National Library of Energy BETA

Sample records for appraisal process laboratory

  1. Laboratory Appraisal Process | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Appraisal Process Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: (202)

  2. Halogen eAppraisal - Performance Appraisals | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Halogen eAppraisal - Performance Appraisals 2015 Performance Appraisal Process 211 - 220: Employee writes self-appraisal. 221 - 310: Evaluating Supervisor writes appraisals for...

  3. Appraisal Process Protocols

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INDEPENDENT OVERSIGHT PROGRAM APPRAISAL PROCESS PROTOCOLS December 2015 Office of Enterprise Assessments U.S. Department of Energy Independent Oversight Program Appraisal Process Protocols Preface December 2015 i Preface The U.S. Department of Energy's (DOE) Office of Enterprise Assessments (EA) is responsible for implementing an Independent Oversight Program for safety and security within the Department in accordance with DOE Policy 226.1B, Department of Energy Oversight Policy, and DOE Orders

  4. Appraisal Process Protocols, Independent Oversight - December 2015 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Appraisal Process Protocols, Independent Oversight - December 2015 Appraisal Process Protocols, Independent Oversight - December 2015 December 2015 Independent Oversight Appraisal Process Protocols These appraisal process protocols provide an overview of the general process that applies to all independent oversight appraisal activities. The subordinate oversight offices maintain more detailed program plans, guides, procedures, and protocols as necessary to assist in

  5. Security Evaluations Appraisal Process Guide- April 2008

    Broader source: Energy.gov [DOE]

    The Safeguards and Security Appraisal Process Guide provides additional planning techniques and a detailed set of tables that describe the necessary steps to successfully conduct each phase of a safeguards and security appraisal activity.

  6. Protocol, Appraisal Process Guide - April 2008 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Protocol, Appraisal Process Guide - April 2008 Protocol, Appraisal Process Guide - April 2008 April 2008 Emergency Management Oversight Appraisal Process Guide This process guide provides information about the Department of Energy's (DOE) Independent Oversight process implemented by the DOE Office of Emergency Management Oversight in conducting independent oversight appraisals of DOE emergency management programs. The Office of Emergency Management Oversight Appraisal Process Guide is a

  7. Valuing Green in the Appraisal Process - Building America Top...

    Energy Savers [EERE]

    Valuing Green in the Appraisal Process - Building America Top Innovation Real estate appraisers have historically faced challenges with green and energy efficient homes, both in ...

  8. Office of Cyber Security Evaluations Appraisal Process Guide...

    Broader source: Energy.gov (indexed) [DOE]

    cyber security; emergency management; and ... 3. Appraisal Process Planning......of larger, more pervasive problems associated with ...

  9. Cyber Security Evaluations Appraisal Process Guide - April 2008 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Cyber Security Evaluations Appraisal Process Guide - April 2008 Cyber Security Evaluations Appraisal Process Guide - April 2008 April 2008 Cyber Security Evaluations Appraisal Process Guide was developed for the purpose of documenting the appraisal approach and techniques specific to evaluations of classified and unclassified cyber security programs throughout DOE. This process guide provides information about the Department of Energy's (DOE) Independent Oversight

  10. The Appraisal Process: Be Your Own Advocate | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Appraisal Process: Be Your Own Advocate The Appraisal Process: Be Your Own Advocate The Appraisal Process: Be Your Own Advocate, a presentation of the U.S. Department of Energy's DOE Zero Energy Ready Home program. ZERH Appraisal Process (3.03 MB) More Documents & Publications DOE ZERH Webinar: Marketing and Sales Solutions for Zero Energy Ready Homes Zero Energy Ready Home Training Presentation Collective Impact for Zero Net Energy Homes

  11. Valuing Green in the Appraisal Process - Building America Top Innovation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Valuing Green in the Appraisal Process - Building America Top Innovation Valuing Green in the Appraisal Process - Building America Top Innovation Real estate appraisers have historically faced challenges with green and energy efficient homes, both in identifying comparables and in supporting adjustments for improvements. These difficulties stem BARA Green Addendum Top Innov 2014-2.jpg from many reasons, including data gaps in commonly used information systems and lender

  12. Technical Safety Appraisal of the Brookhaven National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1990-12-01

    The purpose of the Technical Safety Appraisal (TSA) was to assess the effectiveness of representative safety and health programs at the Brookhaven National Laboratory (BNL) through the evaluation of activities at selected facilities and in selected safety disciplines. The TSA was conducted in accordance with established procedures. The following BNL safety and health program elements were reviewed as a part of this TSA: Organization and Administration, Operations, Maintenance, Training and Certification, Nuclear Criticality Safety, Auxiliary Systems, Technical Support, Site/Facility Safety Review, Emergency Preparedness, Radiological Protection, Industrial Hygiene, Occupational Safety, Fire Protection, Quality Verification, and Medical Services. The TSA was conducted from March 26--April 12, 1990. The evaluation was conducted by a team of experts assembled by EH, Office of Safety Appraisals (OSA). TSAs are operationally focused. As such, in terms of safety, health, and quality verification, the site and selected facilities were appraised relative to operations, and the condition of equipment and facilities. The evaluation thus addresses whether current operations are being conducted within the operational safety procedures established for specific facilities and activities.

  13. Technical Safety Appraisal of the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1990-12-01

    This report documents the results of the Technical Safety Appraisal (TSA) of the Lawrence Livermore National Laboratory (LLNL) (including the Site 300 area), Livermore, California, conducted from February 26 to April 5, 1990. The purpose of the assessment was to provide the Secretary of Energy with the status of Environment, Safety and Health (ES H) Programs at LLNL. LLNL is operated by the University of California for the Department of Energy (DOE), and is a multi-program, mission-oriented institution engaged in fundamental and applied research programs that require a multidisciplinary approach. 1 fig.

  14. Argonne National Laboratory Internal Appraisal Program environment, safety, health/quality assurance oversight

    SciTech Connect (OSTI)

    Winner, G.L.; Siegfried, Y.S.; Forst, S.P.; Meshenberg, M.J.

    1995-06-01

    Argonne National Laboratory`s Internal Appraisal Program has developed a quality assurance team member training program. This program has been developed to provide training to non-quality assurance professionals. Upon successful completion of this training and approval of the Internal Appraisal Program Manager, these personnel are considered qualified to assist in the conduct of quality assurance assessments. The training program has been incorporated into a self-paced, computerized, training session.

  15. The Laboratory Performance Appraisal Process and Performance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Program Management ... 16 3.1 Provide Effective and Efficient Strategic Planning and Stewardship of Scientific Capabilities and Program Vision...

  16. The Laboratory Performance Appraisal Process and Performance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Efficient Strategic Planning and Stewardship of ... Management (ISSM) and Emergency Management Systems ... innovative solutions to problems; * Willingness to take on ...

  17. The Laboratory Performance Appraisal Process and Performance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    efforts are counter-productive to the interests of the Department. Notable Outcomes PSO: Effectively implement DOE Order 422.1, Conduct of Operations. This implementation...

  18. The Laboratory Performance Appraisal Process and Performance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    23 3.2 Provide Effective and Efficient Science and Technology ProjectProgramFacilities ...... Management ......

  19. Office of Environment, Safety and Health Evaluations Appraisal Process Guide, July 29, 2009

    Broader source: Energy.gov [DOE]

    This guide is a subordinate document to the Independent Oversight Appraisal Process Protocols. While the protocols provide general guidance common to all appraisal activities, this document provides additional detail and guidance regarding procedures and methods specific to ES&H appraisals conducted by Independent Oversight. DOE Order 470.2B is an important reference document that defines program requirements and, in particular, defines processes for sites to respond to identified vulnerabilities and to develop corrective action plans. The processes described in this guide are used for all ES&H appraisals, including periodic inspections, special reviews, targeted nuclear safety inspections, or other appraisal activities, because the reviews differ only in detail.

  20. Valuing Green in the Appraisal Process - Building America Top...

    Broader source: Energy.gov (indexed) [DOE]

    Real estate appraisers have historically faced challenges with green and energy efficient homes, both in identifying comparables and in supporting adjustments for improvements. ...

  1. Process Development and Integration Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    * 1617 Cole Boulevard, Golden, Colorado 80401-3305 * 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U. S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL/FS-5200-48351 * June 2011 Process Development and Integration Laboratory Scope. The Process Development and Integration Laboratory (PDIL) within the National Renewable Energy Laboratory (NREL) is operated by the National Center for Photovoltaics

  2. Process Development and Integration Laboratory

    Broader source: Energy.gov [DOE]

    This animation explains how the Process Development and Integration Laboratory (PDIL) provides researchers with unique capabilities for fabricating and studying a wide range of solar cell...

  3. SC Laboratory Performance Report Card Archives | U.S. DOE Office...

    Office of Science (SC) Website

    SC Laboratory Performance Report Card Archives Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards ...

  4. Independent Oversight Appraisal, Y-12 National Security Complex...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Appraisal, Y-12 National Security Complex - May 2013 Independent Oversight Appraisal, Y-12 National Security Complex - May 2013 May 2013 Appraisal of the Uranium Processing...

  5. NREL: Process Development and Integration Laboratory - Atmospheric

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Processing Platform Capabilities Research Process Development and Integration Laboratory Printable Version Atmospheric Processing Platform Capabilities The Atmospheric Processing platform in the Process Development and Integration Laboratory offers powerful capabilities with integrated tools for depositing, processing, and characterizing photovoltaic materials and devices. In particular, this platform focuses on different methods to deposit ("write") materials onto a variety of

  6. NREL: Process Development and Integration Laboratory - Copper...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Copper Indium Gallium Diselenide Cluster Tool Capabilities The Copper Indium Gallium Diselenide (CIGS) cluster tool in the Process Development and Integration Laboratory offers ...

  7. NREL: Process Development and Integration Laboratory - About the Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development and Integration Laboratory About the Process Development and Integration Laboratory The Process Development and Integration Laboratory (PDIL) is located within the Science and Technology Facility at the National Renewable Energy Laboratory (NREL). The PDIL brings together technical experts from NREL, the solar industry, and universities to access unique process development and integration capabilities. The focus of their research includes gaining a deeper understanding of

  8. Sandia National Laboratories: Our Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Our Process CRADA Process Sandia offers two basic types of CRADAs: Standard CRADAs & Umbrella CRADAs. The terms and conditions are substantively similar: a few modifications have been made to the Umbrella CRADA to account for how the proposed work is defined and captured. Use of the wrong document type or deviation from the template format (font type, headers, table format, etc.) in any way WILL create problems for processing AND cause a delay in start of work. Please contact

  9. Building America Top Innovations 2014 Profile: Valuing Green in the Appraisal Process

    SciTech Connect (OSTI)

    none,

    2014-11-01

    This 2014 Top Innovation profile describes how Building America’s BARA team facilitated discussions between the Appraisal Institute and RESNET, paving the way for a groundbreaking agreement between the two organizations. This agreement allows RESNET-approved Home Energy Rating System (HERS) software to auto-generate a fact-filled Green and Energy Efficiency Addendum intended for real estate appraisers for every home rated by a RESNET-certified HERS rater.

  10. Appraisal of the Uranium Processing Facility Safety Basis Preliminary Safety Design Report Process at the Y-12 National Security Complex, May 2013

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Independent Oversight Appraisal of the Uranium Processing Facility Safety Basis Preliminary Safety Design Report Process at the Y-12 National Security Complex May 2011 May 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U. S. Department of Energy Table of Contents 1.0 Purpose

  11. Sandia National Laboratories: Our Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Our Process CRADA Process Under a Funds-In Agreement (FIA), SNL can conduct work for a NFE Sponsor on a reimbursable basis. The Sponsor provides 100% of the funding, which must be received before work commences. However, under certain conditions, a payment plan can be arranged. Costs are based on SNL's full cost recovery for the statement of work. Please contact NFEadmin@sandia.gov for more information regarding the specific terms and conditions of the SPP/NFE Agreement or to obtain an

  12. NREL: Process Development and Integration Laboratory - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Webmaster Please enter your name and e-mail address in the boxes provided, then type your message below. When you are finished, click "Send Message." NOTE: If you enter your e-mail address incorrectly, we will be unable to reply. Your name: Your email address: Your message: Send Message Printable Version Process Development & Integration Laboratory Home About the Process Development & Integration Laboratory Capabilities

  13. NREL: Process Development and Integration Laboratory - Integrated

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurements and Characterization Capabilities Integrated Measurements and Characterization Capabilities The Integrated Measurements and Characterization cluster tool in the Process Development and Integration Laboratory offers powerful capabilities with integrated tools for measuring and characterizing photovoltaic materials and devices. Contact Pete Sheldon for more details on these capabilities. Basic Cluster Tool Capabilities Sample Handling Ultra-high-vacuum robot Transport pod: allows

  14. NREL: Process Development and Integration Laboratory - Process Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Integration Design Features Process Development and Integration Design Features The cluster tool and transport pod are at the heart of the research approach used within the Process Development and Integration Laboratory. In developing this approach, scientists in the National Center for Photovoltaics worked closely with their industry counterparts to design a system with maximum functionality and flexibility. In this section, we refer to the schematic below to illustrate a process

  15. Design of the Laboratory-Scale Plutonium Oxide Processing Unit in the Radiochemical Processing Laboratory

    SciTech Connect (OSTI)

    Lumetta, Gregg J.; Meier, David E.; Tingey, Joel M.; Casella, Amanda J.; Delegard, Calvin H.; Edwards, Matthew K.; Orton, Robert D.; Rapko, Brian M.; Smart, John E.

    2015-05-01

    This report describes a design for a laboratory-scale capability to produce plutonium oxide (PuO2) for use in identifying and validating nuclear forensics signatures associated with plutonium production, as well as for use as exercise and reference materials. This capability will be located in the Radiochemical Processing Laboratory at the Pacific Northwest National Laboratory. The key unit operations are described, including PuO2 dissolution, purification of the Pu by ion exchange, precipitation, and re-conversion to PuO2 by calcination.

  16. Independent Oversight Appraisal, Y-12 National Security Complex- May 2013

    Broader source: Energy.gov [DOE]

    Appraisal of the Uranium Processing Facility Safety Basis Preliminary Safety Design Report Process at the Y-12 National Security Complex

  17. Office of Environment, Safety and Health Evaluations Appraisal Process Guide, July 2009

    Office of Environmental Management (EM)

    Targeted Review of Work Planning and Control and Biological Safety at the Los Alamos National Laboratory December 2015 Office of Worker Safety and Health Assessments Office of Environment, Safety and Health Assessments Office of Enterprise Assessments U.S. Department of Energy i Table of Contents Acronyms ...................................................................................................................................................... ii Executive Summary

  18. eAppraisal Frequently Asked Questions (FAQ

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    experts to ensure the mission of the process is being met and followed. Human Resources reviews the annual performance appraisals to provide suggestions and ensure all involved...

  19. NREL: Process Development and Integration Laboratory - Video...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on How Process Development and Integration Works In this video, we provide a narrated animation that explains the process development and integration approach being used by the...

  20. Sandia National Laboratories SUMMiT VTM MEMS Process: Mature...

    Office of Scientific and Technical Information (OSTI)

    SUMMiT VTM MEMS Process: Mature Technology with an Exciting Future. Citation Details In-Document Search Title: Sandia National Laboratories SUMMiT VTM MEMS Process: Mature ...

  1. Office of Environment, Safety and Health Evaluations Appraisal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    procedures and methods specific to ES&H appraisals conducted by Independent Oversight. ... The processes described in this guide are used for all ES&H appraisals, including periodic ...

  2. Process Laboratory Gustafson, Richard [University of Washington...

    Office of Scientific and Technical Information (OSTI)

    bioconversion steam explosion reactor and ancillary equipment such as a high pressure boiler and a fermenter to support the bioconversion process research. This equipment has been...

  3. NREL: Process Development and Integration Laboratory - Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Most of these research and development (R&D) capabilities are associated with specific cluster tools for modular deposition, processing, and characterization techniques. The...

  4. NREL: Process Development and Integration Laboratory - Processing in the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Processing Platform Processing in the Atmospheric Processing Platform This page provides details on processing in the Atmospheric Processing platform. Photo of a window of a glove box, showing four rubber gloves extending outward. Sample preparation glove box in the Atmospheric Processing platform. Sample Preparation Box The sample preparation box allows samples to be loaded into platens and prepared for further processing. Large-Area Rapid Thermal Processing This rapid thermal

  5. Appraisal Process Protocols

    Broader source: Energy.gov (indexed) [DOE]

    including special nuclear materials and sensitive and classified information in all forms. ... whether special nuclear materials, classified and sensitive matter, and other ...

  6. Ames Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Ames Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: (202)

  7. Ames Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Ames Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: (202)

  8. Ames Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Ames Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: (202)

  9. Ames Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Ames Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: (202)

  10. Ames Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Ames Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: (202)

  11. Ames Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Ames Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: (202)

  12. Ames Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Ames Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: (202)

  13. Ames Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Ames Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: (202)

  14. Ames Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Ames Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: (202)

  15. Proposal Process in Brief | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Process in Brief The international scientific community can perform research at the CNM through a general user access program. Proposals are submitted through a online proposal system. Proposals are peer-reviewed, rated, and time is allocated on the basis of these reviews by appropriate allocation committees. How to Submit a Proposal You must register online through the User Facility Registration System. Study the CNM Research Groups and identify the capabilities you plan to use. Consult the

  16. SunShot Summit: Process Development and Integration Laboratory

    Broader source: Energy.gov [DOE]

    This video on the Process Development and Integration Laboratory at NREL was shown during the DOE SunShot Grand Challenge: Summit and Technology Forum, June 13-14, 2012.

  17. Sandia National Laboratories Contract Process Announced | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Sandia National Laboratories Contract Process Announced May 18, 2016 WASHINGTON (May 18, 2016) - The Department of Energy's (DOE) National Nuclear Security Administration (NNSA) has initiated the process to compete the management and operating contract for Sandia National Laboratories (SNL) in Albuquerque, N.M.; Livermore, Calif.; Kauai, Hawaii; Amarillo, Texas; and Tonopah, Nev. The current SNL management and operations contract was extended until April 30,

  18. NREL: Process Development and Integration Laboratory - Silicon Cluster Tool

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities Silicon Cluster Tool Capabilities Photo of a cylindrical metal chamber surrounded by numerous other smaller cylindrical or rectangular chambers. Each tool has several flanges and is typically held within a metal frame or rack. A computer is on a table in front of a cabinet of electronic equipment. Silicon cluster tool in the Process Development and Integration Laboratory. The Silicon cluster tool within the Process Development and Integration Laboratory is a 10-port cluster tool

  19. Pyro-processing progress at Idaho national laboratory

    SciTech Connect (OSTI)

    Benedict, R.W.; Solbrig, C.; Westphal, B.; Johnson, T.A.; Li, S.X.; Marsden, K.; Goff, K.M.

    2007-07-01

    At the end of May 2007, 830 and 2600 kilograms of EBR-II driver and blanket metal fuel have been treated by a pyro-process since spent fuel operations began in June 1996. A new metal waste furnace has completed out-of-cell testing and is being installed in the Hot Fuel Examination Facility. Also, ceramic waste process development and qualification is progressing so integrated nuclear fuel separations and high level waste processes will exist at Idaho National Laboratory. These operations have provided important scale-up and performance data on engineering scale operations. Idaho National Laboratory is also increasing their laboratory scale capabilities so new process improvements and new concepts can be tested before implementation at engineering scale. This paper provides an overview of recent achievements and provides the interested reader references for more details. (authors)

  20. Honey, I Shrunk the Plasma: Studying Astrophysical Processes in Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiments | Princeton Plasma Physics Lab February 14, 2015, 9:30am to 11:00am Science On Saturday MBG Auditorium Honey, I Shrunk the Plasma: Studying Astrophysical Processes in Laboratory Experiments Dr. Clayton Myers, Associate Research Physicist PPPL Abstract: PDF icon Myers.pdf Science on Saturday, 14FEB2015, "Honey, I Shrunk the Plasma: Studying Astrophysical Processess in Laboratory Experiments", Dr. Clayton Myers, PPPL Contact Information Website: Science on Saturday

  1. Thermal Systems Process and Components Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Thermal Systems Process and Components Laboratory at the Energy Systems Integration Facility. The focus of the Thermal Systems Process and Components Laboratory at NREL's Energy Systems Integration Facility (ESIF) is to research, develop, test, and evaluate new techniques for thermal energy storage systems that are relevant to utility-scale concentrating solar power plants. The laboratory holds test systems that can provide heat transfer fluids for the evaluation of heat exchangers and thermal energy storage devices. The existing system provides molten salt at temperatures up to 800 C. This unit is charged with nitrate salt rated to 600 C, but is capable of handling other heat transfer fluid compositions. Three additional test bays are available for future deployment of alternative heat transfer fluids such as hot air, carbon dioxide, or steam systems. The Thermal Systems Process and Components Laboratory performs pilot-scale thermal energy storage system testing through multiple charge and discharge cycles to evaluate heat exchanger performance and storage efficiency. The laboratory equipment can also be utilized to test instrument and sensor compatibility with hot heat transfer fluids. Future applications in the laboratory may include the evaluation of thermal energy storage systems designed to operate with supercritical heat transfer fluids such as steam or carbon dioxide. These tests will require the installation of test systems capable of providing supercritical fluids at temperatures up to 700 C.

  2. NREL: Process Development and Integration Laboratory - Working with Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Working with Us The Process Development and Integration Laboratory (PDIL), which accommodates the process development and integration approach, facilitates collaborative projects with other scientists from industry and universities. We welcome you to join us in tapping into the wide range of capabilities available for various research areas-from silicon and thin-film technologies, to measurements and characterization, to atmospheric processing. The PDIL may help you meet business objectives by

  3. National Environmental Policy Act Process WATER Los Alamos National Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Policy Act Process WATER Los Alamos National Laboratory WATER The campaigns LA-UR-15-27484 * The National Environmental Policy Act (NEPA) process begins with a proposed federal action. If the agency is unsure if there will be a significant environmental effect, the determination is made to prepare an Environmental Assessment (EA). * An EA is a concise public document for which a federal agency is responsible. It provides an evaluation/analysis that can be used to determine if an

  4. Argonne National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Argonne National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585

  5. Argonne National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Argonne National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585

  6. Argonne National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Argonne National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585

  7. Brookhaven National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Brookhaven National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC

  8. Brookhaven National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Brookhaven National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC

  9. Brookhaven National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Brookhaven National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC

  10. FY 2006 SC Laboratory Performance Report Cards | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) 6 SC Laboratory Performance Report Cards Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW

  11. FY 2007 SC Laboratory Performance Report Cards | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) 7 SC Laboratory Performance Report Cards Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW

  12. FY 2008 SC Laboratory Performance Report Cards | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) 8 SC Laboratory Performance Report Cards Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW

  13. FY 2009 SC Laboratory Performance Report Cards | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) 9 SC Laboratory Performance Report Cards Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW

  14. FY 2010 SC Laboratory Performance Report Cards | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) 0 SC Laboratory Performance Report Cards Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW

  15. FY 2011 SC Laboratory Performance Report Cards | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) 1 SC Laboratory Performance Report Cards Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW

  16. FY 2012 SC Laboratory Performance Report Cards | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) 2 SC Laboratory Performance Report Cards Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW

  17. Fermi National Accelerator Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Fermi National Accelerator Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  18. Fermi National Accelerator Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Fermi National Accelerator Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  19. Fermi National Accelerator Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Fermi National Accelerator Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  20. Lawrence Berkeley National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Lawrence Berkeley National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  1. Lawrence Berkeley National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Lawrence Berkeley National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  2. Oak Ridge National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Oak Ridge National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC

  3. Oak Ridge National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Oak Ridge National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC

  4. Oak Ridge National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Oak Ridge National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC

  5. Pacific Northwest National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Pacific Northwest National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  6. Pacific Northwest National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Pacific Northwest National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  7. Pacific Northwest National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Pacific Northwest National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  8. Princeton Plasma Physics Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Princeton Plasma Physics Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  9. Princeton Plasma Physics Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Princeton Plasma Physics Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC

  10. Princeton Plasma Physics Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Princeton Plasma Physics Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC

  11. SLAC National Accelerator Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    SLAC National Accelerator Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  12. SLAC National Accelerator Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    SLAC National Accelerator Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  13. SLAC National Accelerator Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    SLAC National Accelerator Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  14. Argonne National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Argonne National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585

  15. Argonne National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Argonne National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585

  16. Argonne National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Argonne National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585

  17. Argonne National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Argonne National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585

  18. Argonne National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Argonne National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585

  19. Argonne National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Argonne National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585

  20. Brookhaven National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Brookhaven National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC

  1. Brookhaven National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Brookhaven National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC

  2. Brookhaven National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Brookhaven National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC

  3. Brookhaven National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Brookhaven National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC

  4. Brookhaven National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Brookhaven National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC

  5. Brookhaven National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Brookhaven National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC

  6. Brookhaven National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Brookhaven National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC

  7. Fermi National Accelerator Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Fermi National Accelerator Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  8. Fermi National Accelerator Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Fermi National Accelerator Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  9. Fermi National Accelerator Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Fermi National Accelerator Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  10. Fermi National Accelerator Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Fermi National Accelerator Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  11. Fermi National Accelerator Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Fermi National Accelerator Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  12. Fermi National Accelerator Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Fermi National Accelerator Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  13. Lawrence Berkeley National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Lawrence Berkeley National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  14. Lawrence Berkeley National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Lawrence Berkeley National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  15. Lawrence Berkeley National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Lawrence Berkeley National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  16. Lawrence Berkeley National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Lawrence Berkeley National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  17. Lawrence Berkeley National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Lawrence Berkeley National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  18. Lawrence Berkeley National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Lawrence Berkeley National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  19. Oak Ridge National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Oak Ridge National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585

  20. Oak Ridge National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Oak Ridge National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585

  1. Oak Ridge National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Oak Ridge National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585

  2. Oak Ridge National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Oak Ridge National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585

  3. Oak Ridge National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Oak Ridge National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC

  4. Pacific Northwest National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Pacific Northwest National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  5. Pacific Northwest National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Pacific Northwest National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  6. Pacific Northwest National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Pacific Northwest National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  7. Pacific Northwest National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Pacific Northwest National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  8. Pacific Northwest National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Pacific Northwest National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  9. Pacific Northwest National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Pacific Northwest National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  10. Princeton Plasma Physics Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Princeton Plasma Physics Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC

  11. Princeton Plasma Physics Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Princeton Plasma Physics Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC

  12. Princeton Plasma Physics Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Princeton Plasma Physics Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC

  13. Princeton Plasma Physics Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Princeton Plasma Physics Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC

  14. Princeton Plasma Physics Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Princeton Plasma Physics Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC

  15. Princeton Plasma Physics Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Princeton Plasma Physics Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC

  16. SLAC National Accelerator Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    SLAC National Accelerator Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  17. SLAC National Accelerator Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    SLAC National Accelerator Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  18. SLAC National Accelerator Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    SLAC National Accelerator Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  19. SLAC National Accelerator Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    SLAC National Accelerator Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  20. SLAC National Accelerator Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    SLAC National Accelerator Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  1. SLAC National Accelerator Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    SLAC National Accelerator Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  2. SLAC National Accelerator Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    SLAC National Accelerator Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington,

  3. Laboratory Policy (LP) Homepage | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home Laboratory Policy (LP) LP Home About Laboratory Appraisal Process Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5447 F: (202) 586-3119 More Information » The Department of Energy National Laboratories The

  4. Energy and Water Conservation Assessment of the Radiochemical Processing Laboratory (RPL) at Pacific Northwest National Laboratory

    SciTech Connect (OSTI)

    Johnson, Stephanie R.; Koehler, Theresa M.; Boyd, Brian K.

    2014-05-31

    This report summarizes the results of an energy and water conservation assessment of the Radiochemical Processing Laboratory (RPL) at Pacific Northwest National Laboratory (PNNL). The assessment was performed in October 2013 by engineers from the PNNL Building Performance Team with the support of the dedicated RPL staff and several Facilities and Operations (F&O) department engineers. The assessment was completed for the Facilities and Operations (F&O) department at PNNL in support of the requirements within Section 432 of the Energy Independence and Security Act (EISA) of 2007.

  5. Guiding Principles for Sustainable Existing Buildings: Radiochemical Processing Laboratory

    SciTech Connect (OSTI)

    Pope, Jason E.

    2013-11-11

    In 2006, the United States (U.S.) Department of Energy (DOE) signed the Federal Leadership in High Performance and Sustainable Buildings Memorandum of Understanding (MOU), along with 21 other agencies. Pacific Northwest National Laboratory (PNNL) is exceeding this requirement and, currently, about 25 percent of its buildings are High Performance and Sustainable Buildings. The pages that follow document the Guiding Principles conformance effort for the Radiochemical Processing Laboratory (RPL) at PNNL. The RPL effort is part of continued progress toward a building inventory that is 100 percent compliant with the Guiding Principles.

  6. Advanced Manufacturing Processes Laboratory Building 878 hazards assessment document

    SciTech Connect (OSTI)

    Wood, C.; Thornton, W.; Swihart, A.; Gilman, T.

    1994-07-01

    The introduction of the hazards assessment process is to document the impact of the release of hazards at the Advanced Manufacturing Processes Laboratory (AMPL) that are significant enough to warrant consideration in Sandia National Laboratories` operational emergency management program. This hazards assessment is prepared in accordance with the Department of Energy Order 5500.3A requirement that facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment provides an analysis of the potential airborne release of chemicals associated with the operations and processes at the AMPL. This research and development laboratory develops advanced manufacturing technologies, practices, and unique equipment and provides the fabrication of prototype hardware to meet the needs of Sandia National Laboratories, Albuquerque, New Mexico (SNL/NM). The focus of the hazards assessment is the airborne release of materials because this requires the most rapid, coordinated emergency response on the part of the AMPL, SNL/NM, collocated facilities, and surrounding jurisdiction to protect workers, the public, and the environment.

  7. Facility Effluent Monitoring Plan for the 325 Radiochemical Processing Laboratory

    SciTech Connect (OSTI)

    Shields, K.D.; Ballinger, M.Y.

    1999-04-02

    This Facility Effluent Monitoring Plan (FEMP) has been prepared for the 325 Building Radiochemical Processing Laboratory (RPL) at the Pacific Northwest National Laboratory (PNNL) to meet the requirements in DOE Order 5400.1, ''General Environmental Protection Programs.'' This FEMP has been prepared for the RPL primarily because it has a ''major'' (potential to emit >0.1 mrem/yr) emission point for radionuclide air emissions according to the annual National Emission Standards for Hazardous Air Pollutants (NESHAP) assessment performed. This section summarizes the airborne and liquid effluents and the inventory based NESHAP assessment for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements. The RPL at PNNL houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and radioactive mixed waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities within the building include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials and a waste treatment facility for processing hazardous, mixed radioactive, low-level radioactive, and transuranic wastes generated by PNNL activities.

  8. Environmental assessment for the Processing and Environmental Technology Laboratory (PETL)

    SciTech Connect (OSTI)

    1995-09-01

    The U.S. Department of Energy (DOE) has prepared an environmental assessment (EA) on the proposed Processing and Environmental Technology Laboratory (PETC) at Sandia National Laboratories/New Mexico (SNL/NM). This facility is needed to integrate, consolidate, and enhance the materials science and materials process research and development (R&D) currently in progress at SNL/NM. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an environmental impact statement is not required, and DOE is issuing this Finding of No Significant Impact (FONSI).

  9. Implementing a lessons learned process at Sandia National Laboratories

    SciTech Connect (OSTI)

    Fosshage, Erik D.; Drewien, Celeste A.; Eras, Kenneth; Hartwig, Ronald Craig; Post, Debra S.; Stoecker, Nora Kathleen

    2016-01-01

    The Lessons Learned Process Improvement Team was tasked to gain an understanding of the existing lessons learned environment within the major programs at Sandia National Laboratories, identify opportunities for improvement in that environment as compared to desired attributes, propose alternative implementations to address existing inefficiencies, perform qualitative evaluations of alternative implementations, and recommend one or more near-term activities for prototyping and/or implementation. This report documents the work and findings of the team.

  10. NREL: Process Development and Integration Laboratory - Silicon Wafer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Replacement Cluster Tool Capabilities Silicon Wafer Replacement Cluster Tool Capabilities The silicon wafer replacement (SWR) tool can handle sample sizes up to 157 mm square in the standard 7"x7" platen for the Process Development and Integration Laboratory (PDIL). Silicon deposition can generally be done on any sample smaller than this. Automated hydrofluoric (HF) oxide etching requires either using one of our standard sample sizes or fabrication of custom holders. The SWRT

  11. NREL: Process Development and Integration Laboratory - Stand-Alone

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurements and Characterization Capabilities Stand-Alone Measurements and Characterization Capabilities The Stand-Alone Measurements and Characterization (M&C) tools in the Process Development and Integration Laboratory offer powerful capabilities for measuring and characterizing photovoltaic materials and devices. Contact Brent Nelson or other contacts listed on specific tool pages for more details on these capabilities. Basic Stand-Alone M&C Capabilities Measurements and

  12. Enterprise Assessments Targeted Review of the Safety-Significant Systems at the Pacific Northwest National Laboratory Radiochemical Processing Laboratory – July 2015

    Office of Energy Efficiency and Renewable Energy (EERE)

    Targeted Review of the Safety-Significant Systems at the Pacific Northwest National Laboratory Radiochemical Processing Laboratory

  13. Laboratory Directed Research and Development (LDRD) | U.S. DOE Office of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science (SC) Directed Research and Development (LDRD) Laboratory Policy (LP) LP Home About Laboratory Appraisal Process Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Frequently Asked Questions Impact Legislative History Program Contacts Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW

  14. Appraisals | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Please note that some links on the Appraisal System page are only accessible to those with a Jefferson Lab username and password. CEBAF Center CEBAF Center is the main ...

  15. MONOLITHIC FUEL FABRICATION PROCESS DEVELOPMENT AT THE IDAHO NATIONAL LABORATORY

    SciTech Connect (OSTI)

    Glenn A. Moore; Francine J. Rice; Nicolas E. Woolstenhulme; W. David SwanK; DeLon C. Haggard; Jan-Fong Jue; Blair H. Park; Steven E. Steffler; N. Pat Hallinan; Michael D. Chapple; Douglas E. Burkes

    2008-10-01

    Within the Reduced Enrichment for Research and Test Reactors (RERTR) program directed by the US Department of Energy (DOE), UMo fuel-foils are being developed in an effort to realize high density monolithic fuel plates for use in high-flux research and test reactors. Namely, targeted are reactors that are not amenable to Low Enriched Uranium (LEU) fuel conversion via utilization of high density dispersion-based fuels, i.e. 8-9 gU/cc. LEU conversion of reactors having a need for >8-9 gU/cc fuel density will only be possible by way of monolithic fuel forms. The UMo fuel foils under development afford fuel meat density of ~16 gU/cc and thus have the potential to facilitate LEU conversions without any significant reactor-performance penalty. Two primary challenges have been established with respect to UMo monolithic fuel development; namely, fuel element fabrication and in-reactor fuel element performance. Both issues are being addressed concurrently at the Idaho National Laboratory. An overview is provided of the ongoing monolithic UMo fuel development effort at the Idaho National Laboratory (INL); including development of complex/graded fuel foils. Fabrication processes to be discussed include: UMo alloying and casting, foil fabrication via hot rolling, fuel-clad interlayer application via co-rolling and thermal spray processes, clad bonding via Hot Isostatic Pressing (HIP) and Friction Bonding (FB), and fuel plate finishing.

  16. Conceptual Design for the Pilot-Scale Plutonium Oxide Processing Unit in the Radiochemical Processing Laboratory

    SciTech Connect (OSTI)

    Lumetta, Gregg J.; Meier, David E.; Tingey, Joel M.; Casella, Amanda J.; Delegard, Calvin H.; Edwards, Matthew K.; Jones, Susan A.; Rapko, Brian M.

    2014-08-05

    This report describes a conceptual design for a pilot-scale capability to produce plutonium oxide for use as exercise and reference materials, and for use in identifying and validating nuclear forensics signatures associated with plutonium production. This capability is referred to as the Pilot-scale Plutonium oxide Processing Unit (P3U), and it will be located in the Radiochemical Processing Laboratory at the Pacific Northwest National Laboratory. The key unit operations are described, including plutonium dioxide (PuO2) dissolution, purification of the Pu by ion exchange, precipitation, and conversion to oxide by calcination.

  17. ZERH Appraisal Process.pptx

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The A ppraisal P rocess: Be Y our O wn A dvocate SAM R ASHKIN Chief A rchitect Building T echnologies P rogram DOE Z ero E nergy R eady H ome(tm) 2 | INNOVATION & INTEGRATION: ...

  18. Independent Oversight Appraisal Process Protocols

    Broader source: Energy.gov (indexed) [DOE]

    and time-saving way to determine whether a large number of people possess a specific body of knowledge. Knowledge tests may be written or oral, or a combination of the two,...

  19. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    performance computer system installed at Los Alamos National Laboratory June 17, 2014 Unclassified 'Wolf' system to advance many fields of science LOS ALAMOS, N.M., June 17, 2014-Los Alamos National Laboratory recently installed a new high-performance computer system, called Wolf, which will be used for unclassified research. "This machine modernizes our mid-tier resources available to Laboratory scientists," said Bob Tomlinson, of the Laboratory's High Performance Computing group.

  20. Safeguarding Nuclear Fuel Processing | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Safeguarding Nuclear Fuel Processing Laboratory Policy (LP) LP Home About Laboratory Appraisal Process Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Frequently Asked Questions Impact Legislative History Program Contacts Management & Operating (M&O) Contracts Technology Transfer Strategic Partnership Projects (SPP) Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P:

  1. SF 6431-E;ARTICLES FOR PROCESS AND FABRICATION LABORATORY PROCUREMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (7-2013) Supersedes (4-2000) issue Procurement Center Albuquerque, New Mexico 87185 ARTICLES FOR PROCESS AND FABRICATION LABORATORY PROCUREMENT 1. GENERAL PRODUCT and INSPECTION...

  2. Green Appraisals | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office (BTO) will work together to enable practicing real estate appraisers to better characterize the value of energy-efficient and other "green" attributes of buildings. ...

  3. The Ames Process for Rare Earth Metals | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Ames Process for Rare Earth Metals The Ames Process for the preparation of high purity ... If we rearrange the order of elements from increasing atomic weight to increasing boiling ...

  4. NREL: Process Development and Integration Laboratory - Measurements and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization in the Atmospheric Processing Platform Measurements and Characterization in the Atmospheric Processing Platform Photo of box-like unit sitting on a surface. A small card version of the Periodic Table is on the table, in front of the open side of the unit. The unit is labeled as "Solar Metrology, System SMX." X-ray fluorescence unit in the Atmospheric Processing platform. This page provides details on measurements and characterization in the Atmospheric Processing

  5. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Builders place final beam in first phase of CMRR project at Los Alamos National Laboratory July 22, 2008 LOS ALAMOS, New Mexico, July 22, 2008- Workers hoisted the final steel beam ...

  6. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forest fire near Los Alamos National Laboratory June 26, 2011 Los Alamos, New Mexico, June 26, 2011, 6:07pm-The Las Conchas fire burning in the Jemez Mountains approximately 12...

  7. NREL: Process Development and Integration Laboratory - Materials Deposition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Device Fabrication in the Atmospheric Processing Platform Materials Deposition and Device Fabrication in the Atmospheric Processing Platform This page provides details on materials deposition and device fabrication in the Atmospheric Processing platform. The four techniques highlighted are robotic inkjet printing, large-area ultrasonic spray deposition, sputtering, and thermal evaporator deposition. Photo of the shiny back of the glove box behind a close-up of an unenclosed inkjet

  8. NREL: Process Development and Integration Laboratory - Sample Handling in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Atmospheric Processing Platform Sample Handling in the Atmospheric Processing Platform This page provides details on sample handling in the Atmospheric Processing platform. Photo of the large circular metal top of the cluster tool. Two wires cross the top and are attached to connectors on a flange at the center of the top. The chamber is surrounded by several other tools, but several of the cluster tool ports are open for future expansion. The robotic cluster tool portion of the

  9. Ames Laboratory-developed titanium powder processing gains internation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    processing gains international customer base Contacts: For release: Dec. 7, 2015 Iver Anderson, Division of Materials Sciences and Engineering, 515-294-9791 Steve Karsjen, Public...

  10. Oak Ridge National Laboratory TRU Waste Processing Center Tank...

    Office of Environmental Management (EM)

    ... BVEST W-Tank System Control Trailer Off-Gas Skid Pipe bridge Jet Pump Skid Charge Vessels W-21 W-22 W-23 Valve Skid SL Mobilization ORNL TRU Waste Processing Center Questions 242 A ...

  11. Signal and Image Processing Research at the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Roberts, R S; Poyneer, L A; Kegelmeyer, L M; Carrano, C J; Chambers, D H; Candy, J V

    2009-06-29

    Lawrence Livermore National Laboratory is a large, multidisciplinary institution that conducts fundamental and applied research in the physical sciences. Research programs at the Laboratory run the gamut from theoretical investigations, to modeling and simulation, to validation through experiment. Over the years, the Laboratory has developed a substantial research component in the areas of signal and image processing to support these activities. This paper surveys some of the current research in signal and image processing at the Laboratory. Of necessity, the paper does not delve deeply into any one research area, but an extensive citation list is provided for further study of the topics presented.

  12. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mexican pueblo preserves cultural history through collaborative tours with Los Alamos National Laboratory August 24, 2015 Students gain new insights into their ancestry LOS ALAMOS, N.M., Aug. 24, 2015-San Ildefonso Pueblo's Summer Education Enhancement Program brought together academic and cultural learning in the form of a recent tour of Cave Kiva Trail in Mortandad Canyon."Opening up this archaeological site and sharing it with the descendants of its first inhabitants is a

  13. MONOLITHIC FUEL FABRICATION PROCESS DEVELOPMENT AT THE IDAHO NATIONAL LABORATORY_

    SciTech Connect (OSTI)

    G. A. Moore; F. J. Rice; N. E. Woolstenhulme; J-F. Jue; B. H. Park; S. E. Steffler; N. P. Hallinan; M. D. Chapple; M. C. Marshall; B. L. Mackowiak; C. R. Clark; B. H. Rabin

    2009-11-01

    Full-size/prototypic U10Mo monolithic fuel-foils and aluminum clad fuel plates are being developed at the Idaho National Laboratory’s (INL) Materials and Fuels Complex (MFC). These efforts are focused on realizing Low Enriched Uranium (LEU) high density monolithic fuel plates for use in High Performance Research and Test Reactors. The U10Mo fuel foils under development afford a fuel meat density of ~16 gU/cc and thus have the potential to facilitate LEU conversions without any significant reactor-performance penalty. An overview is provided of the ongoing monolithic UMo fuel development effort, including application of a zirconium barrier layer on fuel foils, fabrication scale-up efforts, and development of complex/graded fuel foils. Fuel plate clad bonding processes to be discussed include: Hot Isostatic Pressing (HIP) and Friction Bonding (FB).

  14. Dry sample storage system for an analytical laboratory supporting plutonium processing

    SciTech Connect (OSTI)

    Treibs, H.A.; Hartenstein, S.D.; Griebenow, B.L.; Wade, M.A.

    1990-07-25

    The Special Isotope Separation (SIS) plant is designed to provide removal of undesirable isotopes in fuel grade plutonium by the atomic vapor laser isotope separation (AVLIS) process. The AVLIS process involves evaporation of plutonium metal, and passage of an intense beam of light from a laser through the plutonium vapor. The laser beam consists of several discrete wavelengths, tuned to the precise wavelength required to ionize the undesired isotopes. These ions are attracted to charged plates, leaving the bulk of the plutonium vapor enriched in the desired isotopes to be collected on a cold plate. Major portions of the process consist of pyrochemical processes, including direct reduction of the plutonium oxide feed material with calcium metal, and aqueous processes for purification of plutonium in residues. The analytical laboratory for the plant is called the Material and Process Control Laboratory (MPCL), and provides for the analysis of solid and liquid process samples.

  15. A New Appraisal- Lessons from the History of Efforts to Value Green and High-Performance Home Attributes in the United States

    SciTech Connect (OSTI)

    Mills, Evan

    2015-10-21

    Appraisers, RESNET, USEPA, USDOE and its National Laboratories, the U.S. Green Buildings Council, and the Vermont Green Homes Alliance. Many activities have resulted, ranging from trainings, to data-gathering instruments, and the emergence of a literature attempting to statistically isolate the effects of green/HP characteristics on home values. In some cases, the results of studies have been overgeneralized and oversold, and embodied flawed methods. Although the green/HP community has encouraged appraisers to focus on exemplary buildings (e.g., LEED or ENERGY STAR Certified), any level of green or energy performance can in fact influence value, including below-average performance (a.k.a. “brown discount”), irrespective of whether or not the building has been formally rated. This overly narrow focus represents a significant missed opportunity. Other surmountable challenges include limitations to non-appraisers’ understanding of the appraisal process (and practical constraints therein). A byproduct of this can be unrealistic expectations of what appraisers can and will do in the marketplace. These challenges notwithstanding, the environment for moving forward has improved. There is better data today (a critical need); expanded efforts to disclose energy use information (characteristics, consumption, bills); improved and more pervasive building energy codes, building rating and labeling initiatives; and a host of federal, state, and local policies that have collectively brought green/HP practices much more into the mainstream. Meanwhile, a renewed focus on professional standards of care and competency for assessing green/HP homes make it increasingly important for appraisers to consider these factors in their assignments. Despite the past four decades of studies, there is little if any discernible uptake of these practices by the appraisal practice at large. It would behoove interested parties to step back and consider what new strategies might be productive. A key

  16. Metals Processing Laboratory Users (MPLUS) Facility Annual Report FY 2002 (October 1, 2001-September 30, 2002)

    SciTech Connect (OSTI)

    Angelini, P

    2004-04-27

    The Metals Processing Laboratory Users Facility (MPLUS) is a Department of Energy (DOE), Energy Efficiency and Renewable Energy, Industrial Technologies Program, user facility designated to assist researchers in key industries, universities, and federal laboratories in improving energy efficiency, improving environmental aspects, and increasing competitiveness. The goal of MPLUS is to provide access to the specialized technical expertise and equipment needed to solve metals processing issues that limit the development and implementation of emerging metals processing technologies. The scope of work can also extend to other types of materials. MPLUS has four primary user centers: (1) Processing--casting, powder metallurgy, deformation processing (including extrusion, forging, rolling), melting, thermomechanical processing, and high-density infrared processing; (2) Joining--welding, monitoring and control, solidification, brazing, and bonding; (3) Characterization--corrosion, mechanical properties, fracture mechanics, microstructure, nondestructive examination, computer-controlled dilatometry, and emissivity; and (4) Materials/Process Modeling--mathematical design and analyses, high-performance computing, process modeling, solidification/deformation, microstructure evolution, thermodynamic and kinetic, and materials databases A fully integrated approach provides researchers with unique opportunities to address technologically related issues to solve metals processing problems and probe new technologies. Access is also available to 16 additional Oak Ridge National Laboratory (ORNL) user facilities ranging from state-of-the-art materials characterization capabilities, and high-performance computing to manufacturing technologies. MPLUS can be accessed through a standardized user-submitted proposal and a user agreement. Nonproprietary (open) or proprietary proposals can be submitted. For open research and development, access to capabilities is provided free of charge

  17. Metals Processing Laboratory Users (MPLUS) Facility Annual Report: October 1, 2000 through September 30, 2001

    SciTech Connect (OSTI)

    Angelini, P

    2004-04-27

    The Metals Processing Laboratory Users Facility (MPLUS) is a Department of Energy (DOE), Energy Efficiency and Renewable Energy, Industrial Technologies Program user facility designated to assist researchers in key industries, universities, and federal laboratories in improving energy efficiency, improving environmental aspects, and increasing competitiveness. The goal of MPLUS is to provide access to the specialized technical expertise and equipment needed to solve metals processing issues that limit the development and implementation of emerging metals processing technologies. The scope of work can also extend to other types of materials. MPLUS has four primary User Centers including: (1) Processing--casting, powder metallurgy, deformation processing including (extrusion, forging, rolling), melting, thermomechanical processing, high density infrared processing; (2) Joining--welding, monitoring and control, solidification, brazing, bonding; (3) Characterization--corrosion, mechanical properties, fracture mechanics, microstructure, nondestructive examination, computer-controlled dilatometry, and emissivity; (4) Materials/Process Modeling--mathematical design and analyses, high performance computing, process modeling, solidification/deformation, microstructure evolution, thermodynamic and kinetic, and materials data bases. A fully integrated approach provides researchers with unique opportunities to address technologically related issues to solve metals processing problems and probe new technologies. Access is also available to 16 additional Oak Ridge National Laboratory (ORNL) user facilities ranging from state of the art materials characterization capabilities, high performance computing, to manufacturing technologies. MPLUS can be accessed through a standardized User-submitted Proposal and a User Agreement. Nonproprietary (open) or proprietary proposals can be submitted. For open research and development, access to capabilities is provides free of charge while

  18. Laboratory Investigation of Contact Freezing and the Aerosol to Ice Crystal Transformation Process

    SciTech Connect (OSTI)

    Shaw, Raymond A.

    2014-10-28

    This project has been focused on the following objectives: 1. Investigations of the physical processes governing immersion versus contact nucleation, specifically surface-induced crystallization; 2. Development of a quadrupole particle trap with full thermodynamic control over the temperature range 0 to –40 °C and precisely controlled water vapor saturation ratios for continuous, single-particle measurement of the aerosol to ice crystal transformation process for realistic ice nuclei; 3. Understanding the role of ice nucleation in determining the microphysical properties of mixed-phase clouds, within a framework that allows bridging between laboratory and field measurements.

  19. The National Nuclear Laboratory's Approach to Processing Mixed Wastes and Residues - 13080

    SciTech Connect (OSTI)

    Greenwood, Howard; Docrat, Tahera; Allinson, Sarah J.; Coppersthwaite, Duncan P.; Sultan, Ruqayyah; May, Sarah

    2013-07-01

    The National Nuclear Laboratory (NNL) treats a wide variety of materials produced as by-products of the nuclear fuel cycle, mostly from uranium purification and fuel manufacture but also including materials from uranium enrichment and from the decommissioning of obsolete plants. In the context of this paper, treatment is defined as recovery of uranium or other activity from residues, the recycle of uranium to the fuel cycle or preparation for long term storage and the final disposal or discharge to the environment of the remainder of the material. NNL's systematic but flexible approach to residue assessment and treatment is described in this paper. The approach typically comprises up to five main phases. The benefits of a systematic approach to waste and residue assessments and processing are described in this paper with examples used to illustrate each phase of work. Benefits include early identification of processing routes or processing issues and the avoidance of investment in inappropriate and costly plant or processes. (authors)

  20. Description of the Sandia National Laboratories science, technology & engineering metrics process.

    SciTech Connect (OSTI)

    Jordan, Gretchen B.; Watkins, Randall D.; Trucano, Timothy Guy; Burns, Alan Richard; Oelschlaeger, Peter

    2010-04-01

    There has been a concerted effort since 2007 to establish a dashboard of metrics for the Science, Technology, and Engineering (ST&E) work at Sandia National Laboratories. These metrics are to provide a self assessment mechanism for the ST&E Strategic Management Unit (SMU) to complement external expert review and advice and various internal self assessment processes. The data and analysis will help ST&E Managers plan, implement, and track strategies and work in order to support the critical success factors of nurturing core science and enabling laboratory missions. The purpose of this SAND report is to provide a guide for those who want to understand the ST&E SMU metrics process. This report provides an overview of why the ST&E SMU wants a dashboard of metrics, some background on metrics for ST&E programs from existing literature and past Sandia metrics efforts, a summary of work completed to date, specifics on the portfolio of metrics that have been chosen and the implementation process that has been followed, and plans for the coming year to improve the ST&E SMU metrics process.

  1. Local Energy Alliance Program Adds Green Appraisal Capabilities...

    Energy Savers [EERE]

    Local Energy Alliance Program Adds Green Appraisal Capabilities to its Energy Efficiency Services Local Energy Alliance Program Adds Green Appraisal Capabilities to its Energy ...

  2. Environmental Assessment Idaho National Engineering Laboratory, low-level and mixed waste processing

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0843, for the Idaho National Engineering Laboratory (INEL) low-level and mixed waste processing. The original proposed action, as reviewed in this EA, was (1) to incinerate INEL`s mixed low-level waste (MLLW) at the Waste Experimental Reduction Facility (WERF); (2) reduce the volume of INEL generated low-level waste (LLW) through sizing, compaction, and stabilization at the WERF; and (3) to ship INEL LLW to a commercial incinerator for supplemental LLW volume reduction.

  3. Remedial investigation of the High-Explosives (HE) Process Area, Lawrence Livermore National Laboratory Site 300

    SciTech Connect (OSTI)

    Crow, N.B.; Lamarre, A.L.

    1990-08-01

    This report presents the results of a Remedial Investigation (RI) to define the extent of high explosives (HE) compounds and volatile organic compounds (VOCs) found in the soil, rocks, and ground water of the HE Process Area of Lawrence Livermore National Laboratory's (LLNL) Site 300 Facility. The report evaluates potential public health environmental risks associated with these compounds. Hydrogeologic information available before February 15, 1990, is included; however, chemical analyses and water-level data are reported through March 1990. This report is intended to assist the California Regional Water Quality Control Board (RWQCB)--Central Valley Region and the US Environmental Protection Agency (EPA) in evaluating the extent of environmental contamination of the LLNL HE Process Area and ultimately in designing remedial actions. 90 refs., 20 figs., 7 tabs.

  4. DEVELOPMENT AND IMPLEMENTATION OF THE LOS ALAMOS NATIONAL LABORATORY INDEPENDENT SAR REVIEW PROCESS.

    SciTech Connect (OSTI)

    J. BUECK; T. MARTH

    2001-05-01

    Contractor independent review of contractor prepared safety documents has ceased as a requirement under DOE orders. However, a recent study to determine root causes of the poor quality and extremely long approval times for Los Alamos National Laboratory nuclear safety document has identified such a review as a crucial step in ensuring quality. LANL has teamed with the DOE Field Office to reinstate an independent review process modeled after DOE-STD-1104. A review guide has been prepared predicated on the content of DOE-STD-3009. Discipline has been enforced to ensure that comments reflect important issues and that resolution of the comment is possible. Safety management at both LANL and DOE have embraced this concept. This process has been exercised and has resulted in improvements in safety analysis quality and a degree of uniformity between DOE and LANL reviews.

  5. Appraisal Process Protocols, Independent Oversight - December 2015 |

    Energy Savers [EERE]

    (BENEFIT) - 2015 Funding Opportunity Announcement | Department of Energy Building Energy Efficiency Frontiers and Innovation Technologies (BENEFIT) - 2015 Funding Opportunity Announcement Apply: Building Energy Efficiency Frontiers and Innovation Technologies (BENEFIT) - 2015 Funding Opportunity Announcement October 8, 2014 - 11:14am Addthis This funding opportunity is closed. The Building Technologies Office (BTO)'s Emerging Technologies Program has announced the availability of nearly $8

  6. Laboratory Tests on Post-Filtration Precipitation in the WTP Pretreatment Process

    SciTech Connect (OSTI)

    Russell, Renee L.; Peterson, Reid A.; Rinehart, Donald E.; Crum, Jarrod V.

    2009-11-20

    Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed, and operated as part of a plan to respond to issue M12, "Undemonstrated Leaching Processes," of the External Flowsheet Review Team (EFRT) issue response plan (Barnes et al. 2006). The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. A simplified flow diagram of the PEP system is shown in Figure 1.1. Two operating scenarios are currently being evaluated for the ultrafiltration process (UFP) and leaching operations. The first scenario has caustic leaching performed in the UFP-2 ultrafiltration feed vessels (i.e., vessel UFP-VSL-T02A in the PEP; and vessels UFP-VSL-00002A and B in the WTP PTF). The second scenario has caustic leaching conducted in the UFP-1 ultrafiltration feed preparation vessels (i.e., vessels UFP-VSL-T01A and B in the PEP; vessels UFP-VSL-00001A and B in the WTP PTF).

  7. Analyses by the Defense Waste Processing Facility Laboratory of Thorium Glasses from the Sludge Batch 6 Variability Study

    SciTech Connect (OSTI)

    Edwards, T.; Click, D.; Feller, M.

    2011-02-28

    The Savannah River Remediation (SRR) Defense Waste Processing Facility (DWPF) is currently processing Sludge Batch 6 (SB6) with Frit 418. At times during the processing of this glass system, thorium is expected to be at concentrations in the final wasteform that make it a reportable element for the first time since startup of radioactive operations at the DWPF. The Savannah River National Laboratory (SRNL) supported the qualification of the processing of this glass system at the DWPF. A recommendation from the SRNL studies was the need for the DWPF Laboratory to establish a method to measure thorium by Inductively Coupled Plasma - Atomic Emission Spectroscopy (ICPAES). This recommendation led to the set of thorium-bearing glasses from the SB6 Variability Study (VS) being submitted to the DWPF Laboratory for chemical composition measurement. The measurements were conducted by the DWPF Laboratory using the sodium peroxide fusion preparation method routinely employed for analysis of samples from the Slurry Mix Evaporator (SME). These measurements are presented and reviewed in this report. The review indicates that the measurements provided by the DWPF Laboratory are comparable to those provided by Analytical Development's laboratory at SRNL for these same glasses. As a result, the authors of this report recommend that the DWPF Laboratory begin using its routine peroxide fusion dissolution method for the measurement of thorium in SME samples of SB6. The purpose of this technical report is to present the measurements generated by the DWPF Laboratory for the SB6 VS glasses and to compare the measurements to the targeted compositions for these VS glasses as well as to SRNL's measurements (both sets, targeted and measured, of compositional values were reported by SRNL in [2]). The goal of these comparisons is to provide information that will lead to the qualification of peroxide fusion dissolution as a method for the measurement by the DWPF Laboratory of thorium in SME

  8. Laboratory Planning Process | U.S. DOE Office of Science (SC...

    Office of Science (SC) Website

    Congress emphasized the importance of planning for the future of the laboratories in a report accompanying the Fiscal Year (FY) 2006 Energy and Water Development Appropriations ...

  9. Major Modification Determination Process Utilized for Proposed Idaho National Laboratory Projects

    SciTech Connect (OSTI)

    Michael A. Lehto, Ph.D.; Boyd D. Christensen

    2008-05-01

    Over the past three years, several new projects with the potential for major modifications to existing facilities have been considered for implementation at the Idaho National Laboratory (INL). These projects were designated to take place in existing nuclear facilities with existing documented safety analyses. 10 CFR 830.206 requires the contractor for a major modification to a Hazard Category 1, 2, or 3 nuclear facility to obtain Department of Energy (DOE) approval for the nuclear facility design criteria to be used for preparation of a preliminary documented safety analysis (PDSA), as well as creation and approval of the PDSA, before the contractor can procure materials or components or begin construction on the project. Given the significant effort and expense of preparation and approval of a PDSA, a major modification determination for new projects is warranted to determine if the rigorous requirements of a major modification are actually required. Furthermore, performing a major modification determination helps to ensure that important safety aspects of a project are appropriately considered prior to modification construction or equipment procurement. The projects considered for major modification status at the INL included: treatment and packaging of unirradiated, sodium-bonded highly enriched uranium (HEU) fuel and miscellaneous casting scrap in the Materials and Fuels Complex (MFC) Fuel Manufacturing Facility (FMF); post irradiation examination of Advance Fuel Cycle Initiative (AFCI) fuel in the MFC Analytical Laboratory (AL); the Advanced Test Reactor (ATR) gas test loop (GTL); and the hydraulic shuttle irradiation system (HSIS) at ATR. The major modification determinations for three of the proposed projects resulted in a negative major modification. On the other hand, the major modification determination for the GTL project concluded that the project would require a major modification. This paper discusses the process, methods, and considerations used by

  10. EA-0843: Idaho National Engineering Laboratory Low-Level and Mixed Waste Processing, Idaho Falls, Idaho

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to (1) reduce the volume of the U.S. Department of Energy's Idaho National Engineering Laboratory's (INEL) generated low-level waste (LLW)...

  11. Webinar: Review Core Competencies for Appraisers to Value Green Buildings

    Broader source: Energy.gov [DOE]

    The Appraisal Foundation is developing a document to describe the fundamentals of the Valuation of Green Buildings. This document highlights the core skill sets and data necessary for appraisers to...

  12. DOE Announces Webinars on Energy Efficient Appraisals, a Hydrogen...

    Office of Environmental Management (EM)

    Energy Efficient Appraisals, a Hydrogen Leak Detector, and More DOE Announces Webinars on Energy Efficient Appraisals, a Hydrogen Leak Detector, and More February 26, 2016 - 8:28am ...

  13. Determination of Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples: Laboratory Analytical Procedure (LAP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples Laboratory Analytical Procedure (LAP) Issue Date: 3/31/2008 A. Sluiter, B. Hames, D. Hyman, C. Payne, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, and J. Wolfe Technical Report NREL/TP-510-42621 Revised March 2008 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov

  14. Technical safety appraisal: Buildings 776/777 Rocky Flats Plant

    SciTech Connect (OSTI)

    Field, H C

    1988-03-01

    Buildings 776/777 at the Rocky Flats Plant are major components of the production complex at the plant site. They have been in operation since 1957. The operations taking place in the buildings are nuclear weapons production support, processing of weapons assemblies returned from Pantex, waste processing, research and development in support of production, special projects, and those generated by support groups, such as maintenance. The appraisal team identified nine deficiencies that it believed required prompt attention. DOE management for EH, the program office (Defense Programs), and the field office analyzed the information provided by the appraisal team and instituted compensatory measures for closer monitoring of contractor activities by knowledgeable DOE staff and staff from other sites. Concurrently, the contractor was requested to address both short-term and long-term remedial measures to correct the identified issues as well as the underlying problems. The contractor has provided his action plan, which is included. This plan was under evaluation by EH and the DOE program office at the time this report was prepared. In addressing the major areas of concern identified above, a well as the specific deficiencies identified by the appraisal team, the contractor and the field office are cautioned to search for the root causes for the problems and to direct corrective actions to those root causes rather than solely to the symptoms to assure the sustainability of the improvements being made. The results of prior TSAs led DOE to conclude that previous corrective actions were not sufficient in that a large number of the individual findings are recurrent. Pending completion of remedial actions over the next few months, enhanced DOE oversight of the contractor is warranted.

  15. Role of Appraisals in Energy Efficiency Financing

    SciTech Connect (OSTI)

    Doyle, V.; Bhargava, A.

    2012-05-01

    This research identifies barriers and challenges and current industry status including several key appraisal industry developments for identifying and valuing energy efficiency, critical obstacles to documenting and assessing the potential added value from energy efficiency improvements, current opportunities to support and standardize reporting on energy efficiency and to ensure proper valuation, and next steps towards enabling energy efficiency financing market transformation.

  16. Energy considerations in real estate appraising

    SciTech Connect (OSTI)

    1980-04-01

    Purposes of the seminar on the subject, the basis of this report, include the following: (1) to provide the appraiser an opportunity to learn how to identify and analyze the actual physical consumption of energy as well as the energy-saving improvements in properties under appraisal and in comparable sale and lease properties; (2) to help the appraiser in developing methods to keep meaningful records on the energy consumption of subject and comparable properties so as to observe in an orderly way the behavior of buyers, sellers, tenants, landlords, borrowers, and lenders with respect to energy efficiency; and (3) to assist the appraiser in learning to measure the relative sensitivities of the various segments of the market to energy considerations as indicated by differences in sale prices and rentals. To achieve these goals, the seminar employed two case studies, one for a angle-family residence and one for a multi-family building, both in Topeka, Kansas. The case studies are for illustrative purposes only; in applying the lessons of the seminar to their own daily work, students should be careful to develop information that is pertinent to their subject properties and subject areas and not rely on any of the particulars laid out in the cases.

  17. Validation experiment of a numerically processed millimeter-wave interferometer in a laboratory

    SciTech Connect (OSTI)

    Kogi, Y., E-mail: kogi@fit.ac.jp; Higashi, T.; Matsukawa, S. [Department of Information Electronics, Fukuoka Institute of Technology, Fukuoka 811-0295 (Japan); Mase, A. [Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga, Fukuoka 816-0811 (Japan); Kohagura, J.; Yoshikawa, M. [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Nagayama, Y.; Kawahata, K. [National Institute for Fusion Science, Toki, Gifu 509-5202 (Japan); Kuwahara, D. [Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan)

    2014-11-15

    We propose a new interferometer system for density profile measurements. This system produces multiple measurement chords by a leaky-wave antenna driven by multiple frequency inputs. The proposed system was validated in laboratory evaluation experiments. We confirmed that the interferometer generates a clear image of a Teflon plate as well as the phase shift corresponding to the plate thickness. In another experiment, we confirmed that quasi-optical mirrors can produce multiple measurement chords; however, the finite spot size of the probe beam degrades the sharpness of the resulting image.

  18. The remedial investigation/feasibility study process at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    Martin Marietta Energy Systems, Inc. (Energy Systems), manages and operates the Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, under a cost-plus-award-fee contract administered by the Department of Energy`s (DOE) Oak Ridge Operations Office (Operations Office). Energy Systems` environmental restoration program is responsible for eliminating or reducing the risk posed by inactive and surplus sites and facilities that have been contaminated with radioactive, hazardous, or mixed wastes. The remedial investigation and feasibility study (RI/FS) is being conducted as part of Energy Systems` environmental restoration program. The objective of the audit was to determine if the proposed interim source control action identified in the ``Proposed Plan for the Oak Ridge National Laboratory Waste Area Grouping 6 Interim Remedial Action`` had been adequately justified. The audit disclosed that the proposed source control interim remedial action, three flexible membrane caps estimated to cost $140 million for waste area grouping 6, was not adequately justified. We recommended that DOE justify the proposed action before agreeing to proceed. The Manager, Oak Ridge Operations Office, generally concurred with the audit recommendations.

  19. Evaluating Membrane Processes for Air Conditioning; Highlights in Research and Development, NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This NREL Highlight discusses a recent state-of-the-art review of membrane processes for air conditioning that identifies future research opportunities. This highlight is being developed for the June 2015 S&T Alliance Board meeting.

  20. Process for selecting NEAMS applications for access to Idaho National Laboratory high performance computing resources

    SciTech Connect (OSTI)

    Michael Pernice

    2010-09-01

    INL has agreed to provide participants in the Nuclear Energy Advanced Mod- eling and Simulation (NEAMS) program with access to its high performance computing (HPC) resources under sponsorship of the Enabling Computational Technologies (ECT) program element. This report documents the process used to select applications and the software stack in place at INL.

  1. Historic American Engineering Record, Idaho National Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex

    SciTech Connect (OSTI)

    Susan Stacy; Julie Braun

    2006-12-01

    Just as automobiles need fuel to operate, so do nuclear reactors. When fossil fuels such as gasoline are burned to power an automobile, they are consumed immediately and nearly completely in the process. When the fuel is gone, energy production stops. Nuclear reactors are incapable of achieving this near complete burn-up because as the fuel (uranium) that powers them is burned through the process of nuclear fission, a variety of other elements are also created and become intimately associated with the uranium. Because they absorb neutrons, which energize the fission process, these accumulating fission products eventually poison the fuel by stopping the production of energy from it. The fission products may also damage the structural integrity of the fuel elements. Even though the uranium fuel is still present, sometimes in significant quantities, it is unburnable and will not power a reactor unless it is separated from the neutron-absorbing fission products by a method called fuel reprocessing. Construction of the Fuel Reprocessing Complex at the Chem Plant started in 1950 with the Bechtel Corporation serving as construction contractor and American Cyanamid Company as operating contractor. Although the Foster Wheeler Corporation assumed responsibility for the detailed working design of the overall plant, scientists at Oak Ridge designed all of the equipment that would be employed in the uranium separations process. After three years of construction activity and extensive testing, the plant was ready to handle its first load of irradiated fuel.

  2. Importance of energy efficiency in the design of the Process and Environmental Technology Laboratory (PETL) at Sandia National Laboratories, New Mexico (NM)

    SciTech Connect (OSTI)

    Wrons, R.

    1998-06-01

    As part of the design of the Process and Environmental Technology Laboratory (PETL) in FY97, an energy conservation report (ECR) was completed. The original energy baseline for the building, established in Title 1 design, was 595,000 BTU/sq. ft./yr, site energy use. Following the input of several reviewers and the incorporation of the various recommendations into the Title 2 design, the projected energy consumption was reduced to 341,000 BTU/sq. ft./yr. Of this reduction, it is estimated that about 150,000 BTU/sq. ft./yr resulted from inclusion of more energy efficient options into the design. The remaining reductions resulted from better accounting of energy consumption between Title 1 ECR and the final ECR. The energy efficient features selected by the outcome of the ECR were: (1) Energy Recovery system, with evaporative cooling assist, for the Exhaust/Make-up Air System; (2) Chilled Water Thermal Storage system; (3) Premium efficiency motors for large, year-round applications; (4) Variable frequency drives for all air handling fan motors; (4) Premium efficiency multiple boiler system; and (5) Lighting control system. The annual energy cost savings due to these measures will be about $165,000. The estimated annual energy savings are two million kWhrs electric, and 168,000 therms natural gas, the total of which is equivalent to 23,000 million BTUs per year. Put into the perspective of a typical office/light lab at SNL/NM, the annual energy savings is equal the consumption of a 125,000 square foot building. The reduced air emissions are approximately 2,500 tons annually.

  3. Comparative Study of Laboratory-Scale and Prototypic Production-Scale Fuel Fabrication Processes and Product Characteristics

    SciTech Connect (OSTI)

    Douglas W. Marshall

    2014-10-01

    An objective of the High Temperature Gas Reactor fuel development and qualification program for the United States Department of Energy has been to qualify fuel fabricated in prototypic production-scale equipment. The quality and characteristics of the tristructural isotropic coatings on fuel kernels are influenced by the equipment scale and processing parameters. Some characteristics affecting product quality were suppressed while others have become more significant in the larger equipment. Changes to the composition and method of producing resinated graphite matrix material has eliminated the use of hazardous, flammable liquids and enabled it to be procured as a vendor-supplied feed stock. A new method of overcoating TRISO particles with the resinated graphite matrix eliminates the use of hazardous, flammable liquids, produces highly spherical particles with a narrow size distribution, and attains product yields in excess of 99%. Compact fabrication processes have been scaled-up and automated with relatively minor changes to compact quality to manual laboratory-scale processes. The impact on statistical variability of the processes and the products as equipment was scaled are discussed. The prototypic production-scale processes produce test fuels that meet fuel quality specifications.

  4. Development of the University of Washington Biofuels and Biobased Chemicals Process Laboratory

    SciTech Connect (OSTI)

    Gustafson, Richard

    2014-02-04

    The funding from this research grant enabled us to design and build a bioconversion steam explosion reactor and ancillary equipment such as a high pressure boiler and a fermenter to support the bioconversion process research. This equipment has been in constant use since its installation in 2012. Following are research projects that it has supported: • Investigation of novel chip production method in biofuels production • Investigation of biomass refining following steam explosion • Several studies on use of different biomass feedstocks • Investigation of biomass moisture content on pretreatment efficacy. • Development of novel instruments for biorefinery process control Having this equipment was also instrumental in the University of Washington receiving a $40 million grant from the US Department of Agriculture for biofuels development as well as several other smaller grants. The research that is being done with the equipment from this grant will facilitate the establishment of a biofuels industry in the Pacific Northwest and enable the University of Washington to launch a substantial biofuels and bio-based product research program.

  5. An Effective Waste Management Process for Segregation and Disposal of Legacy Mixed Waste at Sandia National Laboratories/New Mexico

    SciTech Connect (OSTI)

    Hallman, Anne K.; Meyer, Dann; Rellergert, Carla A.; Schriner, Joseph A.

    1998-06-01

    Sandia National Laboratories/New Mexico (SNL/NM) is a research and development facility that generates many highly diverse, low-volume mixed waste streams. Under the Federal Facility Compliance Act, SNL/NM must treat its mixed waste in storage to meet the Land Disposal Restrictions treatment standards. Since 1989, approximately 70 cubic meters (2500 cubic feet) of heterogeneous, poorly characterized and inventoried mixed waste was placed in storage that could not be treated as specified in the SNL/NM Site Treatment Plan. A process was created to sort the legacy waste into sixteen well- defined, properly characterized, and precisely inventoried mixed waste streams (Treatability Groups) and two low-level waste streams ready for treatment or disposal. From June 1995 through September 1996, the entire volume of this stored mixed waste was sorted and inventoried through this process. This process was planned to meet the technical requirements of the sorting operation and to identify and address the hazards this operation presented. The operations were routinely adapted to safely and efficiently handle a variety of waste matrices, hazards, and radiological conditions. This flexibility was accomplished through administrative and physical controls integrated into the sorting operations. Many Department of Energy facilities are currently facing the prospect of sorting, characterizing, and treating a large inventory of mixed waste. The process described in this paper is a proven method for preparing a diverse, heterogeneous mixed waste volume into segregated, characterized, inventoried, and documented waste streams ready for treatment or disposal.

  6. Shell appraising deepwater discovery off Philippines

    SciTech Connect (OSTI)

    Scherer, M. ); Lambers, E.J.T.; Steffens, G.S. )

    1993-05-10

    Shell International Petroleum Co. Ltd. negotiated a farmout in 1990 from Occidental International Exploration and Production Co. for Block SC-38 in the South China Sea off Palawan, Philippines, following Oxy's discovery of gas in 1989 in a Miocene Nido limestone buildup. Under the terms of the farmout agreement, Shell became operator with a 50% share. Following the disappointing well North Iloc 1, Shell was successful in finding oil and gas in Malampaya 1. Water 700-1,000 m deep, remoteness, and adverse weather conditions have imposed major challenges for offshore operations. The paper describes the tectonic setting; the Nido limestone play; the Malampaya discovery; and Shell's appraisal studies.

  7. In-Process Analysis Program for the Isolock sampler at the Gunite and Associated Tanks, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1998-05-01

    The In-Process Analysis Program documents the requirements for handling, transporting, and analyzing waste slurry samples gathered by the Bristol Isolock slurry sampler from the Gunite and Associated Tanks at Oak Ridge National Laboratory in Oak Ridge, Tennessee. Composite samples will be gathered during sludge retrieval operations, labeled, transported to the appropriate laboratory, and analyzed for physical and radiological characteristics. Analysis results will be used to support occupational exposure issues, basic process control management issues, and prediction of radionuclide flow.

  8. Improved laboratory assays of Pu and U for SRP purification and finishing processes

    SciTech Connect (OSTI)

    Holland, M K; Dorsett, R S

    1986-01-01

    Significant improvements have been made in routine assay techniques for uranium and plutonium as part of an effort to improve accountability at the Savannah River Plant (SRP). Emphasis was placed on input/output accountability points and key physical inventory tanks associated with purification and finishing processes. Improvements were made in existing assay methods; new methods were implemented; and the application of these methods was greatly expanded. Prior to assays, samples were validated via density measurements. Digital density meters precise to four, five, and six decimal places were used to meet specific requirements. Improved plutonium assay techniques are now in routine use: controlled-potential coulometry, ion-exchange coulometry, and Pu(III) diode-array spectrophotometry. A new state-of-the-art coulometer was fabricated and used to ensure maximum accuracy in verifying standards and in measuring plutonium in product streams. The diode-array spectrophotometer for Pu(III) measurements was modified with fiber optics to facilitate remote measurements; rapid, precise measurements made the technique ideally suited for high-throughput assays. For uranium assays, the isotope-dilution mass spectrometric (IDMS) method was converted to a gravimetric basis. The IDMS method and the existing Davies-Gray titration (gravimetric basis) have met accountability requirements for uranium. More recently, a Pu(VI) diode-array spectrophotometric method was used on a test basis to measure plutonium in shielded-cell input accountability samples. In addition, tests to measure uranium via diode-array spectrophotometry were initiated. This rapid, precise method will replace IDMS for certain key sample points.

  9. Appraisers Project Plan: Wireless Controls and Retrofit LED Lighting Demonstration

    Broader source: Energy.gov [DOE]

    Appraisers Project Plan: Wireless Controls and Retrofit LED Lighting Demonstration Measurement and Verification Report This report details the measurement and verification tools and methods used to evaluate the effectiveness of wireless lighting controls and LED lighting at the Appraisers Building, a federal office building in San Francisco, CA.

  10. Microsoft Word - FY 2015 SP Performance Appraisal System Guidance - Final

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Executive Resources Office of the Chief Human Capital Officer U.S. Department of Energy FY 2015 Senior Professional (SP) Performance Appraisal System Opening Guidance 2 Table of Contents Contents I. SP PERFORMANCE APPRAISAL TEMPLATE and TIMELINE ....................................................................... 3 II. PERFORMANCE PLAN - CRITICAL ELEMENTS .......................................................................................... 3 III. SP SUMMARY RATING LEVEL

  11. Final deactivation project report on the Integrated Process Demonstration Facility, Building 7602 Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1997-09-01

    The purpose of this report is to document the condition of the Integrated Process Demonstration Facility (Building 7602) at Oak Ridge National Laboratory (ORNL) after completion of deactivation activities by the High Ranking Facilities Deactivation Project (HRFDP). This report identifies the activities conducted to place the facility in a safe and environmentally sound condition prior to transfer to the U.S. Department of Energy (DOE) Environmental Restoration EM-40 Program. This report provides a history and description of the facility prior to commencing deactivation activities and documents the condition of the building after completion of all deactivation activities. Turnover items, such as the Post-Deactivation Surveillance and Maintenance (S&M) Plan, remaining hazardous and radioactive materials inventory, radiological controls, Safeguards and Security, and supporting documentation provided in the Office of Nuclear Material and Facility Stabilization Program (EM-60) Turnover package are discussed.

  12. Robofurnace: A semi-automated laboratory chemical vapor deposition system for high-throughput nanomaterial synthesis and process discovery

    SciTech Connect (OSTI)

    Oliver, C. Ryan; Westrick, William; Koehler, Jeremy; Brieland-Shoultz, Anna; Anagnostopoulos-Politis, Ilias; Cruz-Gonzalez, Tizoc [Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States)] [Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Hart, A. John, E-mail: ajhart@mit.edu [Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2013-11-15

    Laboratory research and development on new materials, such as nanostructured thin films, often utilizes manual equipment such as tube furnaces due to its relatively low cost and ease of setup. However, these systems can be prone to inconsistent outcomes due to variations in standard operating procedures and limitations in performance such as heating and cooling rates restrict the parameter space that can be explored. Perhaps more importantly, maximization of research throughput and the successful and efficient translation of materials processing knowledge to production-scale systems, relies on the attainment of consistent outcomes. In response to this need, we present a semi-automated lab-scale chemical vapor deposition (CVD) furnace system, called Robofurnace. Robofurnace is an automated CVD system built around a standard tube furnace, which automates sample insertion and removal and uses motion of the furnace to achieve rapid heating and cooling. The system has a 10-sample magazine and motorized transfer arm, which isolates the samples from the lab atmosphere and enables highly repeatable placement of the sample within the tube. The system is designed to enable continuous operation of the CVD reactor, with asynchronous loading/unloading of samples. To demonstrate its performance, Robofurnace is used to develop a rapid CVD recipe for carbon nanotube (CNT) forest growth, achieving a 10-fold improvement in CNT forest mass density compared to a benchmark recipe using a manual tube furnace. In the long run, multiple systems like Robofurnace may be linked to share data among laboratories by methods such as Twitter. Our hope is Robofurnace and like automation will enable machine learning to optimize and discover relationships in complex material synthesis processes.

  13. Looking For Value in All The Wrong Places. Toward Expanded Consideration of Green and High Performance Attributes in Non-residential Property Appraisals in the United States

    SciTech Connect (OSTI)

    Mills, Evan

    2015-10-21

    Large numbers of commercial buildings have sought to improve their energy and environmental performance, with half of all leasable U.S. offices now designated at some level of “green”. All proper/es fall somewhere on the green/high-­performance spectrum (above and below average) whether or not they bear a formal label or ra/ng.1 Variations in the level of performance can either positively or negatively influence value. This component of value can be shaped by many factors, from utility costs to tenant/owner preferences that translate into income (rent levels, vacancy rates, lease-­up /mes, etc.). Occupant perceptions of indoor environmental quality are another potential influence on value. While there has been little uptake of this thinking by practicing appraisers, the increased prevalence of green/HP practices combined with concerns about appraiser competency are compelling the industry to adapt their traditional techniques to this new driver of value. However, the overly narrow focus of policymakers on appraisal of labeled or rated exemplary buildings (e.g., LEED or ENERGY STAR Certified) represents a significant missed opportunity. Any level of green or energy performance can in fact influence value, including below-­average performance (a.k.a. “brown discount”), irrespec/ve of whether or not the building has been formally rated. Another surmountable challenge is the limitations to non-­appraisers’ understanding of the appraisal process (and constraints therein). A crucial byproduct of this is unrealistic expectations of what appraisers can and will do in the marketplace. This report identifies opportunities for catalyzing improvement of the green/HP appraisal process, which apply to all involved actors—from owner, report-­ordering client, the appraiser, and the appraisal reviewer—and fostering more demand for appraisals that recognize green/HP property attributes. The intended audience is primarily the public policy community and other

  14. Appraising the sustainability of project alternatives: An increasing role for cumulative effects assessment

    SciTech Connect (OSTI)

    Senner, Robert

    2011-09-15

    Evaluating and comparing development alternatives with regard to sustainability is an important goal for comprehensive project appraisal. In the United States, this component has been largely missing from standard environmental impact assessment practice. Cumulative effects assessment provides a way to appraise the sustainability of project alternatives in terms of their probable contributions to long-term trends affecting the condition of valued environmental components. Sustainability metrics and predictors are being developed as criteria for rating systems and evaluation processes that are applied to community planning, building design, and transportation infrastructure. Increasing interest in adaptive management is also providing cost-effective solutions to optimizing safety and function throughout the long-term operation of a facility or infrastructure. Recent federal legislation is making it easier to integrate sustainability features into development alternatives through early, community-based planning.

  15. DOE and The Appraisal Foundation Announce New Partnership to Focus on

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Performance and Building Appraisals | Department of Energy The Appraisal Foundation Announce New Partnership to Focus on Energy Performance and Building Appraisals DOE and The Appraisal Foundation Announce New Partnership to Focus on Energy Performance and Building Appraisals June 13, 2011 - 12:00am Addthis WASHINGTON, DC - As part of the Obama Administration's efforts to improve commercial building efficiency 20 percent by 2020, U.S. Energy Secretary Steven Chu today announced a

  16. Management | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Sciences & Engineering Focus: Understanding & Control of Interfacial Processes Web Site Michael Thackeray Michael Thackeray (Deputy Director) Argonne National Laboratory...

  17. UC Assurance Plan For Lawrence Berkeley National Laboratory July2007

    SciTech Connect (OSTI)

    Chernowski, John

    2007-07-09

    This Division ES&H Self-Assessment Manual describes how the Laboratory administers a division self-assessment program that conforms to the institutional requirements promulgated in the 'LBNL Environment, Safety and Health Self-Assessment Program' (LBNL/PUB-5344, latest revision). The institutional program comprises all appraisal and reporting activities that identify environmental, safety, and health deficiencies and associated corrective actions. It is designed to meet U.S. Department of Energy (DOE) requirements for self-assessment. Self-assessment is a continuous process of information gathering and evaluation. A division selfassessment program should describe methods for gathering and documenting information, and methods to analyze these performance data to identify trends and root causes and their corrections.

  18. Microsoft Word - FY 2015 SES Performance Appraisal System Guidance...

    Broader source: Energy.gov (indexed) [DOE]

    Office of Executive Resources Office of the Chief Human Capital Officer U.S. Department of ... in the performance appraisal by the Office of the Chief Human Capital Officer. ...

  19. Local Energy Alliance Program Adds Green Appraisal Capabilities to its

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency Services | Department of Energy Local Energy Alliance Program Adds Green Appraisal Capabilities to its Energy Efficiency Services Local Energy Alliance Program Adds Green Appraisal Capabilities to its Energy Efficiency Services Photo of Cynthia Adams sitting by the water. Charlottesville, Virginia homeowners interested in selling their home, refinancing, or applying for a secured line of credit have a new tool to increase their home value by accounting for home energy

  20. DOE Announces Webinars on Energy Efficient Appraisals, a Hydrogen Leak

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Detector, and More | Department of Energy Energy Efficient Appraisals, a Hydrogen Leak Detector, and More DOE Announces Webinars on Energy Efficient Appraisals, a Hydrogen Leak Detector, and More February 26, 2016 - 8:28am Addthis EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies, to training for the clean energy workforce. Webinars are free; however, advanced registration is typically required. Upcoming

  1. CRADA with International Polyol Chemicals, Inc. (IPCI) and Pacific Northwest National Laboratory (PNL-053): Process Optimization for Polyols Production from Glucose

    SciTech Connect (OSTI)

    Elliott, D.C.

    1997-01-01

    The objective of this CRADA is to provide sufficient process development to allow a decision for commercialization of the International Polyol Chemicals, Inc. (IPCI) process for production of polyols from glucose. This cooperative research allowed Pacific Northwest National Laboratory (PNNL) to focus its aqueous processing systems expertise on the IPCI process to facilitate process optimization. The project was part of the Department of Energy's (DOE/EE-OIT) Alternative Feedstocks Program (AFP). The project was a demonstration of the cooperative effort between the AFP and the Department of Agriculture's Alternative Agriculture Research Center, which was also funding IPCI research.

  2. Evaluation of a performance appraisal framework for radiation therapists in planning and simulation

    SciTech Connect (OSTI)

    Becker, Jillian; Bridge, Pete; Brown, Elizabeth; Lusk, Ryan; Ferrari-Anderson, Janet

    2015-06-15

    Constantly evolving technology and techniques within radiation therapy require practitioners to maintain a continuous approach to professional development and training. Systems of performance appraisal and adoption of regular feedback mechanisms are vital to support this development yet frequently lack structure and rely on informal peer support. A Radiation Therapy Performance Appraisal Framework (RT-PAF) for radiation therapists in planning and simulation was developed to define expectations of practice and promote a supportive and objective culture of performance and skills appraisal. Evaluation of the framework was conducted via an anonymous online survey tool. Nine peer reviewers and fourteen recipients provided feedback on its effectiveness and the challenges and limitations of the approach. Findings from the evaluation were positive and suggested that both groups gained benefit from and expressed a strong interest in embedding the approach more routinely. Respondents identified common challenges related to the limited ability to implement suggested development strategies; this was strongly associated with time and rostering issues. This framework successfully defined expectations for practice and provided a fair and objective feedback process that focussed on skills development. It empowered staff to maintain their skills and reach their professional potential. Management support, particularly in regard to provision of protected time was highlighted as critical to the framework's ongoing success. The demonstrated benefits arising in terms of staff satisfaction and development highlight the importance of this commitment to the modern radiation therapy workforce.

  3. Laboratory Studies of Processing of Carbonaceous Aerosols by Atmospheric Oxidants/Hygroscopicity and CCN Activity of Secondary & Processed Primary Organic Aerosols

    SciTech Connect (OSTI)

    Ziemann, P.J.; Arey, J.; Atkinson, R.; Kreidenweis, S.M.; Petters, M.D.

    2012-06-13

    The atmosphere is composed of a complex mixture of gases and suspended microscopic aerosol particles. The ability of these particles to take up water (hygroscopicity) and to act as nuclei for cloud droplet formation significantly impacts aerosol light scattering and absorption, and cloud formation, thereby influencing air quality, visibility, and climate in important ways. A substantial, yet poorly characterized component of the atmospheric aerosol is organic matter. Its major sources are direct emissions from combustion processes, which are referred to as primary organic aerosol (POA), or in situ processes in which volatile organic compounds (VOCs) are oxidized in the atmosphere to low volatility reaction products that subsequent condense to form particles that are referred to as secondary organic aerosol (SOA). POA and VOCs are emitted to the atmosphere from both anthropogenic and natural (biogenic) sources. The overall goal of this experimental research project was to conduct laboratory studies under simulated atmospheric conditions to investigate the effects of the chemical composition of organic aerosol particles on their hygroscopicity and cloud condensation nucleation (CCN) activity, in order to develop quantitative relationships that could be used to more accurately incorporate aerosol-cloud interactions into regional and global atmospheric models. More specifically, the project aimed to determine the products, mechanisms, and rates of chemical reactions involved in the processing of organic aerosol particles by atmospheric oxidants and to investigate the relationships between the chemical composition of organic particles (as represented by molecule sizes and the specific functional groups that are present) and the hygroscopicity and CCN activity of oxidized POA and SOA formed from the oxidation of the major classes of anthropogenic and biogenic VOCs that are emitted to the atmosphere, as well as model hydrocarbons. The general approach for this project was

  4. Evaluation of an alkaline-side solvent extraction process for cesium removal from SRS tank waste using laboratory-scale centrifugal contactors

    SciTech Connect (OSTI)

    Leonard, R. A.; Conner, C.; Liberatore, M. W.; Sedlet, J.; Aase, S. B.; Vandegrift, G. F.

    1999-11-29

    An alkaline-side solvent extraction process for cesium removal from Savannah River Site (SRS) tank waste was evaluated experimentally using a laboratory-scale centrifugal contactor. Single-stage and multistage tests were conducted with this contactor to determine hydraulic performance, stage efficiency, and general operability of the process flowsheet. The results and conclusions of these tests are reported along with those from various supporting tests. Also discussed is the ability to scale-up from laboratory- to plant-scale operation when centrifugal contractors are used to carry out the solvent extraction process. While some problems were encountered, a promising solution for each problem has been identified. Overall, this alkaline-side cesium extraction process appears to be an excellent candidate for removing cesium from SRS tank waste.

  5. Independent Oversight Review of the Los Alamos Field Office Processes for Laboratory Oversight of Radiological Controls Activity-Level Implementation, March 2014

    Office of Environmental Management (EM)

    Review of the Los Alamos Field Office Processes for Laboratory Oversight of Radiological Controls Activity-Level Implementation May 2011 March 2014 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................ 1 2.0 Scope

  6. Image Appraisal for 2D and 3D Electromagnetic Inversion

    SciTech Connect (OSTI)

    Alumbaugh, D.L.; Newman, G.A.

    1999-01-28

    Linearized methods are presented for appraising image resolution and parameter accuracy in images generated with two and three dimensional non-linear electromagnetic inversion schemes. When direct matrix inversion is employed, the model resolution and posterior model covariance matrices can be directly calculated. A method to examine how the horizontal and vertical resolution varies spatially within the electromagnetic property image is developed by examining the columns of the model resolution matrix. Plotting the square root of the diagonal of the model covariance matrix yields an estimate of how errors in the inversion process such as data noise and incorrect a priori assumptions about the imaged model map into parameter error. This type of image is shown to be useful in analyzing spatial variations in the image sensitivity to the data. A method is analyzed for statistically estimating the model covariance matrix when the conjugate gradient method is employed rather than a direct inversion technique (for example in 3D inversion). A method for calculating individual columns of the model resolution matrix using the conjugate gradient method is also developed. Examples of the image analysis techniques are provided on 2D and 3D synthetic cross well EM data sets, as well as a field data set collected at the Lost Hills Oil Field in Central California.

  7. Use of sustainability appraisal by English planning inspectors and judges

    SciTech Connect (OSTI)

    Therivel, Riki

    2013-01-15

    This article considers how sustainability appraisals (SA - an English form of SEA that also considers social and economic issues) are treated at the end of the plan-making process: by planning inspectors who review plans before they are adopted, and by judges in the case of legal challenge to plans and their SAs. It briefly describes the role of inspectors and judges, and how their decisions influence SA. It presents the conclusions of 81 planning inspectors' reports about local authority development plans and their SAs, including three cases where inspectors required further SA information and reasons given by inspectors for not challenging the legal adequacy of other SAs. The three main successful English legal challenges to SA are then summarised. Planning inspectors seemed prone, until recently, to not challenge even quite poor quality SAs. This seems to be changing in the wake of recent court judgements, and in turn is affecting planners' SA practice. However it is unclear whether these changes will affect only the procedural aspects of SA or also planners' and inspectors' 'hearts and minds'. - Highlights: Black-Right-Pointing-Pointer Inspectors tend to err in favour of the submitted plan, even where its sustainability or the quality of its SA is dubious. Black-Right-Pointing-Pointer In contrast to inspectors, judges seem to be taking a broad and rigorous view of SEA requirements. Black-Right-Pointing-Pointer Planners and inspectors are changing their behaviour to avoid legal challenge.

  8. Office of Cyber Security Evaluations Appraisal Process Guide, April 2008

    Office of Environmental Management (EM)

    energy Office of Nuclear Energy Doe/ne-0143 Table of Contents Lesson 1 - Energy Basics Lesson 2 - Electricity Basics Lesson 3 - Atoms and Isotopes Lesson 4 - Ionizing Radiation Lesson 5 - Fission, Chain Reactions Lesson 6 - Atom to Electricity Lesson 7 - Waste from Nuclear Power Plants Lesson 8 - Concerns Lesson 9 - Energy and You 1 Lesson 1 Energy Basics ENERGY BASICS What is energy? Energy is the ability to do work. But what does that really mean? You might think of work as cleaning your room,

  9. Determination of Sugars, Byproducts, and Degradation Products in Liquid Fraction Process Samples: Laboratory Analytical Procedure (LAP); Issue Date: 12/08/2006

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sugars, Byproducts, and Degradation Products in Liquid Fraction Process Samples Laboratory Analytical Procedure (LAP) Issue Date: 12/08/2006 A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, and D. Templeton Technical Report NREL/TP-510-42623 January 2008 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department

  10. Technical Safety Appraisal of the Rocky Flats Plant

    SciTech Connect (OSTI)

    Brown, Blake P.

    1989-01-01

    This report provides the results of a Technical Safety Appraisal (TSA) of the Rocky Flats Plant (RFP) conducted November 14 to 18 and November 28 to December 9, 1988. This appraisal covered the effectiveness and improvements in the RFP safety program across the site, evaluating progress to date against standards of accepted practice. The appraisal included coverage of the timeliness and effectiveness of actions taken in response to the recommendations/concerns in three previous Technical Safety Appraisals (TSAs) of RFP Bldg. 707 conducted in July 1986, Bldgs. 771/774 conducted in October/November 1986, and Bldgs. 776/777 conducted in January/February 1988. Results of this appraisal are given in Section IV for each of 14 technical safety areas at RFP. These results include a discussion, conclusions and any new safety concerns for each technical safety area. Appendix A contains a description of the system for categorizing concerns, and the concerns are tabulated in Appendix B. Appendix C reports on the evaluation of the contractor's actions and the current status of each of the 230 recommendations and concerns contained in the three previous TSA reports.

  11. Protocol, ES&H Systems Assessor/Appraiser - October 2003 | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Office Specific Qualification Standard for ES&H Systems AssessorAppraiser (Rev. 0) This ... PDF icon Protocol, ES&H Systems AssessorAppraiser - October 2003 More Documents & ...

  12. INL Laboratory Scale Atomizer

    SciTech Connect (OSTI)

    C.R. Clark; G.C. Knighton; R.S. Fielding; N.P. Hallinan

    2010-01-01

    A laboratory scale atomizer has been built at the Idaho National Laboratory. This has proven useful for laboratory scale tests and has been used to fabricate fuel used in the RERTR miniplate experiments. This instrument evolved over time with various improvements being made ‘on the fly’ in a trial and error process.

  13. Impact of different cleaning processes on the laser damage threshold of antireflection coatings for Z-Backlighter optics at Sandia National Laboratories

    SciTech Connect (OSTI)

    Field, Ella; Bellum, John; Kletecka, Damon

    2014-11-06

    We have examined how different cleaning processes affect the laser-induced damage threshold of antireflection coatings for large dimension, Z-Backlighter laser optics at Sandia National Laboratories. Laser damage thresholds were measured after the coatings were created, and again 4 months later to determine which cleaning processes were most effective. There is a nearly twofold increase in laser-induced damage threshold between the antireflection coatings that were cleaned and those that were not cleaned. Aging of the coatings after 4 months resulted in even higher laser-induced damage thresholds. Also, the laser-induced damage threshold results revealed that every antireflection coating had a high defect density, despite the cleaning process used, which indicates that improvements to either the cleaning or deposition processes should provide even higher laser-induced damage thresholds.

  14. Impact of different cleaning processes on the laser damage threshold of antireflection coatings for Z-Backlighter optics at Sandia National Laboratories

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Field, Ella; Bellum, John; Kletecka, Damon

    2014-11-06

    We have examined how different cleaning processes affect the laser-induced damage threshold of antireflection coatings for large dimension, Z-Backlighter laser optics at Sandia National Laboratories. Laser damage thresholds were measured after the coatings were created, and again 4 months later to determine which cleaning processes were most effective. There is a nearly twofold increase in laser-induced damage threshold between the antireflection coatings that were cleaned and those that were not cleaned. Aging of the coatings after 4 months resulted in even higher laser-induced damage thresholds. Also, the laser-induced damage threshold results revealed that every antireflection coating had a high defectmore » density, despite the cleaning process used, which indicates that improvements to either the cleaning or deposition processes should provide even higher laser-induced damage thresholds.« less

  15. The Role of Appraisals in Energy Efficiency Financing

    SciTech Connect (OSTI)

    Doyle, Victoria

    2012-05-01

    This research identifies barriers and challenges and current industry status including several key appraisal industry developments for identifying and valuing energy efficiency. The report covers critical obstacles to documenting and assessing the potential added value from energy efficiency improvements, current opportunities to support and standardize reporting on energy efficiency and to ensure proper valuation, and next steps towards enabling energy efficiency financing market transformation.

  16. Microsoft Word - FY 2015 SES Performance Appraisal System Guidance - Final

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Executive Resources Office of the Chief Human Capital Officer U.S. Department of Energy FY 2015 Senior Executive Service (SES) Performance Appraisal System Opening Guidance 2 Table of Contents Contents I. ePERFORMANCE ACTIONS and TIMELINE ............................................................................ 3 II. PERFORMANCE PLAN - CRITICAL ELEMENTS ....................................................................... 3 III. OPM PERFORMANCE RATING LEVEL DEFINITIONS

  17. levin | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    levin Ames Laboratory Profile Evgenii Levin Scientist I Division of Materials Science & Engineering 107 Spedding Phone Number: 515-294-6093 Email Address: levin@iastate.edu Ames Laboratory Research Projects: Novel Materials Preparation & Processing Methodologies Professional Appointments: Scientist I & Adj. Associate Professor, Ames Laboratory U.S. DOE, and Department of Physics and Astronomy, Iowa State University, 2010- present Associate Scientist & Lecturer, Ames Laboratory

  18. Process Description and Operating History for the CPP-601/-640/-627 Fuel Reprocessing Complex at the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    E. P. Wagner

    1999-06-01

    The Fuel Reprocessing Complex (FRC) at the Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory was used for reprocessing spent nuclear fuel from the early 1950's until 1992. The reprocessing facilities are now scheduled to be deactivated. As part of the deactivation process, three Resource Conservation and Recovery Act (RCRA) interim status units located in the complex must be closed. This document gathers the historical information necessary to provide a rational basis for the preparation of a comprehensive closure plan. Included are descriptions of process operations and the operating history of the FRC. A set of detailed tables record the service history and present status of the process vessels and transfer lines.

  19. Studies of nuclear processes at the Triangle Universities Nuclear Laboratory. Progress report, 1 September 1995--31 August 1996

    SciTech Connect (OSTI)

    Ludwig, E.J.

    1996-09-01

    The Triangle Universities Nuclear Laboratory (TUNL)--a collaboration of Duke University, North Carolina State University, and the University of North Carolina at Chapel Hill--has had a very productive year. This report covers parts of the second and third year of a three-year grant between the US Department of Energy and the three collaborating universities. The TUNL research program focuses on the following areas: precision test of parity-invariance violation in resonance neutron scattering at LANSCE/LANL; parity violation measurements using charged-particle resonances in A = 20--40 targets and the A = 4 system at TUNL; chaotic behavior in the nuclei {sup 30}P and {sup 34}Cl from studies of eigenvalue fluctuations in nuclear level schemes; search for anomalies in the level density (pairing phase transition) in 1f-2p shell nuclei using GEANIE at LANSCE/LANL; parity-conserving time-reversal noninvariance tests using {sup 166}Ho resonances at Geel, ORELA, or LANSCE/LANL; nuclear astrophysics; few-body nuclear systems; Nuclear Data evaluation for A = 3--20 for which TUNL is now the international center. Developments in technology and instrumentation are vital to the research and training program. Innovative work was continued in: polarized beam development; polarized target development; designing new cryogenic systems; designing new detectors; improving high-resolution beams for the KN and FN accelerators; development of an unpolarized Low-Energy Beam Facility for radiative capture studies of astrophysical interest. Preliminary research summaries are presented.

  20. riedemann | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    riedemann Ames Laboratory Profile Trevor Riedemann Asst Scientist III Division of Materials Science & Engineering 110 Metals Development Phone Number: 515-294-1366 Email Address: riedemann@ameslab.gov Assistant Scientist III Website(s): Novel Materials Preparation & Processing Methodologies Materials Preparation Center Ames Laboratory Research Projects: Novel Materials Preparation & Processing Methodologies Education: Masters of Science, Metallurgy, Iowa State University, 1996

  1. Evaluating Membrane Processes for Air Conditioning, Highlights in Research and Development (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL compiles state-of-the-art review on membrane processes for air conditioning to identify future research opportunities. Researchers are pursuing alternatives to conventional heating, ventilating, and air-conditioning (HVAC) practices, especially cool- ing and dehumidification, because of high energy use, environmentally harmful refrigerants, and a need for better humidity control. Advancements in membrane technology enable new possibilities in this area. Membranes are traditionally used for

  2. Materials and process engineering projects for the Sandia National Laboratories/Newly Independent States Industrial Partnering Program. Volume 1

    SciTech Connect (OSTI)

    Zanner, F.J.; Moffatt, W.C.

    1995-07-01

    In July, 1994, a team of materials specialists from Sandia and U S Industry traveled to Russia and the Ukraine to select and fund projects in materials and process technology in support of the Newly Independent States/Industrial Partnering Program (NIS/IPP). All of the projects are collaborations with scientists and Engineers at NIS Institutes. Each project is scheduled to last one year, and the deliverables are formatted to supply US Industry with information which will enable rational decisions to be made regarding the commercial value of these technologies. This work is an unedited interim compilation of the deliverables received to date.

  3. Materials and process engineering projects for the Sandia National Laboratories/Newly Independent States Industrial Partnering Program. Volume 2

    SciTech Connect (OSTI)

    Zanner, F.J.; Moffatt, W.C.

    1995-07-01

    In July, 1994, a team of materials specialists from Sandia and US. Industry traveled to Russia and the Ukraine to select and fund projects in materials and process technology in support of the Newly Independent States/Industrial Partnering Program (NIS/IPP). All of the projects are collaborations with scientists and Engineers at NIS Institutes. Each project is scheduled to last one year, and the deliverables are formatted to supply US. Industry with information which will enable rational decisions to be made regarding the commercial value of these technologies. This work is an unedited interim compilation of the deliverables received to date.

  4. Laboratory Directors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Directors Laboratory Directors A gallery of Laboratory leadership, 1943 to the present. Laboratory historian Alan B. Carr Email Laboratory directors Charles McMillan (2011-present) Michael R. Anastasio (2006-2011) Robert Kuckuck (2005-2006) G. Peter Nanos (2003-2005) John C. Browne (1997-2003) Siegfried S. Hecker (1985-1997) Donald M. Kerr (1979-1985) Harold M. Agnew (1970-1979) Norris Bradbury (1945-1970) J. Robert Oppenheimer (1943-1945) Laboratory Directors Harold M. Agnew

  5. FY 2015 Senior Executive Service (SES) and Senior Professional (SP) Performance Appraisal Opening Guidance

    Broader source: Energy.gov [DOE]

    The FY 2015 performance appraisal cycle for both SES and SP members, which includes Senior Level (SL) and Scientific or Professional (ST) employees, concludes on September 30, 2015.

  6. Sandia National Laboratories: Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facebook Twitter YouTube Flickr RSS Pathfinder Airborne ISR Systems Publications Sandia National Laboratories: Synthetic Aperature Radar (SAR): Publications Reports authored by Sandia National Laboratories 63 results OSTI ID Report No. Type Title Authors Pub. Date Researcher Sponsor 1121978 Full Text Available SAND2013-10619 Technical Report Window taper functions for subaperture processing. Doerry, Armin Walter Dec. 2013 Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

  7. Laboratories | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories Our laboratories are available to industry and other organizations for researching, developing, and evaluating energy technologies. We have experienced lab technicians, scientists and engineers ready to design and run tests for you. Some labs are available for conducting your own research. A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z A Accelerated Exposure Testing Laboratory Advanced Optical Materials Laboratory Advanced

  8. devo | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    devo Ames Laboratory Profile Deborah Schlagel Asst Scientist III Division of Materials Science & Engineering 111 Metals Development Phone Number: 515-294-3924 Email Address: schlagel@iastate.edu Ames Laboratory Research Projects: Novel Materials Preparation & Processing Methodologies Research Interests: Synthesis of single crystals of Huesler alloys, magneto-responsive materials, superconductors, elements and alloys Single crystal characterization and property analysis

  9. Sandia National Laboratories: Working with Sandia: Contract Audit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Audit iSupplier Account Accounts Payable Contract Information Construction and Facilities Contract Audit Working with Sandia Contract Audit Sandia has designated the Contract Audit Department as an independent appraiser responsible for auditing supplier contracts and subcontracts that support the Laboratories' mission. Contract Audit also provides accounting and financial services in the negotiation, administration, and settlement of costs for contracts placed by Sandia Procurement. The

  10. DATA SHARING REPORT CHARACTERIZATION OF THE SURVEILLANCE AND MAINTENANCE PROJECT MISCELLANEOUS PROCESS INVENTORY WASTE ITEMS OAK RIDGE NATIONAL LABORATORY, Oak Ridge TN

    SciTech Connect (OSTI)

    Weaver, Phyllis C

    2013-12-12

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, to provide technical and independent waste management planning support under the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested ORAU to plan and implement a sampling and analysis campaign to target certain items associated with URS|CH2M Oak Ridge, LLC (UCOR) surveillance and maintenance (S&M) process inventory waste. Eight populations of historical and reoccurring S&M waste at the Oak Ridge National Laboratory (ORNL) have been identified in the Waste Handling Plan for Surveillance and Maintenance Activities at the Oak Ridge National Laboratory, DOE/OR/01-2565&D2 (WHP) (DOE 2012) for evaluation and processing for final disposal. This waste was generated during processing, surveillance, and maintenance activities associated with the facilities identified in the process knowledge (PK) provided in Appendix A. A list of items for sampling and analysis were generated from a subset of materials identified in the WHP populations (POPs) 4, 5, 6, 7, and 8, plus a small number of items not explicitly addressed by the WHP. Specifically, UCOR S&M project personnel identified 62 miscellaneous waste items that would require some level of evaluation to identify the appropriate pathway for disposal. These items are highly diverse, relative to origin; composition; physical description; contamination level; data requirements; and the presumed treatment, storage, and disposal facility (TSDF). Because of this diversity, ORAU developed a structured approach to address item-specific data requirements necessary for acceptance in a presumed TSDF that includes the Environmental Management Waste Management Facility (EMWMF)—using the approved Waste Lot (WL) 108.1 profile—the Y-12 Sanitary Landfill (SLF) if appropriate; Energy

  11. Geoscience Laboratory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    preparation and other relatively straight-forward laboratory manipulations. These include buffer preparations, solid sample grinding, solution concentration, filtration, and...

  12. Tiger Team assessment of the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    McKenzie, Barbara J.; West, Stephanie G.; Jones, Olga G.; Kerr, Dorothy A.; Bieri, Rita A.; Sanderson, Nancy L.

    1991-08-01

    The purpose of the Safety and Health (S H) Subteam assessment was to determine the effectiveness of representative safety and health programs at the Idaho National Engineering Laboratory (INEL) site. Four Technical Safety Appraisal (TSA) Teams were assembled for this purpose by the US Department of Energy (DOE), Deputy Assistant Secretary for Safety and Quality Assurance, Office of Safety Appraisals (OSA). Team No. 1 reviewed EG G Idaho, Inc. (EG G Idaho) and the Department of Energy Field Office, Idaho (ID) Fire Department. Team No. 2 reviewed Argonne National Laboratory-West (ANL-W). Team No. 3 reviewed selected contractors at the INEL; specifically, Morrison Knudsen-Ferguson of Idaho Company (MK-FIC), Protection Technology of Idaho, Inc. (PTI), Radiological and Environmental Sciences Laboratory (RESL), and Rockwell-INEL. Team No. 4 provided an Occupational Safety and Health Act (OSHA)-type compliance sitewide assessment of INEL. The S H Subteam assessment was performed concurrently with assessments conducted by Environmental and Management Subteams. Performance was appraised in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Medical Services, and Firearms Safety.

  13. Appraising the value of independent EIA follow-up verifiers

    SciTech Connect (OSTI)

    Wessels, Jan-Albert

    2015-01-15

    Independent Environmental Impact Assessment (EIA) follow-up verifiers such as monitoring agencies, checkers, supervisors and control officers are active on various construction sites across the world. There are, however, differing views on the value that these verifiers add and very limited learning in EIA has been drawn from independent verifiers. This paper aims to appraise how and to what extent independent EIA follow-up verifiers add value in major construction projects in the developing country context of South Africa. A framework for appraising the role of independent verifiers was established and four South African case studies were examined through a mixture of site visits, project document analysis, and interviews. Appraisal results were documented in the performance areas of: planning, doing, checking, acting, public participating and integration with other programs. The results indicate that independent verifiers add most value to major construction projects when involved with screening EIA requirements of new projects, allocation of financial and human resources, checking legal compliance, influencing implementation, reporting conformance results, community and stakeholder engagement, integration with self-responsibility programs such as environmental management systems (EMS), and controlling records. It was apparent that verifiers could be more creatively utilized in pre-construction preparation, providing feedback of knowledge into assessment of new projects, giving input to the planning and design phase of projects, and performance evaluation. The study confirms the benefits of proponent and regulator follow-up, specifically in having independent verifiers that disclose information, facilitate discussion among stakeholders, are adaptable and proactive, aid in the integration of EIA with other programs, and instill trust in EIA enforcement by conformance evaluation. Overall, the study provides insight on how to harness the learning opportunities

  14. Visa Information | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Visa Information Visa Status Information The link below will direct you to a chart which describes the various types of visas that visitors/employees may obtain for their visit/employment at Ames Laboratory/Iowa State University. Where it states that an application must be processed in iStart, the Ames Laboratory host must contact Ames Laboratory Human Resources to process this request. Ames Laboratory Human Resources will work with the host to obtain appropriate documentation and approvals

  15. Laboratory Fellows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    selected as Los Alamos National Laboratory Fellows November 16, 2010 Scientific disciplines range from fundamental and applied physics to geology LOS ALAMOS, New Mexico, NOVEMBER 16, 2010-Five Los Alamos National Laboratory scientists from diverse fields of research have been named Laboratory Fellows. The five researchers are Brenda Dingus of the Neutron Science and Technology group; William (Bill) Louis of the Subatomic Physics group; John Sarrao, director of Los Alamos's Office of Science

  16. Laboratory Director

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Director Laboratory Director Charles F. McMillan has demonstrated success at balancing mission performance with security and safety. Contact Operator Los Alamos National Laboratory (505) 667-5061 McMillan has nearly 30 years of scientific and management experience in weapons science and stockpile certification, hands-on experience in both experimental physics and computational science, and demonstrated success at balancing mission performance with security and safety. Charles F.

  17. Laboratory Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Operations Laboratory Operations Latest announcements from the Lab on its operations. News Releases Science Briefs Photos Picture of the Week Publications Social Media Videos Fact Sheets The Laboratory began the Hazmat Challenge in 1996 to hone the skills of its own hazmat team members. 20th Hazmat Challenge tests skills of hazardous materials response teams Ten hazardous materials response teams from New Mexico, Missouri, Oklahoma and Nebraska test their skills in a series of graded,

  18. Laboratory Building.

    SciTech Connect (OSTI)

    Herrera, Joshua M.

    2015-03-01

    This report is an analysis of the means of egress and life safety requirements for the laboratory building. The building is located at Sandia National Laboratories (SNL) in Albuquerque, NM. The report includes a prescriptive-based analysis as well as a performance-based analysis. Following the analysis are appendices which contain maps of the laboratory building used throughout the analysis. The top of all the maps is assumed to be north.

  19. The Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    existing programs in climate change science and infrastructure. The Laboratory has a 15- year history in climate change science. The Climate, Ocean and Sea Ice Modeling (COSIM) ...

  20. Geologic processes in the RWMC area, Idaho National Engineering Laboratory: Implications for long term stability and soil erosion at the radioactive waste management complex

    SciTech Connect (OSTI)

    Hackett, W.R.; Tullis, J.A.; Smith, R.P.

    1995-09-01

    The Radioactive Waste Management Complex (RWMC) is the disposal and storage facility for low-level radioactive waste at the Idaho National Engineering Laboratory (INEL). Transuranic waste and mixed wastes were also disposed at the RWMC until 1970. It is located in the southwestern part of the INEL about 80 km west of Idaho Falls, Idaho. The INEL occupies a portion of the Eastern Snake River Plain (ESRP), a low-relief, basalt, and sediment-floored basin within the northern Rocky Mountains and northeastern Basin and Range Province. It is a cool and semiarid, sagebrush steppe desert characterized by irregular, rolling terrain. The RWMC began disposal of INEL-generated wastes in 1952, and since 1954, wastes have been accepted from other Federal facilities. Much of the waste is buried in shallow trenches, pits, and soil vaults. Until about 1970, trenches and pits were excavated to the basalt surface, leaving no sediments between the waste and the top of the basalt. Since 1970, a layer of sediment (about 1 m) has been left between the waste and the basalt. The United States Department of Energy (DOE) has developed regulations specific to radioactive-waste disposal, including environmental standards and performance objectives. The regulation applicable to all DOE facilities is DOE Order 5820.2A (Radioactive Waste Management). An important consideration for the performance assessment of the RWMC is the long-term geomorphic stability of the site. Several investigators have identified geologic processes and events that could disrupt a radioactive waste disposal facility. Examples of these {open_quotes}geomorphic hazards{close_quotes} include changes in stream discharge, sediment load, and base level, which may result from climate change, tectonic processes, or magmatic processes. In the performance assessment, these hazards are incorporated into scenarios that may affect the future performance of the RWMC.

  1. Technical safety appraisal of the Nevada Test Site

    SciTech Connect (OSTI)

    1990-12-01

    This report presents the results of one of a series of Technical Safety Appraisals (TSAs) being conducted of Department of Energy (DOE) operations (nuclear and non-nuclear) by the Assistant Secretary of Environment, Safety and Health (ES&H), Office of Safety Appraisals. These TSAs are one of the initiatives announced by the Secretary of Energy on September 18, 1985, to enhance the DOE`s environment, safety, and health program. This TSA report focuses on the safety and health operations of the Nevada Operations Office (NV) at the Nevada Test Site (NTS), which was conducted concurrently, with and supporting a Tiger Team Assessment. The total effort of all the Tiger Team assessment, including environmental and manager evaluations, is reported in the Tiger Team Report, issued January 1990. The assessment of the NTS began November 5, 1989 with the briefing of the Tiger Team in Las Vegas at the Nevada Operations Office. The TSA team evaluation was conducted November 6--17, and November 26--December 1, 1989 at the NTS.

  2. Our History | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Our History Ames Laboratory was formally established in 1947 by the Atomic Energy Commission as a result of the Ames Project's successful development of the most efficient process ...

  3. Pacific Northwest National Laboratory | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pacific Northwest National Laboratory Pacific Northwest National Laboratory Pacific Northwest National Laboratory | June 2010 Aerial View Pacific Northwest National Laboratory | June 2010 Aerial View Pacific Northwest National Laboratory (PNNL) conducts research for national security missions, nuclear materials stewardship, non-proliferation missions, the nuclear fuel life cycle, energy production. PNNL is engaged in expanding the beneficial use of nuclear materials such as nuclear process

  4. Sonication standard laboratory module

    DOE Patents [OSTI]

    Beugelsdijk, Tony; Hollen, Robert M.; Erkkila, Tracy H.; Bronisz, Lawrence E.; Roybal, Jeffrey E.; Clark, Michael Leon

    1999-01-01

    A standard laboratory module for automatically producing a solution of cominants from a soil sample. A sonication tip agitates a solution containing the soil sample in a beaker while a stepper motor rotates the sample. An aspirator tube, connected to a vacuum, draws the upper layer of solution from the beaker through a filter and into another beaker. This beaker can thereafter be removed for analysis of the solution. The standard laboratory module encloses an embedded controller providing process control, status feedback information and maintenance procedures for the equipment and operations within the standard laboratory module.

  5. jonesll | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jonesll Ames Laboratory Profile Lawrence Jones Associate Division of Materials Science & Engineering Facilities Services 121 Metals Development Phone Number: 515-294-5236 Email Address: jonesll@ameslab.gov Ames Laboratory Research Projects: Novel Materials Preparation & Processing Methodologies Education: M.S. Metallurgical Engineering, Iowa State University, 1985 B.S. Metallurgical Engineering, Iowa State University, 1983 Professional Appointments: Iowa State University; Ames

  6. The Virtual Robotics Laboratory

    SciTech Connect (OSTI)

    Kress, R.L.; Love, L.J.

    1999-09-01

    The growth of the Internet has provided a unique opportunity to expand research collaborations between industry, universities, and the national laboratories. The Virtual Robotics Laboratory (VRL) is an innovative program at Oak Ridge National Laboratory (ORNL) that is focusing on the issues related to collaborative research through controlled access of laboratory equipment using the World Wide Web. The VRL will provide different levels of access to selected ORNL laboratory secondary education programs. In the past, the ORNL Robotics and Process Systems Division has developed state-of-the-art robotic systems for the Army, NASA, Department of Energy, Department of Defense, as well as many other clients. After proof of concept, many of these systems sit dormant in the laboratories. This is not out of completion of all possible research topics. but from completion of contracts and generation of new programs. In the past, a number of visiting professors have used this equipment for their own research. However, this requires that the professor, and possibly his/her students, spend extended periods at the laboratory facility. In addition, only a very exclusive group of faculty can gain access to the laboratory and hardware. The VRL is a tool that enables extended collaborative efforts without regard to geographic limitations.

  7. The Virtual Robotics Laboratory

    SciTech Connect (OSTI)

    Kress, R.L.; Love, L.J.

    1997-03-01

    The growth of the Internet has provided a unique opportunity to expand research collaborations between industry, universities, and the national laboratories. The Virtual Robotics Laboratory (VRL) is an innovative program at Oak Ridge National Laboratory (ORNL) that is focusing on the issues related to collaborative research through controlled access of laboratory equipment using the World Wide Web. The VRL will provide different levels of access to selected ORNL laboratory equipment to outside universities, industrial researchers, and elementary and secondary education programs. In the past, the ORNL Robotics and Process Systems Division (RPSD) has developed state-of-the-art robotic systems for the Army, NASA, Department of Energy, Department of Defense, as well as many other clients. After proof of concept, many of these systems sit dormant in the laboratories. This is not out of completion of all possible research topics, but from completion of contracts and generation of new programs. In the past, a number of visiting professors have used this equipment for their own research. However, this requires that the professor, and possibly his students, spend extended periods at the laboratory facility. In addition, only a very exclusive group of faculty can gain access to the laboratory and hardware. The VRL is a tool that enables extended collaborative efforts without regard to geographic limitations.

  8. FIA-15-0008 - In the Matter of Real Estate Appraisal Litigation, LLC |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 8 - In the Matter of Real Estate Appraisal Litigation, LLC FIA-15-0008 - In the Matter of Real Estate Appraisal Litigation, LLC On March 30, 2015, OHA denied a FOIA Appeal filed by Mr. Jim L. Sanders of Real Estate Appraisal Litigation, LLC from a determination issued to him by the Bonneville Power Administration (BPA). In the Appeal, the Appellant challenged the adequacy of BPA's search for responsive documents as well as BPA's application of FOIA Exemption 6 to

  9. Employment Opportunities | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Employment Opportunities Thank you for your interest in working for Ames Laboratory. Ames Laboratory is a Department of Energy national laboratory operated by Iowa State University. Ames Laboratory employees are Iowa State University employees, and employment opportunities are posted and filled through the Iowa State University recruitment process. Therefore, employment opportunities can be found on the Iowa State University job opportunities page. Chief Research Officer position description

  10. A Strategic Project Appraisal framework for ecologically sustainable urban infrastructure

    SciTech Connect (OSTI)

    Morrissey, John; Iyer-Raniga, Usha; McLaughlin, Patricia; Mills, Anthony

    2012-02-15

    Actors in the built environment are progressively considering environmental and social issues alongside functional and economic aspects of development projects. Infrastructure projects represent major investment and construction initiatives with attendant environmental, economic and societal impacts across multiple scales. To date, while sustainability strategies and frameworks have focused on wider national aspirations and strategic objectives, they are noticeably weak in addressing micro-level integrated decision making in the built environment, particularly for infrastructure projects. The proposed approach of this paper is based on the principal that early intervention is the most cost-effective and efficient means of mitigating the environmental effects of development projects, particularly macro infrastructure developments. A strategic overview of the various project alternatives, taking account for stakeholder and expert input, could effectively reduce project impacts/risks at low cost to the project developers but provide significant benefit to wider communities, including communities of future stakeholders. This paper is the first exploratory step in developing a more systematic framework for evaluating strategic alternatives for major metropolitan infrastructure projects, based on key sustainability principles. The developed Strategic Project Appraisal (SPA) framework, grounded in the theory of Strategic Environmental Assessment (SEA), provides a means of practically appraising project impacts and alternatives in terms of quantified ecological limits; addresses the neglected topic of metropolitan infrastructure as a means of delivering sustainability outcomes in the urban context and more broadly, seeks to open a debate on the potential for SEA methodology to be more extensively applied to address sustainability challenges in the built environment. Practically applied and timed appropriately, the SPA framework can enable better decision-making and more

  11. High Level Waste Tank Farm Replacement Project for the Idaho Chemical Processing Plant at the Idaho National Engineering Laboratory. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0831, for the construction and operation of the High-Level Waste Tank Farm Replacement (HLWTFR) Project for the Idaho Chemical Processing Plant located at the Idaho National Engineering Laboratory (INEL). The HLWTFR Project as originally proposed by the DOE and as analyzed in this EA included: (1) replacement of five high-level liquid waste storage tanks with four new tanks and (2) the upgrading of existing tank relief piping and high-level liquid waste transfer systems. As a result of the April 1992 decision to discontinue the reprocessing of spent nuclear fuel at INEL, DOE believes that it is unlikely that the tank replacement aspect of the project will be needed in the near term. Therefore, DOE is not proposing to proceed with the replacement of the tanks as described in this-EA. The DOE`s instant decision involves only the proposed upgrades aspect of the project described in this EA. The upgrades are needed to comply with Resource Conservation and Recovery Act, the Idaho Hazardous Waste Management Act requirements, and the Department`s obligations pursuant to the Federal Facilities Compliance Agreement and Consent Order among the Environmental Protection Agency, DOE, and the State of Idaho. The environmental impacts of the proposed upgrades are adequately covered and are bounded by the analysis in this EA. If DOE later proposes to proceed with the tank replacement aspect of the project as described in the EA or as modified, it will undertake appropriate further review pursuant to the National Environmental Policy Act.

  12. Laboratory Access | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Access Planning Ahead Planning Ahead Please complete the Beam Time Request (BTR) and Support Request forms thourgh the User Portal. Thorough chemical and sample information must be included in your BTR. Support Request forms include a list of collaborators that require laboratory access and your group's laboratory equipment requests. Researcher safety is taken seriously at SLAC. Please remember that radioactive materials, nanomaterials, and biohazardous materials have additional safety

  13. Deputy Director, Laboratory Operations & Chief Operating Officer, Nat'l Energy Technology Laboratory

    Broader source: Energy.gov [DOE]

    The National Energy Technology Laboratory (NETL) produces technological solutions to Americas energy challenges. For more than 100 years, the laboratory has developed tools and processes to provide...

  14. FY 2014 Senior Executive Service (SES) and Senior Professional (SP) Performance Appraisal Cycle- Closeout Guidance

    Broader source: Energy.gov [DOE]

    The FY 2014 performance appraisal cycle for both SES and SP members, which includes Senior Level (SL) and Scientific or Professional (ST) employees, concludes on September 30, 2014.  In order to...

  15. National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supercomputing Challenge draws more than 200 students to Los Alamos National Laboratory April 16, 2015 NOTE TO EDITORS: Media are welcome to attend the awards ceremony from 9 a.m. to noon a.m., April 21 at the Church of Christ, 2323 Diamond Drive, Los Alamos. Student teams from around New Mexico showcase year-long research projects April 20-21 LOS ALAMOS, N.M., April 16, 2015-More than 200 New Mexico students and their teachers are at Los Alamos National Laboratory April 20-21 for the 25th

  16. National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Community invited to learn about emerging technologies July 6, 2016 DisrupTech showcases innovation from Los Alamos National Laboratory LOS ALAMOS, N.M., July 6, 2016-New technologies emerging from Los Alamos National Laboratory that address everything from fusion energy to medical testing will be on display for members of the community, investors and business leaders at the DisrupTech showcase, Thursday, July 14, starting at 1:00 p.m. at the Los Alamos Golf Course Event Center. "We call it

  17. Pre-operational safety appraisal Tritiated Scrap Recovery Facility, Mound facility

    SciTech Connect (OSTI)

    Dauby, J.J.; Flanagan, T.M.; Metcalf, L.W.; Rhinehammer, T.B.

    1996-07-01

    The purpose of this report is to identify, assess, and document the hazards which are associated with the proposed operation of the Tritiated Scrap Recovery Facility at Mound Facility. A Pre-operational Safety Appraisal is a requirement as stated in Department of Energy Order 5481.1, Safety Analysis and Review System. The operations to be conducted in the new Tritiated Scrap Waste Recovery Facility are not new, but a continuation of a prime mission of Mound`s i.e. recovery of tritium from waste produced throughout the DOE complex. The new facility is a replacement of an existing process started in the early 1960`s and incorporates numerous design changes to enhance personnel and environmental safety. This report also documents the safety of a one time operation involving the recovery of tritium from material obtained by the Department of Energy from the State of Arizona. This project will involve the processing of 240,000 curies of tritium contained in glass ampoules that were to be used in items such as luminous dial watches. These were manufactured by the now defunct American Atomics Corporation, Tucson, Arizona.

  18. Geomechanics Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geomechanics Laboratory - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  19. Catalytic Two-Stage Liquefaction (CTSL{trademark}) process: Laboratory scale studies modelling and technical assessment. Final report, [October 1, 1988--June 30, 1993

    SciTech Connect (OSTI)

    Comolli, A.G.; Johanson, E.S.; Lee, L.K.; Popper, G.A.; Smith, T.O.

    1993-06-01

    Reported herein are the details and results of Laboratory-Scale experiments using sub-bituminous and bituminous coal concluded at Hydrocarbon Research, Inc., under DOE Contract No. AC22-88PCB8818 during the period October 1, 1988 to June 30, 1993. The work described in this report is primarily concerned with tests on a Laboratory Scale primarily using microautoclaves. Experiments were conducted evaluating coal, solvents, start-up oils, catalysts, thermal treatments, C0{sub 2} addition and sulfur compound effects. Other microautoclave tests are included in the companion topical reports for this contract, DE-88818-TOP-01 & 02 on Sub-Bituminous and Bituminous Bench-Scale and PDU activities. In addition to the Laboratory Scale Studies, kinetic data and modelling results from Bench-Scale and Microautoclave tests are interpreted and presented along with some economic updates and sensitivity studies.

  20. Qualification of the Savannah River National Laboratories Coulometer, Model SRNL-Rev. 2 (Serial # SRNL-003 Coulometer) for use in Process 3401a, Plutonium Assay by Controlled Coulometer

    SciTech Connect (OSTI)

    Tandon, Lav; Colletti, Lisa M.; Drake, Lawrence R.; Lujan, Elmer J. W.; Garduno, Katherine

    2012-08-22

    This report discusses the process used to prove in the SRNL-Rev.2 coulometer for isotopic data analysis used in the special plutonium material project. In May of 2012, the PAR 173 coulometer system that had been the workhorse of the Plutonium Assay team since the early 1970s became inoperable. A new coulometer system had been purchased from Savannah River National Laboratory (SRNL) and installed in August of 2011. Due to funding issues the new system was not qualified at that time. Following the failure of the PAR 173, it became necessary to qualify the new system for use in Process 3401a, Plutonium Assay by Controlled Coulometry. A qualification plan similar to what is described in PQR -141a was followed. Experiments were performed to establish a statistical summary of the performance of the new system by monitoring the repetitive analysis of quality control sample, PEOL, and the assay of plutonium metals obtained from the Plutonium Exchange Program. The data for the experiments was acquired using work instructions ANC125 and ANC195. Figure 1 shows approximately 2 years of data for the PEOL material obtained using the PAR 173. The required acceptance criteria for the sample are that it returns the correct value for the quality control material of 88.00% within 2 sigma (95% Confidence Interval). It also must meet daily precision standards that are set from the historical data analysis of decades of data. The 2 sigma value that is currently used is 0.146 % as evaluated by the Statistical Science Group, CCS-6. The average value of the PEOL quality control material run in 10 separate days on the SRNL-03 coulometer is 87.98% with a relative standard deviation of 0.04 at the 95% Confidence interval. The date of data acquisition is between 5/23/2012 to 8/1/2012. The control samples are run every day experiments using the coulometer are carried out. It is also used to prove an instrument is in statistical control before any experiments are undertaken. The total number of

  1. National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ignition Facility Former Army Ranger wins Sandia-sponsored student of the year award Former Army Ranger Damon Alcorn recently received the Sandia National Laboratories-Livermore Chamber of Commerce Student of the Year Award. Presented at the Chamber's State of the City Luncheon last month, the annual award highlights a Las Positas College student with exemplary academic... NNSA makers and hackers engage innovation and partnerships NNSA's labs change the world everyday through cutting-edge

  2. Lab Plan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Plan Ames Laboratory

  3. Laboratory Waste | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Waste Sharps Broken Glass Containment Hazardous Waste All waste produced in the Sample Prep Labs should be appropriately disposed of at SLAC. You are prohibited to transport waste back to your home institution. Designated areas exist in the labs for sharps, broken glass, and hazardous waste. Sharps, broken glass, and hazardous waste must never be disposed of in the trash cans or sink drains. Containment Bottles, jars, and plastic bags are available for containing chemical waste. Place

  4. Laboratory Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Applications What are contaminants normally found in hydrogen from fueling nozzle? JP Hsu SmartChemistry.com Particulates are most common found in Hydrogen - 96% hydrogen fuel contains particulates in 108 Particulate Samplings. Typical Particulate filter - 0.035mg/kg SmartChemistry.com H 2 Station X Particulate Sample Particulate Concentration at 700 Bar: 2.0 mg/kg Particulate filter after sampling, in which 4.001mg particulates are found in 2 kilogram hydrogen SmartChemistry.com H 2

  5. Compositional Analysis Laboratory (Poster), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compositional Analysis Laboratory * Provide customized analytical method development for a wide variety of feedstocks and process intermediates * Derive comprehensive biomass analysis results backed by 20 years of experience supporting the biomass conversion industry * Write publicly available Laboratory Analytical Procedures, several of which have been adapted by ASTM International and used and referenced worldwide * Provide training classes on biomass analysis and method development to help

  6. Nevada Work Instruction Laboratory Dynamic Rock/Soil Testing

    SciTech Connect (OSTI)

    M. Schweppe; T.R. Scotese

    2005-08-29

    This procedure defines processes for performance and reporting of geotechnical laboratory tests supporting geotechnical investigations.

  7. Independent Oversight Review, Oak Ridge National Laboratory- January 2013

    Broader source: Energy.gov [DOE]

    Review of the Oak Ridge National Laboratory High Flux Isotope Reactor Implementation Verification Review Processes

  8. Analytical laboratory quality audits

    SciTech Connect (OSTI)

    Kelley, William D.

    2001-06-11

    Analytical Laboratory Quality Audits are designed to improve laboratory performance. The success of the audit, as for many activities, is based on adequate preparation, precise performance, well documented and insightful reporting, and productive follow-up. Adequate preparation starts with definition of the purpose, scope, and authority for the audit and the primary standards against which the laboratory quality program will be tested. The scope and technical processes involved lead to determining the needed audit team resources. Contact is made with the auditee and a formal audit plan is developed, approved and sent to the auditee laboratory management. Review of the auditee's quality manual, key procedures and historical information during preparation leads to better checklist development and more efficient and effective use of the limited time for data gathering during the audit itself. The audit begins with the opening meeting that sets the stage for the interactions between the audit team and the laboratory staff. Arrangements are worked out for the necessary interviews and examination of processes and records. The information developed during the audit is recorded on the checklists. Laboratory management is kept informed of issues during the audit so there are no surprises at the closing meeting. The audit report documents whether the management control systems are effective. In addition to findings of nonconformance, positive reinforcement of exemplary practices provides balance and fairness. Audit closure begins with receipt and evaluation of proposed corrective actions from the nonconformances identified in the audit report. After corrective actions are accepted, their implementation is verified. Upon closure of the corrective actions, the audit is officially closed.

  9. Sandia National Laboratories: Research: Materials Science: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science About Materials Science Research Image Gallery Video Gallery Facilities Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Facilities Center for Integrated Nanotechnologies (CINT) CINT Ion Beam Laboratory Ion Beam Laboratory MESA High Performance Computing Processing and Environmental Technology Laboratory Processing and Environmental

  10. Laboratory Activities

    SciTech Connect (OSTI)

    Brown, Christopher F.; Serne, R. Jeffrey

    2008-01-17

    This chapter summarizes the laboratory activities performed by PNNLs Vadose Zone Characterization Project in support of the Tank Farm Vadose Zone Program, led by CH2M HILL Hanford Group, Inc. The results of these studies are contained in numerous reports (Lindenmeier et al. 2002; Serne et al. 2002a, 2002b, 2002c, 2002d, 2002e; Lindenmeier et al. 2003; Serne et al. 2004a, 2004b; Brown et al. 2005, 2006a, 2007; Serne et al. 2007) and have generated much of the data reported in Chapter 22 (Geochemistry-Contaminant Movement), Appendix G (Geochemistry-Contaminant Movement), and Cantrell et al. (2007, SST WMA Geochemistry Data Package in preparation). Sediment samples and characterization results from PNNLs Vadose Zone Characterization Project are also shared with other science and technology (S&T) research projects, such as those summarized in Chapter 12 (Associated Science Activities).

  11. Preliminary laboratory study of plutonium-238 dissolution from Mound soil by means of the ACT*DE*CON{sup SM} process

    SciTech Connect (OSTI)

    Brown, K.A.; Heinrich, R.R.; Johnson, D.O.; Edgar, D.E.

    1992-04-01

    The treatment of contaminated soil presents a significant technical problem. Soil-washing and chemical-extraction methods have proven to be effective for specific applications, but a process with more comprehensive treatment properties that is both cost-effective and environmentally propitious is needed. Bradtec, Inc., has developed a process, the ACT*DE*CON{sup SM} process, that has been tested on soil contaminated with plutonium. The process effectively extracted Pu-238 after three washes, reducing the contamination levels from approximately 20 Bq/g to 1.6--1.9 Bq/g and yielding a decontamination factor ranging from 11 to 13. By using four or more ACT*DE*CON{sup SM} washes or a continuous-flow process with ACT*DE*CON{sup SM} solvents on a pilot-scale test, a target decontamination level of 0.93 Bq/g might be achievable.

  12. Preliminary laboratory study of plutonium-238 dissolution from Mound soil by means of the ACT*DE*CON sup SM process

    SciTech Connect (OSTI)

    Brown, K.A.; Heinrich, R.R.; Johnson, D.O.; Edgar, D.E. )

    1992-04-01

    The treatment of contaminated soil presents a significant technical problem. Soil-washing and chemical-extraction methods have proven to be effective for specific applications, but a process with more comprehensive treatment properties that is both cost-effective and environmentally propitious is needed. Bradtec, Inc., has developed a process, the ACT*DE*CON{sup SM} process, that has been tested on soil contaminated with plutonium. The process effectively extracted Pu-238 after three washes, reducing the contamination levels from approximately 20 Bq/g to 1.6--1.9 Bq/g and yielding a decontamination factor ranging from 11 to 13. By using four or more ACT*DE*CON{sup SM} washes or a continuous-flow process with ACT*DE*CON{sup SM} solvents on a pilot-scale test, a target decontamination level of 0.93 Bq/g might be achievable.

  13. Heat Transfer Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat Transfer Laboratory Materials in solids or fluid forms play an important role in a ... Argonne's Heat Transfer Laboratory enables researchers to: Synthesize and prepare heat ...

  14. National Laboratory Impact Initiative

    Broader source: Energy.gov [DOE]

    The National Laboratory Impact Initiative supports the relationship between the Office of Energy Efficiency & Renewable Energy and the national laboratory enterprise.  The national laboratories...

  15. Design of the Target Fabrication Tritium Laboratory

    SciTech Connect (OSTI)

    Sherohman, J.W.; Roberts, D.H.; Levine, B.H.

    1982-05-05

    The design of the Target Fabrication Tritium Laboratory for deuterium-tritium fuel processing for laser fusion targets has been accomplished with the intent of providing redundant safeguard systems. The design of the tritium laboratory is based on a combination of tritium handling techniques that are currently used by experienced laboratories. A description of the laboratory in terms of its interrelated processing systems is presented to provide an understanding of the design features for safe operation.

  16. Monitoring Uranium Transformations Determined by the Evolution of Biogeochemical Processes: Design of Mixed Batch Reactor and Column Studies at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Criddle, Craig S.; Wu, Weimin

    2013-04-17

    With funds provided by the US DOE, Argonne National Laboratory subcontracted the design of batch and column studies to a Stanford University team with field experience at the ORNL IFRC, Oak Ridge, TN. The contribution of the Stanford group ended in 2011 due to budget reduction in ANL. Over the funded research period, the Stanford research team characterized ORNL IFRC groundwater and sediments and set up microcosm reactors and columns at ANL to ensure that experiments were relevant to field conditions at Oak Ridge. The results of microcosm testing demonstrated that U(VI) in sediments was reduced to U(IV) with the addition of ethanol. The reduced products were not uraninite but were instead U(IV) complexes associated with Fe. Fe(III) in solid phase was only partially reduced. The Stanford team communicated with the ANL team members through email and conference calls and face to face at the annual ERSP PI meeting and national meetings.

  17. News | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Argonne National Laboratory to Lead U.S. Consortium for Medium- and Heavy-Duty Truck Technical Track Full Story » The U.S. Several different remediation processes are available to clean up soil, varying in efficiency, cost and sustainability for specific site conditions. When officials suspect a site is contaminated, they conduct an assessment to determine the pollutant, the extent of contamination and the appropriate method to remediate the soil. (Click image to enlarge.) Five ways

  18. NREL's Cyanobacteria Engineering Shortens Biofuel Production Process, Captures CO2 (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The flexibility of cyanobacterial metabolism supports direct conversion of carbon dioxide (CO 2 ) to ethylene. Photosynthesis fuels growth in plants and algae, two of the primary components of biomass. Biomass, in turn, can be converted into various fuels and chemicals. NREL researchers have shortened this process by engineering one photosynthetic organism, cyanobacterium, so that it converts CO 2 directly into the target chemical ethylene, bypassing the biomass produc- tion and processing

  19. Independent Oversight Review, Pacific Northwest National Laboratory- October 2012

    Broader source: Energy.gov [DOE]

    Review of the Department of Energy Office of Science Assessment of the Pacific Northwest National Laboratory Radiochemical Processing Laboratory Criticality Alarm System

  20. Independent Oversight Review, Pacific Northwest National Laboratory- September 2013

    Office of Energy Efficiency and Renewable Energy (EERE)

    Review of the Fire Protection Program at Pacific Northwest National Laboratory and the Fire Suppression System at the Radiochemical Processing Laboratory

  1. Alpha spectrometric characterization of process-related particle size distributions from active particle sampling at the Los Alamos National Laboratory uranium foundry

    SciTech Connect (OSTI)

    Plionis, Alexander A; Peterson, Dominic S; Tandon, Lav; Lamont, Stephen P

    2009-01-01

    Uranium particles within the respirable size range pose a significant hazard to the health and safety of workers. Significant differences in the deposition and incorporation patterns of aerosols within the respirable range can be identified and integrated into sophisticated health physics models. Data characterizing the uranium particle size distribution resulting from specific foundry-related processes are needed. Using personal air sampling cascade impactors, particles collected from several foundry processes were sorted by activity median aerodynamic diameter onto various Marple substrates. After an initial gravimetric assessment of each impactor stage, the substrates were analyzed by alpha spectrometry to determine the uranium content of each stage. Alpha spectrometry provides rapid nondestructive isotopic data that can distinguish process uranium from natural sources and the degree of uranium contribution to the total accumulated particle load. In addition, the particle size bins utilized by the impactors provide adequate resolution to determine if a process particle size distribution is: lognormal, bimodal, or trimodal. Data on process uranium particle size values and distributions facilitate the development of more sophisticated and accurate models for internal dosimetry, resulting in an improved understanding of foundry worker health and safety.

  2. Renewable Energy Laboratory

    Open Energy Info (EERE)

    Radiation Budget Measurement Networks, National Oceanic and Atmospheric Administration Air Resources Laboratory and Earth System Research Laboratory Global Monitoring Division *...

  3. Office of Environment, Safety and Health Evaluations Appraisal...

    Energy Savers [EERE]

    processes. * Include oversight of worker safety and health requirements outlined in 10 CFR 851 Worker Safety and Health Program into existing processes. * Better reflect current ...

  4. Protocol for Appraisal of Petroleum Producing Properties on Native American Tribal Lands

    SciTech Connect (OSTI)

    1999-04-27

    Petroleum is currently produced on Native American Tribal Lands and has been produced on some of these lands for approximately 100 years. As these properties are abandoned at a production level that is considered the economic limit by the operator, Native American Tribes are considering this an opportunity to assume operator status to keep the properties producing. In addition to operating properties as they are abandoned, Native American Tribes also are assuming liabilities of the former operator(s) and ownership of equipment left upon abandonment. Often, operators are assumed by Native American Tribes without consideration of the liabilities left by the former operators. The purpose of this report is to provide protocols for the appraisal of petroleum producing properties and analysis of the petroleum resource to be produced after assuming operations. The appraisal protocols provide a spreadsheet for analysis of the producing property and a checklist of items to bring along before entering the property for onsite appraisal of the property. The report will provide examples of some environmental flags that may indicate potential liabilities remaining on the property left unaddressed by previous operators. It provides a starting point for appraisal and analysis of a property with a basis to make the decision to assume operations or to pursue remediation and/or closure of the liabilities of previous operators.

  5. Development of a Membrane-Based Separation Process for the Continuous Enzymatic Saccharification of Lignocellulosic Biomass; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Adhikari, B.; Pellegrino, J.; Stickel, J.; Sievers, J.

    2014-04-29

    We are currently evaluating the feasibility of performing continuous enzymatic hydrolysis of lignocellulosic biomass to product sugars using a membrane-assisted reaction/separation process. The overarching technical goals are to continuously remove the sugars—this lowers product feedback inhibition—retain and recycle active enzyme, and continuously recover the co-product of lignin. Experimental d d d currently evaluating the feasibility of performing continuous enzymatic hydrolysis of lignocellulosic biomass to product sugars using a membrane-assisted reaction/separation process. The overarching technical goals are to continuously remove the sugars -- this lowers product feedback inhibition --retain and recycle active enzyme, and continuously recover the co-product of lignin.

  6. New Catalyst Reduces Wasted Carbon in Biofuel Process, Lowers Cost (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL researchers have shown that incorporating copper-modified catalysts into the dimethyl ether-to- fuels pathway increases carbon efficiency and decreases overall production costs. The biomass-to-liquid-fuel approach remains one of the most promising renewable fuel processes in terms of its immediate impact and compatibility with existing infrastructure. Methanol and dimethyl ether (DME) can be produced from biomass, and recent inves- tigations have shown that certain catalysts can convert

  7. Future of the Department of Energy's multiprogram laboratories. Hearing before the Subcommittee on Energy Development and Applications and the Subcommittee on Energy Research and Production of the Committee on Science and Technology, US House of Representatives, Ninety-Seventh Congress, Second Session, December 2, 1982

    SciTech Connect (OSTI)

    Not Available

    1983-01-01

    Alvin W. Trivelpiece, Director of DOE's Office of Energy Research was a principal witness at a hearing to assess the research and development contribution of the national laboratories as reported by the DOE Energy Research Advisory Board (ERAB) and to explore ways to improve cooperation between the labs and private industry. Previous hearings dealt with the relationship of the labs to industry and universities and with the impact of continuing DOE budget uncertainties. Trivelpiece planning process and implementing a lab-appraisal process. He also noted that lead-mission assignments are not appropriate for all the labs, and that patent policies are becoming more liberal. The recommendation for two-year research appropriations would increase project stability. Other areas of ERAB recommendations need further review by DOE Secretary Hodel. Completing the panel of witnesses were Dr. Ivan Bennett and Dr. Robert Pry, both of whom served on ERAB and who described the Board's procedures and explained its recommendations. (DCK)

  8. Manufacturing Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Manufacturing Laboratory at the Energy Systems Integration Facility. The Manufacturing Laboratory at NREL's Energy Systems Integration Facility (ESIF) focuses on developing methods and technologies that will assist manufacturers of hydrogen and fuel cell technologies, as well as other renewable energy technologies, to scale up their manufacturing capabilities to volumes that meet DOE and industry targets. Specifically, the manufacturing activity is currently focused on developing and validating quality control techniques to assist manufacturers of low temperature and high temperature fuel cells in the transition from low to high volume production methods for cells and stacks. Capabilities include initial proof-of-concept studies through prototype system development and in-line validation. Existing diagnostic capabilities address a wide range of materials, including polymer films, carbon and catalyst coatings, carbon fiber papers and wovens, and multi-layer assemblies of these materials, as well as ceramic-based materials in pre- or post-fired forms. Work leading to the development of non-contact, non-destructive techniques to measure critical dimensional and functional properties of fuel cell and other materials, and validation of those techniques on the continuous processing line. This work will be supported by materials provided by our partners. Looking forward, the equipment in the laboratory is set up to be modified and extended to provide processing capabilities such as coating, casting, and deposition of functional layers, as well as associated processes such as drying or curing. In addition, continuous processes are used for components of organic and thin film photovoltaics (PV) as well as battery technologies, so synergies with these important areas will be explored.

  9. Sandia National Laboratories: Working with Sandia: Contractor...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reader is required to access these forms. Affirmative Procurement Form SA 2008-APR (3-2010) MS Word Articles for Process and Fabrication Laboratory Procurement SF 6431-E...

  10. Simulation, Modeling & Decision Science | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Laboratory focuses on integration of information technologies and cognition into the engineering process to support decision making for and the realization of...

  11. Polymer-like Nanowires | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are not fundamental and they can be overcome by growth processes that mimic polymerization. Our laboratory works with a unique class of materials: crystalline nanowires that...

  12. Plant Metabolic Imaging | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plant Metabolic Imaging The Ames Laboratory has developed state-of-the-art processes for imaging plant metabolites. Identifying and understanding plant chemicals will lead to the ...

  13. Photobiology Research Laboratory (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photobiology Research Laboratory Understanding fundamental biological processes for the production of fuels and chemicals, and understanding electron transport for hybrid generation of solar fuels NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. The photobiology group's research is in four main areas: * Comprehensive studies of fuel-producing photosynthetic, fermentative, and

  14. Unique Capabilities | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unique Capabilities Whether it's finding new materials, processes, applications or the need for specialized analysis of existing materials, Ames Laboratory can utilize its unique capabilities to assist both the public and private sectors. Some of our unique capabilities include: Biofuels Novel Materials for Energy Research Photonic Systems Solid-State NMR Visual Engineering Rare Earth Metals Metals Processing Magnetic Materials Materials Preparation Center

  15. Commissioning a materials research laboratory

    SciTech Connect (OSTI)

    SAVAGE,GERALD A.

    2000-03-28

    This presentation covers the process of commissioning a new 150,000 sq. ft. research facility at Sandia National Laboratories. The laboratory being constructed is a showcase of modern design methods being built at a construction cost of less than $180 per sq. ft. This is possible in part because of the total commissioning activities that are being utilized for this project. The laboratory's unique approach to commissioning will be presented in this paper. The process will be followed through from the conceptual stage on into the actual construction portion of the laboratory. Lessons learned and cost effectiveness will be presented in a manner that will be usable for others making commissioning related decisions. Commissioning activities at every stage of the design will be presented along with the attributed benefits. Attendees will hear answers to the what, when, who, and why questions associated with commissioning of this exciting project.

  16. Ames Laboratory Logos | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Logos The Ames Laboratory Logo comes in several formats. EPS files are vector graphics created in Adobe Illustrator and saved with a tiff preview so they will...

  17. Los Alamos National Laboratory opens

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    opens new waste repackaging facility March 7, 2013 Box line facility is largest of its kind ever built LOS ALAMOS, N. M., March 7, 2013-Los Alamos National Laboratory has brought a third waste repackaging facility online to increase its capability to process nuclear waste for permanent disposal. The "375 box line facility" enables Los Alamos to repackage transuranic (TRU) waste stored in large boxes. Built inside a dome once used to house containers of waste at the Laboratory, the

  18. Laboratory Graduate Research Appointment | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Graduate Research Program Perform your thesis research among the best and the brightest at Argonne National Laboratory. About the Program Laboratory Graduate Research (Lab Grad) appointments are available to qualified U.S. university graduate students who wish to carry out their thesis research at Argonne National Laboratory under co-sponsorship of an Argonne staff member and a faculty member. The university sets the academic standard and awards the degree. The participation of the

  19. National Laboratory Research and Development Funding Opportunities |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy National Laboratory Research and Development Funding Opportunities National Laboratory Research and Development Funding Opportunities Through the National Laboratory Research and Development program, DOE supports research and development and core capabilities at its national laboratories to accelerate progress toward achieving SunShot Initiative's Systems Integration targets. These multi-year projects are funded based on a competitive proposal process and address the

  20. Ames Laboratory Hot Canyon | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Hot Canyon This historical film footage, originally produced in the early 1950s as part of a series by WOI-TV, shows atomic research at Ames Laboratory. The work was conducted in a special area of the Laboratory known as the "Hot Canyon."

  1. Princeton Plasma Physics Laboratory

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

  2. National Laboratory's Weapons Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Security, LLC, began managing the Laboratory. Prior to joining the Laboratory, McMillan served in a variety of research and management positions at Lawrence Livermore...

  3. Sustainability | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainability Ames Laboratory is committed to environmental sustainability in all of its operations as outlined in the Laboratory's Site Sustainability Plan. Executive orders set ...

  4. Purdue Hydrogen Systems Laboratory

    SciTech Connect (OSTI)

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts

  5. Study of public school tax revenue losses due to current tax appraisals of selected West Virginia coal lands

    SciTech Connect (OSTI)

    Froehlich, L.G.

    1984-01-01

    The purpose of this study was 1) to compare the West Virginia State Tax Department's method of appraising coal property to the requirements of the West Virginia State Code; 2) to develop an alternative appraisal formula for West Virginia coal property, and 3) to compare the property tax revenue of identified West Virginia counties using the current appraisal formula and the formula developed through the study. A modified coal property appraisal formula was developed. The modified formula was sent to coal producing states, professional appraisers, and engineers for comments. The study then took coal property data from 12 West Virginia counties and applied the current and the modified formulas. The result of the modification applied to 12 of the 34 coal producing counties produced an additional 6.6 million dollars in tax revenue. The major conclusion was that a vast amount of tax revenue is available from property taxes but is not being collected due to the inaccurate property appraisals by the State Tax Department. Large sums of property tax revenue should be available without creating new tax laws or raising levy rates, but by following the West Virginia Code.

  6. Reflecting on mainstreaming through environmental appraisal in times of financial crisis From greening to pricing?

    SciTech Connect (OSTI)

    Gazzola, Paola

    2013-07-15

    The issue of mainstreaming has witnessed a revival over the last few years, not least because the latest financial crisis has triggered a renewed enthusiasm and a remarkable comeback amongst policy-making and environmental appraisal (EA) communities. Traditionally, environmental mainstreaming is linked to ideas of (environmental) integration and to the greening of public policies. Yet, more recent mainstreaming efforts are building on the idea that the achievement of economic growth and of social well-being is not only dependent upon the protection of the environment, but on the fact that the environment should be valued as a source of goods and a provider of services, as well. In this context and despite the many shortcomings that EA has experienced as a mainstreaming tool over the last two decades, calls for EA to engage with ecosystem services and incorporate pricing valuations in its approach to mainstreaming are emerging, raising questions about the role and purpose of EA as an environmental mainstreaming tool. This paper aims to reflect on the role of EA as a mainstreaming tool, in terms of the extent to which it is mainstreaming the environment into policies for sustainable development and changing the mainstream by breaking down the false dichotomy of environment and (economic) development. If mainstreaming through EA was to incorporate both greening and pricing logics, could EA be more effective in reframing the environment and development as correlated variables rather than competing variables? -- Highlights: ? Mainstreaming is witnessing a revival over the last few years and a comeback amongst environmental appraisal communities. ? Mainstreaming efforts through environmental appraisal have failed to challenge the deeply rooted belief in economic growth. ? Recent mainstreaming efforts are incorporated in green deals following ecological modernisation discourses. ? Environmental appraisal is urged to embrace ecosystem service approaches prompting a

  7. Laboratory Equipment & Supplies | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Equipment & Supplies John Bargar, SSRL Scientist Equipment is available to serve disciplines from biology to material science. All laboratories contain the following standard laboratory equipment: pH meters with standard buffers, analytical balances, microcentrifuges, vortex mixers, ultrasonic cleaning baths, magnetic stirrers, hot plates, and glassware. Most laboratories offer ice machines and cold rooms. Specialty storage areas for samples include a -80 freezer, argon and nitrogen glove

  8. The Sample Preparation Laboratories | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cynthia Patty 1 Sam Webb 2 John Bargar 3 Arizona 4 Chemicals 5 Team Work 6 Bottles 7 Glass 8 Plan Ahead! See the tabs above for Laboratory Access and forms you'll need to complete. Equipment and Chemicals tabs detail resources already available on site. Avoid delays! Hazardous materials use may require a written Standard Operating Procedure (SOP) before you work. Check the Chemicals tab for more information. The Sample Preparation Laboratories The Sample Preparation Laboratories provide wet lab

  9. Status of Laboratory Goals | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Status of Laboratory Goals Status of Calendar Year 2016 objectives and targets. Item 1 Recommendation: The EMSSC recommends an Open House be held in the Ames Laboratory Storeroom and Warehouse by April 1, 2016. The Open House will provide Ames Laboratory employees the opportunity to discover what supplies are readily available through the storeroom and showcase the Equipment Pool website. This recommendation will increase awareness of the sustainable purchasing requirements by showcasing these

  10. Analytical Chemistry Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry Laboratory provides a broad range of analytical chemistry support services to the scientific and engineering programs. AnalyticalChemistryLaboratoryfactsheet...

  11. Equipment | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zeiss Axiovert 200 Optical Microscope Spark Cutter Fully Equipped Metallographic Laboratory Electropolisher Dimpler

  12. Accounting Resources | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accounting Resources Ames Laboratory Human Resources Forms Ames Laboratory Travel Forms Ames Laboratory Forms (Select Department) ISU Intramural PO Request...

  13. Industrial & Manufacturing Processes | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Nanosegregated Surfaces as Catalysts for Fuel Cells Method creates stable, platinum ... Precise Application of Transparent Conductive Oxide Coatings for Flat Panel Displays and ...

  14. ORISE: Cytogenetic Biodosimetry Laboratory: The Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  15. Sandia National Laboratories: Careers: Hiring Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Alternatively, you can submit a separate application for each job. Note: You will only be considered for jobs that you apply to. Saving your application for later Save your ...

  16. Sandia National Laboratories Contract Process Announced | National...

    National Nuclear Security Administration (NNSA)

    one of the largest employers in New Mexico and has a significant presence in California. ... NNSA's talented Women in STEM Sandia California hosts Military Academic Collaboration ...

  17. Applied Process Engineering Laboratory | Open Energy Information

    Open Energy Info (EERE)

    Washington Zip: 99354 Region: Pacific Northwest Area Website: www.apel.orgcontact.html Coordinates: 46.3389754, -119.2716263 Show Map Loading map... "minzoom":false,"map...

  18. NREL: Process Development and Integration Laboratory - Rationale...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The combining of these technologies provides an overall enabling technology for new thin silicon wafer cells and thin-film compound semiconductor solar cells by Eliminating the ...

  19. Laboratory Equipment Donation Program - Application Process

    Office of Scientific and Technical Information (OSTI)

    Equipment listings on the LEDP web site are obtained from the U.S. General Services Administration (GSA) Energy Asset Disposal System (EADS). Once equipment is listed, EADS allows ...

  20. Registration Process for Coaches | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    login page to enter your username and password. Please note that there are tools on this page to help you recover your username and password: "Forgot Username" and "Reset Password." ...

  1. Microfiber Fabrication Process | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are widely used due to their biocompatibility, tunable biochemical properties, and tissue-like water content. In contrast to hydrogels, microfibers have high mechanical...

  2. Brookhaven National Laboratory | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Brookhaven National Laboratory

  3. Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Dogliani, Harold O

    2011-01-19

    The purpose of the briefing is to describe general laboratory technical capabilities to be used for various groups such as military cadets or university faculty/students and post docs to recruit into a variety of Los Alamos programs. Discussed are: (1) development and application of high leverage science to enable effeictive, predictable and reliability outcomes; (2) deter, detect, characterize, reverse and prevent the proliferation of weapons of mass destruction and their use by adversaries and terrorists; (3) modeling and simulation to define complex processes, predict outcomes, and develop effective prevention, response, and remediation strategies; (4) energetic materials and hydrodynamic testing to develop materials for precise delivery of focused energy; (5) materials cience focused on fundamental understanding of materials behaviors, their quantum-molecular properties, and their dynamic responses, and (6) bio-science to rapidly detect and characterize pathogens, to develop vaccines and prophylactic remedies, and to develop attribution forensics.

  4. Since 1949, Sandia National Laboratories has

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Materials Science and Engineering Center at Sandia National Laboratories provides the knowledge of materials structure, properties, and performance and the processes to produce, transform, and analyze materials to ensure mission success for our customers and partners, both internal and external to the laboratories. Below are just a few of the projects you may be working on: Materials Science & Engineering FOCUS AREAS: * Catalysis and Reaction Processes * Ceramic Synthesis and Processing

  5. Safety Review Committee | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Review Committee The Ames Laboratory Safety Review Committee is a standing committee of the Ames Laboratory. The committee chair reports to the Director, Adam Schwartz. The purpose of the committee is to make recommendations regarding the safety issues of activities affiliated with the Ames Laboratory. The committee implements and directs the Environment, Safety and Health Readiness Review process and facilitates the timely and orderly review of activities. The current members of the

  6. Princeton Plasma Physics Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Laboratory P.O. Box 451 Princeton, NJ 08543-0451 GPS: 100 Stellarator Road Princeton, NJ 08540 www.pppl.gov 2015 Princeton Plasma Physics Laboratory. A...

  7. Princeton Plasma Physics Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Laboratory P.O. Box 451 Princeton, NJ 08543-0451 GPS: 100 Stellarator Road Princeton, NJ 08540 www.pppl.gov 2016 Princeton Plasma Physics Laboratory. A ...

  8. DOE Laboratory Partnerships

    Broader source: Energy.gov [DOE]

    DOE national laboratories were created to support the various missions of the Department, including energy, national security, science and related environmental activities. The laboratories conduct innovative research and development in literally hundreds of technology areas, some available nowhere else.

  9. Ames Laboratory Emergency Plan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Emergency Plan Version Number: 14.0 Document Number: Plan 46300.001 Effective Date: 04/2016 File (public): PDF icon Plan 46300.001 Rev14 Emergency Plan

  10. National Renewable Energy Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tribal Energy Program Review Roger Taylor Manger State, Local & Tribal Integrated Application Group National Renewable Energy Laboratory November 5-8, 2007 Major DOE National Laboratories Brookhaven Brookhaven Pacific Northwest Pacific Northwest Lawrence Berkeley Lawrence Berkeley Lawrence Livermore Lawrence Livermore h h h h h INEL INEL National Renewable National Renewable Energy Laboratory Energy Laboratory Los Alamos Los Alamos Sandia Sandia Argonne Argonne Oak Ridge Oak Ridge Defense

  11. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory i Table of Contents Letter from the Division Director 1 Innovation Prize Nominations 2 Innovation Prize Winner 5 About the Feynman Center for Innovation 6 Innovation Assets 7 Strategic Sponsored Work 8 National High Magnetic Field Laboratory 9 Licensing 10 SOLVE 11 Economic Development 12 STAR Cryoelectronics 13 Partnership 14 Verdesian Life Sciences 15 R&D 100 Awards 16 Federal Laboratory Consortium Awards 17 Los Alamos National Laboratory 1 As scientists and

  12. FY 2005 Laboratory Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Congressional Budget Request Laboratory Tables Preliminary Department of Energy FY 2005 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2004 Laboratory Tables Preliminary Department of Energy Department of Energy FY 2005 Congressional Budget FY 2005 Congressional Budget Request Request Office of Management, Budget and Evaluation/CFO February 2004 Laboratory Tables Laboratory Tables Printed with soy ink on recycled paper Preliminary Preliminary The numbers

  13. islowing | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    islowing Ames Laboratory Profile Igor Slowing Assoc Scientist Chemical & Biological Sciences 2756 Gilman Phone Number: 515-294-1959 Email Address: islowing@iastate.edu Ames Laboratory Associate Ames Laboratory Research Projects: Homogeneous and Interfacial Catalysis in 3D Controlled Environment Nanorefinery Education: Ph.D., Iowa State University, 2003-2008 Licenciate in Chemistry, San Carlos University, Guatemala, 1988-1995 Professional Appointments: Staff Scientist, Ames Laboratory,

  14. biswasr | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University, 1976 Professional Appointments: Senior Scientist Ames Laboratory and Microelectronics Research Center, 2013- present Adjunct Professor, Dept. of Physics & Astronomy;...

  15. Alamos National Laboratory's 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    $2 million pledged during Los Alamos National Laboratory's 2014 employee giving campaign December 17, 2013 "I Give Because..." theme focuses on unique role Lab plays in local communities LOS ALAMOS, N.M., Dec. 17, 2013-Nearly $2 million has been pledged by Los Alamos National Laboratory employees to United Way and other eligible nonprofit programs during the Laboratory's 2014 Employee Giving Campaign. Los Alamos National Security, LLC, which manages and operates the Laboratory for the

  16. Sandia National Laboratories: About Sandia: Laboratories' Foundation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories Foundation Capabilties Sandia's ability to deliver on its national security missions is built on a strong foundation, which originated in the early days of the Laboratories' nuclear weapons program. As we think about it today, the foundation with all its component parts drives Sandia to achieve its mission strategies. We invest in our vital resources - people, research, and facilities and tools - to build a unique set of capabilities that enable mission delivery. Capabilities The

  17. Sandia National Laboratories: Electrostatic Discharge (ESD) Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrostatic Discharge (ESD) Laboratory We have field and laboratory capabilities to measure electrostatic environment generation, storage, and charge transfer effects. Non-contact electrostatic field surveillance techniques are available to monitor charge generation of conductors or dielectrics, and induction or physical contact charging of wiring or pin voltage for electrical system components. The Sandia severe personnel electrostatic discharge simulator, with a maximum charge voltage of 25

  18. LCLS Sample Preparation Laboratory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LCLS Sample Preparation Laboratory Kayla Zimmerman | (650) 926-6281 Lisa Hammon, LCLS Lab Coordinator Welcome to the LCLS Sample Preparation Laboratory. This small general use wet lab is located in Rm 109 of the Far Experimental Hall near the MEC, CXI, and XCS hutches. It conveniently serves all LCLS hutches and is available for final stage sample preparation. Due to space limitations, certain types of activities may be restricted and all access must be scheduled in advance. User lab bench

  19. Sandia National Laboratories: Laboratories' Strategic Framework

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strategic Framework Vision, Mission, and Values Strategic Framework Mission Areas Laboratories Foundation Strategic Objectives and Crosscuts About Strategic Framework strategic framework Sandia continues to be engaged in the significant demands of the nation's nuclear weapons modernization program while conducting a whole range of activities in broader national security. The Laboratories' strategic framework drives strategic decisions about the totality of our work and has positioned our

  20. Commercialization of a DOE Laboratory

    SciTech Connect (OSTI)

    Stephenson, Barry A.

    2008-01-15

    On April 1, 1998, Materials and Chemistry Laboratory, Inc. (MCLinc) began business as an employee-owned, commercial, applied research laboratory offering services to both government and commercial clients. The laboratory had previously been a support laboratory to DoE's gaseous diffusion plant in Oak Ridge (K-25). When uranium enrichment was halted at the site, the laboratory was expanded to as an environmental demonstration center and served from 1992 until 1997 as a DOE Environmental User Facility. In 1997, after the laboratory was declared surplus, it was made available to the employee group who operated the laboratory for DOE as a government-owned, contractor-operated facility. This paper describes briefly the process of establishing the business. Attributes that contributed to the success of MCLinc are described. Some attention is given to lessons learned and to changes that could facilitate future attempts to make similar transitions. Lessons learnt: as with any business venture, operation over time has revealed that some actions taken by the laboratory founders have contributed to its successful operation while others were not so successful. Observations are offered in hopes that lessons learned may suggest actions that will facilitate future attempts to make similar transitions. First, the decision to vest significant ownership of the business in the core group of professionals operating the business is key to its success. Employee-owners of the laboratory have consistently provided a high level of service to its customers while conducting business in a cost-efficient manner. Secondly, an early decision to provide business support services in-house rather than purchasing them from support contractors on site have proven cost-effective. Laboratory employees do multiple tasks and perform overhead tasks in addition to their chargeable technical responsibilities. Thirdly, assessment of technical capabilities in view of market needs and a decision to offer these

  1. A Critical Appraisal of NLO+PS Matching Methods

    SciTech Connect (OSTI)

    Hoeche, Stefan; Krauss, Frank; Schonherr, Marek; Siegert, Frank; /Freiburg U.

    2012-03-19

    In this publication, uncertainties in and differences between the MC{at}NLO and POWHEG methods for matching next-to-leading order QCD calculations with parton showers are discussed. Implementations of both algorithms within the event generator SHERPA are employed to assess the impact on a representative selection of observables. In the MC{at}NLO approach a phase space restriction has been added to subtraction and parton shower, which allows to vary in a transparent way the amount of non-singular radiative corrections that are exponentiated. Effects on various observables are investigated, using the production of a Higgs boson in gluon fusion, with or without an associated jet, as a benchmark process. The case of H+jet production is presented for the first time in an NLO+PS matched simulation. Uncertainties due to scale choices and non-perturbative effects are explored in the production of W{sup {+-}} and Z bosons in association with a jet. Corresponding results are compared to data from the Tevatron and LHC experiments.

  2. Biomass Compositional Analysis Laboratory Procedures | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass Compositional Analysis Laboratory Procedures NREL develops laboratory analytical procedures (LAPs) for standard biomass analysis. These procedures help scientists and analysts understand more about the chemical composition of raw biomass feedstocks and process intermediates for conversion to biofuels. View Publications Subscribe to email updates about revisions and additions to biomass analysis procedures, FAQs, calculation spreadsheets, and publications. Email: Subscribe Unsubscribe

  3. LABORATORY NEW HIRE NOTICE: LABORATORY DELAYED OPENING OR CLOSURE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LABORATORY NEW HIRE NOTICE: LABORATORY DELAYED OPENING OR CLOSURE DUE TO INCLEAMENT WEATHER During the winter months, the Los Alamos National Laboratory (LANL) may at times...

  4. CALiPER Testing Laboratories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CALiPER Testing Laboratories CALiPER Testing Laboratories graphic showing a CALiPER Summary Report cover A Note About CALiPER and Laboratory Accreditation CALiPER is not a testing laboratory or an accreditation organization. DOE established the CALiPER program to provide accurate and comparable data on LED products by arranging for reliable independent testing and data reporting of commercially available products. The CALiPER program established a process for qualifying testing laboratories to

  5. Materials Engineering Research Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Engineering Research Facility Argonne's new Materials Engineering Research Facility (MERF) supports the laboratory's Advanced Battery Materials Synthesis and Manufacturing R&D Program. The MERF is enabling the development of manufacturing processes for producing advanced battery materials in sufficient quantity for industrial testing. The research conducted in this program is known as process scale-up. Scale-up R&D involves taking a laboratory-developed material and developing

  6. Going green earns Laboratory gold

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Going green earns Laboratory gold Going green earns Laboratory gold The Laboratory's newest facility is its first to achieve both the Leadership in Energy and Environmental Design...

  7. Laboratory program helps small businesses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab helps small businesses Laboratory program helps small businesses The free program, run jointly by Los Alamos and Sandia National Laboratories, leverages the laboratories'...

  8. Budget Office | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that the Laboratory complies with all Department Of Energy cost controls Providing decision-making support to senior Laboratory management Providing support to the Laboratory...

  9. Going green earns Laboratory gold

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Going green earns Laboratory gold Going green earns Laboratory gold The Laboratory's newest facility is its first to achieve both the Leadership in Energy and Environmental Design ...

  10. Sandia National Laboratories: Data Analytics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pathfinder Airborne ISR Systems What is SAR? Areas of Expertise Images VideoSAR Publications Facebook Twitter YouTube Flickr RSS Top Areas of Expertise Capabilities Hardware Modes & Frequency Bands of Operation Platforms Missions Tasking, Processing, Exploitation & Dissemination (TPED) Data Analytics Pathfinder Airborne ISR Systems Data Analytics Data Analytics Sandia National Laboratories: Synthetic Apperature Radar (SAR): SAR Hardware PANTHER - Pattern ANalytics To support

  11. National_Renewable_Energy_Laboratory

    Office of Environmental Management (EM)

    - - - - - - - - 4 - - - - - 5 - - - - - - 6 - - - - - - - - 7 - - - - - - - - - 8 - - - - - - - 9 - - - - - - - - 10 11 12

    Site Offices National Renewable Energy Laboratory Rexann Dunn, Small Business Program Lead Overview * Who is NREL, where are we located and what do we do there? * Small Business Program * Procurement Process * How to navigate our website * Commitment to small business * Leave you with contact information 3 About NREL * Managed and Operated by the Alliance for Sustainable

  12. Junjian Qi | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Junjian Qi Postdoctoral Appointee Dr. Junjian Qi is a Postdoctoral Appointee with Energy Systems Division at Argonne National Laboratory, working with Dr. Jianhui Wang. He obtained his Ph.D. degree in Electrical Engineering from Department of Electrical Engineering, Tsinghua University, Beijing China in July 2013, supervised by Prof. Shengwei Mei. During Feb.-Aug. 2012 he worked with Prof. Ian Dobson at Iowa State University as a Visiting Scholar in on applying branching processes to cascading

  13. Education | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education Education The MFRC has established a network of Midwest crime laboratories and university-based forensic science programs. This network has two general goals: help universities become better casework, research, and development partners for crime laboratories; and to engage crime laboratories in university efforts. These efforts can better-prepare the next generation of forensic scientists, advance the state-of-the-art in forensic science research, and influence students whose

  14. Sandia National Laboratories: Locations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Locations Locations Sandia California CINT photo A national and international presence Sandia operates laboratories, testing facilities, and offices in multiple sites around the United States and participates in research collaborations around the world. Sandia's executive management offices and larger laboratory complex are located in Albuquerque, New Mexico. Our second principal laboratory is located in Livermore, California. Although most of our 9,840 employees work at these two locations,

  15. National Renewable Energy Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 Annual Review Roger Taylor November 17, 2008 National Renewable Energy Laboratory Innovation for Our Energy Future Major DOE National Laboratories Brookhaven Pacific Northwest Lawrence Berkeley Lawrence Livermore          INEL National Renewable Energy Laboratory Los Alamos Sandia Argonne Oak Ridge   Defense Program Labs  Office of Science Labs  Energy Efficiency and Renewable Energy Lab  Environmental Management Lab  Fossil Energy Lab NETL 

  16. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    purchases nearly $1 billion in goods and services last fiscal year December 6, 2010 Surpasses goals for small business procurements LOS ALAMOS, New Mexico, December 6, 2010-Los Alamos National Laboratory purchased nearly $1 billion in goods and services in the 2010 fiscal year ending September 30, 2010. The $925 million in purchases was helped in part by funding from the American Reinvestment and Recovery Act the Laboratory received for environmental remediation and basic research.The Laboratory

  17. Idaho_National_Laboratory

    Office of Environmental Management (EM)

    Stacey Francis Small Business Program Manager Idaho National Laboratory 2 Idaho National Laboratory Prime Contractors * Idaho National Laboratory - Managed and Operated by Battelle Energy Alliance, LLC - Office of Nuclear Energy * Idaho Cleanup Project - Managed by Fluor Idaho, LLC - Office of Environmental Management * Naval Reactor Facility - Managed by Bechtel Marine Propulsion Corporation - Naval Nuclear Propulsion Program Department of Energy - Idaho 3 We Maintain: * 890 square miles * 111

  18. Laboratory History | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory History The National Renewable Energy Laboratory has a rich history of renewable energy and energy efficiency research and innovation that spans decades. NREL's Roots: The Creation of SERI NREL was designated a national laboratory by President George Bush on September 16, 1991. But the birth of the organization began more than two decades before. Learn about the global politics, energy landscape, and environmental drivers that led to the creation of NREL's predecessor, the Solar

  19. Laboratory announces 2008 Fellows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab announces 2008 Fellows Laboratory announces 2008 Fellows Robert C. Albers, Paul A. Johnson and Kurt E. Sickafus recognized for contributions. December 4, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in

  20. CASL - Idaho National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Idaho National Laboratory Idaho Falls, ID INL is the lead nuclear energy (NE) laboratory for the U.S. Department of Energy. The laboratory has designed and operated 52 test reactors, including EBR-1, the world's first nuclear power plant Key Contributions System safety analysis Multiscale fuel performance simulation Multiphysics coupling framework (MOOSE) Reactor physics Multiphase flow Validation Nuclear Science User Facilities Key Outcomes Test stand for NE programs Virtual Environment for

  1. Savannah River National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Savannah River National Laboratory srnl.doe.gov SRNL is a DOE National Laboratory operated by Savannah River Nuclear Solutions. At a glance 'Tin whiskers' suppression method Researchers at the Savannah River National Laboratory (SRNL) have identified a treatment method that slows or prevents the formation of whiskers in lead-free solder. Tin whiskers spontaneously grow from thin films of tin, often found in microelectronic devices in the form of solders and platings. Background This problem was

  2. Mentoring | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mentoring Why mentoring? As one of the largest laboratories in the nation for science and engineering research, Argonne National Laboratory is home to some of the most prolific and well-renowned scientists and engineers. To maintain an environment that fosters innovative research, we are committed to ensuring the success of our major players on the frontlines of our research-our Postdoctoral Scientists. The Argonne National Laboratory has a long-standing reputation as a place that offers

  3. jevans | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jevans Ames Laboratory Profile James Evans Associate Chemical & Biological Sciences 505 Zaffarano Phone Number: 515-294-1638 Email Address: evans@ameslab.gov Ames Laboratory Associate and Professor, Iowa State University Website(s): Evans Research Group Ames Laboratory Research Projects: Chemical Physics Theoretical/Computational Tools for Energy-Relevant Catalysis Education: Postdoctoral Fellow, Chemical Physics, Iowa State University, 1979-81 Ph.D. Mathematical Physics, University of

  4. jwang | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jwang Ames Laboratory Profile Jigang Wang Assoc Prof Division of Materials Science & Engineering B15 Spedding Phone Number: 515-294-2964 Email Address: jgwang@iastate.edu Ames Laboratory Research Projects: Metamaterials Education: Ph.D. Electrical Engineering, Rice University, Houston, TX, 2005 M.S. Electrical Engineering, Rice University, Houston, TX, 2002 B.S. Physics, Jilin University, Changchun, P. R. China, 2000 Professional Appointments: Associate Scientist, Ames Laboratory, Iowa State

  5. makinc | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    makinc Ames Laboratory Profile Mufit Akinc Associate Division of Materials Science & Engineering 2220C Hoover Phone Number: 515-294-0738 Email Address: makinc@iastate.edu Ames Laboratory Associate and Professor, Iowa State University Ames Laboratory Research Projects: Bioinspired Materials Education: Post-doc Materials Sciences, Argonne National Lab., Argonne, IL, 1977 Ph.D. Ceramic Engineering, Iowa State University, Ames IA, 1977 M.S. Chemistry, Middle East Technical University, Ankara,

  6. mark | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mark Ames Laboratory Profile Mark Gordon Associate Chemical & Biological Sciences 201 Spedding Phone Number: 515-294-0452 Email Address: mark@si.msg.chem.iastate.edu Ames Laboratory Associate and Distinguished Professor, Iowa State University Website(s): Mark Gordon's Quantum Theory Group Ames Laboratory Research Projects: Chemical Physics Theoretical/Computational Tools for Energy-Relevant Catalysis Education: Postdoctoral Associate, Iowa State University, 1967-1970 Ph.D. Carnegie-Mellon

  7. sadow | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sadow Ames Laboratory Profile Aaron Sadow Associate Chemical & Biological Sciences 2101B Hach Phone Number: 515-294-8069 Email Address: sadow@iastate.edu Scientist, Ames Laboratory and Associate Professor, Iowa State University Website(s): Sadow's Group Page Ames Laboratory Research Projects: Homogeneous and Interfacial Catalysis in 3D Controlled Environment Education: Postdoctoral Associate, Swiss Federal Institute of Technology (ETH), 2003-2005 PhD., University of California, Berkeley,

  8. Alamos National Laboratory's 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    .1 million pledged during Los Alamos National Laboratory's 2013 employee giving campaign December 17, 2012 LOS ALAMOS, NEW MEXICO, December 17, 2012-Los Alamos National Laboratory employees have again demonstrated concern for their communities and those in need by pledging a record $2.13 million to United Way and other eligible nonprofit programs. Los Alamos National Security, LLC, which manages and operates the Laboratory for the National Nuclear Security Administration, plans to prorate its $1

  9. Muncrief | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Muncrief Ames Laboratory Profile Diane Muncrief Personnel Officer Human Resources Office Director's Office 151 TASF Phone Number: 515-294-5731 Email Address: muncrief@ameslab.gov

  10. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    accomplishment," Deputy Laboratory Director and this year's campaign champion Ike Richardson said of this year's pledged - 2 - amount. "The LANL team raised 1.5 million, which...

  11. tchou | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tchou Ames Laboratory Profile Tsung-han Chou Student Associate Division of Materials Science & Engineering 132 Spedding Phone Number: 515-294-6822 Email Address: tchou...

  12. dpaulc | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dpaulc Ames Laboratory Profile Daniel Cole Student Associate Chemical & Biological Sciences 10 Carver Co-Lab Phone Number: 515-294-1235 Email Address: dpaulc...

  13. aatesin | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aatesin Ames Laboratory Profile Abdurrahman Atesin Associate Chemical & Biological Sciences 2311 Hach Phone Number: 515-294-7568 Email Address: aatesin

  14. abhranil | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    abhranil Ames Laboratory Profile Abhranil Biswas Grad Asst-RA Chemical & Biological Sciences 2236 Hach Phone Number: 515-294-7568 Email Address: abiswas

  15. aboesenb | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aboesenb Ames Laboratory Profile Adam Boesenberg Associate Division of Materials Science & Engineering 110 Metals Development Phone Number: 515-294-5903 Email Address: aboesenb

  16. achatman | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    achatman Ames Laboratory Profile Andrew Chatman Student Associate Division of Materials Science & Engineering 37 Spedding Phone Number: 515-294-4446 Email Address: achatman

  17. adf | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    adf Ames Laboratory Profile Alex Findlater Student Associate Chemical & Biological Sciences 231 Spedding Phone Number: 515-294-7568 Email Address: adf

  18. ahaupert | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ahaupert Ames Laboratory Profile Alysha Haupert Custodian I Facilities Services 241C Metals Development Phone Number: 515-294-4360 Email Address: ahaupert

  19. aklekner | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aklekner Ames Laboratory Profile Alon Klekner Engr Tech I Facilities Services 167C Metals Development Phone Number: 515-294-1589 Email Address: aklekner

  20. alicia | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    alicia Ames Laboratory Profile Alicia Carriquiry Chemical & Biological Sciences 3419 Snedecor Phone Number: 515-294-7782 Email Address: alicia

  1. andresg | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    andresg Ames Laboratory Profile Andres Garcia Grad Asst-RA Chemical & Biological Sciences 307 Wilhelm Phone Number: 515-294-6027 Email Address: andresg

  2. annacari | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    annacari Ames Laboratory Profile Anna Prisacari Grad Asst-RA Simulation, Modeling, & Decision Science 1620 Howe Phone Number: 515-294-8060 Email Address: annacari

  3. arbenson | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    arbenson Ames Laboratory Profile Alex Benson Lab Assistant-X Division of Materials Science & Engineering 258 Metals Development Phone Number: 515-294-4446 Email Address: arbenson

  4. ashheath | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ashheath Ames Laboratory Profile Ashley Heath Lab Assistant-X Simulation, Modeling, & Decision Science 1620 Howe Phone Number: 515-294-3891 Email Address: ashheath

  5. ashleymc | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ashleymc Ames Laboratory Profile Ashley Cruikshank Grad Asst-RA Chemical & Biological Sciences 2236 Hach Phone Number: 515-294-7568 Email Address: ashleymc

  6. bartine | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bartine Ames Laboratory Profile Jeffrey Bartine Program Coord III Environmental, Safety, Health, and Assurance G40 TASF Phone Number: 515-294-4743 Email Address: bartine

  7. bastaw | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bastaw Ames Laboratory Profile Ashraf Bastawros Associate Chemical & Biological Sciences 2347 Howe Phone Number: 515-294-3039 Email Address: bastaw

  8. baugie | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    baugie Ames Laboratory Profile Brent Augustine Student Associate Division of Materials Science & Engineering 206 Wilhelm Phone Number: 309-748-0439 Email Address: baugie

  9. bbergman | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bbergman Ames Laboratory Profile Brian Bergman Facil Mechanic III Facilities Services Maintenance Shop Phone Number: 515-294-4346 Email Address: bbergman@ameslab.gov

  10. bboote | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bboote Ames Laboratory Profile Brett Boote Grad Asst-RA Chemical & Biological Sciences 0712 Gilman Phone Number: 515-294-8586 Email Address: bboote@iastate.edu

  11. bcleland | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bcleland Ames Laboratory Profile Beth Cleland Custodian I Facilities Services 241C Metals Development Phone Number: 515-294-5446 Email Address: bcleland

  12. bender | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bender Ames Laboratory Profile Lee Bendickson Lab Tech III Division of Materials Science & Engineering 3288 Molecular Biology Bldg Phone Number: 515-294-5682 Email Address: bender

  13. bkkuhn | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bkkuhn Ames Laboratory Profile Bridget Kuhn Office Assistant-X Human Resources Office 118 TASF Phone Number: 515-294-2680 Email Address: bkkuhn@iastate.edu

  14. boehmer | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    boehmer Ames Laboratory Profile Anna Boehmer Postdoc Res Associate Division of Materials Science & Engineering A15 Zaffarano Phone Number: 515-294-3246 Email Address: boehmer

  15. boersma | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    boersma Ames Laboratory Profile Stephanie Boersma Director I Budget Office 231 TASF Phone Number: 515-294-8785 Email Address: boersma

  16. bspire | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bspire Ames Laboratory Profile Bruce Spire Erd Machinist Sr Facilities Services 160 Metals Development Phone Number: 515-294-5428 Email Address: bspire

  17. burghera | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    burghera Ames Laboratory Profile Alexander Burgher Facil Mechanic III Facilities Services 158B Metals Development Phone Number: 515-294-3756 Email Address: burghera

  18. byrd | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    byrd Ames Laboratory Profile David Byrd Asst Scientist I Division of Materials Science & Engineering 109 Metals Development Phone Number: 515-294-5747 Email Address: byrd

  19. camacken | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    camacken Ames Laboratory Profile Cameron Mackenzie Associate Simulation, Modeling, & Decision Science 3029 Black Engineering Phone Number: 515-294-6283 Email Address: camacken

  20. carraher | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carraher Ames Laboratory Profile Jack Carraher Postdoc Res Associate Chemical & Biological Sciences 2118 BRL Phone Number: 515-294-5826 Email Address: carraher

  1. cbandas | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cbandas Ames Laboratory Profile Christopher Bandas Associate Chemical & Biological Sciences 2311 Hach Phone Number: 515-294-7568 Email Address: cbandas

  2. cbenetti | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cbenetti Ames Laboratory Profile Caleb Benetti Student Associate Division of Materials Science & Engineering A204 Zaffarano Phone Number: 515-294-4446 Email Address: cbenetti

  3. ccowan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ccowan Ames Laboratory Profile Carol Cowan Secretary III Human Resources Office 151 TASF Phone Number: 515-294-2680 Email Address: ccowan

  4. chelseya | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    chelseya Ames Laboratory Profile Chelsey Aisenbrey Program Coord II Human Resources Office 151 TASF Phone Number: 515-294-8062 Email Address: chelseya

  5. chenx | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    chenx Ames Laboratory Profile Xiang Chen Associate Division of Materials Science & Engineering 249 Spedding Phone Number: 515-294-4446 Email Address: chenx

  6. crossm | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    crossm Ames Laboratory Profile Jeanine Crosman Secretary III Facilities Services 158H Metals Development Phone Number: 515-294-3496 Email Address: crossm

  7. dballal | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dballal Ames Laboratory Profile Deepti Ballal Postdoc Res Associate Division of Materials Science & Engineering 112 Wilhelm Phone Number: 515-294-9636 Email Address: dballal

  8. dboeke | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dboeke Ames Laboratory Profile David Boeke Research Tech Sr Division of Materials Science & Engineering 122 Metals Development Phone Number: 515-294-5816 Email Address: dboeke

  9. dfreppon | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dfreppon Ames Laboratory Profile Daniel Freppon Grad Asst-RA Chemical & Biological Sciences 0712 Gilman Phone Number: 515-294-8586 Email Address: dfreppon

  10. djchadde | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    djchadde Ames Laboratory Profile David Chadderdon Grad Asst-RA Division of Materials Science & Engineering 2140 BRL Phone Number: 515-294-4446 Email Address: djchadde

  11. dmeyer | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dmeyer Ames Laboratory Profile Dale Meyer Engr Tech II Facilities Services 158D Metals Development Phone Number: 515-294-3614 Email Address: dmeyer@ameslab.gov

  12. eckels | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    eckels Ames Laboratory Profile David Eckels Associate Chemical & Biological Sciences 105 Spedding Phone Number: 515-294-7943 Email Address: eckels

  13. eguidez | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    eguidez Ames Laboratory Profile Emilie Guidez Associate Chemical & Biological Sciences 201 Spedding Phone Number: 515-294-7568 Email Address: eguidez

  14. finzell | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    finzell Ames Laboratory Profile Peter Finzell Grad Asst-RA Simulation, Modeling, & Decision Science 1620 Howe Phone Number: 515-294-8060 Email Address: surgeftr

  15. flanders | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    flanders Ames Laboratory Profile Duane Flanders Sheet Metal Mech Facilities Services Maintenance Shop Phone Number: 515-294-1746 Email Address: flanders@ameslab.gov

  16. galvin | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    galvin Ames Laboratory Profile Glen Galvin Mgr Info Tech I Simulation, Modeling, & Decision Science 1620 Howe Phone Number: 515-294-6604 Email Address: galvin

  17. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assessment of Radionuclide Monitoring in the CSRA Savannah River NERP Research ... Upcoming Seminars The Savannah River Ecology Laboratory is a research unit of the ...

  18. carter | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carter Ames Laboratory Profile Steven Carter Engr IV Facilities Services 158 Metals Development Phone Number: 515-294-7889 Email Address: carter@ameslab.gov...

  19. Los Alamos National Laboratory's

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produced by current operations. LANL and regulatory agencies survey the air, soil, sediment, groundwater, and surface water around the Laboratory to make sure contaminants from...

  20. marit | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Honors & Awards: AAAS Fellow, 2007 Regents Award for Faculty Excellence, 2003 Inventor Incentive Award, Ames Laboratory, 2002 Iowa Regents Faculty Citation Award, 2000...

  1. jwgong | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Profile Jianwu Gong Student Associate Division of Materials Science & Engineering Chemical & Biological Sciences 326 Wilhelm Phone Number: 515-294-7568 Email...

  2. ackerman | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ackerman Ames Laboratory Profile David Ackerman Associate Chemical & Biological Sciences 2025 Black Engineering Phone Number: 515-294-1638 Email Address: ackerman...

  3. Projects | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Tool Mark Characterization Development of an AccuTOF-DART Database for Use by Forensic Laboratories Forensic Technology Center of Excellence MFRC Training Development &...

  4. dscomito | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dscomito Ames Laboratory Profile Daniel Comito Student Associate Division of Materials Science & Engineering A524 Zaffarano Phone Number: 515-294-9800 Email Address: dscomito...

  5. Sandia National Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of, or supplemental to, this entry is a fair and accurate representation of this ... Sandia National Laboratories' (Sandia) Xyce Parallel Circuit Simulator is the world's ...

  6. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3, 2015 Projects save taxpayer dollars, promote environmental stewardship, sustainability LOS ALAMOS, N.M., April 22, 2015-Nearly 400 Los Alamos National Laboratory employees on 32...

  7. National Laboratory Photovoltaics Research

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE supports photovoltaic (PV) research and development and facilities at its national laboratories to accelerate progress toward achieving the SunShot Initiative's technological and economic...

  8. NREL: Research Facilities - Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In the lab, researchers study plant structures from the tissue scale to the molecular ... Photobiological Laboratory Researchers use this lab for enzyme engineering to block the ...

  9. The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    David Jiles, Palmer Endowed Chair of the electrical and computer engineering ... When Ames Laboratory was experiencing a seemingly elevated number of power outages, Lab staff ...

  10. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sustainability award October 14, 2010 LOS ALAMOS, New Mexico, October 14, 2010-Los Alamos National Laboratory recently received an Environmental Sustainability (EStar) ...

  11. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6th Hazmat Challenge July 31, 2012 Competition tests skills of hazardous materials response teams LOS ALAMOS, New Mexico, July 31, 2012 What: Los Alamos National Laboratory (LANL)...

  12. covey | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    covey Ames Laboratory Profile Debra Covey Director II Director's Office Office of Sponsored Research Administration 311 TASF Phone Number: 515-294-1048 Email Address: covey...

  13. gbjorlnd | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gbjorlnd Ames Laboratory Profile Grace Bjorland Lab Assistant-X Division of Materials Science & Engineering B36 Spedding Phone Number: 515-294-4446 Email Address: gbjorlnd

  14. gharper | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gharper Ames Laboratory Profile Gregory Harper Sys Control Tech Facilities Services Maintenance Shop Phone Number: 515-294-1746 Email Address: gharper

  15. gillilan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gillilan Ames Laboratory Profile Steven Gilliland Sys Control Tech Facilities Services Maintenance Shop Phone Number: 515-294-3078 Email Address: gillilan

  16. grootvel | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    grootvel Ames Laboratory Profile Mark Grootveld Mgr Facility Serv Facilities Services 158 Metals Development Phone Number: 515-294-7895 Email Address: grootveld@ameslab.gov

  17. gsbacon | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gsbacon Ames Laboratory Profile Graham Bacon Student Associate Division of Materials Science & Engineering 129 Wilhelm Phone Number: 515-294-4446 Email Address: gsbacon

  18. guan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    guan Ames Laboratory Profile Yong Guan Associate Chemical & Biological Sciences 3219 Coover Phone Number: 515-294-8378 Email Address: guan

  19. haberer | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    haberer Ames Laboratory Profile Charles Haberer Facil Mechanic II Facilities Services 158 Metals Development Phone Number: 515-294-3757 Email Address: haberer

  20. hanrahanm | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hanrahanm Ames Laboratory Profile Michael Hanrahan Student Associate Chemical & Biological Sciences 331 Spedding Phone Number: 515-294-7568 Email Address: mph

  1. hauptman | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hauptman Ames Laboratory Profile John Hauptman Associate Facilities Services A411 Zaffarano Phone Number: 515-294-8572 Email Address: hauptman

  2. hcelliott | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hcelliott Ames Laboratory Profile Henrietta Elliott Custodian I Facilities Services 241C Metals Development Phone Number: 515-294-5446 Email Address: hcelliott

  3. herrman | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    herrman Ames Laboratory Profile Terrance Herrman Engr V Facilities Services 167 Metals Development Phone Number: 515-294-7896 Email Address: herrman

  4. jac | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jac Ames Laboratory Profile Justin Conrad Student Associate Chemical & Biological Sciences 305 TASF Phone Number: 515-294-4604 Email Address: jac

  5. jbobbitt | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jbobbitt Ames Laboratory Profile Jonathan Bobbitt Grad Asst-RA Chemical & Biological Sciences 0712 Gilman Phone Number: 515-294-4285 Email Address: jbobbitt

  6. jboschen | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jboschen Ames Laboratory Profile Jeffery Boschen Grad Asst-RA Chemical & Biological Sciences 124 Spedding Phone Number: 515-294-7568 Email Address: jboschen

  7. jhahn | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jhahn Ames Laboratory Profile Jane Hahn Facilities Services 158B Metals Development Phone Number: 515-294-3756 Email Address: jhahn@ameslab.gov

  8. jrblaum | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jrblaum Ames Laboratory Profile Jacqueline Blaum Student Associate Division of Materials Science & Engineering 37 Spedding Phone Number: 515-294-4446 Email Address: jrblaum

  9. kabryden | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kabryden Ames Laboratory Profile Kristy Bryden Adj Asst Prof Simulation, Modeling, & Decision Science 149 Music Phone Number: 515-294-3971 Email Address: kabryden

  10. kasuni | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kasuni Ames Laboratory Profile Walikadage Boteju Grad Asst-RA Chemical & Biological Sciences Critical Materials Institute 2306 Hach Phone Number: 515-294-6342 Email Address: kasuni

  11. kbratlie | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kbratlie Ames Laboratory Profile Kaitlin Bratlie Associate Division of Materials Science & Engineering 2220 Hoover Phone Number: 515-294-7304 Email Address: kbratlie

  12. kgalayda | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kgalayda Ames Laboratory Profile Katherine Galayda Student Associate Chemical & Biological Sciences B5 Spedding Phone Number: 515-294-3887 Email Address: kgalayda@iastate.edu

  13. klclark | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    klclark Ames Laboratory Profile Katie Clark Program Coord II Human Resources Office 151 TASF Phone Number: 515-294-8753 Email Address: klclark@ameslab.gov

  14. kmbryden | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kmbryden Ames Laboratory Profile Kenneth Bryden Prof Simulation, Modeling, & Decision Science 2274 Howe Phone Number: 515-294-3891 Email Address: kmbryden

  15. lcademar | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lcademar Ames Laboratory Profile Ludovico Cademartiri Associate Division of Materials Science & Engineering 2240J Hoover Phone Number: 515-294-4549 Email Address: lcademar

  16. lenyeart | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lenyeart Ames Laboratory Profile Linda Enyeart Admin Spec II Chemical & Biological Sciences 144A Spedding Phone Number: 515-294-6029 Email Address: lenyeart@ameslab.gov

  17. liza | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    liza Ames Laboratory Profile Liza Alexander Student Associate Chemical & Biological Sciences 2242 Molecular Biology Bldg Phone Number: 515-294-6116 Email Address: liza@iastate.edu

  18. long | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    long Ames Laboratory Profile Catherine Long Supv-Custodial Svc Facilities Services 158G Metals Development Phone Number: 515-294-4360 Email Address: long@ameslab.gov

  19. lucasr | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lucasr Ames Laboratory Profile Lucas Rozendaal Associate Facilities Services 158 Metals Development Phone Number: 515-294-3757 Email Address: lucasr@iastate.edu

  20. maheedhar | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    maheedhar Ames Laboratory Profile Maheedhar Gunasekharan Grad Asst-RA Chemical & Biological Sciences 327 Wilhelm Phone Number: 515-294-7568 Email Address: maheedhar@ameslab.gov

  1. mbonilla | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mbonilla Ames Laboratory Profile Claudia Bonilla escobar Postdoc Res Associate Division of Materials Science & Engineering 252 Spedding Phone Number: 515-294-2041 Email Address: mbonilla

  2. mdotzler | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mdotzler Ames Laboratory Profile Mike Dotzler Facil Mechanic III Facilities Services Maintenance Shop Phone Number: 515-294-4346 Email Address: mdotzler

  3. mduenas | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mduenas Ames Laboratory Profile Maria Duenas fadic Student Associate Chemical & Biological Sciences 35A Carver Co-Lab Phone Number: 515-294-2368 Email Address: mduenas

  4. mhenely | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mhenely Ames Laboratory Profile Michael Henely Custodian I Facilities Services 241C Metals Development Phone Number: 515-294-5446 Email Address: mhenely

  5. ndesilva | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ndesilva Ames Laboratory Profile Nuwan De silva Associate Chemical & Biological Sciences Critical Materials Institute 236 Wilhelm Phone Number: 515-294-7568 Email Address: ndesilva

  6. olsenjro | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    olsenjro Ames Laboratory Profile Jarrett Olsen Custodian I Facilities Services 241C Metals Development Phone Number: 515-294-4360 Email Address: olsenjro@ameslab.gov

  7. ppezzini | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ppezzini Ames Laboratory Profile Paolo Pezzini Postdoc Res Associate Simulation, Modeling, & Decision Science Off Campus Phone Number: 515-294-3891 Email Address: ppezzini

  8. qslin | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    qslin Ames Laboratory Profile Qisheng Lin Assoc Scientist Division of Materials Science & Engineering 353 Spedding Phone Number: 515-294-3513 Email Address: qslin@ameslab.gov

  9. rberrett | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rberrett Ames Laboratory Profile Ronald Berrett Sys Control Tech Facilities Services Maintenance Shop Phone Number: 515-294-1746 Email Address: rberrett

  10. rdanders | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rdanders Ames Laboratory Profile Ross Anderson Research Tech Sr Division of Materials Science & Engineering 109 Metals Development Phone Number: 515-294-5747 Email Address: rdanders

  11. rfry | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rfry Ames Laboratory Profile Robert Fry Electronics Tech I Facilities Services 258 Metals Development Phone Number: 515-294-4823 Email Address: rfry

  12. rgonzalez | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rgonzalez Ames Laboratory Profile Reymundo Gonzalez Associate Chemical & Biological Sciences 2262 Hach Phone Number: 515-294-7568 Email Address: rgonzalez01

  13. rmalmq | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rmalmq Ames Laboratory Profile Richard Malmquist Facil Mechanic III Facilities Services Maintenance Shop Phone Number: 515-294-1228 Email Address: rmalmq

  14. rodgers | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rodgers Ames Laboratory Profile Elizabeth Rodgers Program Coord III Office of Sponsored Research Administration Director's Office 305 TASF Phone Number: 515-294-1254 Email Address: rodgers

  15. rofox | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rofox Ames Laboratory Profile Rodney Fox Associate Chemical & Biological Sciences 3162 Sweeney Phone Number: 515-294-9104 Email Address: rofox

  16. sburkhow | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sburkhow Ames Laboratory Profile Sadie Burkhow Grad Asst-RA Chemical & Biological Sciences 0712 Gilman Phone Number: 515-294-7568 Email Address: sburkhow

  17. schenad | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    schenad Ames Laboratory Profile Shen Chen Grad Asst-TA/RA Division of Materials Science & Engineering 211 Physics Phone Number: 515-294-9361 Email Address: schenad

  18. seliger | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    seliger Ames Laboratory Profile Victoria Seliger Custodian I Facilities Services 241C Metals Development Phone Number: 515-294-4360 Email Address: seliger

  19. sjbajic | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sjbajic Ames Laboratory Profile Stanley Bajic Assoc Scientist Chemical & Biological Sciences 5 Spedding Phone Number: 515-294-8194 Email Address: sjbajic

  20. sumitc | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sumitc Ames Laboratory Profile Sumit Chaudhary Associate Division of Materials Science & Engineering 2124 Coover Phone Number: 515-294-0606 Email Address: sumitc