [OSTI]

    Brashear, Hugh R.; Blair, Michael S.; Phelps, James E.; Bauer, Martin L.; Nowlin, Charles H.

    1990-01-01

    An ultrasonic ranging and data telemetry system determines a surveyor's position and automatically links it with other simultaneously taken survey data. An ultrasonic and radio frequency (rf) transmitter are carried by the surveyor in a backpack. The surveyor's position is determined by calculations that use the measured transmission times of an airborne ultrasonic pulse transmitted from the backpack to two or more prepositioned ultrasonic transceivers. Once a second, rf communications are used both to synchronize the ultrasonic pulse transmission-time measurements and to transmit other simultaneously taken survey data. The rf communications are interpreted by a portable receiver and microcomputer which are brought to the property site. A video display attached to the computer provides real-time visual monitoring of the survey progress and site coverage.

  1. Ultra High Mass Range Mass Spectrometer System

    DOE Patents [OSTI]

    Reilly, Peter T. A. [Knoxville, TN

    2005-12-06

    Applicant's present invention comprises mass spectrometer systems that operate in a mass range from 1 to 10.sup.16 DA. The mass spectrometer system comprising an inlet system comprising an aerodynamic lens system, a reverse jet being a gas flux generated in an annulus moving in a reverse direction and a multipole ion guide; a digital ion trap; and a thermal vaporization/ionization detector system. Applicant's present invention further comprises a quadrupole mass spectrometer system comprising an inlet system having a quadrupole mass filter and a thermal vaporization/ionization detector system. Applicant's present invention further comprises an inlet system for use with a mass spectrometer system, a method for slowing energetic particles using an inlet system. Applicant's present invention also comprises a detector device and a method for detecting high mass charged particles.

  2. Scannerless loss modulated flash color range imaging

    DOE Patents [OSTI]

    Sandusky, John V.; Pitts, Todd Alan

    2008-09-02

    Scannerless loss modulated flash color range imaging methods and apparatus are disclosed for producing three dimensional (3D) images of a target within a scene. Apparatus and methods according to the present invention comprise a light source providing at least three wavelengths (passbands) of illumination that are each loss modulated, phase delayed and simultaneously directed to illuminate the target. Phase delayed light backscattered from the target is spectrally filtered, demodulated and imaged by a planar detector array. Images of the intensity distributions for the selected wavelengths are obtained under modulated and unmodulated (dc) illumination of the target, and the information contained in the images combined to produce a 3D image of the target.

  3. Scannerless loss modulated flash color range imaging

    DOE Patents [OSTI]

    Sandusky, John V.; Pitts, Todd Alan

    2009-02-24

    Scannerless loss modulated flash color range imaging methods and apparatus are disclosed for producing three dimensional (3D) images of a target within a scene. Apparatus and methods according to the present invention comprise a light source providing at least three wavelengths (passbands) of illumination that are each loss modulated, phase delayed and simultaneously directed to illuminate the target. Phase delayed light backscattered from the target is spectrally filtered, demodulated and imaged by a planar detector array. Images of the intensity distributions for the selected wavelengths are obtained under modulated and unmodulated (dc) illumination of the target, and the information contained in the images combined to produce a 3D image of the target.

  4. Fe-based long range ordered alloys

    DOE Patents [OSTI]

    Liu, Chain T; Inouye, Henry; Schaffhauser, Anthony C.

    1980-01-01

    Malleable long range ordered alloys having high critical ordering temperatures exist in the V(Co,Fe).sub.3 and V(Co,Fe,Ni).sub.3 system having the composition comprising by weight 22-23% V, 35-50% Fe, 0-22% Co and 19-40% Ni with an electron density no greater than 8.00. Excellent high temperature properties occur in alloys having compositions comprising by weight 22-23% V, 35-45% Fe, 0-10% Co, 25-35% Ni; 22-23% V, 28-33% Ni and the remainder Fe; and 22-23% V, 19-22% Ni, 19-22% Co and the remainder Fe. The alloys are fabricable by casting, deforming and annealing for sufficient time to provide ordered structure.

  5. Fe-based long range ordered alloys

    DOE Patents [OSTI]

    Liu, C.T.

    Malleable long range ordered alloys with high critical ordering temperatures exist in the V(Co,Fe)/sub 3/ and V(Co,Fe,Ni)/sub 3/ system. The composition comprising by weight 22 to 23% V, 35 to 50% Fe, 0 to 22% Co and 19 to 40% Ni with an electron density no greater than 8.00. Excellent high temperature properties occur in alloys having compositions comprising by weight 22 to 23% V, 35 to 45% Fe, 0 to 10% Co, 25 to 35% Ni; 22 to 23% V, 28 to 33% Ni and the remainder Fe; and 22 to 23% V, 19 to 22% Co and the remainder Fe. The alloys are fabricable by casting, deforming and annealing for sufficient time to provide ordered structure.

  6. Exploring the Limits of the Dipole Approximation with Angle-Resolved Electron Time-of-Flight Spectrometry

    SciTech Connect (OSTI)

    Laidman, S.; Pangilinan, J.; Guillemin, R.; Yu, S.U.; Ohrwall, G.; Lindle, D.; Hemmers, O.

    2002-01-01

    Understanding the electronic structure of atoms and molecules is fundamental in determining their basic properties as well as the interactions that occur with different particles such as light. One such interaction is single photoionization; a process in which a photon collides with an atom or molecule and an electron with a certain kinetic energy is emitted, leaving behind a residual ion. Theoretical models of electronic structures use the dipole approximation to simplify x-ray interactions by assuming that the electromagnetic field of the radiation, expressed as a Taylor-series expansion, can be simplified by using only the first term. It has been known for some time that the dipole approximation becomes inaccurate at high photon energies, but the threshold at which this discrepancy begins is ambiguous. In order to enhance our understanding of these limitations, we measured the electron emissions of nitrogen. Beamline 8.0.1 at the Advanced Light Source was used with an electron Time-of-Flight (TOF) end station, which measures the time required for electrons emitted to travel a fixed distance. Data were collected over a broad range of photon energies (413 - 664 eV) using five analyzers rotated to 15 chamber angles. Preliminary analysis indicates that these results confirm the breakdown of the dipole approximation at photon energies well below 1 keV and that this breakdown is greatly enhanced in molecules just above the core-level ionization threshold. As a result, new theoretical models must be made that use higher order terms that were previously truncated.

  7. Insight into organic reactions from the direct random phase approximation and its corrections

    SciTech Connect (OSTI)

    Ruzsinszky, Adrienn; Zhang, Igor Ying; Scheffler, Matthias

    2015-10-14

    The performance of the random phase approximation (RPA) and beyond-RPA approximations for the treatment of electron correlation is benchmarked on three different molecular test sets. The test sets are chosen to represent three typical sources of error which can contribute to the failure of most density functional approximations in chemical reactions. The first test set (atomization and n-homodesmotic reactions) offers a gradually increasing balance of error from the chemical environment. The second test set (Diels-Alder reaction cycloaddition = DARC) reflects more the effect of weak dispersion interactions in chemical reactions. Finally, the third test set (self-interaction error 11 = SIE11) represents reactions which are exposed to noticeable self-interaction errors. This work seeks to answer whether any one of the many-body approximations considered here successfully addresses all these challenges.

  8. Far-Field Approximation in the Generalized Geometry Holdup (GGH) Model

    SciTech Connect (OSTI)

    Oberer, R. B.; Gunn, C. A.; Chiang, L.G.

    2006-09-07

    Quantitative gamma spectrometry measurements of uranium frequently require corrections for attenuation by an equipment or container layer and by the uranium bearing material itself. It is common to correct for attenuation using the ''far-field approximation''. Under this approximation, the minimum thickness of equipment or material is used for the correction rather than an average thickness over the detector field-of-view. In reality this aspect of the far-field approximation is really a narrow field-of-view approximation. The price of this simplification is the introduction of a bias. This bias will be investigated in this paper. In addition, there is a distance dependence of the radial response of a detector. This dependence will also be investigated.

  9. Diffusion approximations to the chemical master equation only have a consistent stochastic thermodynamics at chemical equilibrium

    SciTech Connect (OSTI)

    Horowitz, Jordan M.

    2015-07-28

    The stochastic thermodynamics of a dilute, well-stirred mixture of chemically reacting species is built on the stochastic trajectories of reaction events obtained from the chemical master equation. However, when the molecular populations are large, the discrete chemical master equation can be approximated with a continuous diffusion process, like the chemical Langevin equation or low noise approximation. In this paper, we investigate to what extent these diffusion approximations inherit the stochastic thermodynamics of the chemical master equation. We find that a stochastic-thermodynamic description is only valid at a detailed-balanced, equilibrium steady state. Away from equilibrium, where there is no consistent stochastic thermodynamics, we show that one can still use the diffusive solutions to approximate the underlying thermodynamics of the chemical master equation.

  10. DOE Seeks to Invest Approximately $1.3 Billion to Commercialize CCS

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology | Department of Energy Approximately $1.3 Billion to Commercialize CCS Technology DOE Seeks to Invest Approximately $1.3 Billion to Commercialize CCS Technology June 24, 2008 - 2:15pm Addthis Funding Opportunity Announcement Solicits Applications for Restructured FutureGen Program WASHINGTON, DC - The U.S. Department of Energy (DOE) today issued a Funding Opportunity Announcement (FOA) to invest in multiple commercial-scale Integrated Gasification Combined Cycle (IGCC) or other

  11. Tonopah Test Range Post-Closure Inspection Annual Report, Tonopah Test Range, Nevada, Calendar Year 2003

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Bechtel Nevada

    2004-04-01

    This post-closure inspection report provides documentation of the semiannual inspection activities, maintenance and repair activities, and conclusions and recommendations for calendar year 2003 for eight corrective action units located on the Tonopah Test Range, Nevada.

  12. Short range, ultra-wideband radar with high resolution swept range gate

    DOE Patents [OSTI]

    McEwan, Thomas E.

    1998-05-26

    A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with a typical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna, so a background subtraction is not needed, simplifying the circuitry while improving performance. Uses of the invention include a replacement of ultrasound devices for fluid level sensing, automotive radar, such as cruise control and parking assistance, hidden object location, such as stud and rebar finding. Also, this technology can be used when positioned over a highway lane to collect vehicle count and speed data for traffic control.

  13. Short range, ultra-wideband radar with high resolution swept range gate

    DOE Patents [OSTI]

    McEwan, T.E.

    1998-05-26

    A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with a typical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna, so a background subtraction is not needed, simplifying the circuitry while improving performance. Uses of the invention include a replacement of ultrasound devices for fluid level sensing, automotive radar, such as cruise control and parking assistance, hidden object location, such as stud and rebar finding. Also, this technology can be used when positioned over a highway lane to collect vehicle count and speed data for traffic control. 14 figs.

  14. Analytical and computational study of the ideal full two-fluid plasma model and asymptotic approximations for Hall-magnetohydrodynamics

    SciTech Connect (OSTI)

    Srinivasan, B.; Shumlak, U.

    2011-09-15

    The 5-moment two-fluid plasma model uses Euler equations to describe the ion and electron fluids and Maxwell's equations to describe the electric and magnetic fields. Two-fluid physics becomes significant when the characteristic spatial scales are on the order of the ion skin depth and characteristic time scales are on the order of the ion cyclotron period. The full two-fluid plasma model has disparate characteristic speeds ranging from the ion and electron speeds of sound to the speed of light. Two asymptotic approximations are applied to the full two-fluid plasma to arrive at the Hall-MHD model, namely negligible electron inertia and infinite speed of light. The full two-fluid plasma model and the Hall-MHD model are studied for applications to an electromagnetic plasma shock, geospace environmental modeling (GEM challenge) magnetic reconnection, an axisymmetric Z-pinch, and an axisymmetric field reversed configuration (FRC).

  15. Neutrinoless double-{beta} decay of deformed nuclei within quasiparticle random-phase approximation with a realistic interaction

    SciTech Connect (OSTI)

    Fang Dongliang; Faessler, Amand; Rodin, Vadim; Simkovic, Fedor [Institut fuer Theoretische Physik, Universitaet Tuebingen, D-72076 Tuebingen (Germany); BLTP, JINR, Dubna (Russian Federation) and Department of Nuclear Physics, Comenius University, SK-842 15 Bratislava (Slovakia)

    2011-03-15

    In this paper a microscopic approach to calculation of the nuclear matrix element M{sup 0{nu}} for neutrinoless double-{beta} decay with an account for nuclear deformation is presented in length and applied for {sup 76}Ge, {sup 150}Nd, and {sup 160}Gd. The proton-neutron quasiparticle random-phase approximation with a realistic residual interaction (the Brueckner G matrix derived from the charge-depending Bonn nucleon-nucleon potential) is used as the underlying nuclear structure model. The effects of the short-range correlations and the quenching of the axial vector coupling constant g{sub A} are analyzed. The results suggest that neutrinoless double-{beta} decay of {sup 150}Nd, to be measured soon by the SNO+ Collaboration, may provide one of the best probes of the Majorana neutrino mass. This confirms our preliminary conclusion in Fang et al. [Phys. Rev. C 82, 051301(R) (2010)].

  16. An efficient implementation of the Chebyshev Rational Approximation Method (CRAM) for solving the burnup equations

    SciTech Connect (OSTI)

    Pusa, M.; Leppaenen, J.

    2012-07-01

    The Chebyshev Rational Approximation Method (CRAM) has been recently introduced by the authors for solving the burnup equations with excellent results. This method has been shown to be capable of simultaneously solving an entire burnup system with thousands of nuclides both accurately and efficiently. The method was prompted by an analysis of the spectral properties of burnup matrices and it can be characterized as the best rational approximation on the negative real axis. The coefficients of the rational approximation are fixed and have been reported for various approximation orders. In addition to these coefficients, implementing the method only requires a linear solver. This paper describes an efficient method for solving the linear systems associated with the CRAM approximation. The introduced direct method is based on sparse Gaussian elimination where the sparsity pattern of the resulting upper triangular matrix is determined before the numerical elimination phase. The stability of the proposed Gaussian elimination method is discussed based on considering the numerical properties of burnup matrices. Suitable algorithms are presented for computing the symbolic factorization and numerical elimination in order to facilitate the implementation of CRAM and its adoption into routine use. The accuracy and efficiency of the described technique are demonstrated by computing the CRAM approximations for a large test case with over 1600 nuclides. (authors)

  17. Two-dimensional DORT discrete ordinates X-Y geometry neutron flux calculations for the Halden Heavy Boiling Water Reactor core configurations

    SciTech Connect (OSTI)

    Slater, C.O.

    1990-07-01

    Results are reported for two-dimensional discrete ordinates, X-Y geometry calculations performed for seven Halden Heavy Boiling Water Reactor core configurations. The calculations were performed in support of an effort to reassess the neutron fluence received by the reactor vessel. Nickel foil measurement data indicated considerable underprediction of fluences by the previously used multigroup removal- diffusion method. Therefore, calculations by a more accurate method were deemed appropriate. For each core configuration, data are presented for (1) integral fluxes in the core and near the vessel wall, (2) neutron spectra at selected locations, (3) isoflux contours superimposed on the geometry models, (4) plots of the geometry models, and (5) input for the calculations. The initial calculations were performed with several mesh sizes. Comparisons of the results from these calculations indicated that the uncertainty in the calculated fluxes should be less than 10%. However, three-dimensional effects (such as axial asymmetry in the fuel loading) could contribute to much greater uncertainty in the calculated neutron fluxes. 7 refs., 22 figs., 11 tabs.

  18. Technology, safety and costs of decommissioning a reference boiling water reactor power station: Technical support for decommissioning matters related to preparation of the final decommissioning rule

    SciTech Connect (OSTI)

    Konzek, G.J.; Smith, R.I.

    1988-07-01

    Preparation of the final Decommissioning Rule by the Nuclear Regulatory Commission (NRC) staff has been assisted by Pacific Northwest Laboratory (PNL) staff familiar with decommissioning matters. These efforts have included updating previous cost estimates developed during the series of studies of conceptually decommissioning reference licensed nuclear facilities for inclusion in the Final Generic Environmental Impact Statement (FGEIS) on decommissioning; documenting the cost updates; evaluating the cost and dose impacts of post-TMI-2 backfits on decommissioning; developing a revised scaling formula for estimating decommissioning costs for reactor plants different in size from the reference boiling water reactor (BWR) described in the earlier study; and defining a formula for adjusting current cost estimates to reflect future escalation in labor, materials, and waste disposal costs. This report presents the results of recent PNL studies to provide supporting information in three areas concerning decommissioning of the reference BWR: updating the previous cost estimates to January 1986 dollars; assessing the cost and dose impacts of post-TMI-2 backfits; and developing a scaling formula for plants different in size than the reference plant and an escalation formula for adjusting current cost estimates for future escalation.

  19. Technology, safety and costs of decommissioning a reference boiling water reactor power station: Comparison of two decommissioning cost estimates developed for the same commercial nuclear reactor power station

    SciTech Connect (OSTI)

    Konzek, G.J.; Smith, R.I. )

    1990-12-01

    This study presents the results of a comparison of a previous decommissioning cost study by Pacific Northwest Laboratory (PNL) and a recent decommissioning cost study of TLG Engineering, Inc., for the same commercial nuclear power reactor station. The purpose of this comparative analysis on the same plant is to determine the reasons why subsequent estimates for similar plants by others were significantly higher in cost and external occupational radiation exposure (ORE) than the PNL study. The primary purpose of the original study by PNL (NUREG/CR-0672) was to provide information on the available technology, the safety considerations, and the probable costs and ORE for the decommissioning of a large boiling water reactor (BWR) power station at the end of its operating life. This information was intended for use as background data and bases in the modification of existing regulations and in the development of new regulations pertaining to decommissioning activities. It was also intended for use by utilities in planning for the decommissioning of their nuclear power stations. The TLG study, initiated in 1987 and completed in 1989, was for the same plant, Washington Public Supply System's Unit 2 (WNP-2), that PNL used as its reference plant in its 1980 decommissioning study. Areas of agreement and disagreement are identified, and reasons for the areas of disagreement are discussed. 31 refs., 3 figs., 22 tabs.

  20. Basin-Range Tectonics in the Darwin Plateau Southwestern Great...

    Open Energy Info (EERE)

    also indicate that the maximum compressive and intermediate stresses in the latest stress regime have been approximately equal in magnitude. Paleomagnetic data do not indicate...

  1. Secure distance ranging by electronic means

    DOE Patents [OSTI]

    Gritton, Dale G.

    1992-01-01

    A system for secure distance ranging between a reader 11 and a tag 12 wherein the distance between the two is determined by the time it takes to propagate a signal from the reader to the tag and for a responsive signal to return, and in which such time is random and unpredictable, except to the reader, even though the distance between the reader and tag remains the same. A random number (19) is sent from the reader and encrypted (26) by the tag into a number having 16 segments of 4 bits each (28). A first tag signal (31) is sent after such encryption. In response, a random width start pulse (13) is generated by the reader. When received in the tag, the width of the start pulse is measured (41) in the tag and a segment of the encrypted number is selected (42) in accordance with such width. A second tag pulse is generated at a time T after the start pulse arrives at the tag, the time T being dependent on the length of a variable time delay t.sub.v which is determined by the value of the bits in the selected segment of the encrypted number. At the reader, the total time from the beginning of the start pulse to the receipt of the second tag signal is measured (36, 37). The value of t.sub.v (21, 22, 23, 34) is known at the reader and the time T is subtracted (46) from the total time to find the actual propagation t.sub.p for signals to travel between the reader 11 and tag 12. The propagation time is then converted into distance (46).

  2. Gaussian approximations for stochastic systems with delay: Chemical Langevin equation and application to a Brusselator system

    SciTech Connect (OSTI)

    Brett, Tobias Galla, Tobias

    2014-03-28

    We present a heuristic derivation of Gaussian approximations for stochastic chemical reaction systems with distributed delay. In particular, we derive the corresponding chemical Langevin equation. Due to the non-Markovian character of the underlying dynamics, these equations are integro-differential equations, and the noise in the Gaussian approximation is coloured. Following on from the chemical Langevin equation, a further reduction leads to the linear-noise approximation. We apply the formalism to a delay variant of the celebrated Brusselator model, and show how it can be used to characterise noise-driven quasi-cycles, as well as noise-triggered spiking. We find surprisingly intricate dependence of the typical frequency of quasi-cycles on the delay period.

  3. Improved master equation approach to quantum transport: From Born to self-consistent Born approximation

    SciTech Connect (OSTI)

    Jin, Jinshuang; Li, Jun; Liu, Yu; Li, Xin-Qi; Yan, YiJing

    2014-06-28

    Beyond the second-order Born approximation, we propose an improved master equation approach to quantum transport under self-consistent Born approximation. The basic idea is to replace the free Green's function in the tunneling self-energy diagram by an effective reduced propagator under the Born approximation. This simple modification has remarkable consequences. It not only recovers the exact results for quantum transport through noninteracting systems under arbitrary voltages, but also predicts the challenging nonequilibrium Kondo effect. Compared to the nonequilibrium Green's function technique that formulates the calculation of specific correlation functions, the master equation approach contains richer dynamical information to allow more efficient studies for such as the shot noise and full counting statistics.

  4. Simulating higher-dimensional geometries in GADRAS using approximate one-dimensional solutions.

    SciTech Connect (OSTI)

    Thoreson, Gregory G.; Mitchell, Dean James; Harding, Lee T.

    2013-02-01

    The Gamma Detector Response and Analysis Software (GADRAS) software package is capable of simulating the radiation transport physics for one-dimensional models. Spherical shells are naturally one-dimensional, and have been the focus of development and benchmarking. However, some objects are not spherical in shape, such as cylinders and boxes. These are not one-dimensional. Simulating the radiation transport in two or three dimensions is unattractive because of the extra computation time required. To maintain computational efficiency, higher-dimensional geometries require approximations to simulate them in one-dimension. This report summarizes the theory behind these approximations, tests the theory against other simulations, and compares the results to experimental data. Based on the results, it is recommended that GADRAS users always attempt to approximate reality using spherical shells. However, if fissile material is present, it is imperative that the shape of the one-dimensional model matches the fissile material, including the use of slab and cylinder geometry.

  5. Relativistic equation of state at subnuclear densities in the Thomas-Fermi approximation

    SciTech Connect (OSTI)

    Zhang, Z. W.; Shen, H., E-mail: shennankai@gmail.com [School of Physics, Nankai University, Tianjin 300071 (China)

    2014-06-20

    We study the non-uniform nuclear matter using the self-consistent Thomas-Fermi approximation with a relativistic mean-field model. The non-uniform matter is assumed to be composed of a lattice of heavy nuclei surrounded by dripped nucleons. At each temperature T, proton fraction Y{sub p} , and baryon mass density ? {sub B}, we determine the thermodynamically favored state by minimizing the free energy with respect to the radius of the Wigner-Seitz cell, while the nucleon distribution in the cell can be determined self-consistently in the Thomas-Fermi approximation. A detailed comparison is made between the present results and previous calculations in the Thomas-Fermi approximation with a parameterized nucleon distribution that has been adopted in the widely used Shen equation of state.

  6. Aggregation of heteropolyanions in aqueous solutions exhibiting short-range attractions and long-range repulsions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bera, Mrinal K.; Qiao, Baofu; Seifert, Soenke; Burton-Pye, Benjamin P.; Monica Olvera de la Cruz; Antonio, Mark R.

    2015-12-15

    Charged colloids and proteins in aqueous solutions interact via short-range attractions and long-range repulsions (SALR) and exhibit complex structural phases. These include homogeneously dispersed monomers, percolated monomers, clusters, and percolated clusters. We report the structural architectures of simple charged systems in the form of spherical, Keggin-type heteropolyanions (HPAs) by small-angle X-ray scattering (SAXS) and molecular dynamics (MD) simulations. Structure factors obtained from the SAXS measurements show that the HPAs interact via SALR. Concentration and temperature dependences of the structure factors for HPAs with –3e (e is the charge of an electron) charge are consistent with a mixture of nonassociated monomersmore » and associated randomly percolated monomers, whereas those for HPAs with –4e and –5e charges exhibit only nonassociated monomers in aqueous solutions. Our experiments show that the increase in magnitude of the charge of the HPAs increases their repulsive interactions and inhibits their aggregation in aqueous solutions. MD simulations were done to reveal the atomistic scale origins of SALR between HPAs. As a result, the short-range attractions result from water or proton-mediated hydrogen bonds between neighboring HPAs, whereas the long-range repulsions are due to the distributions of ions surrounding the HPAs.« less

  7. Approximate local magnetic-to-electric surface operators for time-harmonic Maxwell's equations

    SciTech Connect (OSTI)

    El Bouajaji, M.

    2014-12-15

    The aim of this paper is to propose new local and accurate approximate magnetic-to-electric surface boundary operators for the three-dimensional time-harmonic Maxwell's equations. After their construction where their accuracy is improved through a regularization process, a localization of these operators and a full finite element approximation is introduced. Next, their numerical efficiency and accuracy is investigated in detail for different scatterers when these operators are used in the extreme situation of On-Surface Radiation Conditions methods.

  8. Numerical integration for ab initio many-electron self energy calculations within the GW approximation

    SciTech Connect (OSTI)

    Liu, Fang; Lin, Lin; Vigil-Fowler, Derek; Lischner, Johannes; Kemper, Alexander F.; Sharifzadeh, Sahar; Jornada, Felipe H. da; Deslippe, Jack; Yang, Chao; and others

    2015-04-01

    We present a numerical integration scheme for evaluating the convolution of a Green's function with a screened Coulomb potential on the real axis in the GW approximation of the self energy. Our scheme takes the zero broadening limit in Green's function first, replaces the numerator of the integrand with a piecewise polynomial approximation, and performs principal value integration on subintervals analytically. We give the error bound of our numerical integration scheme and show by numerical examples that it is more reliable and accurate than the standard quadrature rules such as the composite trapezoidal rule. We also discuss the benefit of using different self energy expressions to perform the numerical convolution at different frequencies.

  9. Cross sections for electron scattering by propane in the low- and intermediate-energy ranges

    SciTech Connect (OSTI)

    Souza, G. L. C. de; Lee, M.-T.; Sanches, I. P.; Rawat, P.; Iga, I.; Santos, A. S. dos; Machado, L. E.; Sugohara, R. T.; Brescansin, L. M.; Homem, M. G. P.; Lucchese, R. R.

    2010-07-15

    We present a joint theoretical-experimental study on electron scattering by propane (C{sub 3}H{sub 8}) in the low- and intermediate-energy ranges. Calculated elastic differential, integral, and momentum transfer as well as total (elastic + inelastic) and total absorption cross sections are reported for impact energies ranging from 2 to 500 eV. Also, experimental absolute elastic cross sections are reported in the 40- to 500-eV energy range. A complex optical potential is used to represent the electron-molecule interaction dynamics. A theoretical method based on the single-center-expansion close-coupling framework and corrected by the Pade approximant is used to solve the scattering equations. The experimental angular distributions of the scattered electrons are converted to absolute cross sections using the relative flow technique. The comparison of our calculated with our measured results, as well as with other experimental and theoretical data available in the literature, is encouraging.

  10. Light Water Reactor Sustainability Program Support and Modeling for the Boiling Water Reactor Station Black Out Case Study Using RELAP and RAVEN

    SciTech Connect (OSTI)

    Diego Mandelli; Curtis Smith; Thomas Riley; John Schroeder; Cristian Rabiti; Aldrea Alfonsi; Joe Nielsen; Dan Maljovec; Bie Wang; Valerio Pascucci

    2013-09-01

    The existing fleet of nuclear power plants is in the process of extending its lifetime and increasing the power generated. In order to evaluate the impact of these two factors on the safety of the plant, the Risk Informed Safety Margin Characterization (RISMC) project aims to provide insight to decision makers through a series of simulations of the plant dynamics for different initial conditions (e.g., probabilistic analysis and uncertainty quantification). This report focuses, in particular, on the impact of power uprate on the safety of a boiled water reactor system. The case study considered is a loss of off-site power followed by the loss of diesel generators, i.e., a station black out (SBO) event. Analysis is performed by using a thermo-hydraulic code, i.e. RELAP-5, and a stochastic analysis tool currently under development at INL, i.e. RAVEN. Starting from the event tree models contained in SAPHIRE, we built the input file for RELAP-5 that models in great detail system dynamics under SBO conditions. We also interfaced RAVEN with RELAP-5 so that it would be possible to run multiple RELAP-5 simulation runs by changing specific keywords of the input file. We both employed classical statistical tools, i.e. Monte-Carlo, and more advanced machine learning based algorithms to perform uncertainty quantification in order to quantify changes in system performance and limitations as a consequence of power uprate. We also employed advanced data analysis and visualization tools that helped us to correlate simulation outcome such as maximum core temperature with a set of input uncertain parameters. Results obtained gave a detailed overview of the issues associated to power uprate for a SBO accident scenario. We were able to quantify how timing of safety related events were impacted by a higher reactor core power. Such insights can provide useful material to the decision makers to perform risk-infomed safety margins management.

  11. Hydrogen atom excitation in intense attosecond laser field: Gauge dependence of dipole approximation

    SciTech Connect (OSTI)

    Aldarmaa, Ch. E-mail: l-xemee@yahoo.com; Khenmedekh, L. E-mail: l-xemee@yahoo.com; Lkhagva, O.

    2014-03-24

    It is assumed that, the atomic excitations probability can be calculated using first order perturbation theory and dipole approximations. The validity of the dipole approximations had been examined by comparing the results with the results obtained by exact calculations within the first order perturbation theory[2]. Figure 1 shows the time dependence of the transition probability in the dipole approximation. From these plots it is obvious that, the probabilities obtained in the length gauge are higher than that in the velocity gauge, in the interaction period (??/2approximation) calculations results. (Figure 2) Though the time evolution of the same transition probabilities are different for these cases, the final results are the same for all three cases, excluding the 6s-6p{sub 0} transition. For the later case, only the length gauge give a false results, but the velocity gauge give the same result as the exact one, for the final value of the transition probability.

  12. A new class of ensemble conserving algorithms for approximate quantum dynamics: Theoretical formulation and model problems

    SciTech Connect (OSTI)

    Smith, Kyle K. G.; Poulsen, Jens Aage Nyman, Gunnar; Rossky, Peter J.

    2015-06-28

    We develop two classes of quasi-classical dynamics that are shown to conserve the initial quantum ensemble when used in combination with the Feynman-Kleinert approximation of the density operator. These dynamics are used to improve the Feynman-Kleinert implementation of the classical Wigner approximation for the evaluation of quantum time correlation functions known as Feynman-Kleinert linearized path-integral. As shown, both classes of dynamics are able to recover the exact classical and high temperature limits of the quantum time correlation function, while a subset is able to recover the exact harmonic limit. A comparison of the approximate quantum time correlation functions obtained from both classes of dynamics is made with the exact results for the challenging model problems of the quartic and double-well potentials. It is found that these dynamics provide a great improvement over the classical Wigner approximation, in which purely classical dynamics are used. In a special case, our first method becomes identical to centroid molecular dynamics.

  13. A New 2D-Transport, 1D-Diffusion Approximation of the Boltzmann Transport equation

    SciTech Connect (OSTI)

    Larsen, Edward

    2013-06-17

    The work performed in this project consisted of the derivation, implementation, and testing of a new, computationally advantageous approximation to the 3D Boltz- mann transport equation. The solution of the Boltzmann equation is the neutron flux in nuclear reactor cores and shields, but solving this equation is difficult and costly. The new “2D/1D” approximation takes advantage of a special geometric feature of typical 3D reactors to approximate the neutron transport physics in a specific (ax- ial) direction, but not in the other two (radial) directions. The resulting equation is much less expensive to solve computationally, and its solutions are expected to be sufficiently accurate for many practical problems. In this project we formulated the new equation, discretized it using standard methods, developed a stable itera- tion scheme for solving the equation, implemented the new numerical scheme in the MPACT code, and tested the method on several realistic problems. All the hoped- for features of this new approximation were seen. For large, difficult problems, the resulting 2D/1D solution is highly accurate, and is calculated about 100 times faster than a 3D discrete ordinates simulation.

  14. Numerical approximation of the Schrdinger equation with the electromagnetic field by the Hagedorn wave packets

    SciTech Connect (OSTI)

    Zhou, Zhennan

    2014-09-01

    In this paper, we approximate the semi-classical Schrdinger equation in the presence of electromagnetic field by the Hagedorn wave packets approach. By operator splitting, the Hamiltonian is divided into the modified part and the residual part. The modified Hamiltonian, which is the main new idea of this paper, is chosen by the fact that Hagedorn wave packets are localized both in space and momentum so that a crucial correction term is added to the truncated Hamiltonian, and is treated by evolving the parameters associated with the Hagedorn wave packets. The residual part is treated by a Galerkin approximation. We prove that, with the modified Hamiltonian only, the Hagedorn wave packets dynamics give the asymptotic solution with error O(?{sup 1/2}), where ? is the scaled Planck constant. We also prove that, the Galerkin approximation for the residual Hamiltonian can reduce the approximation error to O(?{sup k/2}), where k depends on the number of Hagedorn wave packets added to the dynamics. This approach is easy to implement, and can be naturally extended to the multidimensional cases. Unlike the high order Gaussian beam method, in which the non-constant cut-off function is necessary and some extra error is introduced, the Hagedorn wave packets approach gives a practical way to improve accuracy even when ? is not very small.

  15. Range-gated field disturbance sensor with range-sensitivity compensation

    DOE Patents [OSTI]

    McEwan, T.E.

    1996-05-28

    A field disturbance sensor operates with relatively low power, provides an adjustable operating range, is not hypersensitive at close range, allows co-location of multiple sensors, and is inexpensive to manufacture. The sensor includes a transmitter that transmits a sequence of transmitted bursts of electromagnetic energy. The transmitter frequency is modulated at an intermediate frequency. The sequence of bursts has a burst repetition rate, and each burst has a burst width and comprises a number of cycles at a transmitter frequency. The sensor includes a receiver which receives electromagnetic energy at the transmitter frequency, and includes a mixer which mixes a transmitted burst with reflections of the same transmitted burst to produce an intermediate frequency signal. Circuitry, responsive to the intermediate frequency signal indicates disturbances in the sensor field. Because the mixer mixes the transmitted burst with reflections of the transmitted burst, the burst width defines the sensor range. The burst repetition rate is randomly or pseudorandomly modulated so that bursts in the sequence of bursts have a phase which varies. 8 figs.

  16. Range-gated field disturbance sensor with range-sensitivity compensation

    DOE Patents [OSTI]

    McEwan, Thomas E.

    1996-01-01

    A field disturbance sensor operates with relatively low power, provides an adjustable operating range, is not hypersensitive at close range, allows co-location of multiple sensors, and is inexpensive to manufacture. The sensor includes a transmitter that transmits a sequence of transmitted bursts of electromagnetic energy. The transmitter frequency is modulated at an intermediate frequency. The sequence of bursts has a burst repetition rate, and each burst has a burst width and comprises a number of cycles at a transmitter frequency. The sensor includes a receiver which receives electromagnetic energy at the transmitter frequency, and includes a mixer which mixes a transmitted burst with reflections of the same transmitted burst to produce an intermediate frequency signal. Circuitry, responsive to the intermediate frequency signal indicates disturbances in the sensor field. Because the mixer mixes the transmitted burst with reflections of the transmitted burst, the burst width defines the sensor range. The burst repetition rate is randomly or pseudorandomly modulated so that bursts in the sequence of bursts have a phase which varies.

  17. Higher energy fast range nuclear data evaluation advances (u...

    Office of Scientific and Technical Information (OSTI)

    Higher energy fast range nuclear data evaluation advances (u) Citation Details In-Document Search Title: Higher energy fast range nuclear data evaluation advances (u) You are ...

  18. Higher energy fast range nuclear data evaluation advances (u...

    Office of Scientific and Technical Information (OSTI)

    Conference: Higher energy fast range nuclear data evaluation advances (u) Citation Details In-Document Search Title: Higher energy fast range nuclear data evaluation advances (u) ...

  19. Geographic Information System At Nw Basin & Range Region (Nash...

    Open Energy Info (EERE)

    Nw Basin & Range Region (Nash & Johnson, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Nw Basin & Range...

  20. Title Preactivity Survey Report for Five Tonopah Test Range Explosive...

    National Nuclear Security Administration (NNSA)

    Preactivity Survey Report for Five Tonopah Test Range Explosive Ordnance Disposal Sites ... PREACTIVITY AND RECLAMATION SURVEY REPORTS FOR FIVE TONOPAH TEST RANGE EXPLOSIVE ORDNANCE ...

  1. Monitoring Long-Range Electron Transfer Pathways in Proteins...

    Office of Scientific and Technical Information (OSTI)

    Published Article: Monitoring Long-Range Electron Transfer Pathways in Proteins by Stimulated Attosecond Broadband X-ray Raman Spectroscopy Title: Monitoring Long-Range Electron ...

  2. Nevada Test And Training Range Geothermal Area | Open Energy...

    Open Energy Info (EERE)

    Nevada Test And Training Range Geothermal Area (Redirected from Nevada Test And Training Range Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Nevada Test And...

  3. Nevada Test And Training Range Geothermal Area | Open Energy...

    Open Energy Info (EERE)

    Nevada Test And Training Range Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Nevada Test And Training Range Geothermal Area Contents 1 Area Overview...

  4. Fallon Test Ranges Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Test Ranges Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Fallon Test Ranges Geothermal Project Project Location Information...

  5. Northwest Basin and Range Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Basin and Range Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Northwest Basin and Range Geothermal Region Details Areas (51) Power Plants (10)...

  6. 2006 Long Range Development Plan Final Environmental ImpactReport

    SciTech Connect (OSTI)

    Philliber, Jeff

    2007-01-22

    This environmental impact report (EIR) has been prepared pursuant to the applicable provisions of the California Environmental Quality Act (CEQA) and its implementing guidelines (CEQA Guidelines), and the Amended University of California Procedures for Implementation of the California Environmental Quality Act (UC CEQA Procedures). The University of California (UC or the University) is the lead agency for this EIR, which examines the overall effects of implementation of the proposed 2006 Long Range Development Plan (LRDP; also referred to herein as the 'project' for purposes of CEQA) for Lawrence Berkeley National Laboratory (LBNL; also referred to as 'Berkeley Lab,' 'the Laboratory,' or 'the Lab' in this document). An LRDP is a land use plan that guides overall development of a site. The Lab serves as a special research campus operated by the University employees, but it is owned and financed by the federal government and as such it is distinct from the UC-owned Berkeley Campus. As a campus operated by the University of California, the Laboratory is required to prepare an EIR for an LRDP when one is prepared or updated pursuant to Public Resources Code Section 21080.09. The adoption of an LRDP does not constitute a commitment to, or final decision to implement, any specific project, construction schedule, or funding priority. Rather, the proposed 2006 LRDP describes an entire development program of approximately 980,000 gross square feet of new research and support space construction and 320,000 gross square feet of demolition of existing facilities, for a total of approximately 660,000 gross square feet of net new occupiable space for the site through 2025. Specific projects will undergo CEQA review at the time proposed to determine what, if any, additional review is necessary prior to approval. As described in Section 1.4.2, below, and in Chapter 3 of this EIR (the Project Description), the size of the project has been reduced since the Notice of Preparation for

  7. Short range smectic order driving long range nematic order: Example of cuprates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Markiewicz, R. S.; Lorenzana, J.; Seibold, G.; Bansil, A.

    2016-01-27

    We present a model for describing the combined presence of nematic and ‘smectic’ or stripe-like orders seen in recent scanning tunneling microscopy (STM) experiments on cuprates. The smectic order is treated as an electronic charge density wave with an associated Peierls distortion or a ‘Pomeranchuk wave’. This primary order is restricted to nanoscale domains by disorder effects, while the secondary coupling to strain generates the nematic order with a considerably longer range. Lastly, a variety of experimental results are shown to be consistent with our theoretical predictions.

  8. Wide tracking range, auto ranging, low jitter phase lock loop for swept and fixed frequency systems

    DOE Patents [OSTI]

    Kerner, Thomas M.

    2001-01-01

    The present invention provides a wide tracking range phase locked loop (PLL) circuit that achieves minimal jitter in a recovered clock signal, regardless of the source of the jitter (i.e. whether it is in the source or the transmission media). The present invention PLL has automatic harmonic lockout detection circuitry via a novel lock and seek control logic in electrical communication with a programmable frequency discriminator and a code balance detector. (The frequency discriminator enables preset of a frequency window of upper and lower frequency limits to derive a programmable range within which signal acquisition is effected. The discriminator works in combination with the code balance detector circuit to minimize the sensitivity of the PLL circuit to random data in the data stream). In addition, the combination of a differential loop integrator with the lock and seek control logic obviates a code preamble and guarantees signal acquisition without harmonic lockup. An adaptive cable equalizer is desirably used in combination with the present invention PLL to recover encoded transmissions containing a clock and/or data. The equalizer automatically adapts to equalize short haul cable lengths of coaxial and twisted pair cables or wires and provides superior jitter performance itself. The combination of the equalizer with the present invention PLL is desirable in that such combination permits the use of short haul wires without significant jitter.

  9. Relativistic quasiparticle time blocking approximation. II. Pygmy dipole resonance in neutron-rich nuclei

    SciTech Connect (OSTI)

    Litvinova, E.; Ring, P.; Tselyaev, V.; Langanke, K.

    2009-05-15

    Theoretical studies of low-lying dipole strength in even-even spherical nuclei within the relativistic quasiparticle time blocking approximation (RQTBA) are presented. The RQTBA developed recently as an extension of the self-consistent relativistic quasiparticle random-phase approximation (RQRPA) enables one to investigate the effects of the coupling of two-quasiparticle excitations to collective vibrations within a fully consistent calculation scheme based on covariant energy density functional theory. Dipole spectra of even-even {sup 130}Sn-{sup 140}Sn and {sup 68}Ni-{sup 78}Ni isotopes calculated within both RQRPA and RQTBA show two well-separated collective structures: the higher lying giant dipole resonance and the lower lying pygmy dipole resonance, which can be identified by the different behavior of the transition densities of states in these regions.

  10. Distributed approximating functional approach to the Fokker{endash}Planck equation: Eigenfunction expansion

    SciTech Connect (OSTI)

    Zhang, D.S.; Wei, G.W.; Kouri, D.J.; Hoffman, D.K.

    1997-03-01

    The distributed approximating functional method is applied to the solution of the Fokker{endash}Planck equations. The present approach is limited to the standard eigenfunction expansion method. Three typical examples, a Lorentz Fokker{endash}Planck equation, a bistable diffusion model and a Henon{endash}Heiles two-dimensional anharmonic resonating system, are considered in the present numerical testing. All results are in excellent agreement with those of established methods in the field. It is found that the distributed approximating functional method yields the accuracy of a spectral method but with a local method{close_quote}s simplicity and flexibility for the eigenvalue problems arising from the Fokker{endash}Planck equations. {copyright} {ital 1997 American Institute of Physics.}

  11. Generalized Fokker-Planck Approximations of Particle Transport with Highly Forward-Peaked Scattering

    SciTech Connect (OSTI)

    Leakeas, Christopher L.; Larsen, Edward W.

    2001-03-15

    The Fokker-Planck equation is often used to approximate the description of particle transport processes with highly forward-peaked scattering. Pomraning has shown that if the physical scattering kernel is sufficiently dominated by small-angle scattering, then the Fokker-Planck equation is an asymptotic approximation to the linear Boltzmann equation. However, most physically-meaningful scattering kernels contain a sufficient amount of large-angle scattering that the asymptotic criterion is not met. Thus, in many physical problems, solutions of the Fokker-Planck equation are substantially in error. In this paper, Pomraning's asymptotic results are generalized and a new generalized Fokker-Planck (GFP) theory that robustly incorporates large-angle scattering is developed. Numerical experiments demonstrate that the resulting GFP equations are much more accurate than the standard Fokker-Planck equation.

  12. Study of multiband disordered systems using the typical medium dynamical cluster approximation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Yi; Terletska, Hanna; Moore, C.; Ekuma, Chinedu; Tam, Ka-Ming; Berlijn, Tom; Ku, Wei; Moreno, Juana; Jarrell, Mark

    2015-11-06

    We generalize the typical medium dynamical cluster approximation to multiband disordered systems. Using our extended formalism, we perform a systematic study of the nonlocal correlation effects induced by disorder on the density of states and the mobility edge of the three-dimensional two-band Anderson model. We include interband and intraband hopping and an intraband disorder potential. Our results are consistent with those obtained by the transfer matrix and the kernel polynomial methods. We also apply the method to KxFe2-ySe2 with Fe vacancies. Despite the strong vacancy disorder and anisotropy, we find the material is not an Anderson insulator. Moreover our resultsmore » demonstrate the application of the typical medium dynamical cluster approximation method to study Anderson localization in real materials.« less

  13. Double-hybrid density-functional theory with meta-generalized-gradient approximations

    SciTech Connect (OSTI)

    Souvi, Sidi M. O. Sharkas, Kamal; Toulouse, Julien; CNRS, UMR 7616, Laboratoire de Chimie Thorique, F-75005 Paris

    2014-02-28

    We extend the previously proposed one-parameter double-hybrid density-functional theory [K. Sharkas, J. Toulouse, and A. Savin, J. Chem. Phys. 134, 064113 (2011)] to meta-generalized-gradient-approximation (meta-GGA) exchange-correlation density functionals. We construct several variants of one-parameter double-hybrid approximations using the Tao-Perdew-Staroverov-Scuseria (TPSS) meta-GGA functional and test them on test sets of atomization energies and reaction barrier heights. The most accurate variant uses the uniform coordinate scaling of the density and of the kinetic energy density in the correlation functional, and improves over both standard Kohn-Sham TPSS and second-order Mller-Plesset calculations.

  14. Study of multiband disordered systems using the typical medium dynamical cluster approximation

    SciTech Connect (OSTI)

    Zhang, Yi; Terletska, Hanna; Moore, C.; Ekuma, Chinedu; Tam, Ka-Ming; Berlijn, Tom; Ku, Wei; Moreno, Juana; Jarrell, Mark

    2015-11-06

    We generalize the typical medium dynamical cluster approximation to multiband disordered systems. Using our extended formalism, we perform a systematic study of the nonlocal correlation effects induced by disorder on the density of states and the mobility edge of the three-dimensional two-band Anderson model. We include interband and intraband hopping and an intraband disorder potential. Our results are consistent with those obtained by the transfer matrix and the kernel polynomial methods. We also apply the method to KxFe2-ySe2 with Fe vacancies. Despite the strong vacancy disorder and anisotropy, we find the material is not an Anderson insulator. Moreover our results demonstrate the application of the typical medium dynamical cluster approximation method to study Anderson localization in real materials.

  15. Two-component hybrid time-dependent density functional theory within the Tamm-Dancoff approximation

    SciTech Connect (OSTI)

    Khn, Michael; Weigend, Florian

    2015-01-21

    We report the implementation of a two-component variant of time-dependent density functional theory (TDDFT) for hybrid functionals that accounts for spin-orbit effects within the Tamm-Dancoff approximation (TDA) for closed-shell systems. The influence of the admixture of Hartree-Fock exchange on excitation energies is investigated for several atoms and diatomic molecules by comparison to numbers for pure density functionals obtained previously [M. Khn and F. Weigend, J. Chem. Theory Comput. 9, 5341 (2013)]. It is further related to changes upon switching to the local density approximation or using the full TDDFT formalism instead of TDA. Efficiency is demonstrated for a comparably large system, Ir(ppy){sub 3} (61 atoms, 1501 basis functions, lowest 10 excited states), which is a prototype molecule for organic light-emitting diodes, due to its spin-forbidden triplet-singlet transition.

  16. Development of Versatile Compressor Modeling using Approximation Techniques for Alternative Refrigerants Evaluation

    SciTech Connect (OSTI)

    Abdelaziz, Omar; Shrestha, Som S

    2014-01-01

    Refrigerants are the life-blood of vapor compression systems that are widely used in Heating, Ventilation, Air-Conditioning, and Refrigeration (HVAC&R) applications. The HVAC&R community is currently transitioning from main-stream refrigerants that have high Global Warming Potential (GWP) to alternative lower-GWP refrigerants. During this transition, it is important to account for the life cycle climate performance of alternative refrigerants since their performance will be different than that of higher-GWP refrigerants. This requires the evaluation of the system performance with the new refrigerants. Unfortunately, it is extremely difficult to predict the realistic performance of new alternative refrigerants without experimental validation. One of the main challenges in this regard is modeling the compressor performance with high fidelity due to the complex interaction of operating parameters, geometry, boundary conditions, and fluid properties. High fidelity compressor models are computationally expensive and require significant pre-processing to evaluate the performance of alternative refrigerants. This paper presents a new approach to modeling compressor performance when alternative refrigerants are used. The new modeling concept relies on using existing compressor performance to create an approximate model that captures the dependence of compressor performance on key operating parameters and fluid properties. The model can be built using a myriad of approximation techniques. This paper focuses on Kriging-based techniques to develop higher fidelity approximate compressor models. Baseline and at least one alternative refrigerant performance data are used to build the model. The model accuracy was evaluated by comparing the model results with compressor performance data using other refrigerants. Preliminary results show that the approximate model can predict the compressor mass flow rate and power consumption within 5%.

  17. Investigating stability using nonlinear quasihomogeneous approximation to differential equations with impulsive action

    SciTech Connect (OSTI)

    Dvirny, A. I.; Slyn'ko, V. I. E-mail: vitstab@ukr.net

    2014-06-01

    Inverse theorems to Lyapunov's direct method are established for quasihomogeneous systems of differential equations with impulsive action. Conditions for the existence of Lyapunov functions satisfying typical bounds for quasihomogeneous functions are obtained. Using these results, we establish conditions for an equilibrium of a nonlinear system with impulsive action to be stable, using the properties of a quasihomogeneous approximation to the system. The results are illustrated by an example of a large-scale system with homogeneous subsystems. Bibliography: 30 titles. (paper)

  18. Accuracy considerations for Chebyshev rational approximation method (CRAM) in Burnup calculations

    SciTech Connect (OSTI)

    Pusa, M.

    2013-07-01

    The burnup equations can in principle be solved by computing the exponential of the burnup matrix. However, due to the difficult numerical characteristics of burnup matrices, the problem is extremely stiff and the matrix exponential solution has previously been considered infeasible for an entire burnup system containing over a thousand nuclides. It was recently discovered by the author that the eigenvalues of burnup matrices are generally located near the negative real axis, which prompted introducing the Chebyshev rational approximation method (CRAM) for solving the burnup equations. CRAM can be characterized as the best rational approximation on the negative real axis and it has been shown to be capable of simultaneously solving an entire burnup system both accurately and efficiently. In this paper, the accuracy of CRAM is further studied in the context of burnup equations. The approximation error is analyzed based on the eigenvalue decomposition of the burnup matrix. It is deduced that the relative accuracy of CRAM may be compromised if a nuclide concentration diminishes significantly during the considered time step. Numerical results are presented for two test cases, the first one representing a small burnup system with 36 nuclides and the second one a full a decay system with 1531 nuclides. (authors)

  19. Explicit solutions of the radiative transport equation in the P{sub 3} approximation

    SciTech Connect (OSTI)

    Liemert, André Kienle, Alwin

    2014-11-01

    Purpose: Explicit solutions of the monoenergetic radiative transport equation in the P{sub 3} approximation have been derived which can be evaluated with nearly the same computational effort as needed for solving the standard diffusion equation (DE). In detail, the authors considered the important case of a semi-infinite medium which is illuminated by a collimated beam of light. Methods: A combination of the classic spherical harmonics method and the recently developed method of rotated reference frames is used for solving the P{sub 3} equations in closed form. Results: The derived solutions are illustrated and compared to exact solutions of the radiative transport equation obtained via the Monte Carlo (MC) method as well as with other approximated analytical solutions. It is shown that for the considered cases which are relevant for biomedical optics applications, the P{sub 3} approximation is close to the exact solution of the radiative transport equation. Conclusions: The authors derived exact analytical solutions of the P{sub 3} equations under consideration of boundary conditions for defining a semi-infinite medium. The good agreement to Monte Carlo simulations in the investigated domains, for example, in the steady-state and time domains, as well as the short evaluation time needed suggests that the derived equations can replace the often applied solutions of the diffusion equation for the homogeneous semi-infinite medium.

  20. Simulated Stochastic Approximation Annealing for Global Optimization with a Square-Root Cooling Schedule

    SciTech Connect (OSTI)

    Liang, Faming; Cheng, Yichen; Lin, Guang

    2014-06-13

    Simulated annealing has been widely used in the solution of optimization problems. As known by many researchers, the global optima cannot be guaranteed to be located by simulated annealing unless a logarithmic cooling schedule is used. However, the logarithmic cooling schedule is so slow that no one can afford to have such a long CPU time. This paper proposes a new stochastic optimization algorithm, the so-called simulated stochastic approximation annealing algorithm, which is a combination of simulated annealing and the stochastic approximation Monte Carlo algorithm. Under the framework of stochastic approximation Markov chain Monte Carlo, it is shown that the new algorithm can work with a cooling schedule in which the temperature can decrease much faster than in the logarithmic cooling schedule, e.g., a square-root cooling schedule, while guaranteeing the global optima to be reached when the temperature tends to zero. The new algorithm has been tested on a few benchmark optimization problems, including feed-forward neural network training and protein-folding. The numerical results indicate that the new algorithm can significantly outperform simulated annealing and other competitors.

  1. Fundamental gaps with approximate density functionals: The derivative discontinuity revealed from ensemble considerations

    SciTech Connect (OSTI)

    Kraisler, Eli; Kronik, Leeor

    2014-05-14

    The fundamental gap is a central quantity in the electronic structure of matter. Unfortunately, the fundamental gap is not generally equal to the Kohn-Sham gap of density functional theory (DFT), even in principle. The two gaps differ precisely by the derivative discontinuity, namely, an abrupt change in slope of the exchange-correlation energy as a function of electron number, expected across an integer-electron point. Popular approximate functionals are thought to be devoid of a derivative discontinuity, strongly compromising their performance for prediction of spectroscopic properties. Here we show that, in fact, all exchange-correlation functionals possess a derivative discontinuity, which arises naturally from the application of ensemble considerations within DFT, without any empiricism. This derivative discontinuity can be expressed in closed form using only quantities obtained in the course of a standard DFT calculation of the neutral system. For small, finite systems, addition of this derivative discontinuity indeed results in a greatly improved prediction for the fundamental gap, even when based on the most simple approximate exchange-correlation density functional the local density approximation (LDA). For solids, the same scheme is exact in principle, but when applied to LDA it results in a vanishing derivative discontinuity correction. This failure is shown to be directly related to the failure of LDA in predicting fundamental gaps from total energy differences in extended systems.

  2. Quantum correlations of helicity entangled states in non-inertial frames beyond single mode approximation

    SciTech Connect (OSTI)

    Harsij, Zeynab Mirza, Behrouz

    2014-12-15

    A helicity entangled tripartite state is considered in which the degree of entanglement is preserved in non-inertial frames. It is shown that Quantum Entanglement remains observer independent. As another measure of quantum correlation, Quantum Discord has been investigated. It is explicitly shown that acceleration has no effect on the degree of quantum correlation for the bipartite and tripartite helicity entangled states. Geometric Quantum Discord as a HilbertSchmidt distance is computed for helicity entangled states. It is shown that living in non-inertial frames does not make any influence on this distance, either. In addition, the analysis has been extended beyond single mode approximation to show that acceleration does not have any impact on the quantum features in the limit beyond the single mode. As an interesting result, while the density matrix depends on the right and left Unruh modes, the Negativity as a measure of Quantum Entanglement remains constant. Also, Quantum Discord does not change beyond single mode approximation. - Highlights: The helicity entangled states here are observer independent in non-inertial frames. It is explicitly shown that Quantum Discord for these states is observer independent. Geometric Quantum Discord is also not affected by acceleration increase. Extending to beyond single mode does not change the degree of entanglement. Beyond single mode approximation the degree of Quantum Discord is also preserved.

  3. Ab initio quasi-particle approximation bandgaps of silicon nanowires calculated at density functional theory/local density approximation computational effort

    SciTech Connect (OSTI)

    Ribeiro, M.

    2015-06-21

    Ab initio calculations of hydrogen-passivated Si nanowires were performed using density functional theory within LDA-1/2, to account for the excited states properties. A range of diameters was calculated to draw conclusions about the ability of the method to correctly describe the main trends of bandgap, quantum confinement, and self-energy corrections versus the diameter of the nanowire. Bandgaps are predicted with excellent accuracy if compared with other theoretical results like GW, and with the experiment as well, but with a low computational cost.

  4. Technical Note: On the proton range and nuclear interactions in compounds and mixtures

    SciTech Connect (OSTI)

    Rasouli, Fatemeh S. Masoudi, S. Farhad; Jette, David

    2015-05-15

    Purpose: Range and probability of nonelastic nuclear interactions (NNIs) for protons can be found only for a limited number of compounds and mixtures in nuclear data tables, and the proton-related analytical studies are therefore restricted to those materials for which the data are provided in these documents. In this paper, the authors present general solutions for calculating the proton range and probability of NNIs for desired compounds and mixtures. Methods: Benefiting from the Bragg–Kleeman approximation of mass stopping power, the authors derive a concise formula for calculating the proton range in materials with arbitrary number of constituent elements. Additionally, the authors propose another relation for obtaining the probability of undergoing NNIs which is suggested to be additive. Results: The examination of the formula presented shows that the authors’ method can be considered as general solutions for analytical evaluation of the range in compounds and mixtures. The formula proposed for probability of NNIs is valid for almost every compound except for those materials containing H. It is shown that this formula can be modified so that it covers these materials. Conclusions: The authors present a general analytical method for calculating the range and probability of NNIs for protons which are mathematically easy to handle and valid for desired compounds or mixtures composed of an arbitrary number of constituent elements, including materials of interest for proton radiotherapy purposes.

  5. General rotating quantum vortex filaments in the low-temperature Svistunov model of the local induction approximation

    SciTech Connect (OSTI)

    Van Gorder, Robert A.

    2014-06-15

    In his study of superfluid turbulence in the low-temperature limit, Svistunov [Superfluid turbulence in the low-temperature limit, Phys. Rev. B 52, 3647 (1995)] derived a Hamiltonian equation for the self-induced motion of a vortex filament. Under the local induction approximation (LIA), the Svistunov formulation is equivalent to a nonlinear dispersive partial differential equation. In this paper, we consider a family of rotating vortex filament solutions for the LIA reduction of the Svistunov formulation, which we refer to as the 2D LIA (since it permits a potential formulation in terms of two of the three Cartesian coordinates). This class of solutions holds the well-known Hasimoto-type planar vortex filament [H. Hasimoto, Motion of a vortex filament and its relation to elastica, J. Phys. Soc. Jpn. 31, 293 (1971)] as one reduction and helical solutions as another. More generally, we obtain solutions which are periodic in the space variable. A systematic analytical study of the behavior of such solutions is carried out. In the case where vortex filaments have small deviations from the axis of rotation, closed analytical forms of the filament solutions are given. A variety of numerical simulations are provided to demonstrate the wide range of rotating filament behaviors possible. Doing so, we are able to determine a number of vortex filament structures not previously studied. We find that the solution structure progresses from planar to helical, and then to more intricate and complex filament structures, possibly indicating the onset of superfluid turbulence.

  6. Structural evolution of the Z=52-62 neutron-deficient nuclei in the interacting boson approximation framework

    SciTech Connect (OSTI)

    Pascu, S.; Cata-Danil, Gh.; Zamfir, N. V.; Marginean, N.

    2010-05-15

    The interacting boson approximation (IBA) is employed in the present article to follow the structural evolution of the neutron-deficient nuclei from the Z=52-62 region. The IBA model parameters are determined to reproduce the properties of the low-lying positive parity excitations for a wide range of even-even collective nuclei. The parameters aim to describe simultaneously the existing electromagnetic data (energy levels, transition matrix elements, etc.) and hadronic ones (two-nucleon transfer intensities). It is shown that a simple Hamiltonian with only two terms is not adequate to describe the properties across this region. It is found that the octupole term plays an important role in reproducing the properties of the 2{sub g}amma{sup +} and 0{sub 2}{sup +} states, as well as in the description of the two-neutron transfer intensities patterns. A mapping of these parameters in the IBA symmetry triangle allows the comparison of representative trajectories for different isotopic chains.

  7. Multilevel summation methods for efficient evaluation of long-range pairwise interactions in atomistic and coarse-grained molecular simulation.

    SciTech Connect (OSTI)

    Bond, Stephen D.

    2014-01-01

    The availability of efficient algorithms for long-range pairwise interactions is central to the success of numerous applications, ranging in scale from atomic-level modeling of materials to astrophysics. This report focuses on the implementation and analysis of the multilevel summation method for approximating long-range pairwise interactions. The computational cost of the multilevel summation method is proportional to the number of particles, N, which is an improvement over FFTbased methods who's cost is asymptotically proportional to N logN. In addition to approximating electrostatic forces, the multilevel summation method can be use to efficiently approximate convolutions with long-range kernels. As an application, we apply the multilevel summation method to a discretized integral equation formulation of the regularized generalized Poisson equation. Numerical results are presented using an implementation of the multilevel summation method in the LAMMPS software package. Preliminary results show that the computational cost of the method scales as expected, but there is still a need for further optimization.

  8. Information resources management long-range plan, FY1994--1998

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    This document describes IRM activities and the information technology resources and capabilities of the Department, the future requirements, and the strategies and plans to satisfy the identified requirements. The long-range planning process provides the systematic means to meet this objective and assists the Department in assuring that information technology (IT) support is provided in an efficient, effective, and timely manner so that its programmatic missions can be accomplished. Another important objective of the Plan is to promote better understanding, both within and external to the Department, of its IT environment, requirements, issues, and recommended solutions. This DOE IRM Plan takes into consideration the IRM requirements of approximately 50 different sites. The annual long-range planning cycle for supporting this Plan was initiated by a Call in August 1991 for site plans to be submitted in February 1992 by those Departmental components and contractors with major IRM requirements.

  9. Autonomous Vehicles Have a Wide Range of Possible Energy Impacts (Poster)

    SciTech Connect (OSTI)

    Brown, A.; Repac, B.; Gonder, J.

    2013-07-01

    This poster presents initial estimates of the net energy impacts of automated vehicles (AVs). Automated vehicle technologies are increasingly recognized as having potential to decrease carbon dioxide emissions and petroleum consumption through mechanisms such as improved efficiency, better routing, lower traffic congestion, and by enabling advanced technologies. However, some effects of AVs could conceivably increase fuel consumption through possible effects such as longer distances traveled, increased use of transportation by underserved groups, and increased travel speeds. The net effect on petroleum use and climate change is still uncertain. To make an aggregate system estimate, we first collect best estimates for the energy impacts of approximately ten effects of AVs. We then use a modified Kaya Identity approach to estimate the range of aggregate effects and avoid double counting. We find that depending on numerous factors, there is a wide range of potential energy impacts. Adoption of automated personal or shared vehicles can lead to significant fuel savings but has potential for backfire.

  10. Corrective action investigation plan for CAU No. 424: Area 3 Landfill Complex, Tonopah Test Range, Nevada

    SciTech Connect (OSTI)

    1997-04-01

    This Correction Action Investigation Plan contains the environmental sample collection objectives and the criteria for conducting site investigation activities at the Area 3 Landfill Complex, CAU No. 424, which is located at the Tonopah Test Range (TTR). The TTR, included in the Nellis Air Force Range, is approximately 255 kilometers (140 miles) northwest of Las Vegas, nevada. The CAU 424 is comprised of eight individual landfill sites that are located around and within the perimeter of the Area 3 Compound. Due to the unregulated disposal activities commonly associated with early landfill operations, an investigation will be conducted at each CAS to complete the following tasks: identify the presence and nature of possible contaminant migration from the landfills; determine the vertical and lateral extent of possible contaminant migration; ascertain the potential impact to human health and the environment; and provide sufficient information and data to develop and evaluate appropriate corrective action strategies for each CAS.

  11. Accurate gradient approximation for complex interface problems in 3D by an improved coupling interface method

    SciTech Connect (OSTI)

    Shu, Yu-Chen, E-mail: ycshu@mail.ncku.edu.tw [Department of Mathematics, National Cheng Kung University, Tainan 701, Taiwan (China); Mathematics Division, National Center for Theoretical Sciences (South), Tainan 701, Taiwan (China); Chern, I-Liang, E-mail: chern@math.ntu.edu.tw [Department of Applied Mathematics, National Chiao Tung University, Hsin Chu 300, Taiwan (China); Department of Mathematics, National Taiwan University, Taipei 106, Taiwan (China); Mathematics Division, National Center for Theoretical Sciences (Taipei Office), Taipei 106, Taiwan (China); Chang, Chien C., E-mail: mechang@iam.ntu.edu.tw [Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan (China); Department of Mathematics, National Taiwan University, Taipei 106, Taiwan (China)

    2014-10-15

    Most elliptic interface solvers become complicated for complex interface problems at those exceptional points where there are not enough neighboring interior points for high order interpolation. Such complication increases especially in three dimensions. Usually, the solvers are thus reduced to low order accuracy. In this paper, we classify these exceptional points and propose two recipes to maintain order of accuracy there, aiming at improving the previous coupling interface method [26]. Yet the idea is also applicable to other interface solvers. The main idea is to have at least first order approximations for second order derivatives at those exceptional points. Recipe 1 is to use the finite difference approximation for the second order derivatives at a nearby interior grid point, whenever this is possible. Recipe 2 is to flip domain signatures and introduce a ghost state so that a second-order method can be applied. This ghost state is a smooth extension of the solution at the exceptional point from the other side of the interface. The original state is recovered by a post-processing using nearby states and jump conditions. The choice of recipes is determined by a classification scheme of the exceptional points. The method renders the solution and its gradient uniformly second-order accurate in the entire computed domain. Numerical examples are provided to illustrate the second order accuracy of the presently proposed method in approximating the gradients of the original states for some complex interfaces which we had tested previous in two and three dimensions, and a real molecule ( (1D63)) which is double-helix shape and composed of hundreds of atoms.

  12. DYNAMICAL SPIN SUSCEPTIBILITY IN THE TD-LDA AND QSGW APPROXIMATIONS

    SciTech Connect (OSTI)

    SCHILFGAARDE, MARK VAN; KOTANI, TAKAO

    2012-10-15

    Abstract. This project was aimed at building the transverse dynamical spin susceptibility with the TD-LDA and the recently-developed Quasparticle Self-Consisent Approximations, which determines an optimum quasiparticle picture in a self-consistent manner within the GW approximation. Our main results were published into two papers, (J. Phys. Cond. Matt. 20, 95214 (2008), and Phys. Rev. B83, 060404(R) (2011). In the first paper we present spin wave dispersions for MnO, NiO, and #11;-MnAs based on quasiparticle self-consistent GW approximation (QSGW). For MnO and NiO, QSGW results are in rather good agreement with experiments, in contrast to the LDA and LDA+U descriptions. For #11;-MnAs, we find a collinear ferromagnetic ground state in QSGW, while this phase is unstable in the LDA. In the second, we apply TD-LDA to the CaFeAs2 â?? the first attempt the first ab initio calculation of dynamical susceptibililty in a system with complex electronic structure Magnetic excitations in the striped phase of CaFe2As2 are studied as a function of local moment amplitude. We find a new kind of excitation: sharp resonances of Stoner-like (itinerant) excitations at energies comparable to the N?´eel temperature, originating largely from a narrow band of Fe d states near the Fermi level, and coexisting with more conventional (localized) spin waves. Both kinds of excitations can show multiple branches, highlighting the inadequacy of a description based on a localized spin model.

  13. ARM: ABLE: minisodar (mini - sound det. and ranging) wind profiles...

    Office of Scientific and Technical Information (OSTI)

    ABLE: minisodar (mini - sound det. and ranging) wind profiles, 100-200 m, avg Title: ARM: ABLE: minisodar (mini - sound det. and ranging) wind profiles, 100-200 m, avg ABLE: ...

  14. Fact #797: September 16, 2013 Driving Ranges for Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    offered for the 2013 model year (MY). The Tesla Model S has the longest range of any EV ... These data may not directly match the vehicle manufacturer's stated range. The Tesla Model ...

  15. EM Tackles Cleanup at Tonopah Test Range | Department of Energy

    Office of Environmental Management (EM)

    Tackles Cleanup at Tonopah Test Range EM Tackles Cleanup at Tonopah Test Range September 30, 2014 - 12:00pm Addthis Field technicians survey a shaker used in past cleanup ...

  16. Seismicity of the Coso Range, California | Open Energy Information

    Open Energy Info (EERE)

    of the Coso Range, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Seismicity of the Coso Range, California Abstract A 16-station...

  17. Tonopah test range - outpost of Sandia National Laboratories

    SciTech Connect (OSTI)

    Johnson, L.

    1996-03-01

    Tonopah Test Range is a unique historic site. Established in 1957 by Sandia Corporation, Tonopah Test Range in Nevada provided an isolated place for the Atomic Energy Commission to test ballistics and non-nuclear features of atomic weapons. It served this and allied purposes well for nearly forty years, contributing immeasurably to a peaceful conclusion to the long arms race remembered as the Cold War. This report is a brief review of historical highlights at Tonopah Test Range. Sandia`s Los Lunas, Salton Sea, Kauai, and Edgewood testing ranges also receive abridged mention. Although Sandia`s test ranges are the subject, the central focus is on the people who managed and operated the range. Comments from historical figures are interspersed through the narrative to establish this perspective, and at the end a few observations concerning the range`s future are provided.

  18. An approximate framework for quantum transport calculation with model order reduction

    SciTech Connect (OSTI)

    Chen, Quan; Li, Jun; Yam, Chiyung; Zhang, Yu; Wong, Ngai; Chen, Guanhua

    2015-04-01

    A new approximate computational framework is proposed for computing the non-equilibrium charge density in the context of the non-equilibrium Green's function (NEGF) method for quantum mechanical transport problems. The framework consists of a new formulation, called the X-formulation, for single-energy density calculation based on the solution of sparse linear systems, and a projection-based nonlinear model order reduction (MOR) approach to address the large number of energy points required for large applied biases. The advantages of the new methods are confirmed by numerical experiments.

  19. p-barp-Annihilation processes in the tree approximation of SU(3) chiral effective theory

    SciTech Connect (OSTI)

    Tarasov, V. E.; Kudryavtsev, A. E. Romanov, A. I.; Weinberg, V. M.

    2012-12-15

    The p-barp-annihilation reactions p-barp {yields} {eta}{eta} {eta} and p-barp {yields} {eta}KK-bar at rest are considered in the tree approximation in the framework of SU(3) chiral effective theory at leading order. The calculated branchings are compared with the data. The results for neutral ({eta}{eta}{eta}, K{sup 0}K-bar{sup 0}{sub {eta}}) and charged (K{sup +}K{sup -}{sub {eta}}) channels are essentially different.

  20. Molecular Solid EOS based on Quasi-Harmonic Oscillator approximation for phonons

    SciTech Connect (OSTI)

    Menikoff, Ralph

    2014-09-02

    A complete equation of state (EOS) for a molecular solid is derived utilizing a Helmholtz free energy. Assuming that the solid is nonconducting, phonon excitations dominate the specific heat. Phonons are approximated as independent quasi-harmonic oscillators with vibrational frequencies depending on the specific volume. The model is suitable for calibrating an EOS based on isothermal compression data and infrared/Raman spectroscopy data from high pressure measurements utilizing a diamond anvil cell. In contrast to a Mie-Gr ̈uneisen EOS developed for an atomic solid, the specific heat and Gr ̈uneisen coefficient depend on both density and temperature.

  1. Model-potential Oppenheimer-Brinkman-Kramers approximation for K -shell electron capture in asymmetric collisions

    SciTech Connect (OSTI)

    Kuang, Y.R. )

    1991-08-01

    A theoretical method to calculate the {ital K}-shell electron-capture cross section in asymmetric collisions is developed. The correlation effect between the active and the passive electrons and the screening effect in the wave function of the active electron are all considered. Under the Oppenheimer-Brinkman-Kramers approximation, an analytical expression for the total capture cross section is obtained. The calculated results for H{sup +}--carbon, nitrogen, oxygen, neon, argon and He{sup 2+}-neon collisions, at the intermediate-energy region, show very good agreement with available experimental findings. A comparison with other theoretical results is given.

  2. Finite-dimensional approximations of the resolvent of an infinite band matrix and continued fractions

    SciTech Connect (OSTI)

    Barrios, Dolores; Lopez, Guillermo L; Martinez-Finkelshtein, A; Torrano, Emilio

    1999-04-30

    The approximability of the resolvent of an operator induced by a band matrix by the resolvents of its finite-dimensional sections is studied. For bounded perturbations of self-adjoint matrices a positive result is obtained. The convergence domain of the sequence of resolvents can be described in this case in terms of matrices involved in the representation. This result is applied to tridiagonal complex matrices to establish conditions for the convergence of Chebyshev continued fractions on sets in the complex domain. In the particular case of compact perturbations this result is improved and a connection between the poles of the limit function and the eigenvalues of the tridiagonal matrix is established.

  3. Comparison of binary collision approximation and molecular dynamics for displacement cascades in GaAs.

    SciTech Connect (OSTI)

    Foiles, Stephen Martin

    2011-10-01

    The predictions of binary collision approximation (BCA) and molecular dynamics (MD) simulations of displacement cascades in GaAs are compared. There are three issues addressed in this work. The first is the optimal choice of the effective displacement threshold to use in the BCA calculations to obtain the best agreement with MD results. Second, the spatial correlations of point defects are compared. This is related to the level of clustering that occurs for different types of radiation. Finally, the size and structure of amorphous zones seen in the MD simulations is summarized. BCA simulations are not able to predict the formation of amorphous material.

  4. Simplified approach to interacting boson approximation-2 calculations using Hamiltonian invariants

    SciTech Connect (OSTI)

    Chou, W.-T.; Zamfir, N. V.; Clark University, Worcester, Massachusetts 01610; National Institute of Physics and Nuclear Engineering, Bucharest, ; Casten, R. F.

    2000-07-01

    A systematic study of predictions of the interacting boson approximation (IBA)-2 model leads to the identification of two parameter invariants such that calculations with the same values of the invariants yield results that are identical in certain cases and show close similarities under a wider set of conditions. The invariants validate a much-used form of the IBA-2 Hamiltonian and provide a systematic method to simplify IBA-2 calculations by choosing a truncated Hamiltonian with the same invariant values as more general Hamiltonians. (c) 2000 The American Physical Society.

  5. Proton-Nucleus Scattering Approximations and Implications for LHC Crystal Collimation

    SciTech Connect (OSTI)

    Noble, Robert; ,

    2010-06-07

    In particle accelerators, scattered protons with energies close to the incident particles may travel considerable distances with the beam before impacting on accelerator components downstream. To analyze such problems, angular deflection and energy loss of scattered particles are the main quantities to be simulated since these lead to changes in the beam's phase space distribution and particle loss. Simple approximations for nuclear scattering processes causing limited energy loss to high-energy protons traversing matter are developed which are suitable for rapid estimates and reduced-description Monte Carlo simulations. The implications for proton loss in the Large Hadron Collider due to nuclear scattering on collimation crystals are discussed.

  6. Modeling-Computer Simulations At Northern Basin & Range Region...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Northern Basin & Range Region (Pritchett, 2004) Exploration Activity...

  7. Geothermal Literature Review At Nw Basin & Range Region (Laney...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Nw Basin & Range Region (Laney, 2005) Exploration Activity Details...

  8. Corrective action decision document, Second Gas Station, Tonopah test range, Nevada (Corrective Action Unit No. 403)

    SciTech Connect (OSTI)

    1997-11-01

    This Corrective Action Decision Document (CADD) for Second Gas Station (Corrective Action Unit [CAU] No. 403) has been developed for the U.S. Department of Energy`s (DOE) Nevada Environmental Restoration Project to meet the requirements of the Federal Facility Agreement and Consent Order (FFACO) of 1996 as stated in Appendix VI, {open_quotes}Corrective Action Strategy{close_quotes} (FFACO, 1996). The Second Gas Station Corrective Action Site (CAS) No. 03-02-004-0360 is the only CAS in CAU No. 403. The Second Gas Station CAS is located within Area 3 of the Tonopah Test Range (TTR), west of the Main Road at the location of former Underground Storage Tanks (USTs) and their associated fuel dispensary stations. The TTR is approximately 225 kilometers (km) (140 miles [mi]) northwest of Las Vegas, Nevada, by air and approximately 56 km (35 mi) southeast of Tonopah, Nevada, by road. The TTR is bordered on the south, east, and west by the Nellis Air Force Range and on the north by sparsely populated public land administered by the Bureau of Land Management and the U.S. Forest Service. The Second Gas Station CAS was formerly known as the Underground Diesel Tank Site, Sandia Environmental Restoration Site Number 118. The gas station was in use from approximately 1965 to 1980. The USTs were originally thought to be located 11 meters (m) (36 feet [ft]) east of the Old Light Duty Shop, Building 0360, and consisted of one gasoline UST (southern tank) and one diesel UST (northern tank) (DOE/NV, 1996a). The two associated fuel dispensary stations were located northeast (diesel) and southeast (gasoline) of Building 0360 (CAU 423). Presently the site is used as a parking lot, Building 0360 is used for mechanical repairs of vehicles.

  9. Tonopah Test Range Post-Closure Inspection Annual Report, Tonopah Test Range, Nevada, Calendar Year 2002

    SciTech Connect (OSTI)

    R. B. Jackson

    2003-08-01

    This Post-Closure Inspection Annual Report provides documentation of the semiannual inspections conducted at the following Corrective Action Units (CAU)s: CAU 400: Bomblet Pit and Five Points Landfill; CAU 404: Roller Coaster Lagoons and Trench; CAU 407: Roller Coaster RadSafe Area; CAU 424: Area 3 Landfill Complexes; CAU 426: Cactus Spring Waste Trenches; CAU 427: Septic Waste Systems 2, 6; and CAU 453: Area 9 UXO Landfill, all located at the Tonopah Test Range, Nevada. Post-closure inspections are not required at CAU 400 but are conducted to monitor vegetation and fencing at the site. Site inspections were conducted in May and November 2002. All site inspections were made after Nevada Division of Environmental Protection (NDEP) approval of the appropriate Closure Report (CR), excluding CAU 400 which did not require a CR, and were conducted in accordance with the Post-Closure Inspection Plans in the NDEP-approved CRs. Post-closure inspections conducted during 2002 identified several areas requiring maintenance/repairs. Maintenance work and proposed additional monitoring are included in the appropriate section for each CAU. This report includes copies of the Post-Closure Inspection Plans, Post-Closure Inspection Checklists, copies of the field notes, photographs, and the Post-Closure Vegetative Monitoring Report. The Post-Closure Inspection Plan for each CAU is located in Attachment A. Post-Closure Inspection Checklists are in Attachment B. Copies of the field notes from each inspection are included in Attachment C. Attachment D consists of the photographic logs and photographs of the sites. The post-closure vegetative monitoring report for calendar year 2002 is included in Attachment E.

  10. Approximation of functions of variable smoothness by Fourier-Legendre sums

    SciTech Connect (OSTI)

    Sharapudinov, I I

    2000-06-30

    Assume that 0<{mu}{<=}1, and let r{>=}1 be an integer. Let {delta}={l_brace}a{sub 1},...,a{sub l}{r_brace}, where the a{sub i} are points in the interval (-1,1). The classes S{sup r}H{sup {mu}}{sub {delta}} and S{sup r}H{sup {mu}}{sub {delta}}(B) are introduced. These consist of functions with absolutely continuous (r-1)th derivative on [-1,1] such that their rth and (r+1)th derivatives satisfy certain conditions outside the set {delta}. It is proved that for 0<{mu}<1 the Fourier-Legendre sums realize the best approximation in the classes S{sup r}H{sup {mu}}{sub {delta}}(B). Using the Fourier-Legendre expansions, polynomials Y{sub n+2r} of order n+2r are constructed that possess the following property: for 0<{mu}<1 the {nu}th derivative of the polynomial Y{sub n+2r} approximates f{sup ({nu})}(x) (f element of S{sup r}H{sup {mu}}{sub {delta}}) on [-1,1] to within O(n{sup {nu}}{sup +1-r-{mu}}), and the accuracy is of order O(n{sup {nu}}{sup -r-{mu}}) outside {delta}.

  11. Irradiation creep of various ferritic alloys irradiated {approximately}400 C in the PFR and FFTF reactors

    SciTech Connect (OSTI)

    Toloczko, M.B.; Garner, F.A.; Eiholzer, C.R.

    1998-03-01

    Three ferritic alloys were irradiated in two fast reactors to doses of 50 dpa or more at temperatures near 400 C. One martensitic alloy, HT9, was irradiated in both the FFTF and PFR reactors. PFR is the Prototype Fast Reactor in Dourneay, Scotland, and FFTF is the Fast Flux Test Facility in Richland, WA. D57 is a developmental alloy that was irradiated in PFR only, and MA957 is a Y{sub 2}O{sub 3} dispersion-hardened ferritic alloy that was irradiated only in FFTF. These alloys exhibited little or no void swelling at {approximately}400 C. Depending on the alloy starting condition, these steels develop a variety of non-creep strains early in the irradiation that are associated with phase changes. Each of these alloys creeps at a rate that is significantly lower than that of austenitic steels irradiated in the same experiments. The creep compliance for ferritic alloys in general appears to be {approximately}0.5 {times} 10{sup {minus}6} MPa{sup {minus}1} dpa{sup {minus}1}, independent of both composition and starting state. The addition of Y{sub 2}O{sub 3} as a dispersoid does not appear to change the creep behavior.

  12. Multilayer shallow shelf approximation: Minimisation formulation, finite element solvers and applications

    SciTech Connect (OSTI)

    Jouvet, Guillaume

    2015-04-15

    In this paper, a multilayer generalisation of the Shallow Shelf Approximation (SSA) is considered. In this recent hybrid ice flow model, the ice thickness is divided into thin layers, which can spread out, contract and slide over each other in such a way that the velocity profile is layer-wise constant. Like the SSA (1-layer model), the multilayer model can be reformulated as a minimisation problem. However, unlike the SSA, the functional to be minimised involves a new penalisation term for the interlayer jumps of the velocity, which represents the vertical shear stresses induced by interlayer sliding. Taking advantage of this reformulation, numerical solvers developed for the SSA can be naturally extended layer-wise or column-wise. Numerical results show that the column-wise extension of a Newton multigrid solver proves to be robust in the sense that its convergence is barely influenced by the number of layers and the type of ice flow. In addition, the multilayer formulation appears to be naturally better conditioned than the one of the first-order approximation to face the anisotropic conditions of the sliding-dominant ice flow of ISMIP-HOM experiments.

  13. On the Validity of Certain Approximations Used in the Modeling of Nuclear EMP

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Farmer, William A.; Cohen, Bruce I.; Eng, Chester D.

    2016-04-01

    The legacy codes developed for the modeling of EMP, multiple scattering of Compton electrons has typically been modeled by the obliquity factor. A recent publication has examined this approximation in the context of the generated Compton current [W. A. Farmer and A. Friedman, IEEE Trans. Nucl. Sc. 62, 1695 (2015)]. Here, this previous analysis is extended to include the generation of the electromagnetic fields. Obliquity factor predictions are compared with Monte-Carlo models. In using a Monte-Carlo description of scattering, two distributions of scattering angles are considered: Gaussian and a Gaussian with a single-scattering tail. Additionally, legacy codes also neglect themore » radial derivative of the backward-traveling wave for computational efficiency. The neglect of this derivative improperly treats the backward-traveling wave. Moreover, these approximations are examined in the context of a high-altitude burst, and it is shown that in comparison to more complete models, the discrepancy between field amplitudes is roughly two to three percent and between rise-times, 10%. Finally, it is concluded that the biggest factor in determining the rise time of the signal is not the dynamics of the Compton current, but is instead the conductivity.« less

  14. Exact and approximate fermion Green`s functions in QED and QCD

    SciTech Connect (OSTI)

    Fried, H.M. [Physics Department, Brown University, Providence, Rhode Island 02912 (United States)] [Physics Department, Brown University, Providence, Rhode Island 02912 (United States); Gabellini, Y. [Institut Non-Lineaire de Nice, 1361, Route des Lucioles, 06560 Valbonne (France)] [Institut Non-Lineaire de Nice, 1361, Route des Lucioles, 06560 Valbonne (France); McKellar, B.H.J. [School of Physics, University of Melbourne, Parkville, Victoria, 3052 (Australia)] [School of Physics, University of Melbourne, Parkville, Victoria, 3052 (Australia)

    1995-06-15

    That special variant of the Fradkin representation, previously defined for scalar Green`s functions {ital G}{sub {ital c}}({ital x},{ital y}{vert_bar}{ital A}) in an arbitrary potential {ital A}({ital z}), is here extended to the case of vector interactions and spinor Green`s functions of QED and QCD. An exact representation is given which may again be approximated by a finite number {ital N} of quadratures, with the order of magnitude of the errors generated specified in advance, and decreasing with increasing {ital N}. A feature appears for both exact and approximate {ital G}{sub {ital c}}[{ital A}]: the possibility of chaotic behavior of a function central to the representation, which in turn generates chaotic behavior in {ital G}{sub {ital c}}[{ital A}] for certain {ital A}({ital z}). An example is given to show how the general criterion specified here works for a known case of ``quantum chaos,`` in a potential theory context of first quantization. When the full, nonperturbative, radiative corrections of quantum field theory are included, such chaotic effects are removed.

  15. Gaussian approximation and single-spin measurement in magnetic resonance force microscopy with spin noise

    SciTech Connect (OSTI)

    Raghunathan, Shesha; Brun, Todd A.; Goan, Hsi-Sheng

    2010-11-15

    A promising technique for measuring single electron spins is magnetic resonance force microscopy (MRFM), in which a microcantilever with a permanent magnetic tip is resonantly driven by a single oscillating spin. The most effective experimental technique is the oscillating cantilever-driven adiabatic reversals (OSCAR) protocol, in which the signal takes the form of a frequency shift. If the quality factor of the cantilever is high enough, this signal will be amplified over time to the point where it can be detected by optical or other techniques. An important requirement, however, is that this measurement process occurs on a time scale that is short compared to any noise which disturbs the orientation of the measured spin. We describe a model of spin noise for the MRFM system and show how this noise is transformed to become time dependent in going to the usual rotating frame. We simplify the description of the cantilever-spin system by approximating the cantilever wave function as a Gaussian wave packet and show that the resulting approximation closely matches the full quantum behavior. We then examine the problem of detecting the signal for a cantilever with thermal noise and spin with spin noise, deriving a condition for this to be a useful measurement.

  16. Assessment of approximate computational methods for conical intersections and branching plane vectors in organic molecules

    SciTech Connect (OSTI)

    Nikiforov, Alexander; Gamez, Jose A.; Thiel, Walter; Huix-Rotllant, Miquel; Filatov, Michael

    2014-09-28

    Quantum-chemical computational methods are benchmarked for their ability to describe conical intersections in a series of organic molecules and models of biological chromophores. Reference results for the geometries, relative energies, and branching planes of conical intersections are obtained using ab initio multireference configuration interaction with single and double excitations (MRCISD). They are compared with the results from more approximate methods, namely, the state-interaction state-averaged restricted ensemble-referenced Kohn-Sham method, spin-flip time-dependent density functional theory, and a semiempirical MRCISD approach using an orthogonalization-corrected model. It is demonstrated that these approximate methods reproduce the ab initio reference data very well, with root-mean-square deviations in the optimized geometries of the order of 0.1 or less and with reasonable agreement in the computed relative energies. A detailed analysis of the branching plane vectors shows that all currently applied methods yield similar nuclear displacements for escaping the strong non-adiabatic coupling region near the conical intersections. Our comparisons support the use of the tested quantum-chemical methods for modeling the photochemistry of large organic and biological systems.

  17. Characterization of the homogeneous tissue mixture approximation in breast imaging dosimetry

    SciTech Connect (OSTI)

    Sechopoulos, Ioannis; Bliznakova, Kristina; Qin Xulei; Fei Baowei; Feng, Steve Si Jia

    2012-08-15

    Purpose: To compare the estimate of normalized glandular dose in mammography and breast CT imaging obtained using the actual glandular tissue distribution in the breast to that obtained using the homogeneous tissue mixture approximation. Methods: Twenty volumetric images of patient breasts were acquired with a dedicated breast CT prototype system and the voxels in the breast CT images were automatically classified into skin, adipose, and glandular tissue. The breasts in the classified images underwent simulated mechanical compression to mimic the conditions present during mammographic acquisition. The compressed thickness for each breast was set to that achieved during each patient's last screening cranio-caudal (CC) acquisition. The volumetric glandular density of each breast was computed using both the compressed and uncompressed classified images, and additional images were created in which all voxels representing adipose and glandular tissue were replaced by a homogeneous mixture of these two tissues in a proportion corresponding to each breast's volumetric glandular density. All four breast images (compressed and uncompressed; heterogeneous and homogeneous tissue) were input into Monte Carlo simulations to estimate the normalized glandular dose during mammography (compressed breasts) and dedicated breast CT (uncompressed breasts). For the mammography simulations the x-ray spectra used was that used during each patient's last screening CC acquisition. For the breast CT simulations, two x-ray spectra were used, corresponding to the x-ray spectra with the lowest and highest energies currently being used in dedicated breast CT prototype systems under clinical investigation. The resulting normalized glandular dose for the heterogeneous and homogeneous versions of each breast for each modality was compared. Results: For mammography, the normalized glandular dose based on the homogeneous tissue approximation was, on average, 27% higher than that estimated using the

  18. Neutrinoless double {beta}-decay nuclear matrix elements within the SRQRPA with self-consistent short range correlations

    SciTech Connect (OSTI)

    Benes, Petr [IEAP, Czech Technical University (Czech Republic); Simkovic, Fedor [Department of Nuclear Physics and Biophysics, Comenius University, Mlynska dolina, SK-84248 Bratislava (Slovakia); Bogolyubov Laboratory of Theoretical Physics, JINR, Dubna (Russian Federation)

    2009-11-09

    The nuclear matrix elements M{sup 0v} of the neutrinoless double beta decay (0v{beta}{beta}-decay) are systematically evaluated using the self-consistent renormalized quasiparticle random phase approximation (SRQRPA). The residual interaction and the two-nucleon short-range correlations are derived from the charge-dependent Bonn (CD-Bonn) potential. The importance of further progress in the calculation of the 0v{beta}{beta}-decay nuclear matrix elements is stressed.

  19. A 3D approximate maximum likelihood solver for localization of fish implanted with acoustic transmitters

    SciTech Connect (OSTI)

    Li, Xinya; Deng, Z. Daniel; USA, Richland Washington; Sun, Yannan; USA, Richland Washington; Martinez, Jayson J.; USA, Richland Washington; Fu, Tao; USA, Richland Washington; McMichael, Geoffrey A.; USA, Richland Washington; Carlson, Thomas J.; USA, Richland Washington

    2014-11-27

    Better understanding of fish behavior is vital for recovery of many endangered species including salmon. The Juvenile Salmon Acoustic Telemetry System (JSATS) was developed to observe the out-migratory behavior of juvenile salmonids tagged by surgical implantation of acoustic micro-transmitters and to estimate the survival when passing through dams on the Snake and Columbia Rivers. A robust three-dimensional solver was needed to accurately and efficiently estimate the time sequence of locations of fish tagged with JSATS acoustic transmitters, to describe in sufficient detail the information needed to assess the function of dam-passage design alternatives. An approximate maximum likelihood solver was developed using measurements of time difference of arrival from all hydrophones in receiving arrays on which a transmission was detected. Field experiments demonstrated that the developed solver performed significantly better in tracking efficiency and accuracy than other solvers described in the literature.

  20. Beyond the random phase approximation: Stimulated Brillouin backscatter for finite laser coherence times

    SciTech Connect (OSTI)

    Korotkevich, Alexander O.; Lushnikov, Pavel M.; Rose, Harvey A.

    2015-01-15

    We developed a linear theory of backward stimulated Brillouin scatter (BSBS) of a spatially and temporally random laser beam relevant for laser fusion. Our analysis reveals a new collective regime of BSBS (CBSBS). Its intensity threshold is controlled by diffraction, once cT{sub c} exceeds a laser speckle length, with T{sub c} the laser coherence time. The BSBS spatial gain rate is approximately the sum of that due to CBSBS, and a part which is independent of diffraction and varies linearly with T{sub c}. The CBSBS spatial gain rate may be reduced significantly by the temporal bandwidth of KrF-based laser systems compared to the bandwidth currently available to temporally smoothed glass-based laser systems.

  1. Modeling of free electronic state density in hydrogenic plasmas based on nearest neighbor approximation

    SciTech Connect (OSTI)

    Nishikawa, Takeshi

    2014-07-15

    Most conventional atomic models in a plasma do not treat the effect of the plasma on the free-electron state density. Using a nearest neighbor approximation, the state densities in hydrogenic plasmas for both bound and free electrons were evaluated and the effect of the plasma on the atomic model (especially for the state density of the free electron) was studied. The model evaluates the electron-state densities using the potential distribution formed by the superposition of the Coulomb potentials of two ions. The potential from one ion perturbs the electronic state density on the other. Using this new model, one can evaluate the free-state density without making any ad-hoc assumptions. The resulting contours of the average ionization degree, given as a function of the plasma temperature and density, are shifted slightly to lower temperatures because of the effect of the increasing free-state density.

  2. Covariant spectator theory for the electromagnetic three-nucleon form factors: Complete impulse approximation

    SciTech Connect (OSTI)

    Sergio Alexandre Pinto, Alfred Stadler, Franz Gross

    2009-05-01

    We present the first calculations of the electromagnetic form factors of 3He and 3H within the framework of the Covariant Spectator Theory (CST). This first exploratory study concentrates on the sensitivity of the form factors to the strength of the scalar meson-nucleon off-shell coupling, known from previous studies to have a strong influence on the three-body binding energy. Results presented here were obtained using the complete impulse approximation (CIA), which includes contributions of relativistic origin that appear as two-body corrections in a non-relativistic framework, such as #28;Z-graphs#29;, but omits other two and three-body currents. We compare our results to non-relativistic calculations augmented by relativistic corrections of O(v/c)2.

  3. A 3D approximate maximum likelihood solver for localization of fish implanted with acoustic transmitters

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Xinya; Deng, Z. Daniel; USA, Richland Washington; Sun, Yannan; USA, Richland Washington; Martinez, Jayson J.; USA, Richland Washington; Fu, Tao; USA, Richland Washington; McMichael, Geoffrey A.; et al

    2014-11-27

    Better understanding of fish behavior is vital for recovery of many endangered species including salmon. The Juvenile Salmon Acoustic Telemetry System (JSATS) was developed to observe the out-migratory behavior of juvenile salmonids tagged by surgical implantation of acoustic micro-transmitters and to estimate the survival when passing through dams on the Snake and Columbia Rivers. A robust three-dimensional solver was needed to accurately and efficiently estimate the time sequence of locations of fish tagged with JSATS acoustic transmitters, to describe in sufficient detail the information needed to assess the function of dam-passage design alternatives. An approximate maximum likelihood solver was developedmore » using measurements of time difference of arrival from all hydrophones in receiving arrays on which a transmission was detected. Field experiments demonstrated that the developed solver performed significantly better in tracking efficiency and accuracy than other solvers described in the literature.« less

  4. Rayleigh approximation to ground state of the Bose and Coulomb glasses

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ryan, S. D.; Mityushev, V.; Vinokur, V. M.; Berlyand, L.

    2015-01-16

    Glasses are rigid systems in which competing interactions prevent simultaneous minimization of local energies. This leads to frustration and highly degenerate ground states the nature and properties of which are still far from being thoroughly understood. We report an analytical approach based on the method of functional equations that allows us to construct the Rayleigh approximation to the ground state of a two-dimensional (2D) random Coulomb system with logarithmic interactions. We realize a model for 2D Coulomb glass as a cylindrical type II superconductor containing randomly located columnar defects (CD) which trap superconducting vortices induced by applied magnetic field. Ourmore » findings break ground for analytical studies of glassy systems, marking an important step towards understanding their properties.« less

  5. Covariant spectator theory for the electromagnetic three-nucleon form factors: Complete impulse approximation

    SciTech Connect (OSTI)

    Pinto, Sérgio Alexandre; Stadler, Alfred; Gross, Franz

    2009-05-01

    We present the first calculations of the electromagnetic form factors of 3He and 3H within the framework of the Covariant Spectator Theory (CST). This first exploratory study concentrates on the sensitivity of the form factors to the strength of the scalar meson-nucleon off-shell coupling, known from previous studies to have a strong influence on the three-body binding energy. Results presented here were obtained using the complete impulse approximation (CIA), which includes contributions of relativistic origin that appear as two-body corrections in a non-relativistic framework, such as "Z-graphs," but omits other two and three-body currents. Finally, we compare our results to non-relativistic calculations augmented by relativistic corrections of O(v/c)2.

  6. Covariant spectator theory for the electromagnetic three-nucleon form factors: Complete impulse approximation

    SciTech Connect (OSTI)

    Pinto, Sergio Alexandre; Stadler, Alfred; Gross, Franz

    2009-05-15

    We present the first calculations of the electromagnetic form factors of {sup 3}He and {sup 3}H within the framework of the Covariant Spectator Theory (CST). This first exploratory study concentrates on the sensitivity of the form factors to the strength of the scalar meson-nucleon off-shell coupling, known from previous studies to have a strong influence on the three-body binding energy. Results presented here were obtained using the complete impulse approximation (CIA), which includes contributions of relativistic origin that appear as two-body corrections in a nonrelativistic framework, such as 'Z-graphs', but omits other two and three-body currents. We compare our results to nonrelativistic calculations augmented by relativistic corrections of O(v/c){sup 2}.

  7. Covariant spectator theory for the electromagnetic three-nucleon form factors: Complete impulse approximation

    SciTech Connect (OSTI)

    Alexandre Pinto, SÂ ergio; Stadler, Alfred; Gross, Franz

    2009-01-01

    We present the first calculations of the electromagnetic form factors of 3He and 3H within the framework of the Covariant Spectator Theory (CST). This first exploratory study concentrates on the sensitivity of the form factors to the strength of the scalar meson-nucleon off-shell coupling, known from previous studies to have a strong influence on the three-body binding energy. Results presented here were obtained using the complete impulse approximation (CIA), which includes contributions of relativistic origin that appear as two-body corrections in a non-relativistic framework, such as ?Z-graphs?, but omits other two and three-body currents. We compare our results to non-relativistic calculations augmented by relativistic corrections of O(v/c)2.

  8. Rayleigh approximation to ground state of the Bose and Coulomb glasses

    SciTech Connect (OSTI)

    Ryan, S. D.; Mityushev, V.; Vinokur, V. M.; Berlyand, L.

    2015-01-16

    Glasses are rigid systems in which competing interactions prevent simultaneous minimization of local energies. This leads to frustration and highly degenerate ground states the nature and properties of which are still far from being thoroughly understood. We report an analytical approach based on the method of functional equations that allows us to construct the Rayleigh approximation to the ground state of a two-dimensional (2D) random Coulomb system with logarithmic interactions. We realize a model for 2D Coulomb glass as a cylindrical type II superconductor containing randomly located columnar defects (CD) which trap superconducting vortices induced by applied magnetic field. Our findings break ground for analytical studies of glassy systems, marking an important step towards understanding their properties.

  9. Pulse profiles from spinning neutron stars in the Hartle-Thorne approximation

    SciTech Connect (OSTI)

    Psaltis, Dimitrios; Özel, Feryal E-mail: fozel@email.arizone.edu

    2014-09-10

    We present a new numerical algorithm for the calculation of pulse profiles from spinning neutron stars in the Hartle-Thorne approximation. Our approach allows us to formally take into account the effects of Doppler shifts and aberration, of frame dragging, as well as of the oblateness of the stellar surface and of its quadrupole moment. We confirm an earlier result that neglecting the oblateness of the neutron-star surface leads to ≅ 5%-30% errors in the calculated profiles and further show that neglecting the quadrupole moment of its spacetime leads to ≅ 1%-5% errors at a spin frequency of ≅ 600 Hz. We discuss the implications of our results for the measurements of neutron-star masses and radii with upcoming X-ray missions, such as NASA's NICER and ESA's LOFT.

  10. Derivative couplings between TDDFT excited states obtained by direct differentiation in the Tamm-Dancoff approximation

    SciTech Connect (OSTI)

    Ou, Qi; Fatehi, Shervin; Alguire, Ethan; Subotnik, Joseph E.; Shao, Yihan

    2014-07-14

    Working within the Tamm-Dancoff approximation, we calculate the derivative couplings between time-dependent density-functional theory excited states by assuming that the Kohn-Sham superposition of singly excited determinants represents a true electronic wavefunction. All Pulay terms are included in our derivative coupling expression. The reasonability of our approach can be established by noting that, for closely separated electronic states in the infinite basis limit, our final expression agrees exactly with the Chernyak-Mukamel expression (with transition densities from response theory). Finally, we also validate our approach empirically by analyzing the behavior of the derivative couplings around the T{sub 1}/T{sub 2} conical intersection of benzaldehyde.

  11. Quantum Theory of (H,H{Sub 2}) Scattering: Approximate Treatments of Reactive Scattering

    DOE R&D Accomplishments [OSTI]

    Tang, K. T.; Karplus, M.

    1970-10-01

    A quantum mechanical study is made of reactive scattering in the (H, H{sub 2}) system. The problem is formulated in terms of a form of the distorted-wave Born approximation (DWBA) suitable for collisions in which all particles have finite mass. For certain incident energies, differential and total cross sections, as well as other attributes of the reactive collisions, (e.g. reaction configuration), are determined. Two limiting models in the DWBA formulation are compared; in one, the molecule is unperturbed by the incoming atom and in the other, the molecule adiabatically follows the incoming atom. For thermal incident energies and semi-empirical interaction potential employed, the adiabatic model seems to be more appropriate. Since the DWBA method is too complicated for a general study of the (H, H{sub 2}) reaction, a much simpler approximation method, the “linear model” is developed. This model is very different in concept from treatments in which the three atoms are constrained to move on a line throughout the collision. The present model includes the full three-dimensional aspect of the collision and it is only the evaluation of the transition matrix element itself that is simplified. It is found that the linear model, when appropriately normalized, gives results in good agreement with that of the DWBA method. By application of this model, the energy dependence, rotational state of dependence and other properties of the total and differential reactions cross sections are determined. These results of the quantum mechanical treatment are compared with the classical calculation for the same potential surface. The most important result is that, in agreement with the classical treatment, the differential cross sections are strongly backward peaked at low energies and shifts in the forward direction as the energy increases. Finally, the implications of the present calculations for a theory of chemical kinetics are discussed.

  12. CALCULATION OF STOPPING POWER VALUES AND RANGES OF FAST IONS.

    Energy Science and Technology Software Center (OSTI)

    2003-03-18

    STOPOW calculates a set of stopping power values and ranges of fast ions in matter for any materials. Furthermore STOPOW can calculate a set of values for one special auxiliary function (e.g. kinematic factors, track structure parameters, time of flight or correction factors in the stopping function) . The user chooses the physical units for stopping powers and ranges and the energy range for calculations.

  13. Idaho National Laboratory Radiological Response Training Range draft

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    environmental assessment available for public review and comment Idaho National Laboratory Radiological Response Training Range draft environmental assessment available for public review and comment August 4, 2010 Media contact: Brad Bugger, 208-526-0833 The public is invited to read and comment on a draft environmental assessment that the U.S. Department of Energy has published for a proposed radiological response training range at the Idaho National Laboratory (INL). At the range, INL

  14. Idaho National Laboratory Stand-Off Experiment Range draft environmental

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    assessment available for public review and comment News Media Contact: Tim Jackson (208) 526-8484 For Immediate Release December 22, 2010 Idaho National Laboratory Stand-Off Experiment Range draft environmental assessment available for public review and comment Idaho Falls, ID � The U.S. Department of Energy today published a draft environmental assessment for a proposed Stand-Off Experiment Range at Idaho National Laboratory. �This range would represent an expansion of capability and

  15. Enhancing adaptive sparse grid approximations and improving refinement strategies using adjoint-based a posteriori error estimates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jakeman, J. D.; Wildey, T.

    2015-01-01

    In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity. We show that utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchical surplus based strategies. Throughout this papermore » we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation.« less

  16. Enhancing adaptive sparse grid approximations and improving refinement strategies using adjoint-based a posteriori error estimates

    SciTech Connect (OSTI)

    Jakeman, J.D. Wildey, T.

    2015-01-01

    In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the physical discretization error and the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity of the sparse grid. Utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchical surplus based strategies. Throughout this paper we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation.

  17. Geodetic Survey At Nw Basin & Range Region (Laney, 2005) | Open...

    Open Energy Info (EERE)

    Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geodetic Survey At Nw Basin & Range Region (Laney, 2005) Exploration Activity...

  18. Geodetic Survey At Northern Basin & Range Region (Laney, 2005...

    Open Energy Info (EERE)

    Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geodetic Survey At Northern Basin & Range Region (Laney, 2005) Exploration Activity...

  19. Development of a Thermal Enhancer ’ for Combined Partial Range...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of a Thermal Enhancer for Combined Partial Range Burning and Hydrocarbon Dosing Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research ...

  20. Thermal Gradient Holes At Northern Basin & Range Region (Pritchett...

    Open Energy Info (EERE)

    Date Usefulness not useful DOE-funding Unknown Notes NOTE: These are theoreticalcomputer simulation tests of various methods on eight hypothetical 'model' basing-and-range...

  1. Magnetotellurics At Nw Basin & Range Region (Pritchett, 2004...

    Open Energy Info (EERE)

    Activity Date Usefulness useful DOE-funding Unknown Notes NOTE: These are theoreticalcomputer simulation tests of various methods on eight hypothetical 'model' basing-and-range...

  2. Direct-Current Resistivity Survey At Northern Basin & Range Region...

    Open Energy Info (EERE)

    Activity Date Usefulness useful DOE-funding Unknown Notes NOTE: These are theoreticalcomputer simulation tests of various methods on eight hypothetical 'model' basing-and-range...

  3. Self Potential At Northern Basin & Range Region (Pritchett, 2004...

    Open Energy Info (EERE)

    Activity Date Usefulness useful DOE-funding Unknown Notes NOTE: These are theoreticalcomputer simulation tests of various methods on eight hypothetical 'model' basing-and-range...

  4. Thermal Gradient Holes At Nw Basin & Range Region (Pritchett...

    Open Energy Info (EERE)

    Date Usefulness not useful DOE-funding Unknown Notes NOTE: These are theoreticalcomputer simulation tests of various methods on eight hypothetical 'model' basing-and-range...

  5. Self Potential At Nw Basin & Range Region (Pritchett, 2004) ...

    Open Energy Info (EERE)

    Activity Date Usefulness useful DOE-funding Unknown Notes NOTE: These are theoreticalcomputer simulation tests of various methods on eight hypothetical 'model' basing-and-range...

  6. Modeling-Computer Simulations At Nw Basin & Range Region (Pritchett...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Nw Basin & Range Region (Pritchett, 2004) Exploration Activity Details...

  7. Modeling-Computer Simulations At Nw Basin & Range Region (Biasi...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Nw Basin & Range Region (Biasi, Et Al., 2009) Exploration Activity...

  8. Direct-Current Resistivity Survey At Nw Basin & Range Region...

    Open Energy Info (EERE)

    Activity Date Usefulness useful DOE-funding Unknown Notes NOTE: These are theoreticalcomputer simulation tests of various methods on eight hypothetical 'model' basing-and-range...

  9. Modeling-Computer Simulations At Northern Basin & Range Region...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Northern Basin & Range Region (Biasi, Et Al., 2009) Exploration...

  10. Radar range measurements in the atmosphere. (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Models are presented for calculating atmospheric effects on radar range measurements, and compared against more elaborate atmospheric models. Authors: Doerry, Armin Walter ...

  11. Isotopic Analysis At Northern Basin & Range Region (Cole, 1983...

    Open Energy Info (EERE)

    Cole, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis At Northern Basin & Range Region (Cole, 1983) Exploration Activity...

  12. Geographic Information System At Northern Basin & Range Region...

    Open Energy Info (EERE)

    Nash & Johnson, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Northern Basin & Range Region (Nash &...

  13. Field Mapping At Northern Basin & Range Region (Blewitt Et Al...

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Northern Basin & Range Region (Blewitt Et Al, 2005) Exploration Activity Details...

  14. ETA-TP004 - Electric Vehicle Constant Speed Range Tests

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Appendix A - Maximum Attainable Speed Range Test Data Sheet 18 Appendix B - Calibration of Vehicle Speedometer Test Data Sheet 24 Appendix C - Vehicle Metrology Setup ...

  15. Field Mapping At Northern Basin and Range Geothermal Region ...

    Open Energy Info (EERE)

    extension over broad areas of the northern Basin and Range. References Dumitru, T.; Miller, E.; Savage, C.; Gans, P.; Brown, R. (1 April 1993) Fission track evidence for...

  16. Multispectral Imaging At Rangely Oilfield Area (Pickles & Cover...

    Open Energy Info (EERE)

    Unknown Notes Airborne hyperspectral imaging applied to determine vegetation and CO2 leakage in the Rangely oilfield of northwest Colorado - results may be useful for...

  17. Tonopah Test Range Environmental Restoration Corrective Action Sites

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2010-08-04

    This report describes the status (closed, closed in place, or closure in progress) of the Corrective Action Sites and Corrective Action Units at the Tonopah Test Range

  18. Roel Neggers European Centre for Medium-range Weather Forecasts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transition from shallow to deep convection using a dual mass flux boundary layer scheme Roel Neggers European Centre for Medium-range Weather Forecasts Introduction " " % % &...

  19. Contemporary Strain Rates in the Northern Basin and Range Province...

    Open Energy Info (EERE)

    province using data from continuous GPS (CGPS) networks, supplemented by additional campaign data from the Death Valley, northern Basin and Range, and Sierra Nevada-Great Valley...

  20. Modeling-Computer Simulations At Nw Basin & Range Region (Blackwell...

    Open Energy Info (EERE)

    generic Basin and Range systems based on Dixie Valley data that help to understand the nature of large scale constraints on the location and characteristics of the geothermal...

  1. Modeling-Computer Simulations At Northern Basin & Range Region...

    Open Energy Info (EERE)

    generic Basin and Range systems based on Dixie Valley data that help to understand the nature of large scale constraints on the location and characteristics of the geothermal...

  2. Teleseismic-Seismic Monitoring At Nw Basin & Range Region (Biasi...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Nw Basin & Range Region (Biasi, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  3. Teleseismic-Seismic Monitoring At Northern Basin & Range Region...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Northern Basin & Range Region (Biasi, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  4. Data Acquisition-Manipulation At Nw Basin & Range Region (Blackwell...

    Open Energy Info (EERE)

    References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range...

  5. Data Acquisition-Manipulation At Northern Basin & Range Region...

    Open Energy Info (EERE)

    References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range...

  6. Geothermometry At Nw Basin & Range Region (Shevenell & De Rocher...

    Open Energy Info (EERE)

    Geothermometry At Nw Basin & Range Region (Shevenell & De Rocher, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Nw...

  7. Water Sampling At Northern Basin & Range Region (Laney, 2005...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Northern Basin & Range Region (Laney, 2005) Exploration Activity Details...

  8. Water Sampling At Nw Basin & Range Region (Laney, 2005) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Nw Basin & Range Region (Laney, 2005) Exploration Activity Details...

  9. Hydrothermal Heat Discharge In The Cascade Range, Northwestern...

    Open Energy Info (EERE)

    Heat Discharge In The Cascade Range, Northwestern United States Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Hydrothermal Heat Discharge In...

  10. Geodetic Survey At Nevada Test And Training Range Area (Sabin...

    Open Energy Info (EERE)

    Nevada Test And Training Range Area (Sabin, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geodetic Survey At Nevada Test And...

  11. Geothermometry At Nevada Test And Training Range Area (Sabin...

    Open Energy Info (EERE)

    Nevada Test And Training Range Area (Sabin, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Nevada Test And...

  12. Modeling-Computer Simulations At Nevada Test And Training Range...

    Open Energy Info (EERE)

    Nevada Test And Training Range Area (Sabin, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Nevada...

  13. Geographic Information System At Nevada Test And Training Range...

    Open Energy Info (EERE)

    Nevada Test And Training Range Area (Sabin, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Nevada...

  14. Aerial Photography At Nevada Test And Training Range Area (Sabin...

    Open Energy Info (EERE)

    Nevada Test And Training Range Area (Sabin, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aerial Photography At Nevada Test And...

  15. Dixie Valley - Geothermal Development in the Basin and Range...

    Open Energy Info (EERE)

    Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Dixie Valley - Geothermal Development in the Basin and Range Citation Dixie...

  16. Seismotectonics of the Coso Range-Indian Wells Valley region...

    Open Energy Info (EERE)

    Jeffrey R. Unruh, Egill Hauksson, Francis C. Monastero, Robert J. Twiss and Jonathan C. Lewis. 2002. Seismotectonics of the Coso Range-Indian Wells Valley region, California:...

  17. Data Acquisition-Manipulation At Northern Basin & Range Region...

    Open Energy Info (EERE)

    - 2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Northern Basin & Range Region (Coolbaugh, Et Al., 2005 - 2)...

  18. Data Acquisition-Manipulation At Nw Basin & Range Region (Coolbaugh...

    Open Energy Info (EERE)

    - 2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Nw Basin & Range Region (Coolbaugh, Et Al., 2005 - 2)...

  19. ORISE: Nuclear engineering degrees at highest ranges since 1980s

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rates for nuclear engineering candidates are still at highest ranges reported since 1980s Report also shows shifts in career opportunities beyond graduation in nuclear utilities ...

  20. China Lake South Range Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: China Lake South Range Geothermal Project Project Location Information Coordinates 35.65,...

  1. Contrasting behavior of intermediate-range order structures in...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Contrasting behavior of intermediate-range order structures in jadeite glass and melt Citation Details In-Document Search Title: Contrasting behavior of ...

  2. Geothermal Resource Analysis and Structure of Basin and Range...

    Open Energy Info (EERE)

    Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report:...

  3. Geothermal Resource Analysis And Structure Of Basin And Range...

    Open Energy Info (EERE)

    And Structure Of Basin And Range Systems, Especially Dixie Valley Geothermal Field, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geothermal...

  4. Kinematic model for postorogenic Basin and Range extension |...

    Open Energy Info (EERE)

    Article: Kinematic model for postorogenic Basin and Range extension Abstract The Raft River extensional shear zone is exposed in the Albion-Raft River-Grouse Creek...

  5. Improving Efficiency and Load Range of Boosted HCCI using Partial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Stratification with Conventional Gasoline Improving Efficiency and Load Range of Boosted HCCI using Partial Fuel Stratification with Conventional Gasoline Explores the ...

  6. High Island Densities and Long Range Repulsive Interactions:...

    Office of Scientific and Technical Information (OSTI)

    long range repulsive interactions. Kinetic Monte Carlo simulations and density functional theory calculations support this conclusion. In addition to answering an outstanding...

  7. Isotopic Analysis At Nw Basin & Range Region (Laney, 2005) |...

    Open Energy Info (EERE)

    Location Northwest Basin and Range Geothermal Region Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes...

  8. Compound and Elemental Analysis At Nw Basin & Range Region (Laney...

    Open Energy Info (EERE)

    Northwest Basin and Range Geothermal Region Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical...

  9. Compound and Elemental Analysis At Northern Basin & Range Region...

    Open Energy Info (EERE)

    Northern Basin and Range Geothermal Region Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical...

  10. Isotopic Analysis At Northern Basin & Range Region (Laney, 2005...

    Open Energy Info (EERE)

    Location Northern Basin and Range Geothermal Region Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes...

  11. Micro-Earthquake At Northwest Basin and Range Geothermal Region...

    Open Energy Info (EERE)

    Micro-Earthquake At Northwest Basin and Range Geothermal Region (1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At...

  12. EV Everywhere: Maximizing Electric Cars' Range in Extreme Temperatures

    Broader source: Energy.gov [DOE]

    As with conventional vehicles, the efficiency and all-electric driving range of plug-in electric vehicles (also known as electric cars or EVs) varies substantially based on driving conditions and habits. Using the economy mode, avoiding hard braking, using accessories wisely, and observing the speed limit will help EV drivers maximize their all-electric range.

  13. Decreasing range resolution of a SAR image to permit correction of motion measurement errors beyond the SAR range resolution

    DOE Patents [OSTI]

    Doerry, Armin W. (Albuquerque, NM); Heard, Freddie E. (Albuquerque, NM); Cordaro, J. Thomas (Albuquerque, NM)

    2010-07-20

    Motion measurement errors that extend beyond the range resolution of a synthetic aperture radar (SAR) can be corrected by effectively decreasing the range resolution of the SAR in order to permit measurement of the error. Range profiles can be compared across the slow-time dimension of the input data in order to estimate the error. Once the error has been determined, appropriate frequency and phase correction can be applied to the uncompressed input data, after which range and azimuth compression can be performed to produce a desired SAR image.

  14. Rocky Flats Plant Live-Fire Range Risk Analysis Report

    SciTech Connect (OSTI)

    Nicolosi, S.L.; Rodriguez, M.A.

    1994-04-01

    The objective of the Live-Fire Range Risk Analysis Report (RAR) is to provide an authorization basis for operation as required by DOE 5480.16. The existing Live-Fire Range does not have a safety analysis-related authorization basis. EG&G Rocky Flats, Inc. has worked with DOE and its representatives to develop a format and content description for development of an RAR for the Live-Fire Range. Development of the RAR is closely aligned with development of the design for a baffle system to control risks from errant projectiles. DOE 5480.16 requires either an RAR or a safety analysis report (SAR) for live-fire ranges. An RAR rather than a SAR was selected in order to gain flexibility to more closely address the safety analysis and conduct of operation needs for a live-fire range in a cost-effective manner.

  15. Radioactive waste management integrated data base: a bibliography. [Approximately 1100 references

    SciTech Connect (OSTI)

    Johnson, C.A.; Garland, P.A.

    1980-09-01

    The purpose of this indexed bibliography is to organize and collect the literature references on waste generation and treatment, characteristics, inventories, and costs. The references were captured into a searchable information file, and the information file was sorted, indexed, and printed for this bibliography. A completion of approximately 1100 references to nuclear waste management, the first of a series, is completed. Each reference is categorized by waste origin (commercial, defense, institutional, and foreign) and by subject area: (1) high-level wastes, (2) low-level wastes, (3) TRU wastes, (4) airborne wastes, (5) remedial action (formerly utilized sites, surplus facilities, and mill tailings), (6) isolation, (7) transportation, (8) spent fuel, (9) fuel cycle centers, and (10) a general category that covers nonspecific wastes. Five indexes are provided to assist the user in locating documents of interest: author, author affiliation (corporate authority), subject category, keyword, and permuted title. Machine (computer) searches of these indexes can be made specifying multiple constraints if so desired. This bibliography will be periodically updated as new information becomes available. In addition to being used in searches for specific data, the information file can also be used for resource document collection, names and addresses of contacts, and identification of potential sources of data.

  16. Semi-quartic force fields retrieved from multi-mode expansions: Accuracy, scaling behavior, and approximations

    SciTech Connect (OSTI)

    Ramakrishnan, Raghunathan; Rauhut, Guntram

    2015-04-21

    Semi-quartic force fields (QFF) rely on a Taylor-expansion of the multi-dimensional Born-Oppenheimer potential energy surface (PES) and are frequently used within the calculation of anharmonic vibrational frequencies based on 2nd order vibrational perturbation theory (VPT2). As such they are usually determined by differentiation of the electronic energy with respect to the nuclear coordinates. Alternatively, potential energy surfaces can be expanded in terms of multi-mode expansions, which typically do not require any derivative techniques. The computational effort to retrieve QFF from size-reduced multi-mode expansions has been studied and has been compared with standard Taylor-expansions. As multi-mode expansions allow for the convenient introduction of subtle approximations, these will be discussed in some detail. In addition, a preliminary study about the applicability of a generalized Duschinsky transformation to QFFs is provided. This transformation allows for the efficient evaluation of VPT2 frequencies of isotopologues from the PES of the parent compound and thus avoids the recalculation of PESs in different axes systems.

  17. Particle-number conservation in static-path approximation for thermal superfluid systems

    SciTech Connect (OSTI)

    Kaneko, K.; Schiller, A.

    2007-12-15

    By applying particle-number projection to the static-path approximation (SPA), the heat capacity and the breakdown of pairing correlations are investigated in the thermally excited, superfluid systems {sup 172}Yb, {sup 94}Mo, and {sup 56}Fe. For the heavy nucleus {sup 172}Yb, the heat capacities in both the SPA and the number-projected SPA (NPSPA) exhibit an S shape; the difference between the SPA and NPSPA heat-capacity curves is not very large and the particle-number projection thereby enhances the S shape already seen in the SPA. The temperature at which the S-shape of heat capacity curve occurs parallels the temperature of the breakdown of pairing correlations as indicated by the effective pairing gap. However, for the comparatively lighter nuclei {sup 94}Mo and {sup 56}Fe, the SPA does not produce an S-shaped heat capacity on its own; only after particle-number projection the S shape appears in the heat-capacity curve. For {sup 94}Mo, we compare the NPSPA result with thermal odd-even mass differences, which are regarded as a direct measure of the pairing gap.

  18. Description of thermal entanglement with the static path plus random-phase approximation

    SciTech Connect (OSTI)

    Canosa, N.; Matera, J. M.; Rossignoli, R.

    2007-08-15

    We discuss the application of the static path plus random-phase approximation (SPA+RPA) and the ensuing mean field+RPA treatment to the evaluation of entanglement in composite quantum systems at finite temperature. These methods involve just local diagonalizations and the determination of the generalized collective vibrational frequencies. As an illustration, we evaluate the pairwise entanglement in a fully connected XXZ chain of n spins at finite temperature in a transverse magnetic field b. It is shown that already the mean field+RPA provides an accurate analytic description of the concurrence below the mean field critical region (vertical bar b vertical bar 0 weak entanglement also arises when the ground state is separable (vertical bar b vertical bar >b{sub c}), with the limit temperature for pairwise entanglement exhibiting quite distinct regimes for vertical bar b vertical bar b{sub c}.

  19. Investigation of approximations in thermal-hydraulic modeling of core conversions

    SciTech Connect (OSTI)

    Garner, Patrick L.; Hanan, Nelson A.

    2008-07-15

    Neutronics analyses for core conversions are usually fairly detailed, for example representing all 4 flats and all 4 corners of all 6 tubes of all 20 IRT-3M or -4M fuel assemblies in the core of the VVR-SM reactor in Uzbekistan. The coupled neutronics and thermal-hydraulic analysis for safety analysis transients is usually less detailed, for example modeling only a hot and an average fuel plate and the associated coolant. Several of the approximations have been studied using the RELAP5 and PARET computer codes in order to provide assurance that the lack of full detail is not important to the safety analysis. Two specific cases studied are (1) representation of a core of same- type fuel assemblies by a hot and an average assembly each having multiple channels as well as by merely a hot and average channel and (2) modeling a core containing multiple fuel types as the sum of fractional core models for each fuel type. (author)

  20. Prioritizing the purchase of spare parts using an approximate reasoning models.

    SciTech Connect (OSTI)

    Eisenhawer, S. W.; Bott, T. F.; Jackson, J. W.

    2001-01-01

    The complexity of a spare parts prioritization model should be consonant with the amount and quality of data available to populate it. When production processes are new and the reliability database is sparse and represents primarily expert knowledge, an approximate reasoning (AR) based model is appropriate. AR models are designed to emulate the inferential processes used by experts in making judgments. We have designed and tested such a model for the planned component production process for nuclear weapons at Los Alamos National Laboratory. The model successfully represents the experts knowledge concerning the frequency and consequences of a part failure. The use of linguistic variables provides an adaptable format for eliciting this knowledge and providing a consistent brisis for valuing the effect on production of different parts. Ranking the parts for inclusion in a spare parts inventory is a straightforward transformation of the AR output. The basis for this ranking is directly traceable to the elicitation results. AR-based models are well-suited to prioritization problems with these characteristics.

  1. Linear-scaling implementation of the direct random-phase approximation

    SciTech Connect (OSTI)

    Kllay, Mihly

    2015-05-28

    We report the linear-scaling implementation of the direct random-phase approximation (dRPA) for closed-shell molecular systems. As a bonus, linear-scaling algorithms are also presented for the second-order screened exchange extension of dRPA as well as for the second-order MllerPlesset (MP2) method and its spin-scaled variants. Our approach is based on an incremental scheme which is an extension of our previous local correlation method [Rolik et al., J. Chem. Phys. 139, 094105 (2013)]. The approach extensively uses local natural orbitals to reduce the size of the molecular orbital basis of local correlation domains. In addition, we also demonstrate that using natural auxiliary functions [M. Kllay, J. Chem. Phys. 141, 244113 (2014)], the size of the auxiliary basis of the domains and thus that of the three-center Coulomb integral lists can be reduced by an order of magnitude, which results in significant savings in computation time. The new approach is validated by extensive test calculations for energies and energy differences. Our benchmark calculations also demonstrate that the new method enables dRPA calculations for molecules with more than 1000 atoms and 10?000 basis functions on a single processor.

  2. Proposal for determining the energy content of gravitational waves by using approximate symmetries of differential equations

    SciTech Connect (OSTI)

    Hussain, Ibrar; Qadir, Asghar; Mahomed, F. M.

    2009-06-15

    Since gravitational wave spacetimes are time-varying vacuum solutions of Einstein's field equations, there is no unambiguous means to define their energy content. However, Weber and Wheeler had demonstrated that they do impart energy to test particles. There have been various proposals to define the energy content, but they have not met with great success. Here we propose a definition using 'slightly broken' Noether symmetries. We check whether this definition is physically acceptable. The procedure adopted is to appeal to 'approximate symmetries' as defined in Lie analysis and use them in the limit of the exact symmetry holding. A problem is noted with the use of the proposal for plane-fronted gravitational waves. To attain a better understanding of the implications of this proposal we also use an artificially constructed time-varying nonvacuum metric and evaluate its Weyl and stress-energy tensors so as to obtain the gravitational and matter components separately and compare them with the energy content obtained by our proposal. The procedure is also used for cylindrical gravitational wave solutions. The usefulness of the definition is demonstrated by the fact that it leads to a result on whether gravitational waves suffer self-damping.

  3. Relativistic Coulomb excitation within the time dependent superfluid local density approximation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stetcu, I.; Bertulani, C. A.; Bulgac, A.; Magierski, P.; Roche, K. J.

    2015-01-06

    Within the framework of the unrestricted time-dependent density functional theory, we present for the first time an analysis of the relativistic Coulomb excitation of the heavy deformed open shell nucleus 238U. The approach is based on the superfluid local density approximation formulated on a spatial lattice that can take into account coupling to the continuum, enabling self-consistent studies of superfluid dynamics of any nuclear shape. We compute the energy deposited in the target nucleus as a function of the impact parameter, finding it to be significantly larger than the estimate using the Goldhaber-Teller model. The isovector giant dipole resonance, themore » dipole pygmy resonance, and giant quadrupole modes are excited during the process. As a result, the one-body dissipation of collective dipole modes is shown to lead a damping width Γ↓≈0.4 MeV and the number of preequilibrium neutrons emitted has been quantified.« less

  4. Regional Economic Accounting (REAcct). A software tool for rapidly approximating economic impacts

    SciTech Connect (OSTI)

    Ehlen, Mark Andrew; Vargas, Vanessa N.; Loose, Verne William; Starks, Shirley J.; Ellebracht, Lory A.

    2011-07-01

    This paper describes the Regional Economic Accounting (REAcct) analysis tool that has been in use for the last 5 years to rapidly estimate approximate economic impacts for disruptions due to natural or manmade events. It is based on and derived from the well-known and extensively documented input-output modeling technique initially presented by Leontief and more recently further developed by numerous contributors. REAcct provides county-level economic impact estimates in terms of gross domestic product (GDP) and employment for any area in the United States. The process for using REAcct incorporates geospatial computational tools and site-specific economic data, permitting the identification of geographic impact zones that allow differential magnitude and duration estimates to be specified for regions affected by a simulated or actual event. Using these data as input to REAcct, the number of employees for 39 directly affected economic sectors (including 37 industry production sectors and 2 government sectors) are calculated and aggregated to provide direct impact estimates. Indirect estimates are then calculated using Regional Input-Output Modeling System (RIMS II) multipliers. The interdependent relationships between critical infrastructures, industries, and markets are captured by the relationships embedded in the inputoutput modeling structure.

  5. Land cover classification in multispectral imagery using clustering of sparse approximations over learned feature dictionaries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Moody, Daniela I.; Brumby, Steven P.; Rowland, Joel C.; Altmann, Garrett L.

    2014-12-09

    We present results from an ongoing effort to extend neuromimetic machine vision algorithms to multispectral data using adaptive signal processing combined with compressive sensing and machine learning techniques. Our goal is to develop a robust classification methodology that will allow for automated discretization of the landscape into distinct units based on attributes such as vegetation, surface hydrological properties, and topographic/geomorphic characteristics. We use a Hebbian learning rule to build spectral-textural dictionaries that are tailored for classification. We learn our dictionaries from millions of overlapping multispectral image patches and then use a pursuit search to generate classification features. Land cover labelsmore » are automatically generated using unsupervised clustering of sparse approximations (CoSA). We demonstrate our method on multispectral WorldView-2 data from a coastal plain ecosystem in Barrow, Alaska. We explore learning from both raw multispectral imagery and normalized band difference indices. We explore a quantitative metric to evaluate the spectral properties of the clusters in order to potentially aid in assigning land cover categories to the cluster labels. In this study, our results suggest CoSA is a promising approach to unsupervised land cover classification in high-resolution satellite imagery.« less

  6. On the relationships between the Michaelis–Menten kinetics, reverse Michaelis–Menten kinetics, equilibrium chemistry approximation kinetics, and quadratic kinetics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tang, J. Y.

    2015-12-01

    The Michaelis–Menten kinetics and the reverse Michaelis–Menten kinetics are two popular mathematical formulations used in many land biogeochemical models to describe how microbes and plants would respond to changes in substrate abundance. However, the criteria of when to use either of the two are often ambiguous. Here I show that these two kinetics are special approximations to the equilibrium chemistry approximation (ECA) kinetics, which is the first-order approximation to the quadratic kinetics that solves the equation of an enzyme–substrate complex exactly for a single-enzyme and single-substrate biogeochemical reaction with the law of mass action and the assumption of a quasi-steadymore » state for the enzyme–substrate complex and that the product genesis from enzyme–substrate complex is much slower than the equilibration between enzyme–substrate complexes, substrates, and enzymes. In particular, I show that the derivation of the Michaelis–Menten kinetics does not consider the mass balance constraint of the substrate, and the reverse Michaelis–Menten kinetics does not consider the mass balance constraint of the enzyme, whereas both of these constraints are taken into account in deriving the equilibrium chemistry approximation kinetics. By benchmarking against predictions from the quadratic kinetics for a wide range of substrate and enzyme concentrations, the Michaelis–Menten kinetics was found to persistently underpredict the normalized sensitivity ∂ ln v / ∂ ln k2+ of the reaction velocity v with respect to the maximum product genesis rate k2+, persistently overpredict the normalized sensitivity ∂ ln v / ∂ ln k1+ of v with respect to the intrinsic substrate affinity k1+, persistently overpredict the normalized sensitivity ∂ ln v / ∂ ln [E]T of v with respect the total enzyme concentration [E]T, and persistently underpredict the normalized sensitivity ∂ ln v / ∂ ln [S]T of v with respect to the total substrate concentration

  7. Short-range ordering of ion-implanted nitrogen atoms in SiC-graphene

    SciTech Connect (OSTI)

    Willke, P.; Druga, T.; Wenderoth, M.; Amani, J. A.; Weikert, S.; Hofsss, H.; Thakur, S.; Maiti, K.

    2014-09-15

    We perform a structural analysis of nitrogen-doped graphene on SiC(0001) prepared by ultra low-energy ion bombardment. Using scanning tunneling microscopy, we show that nitrogen atoms are incorporated almost exclusively as graphitic substitution in the graphene honeycomb lattice. With an irradiation energy of 25?eV and a fluence of approximately 5??10{sup 14?}cm{sup ?2}, we achieve a nitrogen content of around 1%. By quantitatively comparing the position of the N-atoms in the topography measurements with simulated random distributions, we find statistically significant short-range correlations. Consequently, we are able to show that the dopants arrange preferably at lattice sites given by the 6??6-reconstruction of the underlying substrate. This selective incorporation is most likely triggered by adsorbate layers present during the ion bombardment. This study identifies low-energy ion irradiation as a promising method for controlled doping in epitaxial graphene.

  8. Clutter in the GMTI range-velocity map.

    SciTech Connect (OSTI)

    Doerry, Armin Walter

    2009-04-01

    Ground Moving Target Indicator (GMTI) radar maps echo data to range and range-rate, which is a function of a moving target's velocity and its position within the antenna beam footprint. Even stationary clutter will exhibit an apparent motion spectrum and can interfere with moving vehicle detections. Consequently it is very important for a radar to understand how stationary clutter maps into radar measurements of range and velocity. This mapping depends on a wide variety of factors, including details of the radar motion, orientation, and the 3-D topography of the clutter.

  9. Methods, systems and apparatus for approximation of peak summed fundamental and third harmonic voltages in a multi-phase machine

    DOE Patents [OSTI]

    Ransom, Ray M.; Gallegos-Lopez, Gabriel; Kinoshita, Michael H.

    2012-07-31

    Methods, system and apparatus are provided for quickly approximating a peak summed magnitude (A) of a phase voltage (Vph) waveform in a multi-phase system that implements third harmonic injection.

  10. 0{sup +} states in the large boson number limit of the Interacting Boson Approximation model

    SciTech Connect (OSTI)

    Bonatsos, Dennis; McCutchan, E. A.; Casten, R. F.

    2008-11-11

    Studies of the Interacting Boson Approximation (IBA) model for large boson numbers have been triggered by the discovery of shape/phase transitions between different limiting symmetries of the model. These transitions become sharper in the large boson number limit, revealing previously unnoticed regularities, which also survive to a large extent for finite boson numbers, corresponding to valence nucleon pairs in collective nuclei. It is shown that energies of 0{sub n}{sup +} states grow linearly with their ordinal number n in all three limiting symmetries of IBA [U(5), SU(3), and O(6)]. Furthermore, it is proved that the narrow transition region separating the symmetry triangle of the IBA into a spherical and a deformed region is described quite well by the degeneracies E(0{sub 2}{sup +}) = E(6{sub 1}{sup +}, E(0{sub 3}{sup +}) = E(10{sub 1}{sup +}), E(0{sub 4}{sup +}) = E(14{sub 1}{sup +}, while the energy ratio E(6{sub 1}{sup +})/E(0{sub 2}{sup +} turns out to be a simple, empirical, easy-to-measure effective order parameter, distinguishing between first- and second-order transitions. The energies of 0{sub n}{sup +} states near the point of the first order shape/phase transition between U(5) and SU(3) are shown to grow as n(n+3), in agreement with the rule dictated by the relevant critical point symmetries resulting in the framework of special solutions of the Bohr Hamiltonian. The underlying partial dynamical symmetries and quasi-dynamical symmetries are also discussed.

  11. Second Argonne theory institute on differentiation of computational approximations of functions.

    SciTech Connect (OSTI)

    Bischof, C.H.; Eberhard, P.; Hovland, P.D.

    1998-10-09

    A Theory Institute on ''Differentiation of Computational Approximations to Functions'' was held at Argonne National Laboratory on May 18--20, 1998. The institute was organized by Christian Bischof and Paul Hovland of the Mathematics and Computer Science Division at Argonne National Laboratory. The Theory Institute brought together 38 researchers from the US, Great Britain, France, and Germany. Mathematicians, computer scientists, physicists, and engineers from diverse disciplines discussed advances in automatic differentiation (AD) theory and software and described benefits from applying AD methods in application areas. These areas include fluid mechanics, structural engineering, optimization, meteorology, and computational mathematics for the solution of ordinary differential equations (ODEs) or differential algebraic equations (DAEs). This meeting was the fourth workshop dedicated to automatic differentiation. Earlier meetings were the 1991 SIAM conference in Breckenridge, Colorado; the first Argonne Theory Institute on computational differentiation in 1993; and the 1996 SIAM conference in Santa Fe, New Mexico. AD methods can be used whenever gradient information or higher-order derivative information must be computed. The problem is defined by a computer program (without gradient information) that is able to compute numerical values of some output variables for a given set of input variables. As a result of applying AD methods to this computer program, a new computer program is generated automatically to compute the derivatives of the output variables with respect to the input variables. This at first glance, astonishing fact can be easily understood by viewing the program from a compiler angle. A complicated computational sequence is split into a sequence of simple operations. Then, to compute the gradients, the chain rule of differentiation is applied successively to this sequence completely automatically. The resultant gradients are accurate up to roundoff

  12. ANALYTICAL MODELS OF EXOPLANETARY ATMOSPHERES. II. RADIATIVE TRANSFER VIA THE TWO-STREAM APPROXIMATION

    SciTech Connect (OSTI)

    Heng, Kevin; Mendonça, João M.; Lee, Jae-Min E-mail: joao.mendonca@csh.unibe.ch

    2014-11-01

    We present a comprehensive analytical study of radiative transfer using the method of moments and include the effects of non-isotropic scattering in the coherent limit. Within this unified formalism, we derive the governing equations and solutions describing two-stream radiative transfer (which approximates the passage of radiation as a pair of outgoing and incoming fluxes), flux-limited diffusion (which describes radiative transfer in the deep interior), and solutions for the temperature-pressure profiles. Generally, the problem is mathematically underdetermined unless a set of closures (Eddington coefficients) is specified. We demonstrate that the hemispheric (or hemi-isotropic) closure naturally derives from the radiative transfer equation if energy conservation is obeyed, while the Eddington closure produces spurious enhancements of both reflected light and thermal emission. We concoct recipes for implementing two-stream radiative transfer in stand-alone numerical calculations and general circulation models. We use our two-stream solutions to construct toy models of the runaway greenhouse effect. We present a new solution for temperature-pressure profiles with a non-constant optical opacity and elucidate the effects of non-isotropic scattering in the optical and infrared. We derive generalized expressions for the spherical and Bond albedos and the photon deposition depth. We demonstrate that the value of the optical depth corresponding to the photosphere is not always 2/3 (Milne's solution) and depends on a combination of stellar irradiation, internal heat, and the properties of scattering in both the optical and infrared. Finally, we derive generalized expressions for the total, net, outgoing, and incoming fluxes in the convective regime.

  13. Vibrational coherence and energy transfer in two-dimensional spectra with the optimized mean-trajectory approximation

    SciTech Connect (OSTI)

    Alemi, Mallory; Loring, Roger F.

    2015-06-07

    The optimized mean-trajectory (OMT) approximation is a semiclassical method for computing vibrational response functions from action-quantized classical trajectories connected by discrete transitions that represent radiation-matter interactions. Here, we extend the OMT to include additional vibrational coherence and energy transfer processes. This generalized approximation is applied to a pair of anharmonic chromophores coupled to a bath. The resulting 2D spectra are shown to reflect coherence transfer between normal modes.

  14. Multi-dimensional position sensor using range detectors

    DOE Patents [OSTI]

    Vann, Charles S.

    2000-01-01

    A small, non-contact optical sensor uses ranges and images to detect its relative position to an object in up to six degrees of freedom. The sensor has three light emitting range detectors which illuminate a target and can be used to determine distance and two tilt angles. A camera located between the three range detectors senses the three remaining degrees of freedom, two translations and one rotation. Various range detectors, with different light sources, e.g. lasers and LEDs, different collection options, and different detection schemes, e.g. diminishing return and time of flight can be used. This sensor increases the capability and flexibility of computer controlled machines, e.g. it can instruct a robot how to adjust automatically to different positions and orientations of a part.

  15. EV Everywhere: Maximizing All-Electric Range | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reduced all-electric range in a plug-in hybrid electric vehicle will result in the internal combustion engine turning on more quickly, increasing fuel cost and emissions. There are ...

  16. Notice of Compliance Determination for Viking Range Corporation

    Broader source: Energy.gov [DOE]

    DOE issued a data request to Viking Range Corporation (Viking) in response to information received by DOE indicating that Viking's refrigerator-freezer, model VCSB542, exceeds the applicable...

  17. Structure, tectonics and stress field of the Coso Range, Inyo...

    Open Energy Info (EERE)

    tectonics and stress field of the Coso Range, Inyo County, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Structure, tectonics and...

  18. Seismicity and seismic stress in the Coso Range, Coso geothermal...

    Open Energy Info (EERE)

    and seismic stress in the Coso Range, Coso geothermal field, and Indian Wells Valley region, Southeast-Central California Jump to: navigation, search OpenEI Reference LibraryAdd to...

  19. Diachroneity of Basin and Range Extension and Yellowstone Hotspot...

    Open Energy Info (EERE)

    Basin and Range Province. Authors Joseph P. Colgan, Trevor A. Dumitru and Elizabeth L. Miller Published Journal Geology, 2004 DOI 10.1130G20037.1 Online Internet link for...

  20. Tonopah Test Range Summary of Corrective Action Units

    SciTech Connect (OSTI)

    Ronald B. Jackson

    2007-05-01

    Corrective Action Sites (CASs) and Corrective Action Units (CAUs) at the Tonopah Test Range (TTR) may be placed into three categories: Clean Closure/No Further Action, Closure in Place, or Closure in Progress.

  1. Characteristics of Basin and Range Geothermal Systems with Fluid...

    Open Energy Info (EERE)

    of 150-200C have been discovered in the northern Basin and Range Province of the USA. A comparison of these high and moderate temperature systems shows considerable overlap...

  2. Nanomaterial Applications Range From Eyeliner to Turbines | GE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jet-engine turbine blades are made of Ni-base superalloys, containing precipitate particles in the size ranges of (400-600) nm.These nano-precipitates (called g') attribute to the ...

  3. Interim report on long range plan for nuclear physics

    SciTech Connect (OSTI)

    1995-04-01

    The interim report on the updated NSAC Long Range Plan for Nuclear Physics will be presented to the community for discussion and comment before submission to the funding agencies. The presentation will be coordinated by E. Moniz chair of NSAC.

  4. Reconciliation of local and long range tilt correlations in underdoped...

    Office of Scientific and Technical Information (OSTI)

    powder diffraction and inelastic neutron scattering (INS) approaches. Long-range and static CuO tilt order with orthogonally inequivalent Cu-O bonds in the CuO planes in...

  5. Cenozoic volcanic geology of the Basin and Range province in...

    Open Energy Info (EERE)

    the Basin and Range province in Hidalgo County, southwestern New Mexico Authors Deal, E. G., Elston, W.E., Erb, E. E., Peterson, S. L., & Reiter and D. E. Conference 29th Field...

  6. New Compressor Concept Improves Efficiency and Operation Range | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Compressor Concept Improves Efficiency and Operation Range New Compressor Concept Improves Efficiency and Operation Range Advanced turbocharger compressor design with active casing treatment and advanced mixed flow turbine design provided improved performance and efficiency over the base turbocharger deer12_sun.pdf (1.15 MB) More Documents & Publications Advanced Boost System Development for Diesel HCCI/LTC Application Optimization of a turbocharger for high EGR applications

  7. Analyses Guided Optimization of Wide Range and High Efficiency Turbocharger

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compressor | Department of Energy Analyses Guided Optimization of Wide Range and High Efficiency Turbocharger Compressor Analyses Guided Optimization of Wide Range and High Efficiency Turbocharger Compressor Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. deer10_sun.pdf (999.91 KB) More Documents & Publications Advanced boost system development for diesel HCCI/LTC applications Optimization of a

  8. Correction of the near threshold behavior of electron collisional excitation cross-sections in the plane-wave Born approximation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kilcrease, D. P.; Brookes, S.

    2013-08-19

    The modeling of NLTE plasmas requires the solution of population rate equations to determine the populations of the various atomic levels relevant to a particular problem. The equations require many cross sections for excitation, de-excitation, ionization and recombination. Additionally, a simple and computational fast way to calculate electron collisional excitation cross-sections for ions is by using the plane-wave Born approximation. This is essentially a high-energy approximation and the cross section suffers from the unphysical problem of going to zero near threshold. Various remedies for this problem have been employed with varying degrees of success. We present a correction procedure formore » the Born cross-sections that employs the Elwert–Sommerfeld factor to correct for the use of plane waves instead of Coulomb waves in an attempt to produce a cross-section similar to that from using the more time consuming Coulomb Born approximation. We compare this new approximation with other, often employed correction procedures. Furthermore, we also look at some further modifications to our Born Elwert procedure and its combination with Y.K. Kim's correction of the Coulomb Born approximation for singly charged ions that more accurately approximate convergent close coupling calculations.« less

  9. Hard probes of short-range nucleon-nucleon correlations

    SciTech Connect (OSTI)

    J. Arrington, D. W. Higinbotham, G. Rosner, M. Sargsian

    2012-10-01

    The strong interaction of nucleons at short distances leads to a high-momentum component to the nuclear wave function, associated with short-range correlations between nucleons. These short-range, high-momentum structures in nuclei are one of the least well understood aspects of nuclear matter, relating to strength outside of the typical mean-field approaches to calculating the structure of nuclei. While it is difficult to study these short-range components, significant progress has been made over the last decade in determining how to cleanly isolate short-range correlations in nuclei. We have moved from asking if such structures exist, to mapping out their strength in nuclei and studying their microscopic structure. A combination of several different measurements, made possible by high-luminosity and high-energy accelerators, coupled with an improved understanding of the reaction mechanism issues involved in studying these structures, has led to significant progress, and provided significant new information on the nature of these small, highly-excited structures in nuclei. We review the general issues related to short-range correlations, survey recent experiments aimed at probing these short-range structures, and lay out future possibilities to further these studies.

  10. Short-range nuclear forces in singlet channels

    SciTech Connect (OSTI)

    Bingwei Long, Chiehjen Yang

    2012-08-01

    Continuing our effort to build a consistent power counting for chiral nuclear effective field theory, we discuss the subleading contact interactions, or counterterms, in the singlet channels of nucleon-nucleon scattering, with renormalization group invariance as the constraint. We argue that the rather large cutoff error of the leading amplitude requires O(Q) of the low-energy approximation to be non-vanishing, contrary to Weinberg's original power counting. This, together with the ultraviolet divergences of two pion exchanges in distorted-wave expansion, leads to enhancement of the 1S0 counterterms and results in a pionless theory-like power counting for the singlet channels.

  11. Tonopah Test Range Air Monitoring: CY2013 Meteorological, Radiological, and Airborne Particulate Observations

    SciTech Connect (OSTI)

    Mizell, Steve A; Nikolich, George; Shadel, Craig; McCurdy, Greg; Etyemezian, Vicken; Miller, Julianne J

    2014-10-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). This test resulted in radionuclide-contaminated soils at Clean Slate I, II, and III. This report documents observations made during on-going monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III and at the TTR Range Operations Control center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soils beyond both the physical and administrative boundaries of the sites. Results for the calendar year (CY) 2013 monitoring include: (1) the gross alpha and gross beta values from the monitoring stations are approximately equivalent to the highest values observed during the CY2012 reporting at the surrounding Community Environmental Monitoring Program (CEMP) stations (this was the latest documented data available at the time of this writing); (2) only naturally occurring radionuclides were identified in the gamma spectral analyses; (3) the ambient gamma radiation measurements indicate that the average annual gamma exposure is similar at all three monitoring stations and periodic intervals of increased gamma values appear to be associated with storm fronts passing through the area; and (4) the concentrations of both resuspended dust and saltated sand particles generally increase with increasing wind speed. However, differences in the observed dust concentrations are likely due to differences in the soil characteristics immediately adjacent to the monitoring stations. Neither the resuspended particulate radiological analyses nor the ambient gamma radiation measurements suggest wind transport of radionuclide-contaminated soils.

  12. Tonopah Test Range Air Monitoring. CY2014 Meteorological, Radiological, and Airborne Particulate Observations

    SciTech Connect (OSTI)

    Nikoloch, George; Shadel, Craig; Chapman, Jenny; Mizell, Steve A.; McCurdy, Greg; Etyemezian, Vicken; Miller, Julianne J.

    2015-10-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). This test resulted in radionuclide-contaminated soils at Clean Slate I, II, and III. This report documents observations made during ongoing monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III and at the TTR Range Operations Control center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soils beyond both the physical and administrative boundaries of the sites. Results for the calendar year (CY) 2014 monitoring are: (1) the gross alpha and gross beta values from the monitoring stations are approximately equivalent to the highest values observed during the CY2014 reporting at the surrounding Community Environmental Monitoring Program (CEMP) stations; (2) only naturally occurring radionuclides were identified in the gamma spectral analyses; (3) the ambient gamma radiation measurements indicate that the average annual gamma exposure is similar at all three monitoring stations and periodic intervals of increased gamma values appear to be associated with storm fronts passing through the area; and (4) the concentrations of both resuspended dust and saltated sand particles generally increase with increasing wind speed. Differences in the observed dust concentrations are likely the result of differences in the soil characteristics immediately adjacent to the monitoring stations. Neither the resuspended particulate radiological analyses nor the ambient gamma radiation measurements suggest wind transport of radionuclide-contaminated soils.

  13. Late Cenozoic volcanism in the Lassen area, southernmost Cascade Range, California

    SciTech Connect (OSTI)

    Clynne, M.A.; Muffler, L.J.P.; Dalrymple, G.B. )

    1993-04-01

    Volcanism in the southernmost Cascade Range can be characterized on two scales. Regional volcanism is predominantly basaltic to andesitic, and hundreds of coalescing volcanoes of small volume (10[sup [minus]3] to 10[sup 1] km[sup 3]) with short lifetimes have built a broad platform. Superimposed on the regional volcanism are a few long-lived ([approximately]10[sup 6] years) much larger (>10 [sup 2] km[sup 3]) volcanic centers. Each of these larger centers consists of a basaltic-andesite to andesite composite cone and flanking silicic domes and flows. The evolution of these volcanic centers conforms to a generalized three-stage model during which a conspicuous edifice is constructed. Stages 1 and 2 comprise a dominantly andesitic composite cone; Stage 3 marks a change to dominantly silicic volcanism and is accompanied by development of a hydrothermal system in the permeable core of the andesitic composite cone. Subsequent fluvial and glacial erosion produces a caldera-like depression with a topographically high resistant rim of Stage 2 lavas surrounding the deeply eroded, hydrothermally altered core of the composite cone. Two types of basalt are recognized in the southernmost Cascades; medium-K calc-alkaline (CAB) and low-K olivine tholeiite (LKOT). CAB exhibits considerable geochemical diversity and is the parent magma for the volcanic-center lavas and the majority of the evolved regional lavas. LKOT is chemically homogeneous, and outcrops sporadically in association with extensional tectonics of the Basin and Range Province, and is related to Pleistocene encroachment of Basin-and-Range tectonics on the subduction-related volcanism of the Cascade Range.

  14. A Comparison of Short Rayleigh Range FEL Performance with Simulations

    SciTech Connect (OSTI)

    Benson, Stephen; Evtushenko, Pavel; Michelle D. Shinn; Neil, George; Blau, Joe; Burggraff, D.; Colson, William; Crooker, P.P.; Sans Aguilar, J.

    2007-08-01

    One approach to attaining very high power in a free-electron laser (FEL) is to operate with a Rayleigh range much smaller than the wiggler length. Previously, 3D simulations of Free-electron laser (FEL) oscillators showed that FEL gain doesn't fall off with Rayleigh range as predicted by one-dimensional simulations*. They also predict that the angular tolerance for the mirrors is much large than simplistic theory predicts. Using the IR Upgrade laser at Jefferson Lab lasing at 935 nm we have studied the performance of an FEL with very short Rayleigh range. We also looked at the angular sensitivity for several different Rayleigh ranges. We find very good agreement between simulations and measured gain and angular sensitivities. Surprisingly the gain continues to rise as the Rayleigh range is shortened and continues to grow even when the resonator becomes geometrically unstable. The same behavior is seen in both the experiment and simulations. We also find that, even for large Rayleigh r

  15. Air Monitoring Network at Tonopah Test Range: Network Description and Capabilities

    SciTech Connect (OSTI)

    Jeffrey Tappen; George Nikolich; Ken Giles; David Shafer; Tammy Kluesner

    2010-05-18

    During the period April to June 2008, at the behest of the U.S. Department of Energy (DOE) National Nuclear Security Administration, Nevada Site Office (NNSA/NSO); the Desert Research Institute (DRI) constructed and deployed two portable environmental monitoring stations at the Tonopah Test Range (TTR) as part of the Environmental Restoration Project Soils Sub-Project. The TTR is located within the boundaries of the Nevada Test and Training Range (NTTR) near the northern edge, and covers an area of approximately 725.20 km2 (179,200 acres). The primary objective of the monitoring stations is to evaluate whether and under what conditions there is wind transport of radiological contaminants from one of the three Soil Sub-Project Corrective Action Units (CAUs) associated with Operation Roller Coaster on TTR. Operation Roller Coaster was a series of tests, conducted in 1963, designed to examine the stability and dispersal of plutonium in storage and transportation accidents. These tests did not result in any nuclear explosive yield. However, the tests did result in the dispersal of plutonium and contamination of surface soils in the surrounding area.

  16. Long-range correction for tight-binding TD-DFT

    SciTech Connect (OSTI)

    Humeniuk, Alexander; Mitrić, Roland

    2015-10-07

    We present two improvements to the tight-binding approximation of time-dependent density functional theory (TD-DFTB): First, we add an exact Hartree-Fock exchange term, which is switched on at large distances, to the ground state Hamiltonian and similarly to the coupling matrix that enters the linear response equations for the calculation of excited electronic states. We show that the excitation energies of charge transfer states are improved relative to the standard approach without the long-range correction by testing the method on a set of molecules from the database in Peach et al. [J. Chem. Phys. 128, 044118 (2008)] which are known to exhibit problematic charge transfer states. The degree of spatial overlap between occupied and virtual orbitals indicates where TD-DFTB and long-range corrected TD-DFTB (lc-TD-DFTB) can be expected to produce large errors. Second, we improve the calculation of oscillator strengths. The transition dipoles are obtained from Slater Koster files for the dipole matrix elements between valence orbitals. In particular, excitations localized on a single atom, which appear dark when using Mulliken transition charges, acquire a more realistic oscillator strength in this way. These extensions pave the way for using lc-TD-DFTB to describe the electronic structure of large chromophoric polymers, where uncorrected TD-DFTB fails to describe the high degree of conjugation and produces spurious low-lying charge transfer states.

  17. Air Monitoring Network at Tonopah Test Range: Network Description, Capabilities, and Analytical Results

    SciTech Connect (OSTI)

    Hartwell, William T.; Daniels, Jeffrey; Nikolich, George; Shadel, Craig; Giles, Ken; Karr, Lynn; Kluesner, Tammy

    2012-01-01

    During the period April to June 2008, at the behest of the Department of Energy (DOE), National Nuclear Security Administration, Nevada Site Office (NNSA/NSO); the Desert Research Institute (DRI) constructed and deployed two portable environmental monitoring stations at the Tonopah Test Range (TTR) as part of the Environmental Restoration Project Soils Activity. DRI has operated these stations since that time. A third station was deployed in the period May to September 2011. The TTR is located within the northwest corner of the Nevada Test and Training Range (NTTR), and covers an area of approximately 725.20 km2 (280 mi2). The primary objective of the monitoring stations is to evaluate whether and under what conditions there is wind transport of radiological contaminants from Soils Corrective Action Units (CAUs) associated with Operation Roller Coaster on TTR. Operation Roller Coaster was a series of tests, conducted in 1963, designed to examine the stability and dispersal of plutonium in storage and transportation accidents. These tests did not result in any nuclear explosive yield. However, the tests did result in the dispersal of plutonium and contamination of surface soils in the surrounding area.

  18. Hellsgate Big Game Winter Range Wildlife Mitigation Project : Annual Report 2008.

    SciTech Connect (OSTI)

    Whitney, Richard P.; Berger, Matthew T.; Rushing, Samuel; Peone, Cory

    2009-01-01

    The Hellsgate Big Game Winter Range Wildlife Mitigation Project (Hellsgate Project) was proposed by the Confederated Tribes of the Colville Reservation (CTCR) as partial mitigation for hydropower's share of the wildlife losses resulting from Chief Joseph and Grand Coulee Dams. At present, the Hellsgate Project protects and manages 57,418 acres (approximately 90 miles2) for the biological requirements of managed wildlife species; most are located on or near the Columbia River (Lake Rufus Woods and Lake Roosevelt) and surrounded by Tribal land. To date we have acquired about 34,597 habitat units (HUs) towards a total 35,819 HUs lost from original inundation due to hydropower development. In addition to the remaining 1,237 HUs left unmitigated, 600 HUs from the Washington Department of Fish and Wildlife that were traded to the Colville Tribes and 10 secure nesting islands are also yet to be mitigated. This annual report for 2008 describes the management activities of the Hellsgate Big Game Winter Range Wildlife Mitigation Project (Hellsgate Project) during the past year.

  19. Anomalous magnetic moment contributions to NN bremsstrahlung in the soft-photon approximation

    SciTech Connect (OSTI)

    Gibson, B.F.; Penninga, T.D.; Timmermans, R.G.E.; Liou, M.K.

    2005-05-06

    The soft photon approximation (SPA), which is relativistic and based upon a fundamental theorem for photon emission, is applied to explore two separate nucleon-nucleon bremsstrahlung (NN{gamma}) processes: pp{gamma} and np{gamma}. They are examined together in an effort to understand the mechanism which governs photon emission from these basic two-nucleon systems. In this investigation we focus upon the effect of the anomalous magnetic moments of the proton ({kappa}p) and the neutron ({kappa}n). In our SPA calculation we use the standard Low amplitude M{sub {mu}}{sup Low} as derived by Nyman plus the more recently developed amplitude M{sub {mu}}{sup TuTts}, referred to as the two-u-two-t special (TuTts) amplitude. The amplitude M{sub {mu}}{sup TuTts} is identical to the amplitude M{sub {mu}}{sup Low} through order K0 in the soft-photon expansion. However, M{sub {mu}}{sup TuTts} includes an additional term M{sub {mu}}{sup (3)}(K{sup 1}; {kappa}) (plus higher order terms). The term M{sub {mu}}{sup (3)}(K{sup 1}; {kappa}) is of order K1 in the soft-photon expansion and it is a function of {kappa}p and {kappa}n. Using the amplitudes M{sub {mu}}{sup TuTts} and M{sub {mu}}{sup Low}, we have calculated pp{gamma} and np{gamma} cross sections as a function of photon angle {psi}{gamma} with and without contributions from {kappa}p and {kappa}n. Comparison with available pp{gamma} data has been made; in particular, the contribution from M{sub {mu}}{sup (3)}(K{sup 1}; {kappa}) has been investigated. Results will be presented and discussed which relate to the following: (i) The anomalous magnetic moment effect is significant in pp{gamma}; however, it is small in np{gamma}. That is, the two amplitudes M{sub {mu}}{sup TuTts} and M{sub {mu}}{sup Low} yield very similar np{gamma} cross sections, but they predict very different pp{gamma} cross sections. (ii) M{sub {mu}}{sup TuTts} appears to provide a better SPA than M{sub {mu}}{sup Low} in the case of pp{gamma}. Because {kappa

  20. Folding associated with extensional faulting: Sheep Range detachment, southern Nevada

    SciTech Connect (OSTI)

    Guth, P.L.

    1985-01-01

    The Sheep Range detachment is a major Miocene extensional fault system of the Great Basin. Its major faults have a scoop shape, with straight, N-S traces extending 15-30 km and then abruptly turning to strike E-W. Tertiary deformation involved simultaneous normal faulting, sedimentation, landsliding, and strike-slip faulting. Folds occur in two settings: landslide blocks and drag along major faults. Folds occur in landslide blocks and beneath them. Most folds within landslide blocks are tight anticlines, with limbs dipping 40-60 degrees. Brecciation of the folds and landslide blocks suggests brittle deformation. Near Quijinump Canyon in the Sheep Range, at least three landslide blocks (up to 500 by 1500 m) slid into a small Tertiary basin. Tertiary limestone beneath the Paleozoic blocks was isoclinally folded. Westward dips reveal drag folds along major normal faults, as regional dips are consistently to the east. The Chowderhead anticline is the largest drag fold, along an extensional fault that offsets Ordovician units 8 km. East-dipping Ordovician and Silurian rocks in the Desert Range form the hanging wall. East-dipping Cambrian and Ordovician units in the East Desert Range form the foot wall and east limb of the anticline. Caught along the fault plane, the anticline's west-dipping west limb contains mostly Cambrian units.