National Library of Energy BETA

Sample records for apply laser printers

  1. V-210: HP LaserJet Pro Printer Bug Lets Remote Users Access Data

    Broader source: Energy.gov [DOE]

    A potential security vulnerability has been identified with certain HP LaserJet Pro printers. The vulnerability could be exploited remotely to gain unauthorized access to data.

  2. Printers and Multi-function Devices (Copiers) | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Printers and Multi-function Devices (Copiers) The Ames Laboratory has standardized printer models and multi-functioning devices that meet sustainability requirements. The following devices are recommended for purchase. Printers: HP LaserJet PRO M402dn - Black/White HP LaserJet PRO M452dn Color *both printers meets EPEAT and Energy Star requirements Multi-Functional Devices (MFDs): Canon Imagerunner Imagerunners come in many different configurations and speed varies by model. Contact the

  3. V-144: HP Printers Let Remote Users Access Files on the Printer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4: HP Printers Let Remote Users Access Files on the Printer V-144: HP Printers Let Remote Users Access Files on the Printer April 29, 2013 - 12:27am Addthis PROBLEM: HP Printers...

  4. V-039: Samsung and Dell printers Firmware Backdoor Unauthorized Access Vulnerability

    Broader source: Energy.gov [DOE]

    Samsung has issued a security advisory and an optional firmware update for all current Samsung networked laser printers and multifunction devices to enhance Simple Network Management Protocol (SNMP) security.

  5. Custom Organic Electronics Out of the Printer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Custom Organic Electronics Out of the Printer Custom Organic Electronics Out of the Printer Print Thursday, 03 December 2015 12:14 They are thin, light-weight, flexible, and can be...

  6. Ames Lab 101: 3D Metals Printer

    SciTech Connect (OSTI)

    Ott, Ryan

    2014-02-13

    To meet one of the biggest energy challenges of the 21st century - finding alternatives to rare-earth elements and other critical materials - scientists will need new and advanced tools. The Critical Materials Institute at the U.S. Department of Energy's Ames Laboratory has a new one: a 3D printer for metals research. 3D printing technology, which has captured the imagination of both industry and consumers, enables ideas to move quickly from the initial design phase to final form using materials including polymers, ceramics, paper and even food. But the Critical Materials Institute (CMI) will apply the advantages of the 3D printing process in a unique way: for materials discovery.

  7. Ames Lab 101: 3D Metals Printer

    ScienceCinema (OSTI)

    Ott, Ryan

    2014-06-04

    To meet one of the biggest energy challenges of the 21st century - finding alternatives to rare-earth elements and other critical materials - scientists will need new and advanced tools. The Critical Materials Institute at the U.S. Department of Energy's Ames Laboratory has a new one: a 3D printer for metals research. 3D printing technology, which has captured the imagination of both industry and consumers, enables ideas to move quickly from the initial design phase to final form using materials including polymers, ceramics, paper and even food. But the Critical Materials Institute (CMI) will apply the advantages of the 3D printing process in a unique way: for materials discovery.

  8. Guneafinal-for laser printer.doc

    Office of Legacy Management (LM)

    11900 DOE/EA-1399 Environmental Assessment of Ground Water Compliance at the Gunnison, Colorado, UMTRA Project Site Final July 2002 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work performed Under DOE Contract No. DE-AC13-96GJ87355 DOE Grand Junction Office EA of Ground Water Compliance at the Gunnison Site July 2002 Final Page iii Contents Page Acronyms and Abbreviations

  9. Custom Organic Electronics Out of the Printer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Custom Organic Electronics Out of the Printer Custom Organic Electronics Out of the Printer Print Thursday, 03 December 2015 12:14 They are thin, light-weight, flexible, and can be produced cost- and energy-efficiently: printed microelectronic components made of synthetics. Flexible displays and touch screens, glowing films, RFID tags, and solar cells represent future markets. An international team of researchers has now observed the creation of razor-thin polymer electrodes during the printing

  10. Apply

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply Application Process Bringing together top, space science students with internationally recognized researchers at Los Alamos in an educational and collaborative atmosphere. Contacts Director Misa Cowee Email Administrative Assistant Mary Wubbena Email Request more information Email Applications for the 2016 summer school are now closed. Applications were due on February 5, 2016. PLEASE NOTE: After the 2016 session, the program will not be offered again until 2018. Before applying Check your

  11. Photo 3D-Printer, Image Credit, Ames Lab | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    Photo 3D-Printer, Image Credit, Ames Lab Critical Materials Institute speed metals research with 3D printer. Default Caption and Credits Read More: Critical Materials Institute...

  12. How 3D Printers Work | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    blueprint is created, the printer needs to be prepared. This includes refilling the raw materials (such as plastics, metal powders or binding solutions) and preparing the build...

  13. Lasers

    SciTech Connect (OSTI)

    1995-01-01

    The scope of our research in laser and related technologies has grown over the years and has attracted a broad user base for applications within DOE, DOD, and private industry. Within the next few years, we expect to begin constructing the National Ignition Facility, to make substantial progress in deploying AVLIS technology for uranium and gadolinium enrichment, and to develop new radar sensing techniques to detect underwater objects. Further, we expect to translate LLNL patent ideas in microlithography into useful industrial products and to successfully apply high-power, diode-based laser technology to industrial and government applications.

  14. Property:Building/SPElectrtyUsePercPrinters | Open Energy Information

    Open Energy Info (EERE)

    ectrtyUsePercPrinters" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 1.29926142668 + Sweden Building 05K0002 + 1.28348328161 + Sweden...

  15. Method and design for externally applied laser welding of internal connections in a high power electrochemical cell

    DOE Patents [OSTI]

    Martin, Charles E; Fontaine, Lucien; Gardner, William H

    2014-01-21

    An electrochemical cell includes components that are welded from an external source after the components are assembled in a cell canister. The cell canister houses electrode tabs and a core insert. An end cap insert is disposed opposite the core insert. An external weld source, such as a laser beam, is applied to the end cap insert, such that the end cap insert, the electrode tabs, and the core insert are electrically coupled by a weld which extends from the end cap insert to the core insert.

  16. How 3D Printers Work | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3D Printers Work How 3D Printers Work June 19, 2014 - 9:28am Addthis How does 3D printing work? Watch a 3D printing timelapse video and read on below to learn everything you need to know about this game-changing innovation that is capturing the imagination of major manufacturers and hobbyists alike. | Video by Matty Greene, Energy Department. Rebecca Matulka Rebecca Matulka Former Digital Communications Specialist, Office of Public Affairs Matty Greene Matty Greene Former Videographer What are

  17. Why 3D Printers Might Create the Next Robotic Champion | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Why 3D Printers Might Create the Next Robotic Champion Why 3D Printers Might Create the Next Robotic Champion December 11, 2013 - 4:18pm Addthis As the nation's premier research laboratory, Oak Ridge National Laboratory is one of the world's most capable resources for transforming the next generation of scientific discovery into solutions for rebuilding and revitalizing America's manufacturing industries, with tools like 3D printers. Dot Harris Dot Harris Director, Office of Economic

  18. Why 3D Printers Might Create the Next Robotic Champion | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Why 3D Printers Might Create the Next Robotic Champion Why 3D Printers Might Create the Next Robotic Champion December 11, 2013 - 4:18pm Addthis As the nation's premier research laboratory, Oak Ridge National Laboratory is one of the world's most capable resources for transforming the next generation of scientific discovery into solutions for rebuilding and revitalizing America's manufacturing industries, with tools like 3D printers. Dot Harris Dot Harris Director, Office of Economic

  19. Using the Apple LaserWriter at ANL

    SciTech Connect (OSTI)

    Errion, S.M.; Thommes, M.M. Caruthers, C.M.

    1987-09-01

    Using the Apple LaserWriter at ANL (ANL/TM 452) explains how Argonne computer users (with CMS, MVS, or VAX/VMS accounts) can print quality text and graphics on the Apple LaserWriter. Currently, applications at Argonne that are compatible with the Apple LaserWriter include Waterloo Script, CA/ISSCO graphics software (i.e., Cuechart, Tellagraf, and Disspla), SAS/Graph, ANSYS (version 4.2), and some personal computer test and graphics software. This manual does not attempt to cover use of the Apple LaserWriter with other applications, though some information on the handling of PostScript-compatible files may be valid for other applications. Refer to the documentation of those applications to learn how they work with the Apple LaserWriter. Most of the information in this manual applies to the Allied Linotype L300P typesetter in Building 222. However, the typesetter is not a high volume output device and should be used primarily for high quality (1250 and 2500 dots per inch) final copy output for Laboratory publications prior to making printing plates. You should print all drafts and proof pages on LaserWriers or other printers compatible with the PostScript page description language. Consult with Graphic Arts (at extension 2-5603) to determine the availability of the typesetter for printing the final copy of your document or graphics application. Since the Apple LaserWriter itself produces good quality output (300 dots per inch), we expect that most internal documents consisting of test or graphics will continue to be printed at LaserWriters distributed throughout the Laboratory. 5 figs., 2 tabs.

  20. Applied Optoelectronics | Open Energy Information

    Open Energy Info (EERE)

    optical semiconductor devices, packaged optical components, optical subsystems, laser transmitters, and fiber optic transceivers. References: Applied Optoelectronics1...

  1. Thanks for the New Printer, Santa! Now What Do I Do with the Old One? |

    Energy Savers [EERE]

    Department of Energy Thanks for the New Printer, Santa! Now What Do I Do with the Old One? Thanks for the New Printer, Santa! Now What Do I Do with the Old One? January 4, 2011 - 6:30am Addthis Amy Foster Parish This year for Christmas, Santa was kind enough to bring me a new wireless printer to replace my old one. When I opened the box, you can't imagine my glee. I'm a fan of using my laptop as its name implies, so you'll typically find me typing away with it on my lap while snugly

  2. Property:Building/SPBreakdownOfElctrcityUseKwhM2Printers | Open...

    Open Energy Info (EERE)

    rcityUseKwhM2Printers" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.928422444931 + Sweden Building 05K0002 + 1.42372881356 + Sweden...

  3. PPPL engineers build mirror mechanism using 3D printer and off-the-shelf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    parts | Princeton Plasma Physics Lab engineers build mirror mechanism using 3D printer and off-the-shelf parts By Raphael Rosen November 23, 2015 Tweet Widget Google Plus One Share on Facebook Mirror Mechanism Prototype (Photo by Mike Messineo) Mirror Mechanism Prototype Gallery: Mirror Mechanism Prototype (Photo by Mike Messineo) Mirror Mechanism Prototype At the Princeton Plasma Physics Laboratory, the spirit of tinkering lives. This past summer a team of engineers invented a mechanical

  4. PPPL engineers build mirror mechanism using 3D printer and off-the-shelf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    parts | Princeton Plasma Physics Lab PPPL engineers build mirror mechanism using 3D printer and off-the-shelf parts By Raphael Rosen November 23, 2015 Tweet Widget Google Plus One Share on Facebook Mirror Mechanism Prototype (Photo by Mike Messineo) Mirror Mechanism Prototype Gallery: Mirror Mechanism Prototype (Photo by Mike Messineo) Mirror Mechanism Prototype At the Princeton Plasma Physics Laboratory, the spirit of tinkering lives. This past summer a team of engineers invented a

  5. Engineer develops 'leap forward' with 3D-printer | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Engineer develops 'leap forward' with 3D-printer | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases

  6. U-048: HP LaserJet Printers Unspecified Flaw Lets Remote Users...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    T-699: EMC AutoStart Buffer Overflows Let Remote Users Execute Arbitrary Code U-049: IBM Tivoli Netcool Reporter CGI Bug Lets Remote Users Inject Commands on the Target System...

  7. Applied combustion

    SciTech Connect (OSTI)

    1993-12-31

    From the title, the reader is led to expect a broad practical treatise on combustion and combustion devices. Remarkably, for a book of modest dimension, the author is able to deliver. The text is organized into 12 Chapters, broadly treating three major areas: combustion fundamentals -- introduction (Ch. 1), thermodynamics (Ch. 2), fluid mechanics (Ch. 7), and kinetics (Ch. 8); fuels -- coal, municipal solid waste, and other solid fuels (Ch. 4), liquid (Ch. 5) and gaseous (Ch. 6) fuels; and combustion devices -- fuel cells (Ch. 3), boilers (Ch. 4), Otto (Ch. 10), diesel (Ch. 11), and Wankel (Ch. 10) engines and gas turbines (Ch. 12). Although each topic could warrant a complete text on its own, the author addresses each of these major themes with reasonable thoroughness. Also, the book is well documented with a bibliography, references, a good index, and many helpful tables and appendices. In short, Applied Combustion does admirably fulfill the author`s goal for a wide engineering science introduction to the general subject of combustion.

  8. WE-D-18A-05: Construction of Realistic Liver Phantoms From Patient Images and a Commercial 3D Printer

    SciTech Connect (OSTI)

    Leng, S; Vrieze, T; Kuhlmann, J; Yu, L; Matsumoto, J; Morris, J; McCollough, C

    2014-06-15

    Purpose: To assess image quality and radiation dose reduction in abdominal CT imaging, physical phantoms having realistic background textures and lesions are highly desirable. The purpose of this work was to construct a liver phantom with realistic background and lesions using patient CT images and a 3D printer. Methods: Patient CT images containing liver lesions were segmented into liver tissue, contrast-enhanced vessels, and liver lesions using commercial software (Mimics, Materialise, Belgium). Stereolithography (STL) files of each segmented object were created and imported to a 3D printer (Object350 Connex, Stratasys, MN). After test scans were performed to map the eight available printing materials into CT numbers, printing materials were assigned to each object and a physical liver phantom printed. The printed phantom was scanned on a clinical CT scanner and resulting images were compared with the original patient CT images. Results: The eight available materials used to print the liver phantom had CT number ranging from 62 to 117 HU. In scans of the liver phantom, the liver lesions and veins represented in the STL files were all visible. Although the absolute value of the CT number in the background liver material (approx. 85 HU) was higher than in patients (approx. 40 HU), the difference in CT numbers between lesions and background were representative of the low contrast values needed for optimization tasks. Future work will investigate materials with contrast sufficient to emulate contrast-enhanced arteries. Conclusion: Realistic liver phantoms can be constructed from patient CT images using a commercial 3D printer. This technique may provide phantoms able to determine the effect of radiation dose reduction and noise reduction techniques on the ability to detect subtle liver lesions in the context of realistic background textures.

  9. Antenna coupled photonic wire lasers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Reno, John L.; Kao, Tsung-Kao; Cai, Xiaowei; Lee, Alan W. M.; Hu, Qing

    2015-06-22

    Slope efficiency (SE) is an important performance metric for lasers. In conventional semiconductor lasers, SE can be optimized by careful designs of the facet (or the modulation for DFB lasers) dimension and surface. However, photonic wire lasers intrinsically suffer low SE due to their deep sub-wavelength emitting facets. Inspired by microwave engineering techniques, we show a novel method to extract power from wire lasers using monolithically integrated antennas. These integrated antennas significantly increase the effective radiation area, and consequently enhance the power extraction efficiency. When applied to wire lasers at THz frequency, we achieved the highest single-side slope efficiency (~450more »mW/A) in pulsed mode for DFB lasers at 4 THz and a ~4x increase in output power at 3 THz compared with a similar structure without antennas. This work demonstrates the versatility of incorporating microwave engineering techniques into laser designs, enabling significant performance enhancements.« less

  10. Laser Roadshow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    outreach Laser Roadshow The NIF Laser Roadshow includes a number of interactive laser demonstrations (Laser Light Fountain, Laser DJ, and NIF "3D ride") that have traveled across the country to museums and science fairs to bring awareness and education to students and the general public about lasers and how they function. These demonstrations have been presented at the Lawrence Hall of Science, the National Boy Scout Jamboree, meetings of the American Association for the Advancement of

  11. Laser Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Facilities Current Schedule of Experiments Operation Schedule Janus Titan Europa COMET Facility Floorplan

  12. Laser ignition

    DOE Patents [OSTI]

    Early, James W. (Los Alamos, NM); Lester, Charles S. (San Juan Pueblo, NM)

    2002-01-01

    In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. The beam from the excitation light source is split with a portion of it going to the ignitor laser and a second portion of it being recombined with the first portion after a delay before injection into the ignitor laser. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones.

  13. Laser microphone

    DOE Patents [OSTI]

    Veligdan, James T. (Manorville, NY)

    2000-11-14

    A microphone for detecting sound pressure waves includes a laser resonator having a laser gain material aligned coaxially between a pair of first and second mirrors for producing a laser beam. A reference cell is disposed between the laser material and one of the mirrors for transmitting a reference portion of the laser beam between the mirrors. A sensing cell is disposed between the laser material and one of the mirrors, and is laterally displaced from the reference cell for transmitting a signal portion of the laser beam, with the sensing cell being open for receiving the sound waves. A photodetector is disposed in optical communication with the first mirror for receiving the laser beam, and produces an acoustic signal therefrom for the sound waves.

  14. Laser accelerometer

    SciTech Connect (OSTI)

    Vescial, F.; Aronowitz, F.; Niguel, L.

    1990-04-24

    This patent describes a laser accelerometer. It comprises: an optical cavity characterizing a frame having an input axis (x), a cross axis (y) orthogonal to and co-planar with the input axis and a (z) axis passing through the intersection of the (x) and (y) axes, the (z) axis being orthogonal to the plane of the (x) and (y) axes; and (x) axis proof mass having a predetermined blanking surface; a flexible beam having a first end coupled to the (x) axis proof mass and a second end coupled to the frame, deflection of the flexible beams permitting a predetermined range of movement of the (x) proof mass on the input axis in a direction opposite to sensed acceleration of the frame; a laser light source having a mirror means within the cavity for providing a light ray coaxially aligned with the (z) axis; detector means having at least a first detector on a sensitive plane, the plane being normal to the (z) axis; bias and amplifier means coupled to the detector means for providing a bias current to the first detector and for amplifying the intensity signal; the (x) axis proof mass blanking surface being centrally positioned within and normal to the light ray null intensity region to provide increased blanking of the light ray in response to transverse movement of the mass on the input axis; control means responsive to the intensity signal for applying an (x) axis restoring force to restore the (x) axis proof mass to the central position and for providing an (x) axis output signal proportional to the restoring force.

  15. Laser ignition

    DOE Patents [OSTI]

    Early, James W.; Lester, Charles S.

    2004-01-13

    Sequenced pulses of light from an excitation laser with at least two resonator cavities with separate output couplers are directed through a light modulator and a first polarzing analyzer. A portion of the light not rejected by the first polarizing analyzer is transported through a first optical fiber into a first ignitor laser rod in an ignitor laser. Another portion of the light is rejected by the first polarizing analyzer and directed through a halfwave plate into a second polarization analyzer. A first portion of the output of the second polarization analyzer passes through the second polarization analyzer to a second, oscillator, laser rod in the ignitor laser. A second portion of the output of the second polarization analyzer is redirected by the second polarization analyzer to a second optical fiber which delays the beam before the beam is combined with output of the first ignitor laser rod. Output of the second laser rod in the ignitor laser is directed into the first ignitor laser rod which was energized by light passing through the first polarizing analyzer. Combined output of the first ignitor laser rod and output of the second optical fiber is focused into a combustible fuel where the first short duration, high peak power pulse from the ignitor laser ignites the fuel and the second long duration, low peak power pulse directly from the excitation laser sustains the combustion.

  16. How To Apply

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CSCNSI How To Apply How to Apply for Computer System, Cluster, and Networking Summer Institute Emphasizes practical skills development Contact Leader Stephan Eidenbenz (505)...

  17. Laser device

    DOE Patents [OSTI]

    Scott, Jill R.; Tremblay, Paul L.

    2004-11-23

    A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.

  18. Laser device

    DOE Patents [OSTI]

    Scott, Jill R.; Tremblay, Paul L.

    2007-07-10

    A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.

  19. Laser ignition

    DOE Patents [OSTI]

    Early, James W. (Los Alamos, NM); Lester, Charles S. (San Juan Pueblo, NM)

    2003-01-01

    In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones. In a third embodiment, alternating short and long pulses of light from the excitation light source are directed into the ignitor laser. Each of the embodiments of the invention can be multiplexed so as to provide laser light energy sequentially to more than one ignitor laser.

  20. Applied Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARC Privacy and Security Notice Skip over navigation Search the JLab Site Applied Research Center Please upgrade your browser. This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to any browser. Concerns? Applied Research Center ARC Home Consortium News EH&S Reports print version ARC Resources Commercial Tenants ARC Brochure Library Conference Room Applied Research Center Applied Research Center front view Applied Research

  1. Laser ignition

    DOE Patents [OSTI]

    Early, James W. (Los Alamos, NM); Lester, Charles S. (San Juan Pueblo, NM)

    2002-01-01

    In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones. In the embodiment of the invention claimed herein, the beam from the excitation light source is split with a portion of it going to the ignitor laser and a second portion of it being combined with either the first portion after a delay before injection into the ignitor laser.

  2. Laser isotope separation

    DOE Patents [OSTI]

    Robinson, C. Paul (Los Alamos, NM); Jensen, Reed J. (Los Alamos, NM); Cotter, Theodore P. (Munich, DE); Boyer, Keith (Los Alamos, NM); Greiner, Norman R. (Los Alamos, NM)

    1988-01-01

    A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

  3. Laser pulse detector

    DOE Patents [OSTI]

    Mashburn, D.N.; Akerman, M.A.

    1979-08-13

    A laser pulse detector is provided which is small and inexpensive and has the capability of detecting laser light of any wavelength with fast response (less than 5 nanoseconds rise time). The laser beam is focused onto the receiving end of a graphite rod coaxially mounted within a close-fitting conductive, open-end cylindrical housing so that ablation and electric field breakdown of the resulting plasma occurs due to a bias potential applied between the graphite rod and housing. The pulse produced by the breakdown is transmitted through a matched impedance coaxial cable to a recording device. The cable is connected with its central lead to the graphite rod and its outer conductor to the housing.

  4. Laser pulse detector

    DOE Patents [OSTI]

    Mashburn, Douglas N.; Akerman, M. Alfred

    1981-01-01

    A laser pulse detector is provided which is small and inexpensive and has the capability of detecting laser light of any wavelength with fast response (less than 5 nanoseconds rise time). The laser beam is focused onto the receiving end of a graphite rod coaxially mounted within a close-fitting conductive, open-end cylindrical housing so that ablation and electric field breakdown of the resulting plasma occurs due to a bias potential applied between the graphite rod and housing. The pulse produced by the breakdown is transmitted through a matched impedance coaxial cable to a recording device. The cable is connected with its central lead to the graphite rod and its outer conductor to the housing.

  5. Fiber Lasers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fiber Lasers NIF & Photon Science physicists are exploring the fundamental limits of traditional round fiber structure and developing alternate solutions to allow scaling to higher powers and pulse energies. Comprehensive models of ribbon fiber structures, or waveguides, are also being developed. The goal is to develop ribbon fiber lasers that can amplify light beams to powers well beyond fundamental limits. Joint research efforts with the Lasers and Optics Research Center at the U.S. Air

  6. Arbitrary waveform generator to improve laser diode driver performance

    DOE Patents [OSTI]

    Fulkerson, Jr, Edward Steven

    2015-11-03

    An arbitrary waveform generator modifies the input signal to a laser diode driver circuit in order to reduce the overshoot/undershoot and provide a "flat-top" signal to the laser diode driver circuit. The input signal is modified based on the original received signal and the feedback from the laser diode by measuring the actual current flowing in the laser diode after the original signal is applied to the laser diode.

  7. Laser apparatus

    DOE Patents [OSTI]

    Lewis, Owen (Fairport, NY); Stogran, Edmund M. (North Syracuse, NY)

    1980-01-01

    Laser apparatus is described wherein an active laser element, such as the disc of a face-pumped laser, is mounted in a housing such that the weight of the element is supported by glass spheres which fill a chamber defined in the housing between the walls of the housing and the edges of the laser element. The uniform support provided by the spheres enable the chamber and the pump side of the laser element to be sealed without affecting the alignment or other optical properties of the laser element. Cooling fluid may be circulated through the sealed region by way of the interstices between the spheres. The spheres, and if desired also the cooling fluid may contain material which absorbs radiation at the wavelength of parasitic emissions from the laser element. These parasitic emissions enter the spheres through the interface along the edge surface of the laser element and it is desirable that the index of refraction of the spheres and cooling fluid be near the index of refraction of the laser element. Thus support, cooling, and parasitic suppression functions are all accomplished through the use of the arrangement.

  8. Laser ignition

    DOE Patents [OSTI]

    Early, James W. (Los Alamos, NM); Lester, Charles S. (San Juan Pueblo, NM)

    2002-01-01

    In the apparatus of the invention, a first excitation laser or other excitation light source capable of producing alternating beams of light having different wavelengths is used in tandem with one or more ignitor lasers to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using the single remote excitation light source for pumping one or more small lasers located proximate to one or more fuel combustion zones with alternating wavelengths of light.

  9. Continuous wave laser irradiation of explosives

    SciTech Connect (OSTI)

    McGrane, Shawn D.; Moore, David S.

    2010-12-01

    Quantitative measurements of the levels of continuous wave (CW) laser light that can be safely applied to bare explosives during contact operations were obtained at 532 nm, 785 nm, and 1550 nm wavelengths. A thermal camera was used to record the temperature of explosive pressed pellets and single crystals while they were irradiated using a measured laser power and laser spot size. A visible light image of the sample surface was obtained before and after the laser irradiation. Laser irradiation thresholds were obtained for the onset of any visible change to the explosive sample and for the onset of any visible chemical reaction. Deflagration to detonation transitions were not observed using any of these CW laser wavelengths on single crystals or pressed pellets in the unconfined geometry tested. Except for the photochemistry of DAAF, TATB and PBX 9502, all reactions appeared to be thermal using a 532 nm wavelength laser. For a 1550 nm wavelength laser, no photochemistry was evident, but the laser power thresholds for thermal damage in some of the materials were significantly lower than for the 532 nm laser wavelength. No reactions were observed in any of the studied explosives using the available 300 mW laser at 785 nm wavelength. Tables of laser irradiance damage and reaction thresholds are presented for pressed pellets of PBX9501, PBX9502, Composition B, HMX, TATB, RDX, DAAF, PETN, and TNT and single crystals of RDX, HMX, and PETN for each of the laser wavelengths.

  10. Heterodyne laser spectroscopy system

    DOE Patents [OSTI]

    Wyeth, Richard W. (Livermore, CA); Paisner, Jeffrey A. (San Ramon, CA); Story, Thomas (Antioch, CA)

    1989-01-01

    A heterodyne laser spectroscopy system utilizes laser heterodyne techniques for purposes of laser isotope separation spectroscopy, vapor diagnostics, processing of precise laser frequency offsets from a reference frequency and the like, and provides spectral analysis of a laser beam.

  11. Heterodyne laser spectroscopy system

    DOE Patents [OSTI]

    Wyeth, Richard W. (Livermore, CA); Paisner, Jeffrey A. (San Ramon, CA); Story, Thomas (Antioch, CA)

    1990-01-01

    A heterodyne laser spectroscopy system utilizes laser heterodyne techniques for purposes of laser isotope separation spectroscopy, vapor diagnostics, processing of precise laser frequency offsets from a reference frequency, and provides spectral analysis of a laser beam.

  12. Laser Catalyst - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Find More Like This Return to Search Laser Catalyst Idaho National Laboratory Contact INL About This Technology Technology Marketing Summary INL's Laser Catalyst is a method for removing contaminant matter from a porous material. A polymer material is applied to a contaminated surface and then irradiated to cause redistribution of the contaminant matter. The final step is removal of a portion of the polymer material from the surface. Description

  13. Laser device

    DOE Patents [OSTI]

    Scott, Jill R. (Idaho Falls, ID); Tremblay, Paul L. (Idaho Falls, ID)

    2008-08-19

    A laser device includes a virtual source configured to aim laser energy that originates from a true source. The virtual source has a vertical rotational axis during vertical motion of the virtual source and the vertical axis passes through an exit point from which the laser energy emanates independent of virtual source position. The emanating laser energy is collinear with an orientation line. The laser device includes a virtual source manipulation mechanism that positions the virtual source. The manipulation mechanism has a center of lateral pivot approximately coincident with a lateral index and a center of vertical pivot approximately coincident with a vertical index. The vertical index and lateral index intersect at an index origin. The virtual source and manipulation mechanism auto align the orientation line through the index origin during virtual source motion.

  14. Applied Energy Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied Energy Programs Applied Energy Programs Los Alamos is using its world-class scientific capabilities to enhance national energy security by developing energy sources with limited environmental impact and by improving the efficiency and reliability of the energy infrastructure. CONTACT US Program Director Melissa Fox (505) 665-0896 Email Applied Energy Program Office serves as the hub connecting the Laboratory's scientific and technical resources to DOE sponsors, DoD programs, and to

  15. WE-F-16A-06: Using 3D Printers to Create Complex Phantoms for Dose Verification, Quality Assurance, and Treatment Planning System Commissioning in Radiotherapy

    SciTech Connect (OSTI)

    Kassaee, A; Ding, X; McDonough, J; Reiche, M; Witztum, A; Teo, B

    2014-06-15

    Purpose: To use 3D printers to design and construct complex geometrical phantoms for commissioning treatment planning systems, dose calculation algorithms, quality assurance (QA), dose delivery, and patient dose verifications. Methods: In radiotherapy, complex geometrical phantoms are often required for dose verification, dose delivery and calculation algorithm validation. Presently, fabrication of customized phantoms is limited due to time, expense and challenges in machining of complex shapes. In this work, we designed and utilized 3D printers to fabricate two phantoms for QA purposes. One phantom includes hills and valleys (HV) for verification of intensity modulated radiotherapy for photons, and protons (IMRT and IMPT). The other phantom includes cylindrical cavities (CC) of various sizes for dose verification of inhomogeneities. We evaluated the HV phantoms for an IMPT beam, and the CC phantom to study various inhomogeneity configurations using photon, electron, and proton beams. Gafcromic ™ films were used to quantify the dose distributions delivered to the phantoms. Results: The HV phantom has dimensions of 12 cm × 12 cm and consists of one row and one column of five peaks with heights ranging from 2 to 5 cm. The CC phantom has a size 10 cm × 14 cm and includes 6 cylindrical cavities with length of 7.2 cm and diameters ranging from 0.6 to 1.2 cm. The IMPT evaluation using the HV phantom shows good agreement as compared to the dose distribution calculated with treatment planning system. The CC phantom also shows reasonable agreements for using different algorithms for each beam modalities. Conclusion: 3D printers with submillimiter resolutions are capable of printing complex phantoms for dose verification and QA in radiotherapy. As printing costs decrease and the technology becomes widely available, phantom design and construction will be readily available to any clinic for testing geometries that were not previously feasible.

  16. Applied & Computational Math

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Computational Math - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Twitter Google + Vimeo GovDelivery SlideShare Applied & Computational Math HomeEnergy ...

  17. Applied Math & Software

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Math & Software - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Twitter Google + Vimeo GovDelivery SlideShare Applied Math & Software HomeTransportation ...

  18. Laser speckle contrast imaging of skin blood perfusion responses...

    Office of Scientific and Technical Information (OSTI)

    to the field of cutaneous wound healing. (laser biophotonics) Authors: Ogami, M ; ... Language: English Subject: 60 APPLIED LIFE SCIENCES; 72 PHYSICS OF ELEMENTARY PARTICLES ...

  19. Laser goniometer

    DOE Patents [OSTI]

    Fairer, George M.; Boernge, James M.; Harris, David W.; Campbell, DeWayne A.; Tuttle, Gene E.; McKeown, Mark H.; Beason, Steven C.

    1993-01-01

    The laser goniometer is an apparatus which permits an operator to sight along a geologic feature and orient a collimated lamer beam to match the attitude of the feature directly. The horizontal orientation (strike) and the angle from horizontal (dip), are detected by rotary incremental encoders attached to the laser goniometer which provide a digital readout of the azimuth and tilt of the collimated laser beam. A microprocessor then translates the square wave signal encoder outputs into an ASCII signal for use by data recording equipment.

  20. Laser applications

    SciTech Connect (OSTI)

    Edelson, M.C. )

    1989-11-01

    The breadth of current applications of laser technology is described. It is used as the basis for extrapolating to future application in such activities as AVLIS, SIS, ICP-MS, and RIMs.

  1. Beam current controller for laser ion source

    DOE Patents [OSTI]

    Okamura, Masahiro

    2014-10-28

    The present invention relates to the design and use of an ion source with a rapid beam current controller for experimental and medicinal purposes. More particularly, the present invention relates to the design and use of a laser ion source with a magnetic field applied to confine a plasma flux caused by laser ablation.

  2. How To Apply

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How To Apply How to Apply for Computer System, Cluster, and Networking Summer Institute Emphasizes practical skills development Contacts Program Lead Carolyn Connor (505) 665-9891 Email Professional Staff Assistant Nickole Aguilar Garcia (505) 665-3048 Email The 2016 application process will commence January 5 through February 13, 2016. Applicants must be U.S. citizens. Required Materials Current resume Official university transcript (with Spring courses posted and/or a copy of Spring 2016

  3. Laser beam monitoring system

    DOE Patents [OSTI]

    Weil, Bradley S. (Knoxville, TN); Wetherington, Jr., Grady R. (Harriman, TN)

    1985-01-01

    Laser beam monitoring systems include laser-transparent plates set at an angle to the laser beam passing therethrough and light sensor for detecting light reflected from an object on which the laser beam impinges.

  4. Carbon nanotube formation by laser direct writing

    SciTech Connect (OSTI)

    Wu, Y.-T.; Su, H.-C.; Tsai, C.-M.; Liu, K.-L.; Chen, G.-D.; Huang, R.-H.; Yew, T.-R.

    2008-07-14

    This letter presents carbon nanotube (CNT) formation by laser direct writing using 248 nm KrF excimer pulsed laser in air at room temperature, which was applied to irradiate amorphous carbon (a-C) assisted by Ni catalysts underneath for the transformation of carbon species into CNTs. The CNTs were synthesized under appropriate combination of laser energy density and a-C thickness. The growth mechanism and key parameters to determine the success of CNT formation were also discussed. The demonstration of the CNT growth by laser direct writing in air at room temperature opens an opportunity of in-position CNT formation at low temperatures.

  5. Apply for Beamtime

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply for Beamtime Apply for Beamtime Print Friday, 28 August 2009 13:23 Available Beamlines Determine which ALS beamlines are suitable for your experiment. To do this, you can review the ALS Beamlines Directory, contact the appropriate beamline scientist listed on the Directory, and/or contact the This e-mail address is being protected from spambots. You need JavaScript enabled to view it . Log In to the ALSHub user portal ALSHub Login For More Information About the Types of Proposals To learn

  6. Applied Science/Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied Science/Techniques Applied Science/Techniques Print The ALS is an excellent incubator of new scientific techniques and instrumentation. Many of the technical advances that make the ALS a world-class soft x-ray facility are developed at the ALS itself. The optical components in use at the ALS-mirrors and lenses optimized for x-ray wavelengths-require incredibly high-precision surfaces and patterns (often formed through extreme ultraviolet lithography at the ALS) and must undergo rigorous

  7. Laser barometer

    DOE Patents [OSTI]

    Abercrombie, Kevin R.; Shiels, David; Rash, Tim

    2001-02-06

    A pressure measuring instrument that utilizes the change of the refractive index of a gas as a function of pressure and the coherent nature of a laser light to determine the barometric pressure within an environment. As the gas pressure in a closed environment varies, the index of refraction of the gas changes. The amount of change is a function of the gas pressure. By illuminating the gas with a laser light source, causing the wavelength of the light to change, pressure can be quantified by measuring the shift in fringes (alternating light and dark bands produced when coherent light is mixed) in an interferometer.

  8. Visible light surface emitting semiconductor laser

    DOE Patents [OSTI]

    Olbright, Gregory R. (Boulder, CO); Jewell, Jack L. (Bridgewater, NJ)

    1993-01-01

    A vertical-cavity surface-emitting laser is disclosed comprising a laser cavity sandwiched between two distributed Bragg reflectors. The laser cavity comprises a pair of spacer layers surrounding one or more active, optically emitting quantum-well layers having a bandgap in the visible which serve as the active optically emitting material of the device. The thickness of the laser cavity is m .lambda./2n.sub.eff where m is an integer, .lambda. is the free-space wavelength of the laser radiation and n.sub.eff is the effective index of refraction of the cavity. Electrical pumping of the laser is achieved by heavily doping the bottom mirror and substrate to one conductivity-type and heavily doping regions of the upper mirror with the opposite conductivity type to form a diode structure and applying a suitable voltage to the diode structure. Specific embodiments of the invention for generating red, green, and blue radiation are described.

  9. Information Science, Computing, Applied Math

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities Information Science, Computing, Applied Math science-innovationassetsimagesicon-science.jpg Information Science, Computing, Applied Math National security ...

  10. Apply for Technical Assistance

    Office of Environmental Management (EM)

    Apply for Technical Assistance Use this online form to request technical assistance from the DOE Offce of Indian Energy for planning and implementing energy projects on tribal lands. To help us determine whether your request fts within the program's scope and can be addressed with available resources, please provide the information below and then click on "Submit Request." Only requests from federally recognized Indian Tribes, bands, nations, tribal energy resource develop- ment

  11. Applied Computer Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ADTSC » CCS » CCS-7 Applied Computer Science Innovative co-design of applications, algorithms, and architectures in order to enable scientific simulations at extreme scale Leadership Group Leader Linn Collins Email Deputy Group Leader (Acting) Bryan Lally Email Climate modeling visualization Results from a climate simulation computed using the Model for Prediction Across Scales (MPAS) code. This visualization shows the temperature of ocean currents using a green and blue color scale. These

  12. Applied Modern Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Applied Modern Physics From the first bionic eye to airport scanners that detect liquid explosives, our expertise in developing advanced diagnostics results in real-world innovations. Contact Us Group Leader (acting) Larry Schultz Email Deputy Group Leader John George Email Group Office (505) 665-2545 QkarD Quantum key distribution technology could ensure truly secure commerce, banking, communications and data transfer. Read more... A history of excellence in the development and use of

  13. Jupiter Laser Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jupiter Laser Facility The commissioning of the Titan Petawatt-Class laser to LLNL's Jupiter Laser Facility (JLF) has provided a unique platform for the use of petawatt (PW)-class lasers to explore laser-matter interactions under extreme conditions. The JLF includes the Janus, Callisto, Europa, Titan, and COMET lasers and associated target chambers (see Laser Facilities). Commissioned in 2007, Titan was the first to offer synchronized operation of both a short-pulse PW beam and a long-pulse

  14. Apply for Beamtime

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply for Beamtime Print Available Beamlines Determine which ALS beamlines are suitable for your experiment. To do this, you can review the ALS Beamlines Directory, contact the appropriate beamline scientist listed on the Directory, and/or contact the This e-mail address is being protected from spambots. You need JavaScript enabled to view it . Log In to the ALSHub user portal ALSHub Login For More Information About the Types of Proposals To learn more about the three different types of

  15. Applied Science/Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied Science/Techniques Print The ALS is an excellent incubator of new scientific techniques and instrumentation. Many of the technical advances that make the ALS a world-class soft x-ray facility are developed at the ALS itself. The optical components in use at the ALS-mirrors and lenses optimized for x-ray wavelengths-require incredibly high-precision surfaces and patterns (often formed through extreme ultraviolet lithography at the ALS) and must undergo rigorous calibration and testing

  16. Apply for Beamtime

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply for Beamtime Print Available Beamlines Determine which ALS beamlines are suitable for your experiment. To do this, you can review the ALS Beamlines Directory, contact the appropriate beamline scientist listed on the Directory, and/or contact the This e-mail address is being protected from spambots. You need JavaScript enabled to view it . Log In to the ALSHub user portal ALSHub Login For More Information About the Types of Proposals To learn more about the three different types of

  17. Laser Faraday

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Faraday rotation measurement of current density fluctuations and electromagnetic torque (invited) W. X. Ding, a) D. L. Brower, and B. H. Deng Electrical Engineering Department, University of California-Los Angeles, Los Angeles, California 90095 D. Craig, S. C. Prager, and V. Svidzinski Physics Department, University of Wisconsin-Madison, Madison, Wisconsin 53706 (Presented on 19 April 2004; published 1 October 2004) Far-infrared laser polarimetry with time response up to ϳ1 ␮s and spatial

  18. Heterodyne laser diagnostic system

    DOE Patents [OSTI]

    Globig, Michael A. (Antioch, CA); Johnson, Michael A. (Pleasanton, CA); Wyeth, Richard W. (Livermore, CA)

    1990-01-01

    The heterodyne laser diagnostic system includes, in one embodiment, an average power pulsed laser optical spectrum analyzer for determining the average power of the pulsed laser. In another embodiment, the system includes a pulsed laser instantaneous optical frequency measurement for determining the instantaneous optical frequency of the pulsed laser.

  19. Isotope separation by laser means

    DOE Patents [OSTI]

    Robinson, C. Paul (Los Alamos, NM); Jensen, Reed J. (Los Alamos, NM); Cotter, Theodore P. (Los Alamos, NM); Greiner, Norman R. (Los Alamos, NM); Boyer, Keith (Los Alamos, NM)

    1982-06-15

    A process for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium.

  20. Target isolation system, high power laser and laser peening method and system using same

    DOE Patents [OSTI]

    Dane, C. Brent (Livermore, CA); Hackel, Lloyd A. (Livermore, CA); Harris, Fritz (Rocklin, CA)

    2007-11-06

    A system for applying a laser beam to work pieces, includes a laser system producing a high power output beam. Target delivery optics are arranged to deliver the output beam to a target work piece. A relay telescope having a telescope focal point is placed in the beam path between the laser system and the target delivery optics. The relay telescope relays an image between an image location near the output of the laser system and an image location near the target delivery optics. A baffle is placed at the telescope focal point between the target delivery optics and the laser system to block reflections from the target in the target delivery optics from returning to the laser system and causing damage.

  1. Feedback stabilization system for pulsed single longitudinal mode tunable lasers

    DOE Patents [OSTI]

    Esherick, Peter; Raymond, Thomas D.

    1991-10-01

    A feedback stabilization system for pulse single longitudinal mode tunable lasers having an excited laser medium contained within an adjustable length cavity and producing a laser beam through the use of an internal dispersive element, including detection of angular deviation in the output laser beam resulting from detuning between the cavity mode frequency and the passband of the internal dispersive element, and generating an error signal based thereon. The error signal can be integrated and amplified and then applied as a correcting signal to a piezoelectric transducer mounted on a mirror of the laser cavity for controlling the cavity length.

  2. Microwave accelerator E-beam pumped laser

    DOE Patents [OSTI]

    Brau, Charles A.; Stein, William E.; Rockwood, Stephen D.

    1980-01-01

    A device and method for pumping gaseous lasers by means of a microwave accelerator. The microwave accelerator produces a relativistic electron beam which is applied along the longitudinal axis of the laser through an electron beam window. The incident points of the electron beam on the electron beam window are varied by deflection coils to enhance the cooling characteristics of the foil. A thyratron is used to reliably modulate the microwave accelerator to produce electron beam pulses which excite the laser medium to produce laser pulse repetition frequencies not previously obtainable. An aerodynamic window is also disclosed which eliminates foil heating problems, as well as a magnetic bottle for reducing laser cavity length and pressures while maintaining efficient energy deposition.

  3. ORISE: Applied health physics projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied health physics projects The Oak Ridge Institute for Science and Education (ORISE) provides applied health physics services to government agencies needing technical support ...

  4. Laser programs highlights 1994

    SciTech Connect (OSTI)

    1994-12-31

    This report provides highlights of the Lawrence Livermore National Laboratories` laser programs. Laser uses and technology assessment and utilization are provided.

  5. Electro-optic harmonic conversion to switch a laser beam out of a cavity

    DOE Patents [OSTI]

    Haas, Roger A. (Pleasanton, CA); Henesian, Mark A. (Livermore, CA)

    1987-01-01

    The invention is a switch to permit a laser beam to escape a laser cavity through the use of an externally applied electric field across a harmonic conversion crystal. Amplification takes place in the laser cavity, and then the laser beam is switched out by the laser light being harmonically converted with dichroic or polarization sensitive elements present to alter the optical path of the harmonically converted laser light. Modulation of the laser beam can also be accomplished by varying the external electric field.

  6. OMEGA Laser - Laboratory for Laser Energetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Laboratory for Laser Energetics Laboratory for Laser Energetics Logo Search Home Around the Lab Past Issues Past Quick Shots About Office of the Director Map to LLE LLE Tours LLE Building Map Partnerships Careers Education Undergraduate Program Graduate Program High School Program Faculty Contacts Computational Astrophysics H-E-D Physics Inertial Confinement Fusion Laser-Plasma Interaction Radiative Hydrodynamics Plasma Astrophysics Organization Director's Office Laser Development and

  7. OMEGA Laser Drivers - Laboratory for Laser Energetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Drivers - Laboratory for Laser Energetics Laboratory for Laser Energetics Logo Search Home Around the Lab Past Issues Past Quick Shots About Office of the Director Map to LLE LLE Tours LLE Building Map Partnerships Careers Education Undergraduate Program Graduate Program High School Program Faculty Contacts Computational Astrophysics H-E-D Physics Inertial Confinement Fusion Laser-Plasma Interaction Radiative Hydrodynamics Plasma Astrophysics Organization Director's Office Laser Development and

  8. Omega Laser Facility - Laboratory for Laser Energetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Laboratory for Laser Energetics Laboratory for Laser Energetics Logo Search Home Around the Lab Past Issues Past Quick Shots About Office of the Director Map to LLE LLE Tours LLE Building Map Partnerships Careers Education Undergraduate Program Graduate Program High School Program Faculty Contacts Computational Astrophysics H-E-D Physics Inertial Confinement Fusion Laser-Plasma Interaction Radiative Hydrodynamics Plasma Astrophysics Organization Director's Office Laser Development and

  9. laser | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    laser | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home /

  10. Longitudinal discharge laser baffles

    DOE Patents [OSTI]

    Warner, Bruce E. (Livermore, CA); Ault, Earl R. (Dublin, CA)

    1994-01-01

    The IR baffles placed between the window and the electrode of a longitudinal discharge laser improve laser performance by intercepting off-axis IR radiation from the laser and in doing so reduce window heating and subsequent optical distortion of the laser beam.

  11. Narrow gap laser welding

    DOE Patents [OSTI]

    Milewski, John O. (Santa Fe, NM); Sklar, Edward (Santa Fe, NM)

    1998-01-01

    A laser welding process including: (a) using optical ray tracing to make a model of a laser beam and the geometry of a joint to be welded; (b) adjusting variables in the model to choose variables for use in making a laser weld; and (c) laser welding the joint to be welded using the chosen variables.

  12. Narrow gap laser welding

    DOE Patents [OSTI]

    Milewski, J.O.; Sklar, E.

    1998-06-02

    A laser welding process including: (a) using optical ray tracing to make a model of a laser beam and the geometry of a joint to be welded; (b) adjusting variables in the model to choose variables for use in making a laser weld; and (c) laser welding the joint to be welded using the chosen variables. 34 figs.

  13. Short wavelength laser

    DOE Patents [OSTI]

    Hagelstein, P.L.

    1984-06-25

    A short wavelength laser is provided that is driven by conventional-laser pulses. A multiplicity of panels, mounted on substrates, are supported in two separated and alternately staggered facing and parallel arrays disposed along an approximately linear path. When the panels are illuminated by the conventional-laser pulses, single pass EUV or soft x-ray laser pulses are produced.

  14. Longitudinal discharge laser baffles

    DOE Patents [OSTI]

    Warner, B.E.; Ault, E.R.

    1994-06-07

    The IR baffles placed between the window and the electrode of a longitudinal discharge laser improve laser performance by intercepting off-axis IR radiation from the laser and in doing so reduce window heating and subsequent optical distortion of the laser beam. 1 fig.

  15. Sub-100 ps laser-driven dynamic compression of solid deuterium...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Sub-100 ps laser-driven dynamic compression of solid deuterium with a ... Resource Relation: Journal Name: Applied Physics Letters; Journal Volume: 105; Journal ...

  16. Laser-induced breakdown spectroscopy at high temperatures in industrial

    Office of Scientific and Technical Information (OSTI)

    boilers and furnaces. (Journal Article) | SciTech Connect Laser-induced breakdown spectroscopy at high temperatures in industrial boilers and furnaces. Citation Details In-Document Search Title: Laser-induced breakdown spectroscopy at high temperatures in industrial boilers and furnaces. Laser-induced breakdown spectroscopy (LIBS) was applied (1) near the superheater of an electric power generation boiler burning biomass, coat, or both, (2) at the exit of a glass-melting furnace burning

  17. Laser Plasma Interactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Plasma Interactions Laser Plasma Interactions Understanding and controlling laser produced plasmas for fusion and basic science Contact David Montgomery (505) 665-7994 Email John Kline (505) 667-7062 Email Thomson scattering is widely used to measure plasma temperature, density, and flow velocity in laser-produced plasmas at Trident, and is also used to detect plasma waves driven by unstable and nonlinear processes. A typical configuration uses a low intensity laser beam (2nd, 3rd, or 4th

  18. Nanocrystal waveguide (NOW) laser

    DOE Patents [OSTI]

    Simpson, John T.; Simpson, Marcus L.; Withrow, Stephen P.; White, Clark W.; Jaiswal, Supriya L.

    2005-02-08

    A solid state laser includes an optical waveguide and a laser cavity including at least one subwavelength mirror disposed in or on the optical waveguide. A plurality of photoluminescent nanocrystals are disposed in the laser cavity. The reflective subwavelength mirror can be a pair of subwavelength resonant gratings (SWG), a pair of photonic crystal structures (PC), or a distributed feedback structure. In the case of a pair of mirrors, a PC which is substantially transmissive at an operating wavelength of the laser can be disposed in the laser cavity between the subwavelength mirrors to improve the mode structure, coherence and overall efficiency of the laser. A method for forming a solid state laser includes the steps of providing an optical waveguide, creating a laser cavity in the optical waveguide by disposing at least one subwavelength mirror on or in the waveguide, and positioning a plurality of photoluminescent nanocrystals in the laser cavity.

  19. Infrared laser system

    DOE Patents [OSTI]

    Cantrell, Cyrus D. (Richardson, TX); Carbone, Robert J. (Johnson City, TN); Cooper, Ralph (Hayward, CA)

    1982-01-01

    An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture.

  20. Process for laser machining and surface treatment

    DOE Patents [OSTI]

    Neil, George R.; Shinn, Michelle D.

    2004-10-26

    An improved method and apparatus increasing the accuracy and reducing the time required to machine materials, surface treat materials, and allow better control of defects such as particulates in pulsed laser deposition. The speed and quality of machining is improved by combining an ultrashort pulsed laser at high average power with a continuous wave laser. The ultrashort pulsed laser provides an initial ultrashort pulse, on the order of several hundred femtoseconds, to stimulate an electron avalanche in the target material. Coincident with the ultrashort pulse or shortly after it, a pulse from a continuous wave laser is applied to the target. The micromachining method and apparatus creates an initial ultrashort laser pulse to ignite the ablation followed by a longer laser pulse to sustain and enlarge on the ablation effect launched in the initial pulse. The pulse pairs are repeated at a high pulse repetition frequency and as often as desired to produce the desired micromachining effect. The micromachining method enables a lower threshold for ablation, provides more deterministic damage, minimizes the heat affected zone, minimizes cracking or melting, and reduces the time involved to create the desired machining effect.

  1. Laser ion source with solenoid field

    SciTech Connect (OSTI)

    Kanesue, Takeshi Okamura, Masahiro; Fuwa, Yasuhiro; Kondo, Kotaro

    2014-11-10

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. The laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90?mT, 1?m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2??s which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2?×?10{sup 11}, which was provided by a single 1?J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.

  2. Laser ion source with solenoid field

    SciTech Connect (OSTI)

    Kanesue, Takeshi; Fuwa, Yasuhiro; Kondo, Kotaro; Okamura, Masahiro

    2014-11-12

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. In this study, the laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 ?s which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 1011, which was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.

  3. Laser ion source with solenoid field

    SciTech Connect (OSTI)

    Kanesue, Takeshi; Fuwa, Yasuhiro; Kondo, Kotaro; Okamura, Masahiro

    2014-11-10

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. The laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 ?s which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 1011, which was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.

  4. Contour forming of metals by laser peening

    DOE Patents [OSTI]

    Hackel, Lloyd (Livermore, CA); Harris, Fritz (Rocklin, CA)

    2002-01-01

    A method and apparatus are provided for forming shapes and contours in metal sections by generating laser induced compressive stress on the surface of the metal workpiece. The laser process can generate deep compressive stresses to shape even thick components without inducing unwanted tensile stress at the metal surface. The precision of the laser-induced stress enables exact prediction and subsequent contouring of parts. A light beam of 10 to 100 J/pulse is imaged to create an energy fluence of 60 to 200 J/cm.sup.2 on an absorptive layer applied over a metal surface. A tamping layer of water is flowed over the absorptive layer. The absorption of laser light causes a plasma to form and consequently creates a shock wave that induces a deep residual compressive stress into the metal. The metal responds to this residual stress by bending.

  5. Laser ion source with solenoid field

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kanesue, Takeshi; Fuwa, Yasuhiro; Kondo, Kotaro; Okamura, Masahiro

    2014-11-12

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. In this study, the laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 μs which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 1011, whichmore » was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.« less

  6. Apply

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unofficial transcripts are acceptable. If transcripts are not in English, provide a translation. If grades are not in the U.S.-traditional lettered (A,B,C), or GPA (out of 4.0)...

  7. Laser amplifier and method

    DOE Patents [OSTI]

    Backus, Sterling (Ann Arbor, MI); Kapteyn, Henry C. (Ann Arbor, MI); Murnane, Margaret M. (Ann Arbor, MI)

    1997-01-01

    Laser amplifiers and methods for amplifying a laser beam are disclosed. A representative embodiment of the amplifier comprises first and second curved mirrors, a gain medium, a third mirror, and a mask. The gain medium is situated between the first and second curved mirrors at the focal point of each curved mirror. The first curved mirror directs and focuses a laser beam to pass through the gain medium to the second curved mirror which reflects and recollimates the laser beam. The gain medium amplifies and shapes the laser beam as the laser beam passes therethough. The third mirror reflects the laser beam, reflected from the second curved mirror, so that the laser beam bypasses the gain medium and return to the first curved mirror, thereby completing a cycle of a ring traversed by the laser beam. The mask defines at least one beam-clipping aperture through which the laser beam passes during a cycle. The gain medium is pumped, preferably using a suitable pumping laser. The laser amplifier can be used to increase the energy of continuous-wave or, especially, pulsed laser beams including pulses of femtosecond duration and relatively high pulse rate.

  8. Applied Materials | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Applied Materials Address: 3050 Bowers Avenue Place: Santa Clara, California Zip: 95054 Sector: Solar Website: www.appliedmaterials.com...

  9. Sandia Energy - Applied Turbulent Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    submodels that bridge fundamental energy sciences with applied device engineering and optimization. Turbulent-combustion-lab1-300x218 Complementary burner facilities with...

  10. Laser spectroscopy and dynamics of transient species

    SciTech Connect (OSTI)

    Clouthier, D.J.

    1993-12-01

    The goal of this program is to study the vibrational and electronic spectra and excited state dynamics of a number of transient sulfur and oxygen species. A variety of supersonic jet techniques, as well as high resolution FT-IR and intracavity dye laser spectroscopy, have been applied to these studies.

  11. Laser preheat enhanced ignition

    DOE Patents [OSTI]

    Early, J.W.

    1999-03-02

    A method for enhancing fuel ignition performance by preheating the fuel with laser light at a wavelength that is absorbable by the fuel prior to ignition with a second laser is provided. 11 figs.

  12. Waveguide gas laser

    SciTech Connect (OSTI)

    Zedong, C.

    1982-05-01

    Waveguide gas lasers are described. Transmission loss of hollow tube light waveguides, coupling loss, the calculation of output power, and the width of the oscillation belt are discussed. The structure of a waveguide CO/sub 2/ laser is described.

  13. Direct nuclear pumped laser

    DOE Patents [OSTI]

    Miley, George H. (Champagne, IL); Wells, William E. (Urbana, IL); DeYoung, Russell J. (Hampton, VA)

    1978-01-01

    There is provided a direct nuclear pumped gas laser in which the lasing mechanism is collisional radiated recombination of ions. The gas laser active medium is a mixture of the gases, with one example being neon and nitrogen.

  14. Slender tip laser scalpel

    DOE Patents [OSTI]

    Veligdan, James T.

    2004-01-06

    A laser scalpel includes a ribbon optical waveguide extending therethrough and terminating at a slender optical cutting tip. A laser beam is emitted along the height of the cutting tip for cutting tissue therealong.

  15. Laser particle sorter

    DOE Patents [OSTI]

    Martin, J.C.; Buican, T.N.

    1987-11-30

    Method and apparatus are provided for sorting particles, such as biological particles. A first laser is used to define an optical path having an intensity gradient which is effective to propel the particles along the path but which is sufficiently weak that the particles are not trapped in an axial direction. A probe laser beam is provided for interrogating the particles to identify predetermined phenotypical characteristics of the particles. A second laser beam is provided to intersect the driving first laser beam, wherein the second laser beam is activated by an output signal indicative of a predetermined characteristic. The second laser beam is switchable between a first intensity and a second intensity, where the first intensity is effective to displace selected particles from the driving laser beam and the second intensity is effective to propel selected particles along the deflection laser beam. The selected particles may then be propelled by the deflection beam to a location effective for further analysis. 2 figs.

  16. Laser particle sorter

    DOE Patents [OSTI]

    Martin, John C. (Los Alamos, NM); Buican, Tudor N. (Los Alamos, NM)

    1989-01-01

    Method and apparatus for sorting particles, such as biological particles. A first laser defines an optical path having an intensity gradient which is effective to propel the particles along the path but which is sufficiently weak that the particles are not trapped in an axial direction. A probe laser beam interrogates the particles to identify predetermined phenotypical characteristics of the particles. A second laser beam intersects the driving first laser beam, wherein the second laser beam is activated by an output signal indicative of a predetermined characteristic. The second laser beam is switchable between a first intensity and a second intensity, where the first intensity is effective to displace selected particles from the driving laser beam and the second intensity is effective to propel selected particles along the deflection laser beam. The selected particles may then be propelled by the deflection beam to a location effective for further analysis.

  17. Laser programs highlights 1993

    SciTech Connect (OSTI)

    1995-06-01

    Over the last two decades, the scope of our laser research has grown immensely. The small, low-power laser systems of our early days have given way to laser systems of record-breaking size and power. Now we are focusing our activities within the target physics and laser science programs to support the ignition and gain goals of the proposed glass-laser National Ignition Facility. In our laser isotope separation work, we completed the most important set of experiments in the history of the AVLIS Program in 1993, which culminated in a spectacularly successful run that met or exceeded all our objectives. We are also developing lasers and laser-related technologies for a variety of energy, commercial, and defense uses. On the horizon are transfers of important technologies for waste treatment, x-ray lithography, communications and security, optical imaging, and remote sensing, among others.

  18. Laser cutting system

    DOE Patents [OSTI]

    Dougherty, Thomas J

    2015-03-03

    A workpiece cutting apparatus includes a laser source, a first suction system, and a first finger configured to guide a workpiece as it moves past the laser source. The first finger includes a first end provided adjacent a point where a laser from the laser source cuts the workpiece, and the first end of the first finger includes an aperture in fluid communication with the first suction system.

  19. Short-Pulse Lasers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Short-Pulse Lasers NIF Petawatt Laser Is on Track to Completion The National Ignition Facility's Advanced Radiographic Capability (ARC), a petawatt-class laser with peak power exceeding a quadrillion (1015) watts, is moving rapidly along the path to completion and commissioning. ARC is designed to produce brighter, more penetrating, higher-energy x rays than can be obtained with conventional radiographic techniques. When complete, ARC will be the world's highest-energy short-pulse laser, capable

  20. Laser bottom hole assembly

    SciTech Connect (OSTI)

    Underwood, Lance D; Norton, Ryan J; McKay, Ryan P; Mesnard, David R; Fraze, Jason D; Zediker, Mark S; Faircloth, Brian O

    2014-01-14

    There is provided for laser bottom hole assembly for providing a high power laser beam having greater than 5 kW of power for a laser mechanical drilling process to advance a borehole. This assembly utilizes a reverse Moineau motor type power section and provides a self-regulating system that addresses fluid flows relating to motive force, cooling and removal of cuttings.

  1. LaserFest Celebration

    SciTech Connect (OSTI)

    Dr. Alan Chodos; Elizabeth A. Rogan

    2011-08-25

    LaserFest was the yearlong celebration, during 2010, of the 50th anniversary of the demonstration of the first working laser. The goals of LaserFest were: to highlight the impact of the laser in its manifold commercial, industrial and medical applications, and as a tool for ongoing scientific research; to use the laser as one example that illustrates, more generally, the route from scientific innovation to technological application; to use the laser as a vehicle for outreach, to stimulate interest among students and the public in aspects of physical science; to recognize and honor the pioneers who developed the laser and its many applications; to increase awareness among policymakers of the importance of R&D funding as evidenced by such technology as lasers. One way in which LaserFest sought to meet its goals was to encourage relevant activities at a local level all across the country -- and also abroad -- that would be identified with the larger purposes of the celebration and would carry the LaserFest name. Organizers were encouraged to record and advertise these events through a continually updated web-based calendar. Four projects were explicitly detailed in the proposals: 1) LaserFest on the Road; 2) Videos; 3) Educational material; and 4) Laser Days.

  2. Polarization feedback laser stabilization

    DOE Patents [OSTI]

    Esherick, Peter (Albuquerque, NM); Owyoung, Adelbert (Albuquerque, NM)

    1988-01-01

    A system for locking two Nd:YAG laser oscillators includes an optical path for feeding the output of one laser into the other with different polarizations. Elliptical polarization is incorporated into the optical path so that the change in polarization that occurs when the frequencies coincide may be detected to provide a feedback signal to control one laser relative to the other.

  3. Laser material processing system

    DOE Patents [OSTI]

    Dantus, Marcos

    2015-04-28

    A laser material processing system and method are provided. A further aspect of the present invention employs a laser for micromachining. In another aspect of the present invention, the system uses a hollow waveguide. In another aspect of the present invention, a laser beam pulse is given broad bandwidth for workpiece modification.

  4. Laser Programs Highlights 1998

    SciTech Connect (OSTI)

    Lowdermilk, H.; Cassady, C.

    1999-12-01

    This report covers the following topics: Commentary; Laser Programs; Inertial Confinement Fusion/National Ignition Facility (ICF/NIF); Atomic Vapor Laser Isotope Separation (AVLIS); Laser Science and Technology (LS&T); Information Science and Technology Program (IS&T); Strategic Materials Applications Program (SMAP); Medical Technology Program (MTP) and Awards.

  5. X-ray laser

    DOE Patents [OSTI]

    Nilsen, Joseph (Livermore, CA)

    1991-01-01

    An X-ray laser (10) that lases between the K edges of carbon and oxygen, i.e. between 44 and 23 Angstroms, is provided. The laser comprises a silicon (12) and dysprosium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like dysprosium ions (34) are resonantly photo-pumped to their upper X-ray laser state by line emission from hydrogen-like silicon ions (32). The novel X-ray laser should prove especially useful for the microscopy of biological specimens.

  6. Trident Laser Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trident Laser Facility Trident Laser Facility Enabling world-class science in high-energy density physics and fundamental laser-matter interactions April 12, 2012 Invisible infrared light from the 200-trillion watt Trident Laser enters from the bottom to interact with a one-micrometer thick foil target in the center of the photo. The laser pulse produces a plasma - an ionized gas - many times hotter than the center of the sun, which lasts for a trillionth of a second. During this time some

  7. Laser Processing of Metals and Polymers

    SciTech Connect (OSTI)

    Senthilraja Singaravelu

    2012-05-31

    A laser offers a unique set of opportunities for precise delivery of high quality coherent energy. This energy can be tailored to alter the properties of material allowing a very flexible adjustment of the interaction that can lead to melting, vaporization, or just surface modification. Nowadays laser systems can be found in nearly all branches of research and industry for numerous applications. Sufficient evidence exists in the literature to suggest that further advancements in the field of laser material processing will rely significantly on the development of new process schemes. As a result they can be applied in various applications starting from fundamental research on systems, materials and processes performed on a scientific and technical basis for the industrial needs. The interaction of intense laser radiation with solid surfaces has extensively been studied for many years, in part, for development of possible applications. In this thesis, I present several applications of laser processing of metals and polymers including polishing niobium surface, producing a superconducting phase niobium nitride and depositing thin films of niobium nitride and organic material (cyclic olefin copolymer). The treated materials were examined by scanning electron microscopy (SEM), electron probe microanalysis (EPMA), atomic force microscopy (AFM), high resolution optical microscopy, surface profilometry, Fourier transform infrared spectroscopy (FTIR) and x-ray diffraction (XRD). Power spectral density (PSD) spectra computed from AFM data gives further insight into the effect of laser melting on the topography of the treated niobium.

  8. Applied Sedimentology | Open Energy Information

    Open Energy Info (EERE)

    Sedimentology Jump to: navigation, search OpenEI Reference LibraryAdd to library Book: Applied Sedimentology Author R.C. Salley Published Academic Press, 2000 DOI Not Provided...

  9. ORISE: Applied health physics projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied health physics projects The Oak Ridge Institute for Science and Education (ORISE) provides applied health physics services to government agencies needing technical support for decommissioning projects. Whether the need is assistance with the development of technical basis documents or advice on how to identify, measure and assess the presence of radiological materials, ORISE can help determine the best course for an environmental cleanup project. Our key areas of expertise include fuel

  10. Information Science, Computing, Applied Math

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities » Information Science, Computing, Applied Math /science-innovation/_assets/images/icon-science.jpg Information Science, Computing, Applied Math National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Computer, Computational, and Statistical Sciences (CCS)» High Performance Computing (HPC)» Extreme Scale Computing, Co-design»

  11. Laser system using ultra-short laser pulses

    DOE Patents [OSTI]

    Dantus, Marcos (Okemos, MI); Lozovoy, Vadim V. (Okemos, MI); Comstock, Matthew (Milford, MI)

    2009-10-27

    A laser system using ultrashort laser pulses is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal.

  12. Synthetic laser medium

    DOE Patents [OSTI]

    Stokowski, Stanley E. (Danville, CA)

    1989-01-01

    A laser medium is particularly useful in high average power solid state lasers. The laser medium includes a chormium dopant and preferably neodymium ions as codopant, and is primarily a gadolinium scandium gallium garnet, or an analog thereof. Divalent cations inhibit spiral morphology as large boules from which the laser medium is derived are grown, and a source of ions convertible between a trivalent state and a tetravalent state at a low ionization energy are in the laser medium to reduce an absorption coefficient at about one micron wavelength otherwise caused by the divalent cations. These divalent cations and convertible ions are dispersed in the laser medium. Preferred convertible ions are provided from titanium or cerium sources.

  13. Synthetic laser medium

    DOE Patents [OSTI]

    Stokowski, S.E.

    1987-10-20

    A laser medium is particularly useful in high average power solid state lasers. The laser medium includes a chromium dopant and preferably neodymium ions as codopant, and is primarily a gadolinium scandium gallium garnet, or an analog thereof. Divalent cations inhibit spiral morphology as large boules from which the laser medium is derived are grown, and a source of ions convertible between a trivalent state and a tetravalent state at a low ionization energy are in the laser medium to reduce an absorption coefficient at about one micron wavelength otherwise caused by the divalent cations. These divalent cations and convertible ions are dispersed in the laser medium. Preferred convertible ions are provided from titanium or cerium sources.

  14. Micro-laser

    DOE Patents [OSTI]

    Hutchinson, Donald P.; Richards, Roger K.

    2003-07-22

    A micro-laser is disclosed which includes a waveguide, a first and a second subwavelength resonant grating in the waveguide, and at least one photonic band gap resonant structure (PBG) in the waveguide and at least one amplifying medium in the waveguide. PBG features are positioned between the first and second subwavelength resonant gratings and allow introduction of amplifying mediums into the highly resonant guided micro-laser microcavity. The micro-laser may be positioned on a die of a bulk substrate material with one or more electronic and optical devices and may be communicably connected to the same. A method for fabricating a micro-laser is disclosed. A method for tuning the micro-laser is also disclosed. The micro-laser may be used as an optical regenerator, or a light source for data transfer or for optical computing.

  15. Polarization feedback laser stabilization

    DOE Patents [OSTI]

    Esherick, P.; Owyoung, A.

    1987-09-28

    A system for locking two Nd:YAG laser oscillators includes an optical path for feeding the output of one laser into the other with different polarizations. Elliptical polarization is incorporated into the optical path so that the change in polarization that occurs when the frequencies coincide may be detected to provide a feedback signal to control one laser relative to the other. 4 figs.

  16. Laser cutting plastic materials

    SciTech Connect (OSTI)

    Van Cleave, R.A.

    1980-08-01

    A 1000-watt CO/sub 2/ laser has been demonstrated as a reliable production machine tool for cutting of plastics, high strength reinforced composites, and other nonmetals. More than 40 different plastics have been laser cut, and the results are tabulated. Applications for laser cutting described include fiberglass-reinforced laminates, Kevlar/epoxy composites, fiberglass-reinforced phenolics, nylon/epoxy laminates, ceramics, and disposable tooling made from acrylic.

  17. Jupiter Laser Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supporting the broad community of high-energy-density researchers The Jupiter Laser Facility is an institutional user facility in the Physical and Life Sciences Directorate at Lawrence Livermore National Laboratory (LLNL). The facility is designed to provide a high degree of experimental flexibility and high laser shot rates, and to allow direct user operation of experiments. The Jupiter Laser Facilities missions are to support lab-wide research pertinent to LLNL programs (e.g. High Energy

  18. Fluorinated laser dyes

    DOE Patents [OSTI]

    Hammond, Peter R.; Feeman, James F.

    1992-01-01

    A novel class of dye is disclosed which is particularly efficient and stable for dye laser applications, lasing between 540 and 570 nm.

  19. Novel fluorinated laser dyes

    DOE Patents [OSTI]

    Hammond, Peter R.; Feeman, James F.

    1991-01-01

    A novel class of dye is disclosed which is particularly efficient and stable for dye laser applications, lasing between 540 and 570 nm.

  20. Fusion reactor pumped laser

    DOE Patents [OSTI]

    Jassby, Daniel L. (Princeton, NJ)

    1988-01-01

    A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam.

  1. Gigashot Optical Laser Demonstrator

    SciTech Connect (OSTI)

    Deri, R. J.

    2015-10-13

    The Gigashot Optical Laser Demonstrator (GOLD) project has demonstrated a novel optical amplifier for high energy pulsed lasers operating at high repetition rates. The amplifier stores enough pump energy to support >10 J of laser output, and employs conduction cooling for thermal management to avoid the need for expensive and bulky high-pressure helium subsystems. A prototype amplifier was fabricated, pumped with diode light at 885 nm, and characterized. Experimental results show that the amplifier provides sufficient small-signal gain and sufficiently low wavefront and birefringence impairments to prove useful in laser systems, at repetition rates up to 60 Hz.

  2. Optical amplifiers and lasers

    DOE Patents [OSTI]

    Klimov, Victor I.; Mikhailovski, Alexandre; Hollingsworth, Jennifer A.; Leatherdale, Catherine A.; Bawendi, Moungi G.

    2004-11-16

    An optical amplifier and laser having both broad band and wide range specific band capability can be based on semiconductor nanocrystal solids.

  3. How Lasers Work

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How Lasers Work "Laser" is an acronym for light amplification by stimulated emission of radiation. A laser is created when the electrons in atoms in special glasses, crystals, or gases absorb energy from an electrical current or another laser and become "excited." The excited electrons move from a lower-energy orbit to a higher-energy orbit around the atom's nucleus. When they return to their normal or "ground" state, the electrons emit photons (particles of light).

  4. Laser Program annual report 1987

    SciTech Connect (OSTI)

    O'Neal, E.M.; Murphy, P.W.; Canada, J.A.; Kirvel, R.D.; Peck, T.; Price, M.E.; Prono, J.K.; Reid, S.G.; Wallerstein, L.; Wright, T.W.

    1989-07-01

    This report discusses the following topics: target design and experiments; target materials development; laboratory x-ray lasers; laser science and technology; high-average-power solid state lasers; and ICF applications studies.

  5. Laser peening with fiber optic delivery

    DOE Patents [OSTI]

    Friedman, Herbert W.; Ault, Earl R.; Scheibner, Karl F.

    2004-11-16

    A system for processing a workpiece using a laser. The laser produces at least one laser pulse. A laser processing unit is used to process the workpiece using the at least one laser pulse. A fiber optic cable is used for transmitting the at least one laser pulse from the laser to the laser processing unit.

  6. Documentation - Laboratory for Laser Energetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X Subsystem and Component Maintenance OMEGA Facility Subsystem and Component Maintenance Instructions (S-AA-M-014) Laser Sources Laser Amplifiers Power Conditioning Control System...

  7. Summer of Applied Geophysical Experience

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summer of Applied Geophysical Experience (SAGE) 2016 - Our 34 rd Year! SAGE is a 3-4 week research and education program in exploration geophysics for graduate, undergraduate students, and working professionals based in Santa Fe, NM, U.S.A. Application deadline March 27, 2016, 5:00pm MDT SAGE students, faculty, teaching assistants, and visiting scientists acquire, process and interpret reflection/refraction seismic, magnetotelluric (MT)/electromagnetic (EM), ground penetrating radar (GPR),

  8. Dye laser amplifier

    DOE Patents [OSTI]

    Moses, E.I.

    1992-12-01

    An improved dye laser amplifier is disclosed. The efficiency of the dye laser amplifier is increased significantly by increasing the power of a dye beam as it passes from an input window to an output window within the dye chamber, while maintaining the intensity of the dye beam constant. 3 figs.

  9. Explosively pumped laser light

    DOE Patents [OSTI]

    Piltch, Martin S. (Los Alamos, NM); Michelotti, Roy A. (Los Alamos, NM)

    1991-01-01

    A single shot laser pumped by detonation of an explosive in a shell casing. The shock wave from detonation of the explosive causes a rare gas to luminesce. The high intensity light from the gas enters a lasing medium, which thereafter outputs a pulse of laser light to disable optical sensors and personnel.

  10. Liquid heat capacity lasers

    DOE Patents [OSTI]

    Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

    2007-05-01

    The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

  11. Longitudinal discharge laser electrodes

    DOE Patents [OSTI]

    Warner, B.E.; Miller, J.L.; Ault, E.R.

    1994-08-23

    The improved longitudinal discharge laser electrode with IR baffle includes an electrode made up of washers spaced along the laser axis in order to form inter-washer spaces for hollow cathode discharge to take place and for IR radiation to be trapped. Additional IR baffles can be placed between the electrode ann the window. 2 figs.

  12. Laser beam generating apparatus

    DOE Patents [OSTI]

    Warner, B.E.; Duncan, D.B.

    1993-12-28

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect). 11 figures.

  13. Laser beam generating apparatus

    DOE Patents [OSTI]

    Warner, B.E.; Duncan, D.B.

    1994-02-15

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus is described. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect). 7 figures.

  14. Laser beam generating apparatus

    DOE Patents [OSTI]

    Warner, Bruce E. (Livermore, CA); Duncan, David B. (Auburn, CA)

    1994-01-01

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect).

  15. Laser beam generating apparatus

    DOE Patents [OSTI]

    Warner, Bruce E. (Livermore, CA); Duncan, David B. (Auburn, CA)

    1993-01-01

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect).

  16. Longitudinal discharge laser electrodes

    DOE Patents [OSTI]

    Warner, Bruce E. (Livermore, CA); Miller, John L. (Dublin, CA); Ault, Earl R. (Dublin, CA)

    1994-01-01

    The improved longitudinal discharge laser electrode with IR baffle includes an electrode made up of washers spaced along the laser axis in order to form inter-washer spaces for hollow cathode discharge to take place and for IR radiation to be trapped. Additional IR baffles can be placed between the electrode ann the window.

  17. Laser Programs Highlight 1995

    SciTech Connect (OSTI)

    Jacobs, R.R.

    1997-01-31

    Our contributions to laser science and technology and corresponding applications range from concept to design of the National Ignition Facility, transfer of Atomic Vapor Laser Isotope Separation technology to the private sector, and from new initiatives in industry and defense to micro-optics for improving human vision.

  18. Catalac free electron laser

    DOE Patents [OSTI]

    Brau, Charles A. (Los Alamos, NM); Swenson, Donald A. (Los Alamos, NM); Boyd, Jr., Thomas J. (Los Alamos, NM)

    1982-01-01

    A catalac free electron laser using a rf linac (catalac) which acts as a catalyst to accelerate an electron beam in an initial pass through the catalac and decelerate the electron beam during a second pass through the catalac. During the second pass through the catalac, energy is extracted from the electron beam and transformed to energy of the accelerating fields of the catalac to increase efficiency of the device. Various embodiments disclose the use of post linacs to add electron beam energy extracted by the wiggler and the use of supplementary catalacs to extract energy at various energy peaks produced by the free electron laser wiggler to further enhance efficiency of the catalac free electron laser. The catalac free electron laser can be used in conjunction with a simple resonator, a ring resonator or as an amplifier in conjunction with a master oscillator laser.

  19. Laser dividing apparatus

    DOE Patents [OSTI]

    English, Jr., R. Edward (Tracy, CA); Johnson, Steve A. (Tracy, CA)

    1995-01-01

    A laser beam dividing apparatus (10) having a first beam splitter (14) with an aperture (16) therein positioned in the path of a laser beam (12) such that a portion of the laser beam (12) passes through the aperture (16) onto a second beam splitter (20) and a portion of the laser beam (12) impinges upon the first beam splitter (14). Both the first beam splitter (14) and the second beam splitter (20) are, optionally, made from a dichroic material such that a green component (24) of the laser beam (12) is reflected therefrom and a yellow component (26) is refracted therethrough. The first beam splitter (14) and the second beam splitter (20) further each have a plurality of facets (22) such that the components (24, 26) are reflected and refracted in a number equaling the number of facets (22).

  20. Laser controlled flame stabilization

    DOE Patents [OSTI]

    Early, James W. (Los Alamos, NM); Thomas, Matthew E. (Huntsville, AL)

    2001-01-01

    A method and apparatus is provided for initiating and stabilizing fuel combustion in applications such as gas turbine electrical power generating engines and jet turbine engines where it is desired to burn lean fuel/air mixtures which produce lower amounts of NO.sub.x. A laser induced spark is propagated at a distance from the fuel nozzle with the laser ignitor being remotely located from the high temperature environment of the combustion chamber. A laser initiating spark generated by focusing high peak power laser light to a sufficiently tight laser spot within the fuel to cause the ionization of air and fuel into a plasma is unobtrusive to the flow dynamics of the combustion chamber of a fuel injector, thereby facilitating whatever advantage can be taken of flow dynamics in the design of the fuel injector.

  1. Free electron laser designs for laser amplification

    DOE Patents [OSTI]

    Prosnitz, Donald (Walnut Creek, CA); Szoke, Abraham (Fremont, CA)

    1985-01-01

    Method for laser beam amplification by means of free electron laser techniques. With wiggler magnetic field strength B.sub.w and wavelength .lambda..sub.w =2.pi./k.sub.w regarded as variable parameters, the method(s) impose conditions such as substantial constancy of B.sub.w /k.sub.w or k.sub.w or B.sub.w and k.sub.w (alternating), coupled with a choice of either constant resonant phase angle or programmed phase space "bucket" area.

  2. Laser pulse stretcher method and apparatus

    DOE Patents [OSTI]

    Hawkins, Jon K. (Naperville, IL); Williams, William A. (Burr Ridge, IL)

    1990-01-01

    The output of an oscillator stage of a laser system is monitored by a photocell which is coupled to a feedback section to control a Pockels Cell and change the light output of the oscillator stage. A synchronizing pulse is generated in timed relation to the initiation of operation of the oscillator stage and is applied to a forward feed section which cooperates with the feedback section to maintain the light output constant for an extended time interval.

  3. Applied Science Division annual report, Environmental Research Program FY 1983

    SciTech Connect (OSTI)

    Cairns, E.J.; Novakov, T.

    1984-05-01

    The primary concern of the Environmental Research Program is the understanding of pollutant formation, transport, and transformation and the impacts of pollutants on the environment. These impacts include global, regional, and local effects on the atmosphere and hydrosphere, and on certain aspects of human health. This multidisciplinary research program includes fundamental and applied research in physics, chemistry, engineering, and biology, as well as research on the development of advanced methods of measurement and analysis. During FY 1983, research concentrated on atmospheric physics and chemistry, applied physics and laser spectroscopy, combustion theory and phenomena, environmental effects of oil shale processing, freshwater ecology and acid precipitation, trace element analysis for the investigation of present and historical environmental impacts, and a continuing survey of instrumentation for environmental monitoring.

  4. International combustion engines; Applied thermosciences

    SciTech Connect (OSTI)

    Ferguson, C.R.

    1985-01-01

    Focusing on thermodynamic analysis - from the requisite first law to more sophisticated applications - and engine design, this book is an introduction to internal combustion engines and their mechanics. It covers the many types of internal combustion engines, including spark ignition, compression ignition, and stratified charge engines, and examines processes, keeping equations of state simple by assuming constant specific heats. Equations are limited to heat engines and later applied to combustion engines. Topics include realistic equations of state, stroichiometry, predictions of chemical equilibrium, engine performance criteria, and friction, which is discussed in terms of the hydrodynamic theory of lubrication and experimental methods such as dimensional analysis.

  5. Piezoelectric measurement of laser power

    DOE Patents [OSTI]

    Deason, Vance A.; Johnson, John A.; Telschow, Kenneth L.

    1991-01-01

    A method for measuring the energy of individual laser pulses or a series of laser pulses by reading the output of a piezoelectric (PZ) transducer which has received a known fraction of the total laser pulse beam. An apparatus is disclosed that reduces the incident energy on the PZ transducer by means of a beam splitter placed in the beam of the laser pulses.

  6. Laser and infrared (selected articles)

    SciTech Connect (OSTI)

    Not Available

    1992-01-09

    This article reports the author's impressions from a visit to the U.S. in May, 1989. The report describes the rapid deployment in recent years of solid state laser technology in area of application such as high average power, semiconductor laser device pumps, tunability, narrow line width, and other similar solid state laser device, as well as laser materials processing, and so on.

  7. Documentation - Laboratory for Laser Energetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    VII System Description Chapter 1: System Overview Chapter 2: Laser Sources (final draft material) Chapter 3: Laser Amplifiers Chapter 4: Power Conditioning Chapter 5: Optomechanical System Chapter 6: Laser Diagnostics Chapter 7: Experimental System Chapter 8: Control System Chapter 9: Facility and Safety Interlocks Comments Address document comments, questions and corrections to the OMEGA EP Associate Laser Facility Manager

  8. 1982 laser program annual report

    SciTech Connect (OSTI)

    Hendricks, C.D.; Grow, G.R.

    1983-08-01

    This annual report covers the following eight sections: (1) laser program review, (2) laser systems and operation, (3) target design, (4) target fabrication, (5) fusion experiments program, (6) Zeus laser project, (7) laser research and development, and (8) energy applications. (MOW)

  9. Ultra-fast laser system

    DOE Patents [OSTI]

    Dantus, Marcos; Lozovoy, Vadim V

    2014-01-21

    A laser system is provided which selectively excites Raman active vibrations in molecules. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and remote sensing.

  10. Atomic vapor laser isotope separation

    SciTech Connect (OSTI)

    Stern, R.C.; Paisner, J.A.

    1986-08-15

    The atomic vapor laser isotope separation (AVLIS) process for the enrichment of uranium is evaluated. (AIP)

  11. Injection-locked composite lasers for mm-wave modulation : LDRD 117819 final report.

    SciTech Connect (OSTI)

    Wendt, Joel Robert; Vawter, Gregory Allen; Raring, James; Tauke-Pedretti, Anna; Alford, Charles Fred; Skogen, Erik J.; Chow, Weng Wah; Cajas, Florante G.; Overberg, Mark E.; Torres, David L.; Peake, Gregory Merwin

    2010-09-01

    This report summarizes a 3-year LDRD program at Sandia National Laboratories exploring mutual injection locking of composite-cavity lasers for enhanced modulation responses. The program focused on developing a fundamental understanding of the frequency enhancement previously demonstrated for optically injection locked lasers. This was then applied to the development of a theoretical description of strongly coupled laser microsystems. This understanding was validated experimentally with a novel 'photonic lab bench on a chip'.

  12. Closely spaced mirror pair for reshaping and homogenizing pump beams in laser amplifiers

    SciTech Connect (OSTI)

    Bass, I.L.

    1992-12-01

    Channeling a laser beam by multiple reflections between two closely-spaced, parallel or nearly parallel mirrors, serves to reshape and homogenize the beam at the output gap between the mirrors. Application of this device to improve the spatial overlap of a copper laser pump beam with the signal beam in a dye laser amplifier is described. This technique has been applied to the AVLIS program at the Lawrence Livermore National Laboratory.

  13. Fiber optic laser rod

    DOE Patents [OSTI]

    Erickson, G.F.

    1988-04-13

    A laser rod is formed from a plurality of optical fibers, each forming an individual laser. Synchronization of the individual fiber lasers is obtained by evanescent wave coupling between adjacent optical fiber cores. The fiber cores are dye-doped and spaced at a distance appropriate for evanescent wave coupling at the wavelength of the selected dye. An interstitial material having an index of refraction lower than that of the fiber core provides the optical isolation for effective lasing action while maintaining the cores at the appropriate coupling distance. 2 figs.

  14. Laser Spark Plug Development

    SciTech Connect (OSTI)

    McIntyre, D.L.; Richardson, S.W.; Woodruff, S.D.; McMillian, M.H.; Guutam, M.

    2007-04-01

    To meet the ignition system needs of large bore high pressure lean burn natural gas engines a laser diode side pumped passively Q-switched laser igniter was designed and tested. The laser was designed to produce the optical intensities needed to initiate ignition in a lean burn high brake mean effective pressure (BMEP) engine. The experimentation explored a variety of optical and electrical input parameters that when combined produced a robust spark in air. The results show peak power levels exceeding 2 MW and peak focal intensities above 400 GW/cm2. Future research avenues and current progress with the initial prototype are presented and discussed.

  15. Laser cutting nozzle

    DOE Patents [OSTI]

    Ramos, T.J.

    1982-09-30

    A laser cutting nozzle for use with a laser cutting apparatus directing a focused beam to a spot on a work piece. The nozzle has a cylindrical body with a conical tip which together have a conically shaped hollow interior with the apex at a small aperture through the tip. The conical hollow interior is shaped to match the profile of the laser beam, at full beamwidth, which passes through the nozzle to the work piece. A plurality of gas inlet holes extend through the body to the hollow interior and are oriented to produce a swirling flow of gas coaxially through the nozzle and out the aperture, aligned with the laser beam, to the work piece.

  16. Laser cutting nozzle

    DOE Patents [OSTI]

    Ramos, Terry J. (Brentwood, CA)

    1984-01-01

    A laser cutting nozzle for use with a laser cutting apparatus directing a focused beam to a spot on a work piece. The nozzle has a cylindrical body with a conical tip which together have a conically shaped hollow interior with the apex at a small aperture through the tip. The conical hollow interior is shaped to match the profile of the laser beam, at full beamwidth, which passes through the nozzle to the work piece. A plurality of gas inlet holes extend through the body to the hollow interior and are oriented to produce a swirling flow of gas coaxially through the nozzle and out the aperture, aligned with the laser beam, to the work piece. BACKGROUND OF THE INVENTION

  17. Fusion reactor pumped laser

    DOE Patents [OSTI]

    Jassby, D.L.

    1987-09-04

    A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam. 10 figs.

  18. Laser Plasma Interactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and controlling laser produced plasmas for fusion and basic science Contact David Montgomery (505) 665-7994 Email John Kline (505) 667-7062 Email Thomson scattering is widely...

  19. Laser dye technology

    SciTech Connect (OSTI)

    Hammond, P R

    1999-09-01

    The author has worked with laser dyes for a number of years. A first interest was in the Navy blue-green program where a flashlamp pumped dye laser was used as an underwater communication and detection device. It made use of the optical window of sea-water--blue for deep ocean, green for coastal water. A major activity however has been with the Atomic Vapor Laser Isotope Separation Program (AVLIS) at the Lawrence Livermore National Laboratory. The aim here has been enriching isotopes for the nuclear fuel cycle. The tunability of the dye laser is utilized to selectively excite one isotope in uranium vapor, and this isotope is collected electrostatically as shown in Figure 1. The interests in the AVLIS program have been in the near ultra-violet, violet, red and deep-red.

  20. DEVELOPMENT OF NEW MID-INFRARED ULTRAFAST LASER SOURCES FOR COMPACT COHERENT X-RAY SOURCES

    SciTech Connect (OSTI)

    Sterling Backus

    2012-05-14

    In this project, we proposed to develop laser based mid-infrared lasers as a potentially robust and reliable source of ultrafast pulses in the mid-infrared region of the spectrum, and to apply this light source to generating bright, coherent, femtosecond-to-attosecond x-ray beams.

  1. Pulsed gas laser

    DOE Patents [OSTI]

    Anderson, Louis W.; Fitzsimmons, William A.

    1978-01-01

    A pulsed gas laser is constituted by Blumlein circuits wherein space metal plates function both as capacitors and transmission lines coupling high frequency oscillations to a gas filled laser tube. The tube itself is formed by spaced metal side walls which function as connections to the electrodes to provide for a high frequency, high voltage discharge in the tube to cause the gas to lase. Also shown is a spark gap switch having structural features permitting a long life.

  2. Laser cooling of solids

    SciTech Connect (OSTI)

    Epstein, Richard I; Sheik-bahae, Mansoor

    2008-01-01

    We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

  3. Variable laser attenuator

    DOE Patents [OSTI]

    Foltyn, S.R.

    1987-05-29

    The disclosure relates to low loss, high power variable attenuators comprising one or more transmissive and/or reflective multilayer dielectric filters. The attenuator is particularly suitable to use with unpolarized lasers such as excimer lasers. Beam attenuation is a function of beam polarization and the angle of incidence between the beam and the filter and is controlled by adjusting the angle of incidence the beam makes to the filter or filters. Filters are selected in accordance with beam wavelength. 9 figs.

  4. Insulator for laser housing

    DOE Patents [OSTI]

    Duncan, D.B.

    1992-12-29

    The present invention provides a heat-resistant electrical insulator adapted for joining laser housing portions, which insulator comprises: an annulus; a channel in the annulus traversing the circumference and length of the housing; at least two ports, each communicating with the channel and an outer surface of the housing; and an attachment for securely attaching each end of the annulus to a laser housing member. 3 figs.

  5. Applied Materials Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Wind Turbine Jump to: navigation, search Name Applied Materials Wind Turbine Facility Applied Materials Sector Wind energy Facility Type Community Wind Facility Status In Service...

  6. Building America Expert Meeting: Recommendations for Applying...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems Building America Expert Meeting: Recommendations for Applying Water Heaters in ...

  7. Applied Ventures LLC | Open Energy Information

    Open Energy Info (EERE)

    Applied Ventures LLC Name: Applied Ventures LLC Address: 3050 Bowers Avenue Place: Santa Clara, California Zip: 95054 Region: Southern CA Area Product: Venture capital. Number...

  8. Applied Intellectual Capital AIC | Open Energy Information

    Open Energy Info (EERE)

    Intellectual Capital AIC Jump to: navigation, search Name: Applied Intellectual Capital (AIC) Place: California Zip: 94501-1010 Product: Applied Intellectual Capital (AIC) was...

  9. EA-1655: Berkeley Lab Laser Accelerator (BELLA) Laser Acquisition, Installation and Use for Research and Development

    Broader source: Energy.gov [DOE]

    Berkeley Lab Laser Accelerator (BELLA) Laser Acquisition, Installation and Use for Research and Development

  10. Laser for high frequency modulated interferometry

    DOE Patents [OSTI]

    Mansfield, D.K.; Vocaturo, M.; Guttadora, L.J.

    1991-07-23

    A Stark-tuned laser operating in the 119 micron line of CH[sub 3]OH has an output power of several tens of milliwatts at 30 Watts of pump power while exhibiting a doublet splitting of about ten MHz with the application of a Stark field on the order of 500 volts/cm. This output power allows for use of the laser in a multi-channel interferometer, while its high operating frequency permits the interferometer to measure rapid electron density changes in a pellet injected or otherwise fueled plasma such as encountered in magnetic fusion devices. The laser includes a long far-infrared (FIR) pyrex resonator tube disposed within a cylindrical water jacket and incorporating charged electrodes for applying the Stark field to a gas confined therein. With the electrodes located within the resonator tube, the resonator tube walls are cooled by a flowing coolant without electrical breakdown in the coolant liquid during application of the Stark field. Wall cooling allows for substantially increased FIR output powers. Provision is made for introducing a buffer gas into the resonator tube for increasing laser output power and its operating bandwidth. 10 figures.

  11. Laser for high frequency modulated interferometry

    DOE Patents [OSTI]

    Mansfield, Dennis K. (E. Windsor, NJ); Vocaturo, Michael (Columbus, NJ); Guttadora, Lawrence J. (Iselin, NJ)

    1991-01-01

    A Stark-tuned laser operating in the 119 micron line of CH.sub.3 OH has an output power of several tens of milliwatts at 30 Watts of pump power while exhibiting a doublet splitting of about ten MHz with the application of a Stark field on the order of 500 volts/cm. This output power allows for use of the laser in a multi-channel interferometer, while its high operating frequency permits the interferometer to measure rapid electron density changes in a pellet injected or otherwise fueled plasma such as encountered in magnetic fusion devices. The laser includes a long far-infrared (FIR) pyrex resonator tube disposed within a cylindrical water jacket and incorporating charged electrodes for applying the Stark field to a gas confined therein. With the electrodes located within the resonator tube, the resonator tube walls are cooled by a flowing coolant without electrical breakdown in the coolant liquid during application of the Stark field. Wall cooling allows for substantially increased FIR output powers. Provision is made for introducing a buffer gas into the resonator tube for increasing laser output power and its operating bandwidth.

  12. Tunable dye laser amplifier chain for laser isotope separation

    SciTech Connect (OSTI)

    Grigoriev, Igor' S; D'yachkov, Aleksei B; Labozin, Valerii P; Mironov, Sergei M; Nikulin, Sergei A; Firsov, Valerii A

    2004-05-31

    A tunable dye laser amplifier chain developed for experiments on atomic vapour laser isotope separation (AVLIS) is described. The system, pumped by copper vapour lasers, consists of a master oscillator and an amplifier stage including a preamplifier and three main amplifiers working in the saturation mode. The master oscillator of the stage is a dye laser with a grazing incidence diffraction grating. Longitudinal pumping of the amplifiers is used. The efficiency of the main amplifiers is 50 % - 55 %. The average power of laser radiation at the output of the last amplifier is 100 W. (lasers. amplifiers)

  13. Enhancement of laser plasma extreme ultraviolet emission by shockwave-laser interaction

    SciTech Connect (OSTI)

    Bruijn, Rene de; Koshelev, Konstantin N.; Zakharov, Serguei V.; Novikov, Vladimir G.; Bijkerk, Fred

    2005-04-15

    A double laser pulse heating scheme has been applied to generate plasmas with enhanced emission in the extreme ultraviolet (EUV). The plasmas were produced by focusing two laser beams (prepulse and main pulse) with a small spatial separation between the foci on a xenon gas jet target. Prepulses with ps-duration were applied to obtain high shockwave densities, following indications of earlier published results obtained using ns prepulses. EUV intensities around 13.5 nm and in the range 5-20 nm were recorded, and a maximum increase in intensity exceeding 2 was measured at an optimal delay of 140 ns between prepulse and main pulse. The gain in intensity is explained by the interaction of the shockwave produced by the prepulse with the xenon in the beam waist of the main pulse. Extensive simulation was done using the radiative magnetohydrodynamic code Z{sup *}.

  14. Advances in optical materials for large aperture lasers

    SciTech Connect (OSTI)

    Stokowski, S.E.; Lowdermilk, W.H.; Marchi, F.T.; Swain, J.E.; Wallerstein, E.P.; Wirtenson, G.R.

    1981-12-15

    Lawrence Livermore National Laboratory (LLNL) is using large aperture Nd: glass lasers to investigate the feasibility of inertial confinement fusion. In our experiments high power laser light is focussed onto a small (100 to 500 micron) target containing a deuterium-tritium fuel mixture. During the short (1 to 5 ns) laser pulse the fuel is compressed and heated, resulting in fusion reactions. The generation and control of the powerful laser pulses for these experiments is a challenging scientific and engineering task, which requires the development of new optical materials, fabrication techniques, and coatings. LLNL with the considerable cooperation and support from the optical industry, where most of the research and development and almost all the manufacturing is done, has successfully applied several new developments in these areas.

  15. Blue-green upconversion laser

    DOE Patents [OSTI]

    Nguyen, Dinh C. (Los Alamos, NM); Faulkner, George E. (Los Alamos, NM)

    1990-01-01

    A blue-green laser (450-550 nm) uses a host crystal doped with Tm.sup.3+. The Tm.sup.+ is excited through upconversion by a red pumping laser and an IR pumping laser to a state which transitions to a relatively lower energy level through emissions in the blue-green band, e.g., 450.20 nm at 75 K. The exciting laser may be tunable dye lasers or may be solid-state semiconductor laser, e.g., GaAlAs and InGaAlP.

  16. Blue-green upconversion laser

    DOE Patents [OSTI]

    Nguyen, D.C.; Faulkner, G.E.

    1990-08-14

    A blue-green laser (450--550 nm) uses a host crystal doped with Tm[sup 3+]. The Tm[sup 3+] is excited through upconversion by a red pumping laser and an IR pumping laser to a state which transitions to a relatively lower energy level through emissions in the blue-green band, e.g., 450.20 nm at 75 K. The exciting laser may be tunable dye lasers or may be solid-state semiconductor laser, e.g., GaAlAs and InGaAlP. 3 figs.

  17. Injection-controlled laser resonator

    DOE Patents [OSTI]

    Chang, J.J.

    1995-07-18

    A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality. 5 figs.

  18. Lasers '90: Proceedings of the 13th International Conference on Lasers and Applications, San Diego, CA, Dec. 10-14, 1990

    SciTech Connect (OSTI)

    Harris, D.G.; Herbelin, J. Aerospace Corp., Los Angeles, CA )

    1991-01-01

    The general topics considered are: x-ray lasers; FELs; solid state lasers; techniques and phenomena of ultrafast lasers; optical filters and free space laser communications; discharge lasers; tunable lasers; applications of lasers in medicine and surgery; lasers in materials processing; high power lasers; dynamics gratings, wave mixing, and holography; up-conversion lasers; lidar and laser radar; laser resonators; excimer lasers; laser propagation; nonlinear and quantum optics; blue-green technology; imaging; laser spectroscopy; chemical lasers; dye lasers; and lasers in chemistry.

  19. Variable emissivity laser thermal control system

    DOE Patents [OSTI]

    Milner, Joseph R. (Livermore, CA)

    1994-01-01

    A laser thermal control system for a metal vapor laser maintains the wall mperature of the laser at a desired level by changing the effective emissivity of the water cooling jacket. This capability increases the overall efficiency of the laser.

  20. Insulative laser shell coupler

    DOE Patents [OSTI]

    Arnold, P.A.; Anderson, A.T.; Alger, T.W.

    1994-09-20

    A segmented coaxial laser shell assembly having at least two water jacket sections, two pairs of interconnection half rings, a dielectric break ring, and a pair of threaded ring sections is disclosed. Each water jacket section with an inner tubular section that defines an inner laser cavity with water paths adjacent to at least a portion of the exterior of the inner tubular section, and mating faces at the end of the water jacket section through which the inner laser cavity opens and which defines at least one water port therethrough in communication with the water jackets. The water paths also define in their external surface a circumferential notch set back from and in close proximity to the mating face. The dielectric break ring has selected thickness and is placed between, and in coaxial alignment with, the mating faces of two of the adjacent water jacket sections. The break ring also defines an inner laser cavity of the same size and shape as the inner laser cavity of the water jacket sections and at least one water passage through the break ring to communicate with at least one water port through the mating faces of the water jacket sections. 4 figs.

  1. OMEGA EP Laser Dedication Movie - Laboratory for Laser Energetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dedication Movie - Laboratory for Laser Energetics Laboratory for Laser Energetics Logo Search Home Around the Lab Past Issues Past Quick Shots About Office of the Director Map to LLE LLE Tours LLE Building Map Partnerships Careers Education Undergraduate Program Graduate Program High School Program Faculty Contacts Computational Astrophysics H-E-D Physics Inertial Confinement Fusion Laser-Plasma Interaction Radiative Hydrodynamics Plasma Astrophysics Organization Director's Office Laser

  2. OMEGA EP Laser Sources - Laboratory for Laser Energetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sources - Laboratory for Laser Energetics Laboratory for Laser Energetics Logo Search Home Around the Lab Past Issues Past Quick Shots About Office of the Director Map to LLE LLE Tours LLE Building Map Partnerships Careers Education Undergraduate Program Graduate Program High School Program Faculty Contacts Computational Astrophysics H-E-D Physics Inertial Confinement Fusion Laser-Plasma Interaction Radiative Hydrodynamics Plasma Astrophysics Organization Director's Office Laser Development and

  3. Omega Laser Facility Schedule - Laboratory for Laser Energetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Schedule - Laboratory for Laser Energetics Laboratory for Laser Energetics Logo Search Home Around the Lab Past Issues Past Quick Shots About Office of the Director Map to LLE LLE Tours LLE Building Map Partnerships Careers Education Undergraduate Program Graduate Program High School Program Faculty Contacts Computational Astrophysics H-E-D Physics Inertial Confinement Fusion Laser-Plasma Interaction Radiative Hydrodynamics Plasma Astrophysics Organization Director's Office Laser Development and

  4. SOLAR PUMPED LASER MICROTHRUSTER

    SciTech Connect (OSTI)

    Rubenchik, A M; Beach, R; Dawson, J; Siders, C W

    2010-02-05

    The development of microsatellites requires the development of engines to modify their orbit. It is natural to use solar energy to drive such engines. For an unlimited energy source the optimal thruster must use a minimal amount of expendable material to minimize launch costs. This requires the ejected material to have the maximal velocity and, hence, the ejected atoms must be as light as possible and be ejected by as high an energy density source as possible. Such a propulsion can be induced by pulses from an ultra-short laser. The ultra-short laser provides the high-energy concentration and high-ejected velocity. We suggest a microthruster system comprised of an inflatable solar concentrator, a solar panel, and a diode-pumped fiber laser. We will describe the system design and give weight estimates.

  5. Solar Pumped Laser Microthruster

    SciTech Connect (OSTI)

    Rubenchik, A. M.; Beach, R.; Dawson, J.; Siders, C. W.

    2010-10-08

    The development of microsatellites requires the development of engines to modify their orbit. It is natural to use solar energy to drive such engines. For an unlimited energy source the optimal thruster must use a minimal amount of expendable material to minimize launch costs. This requires the ejected material to have the maximal velocity and, hence, the ejected atoms must be as light as possible and be ejected by as high an energy density source as possible. Such a propulsion can be induced by pulses from an ultra-short laser. The ultra-short laser provides the high-energy concentration and high-ejected velocity. We suggest a microthruster system comprised of an inflatable solar concentrator, a solar panel, and a diode-pumped fiber laser. We will describe the system design and give weight estimates.

  6. Laser ablation of concrete.

    SciTech Connect (OSTI)

    Savina, M.

    1998-10-05

    Laser ablation is effective both as an analytical tool and as a means of removing surface coatings. The elemental composition of surfaces can be determined by either mass spectrometry or atomic emission spectroscopy of the atomized effluent. Paint can be removed from aircraft without damage to the underlying aluminum substrate, and environmentally damaged buildings and sculptures can be restored by ablating away deposited grime. A recent application of laser ablation is the removal of radioactive contaminants from the surface and near-surface regions of concrete. We present the results of ablation tests on concrete samples using a high power pulsed Nd:YAG laser with fiber optic beam delivery. The laser-surface interaction was studied on various model systems consisting of Type I Portland cement with varying amounts of either fine silica or sand in an effort to understand the effect of substrate composition on ablation rates and mechanisms. A sample of non-contaminated concrete from a nuclear power plant was also studied. In addition, cement and concrete samples were doped with non-radioactive isotopes of elements representative of cooling waterspills, such as cesium and strontium, and analyzed by laser-resorption mass spectrometry to determine the contamination pathways. These samples were also ablated at high power to determine the efficiency with which surface contaminants are removed and captured. The results show that the neat cement matrix melts and vaporizes when little or no sand or aggregate is present. Surface flows of liquid material are readily apparent on the ablated surface and the captured aerosol takes the form of glassy beads up to a few tens of microns in diameter. The presence of sand and aggregate particles causes the material to disaggregate on ablation, with intact particles on the millimeter size scale leaving the surface. Laser resorption mass spectrometric analysis showed that cesium and potassium have similar chemical environments in the matrix, as do strontium and calcium.

  7. Documentation - Laboratory for Laser Energetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    I System Description OMEGA System Operations Manual - Volume I-System Description System Overview Laser Drivers (draft material) Laser Amplifiers Power Conditioning Optomechanical System Laser Diagnostics (draft material available on request) Experimental System Targets and Target Fabrication Target Diagnostics (Refer to Chapter 5 of the Omega Laser Facility Users' Guide) Facility and Safety Interlocks OMEGA Control System (draft material available on request) Target Chamber Tritium Removal

  8. Vacuum ultraviolet laser

    DOE Patents [OSTI]

    Berkowitz, J.; Ruscic, B.M.; Greene, J.P.

    1984-07-06

    Transitions from the 2p/sup 4/(/sup 1/S/sub 0/)3s /sup 2/S/sub 1/2/ state of atomic fluorine to all allowed loser states produces laser emission at six new wavelengths: 680.7A, 682.6A, 3592.7A, 3574.1A, 6089.2A, and 6046.8A. Coherent radiation at these new wavelengths can be generated in an atomic fluorine laser operated as an amplifier or as an oscillator.

  9. Laser pulse stacking method

    DOE Patents [OSTI]

    Moses, E.I.

    1992-12-01

    A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter. 2 figs.

  10. Injection Laser System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Injection Laser System For each of NIF's 192 beams: The pulse shape as a function of time must be generated with a high degree of precision The energy delivered to the target must be precise The energy must be delivered to the target at exactly the specified time NIF's injection laser system (ILS) plays a key role in meeting these three requirements. The ILS system is responsible for generating a prescribed pulse shape, adjusting the energy in each of the 192 beams, and adjusting the time it

  11. Laser amplifier chain

    DOE Patents [OSTI]

    Hackel, Richard P. (Livermore, CA)

    1992-01-01

    A laser amplifier chain has a plurality of laser amplifiers arranged in a chain to sequentially amplify a low-power signal beam to produce a significantly higher-power output beam. Overall efficiency of such a chain is improved if high-gain, low efficiency amplifiers are placed on the upstream side of the chain where only a very small fraction of the total pumped power is received by the chain and low-gain, high-efficiency amplifiers are placed on the downstream side where a majority of pumping energy is received by the chain.

  12. Deposition head for laser

    DOE Patents [OSTI]

    Lewis, Gary K. (Los Alamos, NM); Less, Richard M. (Los Alamos, NM)

    1999-01-01

    A deposition head for use as a part of apparatus for forming articles from materials in particulate form in which the materials are melted by a laser beam and deposited at points along a tool path to form an article of the desired shape and dimensions. The deposition head delivers the laser beam and powder to a deposition zone, which is formed at the tip of the deposition head. A controller comprised of a digital computer directs movement of the deposition zone along the tool path and provides control signals to adjust apparatus functions, such as the speed at which the deposition head moves along the tool path.

  13. Laser amplifier chain

    DOE Patents [OSTI]

    Hackel, R.P.

    1992-10-20

    A laser amplifier chain has a plurality of laser amplifiers arranged in a chain to sequentially amplify a low-power signal beam to produce a significantly higher-power output beam. Overall efficiency of such a chain is improved if high-gain, low efficiency amplifiers are placed on the upstream side of the chain where only a very small fraction of the total pumped power is received by the chain and low-gain, high-efficiency amplifiers are placed on the downstream side where a majority of pumping energy is received by the chain. 6 figs.

  14. Laser pulse stacking method

    DOE Patents [OSTI]

    Moses, Edward I. (Livermore, CA)

    1992-01-01

    A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter.

  15. Single element laser beam shaper

    DOE Patents [OSTI]

    Zhang, Shukui (Yorktown, VA); Michelle D. Shinn (Newport News, VA)

    2005-09-13

    A single lens laser beam shaper for converting laser beams from any spatial profile to a flat-top or uniform spatial profile. The laser beam shaper includes a lens having two aspheric surfaces. The beam shaper significantly simplifies the overall structure in comparison with conventional 2-element systems and therefore provides great ease in alignment and reduction of cost.

  16. Apply for Beam Time | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    All About Proposals Users Home Apply for Beam Time Deadlines Proposal Types Concepts, Definitions, and Help My APS Portal My APS Portal Apply for Beam Time Next Proposal Deadline...

  17. How to Apply for the ENERGY STAR®

    Broader source: Energy.gov [DOE]

    Join us to learn about applying for ENERGY STAR Certification in Portfolio Manager. Understand the value of the ENERGY STAR certification, see the step-by-step process of applying, and gain tips to...

  18. A real-time laser feedback control method for the three-wave laser source used in the polarimeter-interferometer diagnostic on Joint-TEXT tokamak

    SciTech Connect (OSTI)

    Xiong, C. Y.; Chen, J. Li, Q.; Liu, Y.; Gao, L.

    2014-12-15

    A three-wave laser polarimeter-interferometer, equipped with three independent far-infrared laser sources, has been developed on Joint-TEXT (J-TEXT) tokamak. The diagnostic system is capable of high-resolution temporal and phase measurement of the Faraday angle and line-integrated density. However, for long-term operation (>10 min), the free-running lasers can lead to large drifts of the intermediate frequencies (∼100–∼500 kHz/10 min) and decay of laser power (∼10%–∼20%/10 min), which act to degrade diagnostic performance. In addition, these effects lead to increased maintenance cost and limit measurement applicability to long pulse/steady state experiments. To solve this problem, a real-time feedback control method of the laser source is proposed. By accurately controlling the length of each laser cavity, both the intermediate frequencies and laser power can be simultaneously controlled: the intermediate frequencies are controlled according to the pre-set values, while the laser powers are maintained at an optimal level. Based on this approach, a real-time feedback control system has been developed and applied on J-TEXT polarimeter-interferometer. Long-term (theoretically no time limit) feedback of intermediate frequencies (maximum change less than ±12 kHz) and laser powers (maximum relative power change less than ±7%) has been successfully achieved.

  19. Oxazine laser dyes

    DOE Patents [OSTI]

    Hammond, Peter R.; Field, George F.

    1992-01-01

    New oxazine compounds useful as dye laser media in solution, are superiior to prior art materials. The oxazine dyes useful when pumped by the 578.2 nm copper line to operate in the 700-800 nm range are described by formula I ##STR1##

  20. Ring laser scatterometer

    DOE Patents [OSTI]

    Ackermann, Mark; Diels, Jean-Claude

    2005-06-28

    A scatterometer utilizes the dead zone resulting from lockup caused by scatter from a sample located in the optical path of a ring laser at a location where counter-rotating pulses cross. The frequency of one pulse relative to the other is varied across the lockup dead zone.

  1. Miniature Laser Tracker

    DOE Patents [OSTI]

    Vann, Charles S. (Fremont, CA)

    2003-09-09

    This small, inexpensive, non-contact laser sensor can detect the location of a retroreflective target in a relatively large volume and up to six degrees of position. The tracker's laser beam is formed into a plane of light which is swept across the space of interest. When the beam illuminates the retroreflector, some of the light returns to the tracker. The intensity, angle, and time of the return beam is measured to calculate the three dimensional location of the target. With three retroreflectors on the target, the locations of three points on the target are measured, enabling the calculation of all six degrees of target position. Until now, devices for three-dimensional tracking of objects in a large volume have been heavy, large, and very expensive. Because of the simplicity and unique characteristics of this tracker, it is capable of three-dimensional tracking of one to several objects in a large volume, yet it is compact, light-weight, and relatively inexpensive. Alternatively, a tracker produces a diverging laser beam which is directed towards a fixed position, and senses when a retroreflective target enters the fixed field of view. An optically bar coded target can be read by the tracker to provide information about the target. The target can be formed of a ball lens with a bar code on one end. As the target moves through the field, the ball lens causes the laser beam to scan across the bar code.

  2. Dye laser amplifier

    DOE Patents [OSTI]

    Moses, Edward I. (Livermore, CA)

    1992-01-01

    An improved dye laser amplifier is disclosed. The efficiency of the dye lr amplifier is increased significantly by increasing the power of a dye beam as it passes from an input window to an output window within the dye chamber, while maintaining the intensity of the dye beam constant.

  3. Ultranarrow linewidth waveguide excimer lasers

    SciTech Connect (OSTI)

    Christensen, C.P. ); Feldman, B.J.; Huston, A.

    1989-09-01

    We have constructed a single longitudinal mode XeCl laser using microwave discharge waveguide laser technology. The pulse duration, repetition rate, and simplicity of construction associated with waveguide excimer lasers lend this system unique capabilities and a broad utility for interfacing with other excimer devices. The coherence length of the laser emission has been found to be {similar to}6 m with a corresponding bandwidth of {l brace}22 MHz that is near the transform limit. The laser has been used to demonstrate pulsed UV Doppler velocity measurement in a simple homodyne configuration.

  4. Laser Program annual report 1984

    SciTech Connect (OSTI)

    Rufer, M.L.; Murphy, P.W.

    1985-06-01

    The Laser Program Annual Report is part of the continuing series of reports documenting the progress of the unclassified Laser Fusion Program at the Lawrence Livermore National Laboratory (LLNL). As in previous years, the report is organized programmatically. The first section is an overview of the basic goals and directions of the LLNL Inertial Confinement Fusion (ICF) Program, and highlights the year's important accomplishments. Sections 2 through 7 provide the detailed information on the various program elements: Laser Systems and Operations, Target Design, Target Fabrication, Laser Experiments and Advanced Diagnostics, Advanced Laser Development, and Applications of Inertial Confinement Fusion. Individual sections will be indexed separately. 589 refs., 333 figs., 25 tabs.

  5. OCDR guided laser ablation device

    DOE Patents [OSTI]

    Dasilva, Luiz B. (Danville, CA); Colston, Jr., Bill W. (Livermore, CA); James, Dale L. (Tracy, CA)

    2002-01-01

    A guided laser ablation device. The device includes a mulitmode laser ablation fiber that is surrounded by one or more single mode optical fibers that are used to image in the vicinity of the laser ablation area to prevent tissue damage. The laser ablation device is combined with an optical coherence domain reflectometry (OCDR) unit and with a control unit which initializes the OCDR unit and a high power laser of the ablation device. Data from the OCDR unit is analyzed by the control unit and used to control the high power laser. The OCDR images up to about 3 mm ahead of the ablation surface to enable a user to see sensitive tissue such as a nerve or artery before damaging it by the laser.

  6. 2 micron femtosecond fiber laser

    DOE Patents [OSTI]

    Liu, Jian; Wan, Peng; Yang, Lihmei

    2014-07-29

    Methods and systems for generating femtosecond fiber laser pulses are disclose, including generating a signal laser pulse from a seed laser oscillator; using a first amplifier stage comprising an input and an output, wherein the signal laser pulse is coupled into the input of the first stage amplifier and the output of the first amplifier stage emits an amplified and stretched signal laser pulse; using an amplifier chain comprising an input and an output, wherein the amplified and stretched signal laser pulse from the output of the first amplifier stage is coupled into the input of the amplifier chain and the output of the amplifier chain emits a further amplified, stretched signal laser pulse. Other embodiments are described and claimed.

  7. Method of applying coatings to substrates and the novel coatings produced thereby

    DOE Patents [OSTI]

    Hendricks, C.D.

    1987-09-15

    A method for applying novel coatings to substrates is provided. The ends of a multiplicity of rods of different materials are melted by focused beams of laser light. Individual electric fields are applied to each of the molten rod ends, thereby ejecting charged particles that include droplets, atomic clusters, molecules, and atoms. The charged particles are separately transported, by the accelerations provided by electric potentials produced by an electrode structure, to substrates where they combine and form the coatings. Layered and thickness graded coatings comprised of hitherto unavailable compositions, are provided. 2 figs.

  8. Pulsed laser Raman spectroscopy in the laser-heated diamond anvil...

    Office of Scientific and Technical Information (OSTI)

    Pulsed laser Raman spectroscopy in the laser-heated diamond anvil cell Citation Details In-Document Search Title: Pulsed laser Raman spectroscopy in the laser-heated diamond anvil...

  9. Laser frequency modulator for modulating a laser cavity

    DOE Patents [OSTI]

    Erbert, Gaylen V. (Livermore, CA)

    1992-01-01

    The present invention relates to a laser frequency modulator for modulating a laser cavity. It is known in the prior art to utilize a PZT (piezoelectric transducer) element in combination with a mirror to change the cavity length of a laser cavity (which changes the laser frequency). Using a PZT element to drive the mirror directly is adequate at frequencies below 10 kHz. However, in high frequency applications (100 kHz and higher) PZT elements alone do not provide a sufficient change in the cavity length. The present invention utilizes an ultrasonic concentrator with a PZT element and mirror to provide modulation of the laser cavity. With an ultrasonic concentrator, the mirror element at the end of a laser cavity can move at larger amplitudes and higher frequencies.

  10. Laser beam temporal and spatial tailoring for laser shock processing

    DOE Patents [OSTI]

    Hackel, Lloyd (Livermore, CA); Dane, C. Brent (Livermore, CA)

    2001-01-01

    Techniques are provided for formatting laser pulse spatial shape and for effectively and efficiently delivering the laser energy to a work surface in the laser shock process. An appropriately formatted pulse helps to eliminate breakdown and generate uniform shocks. The invention uses a high power laser technology capable of meeting the laser requirements for a high throughput process, that is, a laser which can treat many square centimeters of surface area per second. The shock process has a broad range of applications, especially in the aerospace industry, where treating parts to reduce or eliminate corrosion failure is very important. The invention may be used for treating metal components to improve strength and corrosion resistance. The invention has a broad range of applications for parts that are currently shot peened and/or require peening by means other than shot peening. Major applications for the invention are in the automotive and aerospace industries for components such as turbine blades, compressor components, gears, etc.

  11. Readily Deinkable Toner - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Memorial Institute Contact BMI About This Technology Technology Marketing SummaryA bio-based resin and toner formulation for photocopier and laser printer toners - resins...

  12. High power regenerative laser amplifier

    DOE Patents [OSTI]

    Miller, John L. (Livermore, CA); Hackel, Lloyd A. (Livermore, CA); Dane, Clifford B. (Dublin, CA); Zapata, Luis E. (Livermore, CA)

    1994-01-01

    A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer. A control circuit coupled to the Pockels cell generates the control signal in timed relationship with the input pulse so that the input pulse is captured by the input coupler and proceeds through at least one transit of the optical path, and then the control signal is applied to cause rotation of the pulse to a polarization reflected by the polarizer, after which the captured pulse passes through the gain medium at least once more and is reflected out of the optical path by the polarizer before passing through the rotator again to provide an amplified pulse.

  13. High power regenerative laser amplifier

    DOE Patents [OSTI]

    Miller, J.L.; Hackel, L.A.; Dane, C.B.; Zapata, L.E.

    1994-02-08

    A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer. A control circuit coupled to the Pockels cell generates the control signal in timed relationship with the input pulse so that the input pulse is captured by the input coupler and proceeds through at least one transit of the optical path, and then the control signal is applied to cause rotation of the pulse to a polarization reflected by the polarizer, after which the captured pulse passes through the gain medium at least once more and is reflected out of the optical path by the polarizer before passing through the rotator again to provide an amplified pulse. 7 figures.

  14. Laser separation of medical isotopes

    SciTech Connect (OSTI)

    Eerkens, J.W.; Puglishi, D.A.; Miller, W.H.

    1996-12-31

    There is an increasing demand for different separated isotopes as feed material for reactor and cyclotron-produced radioisotopes used by a fast-growing radiopharmaceutical industry. One new technology that may meet future demands for medical isotopes is molecular laser isotope separation (MLIS). This method was investigated for the enrichment of uranium in the 1970`s and 1980s by Los Alamos National Laboratory, Isotope Technologies, and others around the world. While South Africa and Japan have continued the development of MLIS for uranium and are testing pilot units, around 1985 the United States dropped the LANL MLIS program in favor of AVLIS (atomic vapor LIS), which uses electron-beam-heated uranium metal vapor. AVLIS appears difficult and expensive to apply to most isotopes of medical interest, however, whereas MLIS technology, which is based on cooled hexafluorides or other gaseous molecules, can be adapted more readily. The attraction of MLIS for radiopharmaceutical firms is that it allows them to operate their own dedicated separators for small-quantity productions of critical medical isotopes, rather than having to depend on large enrichment complexes run by governments, which are only optimal for large-quantity productions. At the University of Missouri, the authors are investigating LIS of molybdenum isotopes using MoF{sub 6}, which behaves in a way similar to UF{sub 6}, studied in the past.

  15. Applied geodesy (Book) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Book: Applied geodesy Citation Details In-Document Search Title: Applied geodesy This volume is based on the proceedings of the CERN Accelerator School's course on Applied Geodesy for Particle Accelerators held in April 1986. The purpose was to record and disseminate the knowledge gained in recent years on the geodesy of accelerators and other large systems. The latest methods for positioning equipment to sub-millimetric accuracy in deep underground tunnels several tens of kilometers long are

  16. Apply for Your First NERSC Allocation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply for Your First Allocation Apply for Your First NERSC Allocation Initial Steps Needed to Apply for Your First NERSC Allocation All work done at NERSC must be within the DOE Office of Science mission. See the Mission descriptions for each office at Allocations Overview and Eligibility. Prospective Principal Investigators without a NERSC login need to fill out two forms: The online ERCAP Access Request Form. If you wish to designate another person to fill out the request form you may

  17. Azacoumarin dye lasers

    DOE Patents [OSTI]

    Hammond, Peter R.; Atkins, Ronald L.; Henry, Ronald A.; Fletcher, Aaron N.

    1978-01-01

    A dye laser comprising a laser dye solution of a compound having the general structure: ##STR1## wherein at least one of the 5, 6 and 8 ring positions is occupied by a nitrogen atom in lieu of the corresponding CR group and X is OH, alkoxy, or amino including amino substituted by at least one of the following: alkyl, aryl, acyl, aracyl, a group which taken together with the nitrogen atom of the amino group forms a heterocyclic ring, or part of one or two 5 or 6 membered aliphatic heterocyclic rings attached to ring A at positions 6 or 8 or both depending on where the N in ring A is located. R.sub.3, R.sub.4, R.sub.5, R.sub.6 and R.sub.8 are hydrogen or other groups as defined below. The compounds lase in the blue-green to near ultraviolet region.

  18. Azaquinolone dye lasers

    DOE Patents [OSTI]

    Hammond, Peter R.; Atkins, Ronald L.; Henry, Ronald A.; Fletcher, Aaron N.

    1978-01-01

    A dye laser comprising a laser dye solution of a compound having the general structure: ##STR1## wherein at least one of the 5, 6 and 8 ring positions is occupied by a nitrogen atom in lieu of the corresponding CR group and X is OH, alkoxy, or amino including amino substituted by at least one of the following: alkyl, aryl, acyl, aracyl, a group which taken together with the nitrogen atom of the amino group forms a heterocyclic ring, or part of one or two 5 or 6 membered aliphatic heterocyclic rings attached to ring A at positions 6 or 8 or both depending on where the N in ring A is located. R.sub.1, R.sub.3, R.sub.4, R.sub.5, R.sub.6 and R.sub.8 are hydrogen or other groups as defined below. The compounds lase in the blue to near ultraviolet region.

  19. Laser beam guard clamps

    DOE Patents [OSTI]

    Dickson, Richard K. (Stockton, CA)

    2010-09-07

    A quick insert and release laser beam guard panel clamping apparatus having a base plate mountable on an optical table, a first jaw affixed to the base plate, and a spring-loaded second jaw slidably carried by the base plate to exert a clamping force. The first and second jaws each having a face acutely angled relative to the other face to form a V-shaped, open channel mouth, which enables wedge-action jaw separation by and subsequent clamping of a laser beam guard panel inserted through the open channel mouth. Preferably, the clamping apparatus also includes a support structure having an open slot aperture which is positioned over and parallel with the open channel mouth.

  20. Fusion pumped laser

    DOE Patents [OSTI]

    Pappas, D.S.

    1987-07-31

    The apparatus of this invention may comprise a system for generating laser radiation from a high-energy neutron source. The neutron source is a tokamak fusion reactor generating a long pulse of high-energy neutrons and having a temperature and magnetic field effective to generate a neutron flux of at least 10/sup 15/ neutrons/cm/sup 2//center dot/s. Conversion means are provided adjacent the fusion reactor at a location operable for converting the high-energy neutrons to an energy source with an intensity and energy effective to excite a preselected lasing medium. A lasing medium is spaced about and responsive to the energy source to generate a population inversion effective to support laser oscillations for generating output radiation. 2 figs., 2 tabs.

  1. Fusion pumped laser

    DOE Patents [OSTI]

    Pappas, Daniel S. (Los Alamos, NM)

    1989-01-01

    Apparatus is provided for generating energy in the form of laser radiation. A tokamak fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The tokamak design provides a temperature and a magnetic field which is effective to generate a neutron flux of at least 10.sup.15 neutrons/cm.sup.2.s. A conversion medium receives neutrons from the tokamak and converts the high-energy neutrons to an energy source with an intensity and an energy effective to excite a preselected lasing medium. The energy source typically comprises fission fragments, alpha particles, and radiation from a fission event. A lasing medium is provided which is responsive to the energy source to generate a population inversion which is effective to support laser oscillations for generating output radiation.

  2. Laser pulse sampler

    DOE Patents [OSTI]

    Vann, C.

    1998-03-24

    The Laser Pulse Sampler (LPS) measures temporal pulse shape without the problems of a streak camera. Unlike the streak camera, the laser pulse directly illuminates a camera in the LPS, i.e., no additional equipment or energy conversions are required. The LPS has several advantages over streak cameras. The dynamic range of the LPS is limited only by the range of its camera, which for a cooled camera can be as high as 16 bits, i.e., 65,536. The LPS costs less because there are fewer components, and those components can be mass produced. The LPS is easier to calibrate and maintain because there is only one energy conversion, i.e., photons to electrons, in the camera. 5 figs.

  3. Laser pulse sampler

    DOE Patents [OSTI]

    Vann, Charles (Fremont, CA)

    1998-01-01

    The Laser Pulse Sampler (LPS) measures temporal pulse shape without the problems of a streak camera. Unlike the streak camera, the laser pulse directly illuminates a camera in the LPS, i.e., no additional equipment or energy conversions are required. The LPS has several advantages over streak cameras. The dynamic range of the LPS is limited only by the range of its camera, which for a cooled camera can be as high as 16 bits, i.e., 65,536. The LPS costs less because there are fewer components, and those components can be mass produced. The LPS is easier to calibrate and maintain because there is only one energy conversion, i.e., photons to electrons, in the camera.

  4. Laser multiplexing system

    DOE Patents [OSTI]

    Johnson, Steve A. (Tracy, CA); English, Jr., Ronald Edward (Tracy, CA); White, Ronald K. (Livermore, CA)

    2001-01-01

    A plurality of copper lasers, as radiant power sources, emits a beam of power carrying radiation. A plurality of fiber injection assemblies receives power from the plurality of copper lasers and injects such power into a plurality of fibers for individually transmitting the received power to a plurality of power-receiving devices. The power-transmitting fibers of the system are so arranged that power is delivered therethrough to each of the power-receiving devices such that, even if a few of the radiant power sources and/or fibers fail, the power supply to any of the power receiving devices will not completely drop to zero but will drop by the same proportionate amount.

  5. Applied Field Research Initiative Attenuation Based Remedies

    Office of Environmental Management (EM)

    Laboratory (SRNL), the initiative is a collaborative effort that leverages DOE invest- ments in applied research and basic science and the work of the site contractors to...

  6. Applied Materials Inc AMAT | Open Energy Information

    Open Energy Info (EERE)

    manufacturer of equipment used in solar (silicon, thin-film, BIPV), semiconductor, and LCD markets. References: Applied Materials Inc (AMAT)1 This article is a stub. You can...

  7. Applied Quantum Technology AQT | Open Energy Information

    Open Energy Info (EERE)

    Quantum Technology AQT Jump to: navigation, search Name: Applied Quantum Technology (AQT) Place: Santa Clara, California Zip: 95054 Product: California-based manufacturer of CIGS...

  8. Applied Energy Management | Open Energy Information

    Open Energy Info (EERE)

    Energy Management Jump to: navigation, search Name: Applied Energy Management Place: Huntersville, North Carolina Zip: 28078 Sector: Efficiency, Renewable Energy Product: North...

  9. Metal atom oxidation laser

    DOE Patents [OSTI]

    Jensen, R.J.; Rice, W.W.; Beattie, W.H.

    1975-10-28

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides. (auth)

  10. Metal atom oxidation laser

    DOE Patents [OSTI]

    Jensen, R.J.; Rice, W.W.; Beattie, W.H.

    1975-10-28

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides.

  11. Nonlinear Laser Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Spectroscopy - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  12. Electric motor for laser-mechanical drilling

    DOE Patents [OSTI]

    Grubb, Daryl L.; Faircloth, Brian O.; Zediker, Mark S.

    2015-07-07

    A high power laser drilling system utilizing an electric motor laser bottom hole assembly. A high power laser beam travels within the electric motor for advancing a borehole. High power laser drilling system includes a down hole electrical motor having a hollow rotor for conveying a high power laser beam through the electrical motor.

  13. Ultrafast pulsed laser utilizing broad bandwidth laser glass

    DOE Patents [OSTI]

    Payne, S.A.; Hayden, J.S.

    1997-09-02

    An ultrafast laser uses a Nd-doped phosphate laser glass characterized by a particularly broad emission bandwidth to generate the shortest possible output pulses. The laser glass is composed primarily of P{sub 2}O{sub 5}, Al{sub 2}O{sub 3} and MgO, and possesses physical and thermal properties that are compatible with standard melting and manufacturing methods. The broad bandwidth laser glass can be used in modelocked oscillators as well as in amplifier modules. 7 figs.

  14. Laser fusion neutron source employing compression with short pulse lasers

    DOE Patents [OSTI]

    Sefcik, Joseph A; Wilks, Scott C

    2013-11-05

    A method and system for achieving fusion is provided. The method includes providing laser source that generates a laser beam and a target that includes a capsule embedded in the target and filled with DT gas. The laser beam is directed at the target. The laser beam helps create an electron beam within the target. The electron beam heats the capsule, the DT gas, and the area surrounding the capsule. At a certain point equilibrium is reached. At the equilibrium point, the capsule implodes and generates enough pressure on the DT gas to ignite the DT gas and fuse the DT gas nuclei.

  15. SLAC All Access: Laser Labs

    ScienceCinema (OSTI)

    Minitti, Mike; Woods Mike

    2014-06-03

    From supermarket checkouts to video game consoles, lasers are ubiquitous in our lives. Here at SLAC, high-power lasers are critical to the cutting-edge research conducted at the laboratory. But, despite what you might imagine, SLAC's research lasers bear little resemblance to the blasters and phasers of science fiction. In this edition of All Access we put on our safety goggles for a peek at what goes on inside some of SLAC's many laser labs. LCLS staff scientist Mike Minitti and SLAC laser safety officer Mike Woods detail how these lasers are used to study the behavior of subatomic particles, broaden our understanding of cosmic rays and even unlock the mysteries of photosynthesis.

  16. Multimode laser model with coupled cavities and quantum noise

    SciTech Connect (OSTI)

    Hodges, S.E.; Munroe, M.; Cooper, J.; Raymer, M.G.

    1997-01-01

    A stochastic, semiclassical model is developed for a multimode, homogeneously broadened laser with rapid dipole dephasing, appropriate for semiconductor, Ti:sapphire, or dye lasers. The theory self-consistently incorporates population dynamics including temporal beating effects and relaxation oscillations, spatial hole burning, coherent-wave mixing, and quantum noise. The model is valid for single- and compound-cavity lasers in which the mode frequencies are well defined. We pay particular attention to finding a useful mode basis in the case that the gain medium does not completely fill the cavity. This situation can lead to coupled-cavity effects. For typical systems the model is valid for pump rates up to several times threshold and is tractable for numerical simulations. The theoretical development described in this paper is applied to an experimental system in a companion paper [J. Opt. Soc. Am. B {bold 14}, 180 (1997)]. {copyright} 1997 Optical Society of America.

  17. Laser beam apparatus and method for analyzing solar cells

    DOE Patents [OSTI]

    Staebler, David L. (Lawrenceville, NJ)

    1980-01-01

    A laser beam apparatus and method for analyzing, inter alia, the current versus voltage curve at the point of illumination on a solar cell and the open circuit voltage of a solar cell. The apparatus incorporates a lock-in amplifier, and a laser beam light chopper which permits the measurement of the AC current of the solar cell at an applied DC voltage at the position on the solar cell where the cell is illuminated and a feedback scheme which permits the direct scanning measurements of the open circuit voltage. The accuracy of the measurement is a function of the intensity and wavelength of the laser light with respect to the intensity and wavelength distribution of sunlight and the percentage the dark current is at the open circuit voltage to the short circuit current of the solar cell.

  18. Hybrid fiber-rod laser

    DOE Patents [OSTI]

    Beach, Raymond J.; Dawson, Jay W.; Messerly, Michael J.; Barty, Christopher P. J.

    2012-12-18

    Single, or near single transverse mode waveguide definition is produced using a single homogeneous medium to transport both the pump excitation light and generated laser light. By properly configuring the pump deposition and resulting thermal power generation in the waveguide device, a thermal focusing power is established that supports perturbation-stable guided wave propagation of an appropriately configured single or near single transverse mode laser beam and/or laser pulse.

  19. Relativistic Laser-Matter Interactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Relativistic Laser-Matter Interactions Relativistic Laser-Matter Interactions Enabling the next generation of intense particle accelerators Contact Juan Fernandez (505) 667-6575 Email Short-pulse ion acceleration The Trident facility is a world-class performer in the area of ion acceleration from laser-solid target interactions. Trident has demonstrated over 100 MeV protons at intensities of 8x1020 W/cm2 with efficiencies approaching 5%. These intense relativistic interactions can be diagnosed

  20. Documentation - Laboratory for Laser Energetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    VIII System Shot Operations Manual Volume VIII Index (S-AB-P-157) Shot Director Operating Checklists Laser Sources Power Conditioning Beamlines Experimental Systems Experimental Diagnostics Comments Address document comments, questions and corrections to the OMEGA EP Associate Laser Facility Manager. For additional information contact: Director's Administrator University of Rochester - Laboratory for Laser Energetics, 250 E. River Rd, Rochester, NY 14623-1299 Last updated: November 14

  1. Nuclear Facilities and Applied Technologies at Sandia

    SciTech Connect (OSTI)

    Wheeler, Dave; Kaiser, Krista; Martin, Lonnie; Hanson, Don; Harms, Gary; Quirk, Tom

    2014-11-28

    The Nuclear Facilities and Applied Technologies organization at Sandia National Laboratories’ Technical Area Five (TA-V) is the leader in advancing nuclear technologies through applied radiation science and unique nuclear environments. This video describes the organization’s capabilities, facilities, and culture.

  2. Laser system using regenerative amplifier

    DOE Patents [OSTI]

    Emmett, J.L.

    1980-03-04

    High energy laser system is disclosed using a regenerative amplifier, which relaxes all constraints on laser components other than the intrinsic damage level of matter, so as to enable use of available laser system components. This can be accomplished by use of segmented components, spatial filters, at least one amplifier using solid state or gaseous media, and separated reflector members providing a long round trip time through the regenerative cavity, thereby allowing slower switching and adequate time to clear the spatial filters, etc. The laser system simplifies component requirements and reduces component cost while providing high energy output. 10 figs.

  3. Laser system using regenerative amplifier

    DOE Patents [OSTI]

    Emmett, John L. [Pleasanton, CA

    1980-03-04

    High energy laser system using a regenerative amplifier, which relaxes all constraints on laser components other than the intrinsic damage level of matter, so as to enable use of available laser system components. This can be accomplished by use of segmented components, spatial filters, at least one amplifier using solid state or gaseous media, and separated reflector members providing a long round trip time through the regenerative cavity, thereby allowing slower switching and adequate time to clear the spatial filters, etc. The laser system simplifies component requirements and reduces component cost while providing high energy output.

  4. Magnetic compression laser driving circuit

    DOE Patents [OSTI]

    Ball, D.G.; Birx, D.; Cook, E.G.

    1993-01-05

    A magnetic compression laser driving circuit is disclosed. The magnetic compression laser driving circuit compresses voltage pulses in the range of 1.5 microseconds at 20 kilovolts of amplitude to pulses in the range of 40 nanoseconds and 60 kilovolts of amplitude. The magnetic compression laser driving circuit includes a multi-stage magnetic switch where the last stage includes a switch having at least two turns which has larger saturated inductance with less core material so that the efficiency of the circuit and hence the laser is increased.

  5. Documentation - Laboratory for Laser Energetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    III Subsystem and Component Maintenance OMEGA Facility Subsystem and Component Maintenance Instructions (S-AA-M-014) Part 2 - Maintenance Plans Section 1: Laser Drivers Section 2:...

  6. Laser Manufacturing | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Manufacturing at GE Global Research Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Laser Manufacturing at GE Global Research Learn how laser sintering, an additive laser manufacturing process practiced at GE Global Research, makes parts from metal powder. You Might Also Like Munich_interior_V 10 Years ON: From

  7. Uranium molecular laser isotope separation

    SciTech Connect (OSTI)

    Jensen, R.J.; Sullivan, A.

    1982-01-01

    The Molecular Laser Isotope Separation program is moving into the engineering phase, and it is possible to determine in some detail the plant cost terms involved in the process economics. A brief description of the MLIS process physics is given as a motivation to the engineering and economics discussion. Much of the plant cost arises from lasers and the overall optical system. In the paper, the authors discuss lasers as operating units and systems, along with temporal multiplexing and Raman shifting. Estimates of plant laser costs are given.

  8. Single-exciton nanocrystal laser

    DOE Patents [OSTI]

    Klimov, Victor I. (Los Alamos, NM); Ivanov, Sergei A. (Albuquerque, NM)

    2012-01-17

    A laser system employing amplification via a single exciton regime and to optical gain media having single exciton amplification is provided.

  9. Magnetic compression laser driving circuit

    DOE Patents [OSTI]

    Ball, Don G. (Livermore, CA); Birx, Dan (Brentwood, CA); Cook, Edward G. (Livermore, CA)

    1993-01-01

    A magnetic compression laser driving circuit is disclosed. The magnetic compression laser driving circuit compresses voltage pulses in the range of 1.5 microseconds at 20 Kilovolts of amplitude to pulses in the range of 40 nanoseconds and 60 Kilovolts of amplitude. The magnetic compression laser driving circuit includes a multi-stage magnetic switch where the last stage includes a switch having at least two turns which has larger saturated inductance with less core material so that the efficiency of the circuit and hence the laser is increased.

  10. Laser beam alignment apparatus and method

    DOE Patents [OSTI]

    Gruhn, Charles R.; Hammond, Robert B.

    1981-01-01

    The disclosure relates to an apparatus and method for laser beam alignment. Thermoelectric properties of a disc in a laser beam path are used to provide an indication of beam alignment and/or automatic laser alignment.

  11. Laser beam alignment apparatus and method

    DOE Patents [OSTI]

    Gruhn, C.R.; Hammond, R.B.

    The disclosure related to an apparatus and method for laser beam alignment. Thermoelectric properties of a disc in a laser beam path are used to provide an indication of beam alignment and/or automatic laser alignment.

  12. Single mode pulsed dye laser oscillator

    DOE Patents [OSTI]

    Hackel, R.P.

    1992-11-24

    A single mode pulsed dye laser oscillator is disclosed. The dye laser oscillator provides for improved power efficiency by reducing the physical dimensions of the overall laser cavity, which improves frequency selection capability. 6 figs.

  13. Atomic vapor laser isotope separation process

    DOE Patents [OSTI]

    Wyeth, R.W.; Paisner, J.A.; Story, T.

    1990-08-21

    A laser spectroscopy system is utilized in an atomic vapor laser isotope separation process. The system determines spectral components of an atomic vapor utilizing a laser heterodyne technique. 23 figs.

  14. Elemental and isotopic analysis of inorganic salts by laser desorption ionization mass spectrometry

    SciTech Connect (OSTI)

    Jayasekharan, T.; Sahoo, N. K.

    2013-02-05

    Laser desorption ionization mass spectrometry is applied for the analysis of elements as well as their isotopic composition in different inorganic salts. At very low laser energies the inorganic ions are desorbed and ionized from the thin layer of the sample surface. The naturally occurring isotopes of alkali and silver ions are resolved using time of flight mass spectrometer. Further increase in laser energy shows the appearance of Al, Cr, and Fe ions in the mass spectra. This indicates the penetration laser beam beyond the sample surface leading to the ablation of sample target at higher energies. The simultaneous appearance of atomic ions from the sample target at relatively higher laser energies hampers the unambiguous identification of amino acid residues from the biomolecular ions in MALDI-MS.

  15. Femtosecond all-optical synchronization of an X-ray free-electron laser

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schulz, S.; Grguraš, I.; Behrens, C.; Bromberger, H.; Costello, J. T.; Czwalinna, M. K.; Felber, M.; Hoffmann, M. C.; Ilchen, M.; Liu, H. Y.; et al

    2015-01-20

    Many advanced applications of X-ray free-electron lasers require pulse durations and time resolutions of only a few femtoseconds. To generate these pulses and to apply them in time-resolved experiments, synchronization techniques that can simultaneously lock all independent components, including all accelerator modules and all external optical lasers, to better than the delivered free-electron laser pulse duration, are needed. Here we achieve all-optical synchronization at the soft X-ray free-electron laser FLASH and demonstrate facility-wide timing to better than 30 fs r.m.s. for 90 fs X-ray photon pulses. Crucially, our analysis indicates that the performance of this optical synchronization is limited primarilymore » by the free-electron laser pulse duration, and should naturally scale to the sub-10 femtosecond level with shorter X-ray pulses.« less

  16. Femtosecond all-optical synchronization of an X-ray free-electron laser

    SciTech Connect (OSTI)

    Schulz, S.; Grguraš, I.; Behrens, C.; Bromberger, H.; Costello, J. T.; Czwalinna, M. K.; Felber, M.; Hoffmann, M. C.; Ilchen, M.; Liu, H. Y.; Mazza, T.; Meyer, M.; Pfeiffer, S.; Prędki, P.; Schefer, S.; Schmidt, C.; Wegner, U.; Schlarb, H.; Cavalieri, A. L.

    2015-01-20

    Many advanced applications of X-ray free-electron lasers require pulse durations and time resolutions of only a few femtoseconds. To generate these pulses and to apply them in time-resolved experiments, synchronization techniques that can simultaneously lock all independent components, including all accelerator modules and all external optical lasers, to better than the delivered free-electron laser pulse duration, are needed. Here we achieve all-optical synchronization at the soft X-ray free-electron laser FLASH and demonstrate facility-wide timing to better than 30 fs r.m.s. for 90 fs X-ray photon pulses. Crucially, our analysis indicates that the performance of this optical synchronization is limited primarily by the free-electron laser pulse duration, and should naturally scale to the sub-10 femtosecond level with shorter X-ray pulses.

  17. Copper vapor laser modular packaging assembly

    DOE Patents [OSTI]

    Alger, Terry W. (Tracy, CA); Ault, Earl R. (Dublin, CA); Moses, Edward I. (Castro Valley, CA)

    1992-01-01

    A modularized packaging arrangement for one or more copper vapor lasers and associated equipment is disclosed herein. This arrangement includes a single housing which contains the laser or lasers and all their associated equipment except power, water and neon, and means for bringing power, water, and neon which are necessary to the operation of the lasers into the container for use by the laser or lasers and their associated equipment.

  18. Copper vapor laser modular packaging assembly

    DOE Patents [OSTI]

    Alger, T.W.; Ault, E.R.; Moses, E.I.

    1992-12-01

    A modularized packaging arrangement for one or more copper vapor lasers and associated equipment is disclosed herein. This arrangement includes a single housing which contains the laser or lasers and all their associated equipment except power, water and neon, and means for bringing power, water, and neon which are necessary to the operation of the lasers into the container for use by the laser or lasers and their associated equipment. 2 figs.

  19. Ytterbium-doped borate fluoride laser crystals and lasers

    DOE Patents [OSTI]

    Schaffers, Kathleen I.; DeLoach, Laura D.; Payne, Stephen A.; Keszler, Douglas A.

    1997-01-01

    A new class of solid state laser crystals and lasers are formed from Yb-doped borate fluoride host crystals. The general formula for the host crystals is MM'(BO.sub.3)F, where M, M' are monovalent, divalent aria trivalent metal cations. A particular embodiment of the invention is Yb-doped BaCaBO.sub.3 F (Yb:BCBF). BCBF and some of the related derivative crystals are capable of nonlinear frequency conversion, whereby the fundamental of the laser is converted to a longer or shorter wavelength. In this way, these new crystals can simultaneously serve as self-frequency doubling crystals and laser materials within the laser resonator.

  20. Ytterbium-doped borate fluoride laser crystals and lasers

    DOE Patents [OSTI]

    Schaffers, K.I.; DeLoach, L.D.; Payne, S.A.; Keszler, D.A.

    1997-10-14

    A new class of solid state laser crystals and lasers are formed from Yb-doped borate fluoride host crystals. The general formula for the host crystals is MM{prime}(BO{sub 3})F, where M, M{prime} are monovalent, divalent aria trivalent metal cations. A particular embodiment of the invention is Yb-doped BaCaBO{sub 3}F (Yb:BCBF). BCBF and some of the related derivative crystals are capable of nonlinear frequency conversion, whereby the fundamental of the laser is converted to a longer or shorter wavelength. In this way, these new crystals can simultaneously serve as self-frequency doubling crystals and laser materials within the laser resonator. 6 figs.

  1. Electron heating enhancement by frequency-chirped laser pulses

    SciTech Connect (OSTI)

    Yazdani, E.; Afarideh, H.; Sadighi-Bonabi, R.; Riazi, Z.; Hora, H.

    2014-09-14

    Propagation of a chirped laser pulse with a circular polarization through an uprising plasma density profile is studied by using 1D-3V particle-in-cell simulation. The laser penetration depth is increased in an overdense plasma compared to an unchirped pulse. The induced transparency due to the laser frequency chirp results in an enhanced heating of hot electrons as well as increased maximum longitudinal electrostatic field at the back side of the solid target, which is very essential in target normal sheath acceleration regime of proton acceleration. For an applied chirp parameter between 0.008 and 0.01, the maximum amount of the electrostatic field is improved by a factor of 2. Furthermore, it is noticed that for a chirped laser pulse with a?=5, because of increasing the plasma transparency length, the laser pulse can penetrate up to about n{sub e}?6n{sub c}, where n{sub c} is plasma critical density. It shows 63% increase in the effective critical density compared to the relativistic induced transparency regime for an unchirped condition.

  2. Science, technology, and the industrialization of laser-driven processes

    SciTech Connect (OSTI)

    Davis, J.I.; Paisner, J.A.

    1985-05-01

    Members of the laser program at Lawrence Livermore National Laboratory (LLNL) reviewed potential applications of lasers in industry, some of which are: isotope separation; cleanup of radioactive waste; trace impurity removal; selective chemical reactions; photochemical activation or dissociation of gases; control of combustion particulates; crystal and powder chemistry; and laser induced biochemistry. Many of these areas are currently under active study in the community. The investigation at LLNL focused on laser isotope separation of atomic uranium because of the large demand (> 1000 tonnes/year) and high product enrichment price (> $600/kg of product) for material used as fuel in commercial light-water nuclear power reactors. They also believed that once the technology was fully developed and deployed, it could be applied directly to separating many elements economically on an industrial scale. The Atomic Vapor Laser Isotope Separation (AVLIS) program at LLNL has an extensive uranium and plutonium program of >$100 M in FY85 and a minor research program for other elements. This report describes the AVLIS program conducted covering the following topics; candidate elements; separative work units; spectroscopic selectivety; major systems; facilities; integrated process model;multivariable sensitivety studies; world market; and US enrichment enterprise. 23 figs. (AT)

  3. Ultrafast laser diagnostics to investigate initiation fundamentals...

    Office of Scientific and Technical Information (OSTI)

    be discussed. We have also demonstrated laser shock and particle velocity measurements in thin film explosives using stretched femtosecond laser pulses. We will discuss preliminary...

  4. Laser Light Engines | Open Energy Information

    Open Energy Info (EERE)

    Laser Light Engines Jump to: navigation, search Name: Laser Light Engines Place: Salem, New Hampshire Zip: NH 03079 Sector: Efficiency Product: Salem-based, designs, develops and...

  5. Laser research shows promise for cancer treatment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cancer treatment Laser research shows promise for cancer treatment Scientists have observed for the first time how a laser penetrates dense, electron-rich plasma to generate ions....

  6. Approaching attometer laser vibrometry

    SciTech Connect (OSTI)

    Rembe, Christian; Kadner, Lisa; Giesen, Moritz

    2014-05-27

    The heterodyne two-beam interferometer has been proven to be the optimal solution for laser-Doppler vibrometry regarding accuracy and signal robustness. The theoretical resolution limit for a two-beam interferometer of laser class 3R (up to 5 mW visible measurement-light) is in the regime of a few femtometer per square-root Hertz and well suited to study vibrations in microstructures. However, some new applications of RF-MEM resonators, nanostructures, and surface-nano-defect detection require resolutions beyond that limit. The resolution depends only on the noise and the sensor sensitivity to specimen displacements. The noise is already defined in nowadays systems by the quantum nature of light for a properly designed optical sensor and more light would lead to an inacceptable influence like heating of a very tiny structure. Thus, noise can only be improved by squeezed-light techniques which require a negligible loss of measurement light which is impossible for almost all technical measurement tasks. Thus, improving the sensitivity is the only possible path which could make attometer laser vibrometry possible. Decreasing the measurement wavelength would increase the sensitivity but would also increase the photon shot noise. In this paper, we discuss an approach to increase the sensitivity by assembling an additional mirror between interferometer and specimen to form an optical cavity. A detailed theoretical analysis of this setup is presented and we derive the resolution limit, discuss the main contributions to the uncertainty budget, and show a first experiment proving the sensitivity amplification of our approach.

  7. Gallium nitride nanotube lasers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Changyi; Liu, Sheng; Hurtado, Antonio; Wright, Jeremy Benjamin; Xu, Huiwen; Luk, Ting Shan; Figiel, Jeffrey J.; Brener, Igal; Brueck, Steven R. J.; Wang, George T.

    2015-01-01

    Lasing is demonstrated from gallium nitride nanotubes fabricated using a two-step top-down technique. By optically pumping, we observed characteristics of lasing: a clear threshold, a narrow spectral, and guided emission from the nanotubes. In addition, annular lasing emission from the GaN nanotube is also observed, indicating that cross-sectional shape control can be employed to manipulate the properties of nanolasers. The nanotube lasers could be of interest for optical nanofluidic applications or application benefitting from a hollow beam shape.

  8. Unidirectional ring lasers

    DOE Patents [OSTI]

    Hohimer, J.P.; Craft, D.C.

    1994-09-20

    Unidirectional ring lasers formed by integrating nonreciprocal optical elements into the resonant ring cavity is disclosed. These optical elements either attenuate light traveling in a nonpreferred direction or amplify light traveling in a preferred direction. In one preferred embodiment the resonant cavity takes the form of a circle with an S-shaped crossover waveguide connected to two points on the interior of the cavity such that light traveling in a nonpreferred direction is diverted from the cavity into the crossover waveguide and reinjected out of the other end of the crossover waveguide into the cavity as light traveling in the preferred direction. 21 figs.

  9. Electron beam method and apparatus for obtaining uniform discharges in electrically pumped gas lasers

    DOE Patents [OSTI]

    Fenstermacher, Charles A. (Los Alamos, NM); Boyer, Keith (Los Alamos, NM)

    1986-01-01

    A method and apparatus for obtaining uniform, high-energy, large-volume electrical discharges in the lasing medium of a gas laser whereby a high-energy electron beam is used as an external ionization source to ionize substantially the entire volume of the lasing medium which is then readily pumped by means of an applied potential less than the breakdown voltage of the medium. The method and apparatus are particularly useful in CO.sub.2 laser systems.

  10. Pi in Applied Optics | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inside the Applied Optics Lab II Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share...

  11. Apply to the Cyclotron Institute REU Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an advanced physicschemistry course. To apply for the REU Program, complete the 3 steps below: Fill out the on-line 2016 Cyclotron Institute REU Application Note: You will be...

  12. Engineering Light: Quantum Cascade Lasers

    ScienceCinema (OSTI)

    Claire Gmachl

    2010-09-01

    Quantum cascade lasers are ideal for environmental sensing and medical diagnostic applications. Gmachl discusses how these lasers work, and their applications, including their use as chemical trace gas sensors. As examples of these applications, she briefly presents results from her field campaign at the Beijing Olympics, and ongoing campaigns in Texas, Maryland, and Ghana.

  13. Pulse energy measurement at the hard x-ray laser in Japan

    SciTech Connect (OSTI)

    Kato, M.; Tanaka, T.; Saito, N.; Kurosawa, T.; Richter, M.; Sorokin, A. A.; Tiedtke, K.; Kudo, T.; Yabashi, M.; Tono, K.; Ishikawa, T.

    2012-07-09

    The pulse energies of a free electron laser have accurately been measured in the hard x-ray spectral range. In the photon energy regime from 4.4 keV to 16.8 keV, pulse energies up to 100 {mu}J were obtained at the hard x-ray laser facility SACLA (SPring-8 Angstrom Compact free-electron LAser). Two independent methods, using a cryogenic radiometer and a gas monitor detector, were applied and agreement within 3.3% was achieved. Based on our validated pulse energy measurement, a SACLA online monitor detector could be calibrated for all future experiments.

  14. Applying computationally efficient schemes for biogeochemical cycles

    Office of Scientific and Technical Information (OSTI)

    (ACES4BGC) (Technical Report) | SciTech Connect Applying computationally efficient schemes for biogeochemical cycles (ACES4BGC) Citation Details In-Document Search Title: Applying computationally efficient schemes for biogeochemical cycles (ACES4BGC) NCAR contributed to the ACES4BGC project through software engineering work on aerosol model implementation, build system and script changes, coupler enhancements for biogeochemical tracers, improvements to the Community Land Model (CLM) code and

  15. SAGE, Summer of Applied Geophysical Experience

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Apply Who Qualifies Special Undergrad Information Contributors Faculty Past Programs Photo Gallery NSEC » CSES » SAGE SAGE, the Summer of Applied Geophysical Experience Application deadline: March 27, 2016, 5:00 pm MDT Contacts Institute Director Reinhard Friedel-Los Alamos SAGE Co-Director W. Scott Baldridge-Los Alamos SAGE Co-Director Larry Braile-Purdue University Professional Staff Assistant Georgia Sanchez (505) 665-0855 Email Application process for SAGE 2016 is now open. U.S.

  16. LANSCE | Lujan Center | Apply for Beamtime

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply for Beamtime LANSCE User Resources Tips for a Successful Proposal Step 1: Apply for Beam Time 1. Select an Instrument and a Local Contact 2. Submit Your Proposal Step 2: Before You Arrive 1. Complete the LANSCE User Facility Agreement Questionnaire 2. Arrange for Site Access 3. Prepare for Your Experiment: Contact Lujan Experiment Coordinator to arrange shipping of your samples. Talk to the beamline scientist about any electrical equipment you might bring. 4. Complete your training Step 3:

  17. How to Apply | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Postdoctoral Research Awards » How to Apply How to Apply Online Application Available at www.zintellect.com/Posting/Details/853 Application deadline May 7, 2015. Familiarize yourself with the benefits, obligations, eligibility requirements, and evaluation criteria. Familiarize yourself with the requirements and obligations to determine whether your education and professional goals are well aligned with the EERE Postdoctoral Research Awards. Read the Evaluation Criteria that will be used to

  18. Laser program annual report 1983

    SciTech Connect (OSTI)

    Hendricks, C.D.; Rufer, M.L.; Murphy, P.W.

    1984-06-01

    In the 1983 Laser Program Annual Report we present the accomplishments and unclassified activities of the Laser Program at Lawrence Livermore National laboratory (LLNL) for the year 1983. It should be noted that the report, of necessity, is a summary, and more detailed expositions of the research can be found in the many publications and reports authored by staff members in the Laser Program. The purpose of this report is to present our work in a brief form, but with sufficient depth to provide an overview of the analytical and experimental aspects of the LLNL Inertial-Confinement Fusion (ICF) Program. The format of this report is basically the same as that of previous years. Section 1 is an overview and highlights the important accomplishments and directions of the Program. Sections 2 through 7 provide the detailed information on the various major parts of the Program: Laser Systems and Operations, Target Design, Target Fabrication, Fusion Experiments, Laser Research and Development, and Energy Applications.

  19. Laser beam pulse formatting method

    DOE Patents [OSTI]

    Daly, Thomas P. (Livermore, CA); Moses, Edward I. (Livermore, CA); Patterson, Ralph W. (Livermore, CA); Sawicki, Richard H. (Danville, CA)

    1994-01-01

    A method for formatting a laser beam pulse (20) using one or more delay loops (10). The delay loops (10) have a partially reflective beam splitter (12) and a plurality of highly reflective mirrors (14) arranged such that the laser beam pulse (20) enters into the delay loop (10) through the beam splitter (12) and circulates therein along a delay loop length (24) defined by the mirrors (14). As the laser beam pulse (20) circulates within the delay loop (10) a portion thereof is emitted upon each completed circuit when the laser beam pulse (20) strikes the beam splitter (12). The laser beam pulse (20) is thereby formatted into a plurality of sub-pulses (50, 52, 54 and 56). The delay loops (10) are used in combination to produce complex waveforms by combining the sub-pulses (50, 52, 54 and 56) using additive waveform synthesis.

  20. Advanced laser remote sensing

    SciTech Connect (OSTI)

    Schultz, J.; Czuchlewski, S.; Karl, R.

    1996-11-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory. Remote measurement of wind velocities is critical to a wide variety of applications such as environmental studies, weather prediction, aircraft safety, the accuracy of projectiles, bombs, parachute drops, prediction of the dispersal of chemical and biological warfare agents, and the debris from nuclear explosions. Major programs to develop remote sensors for these applications currently exist in the DoD and NASA. At present, however, there are no real-time, three-dimensional wind measurement techniques that are practical for many of these applications and we report on two new promising techniques. The first new technique uses an elastic backscatter lidar to track aerosol patterns in the atmosphere and to calculate three dimensional wind velocities from changes in the positions of the aerosol patterns. This was first done by Professor Ed Eloranta of the University of Wisconsin using post processing techniques and we are adapting Professor Eloranta`s algorithms to a real-time data processor and installing it in an existing elastic backscatter lidar system at Los Alamos (the XM94 helicopter lidar), which has a compatible data processing and control system. The second novel wind sensing technique is based on radio-frequency (RF) modulation and spatial filtering of elastic backscatter lidars. Because of their compactness and reliability, solid state lasers are the lasers of choice for many remote sensing applications, including wind sensing.

  1. Laser isotope separation of erbium and other isotopes

    DOE Patents [OSTI]

    Haynam, C.A.; Worden, E.F.

    1995-08-22

    Laser isotope separation is accomplished using at least two photoionization pathways of an isotope simultaneously, where each pathway comprises two or more transition steps. This separation method has been applied to the selective photoionization of erbium isotopes, particularly for the enrichment of {sup 167}Er. The hyperfine structure of {sup 167}Er was used to find two three-step photoionization pathways having a common upper energy level. 3 figs.

  2. Development of a fast position-sensitive laser beam detector

    SciTech Connect (OSTI)

    Chavez, Isaac; Huang Rongxin; Henderson, Kevin; Florin, Ernst-Ludwig; Raizen, Mark G. [Center for Nonlinear Dynamics and Department of Physics, University of Texas at Austin, Austin, Texas 78712 (United States)

    2008-10-15

    We report the development of a fast position-sensitive laser beam detector. The detector uses a fiber-optic bundle that spatially splits the incident beam, followed by a fast balanced photodetector. The detector is applied to the study of Brownian motion of particles on fast time scales with 1 A spatial resolution. Future applications include the study of molecule motors, protein folding, as well as cellular processes.

  3. Laser isotope separation of erbium and other isotopes

    DOE Patents [OSTI]

    Haynam, Christopher A.; Worden, Earl F.

    1995-01-01

    Laser isotope separation is accomplished using at least two photoionization pathways of an isotope simultaneously, where each pathway comprises two or more transition steps. This separation method has been applied to the selective photoionization of erbium isotopes, particularly for the enrichment of .sup.167 Er. The hyperfine structure of .sup.167 Er was used to find two three-step photoionization pathways having a common upper energy level.

  4. Towards Real Time Diagnostics of Hybrid Welding Laser/GMAW

    SciTech Connect (OSTI)

    Timothy Mcjunkin; Dennis C. Kunerth; Corrie Nichol; Evgueni Todorov; Steve Levesque; Feng Yu; Robert Danna Couch

    2013-07-01

    Methods are currently being developed towards a more robust system real time feedback in the high throughput process combining laser welding with gas metal arc welding. A combination of ultrasonic, eddy current, electronic monitoring, and visual techniques are being applied to the welding process. Initial simulation and bench top evaluation of proposed real time techniques on weld samples are presented along with the concepts to apply the techniques concurrently to the weld process. Consideration for the eventual code acceptance of the methods and system are also being researched as a component of this project. The goal is to detect defects or precursors to defects and correct when possible during the weld process.

  5. Towards real time diagnostics of Hybrid Welding Laser/GMAW

    SciTech Connect (OSTI)

    McJunkin, T. R.; Kunerth, D. C.; Nichol, C. I. [Idaho National Laboratory, Idaho Falls, ID 83415-3570 (United States); Todorov, E.; Levesque, S. [Edison Welding Institute, Columbus, OH (United States)

    2014-02-18

    Methods are currently being developed towards a more robust system real time feedback in the high throughput process combining laser welding with gas metal arc welding. A combination of ultrasonic, eddy current, electronic monitoring, and visual techniques are being applied to the welding process. Initial simulation and bench top evaluation of proposed real time techniques on weld samples are presented along with the concepts to apply the techniques concurrently to the weld process. Consideration for the eventual code acceptance of the methods and system are also being researched as a component of this project. The goal is to detect defects or precursors to defects and correct when possible during the weld process.

  6. Polarization methods for diode laser excitation of solid state lasers

    DOE Patents [OSTI]

    Holtom, Gary R. (Richland, WA)

    2008-11-25

    A mode-locked laser employs a coupled-polarization scheme for efficient longitudinal pumping by reshaped laser diode bars. One or more dielectric polarizers are configured to reflect a pumping wavelength having a first polarization and to reflect a lasing wavelength having a second polarization. A Yb-doped gain medium can be used that absorbs light having a first polarization and emits light having a second polarization. Using such pumping with laser cavity dispersion control, pulse durations of less than 100 fs can be achieved.

  7. Variable emissivity laser thermal control system

    DOE Patents [OSTI]

    Milner, J.R.

    1994-10-25

    A laser thermal control system for a metal vapor laser maintains the wall temperature of the laser at a desired level by changing the effective emissivity of the water cooling jacket. This capability increases the overall efficiency of the laser. 8 figs.

  8. High precision, rapid laser hole drilling

    DOE Patents [OSTI]

    Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.

    2007-03-20

    A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.

  9. High precision, rapid laser hole drilling

    DOE Patents [OSTI]

    Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.

    2013-04-02

    A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.

  10. High precision, rapid laser hole drilling

    DOE Patents [OSTI]

    Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.

    2005-03-08

    A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.

  11. Heterodyne laser instantaneous frequency measurement system

    DOE Patents [OSTI]

    Wyeth, Richard W. (Livermore, CA); Johnson, Michael A. (Pleasanton, CA); Globig, Michael A. (Livermore, CA)

    1989-01-01

    A heterodyne laser instantaneous frequency measurement system is disclosed. The system utilizes heterodyning of a pulsed laser beam with a continuous wave laser beam to form a beat signal. The beat signal is processed by a controller or computer which determines both the average frequency of the laser pulse and any changes or chirp of th frequency during the pulse.

  12. Heterodyne laser instantaneous frequency measurement system

    DOE Patents [OSTI]

    Wyeth, Richard W. (Livermore, CA); Johnson, Michael A. (Pleasanton, CA); Globig, Michael A. (Livermore, CA)

    1990-01-01

    A heterodyne laser instantaneous frequency measurement system is disclosed. The system utilizes heterodyning of a pulsed laser beam with a continuous wave laser beam to form a beat signal. The beat signal is processed by a controller or computer which determines both the average frequency of the laser pulse and any changes or chirp of the frequency during the pulse.

  13. Water soluble laser dyes

    DOE Patents [OSTI]

    Hammond, Peter R.; Feeman, James F.; Field, George F.

    1998-01-01

    Novel water soluble dyes of the formula I are provided ##STR1## wherein R.sup.1 and R.sup.4 are alkyl of 1 to 4 carbon atoms or hydrogen; or R.sup.1 -R.sup.2 or R.sup.2 -R.sup.4 form part of aliphatic heterocyclic rings; R.sup.2 is hydrogen or joined with R.sup.1 or R.sup.4 as described above; R.sup.3 is --(CH.sub.2).sub.m --SO.sub.3.sup.-, where m is 1 to 6; X is N, CH or ##STR2## where Y is 2 --SO.sub.3.sup.- ; Z is 3, 4, 5 or 6 --SO.sub.3.sup.-. The novel dyes are particularly useful as the active media in water solution dye lasers.

  14. Water soluble laser dyes

    DOE Patents [OSTI]

    Hammond, P.R.; Feeman, J.F.; Field, G.F.

    1998-08-11

    Novel water soluble dyes of the formula 1 are provided by the formula described in the paper wherein R{sup 1} and R{sup 4} are alkyl of 1 to 4 carbon atoms or hydrogen; or R{sup 1}--R{sup 2} or R{sup 2}--R{sup 4} form part of aliphatic heterocyclic rings; R{sup 2} is hydrogen or joined with R{sup 1} or R{sup 4} as described above; R{sup 3} is --(CH{sub 2}){sub m}--SO{sub 3}{sup {minus}}, where m is 1 to 6; X is N, CH or formula 2 given in paper where Y is 2 --SO{sub 3}{sup {minus}} ; Z is 3, 4, 5 or 6 --SO{sub 3}{sup {minus}}. The novel dyes are particularly useful as the active media in water solution dye lasers.

  15. Monolithic dye laser amplifier

    DOE Patents [OSTI]

    Kuklo, Thomas C. (Ripon, CA)

    1993-01-01

    A fluid dye laser amplifier for amplifying a dye beam by pump beams has a channel structure defining a channel through which a laseable fluid flows and the dye and pump beams pass transversely to one another through a lasing region. The channel structure is formed with two pairs of mutually spaced-apart and mutually confronting glass windows, which are interlocked and make surface-contacts with one another and surround the lasing region. One of the glass window pairs passes the dye beam and the other passes the pump beams therethrough and through the lasing region. Where these glass window pieces make surface-contacts, glue is used to join the pieces together to form a monolithic structure so as to prevent the dye in the fluid passing through the channel from entering the space between the mutually contacting glass window pieces.

  16. Range imaging laser radar

    DOE Patents [OSTI]

    Scott, Marion W. (Albuquerque, NM)

    1990-01-01

    A laser source is operated continuously and modulated periodically (typicy sinusoidally). A receiver imposes another periodic modulation on the received optical signal, the modulated signal being detected by an array of detectors of the integrating type. Range to the target determined by measuring the phase shift of the intensity modulation on the received optical beam relative to a reference. The receiver comprises a photoemitter for converting the reflected, periodically modulated, return beam to an accordingly modulated electron stream. The electron stream is modulated by a local demodulation signal source and subsequently converted back to a photon stream by a detector. A charge coupled device (CCD) array then averages and samples the photon stream to provide an electrical signal in accordance with the photon stream.

  17. Laser weld jig

    DOE Patents [OSTI]

    Van Blarigan, Peter (Livermore, CA); Haupt, David L. (Livermore, CA)

    1982-01-01

    A system is provided for welding a workpiece (10, FIG. 1) along a predetermined weld line (12) that may be of irregular shape, which includes the step of forming a lip (32) on the workpiece to extend parallel to the weld line, and moving the workpiece by engaging the lip between a pair of rotatable members (34, 36). Rotation of one of the members at a constant speed, causes the workpiece to move so that all points on the weld line sequentially pass a fixed point in space (17) at a constant speed, so that a laser welding beam can be directed at that fixed point to form a weld along the weld line. The workpiece can include a reuseable jig (24) forming the lip, and with the jig constructed to detachably hold parts (22, 20) to be welded at a position wherein the weld line of the parts extends parallel to the lip on the jig.

  18. Laser interlock system

    DOE Patents [OSTI]

    Woodruff, Steven D; Mcintyre, Dustin L

    2015-01-13

    A method and device for providing a laser interlock having a first optical source, a first beam splitter, a second optical source, a detector, an interlock control system, and a means for producing dangerous optical energy. The first beam splitter is optically connected to the first optical source, the first detector and the second optical source. The detector is connected to the interlock control system. The interlock control system is connected to the means for producing dangerous optical energy and configured to terminate its optical energy production upon the detection of optical energy at the detector from the second optical source below a predetermined detector threshold. The second optical source produces an optical energy in response to optical energy from the first optical source. The optical energy from the second optical source has a different wavelength, polarization, modulation or combination thereof from the optical energy of the first optical source.

  19. Veterans and Others Can Apply for an AMO-sponsored Advanced Manufacturing Internship

    Broader source: Energy.gov [DOE]

    Applications are being accepted for the new Advanced Manufacturing Internship program starting today. Pellissippi State Community College in Knoxville, TN, developed the curriculum for Veterans with funding from the Advanced Manufacturing Office (AMO). The new course will engage 20 students for three semesters, provide access to 3-D printers, and supplement the classwork with paid internships at Oak Ridge National Laboratory and local companies. A ceremony was held today, Friday, August 15th, to recognize the first 24 participants in the pilot internship program.

  20. Laser-triggered vacuum switch

    DOE Patents [OSTI]

    Brannon, P.J.; Cowgill, D.F.

    1990-12-18

    A laser-triggered vacuum switch has a material such as a alkali metal halide on the cathode electrode for thermally activated field emission of electrons and ions upon interaction with a laser beam, the material being in contact with the cathode with a surface facing the discharge gap. The material is preferably a mixture of KCl and Ti powders. The laser may either shine directly on the material, preferably through a hole in the anode, or be directed to the material over a fiber optic cable. 10 figs.

  1. Protective laser beam viewing device

    DOE Patents [OSTI]

    Neil, George R.; Jordan, Kevin Carl

    2012-12-18

    A protective laser beam viewing system or device including a camera selectively sensitive to laser light wavelengths and a viewing screen receiving images from the laser sensitive camera. According to a preferred embodiment of the invention, the camera is worn on the head of the user or incorporated into a goggle-type viewing display so that it is always aimed at the area of viewing interest to the user and the viewing screen is incorporated into a video display worn as goggles over the eyes of the user.

  2. Laser ablation based fuel ignition

    DOE Patents [OSTI]

    Early, James W. (Los Alamos, NM); Lester, Charles S. (San Juan Pueblo, NM)

    1998-01-01

    There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition.

  3. Wick for metal vapor laser

    DOE Patents [OSTI]

    Duncan, David B. (Livermore, CA)

    1992-01-01

    An improved wick for a metal vapor laser is made of a refractory metal cylinder, preferably molybdenum or tungsten for a copper laser, which provides the wicking surface. Alternately, the inside surface of the ceramic laser tube can be metalized to form the wicking surface. Capillary action is enhanced by using wire screen, porous foam metal, or grooved surfaces. Graphite or carbon, in the form of chunks, strips, fibers or particles, is placed on the inside surface of the wick to reduce water, reduce metal oxides and form metal carbides.

  4. Laser ablation based fuel ignition

    DOE Patents [OSTI]

    Early, J.W.; Lester, C.S.

    1998-06-23

    There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition. 3 figs.

  5. Circular free-electron laser

    DOE Patents [OSTI]

    Brau, Charles A. (Los Alamos, NM); Kurnit, Norman A. (Santa Fe, NM); Cooper, Richard K. (Los Alamos, NM)

    1984-01-01

    A high efficiency, free electron laser utilizing a circular relativistic electron beam accelerator and a circular whispering mode optical waveguide for guiding optical energy in a circular path in the circular relativistic electron beam accelerator such that the circular relativistic electron beam and the optical energy are spatially contiguous in a resonant condition for free electron laser operation. Both a betatron and synchrotron are disclosed for use in the present invention. A free electron laser wiggler is disposed around the circular relativistic electron beam accelerator for generating a periodic magnetic field to transform energy from the circular relativistic electron beam to optical energy.

  6. Laser-triggered vacuum switch

    DOE Patents [OSTI]

    Brannon, Paul J. (Albuquerque, NM); Cowgill, Donald F. (Danville, CA)

    1990-01-01

    A laser-triggered vacuum switch has a material such as a alkali metal halide on the cathode electrode for thermally activated field emission of electrons and ions upon interaction with a laser beam, the material being in contact with the cathode with a surface facing the discharge gap. The material is preferably a mixture of KCl and Ti powders. The laser may either shine directly on the material, preferably through a hole in the anode, or be directed to the material over a fiber optic cable.

  7. Uniform insulation applied-B ion diode

    DOE Patents [OSTI]

    Seidel, David B. (Albuquerque, NM); Slutz, Stephen A. (Albuquerque, NM)

    1988-01-01

    An applied-B field extraction ion diode has uniform insulation over an anode surface for increased efficiency. When the uniform insulation is accomplished with anode coils, and a charge-exchange foil is properly placed, the ions may be focused at a point on the z axis.

  8. How to Apply for Senior Executive positions

    Broader source: Energy.gov [DOE]

    To apply vacancies for SENIOR EXECUTIVE SERVICE (SES) , SENIOR LEVEL (SL), SCIENTIFIC AND PROFESSIONAL (ST) positions within the Department of Energy please visit OPM's website: http://www.usajobs.gov. From this site, you may download announcements for vacancies of interest to you.

  9. Recombination laser by laser-produced xenon plasmas

    SciTech Connect (OSTI)

    Lanying, L.; Zaitong, L.; Dounan, Z.; Zemin, W.

    1982-09-01

    A recombination laser of Xe plasma produced in a gaseous mixture of He and Xe with a CO/sub 2/ laser pulse of 10.6 micron wave is reported. The particle number is the result of electron-ion recombination. The wavelength of the Xe recombination laser obtained in the experiment is 2.03 microns with an output power of more than 80 watts and a pulse width of 2 microsec. The input CO/sub 2/ laser energy is supplied by a CO/sub 2/ laser with cold cathode electron beam controlled discharge. Each pulse has an energy of over 30 joules (pulse width 1 to 2 microsec). After being reflected by a cylindrical reflector of 6 cm focal length in the target chamber, the CO/sub 2/ laser beam is focussed on a metal target 8 cm long 3 mm wide. At the two ends of the chamber are Brewster angle windows at 2.03 microns made by quartz plates.

  10. LONGITUDINAL LASER WIRE AT SNS

    SciTech Connect (OSTI)

    Aleksandrov, Alexander V; Liu, Yun; Zhukov, Alexander P

    2014-01-01

    This paper describes a longitudinal H- beam profile scanner that utilizes laser light to detach convoy electrons and an MCP to collect and measure these electrons. The scanner is located in MEBT with H- energy of 2.5MeV and an RF frequency 402.5MHz. The picosecond pulsed laser runs at 80.5MHz in sync with the accelerator RF. The laser beam is delivered to the beam line through a 30m optical fiber. The pulse width after the fiber transmission measures about 10ps. Scanning the laser phase effectively allows measurements to move along ion bunch longitudinal position. We are able to reliably measure production beam bunch length with this method. The biggest problem we have encountered is background signal from electrons being stripped by vacuum. Several techniques of signal detection are discussed.

  11. Enhanced vbasis laser diode package

    DOE Patents [OSTI]

    Deri, Robert J.; Chen, Diana; Bayramian, Andy; Freitas, Barry; Kotovsky, Jack

    2014-08-19

    A substrate having an upper surface and a lower surface is provided. The substrate includes a plurality of v-grooves formed in the upper surface. Each v-groove includes a first side and a second side perpendicular to the first side. A laser diode bar assembly is disposed within each of the v-grooves and attached to the first side. The laser diode bar assembly includes a first adhesion layer disposed on the first side of the v-groove, a metal plate attached to the first adhesion layer, a second adhesion layer disposed over the metal plate, and a laser diode bar attached to the second adhesion layer. The laser diode bar has a coefficient of thermal expansion (CTE) substantially similar to that of the metal plate.

  12. Laser sealed vacuum insulation window

    DOE Patents [OSTI]

    Benson, David K. (Golden, CO); Tracy, C. Edwin (Golden, CO)

    1987-01-01

    A laser sealed evacuated window panel is comprised of two glass panes held spaced apart in relation to each other by a plurality of spherical glass beads and glass welded around the edges to provide an evacuated space between the glass panes that is completely glass sealed from the exterior. The glass welded edge seal is obtained by welding the edges of the glass panes together with a laser beam while the glass panes and bead spacers are positioned in a vacuum furnace and heated to the annealing point of the glass to avoid stress fracture in the area of the glass weld. The laser welding in the furnace can be directed around the perimeter of the glass panel by a combination of rotating the glass panel and linearly translating or aiming the laser with a relay mirror.

  13. Laser sealed vacuum insulating window

    DOE Patents [OSTI]

    Benson, D.K.; Tracy, C.E.

    1985-08-19

    A laser sealed evacuated window panel is comprised of two glass panes held spaced apart in relation to each other by a plurality of spherical glass beads and glass welded around the edges to provide an evacuated space between the glass panes that is completely glass sealed from the exterior. The glass welded edge seal is obtained by welding the edges of the glass panes together with a laser beam while the glass panes and bead spacers are positioned in a vacuum furnace and heated to the annealing point of the glass to avoid stress fracture in the area of the glass weld. The laser welding in the furnace can be directed around the perimeter of the galss panel by a combination of rotating the glass panel and linearly translating or aiming the laser with a relay mirror.

  14. Documentation - Laboratory for Laser Energetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Laser Amplifiers Front Matter - Maintenance Index & Schedules (S-OM-P-027) Rod Amplifier Procedures Rod Amplifier Inspection (S-SM-P-162) RemoveReplace Tube Extender...

  15. Documentation - Laboratory for Laser Energetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 - Laser Sources Volume X Subsystem and Component Maintenance Index and Cycle Schedule (S-AB-P-016) IFES Procedures Koheras Output Power Verification (S-AB-P-072) IFES Fiber...

  16. Laser fusion monthly -- August 1980

    SciTech Connect (OSTI)

    Ahlstrom, H.G.

    1980-08-01

    This report documents the monthly progress for the laser fusion research at Lawrence Livermore National Laboratory. First it gives facilities report for both the Shiva and Argus projects. Topics discussed include; laser system for the Nova Project; the fusion experiments analysis facility; optical/x-ray streak camera; Shiva Dante System temporal response; 2{omega}{sub 0} experiment; and planning for an ICF engineering test facility.

  17. Laser program annual report, 1980

    SciTech Connect (OSTI)

    Coleman, L.W.; Krupke, W.F.; Strack, J.R.

    1981-06-01

    Volume 1 provides a Program Overview, presenting highlights of the technical accomplishments of the elements of the Program, a summary of activities carried out under the Glass Laser Experiments Lead Laboratory Program, as well as discussions of Program resources and facilities. Section 2, also in the first volume, covers the work on solid state Nd:glass lasers, including systems operations, Nova and Novette system development, and supporting research and development activities.

  18. Rf Feedback free electron laser

    DOE Patents [OSTI]

    Brau, Charles A. (Los Alamos, NM); Swenson, Donald A. (Los Alamos, NM); Boyd, Jr., Thomas J. (Los Alamos, NM)

    1981-01-01

    A free electron laser system and electron beam system for a free electron laser which use rf feedback to enhance efficiency. Rf energy is extracted from an electron beam by decelerating cavities and returned to accelerating cavities using rf returns such as rf waveguides, rf feedthroughs, etc. This rf energy is added to rf klystron energy to lower the required input energy and thereby enhance energy efficiency of the system.

  19. High power gas laser amplifier

    DOE Patents [OSTI]

    Leland, Wallace T. (Los Alamos, NM); Stratton, Thomas F. (Los Alamos, NM)

    1981-01-01

    A high power output CO.sub.2 gas laser amplifier having a number of sections, each comprising a plurality of annular pumping chambers spaced around the circumference of a vacuum chamber containing a cold cathode, gridded electron gun. The electron beam from the electron gun ionizes the gas lasing medium in the sections. An input laser beam is split into a plurality of annular beams, each passing through the sections comprising one pumping chamber.

  20. Documentation - Laboratory for Laser Energetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IX Subsystem Startup and Shutdown Procedures Shot Director Operating Procedures (S-AB-P-010) Laser Sources Operating Procedures (S-AB-P-011) Power Conditioning Operating Procedures (S-AB-P-012) Beamlines Operating Procedures (S-AB-P-013) Experimental System Operating Procedures (S-AB-P-014) Comments Address document comments, questions and corrections to the OMEGA EP Associate Laser Facility Manager. For additional information contact: Director's Administrator University of Rochester -

  1. Laser program annual report, 1980

    SciTech Connect (OSTI)

    Coleman, L.W.; Krupke, W.F.; Strack, J.R.

    1981-06-01

    Volume 3 is comprised of three sections, beginning with Section 8 on Advanced Lasers. Both theoretical and experimental research and development activities on advanced laser systems are presented here. Section 9 contains the results of studies in areas of energy and military applications, including those relating to electrical energy production by inertial confinement fusion systems. Finally, Section 10 presents results from selected activities in the Advanced Isotope Separation Program.

  2. Documentation - Laboratory for Laser Energetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Omega Laser Facility Documentation 3000 LFORM 6950 Incident Review and Reporting 6610 LLE Radiological Controls Manual 9800 Introduction of Computers Into the OMEGA Facility Operations Procedure Document Release Process (M-TM-P-028) Product Data Management (PDM) (look up and administer numbered documents) LLE Clean Room Procedures and Protocol OMEGA Laser System Volume I - System Description (S-AA-M-12) Volume II - System Operation Procedures (S-AA-M-13) Volume III - Subsystem and Component

  3. Han s Laser Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    s Laser Technology Co Ltd Jump to: navigation, search Name: Han's Laser Technology Co., Ltd Place: Shenzhen, Guangdong Province, China Zip: 518057 Product: China-based laser cutter...

  4. X-ray laser system, x-ray laser and method

    DOE Patents [OSTI]

    London, Richard A. (Oakland, CA); Rosen, Mordecai D. (Berkeley, CA); Strauss, Moshe (Omer, IL)

    1992-01-01

    Disclosed is an x-ray laser system comprising a laser containing generating means for emitting short wave length radiation, and means external to said laser for energizing said generating means, wherein when the laser is in an operative mode emitting radiation, the radiation has a transverse coherence length to width ratio of from about 0.05 to 1. Also disclosed is a method of adjusting the parameters of the laser to achieve the desired coherence length to laser width ratio.

  5. Laser Program annual report, 1985

    SciTech Connect (OSTI)

    Rufer, M.L.; Murphy, P.W.

    1986-11-01

    This volume presents the unclassified activities and accomplishments of the Inertial Confinement Fusion and Advanced Laser Development elements of the Laser Program at the Lawrence Livermore National Laboratory for the calendar year 1985. This report has been organized into major sections that correspond to our principal technical activities. Section 1 provides an overview. Section 2 comprises work in target theory, design, and code development. Target development and fabrication and the related topics in materials science are contained in Section 3. Section 4 presents work in experiments and diagnostics and includes developments in data acquisition and management capabilities. In Section 5 laser system (Nova) operation and maintenance are discussed. Activities related to supporting laser and optical technologies are described in Section 6. Basic laser research and development is reported in Section 7. Section 8 contains the results of studies in ICF applications where the work reported deals principally with the production of electric power with ICF. Finally, Section 9 is a comprehensive discussion of work to date on solid state lasers for average power applications. Individual sections, two through nine, have been cataloged separately.

  6. Laser Programs, the first 25 years, 1972-1997

    SciTech Connect (OSTI)

    Campbell, E.M.

    1998-03-04

    Welcome to Laser Programs. I am pleased that you can share in the excitement of 25 years of history since we began as a small program of 125 people to our current status as a world premier laser and applied science research team of over 1700 members. It is fitting that this program, which was founded on the dream of developing inertial confinement fusion technology, should celebrate this anniversary the same year that the ground is broken for the National Ignition Facility (NIF). Also at the same time, we are feeling the excitement of moving forward the Atomic Vapor Laser Isotope Separation (AVLIS) technology toward private sector use and developing many alternate scientific applications and technologies derived from our core programs. It is through the hard work of many dedicated scientists, engineers, technicians, and administrative team members that we have been able to accomplish the remarkable internationally recognized achievements highlighted here. I hope this brochure will help you enjoy the opportunity to share in the celebration and pride of our scientific accomplishments; state-of-the-art facilities; and diligent, dedicated people that together make our Laser Programs and Lawrence Livermore National Laboratory the best in the world.

  7. Applied Cathode Enhancement and Robustness Technologies (ACERT)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerators, Electrodynamics » ACERT Applied Cathode Enhancement and Robustness Technologies (ACERT) World leading experts from fields of accelerator design & testing, chemical synthesis of nanomaterials, and shielding application of nanomaterials. thumbnail of Nathan Moody Nathan Moody Principal Investigator (PI) Email ACERT Logo Team Our project team, a part of Los Alamos National Laboratory (LANL) comprised of world leading experts from fields of accelerator design & testing,

  8. Fiber laser coupled optical spark delivery system

    DOE Patents [OSTI]

    Yalin, Azer (Fort Collins, CO); Willson, Bryan (Fort Collins, CO); Defoort, Morgan (Fort Collins, CO); Joshi, Sachin (Fort Collins, CO); Reynolds, Adam (Fort Collins, CO)

    2008-03-04

    A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.

  9. Laser machining of explosives

    DOE Patents [OSTI]

    Perry, Michael D. (Livermore, CA); Stuart, Brent C. (Fremont, CA); Banks, Paul S. (Livermore, CA); Myers, Booth R. (Livermore, CA); Sefcik, Joseph A. (Tracy, CA)

    2000-01-01

    The invention consists of a method for machining (cutting, drilling, sculpting) of explosives (e.g., TNT, TATB, PETN, RDX, etc.). By using pulses of a duration in the range of 5 femtoseconds to 50 picoseconds, extremely precise and rapid machining can be achieved with essentially no heat or shock affected zone. In this method, material is removed by a nonthermal mechanism. A combination of multiphoton and collisional ionization creates a critical density plasma in a time scale much shorter than electron kinetic energy is transferred to the lattice. The resulting plasma is far from thermal equilibrium. The material is in essence converted from its initial solid-state directly into a fully ionized plasma on a time scale too short for thermal equilibrium to be established with the lattice. As a result, there is negligible heat conduction beyond the region removed resulting in negligible thermal stress or shock to the material beyond a few microns from the laser machined surface. Hydrodynamic expansion of the plasma eliminates the need for any ancillary techniques to remove material and produces extremely high quality machined surfaces. There is no detonation or deflagration of the explosive in the process and the material which is removed is rendered inert.

  10. Free electron laser

    DOE Patents [OSTI]

    Villa, Francesco (Alameda, CA)

    1990-01-01

    A high gain, single-pass free electron laser formed of a high brilliance electron injector source, a linear accelerator which imparts high energy to the electron beam, and an undulator capable of extremely high magnetic fields, yet with a very short period. The electron injector source is the first stage (gap) of the linear accelerator or a radial line transformer driven by fast circular switch. The linear accelerator is formed of a plurality of accelerating gaps arranged in series. These gaps are energized in sequence by releasing a single pulse of energy which propagates simultaneously along a plurality of transmission lines, each of which feeds the gaps. The transmission lines are graduated in length so that pulse power is present at each gap as the accelerated electrons pass therethrough. The transmission lines for each gap are open circuited at their ends. The undualtor has a structure similar to the accelerator, except that the transmission lines for each gap are substantially short circuited at their ends, thus converting the electric field into magnetic field. A small amount of resistance is retained in order to generate a small electric field for replenishing the electron bunch with the energy lost as it traverses through the undulator structure.

  11. Laser heterodyne surface profiler

    DOE Patents [OSTI]

    Sommargren, Gary E. (Livermore, CA)

    1984-01-01

    Method and apparatus for testing the deviation of the face of an object from a flat smooth surface using a laser beam having two plane-polarized components, one of a frequency greater than the other to produce a difference frequency with a phase to be used as a reference. The beam also is split into its two components which are directed onto spaced apart points on the face of the object. The object is rotated on an axis coincident with one component as a reference. The other component follows a circular track on the face of the object as the object is rotated. The two components are recombined after reflection to produce a difference frequency having a phase that is shifted in an amount that is proportional to the difference in path length as compared to the reference phase to produce an electrical output signal proportional to the deviation of the height of the surface along the circular track. The output signal is generated by means of a phase detector that includes a first photodetector in the path of the recombined components and a second photodetector in the path of the reference phase. The output signal is dependent on the phase difference of the two photodetector signals. A polarizer, a quarter-wave plate and a half-wave plate are in series in the path of the reference phase. Rotation of the half-wave plate can be used for phase adjustment over a full 360.degree. range for initial calibration of the apparatus.

  12. Semiconductor Laser Diode Pumps for Inertial Fusion Energy Lasers

    SciTech Connect (OSTI)

    Deri, R J

    2011-01-03

    Solid-state lasers have been demonstrated as attractive drivers for inertial confinement fusion on the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) and at the Omega Facility at the Laboratory for Laser Energetics (LLE) in Rochester, NY. For power plant applications, these lasers must be pumped by semiconductor diode lasers to achieve the required laser system efficiency, repetition rate, and lifetime. Inertial fusion energy (IFE) power plants will require approximately 40-to-80 GW of peak pump power, and must operate efficiently and with high system availability for decades. These considerations lead to requirements on the efficiency, price, and production capacity of the semiconductor pump sources. This document provides a brief summary of these requirements, and how they can be met by a natural evolution of the current semiconductor laser industry. The detailed technical requirements described in this document flow down from a laser ampl9ifier design described elsewhere. In brief, laser amplifiers comprising multiple Nd:glass gain slabs are face-pumped by two planar diode arrays, each delivering 30 to 40 MW of peak power at 872 nm during a {approx} 200 {micro}s quasi-CW (QCW) pulse with a repetition rate in the range of 10 to 20 Hz. The baseline design of the diode array employs a 2D mosaic of submodules to facilitate manufacturing. As a baseline, they envision that each submodule is an array of vertically stacked, 1 cm wide, edge-emitting diode bars, an industry standard form factor. These stacks are mounted on a common backplane providing cooling and current drive. Stacks are conductively cooled to the backplane, to minimize both diode package cost and the number of fluid interconnects for improved reliability. While the baseline assessment in this document is based on edge-emitting devices, the amplifier design does not preclude future use of surface emitting diodes, which may offer appreciable future cost reductions and increased reliability. The high-level requirements on the semiconductor lasers involve reliability, price points on a price-per-Watt basis, and a set of technical requirements. The technical requirements for the amplifier design in reference 1 are discussed in detail and are summarized in Table 1. These values are still subject to changes as the overall laser system continues to be optimized. Since pump costs can be a significant fraction of the overall laser system cost, it is important to achieve sufficiently low price points for these components. At this time, the price target for tenth-of-akind IFE plant is $0.007/Watt for packaged devices. At this target level, the pumps account for approximately one third of the laser cost. The pump lasers should last for the life of the power plant, leading to a target component lifetime requirement of roughly 14 Ghosts, corresponding to a 30 year plant life and 15 Hz repetition rate. An attractive path forward involes pump operation at high output power levels, on a Watts-per-bar (Watts/chip) basis. This reduces the cost of pump power (price-per-Watt), since to first order the unit price does not increase with power/bar. The industry has seen a continual improvement in power output, with current 1 cm-wide bars emitting up to 500 W QCW (quasi-continuous wave). Increased power/bar also facilitates achieving high irradiance in the array plane. On the other hand, increased power implies greater heat loads and (possibly) higher current drive, which will require increased attention to thermal management and parasitic series resistance. Diode chips containing multiple p-n junctions and quantum wells (also called nanostack structures) may provide an additional approach to reduce the peak current.

  13. Metallic nanoparticles grown in the core of femtosecond laser micromachined waveguides

    SciTech Connect (OSTI)

    Almeida, J. M. P.; Ferreira, P. H. D.; Mendonça, C. R.; Manzani, D.; Napoli, M.; Ribeiro, S. J. L.

    2014-05-21

    3D-waveguides containing silver nanoparticles have been fabricated in tungsten lead–pyrophosphate glass by femtosecond laser micromachining. Nucleation and growth of nanoparticles occur in a single step process when high repetition rate laser (MHz) is employed, while an additional annealing is required for the irradiation using kHz laser system. The presence of nanoparticles locally changes the refractive index, and, therefore, the elliptical structures produced by direct laser writing were able to guide light. By increasing the pulse energy applied during the micromachining, the waveguide size increased from 2 to 30??m, while their propagation loss decrease from 1.4 to 0.5?dB/mm at 632.8?nm.

  14. Combination free electron and gaseous laser

    DOE Patents [OSTI]

    Brau, Charles A. (Los Alamos, NM); Rockwood, Stephen D. (Los Alamos, NM); Stein, William E. (Los Alamos, NM)

    1980-01-01

    A multiple laser having one or more gaseous laser stages and one or more free electron stages. Each of the free electron laser stages is sequentially pumped by a microwave linear accelerator. Subsequently, the electron beam is directed through a gaseous laser, in the preferred embodiment, and in an alternative embodiment, through a microwave accelerator to lower the energy level of the electron beam to pump one or more gaseous lasers. The combination laser provides high pulse repetition frequencies, on the order of 1 kHz or greater, high power capability, high efficiency, and tunability in the synchronous production of multiple beams of coherent optical radiation.

  15. Optical coatings for laser fusion applications

    SciTech Connect (OSTI)

    Lowdermilk, W.H.; Milam, D.; Rainer, F.

    1980-04-24

    Lasers for fusion experiments use thin-film dielectric coatings for reflecting, antireflecting and polarizing surface elements. Coatings are most important to the Nd:glass laser application. The most important requirements of these coatings are accuracy of the average value of reflectance and transmission, uniformity of amplitude and phase front of the reflected or transmitted light, and laser damage threshold. Damage resistance strongly affects the laser's design and performance. The success of advanced lasers for future experiments and for reactor applications requires significant developments in damage resistant coatings for ultraviolet laser radiation.

  16. Integrated injection-locked semiconductor diode laser

    DOE Patents [OSTI]

    Hadley, G. Ronald (Albuquerque, NM); Hohimer, John P. (Albuquerque, NM); Owyoung, Adelbert (Albuquerque, NM)

    1991-01-01

    A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet.

  17. Integrated injection-locked semiconductor diode laser

    DOE Patents [OSTI]

    Hadley, G.R.; Hohimer, J.P.; Owyoung, A.

    1991-02-19

    A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet. 18 figures.

  18. Implementing New Methods of Laser Marking of Items in the Nuclear Material Control and Accountability System at SSC RF-IPPE: An Automated Laser Marking System

    SciTech Connect (OSTI)

    Regoushevsky, V I; Tambovtsev, S D; Dvukhsherstnov, V G; Efimenko, V F; Ilyantsev, A I; Russ III, G P

    2009-05-18

    For over ten years SSC RF-IPPE, together with the US DOE National Laboratories, has been working on implementing automated control and accountability methods for nuclear materials and other items. Initial efforts to use adhesive bar codes or ones printed (painted) onto metal revealed that these methods were inconvenient and lacked durability under operational conditions. For NM disk applications in critical stands, there is the additional requirement that labels not affect the neutron characteristics of the critical assembly. This is particularly true for the many stainless-steel clad disks containing highly enriched uranium (HEU) and plutonium that are used at SSC RF-IPPE for modeling nuclear power reactors. In search of an alternate method for labeling these disks, we tested several technological options, including laser marking and two-dimensional codes. As a result, the method of laser coloring was chosen in combination with Data Matrix ECC200 symbology. To implement laser marking procedures for the HEU disks and meet all the nuclear material (NM) handling standards and rules, IPPE staff, with U.S. technical and financial support, implemented an automated laser marking system; there are also specially developed procedures for NM movements during laser marking. For the laser marking station, a Zenith 10F system by Telesis Technologies (10 watt Ytterbium Fiber Laser and Merlin software) is used. The presentation includes a flowchart for the automated system and a list of specially developed procedures with comments. Among other things, approaches are discussed for human-factor considerations. To date, markings have been applied to numerous steel-clad HEU disks, and the work continues. In the future this method is expected to be applied to other MC&A items.

  19. Experimental nonlinear laser systems: Bigger data for better science?

    SciTech Connect (OSTI)

    Kane, D. M.; Toomey, J. P.; McMahon, C.; Noblet, Y.; Argyris, A.; Syvridis, D.

    2014-10-06

    Bigger data is supporting knowledge discovery in nonlinear laser systems as will be demonstrated with examples from three semiconductor laser based systems – one with optical feedback, a photonic integrated circuit (PIC) chaotic laser and a frequency shifted feedback laser system.

  20. Applied Energy Programs, SPO-AE: LANL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kevin Ott 505-663-5537 Program Administrator Jutta Kayser 505-663-5649 Program Manager Karl Jonietz 505-663-5539 Program Manager Melissa Fox 505-663-5538 Budget Analyst Fawn Gore 505-665-0224 The Applied Energy Program Office (SPO-AE) manages Los Alamos National Laboratory programs funded by the Department of Energy's Offices of Energy Efficiency/Renewable Energy, Electricity Delivery and Energy Reliability, and Fossil Energy. With energy use increasing across the nation and the world, Los

  1. Apply for a Job | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FAQs Answers to frequently asked questions about applying for a job at Argonne A Note About Privacy We do not ask you for personally identifiable information such as birthdate, social security number, or driver's license number. To ensure your privacy, please do not include such information in the documents that you upload to the system A Note About File Size Our application system has a file size limit of 820KB. While this is sufficient for the vast majority of documents, we have found that

  2. Mode-locked solid state lasers using diode laser excitation

    DOE Patents [OSTI]

    Holtom, Gary R. (Boston, MA)

    2012-03-06

    A mode-locked laser employs a coupled-polarization scheme for efficient longitudinal pumping by reshaped laser diode bars. One or more dielectric polarizers are configured to reflect a pumping wavelength having a first polarization and to reflect a lasing wavelength having a second polarization. An asymmetric cavity provides relatively large beam spot sizes in gain medium to permit efficient coupling to a volume pumped by a laser diode bar. The cavity can include a collimation region with a controlled beam spot size for insertion of a saturable absorber and dispersion components. Beam spot size is selected to provide stable mode locking based on Kerr lensing. Pulse durations of less than 100 fs can be achieved in Yb:KGW.

  3. Characterization of proton and heavier ion acceleration in ultrahigh-intensity laser interactions with heated target foils

    SciTech Connect (OSTI)

    McKenna, P.; Ledingham, K.W.D.; Yang, J.M.; Robson, L.; McCanny, T.; Shimizu, S.; Clarke, R.J.; Neely, D.; Norreys, P.A.; Spohr, K.; Chapman, R.; Singhal, R.P.; Krushelnick, K.; Wei, M.S.

    2004-09-01

    Proton and heavy ion acceleration in ultrahigh intensity ({approx}2x10{sup 20} W cm{sup -2}) laser plasma interactions has been investigated using the new petawatt arm of the VULCAN laser. Nuclear activation techniques have been applied to make the first spatially integrated measurements of both proton and heavy ion acceleration from the same laser shots with heated and unheated Fe foil targets. Fe ions with energies greater than 10 MeV per nucleon have been observed. Effects of target heating on the accelerated ion energy spectra and the laser-to-ion energy conversion efficiencies are discussed. The laser-driven production of the long-lived isotope {sup 57}Co (271 days) via a heavy ion induced reaction is demonstrated.

  4. Laser heterodyne surface profiler

    DOE Patents [OSTI]

    Sommargren, G.E.

    1984-06-26

    Method and apparatus are disclosed for testing the deviation of the face of an object from a flat smooth surface using a laser beam having two plane-polarized components, one of a frequency greater than the other to produce a difference frequency with a phase to be used as a reference. The beam also is split into its two components which are directed onto spaced apart points on the face of the object. The object is rotated on an axis coincident with one component as a reference. The other component follows a circular track on the face of the object as the object is rotated. The two components are recombined after reflection to produce a difference frequency having a phase that is shifted in an amount that is proportional to the difference in path length as compared to the reference phase to produce an electrical output signal proportional to the deviation of the height of the surface along the circular track. The output signal is generated by means of a phase detector that includes a first photodetector in the path of the recombined components and a second photodetector in the path of the reference phase. The output signal is dependent on the phase difference of the two photodetector signals. A polarizer, a quarter-wave plate and a half-wave plate are in series in the path of the reference phase. Rotation of the half-wave plate can be used for phase adjustment over a full 360[degree] range for initial calibration of the apparatus. 12 figs.

  5. 1981 laser program annual report

    SciTech Connect (OSTI)

    Not Available

    1982-08-01

    This report is published in sections that correspond to the division of technical activity in the Program. Section 1 provides a Program Overview, presenting highlights of the technical accomplishments of the elements of the Program, a summary of activities carried out under the Glass Laser Experiments Lead Laboratory Program, as well as discussions of Program resources and facilities. Section 2 covers the work on solid-state Nd:glass lasers, including systems operations and Nova and Novette systems development. Section 3 reports on target-design activities, plasma theory and simulation, code development, and atomic theory. Section 4 presents the accomplishments of the Target Fabrication group, Section 5 contains the results of our diagnostics development, and Section 6 reports the results of laser-target experiments conducted during the year, along with supporting research and development activities. Section 7 presents the results from laser research and development, including solid-state R and D and the theoretical and experimental research on advanced lasers. Section 8 contains the results of studies in areas of energy and military applications, including those relating to electrical energy production by inertial-confinement fusion systems.

  6. Reflex ring laser amplifier system

    DOE Patents [OSTI]

    Summers, M.A.

    1983-08-31

    The invention is a method and apparatus for providing a reflex ring laser system for amplifying an input laser pulse. The invention is particularly useful in laser fusion experiments where efficient production of high-energy and high power laser pulses is required. The invention comprises a large aperture laser amplifier in an unstable ring resonator which includes a combination spatial filter and beam expander having a magnification greater than unity. An input pulse is injected into the resonator, e.g., through an aperture in an input mirror. The injected pulse passes through the amplifier and spatial filter/expander components on each pass around the ring. The unstable resonator is designed to permit only a predetermined number of passes before the amplified pulse exits the resonator. On the first pass through the amplifier, the beam fills only a small central region of the gain medium. On each successive pass, the beam has been expanded to fill the next concentric non-overlapping region of the gain medium.

  7. Apparatus for advancing a wellbore using high power laser energy

    DOE Patents [OSTI]

    Zediker, Mark S.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Koblick, Yeshaya; Moxley, Joel F.

    2014-09-02

    Delivering high power laser energy to form a borehole deep into the earth using laser energy. Down hole laser tools, laser systems and laser delivery techniques for advancement, workover and completion activities. A laser bottom hole assembly (LBHA) for the delivery of high power laser energy to the surfaces of a borehole, which assembly may have laser optics, a fluid path for debris removal and a mechanical means to remove earth.

  8. Laser/matter interactions by laser-launched plates and direct laser shocks

    SciTech Connect (OSTI)

    Paisley, Dennis L.; Swift, D. C.; Kopp, R. A.; Montgomery, D. S.; Johnson, R. P.; Munson, C. P.; Letzring, S. A.; Niemczura, J. G.

    2003-01-01

    Explosives, gas guns, laser-launched flyer plates, and direct laser-irradiation can be used to generate shocks and high-stress in materials. Each method has a unique diameter and thickness of shock that can be generated. In past years, small laboratory lasers have been used to launch flyer plates 2 - 200-pm thick to terminal velocities 0.1 to 5 k d s . Over the past few years we have been using our TRIDENT laser facility (1kJ in 0.2 to 2ps) to accelerate larger diameter (8 mm) and thicker (0.1 - 1.5 mm) flyer plates. These larger diameters and thicker one-dimensional plates more closely compliment traditional experimental methods such as gas guns. The 8-mm diameter and 1-mm thick flyer plates can impart shocks in metals for constitutive dynamic property measurements. The versatility of laser-driven plates permits spatial and temporal profiles of the flyer plate impact on sample targets. LASNEX models and parameters of the laser drive can be used to optimize optical coupling efficiency. The flyer plate launch, acceleration, terminal velocity, and, depending on the experiment, flyer plate impact on to target materials are recorded using point-interferometry (VISAR), and line-imaging interferometry. These high speed optical and laser experimental methods will be described along with ancillary methods, and material data. Constitutive properties of bulk materials, rate effects, and grain size and/or orientation have been studied for several metals including copper, beryllium, gold, and some alloys.

  9. 2009 Applied and Environmental Microbiology GRC

    SciTech Connect (OSTI)

    Nicole Dubilier

    2009-07-12

    The topic of the 2009 Gordon Conference on Applied and Environmental Microbiology is: From Single Cells to the Environment. The Conference will present and discuss cutting-edge research on applied and environmental microbiology with a focus on understanding interactions between microorganisms and the environment at levels ranging from single cells to complex communities. The Conference will feature a wide range of topics such as single cell techniques (including genomics, imaging, and NanoSIMS), microbial diversity at scales ranging from clonal to global, environmental 'meta-omics', biodegradation and bioremediation, metal - microbe interactions, animal microbiomes and symbioses. The Conference will bring together investigators who are at the forefront of their field, and will provide opportunities for junior scientists and graduate students to present their work in poster format and exchange ideas with leaders in the field. Some poster presenters will be selected for short talks. The collegial atmosphere of this Conference, with extensive discussion sessions as well as opportunities for informal gatherings in the afternoons and evenings, provides an ideal setting for scientists from different disciplines to exchange ideas, brainstorm and discuss cross-disciplinary collaborations.

  10. Bunch length compression method for free electron lasers to avoid parasitic compressions

    DOE Patents [OSTI]

    Douglas, David R.; Benson, Stephen; Nguyen, Dinh Cong; Tennant, Christopher; Wilson, Guy

    2015-05-26

    A method of bunch length compression method for a free electron laser (FEL) that avoids parasitic compressions by 1) applying acceleration on the falling portion of the RF waveform, 2) compressing using a positive momentum compaction (R.sub.56>0), and 3) compensating for aberration by using nonlinear magnets in the compressor beam line.

  11. A new three-equation model for the CO{sub 2} laser

    SciTech Connect (OSTI)

    Stanghini, M.; Basso, M.; Genesio, R.; Tesi, A.; Meucci, R.; Ciofini, M.

    1996-07-01

    Three rate equations describing the single-mode CO{sub 2} laser dynamics are derived by applying the theory of linear filters to an improved four-level model. The model is studied in the case of periodic modulations of the losses and compared with the outcome of an experiment, revealing a good agreement.

  12. Compact and highly efficient laser pump cavity

    DOE Patents [OSTI]

    Chang, Jim J. (Dublin, CA); Bass, Isaac L. (Castro Valley, CA); Zapata, Luis E. (Livermore, CA)

    1999-01-01

    A new, compact, side-pumped laser pump cavity design which uses non-conventional optics for injection of laser-diode light into a laser pump chamber includes a plurality of elongated light concentration channels. In one embodiment, the light concentration channels are compound parabolic concentrators (CPC) which have very small exit apertures so that light will not escape from the pumping chamber and will be multiply reflected through the laser rod. This new design effectively traps the pump radiation inside the pump chamber that encloses the laser rod. It enables more uniform laser pumping and highly effective recycle of pump radiation, leading to significantly improved laser performance. This new design also effectively widens the acceptable radiation wavelength of the diodes, resulting in a more reliable laser performance with lower cost.

  13. Laser Power Meter Version 1.0

    Energy Science and Technology Software Center (OSTI)

    2002-09-19

    Laser Power Meter integrates the digital output of a Newport 1835-C Laser Energy Meter and inserts the results into the file header of a WinSpec experimental file.

  14. OMEGA Control Room - Laboratory for Laser Energetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Control Room - Laboratory for Laser Energetics Laboratory for Laser Energetics Logo Search Home Around the Lab Past Issues Past Quick Shots About Office of the Director Map to LLE...

  15. Preparing reflective substrate surfaces for laser treatment

    DOE Patents [OSTI]

    Flick, F.F.

    1984-11-21

    A coating of either copper oxide or felt tip pen ink is used on reflective copper or gold substrates to enhance laser beam coupling when the substrates are cut or welded with a laser.

  16. The Collective Atomic Recoil Laser

    SciTech Connect (OSTI)

    Courteille, Ph.W.; Cube, C. avon; Deh, B.; Kruse, D.; Ludewig, A.; Slama, S.; Zimmermann, C.

    2005-05-05

    An ensemble of periodically ordered atoms coherently scatters the light of an incident laser beam. The scattered and the incident light may interfere and give rise to a light intensity modulation and thus to optical dipole forces which, in turn, emphasize the atomic ordering. This positive feedback is at the origin of the collective atomic recoil laser (CARL). We demonstrate this dynamics using ultracold atoms confined by dipole forces in a unidirectionally pumped far red-detuned high-finesse optical ring cavity. Under the influence of an additional dissipative force exerted by an optical molasses the atoms, starting from an unordered distribution, spontaneously form a density grating moving at constant velocity. Additionally, steady state lasing is observed in the reverse direction if the pump laser power exceeds a certain threshold. We compare the dynamics of the atomic trajectories to the behavior of globally coupled oscillators, which exhibit phase transitions from incoherent to coherent states if the coupling strength exceeds a critical value.

  17. High efficiency laser spectrum conditioner

    DOE Patents [OSTI]

    Greiner, Norman R.

    1980-01-01

    A high efficiency laser spectrum conditioner for generating a collinear parallel output beam containing a predetermined set of frequencies from a multifrequency laser. A diffraction grating and spherical mirror are used in combination, to disperse the various frequencies of the input laser beam and direct these frequencies along various parallel lines spatially separated from one another to an apertured mask. Selection of the desired frequencies is accomplished by placement of apertures at locations on the mask where the desired frequencies intersect the mask. A recollimated parallel output beam with the desired set of frequencies is subsequently generated utilizing a mirror and grating matched and geometrically aligned in the same manner as the input grating and mirror.

  18. Atomic vapor laser isotope separation

    SciTech Connect (OSTI)

    Stern, R.C.; Paisner, J.A.

    1985-11-08

    Atomic vapor laser isotope separation (AVLIS) is a general and powerful technique. A major present application to the enrichment of uranium for light-water power reactor fuel has been under development for over 10 years. In June 1985 the Department of Energy announced the selection of AVLIS as the technology to meet the nation's future need for the internationally competitive production of uranium separative work. The economic basis for this decision is considered, with an indicated of the constraints placed on the process figures of merit and the process laser system. We then trace an atom through a generic AVLIS separator and give examples of the physical steps encountered, the models used to describe the process physics, the fundamental parameters involved, and the role of diagnostic laser measurements.

  19. Laser parametric instability experiments of a 3ω, 15 kJ, 6-ns laser

    Office of Scientific and Technical Information (OSTI)

    pulse in gas-filled hohlraums at the Ligne d'Intégration Laser facility (Journal Article) | SciTech Connect Laser parametric instability experiments of a 3ω, 15 kJ, 6-ns laser pulse in gas-filled hohlraums at the Ligne d'Intégration Laser facility Citation Details In-Document Search Title: Laser parametric instability experiments of a 3ω, 15 kJ, 6-ns laser pulse in gas-filled hohlraums at the Ligne d'Intégration Laser facility Experimental investigation of stimulated Raman (SRS) and

  20. Laser removal of sludge from steam generators

    DOE Patents [OSTI]

    Nachbar, Henry D. (Ballston Lake, NY)

    1990-01-01

    A method of removing unwanted chemical deposits known as sludge from the metal surfaces of steam generators with laser energy is provided. Laser energy of a certain power density, of a critical wavelength and frequency, is intermittently focused on the sludge deposits to vaporize them so that the surfaces are cleaned without affecting the metal surface (sludge substrate). Fiberoptic tubes are utilized for laser beam transmission and beam direction. Fiberoptics are also utilized to monitor laser operation and sludge removal.

  1. Cr-doped scandium borate laser

    DOE Patents [OSTI]

    Chai, Bruce H. (Bridgewater, NJ); Lai, Shui T. (Florham Park, NJ); Long, Margaret N. (Landing, NJ)

    1989-01-01

    A broadly wavelength-tunable laser is provided which comprises as the laser medium a single crystal of MBO.sub.3 :Cr.sup.3+, where M is selected from the group of Sc, In and Lu. The laser may be operated over a broad temperature range from cryogenic temperatures to elevated temperatures. Emission is in a spectral range from red to infrared, and the laser is useful in the fields of defense, communications, isotope separation, photochemistry, etc.

  2. Laser-Compton Light Source Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser-Compton Light Source Technology Laser-Compton light source technology enables production of mono-energetic gamma rays and x rays. In the gamma-ray regime, these sources enable new, isotope-specific nuclear materials detection systems and photon-based study of nuclear processes (nuclear photonics). Laser-Compton light sources and related nuclear missions concepts were conceived of and realized over the course of the last decade at LLNL. Created by Compton scattering short-duration laser

  3. OMEGA Amplifiers - Laboratory for Laser Energetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Amplifiers - Laboratory for Laser Energetics Laboratory for Laser Energetics Logo Search Home Around the Lab Past Issues Past Quick Shots About Office of the Director Map to LLE LLE Tours LLE Building Map Partnerships Careers Education Undergraduate Program Graduate Program High School Program Faculty Contacts Computational Astrophysics H-E-D Physics Inertial Confinement Fusion Laser-Plasma Interaction Radiative Hydrodynamics Plasma Astrophysics Organization Director's Office Laser Development

  4. OMEGA EP - Laboratory for Laser Energetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Laboratory for Laser Energetics Laboratory for Laser Energetics Logo Search Home Around the Lab Past Issues Past Quick Shots About Office of the Director Map to LLE LLE Tours LLE Building Map Partnerships Careers Education Undergraduate Program Graduate Program High School Program Faculty Contacts Computational Astrophysics H-E-D Physics Inertial Confinement Fusion Laser-Plasma Interaction Radiative Hydrodynamics Plasma Astrophysics Organization Director's Office Laser Development and

  5. OMEGA EP Amplifiers - Laboratory for Laser Energetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Amplifiers - Laboratory for Laser Energetics Laboratory for Laser Energetics Logo Search Home Around the Lab Past Issues Past Quick Shots About Office of the Director Map to LLE LLE Tours LLE Building Map Partnerships Careers Education Undergraduate Program Graduate Program High School Program Faculty Contacts Computational Astrophysics H-E-D Physics Inertial Confinement Fusion Laser-Plasma Interaction Radiative Hydrodynamics Plasma Astrophysics Organization Director's Office Laser Development

  6. OMEGA EP Beamlines - Laboratory for Laser Energetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beamlines - Laboratory for Laser Energetics Laboratory for Laser Energetics Logo Search Home Around the Lab Past Issues Past Quick Shots About Office of the Director Map to LLE LLE Tours LLE Building Map Partnerships Careers Education Undergraduate Program Graduate Program High School Program Faculty Contacts Computational Astrophysics H-E-D Physics Inertial Confinement Fusion Laser-Plasma Interaction Radiative Hydrodynamics Plasma Astrophysics Organization Director's Office Laser Development

  7. OMEGA EP Construction - Laboratory for Laser Energetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Construction - Laboratory for Laser Energetics Laboratory for Laser Energetics Logo Search Home Around the Lab Past Issues Past Quick Shots About Office of the Director Map to LLE LLE Tours LLE Building Map Partnerships Careers Education Undergraduate Program Graduate Program High School Program Faculty Contacts Computational Astrophysics H-E-D Physics Inertial Confinement Fusion Laser-Plasma Interaction Radiative Hydrodynamics Plasma Astrophysics Organization Director's Office Laser Development

  8. OMEGA Experimental Systems - Laboratory for Laser Energetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experimental Systems - Laboratory for Laser Energetics Laboratory for Laser Energetics Logo Search Home Around the Lab Past Issues Past Quick Shots About Office of the Director Map to LLE LLE Tours LLE Building Map Partnerships Careers Education Undergraduate Program Graduate Program High School Program Faculty Contacts Computational Astrophysics H-E-D Physics Inertial Confinement Fusion Laser-Plasma Interaction Radiative Hydrodynamics Plasma Astrophysics Organization Director's Office Laser

  9. OMEGA Power Conditioning - Laboratory for Laser Energetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Conditioning - Laboratory for Laser Energetics Laboratory for Laser Energetics Logo Search Home Around the Lab Past Issues Past Quick Shots About Office of the Director Map to LLE LLE Tours LLE Building Map Partnerships Careers Education Undergraduate Program Graduate Program High School Program Faculty Contacts Computational Astrophysics H-E-D Physics Inertial Confinement Fusion Laser-Plasma Interaction Radiative Hydrodynamics Plasma Astrophysics Organization Director's Office Laser

  10. OMEGA Targets - Laboratory for Laser Energetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Targets - Laboratory for Laser Energetics Laboratory for Laser Energetics Logo Search Home Around the Lab Past Issues Past Quick Shots About Office of the Director Map to LLE LLE Tours LLE Building Map Partnerships Careers Education Undergraduate Program Graduate Program High School Program Faculty Contacts Computational Astrophysics H-E-D Physics Inertial Confinement Fusion Laser-Plasma Interaction Radiative Hydrodynamics Plasma Astrophysics Organization Director's Office Laser Development and

  11. Laser Induced Spectroscopy - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Induced Spectroscopy Idaho National Laboratory Contact INL About This Technology Technology Marketing Summary INL's Laser Induced Spectroscopy technology detects and measures the composition of a material or the molecules in the material. It traces the constituents of the material by using laser induced breakdown spectroscopy and laser induced fluorescence under ambient conditions. The technology measures the decay emission values of the excited absorption state and compares it to decay

  12. Multicolor photonic crystal laser array

    DOE Patents [OSTI]

    Wright, Jeremy B; Brener, Igal; Subramania, Ganapathi S; Wang, George T; Li, Qiming

    2015-04-28

    A multicolor photonic crystal laser array comprises pixels of monolithically grown gain sections each with a different emission center wavelength. As an example, two-dimensional surface-emitting photonic crystal lasers comprising broad gain-bandwidth III-nitride multiple quantum well axial heterostructures were fabricated using a novel top-down nanowire fabrication method. Single-mode lasing was obtained in the blue-violet spectral region with 60 nm of tuning (or 16% of the nominal center wavelength) that was determined purely by the photonic crystal geometry. This approach can be extended to cover the entire visible spectrum.

  13. Compact, high energy gas laser

    DOE Patents [OSTI]

    Rockwood, Stephen D.; Stapleton, Robert E.; Stratton, Thomas F.

    1976-08-03

    An electrically pumped gas laser amplifier unit having a disc-like configuration in which light propagation is radially outward from the axis rather than along the axis. The input optical energy is distributed over a much smaller area than the output optical energy, i.e., the amplified beam, while still preserving the simplicity of parallel electrodes for pumping the laser medium. The system may thus be driven by a comparatively low optical energy input, while at the same time, owing to the large output area, large energies may be extracted while maintaining the energy per unit area below the threshold of gas breakdown.

  14. Ultraviolet radiation induced discharge laser

    DOE Patents [OSTI]

    Gilson, Verle A. (Livermore, CA); Schriever, Richard L. (Livermore, CA); Shearer, James W. (Livermore, CA)

    1978-01-01

    An ultraviolet radiation source associated with a suitable cathode-anode electrode structure, disposed in a gas-filled cavity of a high pressure pulsed laser, such as a transverse electric atmosphere (TEA) laser, to achieve free electron production in the gas by photoelectric interaction between ultraviolet radiation and the cathode prior to the gas-exciting cathode-to-anode electrical discharge, thereby providing volume ionization of the gas. The ultraviolet radiation is produced by a light source or by a spark discharge.

  15. Nanowire terahertz quantum cascade lasers

    SciTech Connect (OSTI)

    Grange, Thomas

    2014-10-06

    Quantum cascade lasers made of nanowire axial heterostructures are proposed. The dissipative quantum dynamics of their carriers is theoretically investigated using non-equilibrium Green functions. Their transport and gain properties are calculated for varying nanowire thickness, from the classical-wire regime to the quantum-wire regime. Our calculation shows that the lateral quantum confinement provided by the nanowires allows an increase of the maximum operation temperature and a strong reduction of the current density threshold compared to conventional terahertz quantum cascade lasers.

  16. Laser activated diffuse discharge switch

    DOE Patents [OSTI]

    Christophorou, Loucas G. (Oak Ridge, TN); Hunter, Scott R. (Oak Ridge, TN)

    1988-01-01

    The invention is a gas mixture for a diffuse discharge switch which is capable of changing from a conducting state to an insulating state in the presence of electrons upon the introduction of laser light. The mixture is composed of a buffer gas such as nitrogen or argon and an electron attaching gas such as C.sub.6 H.sub.5 SH, C.sub.6 H.sub.5 SCH.sub.3, CH.sub.3 CHO and CF.sub.3 CHO wherein the electron attachment is brought on by indirect excitation of molecules to long-lived states by exposure to laser light.

  17. Documentation - Laboratory for Laser Energetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 - Laser Drivers Front Matter - Maintenance Index & Schedules (S-OM-P-026) Laser Driver Subsystem Procedures Check for Ground Loops (S-SM-P-002) ACSL IFES Synchronization (S-SM-P-053) 12GHz Agilent DSO91204A Calibration Procedure (SSD/BL) (S-SM-P-397) 12 GHz Keysight Scope Calibration (PHX/DL) (S-SM-P-397) TMPS Contrast Measurement (S-SM-P-426) TMPS Switch Voltage Calibration (S-SM-P-427) PGR/DER HVAC Check (S-SM-P-081) Pulse Shaping Procedures Modulator Calibration (MODCAL) (S-SM-P-004)

  18. Documentation - Laboratory for Laser Energetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 - OMEGA Control System Front Matter - Maintenance Index & Schedules (S-OM-P-029) Control System Procedures Replace PLC Backup Batteries (S-SM-P-225) Reprogram Neuron Module (S-SM-P-226) Check and Balance Video Inputs (S-SM-P-227) Laser Bay Structure Grounding (S-SM-P-228) Laser Bay Non-Amp Structure Grounding (S-SM-P-229) Target Bay Non-Amp Structure Grounding (S-SM-P-230) Target Chamber, TMS, Fiducial Grounding (S-SM-P-231) 750 KVA Controls (Dump Buttons) (S-SM-P-232) Facility Interlock

  19. Documentation - Laboratory for Laser Energetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 - Optical Manufacturing Front Matter - Maintenance Index & Schedules (S-OM-P-031) General Optic Cleaning Procedures Optic Cleaning Procedure (S-SM-P-197) Laser Bay Optics Inspect and Document Laser Rod Condition (S-SM-P-198) Inspect and Clean Beam Splitter Optics (S-SM-P-199) Inspect and Clean Spatial Filter Optics (S-SM-P-200) Inspect and Clean Liquid Crystal Devices (S-SM-P-201) Inspect and Clean SSA Windows (S-SM-P-202) Inspect and Clean FCC Polarizer / F Output (S-SM-P-203) Inspect FCC

  20. Laser Manufacturing | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home > Impact > Advanced Laser Manufacturing Tools Deliver Higher Performance Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Advanced Laser Manufacturing Tools Deliver Higher Performance In a research lab looking far, far into the future, a team of scientists and engineers from GE are developing next-generation

  1. FY 1990 Applied Sciences Branch annual report

    SciTech Connect (OSTI)

    Keyes, B.M.; Dippo, P.C.

    1991-11-01

    The Applied Sciences Branch actively supports the advancement of DOE/SERI goals for the development and implementation of the solar photovoltaic technology. The primary focus of the laboratories is to provide state-of-the-art analytical capabilities for materials and device characterization and fabrication. The branch houses a comprehensive facility which is capable of providing information on the full range of photovoltaic components. A major objective of the branch is to aggressively pursue collaborative research with other government laboratories, universities, and industrial firms for the advancement of photovoltaic technologies. Members of the branch disseminate research findings to the technical community in publications and presentations. This report contains information on surface and interface analysis, materials characterization, development, electro-optical characterization module testing and performance, surface interactions and FTIR spectroscopy.

  2. Cascaded injection resonator for coherent beam combining of laser arrays

    DOE Patents [OSTI]

    Kireev, Vassili [Sunnyvale, CA; Liu, Yun; Protopopescu, Vladimir [Knoxville, TN; Braiman, Yehuda [Oak Ridge, TN

    2008-10-21

    The invention provides a cascaded injection resonator for coherent beam combining of laser arrays. The resonator comprises a plurality of laser emitters arranged along at least one plane and a beam sampler for reflecting at least a portion of each laser beam that impinges on the beam sampler, the portion of each laser beam from one of the laser emitters being reflected back to another one of the laser emitters to cause a beam to be generated from the other one of the laser emitters to the beam reflector. The beam sampler also transmits a portion of each laser beam to produce a laser output beam such that a plurality of laser output beams of the same frequency are produced. An injection laser beam is directed to a first laser emitter to begin a process of generating and reflecting a laser beam from one laser emitter to another laser emitter in the plurality. A method of practicing the invention is also disclosed.

  3. Laser spark distribution and ignition system

    DOE Patents [OSTI]

    Woodruff, Steven (Morgantown, WV); McIntyre, Dustin L. (Morgantown, WV)

    2008-09-02

    A laser spark distribution and ignition system that reduces the high power optical requirements for use in a laser ignition and distribution system allowing for the use of optical fibers for delivering the low peak energy pumping pulses to a laser amplifier or laser oscillator. An optical distributor distributes and delivers optical pumping energy from an optical pumping source to multiple combustion chambers incorporating laser oscillators or laser amplifiers for inducing a laser spark within a combustion chamber. The optical distributor preferably includes a single rotating mirror or lens which deflects the optical pumping energy from the axis of rotation and into a plurality of distinct optical fibers each connected to a respective laser media or amplifier coupled to an associated combustion chamber. The laser spark generators preferably produce a high peak power laser spark, from a single low power pulse. The laser spark distribution and ignition system has application in natural gas fueled reciprocating engines, turbine combustors, explosives and laser induced breakdown spectroscopy diagnostic sensors.

  4. Pulse circuit apparatus for gas discharge laser

    DOE Patents [OSTI]

    Bradley, Laird P. (Livermore, CA)

    1980-01-01

    Apparatus and method using a unique pulse circuit for a known gas discharge laser apparatus to provide an electric field for preconditioning the gas below gas breakdown and thereafter to place a maximum voltage across the gas which maximum voltage is higher than that previously available before the breakdown voltage of that gas laser medium thereby providing greatly increased pumping of the laser.

  5. High power laser perforating tools and systems

    DOE Patents [OSTI]

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2014-04-22

    ystems devices and methods for the transmission of 1 kW or more of laser energy deep into the earth and for the suppression of associated nonlinear phenomena. Systems, devices and methods for the laser perforation of a borehole in the earth. These systems can deliver high power laser energy down a deep borehole, while maintaining the high power to perforate such boreholes.

  6. Laser programs highlights, July--August 1990

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    Laser research at LLNL is divided into five major programmatic areas: inertial confinement fusion (ICF), uranium atomic vapor laser isotope separation (U-AVLIS), special (plutonium) isotope separation (SIS), laser technology, and advanced applications. We have made important progress this past year in each of these areas. This report covers the current state of these 5 areas.

  7. Laser-to-hot-electron conversion limitations in relativistic laser matter

    Office of Scientific and Technical Information (OSTI)

    interactions due to multi-picosecond dynamics. (Journal Article) | DOE PAGES Laser-to-hot-electron conversion limitations in relativistic laser matter interactions due to multi-picosecond dynamics. This content will become publicly available on April 20, 2016 « Prev Next » Title: Laser-to-hot-electron conversion limitations in relativistic laser matter interactions due to multi-picosecond dynamics. High-energy short-pulse lasers are pushing the limits of plasma-based particle acceleration,

  8. Compact X-ray Free Electron Laser from a Laser-plasma Accelerator using a

    Office of Scientific and Technical Information (OSTI)

    Transverse Gradient Undulator (Journal Article) | SciTech Connect Journal Article: Compact X-ray Free Electron Laser from a Laser-plasma Accelerator using a Transverse Gradient Undulator Citation Details In-Document Search Title: Compact X-ray Free Electron Laser from a Laser-plasma Accelerator using a Transverse Gradient Undulator Compact laser-plasma accelerators can produce high energy electron beams with low emittance, high peak current but a rather large energy spread. The large energy

  9. Compact X-ray Free Electron Laser from a Laser-plasma Accelerator using a

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transverse Gradient Undulator (Journal Article) | SciTech Connect Compact X-ray Free Electron Laser from a Laser-plasma Accelerator using a Transverse Gradient Undulator Citation Details In-Document Search Title: Compact X-ray Free Electron Laser from a Laser-plasma Accelerator using a Transverse Gradient Undulator Compact laser-plasma accelerators can produce high energy electron beams with low emittance, high peak current but a rather large energy spread. The large energy spread hinders

  10. Laser system design for the generation of a sodium-layer laser guide star

    SciTech Connect (OSTI)

    Friedman, H.W.

    1993-01-01

    The design considerations for a laser system used to generate a sodium-layer guide star are presented. Laser technology developed for the Atomic Vapor Laser Isotope Separation (AVLIS) Program is shown to be directly relevant to this problem and results of a demonstration using the AVLIS laser to generate such a guide star are shown. The design of a compact laser suitable for use at a large telescope such as the Keck is also presented.

  11. Rational Catalyst Design Applied to Development of Advanced Oxidation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rational Catalyst Design Applied to Development of Advanced Oxidation Catalysts for Diesel Emission Control Rational Catalyst Design Applied to Development of Advanced Oxidation ...

  12. Energy Department Extends Deadline to Apply for START Tribal...

    Energy Savers [EERE]

    Extends Deadline to Apply for START Tribal Renewable Energy Project Development Assistance to May 22, 2015 Energy Department Extends Deadline to Apply for START Tribal Renewable...

  13. Tritium research activities in Safety and Tritium Applied Research...

    Office of Environmental Management (EM)

    research activities in Safety and Tritium Applied Research (STAR) facility, Idaho National Laboratory Tritium research activities in Safety and Tritium Applied Research (STAR)...

  14. James Webb Space Telescope: PM Lessons Applied - Eric Smith,...

    Energy Savers [EERE]

    James Webb Space Telescope: PM Lessons Applied - Eric Smith, Deputy Program Director, NASA James Webb Space Telescope: PM Lessons Applied - Eric Smith, Deputy Program Director,...

  15. Opportunities to Apply Phase Change Materials to Building Enclosures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities to Apply Phase Change Materials to Building Enclosures Webinar Opportunities to Apply Phase Change Materials to Building Enclosures Webinar Slides from the Building...

  16. Applying physics, teamwork to fusion energy science | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Lab Applying physics, teamwork to fusion energy science American Fusion News Category: Massachusetts Institute of Technology (MIT) Link: Applying physics, teamwork to fusion energy science

  17. 2008 Annual Merit Review Results Summary - 2. Applied Battery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2. Applied Battery Research 2008 Annual Merit Review Results Summary - 2. Applied Battery Research DOE Vehicle Technologies Annual Merit Review PDF icon 2008meritreview2.pdf...

  18. Advanced Multivariate Analysis Tools Applied to Surface Analysis...

    Office of Scientific and Technical Information (OSTI)

    Advanced Multivariate Analysis Tools Applied to Surface Analysis. Citation Details In-Document Search Title: Advanced Multivariate Analysis Tools Applied to Surface Analysis. No...

  19. Statistical and Domain Analytics Applied to PV Module Lifetime...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Statistical and Domain Analytics Applied to PV Module Lifetime and Degradation Science Statistical and Domain Analytics Applied to PV Module Lifetime and Degradation Science...

  20. Optical Diagnostics and Modeling Tools Applied to Diesel HCCI...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optical Diagnostics and Modeling Tools Applied to Diesel HCCI Optical Diagnostics and Modeling Tools Applied to Diesel HCCI 2002 DEER Conference Presentation: Caterpillar Engine...

  1. Magnetic relaxometry as applied to sensitive cancer detection...

    Office of Scientific and Technical Information (OSTI)

    relaxometry as applied to sensitive cancer detection and localization Title: Magnetic relaxometry as applied to sensitive cancer detection and localization Here we describe ...

  2. Applying the Battery Ownership Model in Pursuit of Optimal Battery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applying the Battery Ownership Model in Pursuit of Optimal Battery Use Strategies Applying the Battery Ownership Model in Pursuit of Optimal Battery Use Strategies 2012 DOE ...

  3. Reflector for efficient coupling of a laser beam to air or other fluids

    DOE Patents [OSTI]

    Kare, J.T.

    1992-10-06

    A reflector array is disclosed herein that provides a controlled region or regions of plasma breakdowns from a laser beam produced at a remotely-based laser source. The plasma may be applied to produce thrust to propel a spacecraft, or to diagnose a laser beam, or to produce shock waves. The spacecraft propulsion system comprises a reflector array attached to the vehicle. The reflector array comprises a plurality of reflectors spaced apart on a reflective surface, with each reflector acting as an independent focusing mirror. The reflectors are spaced closely together to form a continuous or partially-continuous surface. The reflector array may be formed from a sheet of reflective material, such as copper or aluminum. In operation, a beam of electromagnetic energy, such as a laser beam, is directed at the reflectors which focus the reflected electromagnetic energy at a plurality of regions off the surface. The energy concentrated in the focal region causes a breakdown of the air or other fluid in the focal region, creating a plasma. Electromagnetic energy is absorbed in the plasma and it grows in volume, compressing and heating the adjacent fluid thereby providing thrust. Laser pulses may be applied repetitively. After each such thrust pulse, fresh air can be introduced next to the surface either laterally, or through a perforated surface. If air or some other gas or vapor is supplied, for example from a tank carried on board a vehicle, this invention may also be used to provide thrust in a vacuum environment. 10 figs.

  4. Vacuum barrier for excimer lasers

    DOE Patents [OSTI]

    Shurter, R.P.

    1992-09-15

    A barrier for separating the vacuum area of a diode from the pressurized gas area of an excimer laser. The barrier is a composite material comprising layers of a metal such as copper, along with layers of polyimide, and a matrix of graphite fiber yarns impregnated with epoxy. The barrier is stronger than conventional foil barriers, and allows greater electron throughput. 3 figs.

  5. Laser program annual report, 1979

    SciTech Connect (OSTI)

    Coleman, L.W.; Strack, J.R.

    1980-03-01

    This volume provides a program overview, presenting highlights of the technical accomplishments of the elements of the program, as well as discussions of program resources and facilities. Also covered are the work of the Solid-State Laser program element, which includes systems operations, Nova, and research and development activities. (MOW)

  6. Laser welding of fused quartz

    DOE Patents [OSTI]

    Piltch, Martin S.; Carpenter, Robert W.; Archer, III, McIlwaine

    2003-06-10

    Refractory materials, such as fused quartz plates and rods are welded using a heat source, such as a high power continuous wave carbon dioxide laser. The radiation is optimized through a process of varying the power, the focus, and the feed rates of the laser such that full penetration welds may be accomplished. The process of optimization varies the characteristic wavelengths of the laser until the radiation is almost completely absorbed by the refractory material, thereby leading to a very rapid heating of the material to the melting point. This optimization naturally occurs when a carbon dioxide laser is used to weld quartz. As such this method of quartz welding creates a minimum sized heat-affected zone. Furthermore, the welding apparatus and process requires a ventilation system to carry away the silicon oxides that are produced during the welding process to avoid the deposition of the silicon oxides on the surface of the quartz plates or the contamination of the welds with the silicon oxides.

  7. Laser driven compact ion accelerator

    DOE Patents [OSTI]

    Tajima, Toshiki

    2005-03-15

    A laser driven compact ion source including a light source that produces an energy pulse, a light source guide that guides the energy pulse to a target and produces an ion beam. The ion beam is transported to a desired destination.

  8. Vacuum barrier for excimer lasers

    DOE Patents [OSTI]

    Shurter, Roger P. (Jemez Springs, NM)

    1992-01-01

    A barrier for separating the vacuum area of a diode from the pressurized gas area of an excimer laser. The barrier is a composite material comprising layers of a metal such as copper, along with layers of polyimide, and a matrix of graphite fiber yarns impregnated with epoxy. The barrier is stronger than conventional foil barriers, and allows greater electron throughput.

  9. Documentation - Laboratory for Laser Energetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Laser Sources LSO Shot Preparation Checklist S-AB-P-085 LSO Type 1A Non-Prop Shot Procedure S-AB-P-121 LSO Type Type 1C Qual Shot Procedure S-AB-P-071 LSO Type Type 1D Qual...

  10. Laser and gas centrifuge enrichment

    SciTech Connect (OSTI)

    Heinonen, Olli

    2014-05-09

    Principles of uranium isotope enrichment using various laser and gas centrifuge techniques are briefly discussed. Examples on production of high enriched uranium are given. Concerns regarding the possibility of using low end technologies to produce weapons grade uranium are explained. Based on current assessments commercial enrichment services are able to cover the global needs of enriched uranium in the foreseeable future.

  11. Laser Phase Errors in Seeded FELs

    SciTech Connect (OSTI)

    Ratner, D.; Fry, A.; Stupakov, G.; White, W.; /SLAC

    2012-03-28

    Harmonic seeding of free electron lasers has attracted significant attention from the promise of transform-limited pulses in the soft X-ray region. Harmonic multiplication schemes extend seeding to shorter wavelengths, but also amplify the spectral phase errors of the initial seed laser, and may degrade the pulse quality. In this paper we consider the effect of seed laser phase errors in high gain harmonic generation and echo-enabled harmonic generation. We use simulations to confirm analytical results for the case of linearly chirped seed lasers, and extend the results for arbitrary seed laser envelope and phase.

  12. Laser scribe optimization study. Final report

    SciTech Connect (OSTI)

    Wannamaker, A.L.

    1996-09-01

    The laser scribe characterization/optimization project was initiated to better understand what factors influence response variables of the laser marking process. The laser marking system is utilized to indelibly identify weapon system components. Many components have limited field life, and traceability to production origin is critical. In many cases, the reliability of the weapon system and the safety of the users can be attributed to individual and subassembly component fabrication processes. Laser beam penetration of the substrate material may affect product function. The design agency for the DOE had requested that Federal Manufacturing and Technologies characterize the laser marking process and implement controls on critical process parameters.

  13. Laser cutting with chemical reaction assist

    DOE Patents [OSTI]

    Gettemy, D.J.

    1992-11-17

    A method is described for cutting with a laser beam where an oxygen-hydrocarbon reaction is used to provide auxiliary energy to a metal workpiece to supplement the energy supplied by the laser. Oxygen is supplied to the laser focus point on the workpiece by a nozzle through which the laser beam also passes. A liquid hydrocarbon is supplied by coating the workpiece along the cutting path with the hydrocarbon prior to laser irradiation or by spraying a stream of hydrocarbon through a nozzle aimed at a point on the cutting path which is just ahead of the focus point during irradiation. 1 figure.

  14. Laser cutting with chemical reaction assist

    DOE Patents [OSTI]

    Gettemy, Donald J. (Los Alamos, NM)

    1992-01-01

    A method for cutting with a laser beam where an oxygen-hydrocarbon reaction is used to provide auxiliary energy to a metal workpiece to supplement the energy supplied by the laser. Oxygen is supplied to the laser focus point on the workpiece by a nozzle through which the laser beam also passes. A liquid hydrocarbon is supplied by coating the workpiece along the cutting path with the hydrocarbon prior to laser irradiation or by spraying a stream of hydrocarbon through a nozzle aimed at a point on the cutting path which is just ahead of the focus point during irradiation.

  15. Laser polishing of niobium for SRF applications

    SciTech Connect (OSTI)

    Zhao, Liang; Klopf, J. Michael; Reece, Charles E.; Kelley, Michael

    2013-09-01

    Smooth interior surfaces are desired for niobium SRF cavities, now obtained by buffered chemical polish (BCP) and/or electropolish (EP). Laser polishing is a potential alternative, having advantages of speed, freedom from chemistry and in-process inspection. Here we show that laser polishing can produce smooth topography with Power Spectral Density (PSD) measurements similar to that obtained by EP. We studied the influence of the laser power density and laser beam raster rate on the surface topography. These two factors need to be combined carefully to smooth the surface without damaging it. Computational modeling was used to simulate the surface temperature and explain the mechanism of laser polishing.

  16. Free-Electron Laser | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Inspecting an injector assembly at Jefferson Lab's Free-Electron Laser. A D D I T I O N A L L I N K S: FEL Users FEL Description JLAMP Proposal Applications FEL News Contact top-right bottom-left-corner bottom-right-corner Free-Electron Laser Jefferson Lab's Free-Electron Laser is the world's highest-power tunable infrared laser and was developed using the lab's expertise in superconducting radiofrequency (SRF) accelerators. The FEL also provides ultraviolet laser light, including

  17. Mars mission laser tool heads to JPL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mars mission laser tool Mars mission laser tool heads to JPL Curiosity will carry the newly delivered laser instrument to reveal which elements are present in Mars' rocks and soils. September 21, 2010 A bright ball of plasma is produced by ChemCam's invisible laser beam striking a rock within the Mars sample chamber. A bright ball of plasma is produced by ChemCam's invisible laser beam striking a rock within the Mars sample chamber. Contact Nancy Ambrosiano Communications Office (505) 667-0471

  18. Copper vapor laser acoustic thermometry system

    DOE Patents [OSTI]

    Galkowski, Joseph J. (Livermore, CA)

    1987-01-01

    A copper vapor laser (CVL) acoustic thermometry system is disclosed. The invention couples an acoustic pulse a predetermined distance into a laser tube by means of a transducer and an alumina rod such that an echo pulse is returned along the alumina rod to the point of entry. The time differential between the point of entry of the acoustic pulse into the laser tube and the exit of the echo pulse is related to the temperature at the predetermined distance within the laser tube. This information is processed and can provide an accurate indication of the average temperature within the laser tube.

  19. Raman beam combining for laser brightness enhancement

    DOE Patents [OSTI]

    Dawson, Jay W.; Allen, Graham S.; Pax, Paul H.; Heebner, John E.; Sridharan, Arun K.; Rubenchik, Alexander M.; Barty, Chrisopher B. J.

    2015-10-27

    An optical source capable of enhanced scaling of pulse energy and brightness utilizes an ensemble of single-aperture fiber lasers as pump sources, with each such fiber laser operating at acceptable pulse energy levels. Beam combining involves stimulated Raman scattering using a Stokes' shifted seed beam, the latter of which is optimized in terms of its temporal and spectral properties. Beams from fiber lasers can thus be combined to attain pulses with peak energies in excess of the fiber laser self-focusing limit of 4 MW while retaining the advantages of a fiber laser system of high average power with good beam quality.

  20. Raman beam combining for laser brightness enhancement

    DOE Patents [OSTI]

    Dawson, Jay W; Allen, Grahan S; Pax, Paul H; Heebner, John E; Sridharan, Arun K; Rubenchik, Alexander M; Barty, Christopher B.J

    2015-11-05

    An optical source capable of enhanced scaling of pulse energy and brightness utilizes an ensemble of single-aperture fiber lasers as pump sources, with each such fiber laser operating at acceptable pulse energy levels. Beam combining involves stimulated Raman scattering using a Stokes' shifted seed beam, the latter of which is optimized in terms of its temporal and spectral properties. Beams from fiber lasers can thus be combined to attain pulses with peak energies in excess of the fiber laser self-focusing limit of 4 MW while retaining the advantages of a fiber laser system of high average power with good beam quality.

  1. Methods and system for controlled laser-driven explosive bonding

    DOE Patents [OSTI]

    Rubenchik, Alexander M.; Farmer, Joseph C.; Hackel, Lloyd; Rankin, Jon

    2015-11-19

    A technique for bonding two dissimilar materials includes positioning a second material over a first material at an oblique angle and applying a tamping layer over the second martial. A laser beam is directed at the second material that generates a plasma at the location of impact on the second material. The plasma generates pressure that accelerates a portion of the second material to a very high velocity and towards the first material. The second material impacts the first material causing bonding of the two materials.

  2. Artificial intelligence technologies applied to terrain analysis

    SciTech Connect (OSTI)

    Wright, J.C. ); Powell, D.R. )

    1990-01-01

    The US Army Training and Doctrine Command is currently developing, in cooperation with Los Alamos National Laboratory, a Corps level combat simulation to support military analytical studies. This model emphasizes high resolution modeling of the command and control processes, with particular attention to architectural considerations that enable extension of the model. A planned future extension is the inclusion of an computer based planning capability for command echelons that can be dynamical invoked during the execution of then model. Command and control is the process through which the activities of military forces are directed, coordinated, and controlled to achieve the stated mission. To perform command and control the commander must understand the mission, perform terrain analysis, understand his own situation and capabilities as well as the enemy situation and his probable actions. To support computer based planning, data structures must be available to support the computer's ability to understand'' the mission, terrain, own capabilities, and enemy situation. The availability of digitized terrain makes it feasible to apply artificial intelligence technologies to emulate the terrain analysis process, producing data structures for uses in planning. The work derived thus for to support the understanding of terrain is the topic of this paper. 13 refs., 5 figs., 6 tabs.

  3. University of Rochester Laboratory for Laser Energetics annual report, 1 October 1990--30 September 1991

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    This report discusses: progress in laser fusion; advanced technology developments; national laser users facility news; and laser system report.

  4. Fanshaped superradiance of a dye laser

    SciTech Connect (OSTI)

    Wang, X.; Peng, G.

    1982-09-01

    The experimental apparatus used to achieve fan shaped superradiance of a dye laser by using second harmonics from a giant pulsed YAP:Nd(3+) laser oscillator-amplifier to pump Rhodamine 6G is described. The laser device employs a single 45 deg LiNbO3 electro-optical Q-switched yttrium aluminate laser as the oscillation stage, and after one stage of oscillation of yttrium aluminate laser amplification, it puts out a laser peak power of approximately 30 MW, with a repetition rate of once per second using LiLO3 (I type phase matching, theta m approximately 30 deg) outer cavity frequency doubling, it puts out 0.539 micrometer frequency doubled light, with a peak power of 1.8 MW and then uses the 0.539 micrometer frequency doubled light to pump Rhodamine 6G laser dye. The emission obtained assumes a fan shape which is planar.

  5. Short pulse free electron laser amplifier

    DOE Patents [OSTI]

    Schlitt, Leland G.; Szoke, Abraham

    1985-01-01

    Method and apparatus for amplification of a laser pulse in a free electron laser amplifier where the laser pulse duration may be a small fraction of the electron beam pulse duration used for amplification. An electron beam pulse is passed through a first wiggler magnet and a short laser pulse to be amplified is passed through the same wiggler so that only the energy of the last fraction, f, (f<1) of the electron beam pulse is consumed in amplifying the laser pulse. After suitable delay of the electron beam, the process is repeated in a second wiggler magnet, a third, . . . , where substantially the same fraction f of the remainder of the electron beam pulse is consumed in amplification of the given short laser pulse in each wiggler magnet region until the useful electron beam energy is substantially completely consumed by amplification of the laser pulse.

  6. High-Power Solid-State Lasers from a Laser Glass Perspective

    SciTech Connect (OSTI)

    Campbell, J H; Hayden, J S; Marker, A J

    2010-12-17

    Advances in laser glass compositions and manufacturing have enabled a new class of high-energy/high-power (HEHP), petawatt (PW) and high-average-power (HAP) laser systems that are being used for fusion energy ignition demonstration, fundamental physics research and materials processing, respectively. The requirements for these three laser systems are different necessitating different glasses or groups of glasses. The manufacturing technology is now mature for melting, annealing, fabricating and finishing of laser glasses for all three applications. The laser glass properties of major importance for HEHP, PW and HAP applications are briefly reviewed and the compositions and properties of the most widely used commercial laser glasses summarized. Proposed advances in these three laser systems will require new glasses and new melting methods which are briefly discussed. The challenges presented by these laser systems will likely dominate the field of laser glass development over the next several decades.

  7. Thermal input control and enhancement for laser based residual stress measurements using liquid temperature indicating coatings

    DOE Patents [OSTI]

    Pechersky, M.J.

    1999-07-06

    An improved method for measuring residual stress in a material is disclosed comprising the steps of applying a spot of temperature indicating coating to the surface to be studied, establishing a speckle pattern surrounds the spot of coating with a first laser then heating the spot of coating with a far infrared laser until the surface plastically deforms. Comparing the speckle patterns before and after deformation by subtracting one pattern from the other will produce a fringe pattern that serves as a visual and quantitative indication of the degree to which the plasticized surface responded to the stress during heating and enables calculation of the stress. 3 figs.

  8. Thermal input control and enhancement for laser based residual stress measurements using liquid temperature indicating coatings

    DOE Patents [OSTI]

    Pechersky, Martin J. (Aiken, SC)

    1999-01-01

    An improved method for measuring residual stress in a material comprising the steps of applying a spot of temperature indicating coating to the surface to be studied, establishing a speckle pattern surrounds the spot of coating with a first laser then heating the spot of coating with a far infrared laser until the surface plastically deforms. Comparing the speckle patterns before and after deformation by subtracting one pattern from the other will produce a fringe pattern that serves as a visual and quantitative indication of the degree to which the plasticized surface responded to the stress during heating and enables calculation of the stress.

  9. Blue diode-pumped solid-state-laser based on ytterbium doped laser crystals operating on the resonance zero-phonon transition

    DOE Patents [OSTI]

    Krupke, William F. (Pleasanton, CA); Payne, Stephen A. (Castro Valley, CA); Marshall, Christopher D. (Livermore, CA)

    2001-01-01

    The invention provides an efficient, compact means of generating blue laser light at a wavelength near .about.493+/-3 nm, based on the use of a laser diode-pumped Yb-doped laser crystal emitting on its zero phonon line (ZPL) resonance transition at a wavelength near .about.986+/-6 nm, whose fundamental infrared output radiation is harmonically doubled into the blue spectral region. The invention is applied to the excitation of biofluorescent dyes (in the .about.490-496 nm spectral region) utilized in flow cytometry, immunoassay, DNA sequencing, and other biofluorescence instruments. The preferred host crystals have strong ZPL fluorecence (laser) transitions lying in the spectral range from .about.980 to .about.992 nm (so that when frequency-doubled, they produce output radiation in the spectral range from 490 to 496 nm). Alternate preferred Yb doped tungstate crystals, such as Yb:KY(WO.sub.4).sub.2, may be configured to lase on the resonant ZPL transition near 981 nm (in lieu of the normal 1025 nm transition). The laser light is then doubled in the blue at 490.5 nm.

  10. Interaction of plasmas in laser ion source with double laser system

    SciTech Connect (OSTI)

    Fuwa, Y.; Ikeda, S.; Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama, Tokyo ; Kumaki, M.; Research Institute for Science and Engineering, Waseda University, Shinjuku, Tokyo ; Sekine, M.; Department of Nuclear Engineering, Tokyo Institute of Technology, Meguro, Tokyo ; Cinquegrani, D.; Romanelli, M.; Kanesue, T.; Okamura, M.; Iwashita, Y.

    2014-02-15

    Multiple laser shots could be used to elongate an ion beam pulse width or to intensify beam current from laser ion sources. In order to confirm the feasibility of the multiple shot scheme, we investigated the properties of plasmas produced by double laser shots. We found that when the interval of the laser shots is shorter than 10 ?s, the ion current profile had a prominent peak, which is not observed in single laser experiments. The height of this peak was up to five times larger than that of single laser experiment.

  11. Laser Isotope Enrichment for Medical and Industrial Applications

    SciTech Connect (OSTI)

    Leonard Bond

    2006-07-01

    Laser Isotope Enrichment for Medical and Industrial Applications by Jeff Eerkens (University of Missouri), Jay Kunze (Idaho State University), and Leonard Bond (Idaho National Laboratory) The principal isotope enrichment business in the world is the enrichment of uranium for commercial power reactor fuels. However, there are a number of other needs for separated isotopes. Some examples are: 1) Pure isotopic targets for irradiation to produce medical radioisotopes. 2) Pure isotopes for semiconductors. 3) Low neutron capture isotopes for various uses in nuclear reactors. 4) Isotopes for industrial tracer/identification applications. Examples of interest to medicine are targets to produce radio-isotopes such as S-33, Mo-98, Mo-100, W-186, Sn-112; while for MRI diagnostics, the non-radioactive Xe-129 isotope is wanted. For super-semiconductor applications some desired industrial isotopes are Si-28, Ga-69, Ge-74, Se-80, Te-128, etc. An example of a low cross section isotope for use in reactors is Zn-68 as a corrosion inhibitor material in nuclear reactor primary systems. Neutron activation of Ar isotopes is of interest in industrial tracer and diagnostic applications (e.g. oil-logging). . In the past few years there has been a sufficient supply of isotopes in common demand, because of huge Russian stockpiles produced with old electromagnetic and centrifuge separators previously used for uranium enrichment. Production of specialized isotopes in the USA has been largely accomplished using old ”calutrons” (electromagnetic separators) at Oak Ridge National Laboratory. These methods of separating isotopes are rather energy inefficient. Use of lasers for isotope separation has been considered for many decades. None of the proposed methods have attained sufficient proof of principal status to be economically attractive to pursue commercially. Some of the authors have succeeded in separating sulfur isotopes using a rather new and different method, known as condensation repression. In this scheme a gas, of the selected isotopes for enrichment, is irradiated with a laser at a particular wavelength that would excite only one of the isotopes. The entire gas is subject to low temperatures sufficient to cause condensation on a cold surface. Those molecules in the gas that the laser excited are not as likely to condense as are the unexcited molecules. Hence the gas drawn out of the system will be enriched in the isotope that was excited by the laser. We have evaluated the relative energy required in this process if applied on a commercial scale. We estimate the energy required for laser isotope enrichment is about 20% of that required in centrifuge separations, and 2% of that required by use of "calutrons".

  12. Laser Systems for Orbital Debris Removal

    SciTech Connect (OSTI)

    Rubenchik, A M; Barty, C P; Beach, R J; Erlandson, A C; Caird, J A

    2010-02-05

    The use of a ground based laser for space debris cleaning was investigated by the ORION project in 1996. Since that study the greatest technological advance in the development of high energy pulsed laser systems has taken place within the NIF project at LLNL. The proposed next laser system to follow the NIF at LLNL will be a high rep rate version of the NIF based on diode-pumping rather than flashlamp excitation; the so called 'LIFE' laser system. Because a single 'LIFE' beamline could be built up in a few year time frame, and has performance characteristics relevant to the space debris clearing problem, such a beamline could enable a near term demonstration of space debris cleaning. Moreover, the specifics of debris cleaning make it possible to simplify the LIFE laser beyond what is required for a fusion drive laser, and so substantially reduce its cost. Starting with the requirements for laser intensity on the target, and then considering beam delivery, we will flow back the laser requirements needed for space debris cleaning. Using these derived requirements we will then optimize the pulse duration, the operational regime, and the output pulse energy of the laser with a focus of simplifying its overall design. Anticipated simplifications include operation in the heat capacity regime, eliminating cooling requirements on the laser gain slabs, and relaxing B-integral and birefrigence requirements.

  13. Laser Systems for Orbital Debris Removal

    SciTech Connect (OSTI)

    Rubenchik, A. M.; Barty, C. P. J.; Beach, R. J.; Erlandson, A. C.; Caird, J. A.

    2010-10-08

    The use of a ground based laser for space debris cleaning was investigated by the ORION project in 1996. Since that study the greatest technological advance in the development of high energy pulsed laser systems has taken place within the NIF project at LLNL. The proposed next laser system to follow the NIF at LLNL will be a high rep rate version of the NIF based on diode-pumping rather than flashlamp excitation; the so called 'LIFE' laser system. Because a single 'LIFE' beamline could be built up in a few year time frame, and has performance characteristics relevant to the space debris clearing problem, such a beamline could enable a near term demonstration of space debris cleaning. Moreover, the specifics of debris cleaning make it possible to simplify the LIFE laser beyond what is required for a fusion drive laser, and so substantially reduce its cost. Starting with the requirements for laser intensity on the target, and then considering beam delivery, we will flow back the laser requirements needed for space debris cleaning. Using these derived requirements we will then optimize the pulse duration, the operational regime, and the output pulse energy of the laser with a focus of simplifying its overall design. Anticipated simplifications include operation in the heat capacity regime, eliminating cooling requirements on the laser gain slabs, and relaxing B-integral and birefrigence requirements.

  14. Modeling of laser ablation and fragmentation of human calculi

    SciTech Connect (OSTI)

    Gitomer, S.; Jones, R.D.; Howsare, C.

    1989-01-01

    The large-scale radiation-hydrodynamics computer code LASNEX, has been used to model experimental results in the laser ablation and fragmentation of renal and biliary calculi. Recent experiments have demonstrated laser ablation and fragmentation of human calculi in vitro and in vivo. In the interaction, laser light incident upon the calculus is of sufficient intensity to produce a plasma (a hot ionized gas). The physical picture which emerges is as follows. The plasma couples to acoustic and shear waves which then propagate through the dense stone material, causing spall and fracture by reflection from material discontinuities or boundaries. Experiments have thus far yielded data on the interaction against which models can be tested. Data on the following have been published: (1) light emission, (2) absorption and emission spectra, (3) fragmentation efficiency, (4) cavitation bubble dynamics and (5) mass removal. We have performed one dimensional simulations of the laser-matter interaction to elucidate the important physical mechanisms. We find that good quantitative fits between simulation and experiment are obtained for visible light emission, electron temperature, electron density, plasma pressure and cavitation bubble growth. With regard to mass removal, experiment and simulation are consistent with each other and give an excellent estimate of the ablation threshold. The modeling indicates that a very small ablation layer at the surface of the calculus is responsible for significant mass loss by fragmentation within the bulk of the calculus. With such quantitative fits in hand, we believe this type of modeling can now be applied to the study of other procedures involving plasma formation of interest to the medical community. 25 refs., 7 figs.

  15. Transverse pumped laser amplifier architecture

    DOE Patents [OSTI]

    Bayramian, Andrew James; Manes, Kenneth R.; Deri, Robert; Erlandson, Alvin; Caird, John; Spaeth, Mary L.

    2015-05-19

    An optical gain architecture includes a pump source and a pump aperture. The architecture also includes a gain region including a gain element operable to amplify light at a laser wavelength. The gain region is characterized by a first side intersecting an optical path, a second side opposing the first side, a third side adjacent the first and second sides, and a fourth side opposing the third side. The architecture further includes a dichroic section disposed between the pump aperture and the first side of the gain region. The dichroic section is characterized by low reflectance at a pump wavelength and high reflectance at the laser wavelength. The architecture additionally includes a first cladding section proximate to the third side of the gain region and a second cladding section proximate to the fourth side of the gain region.

  16. Transverse pumped laser amplifier architecture

    DOE Patents [OSTI]

    Bayramian, Andrew James; Manes, Kenneth; Deri, Robert; Erlandson, Al; Caird, John; Spaeth, Mary

    2013-07-09

    An optical gain architecture includes a pump source and a pump aperture. The architecture also includes a gain region including a gain element operable to amplify light at a laser wavelength. The gain region is characterized by a first side intersecting an optical path, a second side opposing the first side, a third side adjacent the first and second sides, and a fourth side opposing the third side. The architecture further includes a dichroic section disposed between the pump aperture and the first side of the gain region. The dichroic section is characterized by low reflectance at a pump wavelength and high reflectance at the laser wavelength. The architecture additionally includes a first cladding section proximate to the third side of the gain region and a second cladding section proximate to the fourth side of the gain region.

  17. Documentation - Laboratory for Laser Energetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 - Shot Director S.O. 1: S-OM-M-012 S.O. 1-1: Shot Director's Watch Start Checklists (S-OM-P-067) S.O. 1-2: Shot Director's Shot Checklists (S-OM-P-163) S.O. 1-2.0: Closed Access for OMEGA EP Type 7 Target Shot (S-OM-P-164) S.O. 1.2.1: Type 1 - Laser Drivers Only (S-OM-P-165) S.O. 1-2.2: Type 2 - Non-Propagating (S-OM-P-166) S.O. 1-2.3: Type 3 - A Splitter (S-OM-P-167) S.O. 1-2.4: Type 4 - Terminating in Laser Bay (S-OM-P-168) S.O. 1-2.5: Type 5 - Terminating in Target Bay (Non-Target)

  18. Traveling-wave laser-produced-plasma energy source for photoionization laser pumping and lasers incorporating said

    DOE Patents [OSTI]

    Sher, Mark H. (Los Altos, CA); Macklin, John J. (Stanford, CA); Harris, Stephen E. (Palo Alto, CA)

    1989-09-26

    A traveling-wave, laser-produced-plasma, energy source used to obtain single-pass gain saturation of a photoionization pumped laser. A cylindrical lens is used to focus a pump laser beam to a long line on a target. Grooves are cut in the target to present a surface near normal to the incident beam and to reduce the area, and hence increase the intensity and efficiency, of plasma formation.

  19. Laser induced phosphorescence uranium analysis

    DOE Patents [OSTI]

    Bushaw, B.A.

    1983-06-10

    A method is described for measuring the uranium content of aqueous solutions wherein a uranyl phosphate complex is irradiated with a 5 nanosecond pulse of 425 nanometer laser light and resultant 520 nanometer emissions are observed for a period of 50 to 400 microseconds after the pulse. Plotting the natural logarithm of emission intensity as a function of time yields an intercept value which is proportional to uranium concentration.

  20. Laser program annual report, 1979

    SciTech Connect (OSTI)

    Coleman, L.W.; Strack, J.R.

    1980-03-01

    This volume contains four sections that covers the areas of target design, target fabrication, diagnostics, and experiments. Section 3 reports on target design activities, plasma theory and simulation, code development, and atomic theory. Section 4 presents the accomplishments of the target fabrication group, and Section 5 presents results of diagnostic developments and applications for the year. The results of laser-target experiments are presented. (MOW)

  1. I Laser Engineered Net Shaping

    Office of Scientific and Technical Information (OSTI)

    I Laser Engineered Net Shaping (LENS?: A Tool for Direct Fabrication of Metal Parts* Clint Atwood, Michelle GriBth, Lane Harwell, Eric Schlienger, Mark Ensz, John Smugeresky, Tony Romero, Don G-reene, Daryl Reckaway LENSm Project Team Sandia National Laboratories PO Box 5800, Mail Stop 0958 Albuquerque, NM, USA 87185-0958 Abstract For many years, Sandia National Laboratories has been involved in the development and application of rapid prototyping and direct fabrication technologies to build

  2. Jitter debugging two laser experiments

    SciTech Connect (OSTI)

    Rayner, D.M.; Hackett, P.A.; Willis, C.

    1982-03-01

    A method to overcome the problem of timing jitter in two laser experiments is described. The technique involves the use of a time-to-pulse height converter to measure the interpulse separation and a data acquisition system capable of recording this and other experimental parameters on a shot-to-shot basis. The method is estimated to be useful in measurement systems with resolution down to 10 ps.

  3. Laser program annual report, 1979

    SciTech Connect (OSTI)

    Coleman, L.W.; Strack, J.R.

    1980-03-01

    Volume 3 comprises three sections, beginning with Section 7 on advanced quantum electronics. Both theoretical and experimental research and development activities on advanced laser concepts in the quest for high efficiency and high repetition rate are presented. Section 8 contains the results of studies by the Energy and Military Applications group. Section 9 presents results from some of the activities of the advanced isotope separation program. (MOW)

  4. Documentation - Laboratory for Laser Energetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chapter 1 - Shot Director Operating Procedures Volume IX Subsystem Startup and Shutdown Procedures, S-AB-P-010 Shot Director Startup Procedures (S-AB-P-055) Starting the System Hardware and Software (S-AB-P-061) For additional information contact: Director's Administrator University of Rochester - Laboratory for Laser Energetics, 250 E. River Rd, Rochester, NY 14623-1299 Last updated: June 18, 2010

  5. Documentation - Laboratory for Laser Energetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Power Conditioning Operating Procedures Volume VIII System Shot Operations Manual S-AB-P-006 Maintenance of Amplifiers During Shot Operations (S-AB-P-093) Power Conditioning Technician's Capacitor/Diagnostic Bays Closed Access Checklist (S-AB-P-538) For additional information contact: Director's Administrator University of Rochester - Laboratory for Laser Energetics, 250 E. River Rd, Rochester, NY 14623-1299 Last updated: November 13, 2013

  6. Laser-Based Nondestructive Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Projects Laser-Based Nondestructive Testing High speed, non-contact NDT for bridging the gap between traditional nondestructive testing and embedded structural health monitoring. Contact Institute Director Charles Farrar (505) 663-5330 Email UCSD EI Director Michael Todd (858) 534-5951 Professional Staff Assistant Ellie Vigil (505) 667-2818 Email Administrative Assistant Rebecca Duran (505) 665-8899 Email The engineering institute is working to develop a new class of non-destructive

  7. Laser induced phosphorescence uranium analysis

    DOE Patents [OSTI]

    Bushaw, Bruce A. (Kennewick, WA)

    1986-01-01

    A method is described for measuring the uranium content of aqueous solutions wherein a uranyl phosphate complex is irradiated with a 5 nanosecond pulse of 425 nanometer laser light and resultant 520 nanometer emissions are observed for a period of 50 to 400 microseconds after the pulse. Plotting the natural logarithm of emission intensity as a function of time yields an intercept value which is proportional to uranium concentration.

  8. Multiple target laser ablation system

    DOE Patents [OSTI]

    Mashburn, Douglas N. (Knoxville, TN)

    1996-01-01

    A laser ablation apparatus and method are provided in which multiple targets consisting of material to be ablated are mounted on a movable support. The material transfer rate is determined for each target material, and these rates are stored in a controller. A position detector determines which target material is in a position to be ablated, and then the controller controls the beam trigger timing and energy level to achieve a desired proportion of each constituent material in the resulting film.

  9. Multiple target laser ablation system

    DOE Patents [OSTI]

    Mashburn, D.N.

    1996-01-09

    A laser ablation apparatus and method are provided in which multiple targets consisting of material to be ablated are mounted on a movable support. The material transfer rate is determined for each target material, and these rates are stored in a controller. A position detector determines which target material is in a position to be ablated, and then the controller controls the beam trigger timing and energy level to achieve a desired proportion of each constituent material in the resulting film. 3 figs.

  10. Scattering apodizer for laser beams

    DOE Patents [OSTI]

    Summers, M.A.; Hagen, W.F.; Boyd, R.D.

    1984-01-01

    A method is disclosed for apodizing a laser beam to smooth out the production of diffraction peaks due to optical discontinuities in the path of the laser beam, such method comprising introduction of a pattern of scattering elements for reducing the peak intensity in the region of such optical discontinuities, such pattern having smoothly tapering boundaries in which the distribution density of the scattering elements is tapered gradually to produce small gradients in the distribution density, such pattern of scattering elements being effective to reduce and smooth out the diffraction effects which would otherwise be produced. The apodizer pattern may be produced by selectively blasting a surface of a transparent member with fine abrasive particles to produce a multitude of minute pits. In one embodiment, a scattering apodizer pattern is employed to overcome diffraction patterns in a multiple element crystal array for harmonic conversion of a laser beam. The interstices and the supporting grid between the crystal elements are obscured by the gradually tapered apodizer pattern of scattering elements.

  11. Scattering apodizer for laser beams

    DOE Patents [OSTI]

    Summers, Mark A. (Livermore, CA); Hagen, Wilhelm F. (Livermore, CA); Boyd, Robert D. (Livermore, CA)

    1985-01-01

    A method is disclosed for apodizing a laser beam to smooth out the production of diffraction peaks due to optical discontinuities in the path of the laser beam, such method comprising introduction of a pattern of scattering elements for reducing the peak intensity in the region of such optical discontinuities, such pattern having smoothly tapering boundaries in which the distribution density of the scattering elements is tapered gradually to produce small gradients in the distribution density, such pattern of scattering elements being effective to reduce and smooth out the diffraction effects which would otherwise be produced. The apodizer pattern may be produced by selectively blasting a surface of a transparent member with fine abrasive particles to produce a multitude of minute pits. In one embodiment, a scattering apodizer pattern is employed to overcome diffraction patterns in a multiple element crystal array for harmonic conversion of a laser beam. The interstices and the supporting grid between the crystal elements are obscured by the gradually tapered apodizer pattern of scattering elements.

  12. Novel materials for laser refrigeration

    SciTech Connect (OSTI)

    Hehlen, Markus P

    2009-01-01

    The status of optical refrigeration of rare-earth-doped solids is reviewed, and the various factors that limit the performance of current laser-cooling materials are discussed. Efficient optical refrigeration is possible in materials for which {Dirac_h}{omega}{sub max} < E{sub p}/8, where {Dirac_h}{omega}{sub max} is the maximum phonon energy of the host material and E{sub p} is the pump energy of the rare-earth dopant. Transition-metal and OH{sup -}impurities at levels >100 ppb are believed to be the main factors for the limited laser-cooling performance in current materials. The many components of doped ZBLAN glass pose particular processing challenges. Binary fluoride glasses such as YF{sub 3}-LiF are considered as alternatives to ZBLAN. The crystalline system KPb{sub 2}CI{sub 5} :Dy{sup 3+} is identified as a prime candidate for high-efficiency laser cooling.

  13. Laser-induced breakdown spectroscopy in industrial and security applications

    SciTech Connect (OSTI)

    Bol'shakov, Alexander A.; Yoo, Jong H.; Liu Chunyi; Plumer, John R.; Russo, Richard E.

    2010-05-01

    Laser-induced breakdown spectroscopy (LIBS) offers rapid, localized chemical analysis of solid or liquid materials with high spatial resolution in lateral and depth profiling, without the need for sample preparation. Principal component analysis and partial least squares algorithms were applied to identify a variety of complex organic and inorganic samples. This work illustrates how LIBS analyzers can answer a multitude of real-world needs for rapid analysis, such as determination of lead in paint and children's toys, analysis of electronic and solder materials, quality control of fiberglass panels, discrimination of coffee beans from different vendors, and identification of generic versus brand-name drugs. Lateral and depth profiling was performed on children's toys and paint layers. Traditional one-element calibration or multivariate chemometric procedures were applied for elemental quantification, from single laser shot determination of metal traces at {approx}10 {mu}g/g to determination of halogens at 90 {mu}g/g using 50-shot spectral accumulation. The effectiveness of LIBS for security applications was demonstrated in the field by testing the 50-m standoff LIBS rasterizing detector.

  14. Laser systems configured to output a spectrally-consolidated laser beam and related methods

    DOE Patents [OSTI]

    Koplow, Jeffrey P. (San Ramon, CA)

    2012-01-10

    A laser apparatus includes a plurality of pumps each of which is configured to emit a corresponding pump laser beam having a unique peak wavelength. The laser apparatus includes a spectral beam combiner configured to combine the corresponding pump laser beams into a substantially spatially-coherent pump laser beam having a pump spectrum that includes the unique peak wavelengths, and first and second selectively reflective elements spaced from each other to define a lasing cavity including a lasing medium therein. The lasing medium generates a plurality of gain spectra responsive to absorbing the pump laser beam. Each gain spectrum corresponds to a respective one of the unique peak wavelengths of the substantially spatially-coherent pump laser beam and partially overlaps with all other ones of the gain spectra. The reflective elements are configured to promote emission of a laser beam from the lasing medium with a peak wavelength common to each gain spectrum.

  15. Laser rods with undoped, flanged end-caps for end-pumped laser applications

    DOE Patents [OSTI]

    Meissner, Helmuth E. (Pleasanton, CA); Beach, Raymond J. (Livermore, CA); Bibeau, Camille (Danville, CA); Sutton, Steven B. (Manteca, CA); Mitchell, Scott (Tracy, CA); Bass, Isaac (Castro Valley, CA); Honea, Eric (Sunol, CA)

    1999-01-01

    A method and apparatus for achieving improved performance in a solid state laser is provided. A flanged, at least partially undoped end-cap is attached to at least one end of a laserable medium. Preferably flanged, undoped end-caps are attached to both ends of the laserable medium. Due to the low scatter requirements for the interface between the end-caps and the laser rod, a non-adhesive method of bonding is utilized such as optical contacting combined with a subsequent heat treatment of the optically contacted composite. The non-bonded end surfaces of the flanged end-caps are coated with laser cavity coatings appropriate for the lasing wavelength of the laser rod. A cooling jacket, sealably coupled to the flanged end-caps, surrounds the entire length of the laserable medium. Radiation from a pump source is focussed by a lens duct and passed through at least one flanged end-cap into the laser rod.

  16. All fiber passively Q-switched laser

    DOE Patents [OSTI]

    Soh, Daniel B. S.; Bisson, Scott E

    2015-05-12

    Embodiments relate to an all fiber passively Q-switched laser. The laser includes a large core doped gain fiber having a first end. The large core doped gain fiber has a first core diameter. The laser includes a doped single mode fiber (saturable absorber) having a second core diameter that is smaller than the first core diameter. The laser includes a mode transformer positioned between a second end of the large core doped gain fiber and a first end of the single mode fiber. The mode transformer has a core diameter that transitions from the first core diameter to the second core diameter and filters out light modes not supported by the doped single mode fiber. The laser includes a laser cavity formed between a first reflector positioned adjacent the large core doped gain fiber and a second reflector positioned adjacent the doped single mode fiber.

  17. The search for solid state fusion lasers

    SciTech Connect (OSTI)

    Weber, M.J. )

    1989-04-01

    Inertial confinement fusion (ICF) research puts severe demands on the laser driver. In recent years large, multibeam Nd:glass lasers have provided a flexible experimental tool for exploring fusion target physics because of their high powers, variable pulse length and shape, wavelength flexibility using harmonic generation, and adjustable that Nd:glass lasers can be scaled up to provide a single-phase, multi-megajoule, high-gain laboratory microfusion facility, and gas-cooled slab amplifiers with laser diode pump sources are viable candidates for an efficient, high repetition rate, megawatt driver for an ICF reactor. In both applications requirements for energy storage and energy extraction drastically limit the choice of lasing media. Nonlinear optical effects and optical damage are additional design constraints. New laser architectures applicable to ICF drivers and possible laser materials, both crystals and glasses, are surveyed. 20 refs., 2 figs.

  18. Laser diode package with enhanced cooling

    DOE Patents [OSTI]

    Deri, Robert J.; Kotovsky, Jack; Spadaccini, Christopher M.

    2012-06-26

    A laser diode package assembly includes a reservoir filled with a fusible metal in close proximity to a laser diode. The fusible metal absorbs heat from the laser diode and undergoes a phase change from solid to liquid during the operation of the laser. The metal absorbs heat during the phase transition. Once the laser diode is turned off, the liquid metal cools off and resolidifies. The reservoir is designed such that that the liquid metal does not leave the reservoir even when in liquid state. The laser diode assembly further includes a lid with one or more fin structures that extend into the reservoir and are in contact with the metal in the reservoir.

  19. Laser diode package with enhanced cooling

    DOE Patents [OSTI]

    Deri, Robert J. (Pleasanton, CA); Kotovsky, Jack (Oakland, CA); Spadaccini, Christopher M. (Oakland, CA)

    2012-06-12

    A laser diode package assembly includes a reservoir filled with a fusible metal in close proximity to a laser diode. The fusible metal absorbs heat from the laser diode and undergoes a phase change from solid to liquid during the operation of the laser. The metal absorbs heat during the phase transition. Once the laser diode is turned off, the liquid metal cools off and resolidifies. The reservoir is designed such that that the liquid metal does not leave the reservoir even when in liquid state. The laser diode assembly further includes a lid with one or more fin structures that extend into the reservoir and are in contact with the metal in the reservoir.

  20. Laser diode package with enhanced cooling

    DOE Patents [OSTI]

    Deri, Robert J. (Pleasanton, CA); Kotovsky, Jack (Oakland, CA); Spadaccini, Christopher M. (Oakland, CA)

    2011-09-13

    A laser diode package assembly includes a reservoir filled with a fusible metal in close proximity to a laser diode. The fusible metal absorbs heat from the laser diode and undergoes a phase change from solid to liquid during the operation of the laser. The metal absorbs heat during the phase transition. Once the laser diode is turned off, the liquid metal cools off and resolidifies. The reservoir is designed such that that the liquid metal does not leave the reservoir even when in liquid state. The laser diode assembly further includes a lid with one or more fin structures that extend into the reservoir and are in contact with the metal in the reservoir.

  1. Analysis of Picosecond Pulsed Laser Melted Graphite

    DOE R&D Accomplishments [OSTI]

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M. S.; Huang, C. Y.; Malvezzi, A. M.; Bloembergen, N.

    1986-12-01

    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm{sup -1} and the disorder-induced mode at 1360 cm{sup -1}, the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nanosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence.

  2. Ultrashort pulse laser deposition of thin films

    DOE Patents [OSTI]

    Perry, Michael D.; Banks, Paul S.; Stuart, Brent C.

    2002-01-01

    Short pulse PLD is a viable technique of producing high quality films with properties very close to that of crystalline diamond. The plasma generated using femtosecond lasers is composed of single atom ions with no clusters producing films with high Sp.sup.3 /Sp.sup.2 ratios. Using a high average power femtosecond laser system, the present invention dramatically increases deposition rates to up to 25 .mu.m/hr (which exceeds many CVD processes) while growing particulate-free films. In the present invention, deposition rates is a function of laser wavelength, laser fluence, laser spot size, and target/substrate separation. The relevant laser parameters are shown to ensure particulate-free growth, and characterizations of the films grown are made using several diagnostic techniques including electron energy loss spectroscopy (EELS) and Raman spectroscopy.

  3. Fundamental and applied studies of helium ingrowth and aging in plutonium

    SciTech Connect (OSTI)

    Stevens, M.F.; Zocco, T.; Albers, R.; Becker, J.D.; Walter, K.; Cort, B.; Paisley, D.; Nastasi, M.

    1998-12-31

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The purpose of this project was to develop new capabilities to assess the nucleation and growth of helium-associated defects in aged plutonium metal. This effort involved both fundamental and applied models to assist in predicting the transport and kinetics of helium in the metal lattice as well as ab initio calculations of the disposition of gallium in the fcc plutonium lattice and its resulting effects on phase stability. Experimentally this project aimed to establish experimental capabilities crucial to the prediction of helium effects in metals, such as transmission electron microscopy, thermal helium effusion, and the development of a laser-driven mini-flyer for understanding the role of helium and associated defects on shock response of plutonium surrogates.

  4. Compact X-ray Free-Electron Laser from a Laser-Plasma Accelerator Using a

    Office of Scientific and Technical Information (OSTI)

    Transverse-Gradient Undulator (Journal Article) | SciTech Connect Compact X-ray Free-Electron Laser from a Laser-Plasma Accelerator Using a Transverse-Gradient Undulator Citation Details In-Document Search Title: Compact X-ray Free-Electron Laser from a Laser-Plasma Accelerator Using a Transverse-Gradient Undulator Authors: Huang, Zhirong ; Ding, Yuantao ; Schroeder, Carl B. Publication Date: 2012-11-12 OSTI Identifier: 1101325 Type: Publisher's Accepted Manuscript Journal Name: Physical

  5. Grating enhanced solid-state laser amplifiers

    DOE Patents [OSTI]

    Erlandson, Alvin C. (Livermore, CA); Britten, Jerald A. (Clayton, CA)

    2010-11-09

    A novel method and apparatus for suppressing ASE and parasitic oscillation modes in a high average power laser is introduced. Such an invention, as disclosed herein, uses diffraction gratings to increase gain, stored energy density, and pumping efficiency of solid-state laser gain media, such as, but not limited to rods, disks and slabs. By coupling predetermined gratings to solid-state gain media, such as crystal or ceramic laser gain media, ASE and parasitic oscillation modes can be effectively suppressed.

  6. Coupling apparatus for a metal vapor laser

    DOE Patents [OSTI]

    Ball, D.G.; Miller, J.L.

    1993-02-23

    Coupling apparatus for a large bore metal vapor laser is disclosed. The coupling apparatus provides for coupling high voltage pulses (approximately 40 KV) to a metal vapor laser with a high repetition rate (approximately 5 KHz). The coupling apparatus utilizes existing thyratron circuits and provides suitable power input to a large bore metal vapor laser while maintaining satisfactory operating lifetimes for the existing thyratron circuits.

  7. New Laser Targets Fat | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Targets Fat Ivanhoe Newswire Researchers at the Wellman Center for Photomedicine at Massachusetts General Hospital, Harvard Medical School, and the Department of Energy's Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Va., are the first to show a laser can heat body fat without harming the skin. The new study measured how different wavelengths of infrared laser light -- 800 nanometers to 2,600 nanometers -- heated human fat from surgically removed tissue

  8. Laser Driven Dynamic Loading of Condensed Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Driven Dynamic Loading of Condensed Matter Laser Driven Dynamic Loading of Condensed Matter Advanced diagnostics of experiments covering many orders of magnitude in strain rate Contact Eric Loomis (505) 665-3196 Email Dynamic materials experiments over a wide range of strain rates are essential to studying constitutive relations (e.g., plasticity), damage (e.g., spall), equations of state, phase transitions and kinetics, and novel materials. The Trident laser facility supplies unique,

  9. Laser, Supercomputer Measure Speedy Electrons in Silicon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser, Supercomputer Measure Speedy Electrons in Silicon Laser, Supercomputer Measure Speedy Electrons in Silicon Simulations at NERSC Help Illuminate Attosecond Laser Experiment Findings December 19, 2014 Contact: Robert Sanders, rlsanders@berkeley.edu, (510) 643-6998 speedyelectrons In silicon, electrons attached to atoms in the crystal lattice can be mobilized into the conduction band by light or voltage. Berkeley scientists have taken snapshots of this very brief band-gap jump and timed it

  10. 'Erratic' Lasers Pave Way for Tabletop Accelerators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lasers Pave Way for Tabletop Accelerators 'Erratic' Lasers Pave Way for Tabletop Accelerators Simulations at NERSC help researchers simplify design of mini particle accelerators June 9, 2014 Kate Green, KGreene@lbl.gov, 510-486-4404 laserplasmaaccelerator 3D map of the longitudinal wakefield generated by the incoherent combination of 208 low-energy laser beamlets. In the region behind the driver, the wakefield is regular. Image: Carlo Benedetti, Berkeley Lab Making a tabletop particle

  11. Learn More about Fusion & Lasers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Learn More about Fusion & Lasers How Lasers Work Learn how lasers were developed and how they work. Outreach NIF & Photon Science researchers take learning opportunities on the road. Glossary Don't know what something means? Find definitions of terms related to NIF, fusion, and photon science in our glossary. For Teachers LLNL's Science Education Program provides professional development instruction to in-service and pre-service teachers. For Kids See how we make giant crystals and how

  12. Parabola Alignment Diagnostic - Laboratory for Laser Energetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Parabola Alignment Diagnostic - Laboratory for Laser Energetics Laboratory for Laser Energetics Logo Search Home Around the Lab Past Issues Past Quick Shots About Office of the Director Map to LLE LLE Tours LLE Building Map Partnerships Careers Education Undergraduate Program Graduate Program High School Program Faculty Contacts Computational Astrophysics H-E-D Physics Inertial Confinement Fusion Laser-Plasma Interaction Radiative Hydrodynamics Plasma Astrophysics Organization Director's Office

  13. AVLIS Laser Data Acquisition and Control System

    SciTech Connect (OSTI)

    Gill, T.E.

    1986-01-01

    The AVLIS Laser Data Acquisition and Control System provides an integrated hardware and software package which controls up to five diagnostic lasers and automatic and manual data acquisition and reduction subsystems being used to analyze uranium vapor density in the Atomic Vapor Laser Isotope Separation (AVLIS) separation vessel in Oak Ridge, Tennessee. This paper discusses acquisition of critical real-time and post-run vapor density data.

  14. Coupling apparatus for a metal vapor laser

    DOE Patents [OSTI]

    Ball, Don G. (Livermore, CA); Miller, John L. (Dublin, CA)

    1993-01-01

    Coupling apparatus for a large bore metal vapor laser is disclosed. The coupling apparatus provides for coupling high voltage pulses (approximately 40 KV) to a metal vapor laser with a high repetition rate (approximately 5 KHz). The coupling apparatus utilizes existing thyratron circuits and provides suitable power input to a large bore metal vapor laser while maintaining satisfactory operating lifetimes for the existing thyratron circuits.

  15. Vector generator scan converter

    DOE Patents [OSTI]

    Moore, James M. (Livermore, CA); Leighton, James F. (Livermore, CA)

    1990-01-01

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O (input/output) channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardward for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold.

  16. Vector generator scan converter

    DOE Patents [OSTI]

    Moore, J.M.; Leighton, J.F.

    1988-02-05

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardware for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold. 7 figs.

  17. Method of preparing novel fluorinated laser dyes

    DOE Patents [OSTI]

    Hammond, Peter R.; Freeman, James F.

    1991-01-01

    A novel class of dye is disclosed which is particularly efficient and stable for dye laser applications, lasing between 540 and 570 nm.

  18. Ultrafast laser diagnostics to investigate initiation fundamentals...

    Office of Scientific and Technical Information (OSTI)

    pressure and chemical change during the shock initiation of energetic materials. ... We have also demonstrated laser shock and particle velocity measurements in thin film ...

  19. Diode pumped alkali vapor fiber laser

    DOE Patents [OSTI]

    Payne, Stephen A. (Castro Valley, CA); Beach, Raymond J. (Livermore, CA); Dawson, Jay W. (Livermore, CA); Krupke, William F. (Pleasanton, CA)

    2006-07-26

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  20. Diode pumped alkali vapor fiber laser

    DOE Patents [OSTI]

    Payne, Stephen A. (Castro Valley, CA); Beach, Raymond J. (Livermore, CA); Dawson, Jay W. (Livermore, CA); Krupke, William F. (Pleasanton, CA)

    2007-10-23

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.