Sample records for apply heated buildings

  1. Ground-source Heat Pumps Applied to Commercial Buildings

    SciTech Connect (OSTI)

    Parker, Steven A.; Hadley, Donald L.

    2009-07-14T23:59:59.000Z

    Ground-source heat pumps can provide an energy-efficient, cost-effective way to heat and cool commercial facilities. While ground-source heat pumps are well established in the residential sector, their application in larger, commercial-style, facilities is lagging, in part because of a lack of experience with the technology by those in decision-making positions. Through the use of a ground-coupling system, a conventional water-source heat pump design is transformed to a unique means of utilizing thermodynamic properties of earth and groundwater for efficient operation throughout the year in most climates. In essence, the ground (or groundwater) serves as a heat source during winter operation and a heat sink for summer cooling. Many varieties in design are available, so the technology can be adapted to almost any site. Ground-source heat pump systems can be used widely in commercial-building applications and, with proper installation, offer great potential for the commercial sector, where increased efficiency and reduced heating and cooling costs are important. Ground-source heat pump systems require less refrigerant than conventional air-source heat pumps or air-conditioning systems, with the exception of direct-expansion-type ground-source heat pump systems. This chapter provides information and procedures that an energy manager can use to evaluate most ground-source heat pump applications. Ground-source heat pump operation, system types, design variations, energy savings, and other benefits are explained. Guidelines are provided for appropriate application and installation. Two case studies are presented to give the reader a sense of the actual costs and energy savings. A list of manufacturers and references for further reading are included for prospective users who have specific or highly technical questions not fully addressed in this chapter. Sample case spreadsheets are provided in Appendix A. Additional appendixes provide other information on the ground-source heat pump technology.

  2. Building America Expert Meeting: Recommendations for Applying...

    Energy Savers [EERE]

    Building America Expert Meeting: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems Building America Expert Meeting: Recommendations...

  3. Evacuated-Tube Heat-Pipe Solar Collectors Applied to the Recirculation Loop in a Federal Building: Preprint

    SciTech Connect (OSTI)

    Walker, A.; Mahjouri, F.; Stiteler, R.

    2004-06-01T23:59:59.000Z

    This paper describes the design, simulation, construction, and initial performance of a solar water heating system (a 360-tube evacuated-tube heat-pipe solar collector, 54 m2 in gross area, 36 m2 in net absorber area) installed at the top of the hot water recirculation loop in the Social Security Administration's Mid-Atlantic Center in Philadelphia. When solar energy is available, water returning to the hot water storage tank is heated by the solar array. This new approach, in contrast to the more conventional approach of preheating incoming water, is made possible by the thermal diode effect of heat pipes and low heat loss from evacuated-tube solar collectors. The simplicity of this approach and its low installation costs support the deployment of solar energy in existing commercial buildings, especially where the roof is some distance away from the water heating system, which is often in the basement. Initial performance measurements of the system are reported.

  4. Applied heat transfer

    SciTech Connect (OSTI)

    Ganapathy, V.

    1982-01-01T23:59:59.000Z

    Heat transfer principles are discussed with emphasis on the practical aspects of the problems. Correlations for heat transfer and pressure drop from several worldwide sources for flow inside and outside of tubes, including finned tubes are presented, along with design and performance calculations of heat exchangers economizers, air heaters, condensers, waste-heat boilers, fired heaters, superheaters, and boiler furnaces. Vibration analysis for tube bundles and heat exchangers are also discussed, as are estimating gas-mixture properties at atmospheric and elevated pressures and life-cycle costing techniques. (JMT)

  5. Building wall heat flux calculations

    SciTech Connect (OSTI)

    Park, J.E.; Kirkpatrick, J.R.; Tunstall, J.N.; Childs, K.W.

    1987-01-01T23:59:59.000Z

    Calculations of the heat transfer through the standard stud wall structure of a residential building are described. The wall cavity contains no insulation. Four of the five test cases represent progressively more complicated approximations to the heat transfer through and within a hollow wall structure. The fifth adds the model components necessary to severely inhibit the radiative energy transport across the empty cavity. Flow within the wall cavity is calculated from the Navier-Stokes equations and the energy conservation equation for an ideal gas using the Implicit Compressible Eulerian (ICE) algorithm. The fluid flow calculation is coupled to the radiation-conduction model for the solid portions of the system. Conduction through sill plates is about 4% of the total heat transferred through a composite wall.

  6. Building wall heat flux calculations

    SciTech Connect (OSTI)

    Park, J.E.; Kirkpatrick, J.R.; Tunstall, J.N.; Childs, K.W.

    1987-06-01T23:59:59.000Z

    Calculations of the heat transfer through the standard stud wall structure of a residential building are described. The wall cavity contains no insulation. Four of the five test cases represent progressively more complicated approximations to the heat transfer through and within a hollow wall structure. The fifth adds the model components necessary to severely inhibit the radiative energy transport across the empty cavity. Flow within the wall cavity is calculated from the Navier-Stokes equations and the energy conservation equation for an ideal gas using the Implicit Compressible Eulerian (ICE) algorithm. The fluid flow calculation is coupled to the radiation-conduction model for the solid portions of the system. Conduction through sill plates is about 4% of the total heat transferred through a composite wall. All of the other model elements (conduction through wall board, sheathing, and siding; convection from siding and wallboard to ambients; and radiation across the wall cavity) are required to accurately predict the heat transfer through a wall. Addition of a foil liner on one inner surface of the wall cavity reduces the total heat transferred by almost 50%.

  7. Modeling of Residential Buildings and Heating Systems

    E-Print Network [OSTI]

    Masy, G.; Lebrun, J.

    2004-01-01T23:59:59.000Z

    -zone building model is used in each case. A model of the heating system is also used for the multi-storey building. Both co-heating and tracer gas measurements are used in order to adjust the parameters of each building model. A complete monitoring...

  8. Modeling of Residential Buildings and Heating Systems 

    E-Print Network [OSTI]

    Masy, G.; Lebrun, J.

    2004-01-01T23:59:59.000Z

    -zone building model is used in each case. A model of the heating system is also used for the multi-storey building. Both co-heating and tracer gas measurements are used in order to adjust the parameters of each building model. A complete monitoring...

  9. Building America Webinar: Opportunities to Apply Phase Change...

    Energy Savers [EERE]

    Opportunities to Apply Phase Change Materials to Building Enclosures Building America Webinar: Opportunities to Apply Phase Change Materials to Building Enclosures This webinar,...

  10. Opportunities to Apply Phase Change Materials to Building Enclosures...

    Energy Savers [EERE]

    Opportunities to Apply Phase Change Materials to Building Enclosures Webinar Opportunities to Apply Phase Change Materials to Building Enclosures Webinar Slides from the Building...

  11. temperature heat pumps applied to

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    losses (waste heat) 250-300°C......1100°C ~ 100 TWh/year Low temperature thermal losses (waste heat) 25°C;Waste heat recovery (1) In a decreasing energetic interest order Achema 2012 Frankfurt June 21th 2012>>Twaste #12;Waste heat recovery (2) Achema 2012 Frankfurt June 21th 2012 There is no interesting thermal

  12. Innovative Miniaturized Heat Pumps for Buildings: Modular Thermal Hub for Building Heating, Cooling and Water Heating

    SciTech Connect (OSTI)

    None

    2010-09-01T23:59:59.000Z

    BEETIT Project: Georgia Tech is using innovative components and system design to develop a new type of absorption heat pump. Georgia Tech’s new heat pumps are energy efficient, use refrigerants that do not emit greenhouse gases, and can run on energy from combustion, waste heat, or solar energy. Georgia Tech is leveraging enhancements to heat and mass transfer technology possible in microscale passages and removing hurdles to the use of heat-activated heat pumps that have existed for more than a century. Use of microscale passages allows for miniaturization of systems that can be packed as monolithic full-system packages or discrete, distributed components enabling integration into a variety of residential and commercial buildings. Compared to conventional heat pumps, Georgia Tech’s design innovations will create an absorption heat pump that is much smaller, has higher energy efficiency, and can also be mass produced at a lower cost and assembly time.

  13. Human Health Science Building Geothermal Heat Pumps

    Broader source: Energy.gov [DOE]

    Project objectives: Construct a ground sourced heat pump, heating, ventilation, and air conditioning system for the new Oakland University Human Health Sciences Building utilizing variable refrigerant flow (VRF) heat pumps. A pair of dedicated outdoor air supply units will utilize a thermally regenerated desiccant dehumidification section. A large solar thermal system along with a natural gas backup boiler will provide the thermal regeneration energy.

  14. Klamath Apartment Buildings (13) Space Heating Low Temperature...

    Open Energy Info (EERE)

    Apartment Buildings (13) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Klamath Apartment Buildings (13) Space Heating Low Temperature...

  15. Modeling of Heat Transfer in Rooms in the Modelica Buildings Library

    E-Print Network [OSTI]

    Wetter, Michael

    2013-01-01T23:59:59.000Z

    for building heating, ventilation and air-conditioningfor Building Heating, Ventilation and Air- Conditioning

  16. Building America Expert Meeting Report: Hydronic Heating in Multifamily Buildings

    SciTech Connect (OSTI)

    Dentz, J.

    2011-10-01T23:59:59.000Z

    The topic of this expert meeting was cost-effective controls and distribution retrofit options for hot water and steam space heating systems in multi-family buildings with the goals of reducing energy waste and improving occupant comfort. The U.S. Department of Energy's Building America program develops technologies with the goal of reducing energy use by 30% to 50% in residential buildings. Toward this goal, the program sponsors 'Expert Meetings' focused on specific building technology topics. The meetings are intended to sharpen Building America research priorities, create a forum for sharing information among industry leaders and build partnerships with professionals and others that can help support the program's research needs and objectives. The topic of this expert meeting was cost-effective controls and distribution retrofit options for hot water and steam space heating systems in multifamily buildings with the goals of reducing energy waste and improving occupant comfort. The objectives of the meeting were to: (1) Share knowledge and experience on new and existing solutions: what works, what doesn't and why, and what's new; (2) Understand the market barriers to currently offered solutions: what disconnects exist in the market and what is needed to overcome or bridge these gaps; and (3) Identify research needs.

  17. Building America Standing Technical Committee- Water Heating

    Broader source: Energy.gov [DOE]

    The Building America program is focused on delivering market acceptable energy efficiency solutions to homeowners, builders, and contractors. Near term goals of 30-50% source energy savings are currently targeted. This document examines water heating gaps and barriers, and is updated as of Feb. 2012.

  18. PREDICTING THE TIME RESPONSE OF A BUILDING UNDER HEAT INPUT CONDITIONS FOR ACTIVE SOLAR HEATING SYSTEMS

    E-Print Network [OSTI]

    Warren, Mashuri L.

    2013-01-01T23:59:59.000Z

    OF A BUILDING UNDER HEAT INPUT CONDITIONS FOR ACTIVE SOLAROF A BUILDING UNDER HEAT INPUT CONDITIONS FOR ACTIVE SOLARbuilding to changes in heat input, and to predict room and

  19. Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems

    E-Print Network [OSTI]

    Wetter, Michael

    2010-01-01T23:59:59.000Z

    for Building Heating, Ventilation and Air-Conditioningfor Building Heating, Ventilation and Air-Conditioningfor building heating, ventilation and air con- ditioning

  20. NREL's Building-Integrated Supercomputer Provides Heating and...

    Broader source: Energy.gov (indexed) [DOE]

    allowing it to help meet building heating loads. At least 90 percent of the computer's waste heat is captured and reused as the primary heat source for the ESIF offices and...

  1. Building America Whole-House Solutions for Existing Homes: Applying...

    Energy Savers [EERE]

    to Florida Local Government Retrofit Programs - Central Florida (Fact Sheet) Building America Whole-House Solutions for Existing Homes: Applying Best Practices to Florida...

  2. Retrocommissioning Case Study - Applying Building Selection Criteria for Maximum Results

    E-Print Network [OSTI]

    Luskay, L.; Haasl, T.; Irvine, L.; Frey, D.

    2002-01-01T23:59:59.000Z

    RETROCOMMISSIONING CASE STUDY ?Applying Building Selection Criteria for Maximum Results? Larry Luskay, Tudi Haasl, Linda Irvine Portland Energy Conservation, Inc. Portland, Oregon Donald Frey Architectural Energy Corporation Boulder.... The building was retrocommissioned by Portland Energy Conservation, Inc. (PECI), in conjunction with Architectural Energy Corporation (AEC). The building-specific goals were: 1) Obtain cost-effective energy savings from optimizing operation...

  3. Duct Systems in large commercial buildings: Physical characterization, air leakage, and heat conduction gains

    E-Print Network [OSTI]

    Fisk, W.J.

    2011-01-01T23:59:59.000Z

    fabricators of heating, ventilation, and air conditioningof Building Heating, Ventilation, Air Conditioning, and

  4. Apply: Funding Opportunity- Buildings University Innovators and Leaders Development (BUILD)

    Broader source: Energy.gov [DOE]

    Full Application Deadline – February 11, 2015 This FOA makes available competitive, 2-year cooperative agreements for U.S.-based university teams to research and develop innovative building energy efficient technologies, manufacturing (for projects developing hardware), and commercialization.

  5. Impacts of Some Building Design Parameters on Heat Pump Applications

    E-Print Network [OSTI]

    Erdim, B.; Manioglu, G.

    2011-01-01T23:59:59.000Z

    One of the most important properties of a sustainable building is to provide thermal comfort conditions for users with a minimum heating and cooling energy consumption. Therefore, primary design parameters of building should be developed...

  6. Heat storage and distribution inside passive-solar buildings

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1983-05-01T23:59:59.000Z

    Passive solar buildings are investigated from the viewpoint of the storage of solar heat in materials of the building: walls, floors, ceilings, and furniture. The effects of the location, material, thickness, and orientation of each internal building surface are investigated. The concept of diurnal heat capacity is introduced and a method of using this parameter to estimate clear-day temperature swings is developed. Convective coupling to remote rooms within a building is discussed. Design guidelines are given.

  7. Building America Webinar: Central Multifamily Water Heating Systems

    Broader source: Energy.gov [DOE]

    This U.S. Department of Energy Building America webinar, Central Multifamily Water Heating Systems, will take place on January 21, 2015.

  8. Passive Solar Building Design and Solar Thermal Space Heating Webinar

    Broader source: Energy.gov [DOE]

    Webinar of National Renewable Energy Laboratory (NREL) Senior Engineer Andy Walker's presentation about passive solar building design and solar thermal space heating technologies and applications.

  9. Encouraging Combined Heat and Power in California Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2014-01-01T23:59:59.000Z

    cooling, heating, and power, CCHP, commercial buildings,bln $ CAA CAISO Cal/EPA CARB CCHP CEUS CHP CSI CPP DER DER-heating, and electric power (CCHP) adoption in California’s

  10. Interaction of a solar space heating system with the thermal behavior of a building

    SciTech Connect (OSTI)

    Vilmer, C.; Warren, M.L.; Auslander, D.

    1980-12-01T23:59:59.000Z

    The thermal behavior of a building in response to heat input from an active solar space heating system is analyzed to determine the effect of the variable storage tank temperature on the cycling rate, on-time, and off-time of a heating cycle and on the comfort characteristics of room air temperature swing and of offset of the average air temperature from the setpoint (droop). A simple model of a residential building, a fan coil heat-delivery system, and a bimetal thermostat are used to describe the system. A computer simulation of the system behavior has been developed and verified by comparisons with predictions from previous studies. The system model and simulation are then applied to determine the building response to a typical hydronic solar heating system for different solar storage temperatures, outdoor temperatures, and fan coil sizes. The simulations were run only for those cases where there was sufficient energy from storage to meet the building load requirements.

  11. Simulation study of a heat pump for simultaneous heating and cooling coupled to buildings

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Simulation study of a heat pump for simultaneous heating and cooling coupled to buildings Redouane) 141-149" DOI : 10.1016/j.enbuild.2013.12.047 #12;ABSTRACT In several situations, a heat pump occur. Unlike a reversible heat pump that works alternatively in heating or cooling, a HPS operates

  12. Human Health Science Building Geothermal Heat Pumps

    Broader source: Energy.gov (indexed) [DOE]

    HUMAN HEALTH SCIENCE BLDG GEO HEAT PUMP SYSTEMS Principal Investigator Source Heat Pumps Demo Projects May 20, 2010 This presentation does not contain any proprietary confidential,...

  13. Lessons learned How to Build Successful Heat Pump Markets

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;2 Lessons learned ­ How to Build Successful Heat Pump Markets Lukas Bergmann, Delta Energy & Environment European Heat Pump Summit 2013 Nürnberg, 15th October 2013 Contact: lukas CHP Small Wind Photovoltaics Energy Efficiency Smart Demand Heat Pumps Networks Micro-CHP Energy

  14. Natural convection airflow and heat transport in buildings: experimental results

    SciTech Connect (OSTI)

    Balcomb, J.D.; Jones, G.F.

    1985-01-01T23:59:59.000Z

    Observations of natural convection airflow in passive solar buildings are described. Particular results are given for two buildings supplementing other data already published. A number of generalizations based on the monitoring of the 15 buildings are presented. It is concluded that energy can be reasonably well distributed throughout a building by natural convection provided suitable openings are present and that the direction of heat transport is either horizontally across or upward.

  15. Overheating in Hot Water- and Steam-Heated Multifamily Buildings

    SciTech Connect (OSTI)

    Dentz, J.; Varshney, K.; Henderson, H.

    2013-10-01T23:59:59.000Z

    Apartment temperature data have been collected from the archives of companies that provide energy management systems (EMS) to multifamily buildings in the Northeast U.S. The data have been analyzed from more than 100 apartments in eighteen buildings where EMS systems were already installed to quantify the degree of overheating. This research attempts to answer the question, 'What is the magnitude of apartment overheating in multifamily buildings with central hot water or steam heat?' This report provides valuable information to researchers, utility program managers and building owners interested in controlling heating energy waste and improving resident comfort. Apartment temperature data were analyzed for deviation from a 70 degrees F desired setpoint and for variation by heating system type, apartment floor level and ambient conditions. The data shows that overheating is significant in these multifamily buildings with both hot water and steam heating systems.

  16. Heat storage and distribution inside passive-solar buildings

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1983-01-01T23:59:59.000Z

    Passive-solar buildings are investigated from the viewpoint of the storage of solar heat in materials of the building: walls, floors, ceilings, and furniture. The effects of the location, material, thickness, and orientation of each internal building surface are investigated. The concept of diurnal heat capacity is introduced and a method of using this parameter to estimate clear-day temperature swings is developed. Convective coupling to remote rooms within a building is discussed, including both convection through single doorways and convective loops that may exist involving a sunspace. Design guidelines are given.

  17. Building America Webinar: Central Multifamily Water Heating Systems

    Broader source: Energy.gov [DOE]

    Hosted by DOE's Building America program, this webinar will focus on the effective use of central heat pump water heaters (HPWHs) and control systems to reduce the energy use in hot water distribution.

  18. Technical and Energy Assessment of Building Integrated Photovoltaic Systems applied to the UAE Office Buildings 

    E-Print Network [OSTI]

    Radhi, H.

    2010-01-01T23:59:59.000Z

    Technical and Energy Assessment of Building Integrated Photovoltaic Systems applied to the UAE Office Buildings Hassan Radhi Assistant Professor College of Engineering UAE University Al-Ain, United Arab Emirates ABSTRACT In the market... due to the PV panels represents an important factor when the EPBT is estimated Keywords: BiPV, embodied energy, UAE commercial buildings. INTRODUCTION Developments in the design and manufacture of photovoltaic cells have recently been a...

  19. Technical and Energy Assessment of Building Integrated Photovoltaic Systems applied to the UAE Office Buildings

    E-Print Network [OSTI]

    Radhi, H.

    2010-01-01T23:59:59.000Z

    Technical and Energy Assessment of Building Integrated Photovoltaic Systems applied to the UAE Office Buildings Hassan Radhi Assistant Professor College of Engineering UAE University Al-Ain, United Arab Emirates ABSTRACT In the market... due to the PV panels represents an important factor when the EPBT is estimated Keywords: BiPV, embodied energy, UAE commercial buildings. INTRODUCTION Developments in the design and manufacture of photovoltaic cells have recently been a...

  20. DESIGN OF AN EXPERIMENTAL FACILITY FOR BUILDING AIRFLOW AND HEAT

    E-Print Network [OSTI]

    and Cold Walls .................................................................................. 34 #12;vDESIGN OF AN EXPERIMENTAL FACILITY FOR BUILDING AIRFLOW AND HEAT TRANSFER MEASUREMENTS By MOHAMMAD fulfillment of the requirements for the Degree of MASTER OF SCIENCE May, 2005 #12;ii DESIGN OF A HEAT TRANSFER

  1. OPTIMAi UTILIZATION OF SOLAR ENERGY IN HEATING AND COOLINGOF BUILDINGS

    E-Print Network [OSTI]

    Moore, John Barratt

    OPTIMAi UTILIZATION OF SOLAR ENERGY IN HEATING AND COOLINGOF BUILDINGS C. Byron Winn Gearold R Wales, Australia ABSTRACT The Colorado State University Solar House has to minimizing the use of auxiliary energy required been studied with respect for heating and cooling. The approach

  2. Thermal Solar Energy Systems for Space Heating of Buildings 

    E-Print Network [OSTI]

    Gomri, R.; Boulkamh, M.

    2010-01-01T23:59:59.000Z

    In this study, the simulation and the analysis of a solar flat plate collectors combined with a compression heat pump is carried out. The system suggested must ensure the heating of a building without the recourse to an auxiliary energy source...

  3. IMPACT OF THE SUN PATCH ON HEATING AND COOLING POWER EVALUATION: APPLIED TO A LOW ENERGY CELL

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    IMPACT OF THE SUN PATCH ON HEATING AND COOLING POWER EVALUATION: APPLIED TO A LOW ENERGY CELL A Renardières ­ Ecuelles, 77818 MORET-SUR- LOING Cedex, France ABSTRACT In the context of low energy buildings we study the impact of the incoming radiation through a window (sun patch) on the heating and cooling

  4. INTERACTION OF A SOLAR SPACE HEATING SYSTEM WITH THE THERMAL BEHAVIOR OF A BUILDING

    E-Print Network [OSTI]

    Vilmer, Christian

    2013-01-01T23:59:59.000Z

    P(t) UAB time constant. Heat input power from a fan coil orof a building in response to heat input from an active solarS.R. of a building under heat input conditions for active

  5. Heating remote rooms in passive solar buildings

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1981-01-01T23:59:59.000Z

    Remote rooms can be effectively heated by convection through a connecting doorway. A simple steady-state equation is developed for design purposes. Validation of a dynamic model is achieved using data obtained over a 13-day period. Dynamic effects are investigated using a simulation analysis for three different cases of driving temperature; the effect is to reduce the temperature difference between the driving room and the remote room compared to the steady-state model. For large temperature swings in the driving room a strategy which uses the intervening door in a diode mode is effective. The importance of heat-storing mass in the remote room is investigated.

  6. Building America Case Study: Boiler Control Replacement for Hydronically Heated Multifamily Buildings, Cambridge, Massachusetts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-11-01T23:59:59.000Z

    The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, Massachusetts, to study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating controls in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded. Fuel use in the development was excessive compared to similar properties. A poorly insulated thermal envelope contributed to high energy bills, but adding wall insulation was not cost-effective or practical. The more cost-effective option was improving heating system efficiency. Efficient operation of the heating system faced several obstacles, including inflexible boiler controls and failed thermostatic radiator valves. Boiler controls were replaced with systems that offer temperature setbacks and one that controls heat based on apartment temperature in addition to outdoor temperature. Utility bill analysis shows that post-retrofit weather-normalized heating energy use was reduced by 10%-31% (average of 19%). Indoor temperature cutoff reduced boiler runtime (and therefore heating fuel consumption) by 28% in the one building in which it was implemented. Nearly all savings were obtained during night which had a lower indoor temperature cut off (68 degrees F) than day (73 degrees F). This implies that the outdoor reset curve was appropriately adjusted for this building for daytime operation. Nighttime setback of heating system supply water temperature had no discernable impact on boiler runtime or gas bills.

  7. New and Existing Buildings Heating and Cooling Opportunities: Dedicated Heat Recovery Chiller

    Broader source: Energy.gov [DOE]

    Presentation covers the new and existing buildings heating and cooling opportunities and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

  8. Building-Integrated Heat & Moisture Exchange

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy FutureDepartment of EnergyRolandBuilding the Basic PVC

  9. Convective heat transfer inside passive solar buildings

    SciTech Connect (OSTI)

    Jones, R.W.; Balcomb, J.D.; Yamaguchi, K.

    1983-01-01T23:59:59.000Z

    Natural convection between spaces in a building can play a major role in energy transfer. Two situations are investigated: convection through a single doorway into a remote room, and a convective loop in a two-story house with a south sunspace where a north stairway serves as the return path. A doorway-sizing equation is given for the single-door case. Detailed data are given from the monitoring of airflow in one two-story house and summary data are given for five others. Observations on the nature of the airflow and design guidelines are presented.

  10. Convective heat transfer inside passive solar buildings

    SciTech Connect (OSTI)

    Jones, R.W.; Balcomb, J.D.; Yamaguchi, K.

    1983-11-01T23:59:59.000Z

    Natural convection between spaces in a building which play a major role in energy transfer are discussed. Two situations are investigated: Convection through a single doorway into a remote room, and a convective loop in a two story house with a south sunspace where a north stairway serves as the return path. A doorway sizing equation is given for the single door case. Data from airflow monitoring in one two-story house and summary data for five others are presented. The nature of the airflow and design guidelines are presented.

  11. Buildings","All Heated

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. If you need43 3.84 1967-2010 Pipeline andYear0.06W W2. Heating

  12. Buildings","All Heated

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. If you need43 3.84 1967-2010 Pipeline andYear0.06W W2. Heating3.

  13. Expert Meeting Report: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems

    SciTech Connect (OSTI)

    Rudd, A.; Ueno, K.; Bergey, D.; Osser, R.

    2012-07-01T23:59:59.000Z

    The topic of this meeting was 'Recommendations For Applying Water Heaters In Combination Space And Domestic Water Heating Systems.' Presentations and discussions centered on the design, performance, and maintenance of these combination systems, with the goal of developing foundational information toward the development of a Building America Measure Guideline on this topic. The meeting was held at the Westford Regency Hotel, in Westford, Massachusetts on 7/31/2011.

  14. Feasibility Analysis For Heating Tribal Buildings with Biomass

    SciTech Connect (OSTI)

    Steve Clairmont; Micky Bourdon; Tom Roche; Colene Frye

    2009-03-03T23:59:59.000Z

    This report provides a feasibility study for the heating of Tribal buildings using woody biomass. The study was conducted for the Confederated Salish and Kootenai Tribes of the Flathead Reservation in western Montana. S&K Holding Company and TP Roche Company completed the study and worked together to provide the final report. This project was funded by the DOE's Tribal Energy Program.

  15. Infiltration Heat Recovery in Building Walls: Computational Fluid Dynamics Investigations Results

    E-Print Network [OSTI]

    LBNL-51324 Infiltration Heat Recovery in Building Walls: Computational Fluid Dynamics leading to partial recovery of heat conducted through the wall. The Infiltration Heat Recovery (IHR) factor was introduced to quantify the heat recovery and correct the conventional calculations

  16. Pseudo dynamic transitional modeling of building heating energy demand using artificial neural network

    E-Print Network [OSTI]

    Paudel, Subodh; Elmtiri, Mohamed; Kling, Wil L; Corre, Olivier Le; Lacarriere, Bruno

    2014-01-01T23:59:59.000Z

    R. Satake, Prediction of energy demands using neural networkof Building Heating Energy Demand Using Artificial Neuralknow energy flows and energy demand of the buildings for the

  17. Heat recovery and thermal storage : a study of the Massachusetts State Transportation Building

    E-Print Network [OSTI]

    Bjorklund, Abbe Ellen

    1986-01-01T23:59:59.000Z

    A study of the energy system at the Massachusetts State Transportation Building was conducted. This innovative energy system utilizes internal-source heat pumps and a water thermal storage system to provide building heating ...

  18. Text-Alternative Version of Building America Webinar: New Construction Hybrid-Ductless Heat Pumps Study

    Broader source: Energy.gov [DOE]

    Text version of the Building America June 24 Webinar: New Construction Hybrid-Ductless Heat Pumps Study.

  19. MODELING OF HEAT TRANSFER IN ROOMS IN THE MODELICA "BUILDINGS" LIBRARY

    E-Print Network [OSTI]

    describes the implementation of the room heat transfer model in the free open-source Modelica "Buildings

  20. Direct Use for Building Heat and Hot Water Presentation Slides and Text Version

    Broader source: Energy.gov [DOE]

    Download presentation slides from the DOE Office of Indian Energy webinar on direct use for building heat and hot water.

  1. An in-depth Analysis of Space Heating Energy Use in Office Buildings

    E-Print Network [OSTI]

    Lin, Hung-Wen

    2013-01-01T23:59:59.000Z

    experimental data, Energy and Buildings 36, 543-555. O.G.consumption for heating, Energy and Buildings 43, 2662-2672.reduction for a net zero energy building, ACEEE Summer Study

  2. Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems

    E-Print Network [OSTI]

    Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems Michael Wetter available Modelica library for building heating, ventilation and air conditioning systems. The library development is focused on the develop- ment of models for building heating, ventilation and air

  3. Impact of Climate Change Heating and Cooling Energy Use in Buildings in the United States

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    1 Impact of Climate Change Heating and Cooling Energy Use in Buildings in the United States Haojie activities in buildings. One area directly affected by climate change is the energy consumption for heating data for use in building energy simulations by EnergyPlus. Two types of residential buildings and seven

  4. Performance estimates for attached-sunspace passive solar heated buildings

    SciTech Connect (OSTI)

    McFarland, R.D.; Jones, R.W.

    1980-01-01T23:59:59.000Z

    Performance predictions have been made for attached-sunspace types of passively solar heated buildings. The predictions are based on hour-by-hour computer simulations using computer models developed in the framework of PASOLE, the Los Alamos Scientific Laboratory (LASL) passive solar energy simulation program. The models have been validated by detailed comparison with actual hourly temperature measurements taken in attached-sunspace test rooms at LASL.

  5. A Review of Ground Coupled Heat Pump Models Used in Whole-Building Computer Simulation Programs 

    E-Print Network [OSTI]

    Do, S. L.; Haberl, J. S.

    2010-01-01T23:59:59.000Z

    Increasingly, building owners are turning to ground source heat pump (GSHP) systems to improve energy efficiency. Ground-coupled heat pump (GCHP) systems with a vertical closed ground loop heat exchanger are one of the more widely used systems. Over...

  6. Building America Webinar: Central Multifamily Water Heating Systems- Multifamily Central Heat Pump Water Heating

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the U.S. Department of Energy Building America webinar on January 21, 2015.

  7. RETROFIT: A SOFTWARE TO SOLVE OPTIMIZATION AND IDENTIFICATION PROBLEMS APPLIED TO BUILDING ENERGY

    E-Print Network [OSTI]

    Boyer, Edmond

    RETROFIT: A SOFTWARE TO SOLVE OPTIMIZATION AND IDENTIFICATION PROBLEMS APPLIED TO BUILDING ENERGY the software ReTrofiT that specifically treats this kind of problems applied to building energy performance mod, inverse problems. INTRODUCTION Energy management systems in buildings greatly contribute

  8. An in-depth Analysis of Space Heating Energy Use in Office Buildings

    E-Print Network [OSTI]

    LBNL-5732E An in-depth Analysis of Space Heating Energy Use in Office Buildings Author(s), Hung Energy, Building Technologies Program, of the U.S. Department of Energy under Contract No. DE-AC02-05CH than 7 trillion Joules of site energy annually [USDOE]. Analyzing building space heating performance

  9. Pseudo Dynamic Transitional Modeling of Building Heating Energy Demand Using Artificial1 Neural Network2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Transitional Modeling of Building Heating Energy Demand Using Artificial1 Neural Network2 Subodh Paudel a, it is39 essential to know energy flows and energy demand of the buildings for the control of heating and40 cooling energy production from plant systems. The energy demand of the building system, thus,41

  10. HEAT RECOVERY IN BUILDING ENVELOPES Max H. Sherman and Iain S. Walker

    E-Print Network [OSTI]

    1 LBNL 47329 HEAT RECOVERY IN BUILDING ENVELOPES Max H. Sherman and Iain S. Walker Energy formula may produce an unreasonably high contribution because of heat recovery within the building physical model has been developed and used to predict the infiltration heat recovery based on the Peclet

  11. Dynamic Simulation and Analysis of Heating Energy Consumption in a Residential Building 

    E-Print Network [OSTI]

    Liu, J.; Yang, M.; Zhao, X.; Zhu, N.

    2006-01-01T23:59:59.000Z

    In winter, much of the building energy is used for heating in the north region of China. In this study, the heating energy consumption of a residential building in Tianjin during a heating period was simulated by using the EnergyPlus energy...

  12. Dynamic Simulation and Analysis of Heating Energy Consumption in a Residential Building

    E-Print Network [OSTI]

    Liu, J.; Yang, M.; Zhao, X.; Zhu, N.

    2006-01-01T23:59:59.000Z

    In winter, much of the building energy is used for heating in the north region of China. In this study, the heating energy consumption of a residential building in Tianjin during a heating period was simulated by using the EnergyPlus energy...

  13. Infrared Thermography applied to measurement of Heat transfer coefficient of water in a pipe heated by Joule effect

    E-Print Network [OSTI]

    Boyer, Edmond

    Infrared Thermography applied to measurement of Heat transfer coefficient of water in a pipe heated has been developed based on periodic excitation by Joule effect and infrared thermography measurement. It has been applied to measure heat transfer coefficients of water flowing in a round tube

  14. Building America Whole-House Solutions for Existing Homes: Applying...

    Broader source: Energy.gov (indexed) [DOE]

    In this project, researchers from Building America Partnership for Improved Residential Construction worked with the City of Melbourne, Florida, to develop and implement best...

  15. Using Remote Control Systems for the Re-Commissioning of Heating Plants of School Building

    E-Print Network [OSTI]

    Vaezi-Nejad, H.; Detaille, C.; Jandon, M.; Bruyat, F.

    2004-01-01T23:59:59.000Z

    The objective of this work is to develop a semi-automatic commissioning tool that can be implemented in Remote Control Systems to help building operators test the performance of heating plants in school buildings. The work was carried out...

  16. On Variations of Space-heating Energy Use in Office Buildings

    SciTech Connect (OSTI)

    Lin, Hung-Wen; Hong, Tianzhen

    2013-05-01T23:59:59.000Z

    Space heating is the largest energy end use, consuming more than 7 quintillion joules of site energy annually in the U.S. building sector. A few recent studies showed discrepancies in simulated space-heating energy use among different building energy modeling programs, and the simulated results are suspected to be underpredicting reality. While various uncertainties are associated with building simulations, especially when simulations are performed by different modelers using different simulation programs for buildings with different configurations, it is crucial to identify and evaluate key driving factors to space-heating energy use in order to support the design and operation of low-energy buildings. In this study, 10 design and operation parameters for space-heating systems of two prototypical office buildings in each of three U.S. heating climates are identified and evaluated, using building simulations with EnergyPlus, to determine the most influential parameters and their impacts on variations of space-heating energy use. The influence of annual weather change on space-heating energy is also investigated using 30-year actual weather data. The simulated space-heating energy use is further benchmarked against those from similar actual office buildings in two U.S. commercial-building databases to better understand the discrepancies between simulated and actual energy use. In summary, variations of both the simulated and actual space-heating energy use of office buildings in all three heating climates can be very large. However these variations are mostly driven by a few influential parameters related to building design and operation. The findings provide insights for building designers, owners, operators, and energy policy makers to make better decisions on energy-efficiency technologies to reduce space-heating energy use for both new and existing buildings.

  17. REVIEW OF GEOTHERMAL HEATING AND COOLING OF BUILDINGS C. A. Coles

    E-Print Network [OSTI]

    Coles, Cynthia

    REVIEW OF GEOTHERMAL HEATING AND COOLING OF BUILDINGS C. A. Coles Memorial University of Newfoundland, St. John's, Canada Abstract The exponential growth that has been occurring in the geothermal heat harnessing of low temperature, renewable geothermal energy for hot water heating and heating and cooling

  18. Encouraging Combined Heat and Power in California Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2014-01-01T23:59:59.000Z

    electricity supply and heat supply for a January and Julyelectricity supply and heat supply for a January and July

  19. Thermal Solar Energy Systems for Space Heating of Buildings

    E-Print Network [OSTI]

    Gomri, R.; Boulkamh, M.

    2010-01-01T23:59:59.000Z

    combined with heat pump improve the thermal performance of the heat pump and the global system. The performances of the heating system combining heat pump and solar collectors are higher than that of solar heating system with solar collectors and storage...

  20. North American Overview - Heat Pumps Role in Buildings Energy Efficiency Improvement

    SciTech Connect (OSTI)

    Baxter, Van D [ORNL; Bouza, Antonio [U.S. Department of Energy; Giguère, Daniel [Natural Resources Canada; Hosatte, Sophie [Natural Resources Canada

    2011-01-01T23:59:59.000Z

    A brief overview of the situation in North America regarding buildings energy use and the current and projected heat pump market is presented. R&D and deployment strategies for heat pumps, and the impacts of the housing market and efficiency regulations on the heating and cooling equipment market are summarized as well.

  1. UVM Central Heating & Cooling Plant Annual Maintenance Shutdown 2013 Affected Buildings

    E-Print Network [OSTI]

    Hayden, Nancy J.

    UVM Central Heating & Cooling Plant Annual Maintenance Shutdown 2013 Affected Buildings Sunday 19 heating, hot water and critical air conditioning > NO CAGE WASHING > NO AUTOCLAVES > Given Boiler Plant will be in operation to provide heating, hot water and critical air conditioning > NO CAGE WASHING > NO AUTOCLAVES

  2. Building America Webinar: Opportunities to Apply Phase Change Materials to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronicBuilding Enclosures | Department of Energy

  3. Proposed Adjudication of the Contract for the Heating, Ventilating and Air Conditioning Installations for the ISR Buildings

    E-Print Network [OSTI]

    1968-01-01T23:59:59.000Z

    Proposed Adjudication of the Contract for the Heating, Ventilating and Air Conditioning Installations for the ISR Buildings

  4. Solar load ratio method applied to commercial building active solar system sizing

    SciTech Connect (OSTI)

    Schnurr, N.M.; Hunn, B.D.; Williamson, K.D. III

    1981-01-01T23:59:59.000Z

    The hourly simulation procedure is the DOE-2 building energy analysis computer program. It is capable of calculating the loads and of simulating various control strategies in detail for both residential and commercial buildings and yet is computationally efficient enough to be used for extensive parametric studies. In addition, to a Building Service Hot Water (BSHW) System and a combined space heating and hot water system using liquid collectors for a commercial building analyzed previously, a space heating system using an air collector is analyzed. A series of runs is made for systems using evacuated tube collectors for comparison to flat-plate collectors, and the effects of additional system design parameters are investigated. Also, the generic collector types are characterized by standard efficiency curves, rather than by detailed collector specifications. (MHR)

  5. The integration of water loop heat pump and building structural thermal storage systems

    SciTech Connect (OSTI)

    Marseille, T.J.; Schliesing, J.S.

    1991-10-01T23:59:59.000Z

    Many commercial buildings need heat in one part and, at the same time, cooling in another part. Even more common is the need for heating during one part of the day and cooling during another in the same spaces. If that energy could be shifted or stored for later use, significant energy might be saved. If a building's heating and cooling subsystems could be integrated with the building's structural mass and used to collect, store, and deliver energy, the energy might be save cost-effectively. To explore this opportunity, researchers at the Pacific Northwest Laboratory (PNL) examined the thermal interactions between the heating, ventilating, and air-conditioning (HVAC) system and the structure of a commercial building. Computer models were developed to simulate the interactions in an existing building located in Seattle, Washington, to determine how these building subsystems could be integrated to improve energy efficiency. The HVAC subsystems in the existing building were modeled. These subsystems consist of decentralized water-source heat pumps (WSHP) in a closed water loop, connected to cooling towers for heat rejection during cooling mode and boilers to augment heating. An initial base case'' computer model of the Seattle building, as-built, was developed. Metered data available for the building were used to calibrate this model to ensure that the analysis would provide information that closely reflected the operation of a real building. The HVAC system and building structure were integrated in the model using the concrete floor slabs as thermal storage media. The slabs may be actively charged during off-peak periods with the chilled water in the loop and then either actively or passively discharged into the conditioned space during peak periods. 21 refs., 37 figs., 17 tabs.

  6. THE IMPACT OF BUILDING ORIENTATION ON RESIDENTIAL HEATING AND COOLING

    E-Print Network [OSTI]

    Andersson, Brandt

    2014-01-01T23:59:59.000Z

    PASSIVE SOLAR RESIDENTIAL BUILDING* Introduction In order to provide a basis for thermal analyses examining the effects of design

  7. PREDICTING THE TIME RESPONSE OF A BUILDING UNDER HEAT INPUT CONDITIONS FOR ACTIVE SOLAR HEATING SYSTEMS

    E-Print Network [OSTI]

    Warren, Mashuri L.

    2013-01-01T23:59:59.000Z

    Solar Energy Systems for Heating and Cooling. May, 1978. (Washington:Hemisphere heating, Publishing Corp. , 1978),INPUT CONDITIONS FOR ACTIVE SOLAR HEATING SYSTEMS Mashuri L.

  8. Applying ICT and IoT to Multifamily Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments from Tarasa U.S.LLC | DepartmentReport | DepartmentApplying ICT

  9. Building America Webinar: New Construction Hybrid-Ductless Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    as a hybrid "all-electric" heating system in new high-performance homes. In a DHPhybrid heating system, the DHP fan coil is located in the main living area in combination with...

  10. Detecting sources of heat loss in residential buildings from infrared imaging

    E-Print Network [OSTI]

    Shao, Emily Chen

    2011-01-01T23:59:59.000Z

    Infrared image analysis was conducted to determine the most common sources of heat loss during the winter in residential buildings. 135 houses in the greater Boston and Cambridge area were photographed, stitched, and tallied ...

  11. Investigation of a Novel Solar Assisted Water Heating System with Enhanced Energy Yield for Buildings

    E-Print Network [OSTI]

    Zhang, X.; Zhao, X.; Xu, J.; Yu, X.

    2012-01-01T23:59:59.000Z

    This paper presented the concept, prototype application, operational performance and benefits relating to a novel solar assisted water heating system for building services. It was undertaken through dedicated theoretical analysis, computer...

  12. Research on Heat Resisting Character of Hollow Building Blocks in Energy Saving Wall

    E-Print Network [OSTI]

    Zhang, Y.; He, J.; Gao, S.

    2006-01-01T23:59:59.000Z

    By establishing a mathematical model with the finite difference method, the three-dimensional temperature fields of a new type of asymmetrical hollow building blocks in an energy saving wall are solved in this paper. The three forms of heat...

  13. Research on Heat Resisting Character of Hollow Building Blocks in Energy Saving Wall 

    E-Print Network [OSTI]

    Zhang, Y.; He, J.; Gao, S.

    2006-01-01T23:59:59.000Z

    By establishing a mathematical model with the finite difference method, the three-dimensional temperature fields of a new type of asymmetrical hollow building blocks in an energy saving wall are solved in this paper. The three forms of heat...

  14. Energy Performance Comparison of Heating and Air Conditioning Systems for Multi-Family Residential Buildings

    SciTech Connect (OSTI)

    Wang, Weimin; Zhang, Jian; Jiang, Wei; Liu, Bing

    2011-07-31T23:59:59.000Z

    The type of heating, ventilation and air conditioning (HVAC) system has a large impact on the heating and cooling energy consumption in multifamily residential buildings. This paper compares the energy performance of three HVAC systems: a direct expansion (DX) split system, a split air source heat pump (ASHP) system, and a closed-loop water source heat pump (WSHP) system with a boiler and an evaporative fluid cooler as the central heating and cooling source. All three systems use gas furnace for heating or heating backup. The comparison is made in a number of scenarios including different climate conditions, system operation schemes and applicable building codes. It is found that with the minimum code-compliant equipment efficiency, ASHP performs the best among all scenarios except in extremely code climates. WSHP tends to perform better than the split DX system in cold climates but worse in hot climates.

  15. Evaluating the performance of passive-solar-heated buildings

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1983-01-01T23:59:59.000Z

    Methods of evaluating the thermal performance of passive-solar buildings are reviewed. Instrumentation and data logging requirements are outlined. Various methodologies that have been used to develop an energy balance for the building and various performance measures are discussed. Methods for quantifying comfort are described. Subsystem and other special-purpose monitoring are briefly reviewed. Summary results are given for 38 buildings that have been monitored.

  16. The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings

    SciTech Connect (OSTI)

    Stadler, Michael; Marnay, Chris; Cardoso, Goncalo; Lipman, Tim; Megel, Olivier; Ganguly, Srirupa; Siddiqui, Afzal; Lai, Judy

    2009-11-16T23:59:59.000Z

    The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) is working with the California Energy Commission (CEC) to determine the potential role of commercial sector distributed generation (DG) with combined heat and power (CHP) capability deployment in greenhouse gas emissions (GHG) reductions. CHP applications at large industrial sites are well known, and a large share of their potential has already been harvested. In contrast, relatively little attention has been paid to the potential of medium-sized commercial buildings, i.e., ones with peak electric loads ranging from 100 kW to 5 MW. We examine how this sector might implement DG with CHP in cost minimizing microgrids that are able to adopt and operate various energy technologies, such as solar photovoltaics (PV), on-site thermal generation, heat exchangers, solar thermal collectors, absorption chillers, and storage systems. We apply a mixed-integer linear program (MILP) that minimizes a site's annual energy costs as its objective. Using 138 representative mid-sized commercial sites in California (CA), existing tariffs of three major electricity distribution ultilities plus a natural gas company, and performance data of available technology in 2020, we find the GHG reduction potential for this CA commercial sector segment, which represents about 35percent of total statewide commercial sector sales. Under the assumptions made, in a reference case, this segment is estimated to be capable of economically installing 1.4 GW of CHP, 35percent of the California Air Resources Board (CARB) statewide 4 GW goal for total incremental CHP deployment by 2020. However, because CARB's assumed utilization is far higherthan is found by the MILP, the adopted CHP only contributes 19percent of the CO2 target. Several sensitivity runs were completed. One applies a simple feed-in tariff similar to net metering, and another includes a generous self-generation incentive program (SGIP) subsidy for fuel cells. The feed-in tariff proves ineffective at stimulating CHP deployment, while the SGIP buy down is more powerful. The attractiveness of CHP varies widely by climate zone and service territory, but in general, hotter inland areas and San Diego are the more attractive regions because high cooling loads achieve higher equipment utilization. Additionally, large office buildings are surprisingly good hosts for CHP, so large office buildings in San Diego and hotter urban centers emerge as promising target hosts. Overall the effect on CO2 emissions is limited, never exceeding 27percent of the CARB target. Nonetheless, results suggest that the CO2 emissions abatement potential of CHP in mid-sized CA buildings is significant, and much more promising than is typically assumed.

  17. Machine Learning Techniques Applied to Sensor Data Correction in Building Technologies

    E-Print Network [OSTI]

    Wang, Xiaorui "Ray"

    ; (3) refrigerator energy consumption; (4) heat pump liquid pressure; and (5) water flow. These data@ornl.gov Abstract--Since commercial and residential buildings account for nearly half of the United States' energy sensor's mean value, but took substantially longer to train. I. INTRODUCTION Commercial and residential

  18. Hydronic Heating Retrofits for Low-Rise Multifamily Buildings: Boiler Control Replacement and Monitoring

    SciTech Connect (OSTI)

    Dentz, J.; Henderson, H.; Varshney, K.

    2013-10-01T23:59:59.000Z

    The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. of Cambridge, Massachusetts, to implement and study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating control systems in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded.

  19. Combined heat and power (CHP or cogeneration) for saving energy and carbon in commercial buildings

    SciTech Connect (OSTI)

    Kaarsberg, T.; Fiskum, R.; Romm, J.; Rosenfeld, A.; Koomey, J.; Teagan, W.P.

    1998-07-01T23:59:59.000Z

    Combined Heat and Power (CHP) systems simultaneously deliver electric, thermal and mechanical energy services and thus use fuel very efficiently. Today's small-scale CHP systems already provide heat, cooling and electricity at nearly twice the fuel efficiency of heat and power based on power remote plants and onsite hot water and space heating. In this paper, the authors have refined and extended the assessments of small-scale building CHP previously done by the authors. They estimate the energy and carbon savings for existing small-scale CHP technology such as reciprocating engines and two promising new CHP technologies--microturbines and fuel cells--for commercial buildings. In 2010 the authors estimate that small-scale CHP will emit 14--65% less carbon than separate heat and power (SHP) depending on the technologies compared. They estimate that these technologies in commercial buildings could save nearly two-thirds of a quadrillion Btu's of energy and 23 million tonnes of carbon.

  20. Energy efficiency in building sector in India through Heat

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    electricity consumption in India (2012) #12;Growth in electricity consumption by building sector At a conservative 9 % growth rate electricity consumption of building sector by 2020 will be more than 2 times ( Source: DB Research) #12;Electricity Consumption Pattern in Residential Sector (Source: BEE, Figure taken

  1. Performance of a solar-heated assembly building at Sandia National Laboratories

    SciTech Connect (OSTI)

    Haskins, D.E.

    1980-09-01T23:59:59.000Z

    The passive solar-heating system of the assembly building at Sandia National Laboratories' Photovoltaic Advanced Systems Test Facility is described and the thermal analysis of the building is given. Performance predictions are also given, and actual performance for December 1979 and January 1980 are shown.

  2. System Modeling and Building Energy Simulations of Gas Engine Driven Heat Pump

    SciTech Connect (OSTI)

    Mahderekal, Isaac [Oak Ridge National Laboratory (ORNL); Vineyard, Edward [Oak Ridge National Laboratory (ORNL)

    2013-01-01T23:59:59.000Z

    To improve the system performance of a gas engine driven heat pump (GHP) system, an analytical modeling and experimental study has been made by using desiccant system in cooling operation (particularly in high humidity operations) and suction line waste heat recovery to augment heating capacity and efficiency. The performance of overall GHP system has been simulated with a detailed vapor compression heat pump system design model. The modeling includes: (1) GHP cycle without any performance improvements (suction liquid heat exchange and heat recovery) as a baseline (both in cooling and heating mode), (2) the GHP cycle in cooling mode with desiccant system regenerated by waste heat from engine incorporated, (3) GHP cycle in heating mode with heat recovery (recovered heat from engine). According to the system modeling results, by using the desiccant system the sensible heat ratio (SHR- sensible heat ratio) can be lowered to 40%. The waste heat of the gas engine can boost the space heating efficiency by 25% at rated operating conditions. In addtion,using EnergyPlus, building energy simulations have been conducted to assess annual energy consumptions of GHP in sixteen US cities, and the performances are compared to a baseline unit, which has a electrically-driven air conditioner with the seasonal COP of 4.1 for space cooling and a gas funace with 90% fuel efficiency for space heating.

  3. ON CONVECTIVE HEAT TRANSFER IN BUILDING ENERGY ANALYSIS

    E-Print Network [OSTI]

    Gadgil, Ashok Jagannath

    2013-01-01T23:59:59.000Z

    Tien; Int. J. Heat Mass Trans Balcomb 1 s Weber and Wray; ininsulation-filled wall. Balcomb's group at LASL has carried

  4. Cooling, Heating, and Power for Commercial Buildings - Benefits...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    this paper, an analysis was performed to determine that the increased production of waste heat associated with lower generation efficiencies cannot compensate for the lower...

  5. Characterization of Multicrystalline Silicon Modules with System Bias Voltage Applied in Damp Heat

    SciTech Connect (OSTI)

    Hacke, P.; Kempe, M.; Terwilliger, K.; Glick, S.; Call, N.; Johnston, S.; Kurtz, S.

    2011-07-01T23:59:59.000Z

    As it is considered economically favorable to serially connect modules to build arrays with high system voltage, it is necessary to explore potential long-term degradation mechanisms the modules may incur under such electrical potential. We performed accelerated lifetime testing of multicrystalline silicon PV modules in 85 degrees C/ 85% relative humidity and 45 degrees C/ 30% relative humidity while placing the active layer in either positive or negative 600 V bias with respect to the grounded module frame. Negative bias applied to the active layer in some cases leads to more rapid and catastrophic module power degradation. This is associated with significant shunting of individual cells as indicated by electroluminescence, thermal imaging, and I-V curves. Mass spectroscopy results support ion migration as one of the causes. Electrolytic corrosion is seen occurring with the silicon nitride antireflective coating and silver gridlines, and there is ionic transport of metallization at the encapsulant interface observed with damp heat and applied bias. Leakage current and module degradation is found to be highly dependent upon the module construction, with factors such as encapsulant and front glass resistivity affecting performance. Measured leakage currents range from about the same seen in published reports of modules deployed in Florida (USA) and is accelerated to up to 100 times higher in the environmental chamber testing.

  6. Hydronic Heating Retrofits for Low-Rise Multifamily Buildings: Boiler Control Replacement and Monitoring

    SciTech Connect (OSTI)

    Dentz, J.; Henderson, H.; Varshney, K.

    2014-09-01T23:59:59.000Z

    The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, Massachusetts, to study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating controls in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded. Fuel use in the development was excessive compared to similar properties. A poorly insulated thermal envelope contributed to high energy bills, but adding wall insulation was not cost-effective or practical. The more cost-effective option was improving heating system efficiency. Efficient operation of the heating system faced several obstacles, including inflexible boiler controls and failed thermostatic radiator valves. Boiler controls were replaced with systems that offer temperature setbacks and one that controls heat based on apartment temperature in addition to outdoor temperature. Utility bill analysis shows that post-retrofit weather-normalized heating energy use was reduced by 10%-31% (average of 19%). Indoor temperature cutoff reduced boiler runtime (and therefore heating fuel consumption) by 28% in the one building in which it was implemented. Nearly all savings were obtained during night which had a lower indoor temperature cut off (68 degrees F) than day (73 degrees F). This implies that the outdoor reset curve was appropriately adjusted for this building for daytime operation. Nighttime setback of heating system supply water temperature had no discernable impact on boiler runtime or gas bills.

  7. Solar heating and cooling of residential buildings: sizing, installation and operation of systems. 1980 edition

    SciTech Connect (OSTI)

    None

    1980-09-01T23:59:59.000Z

    This manual was prepared as a text for a training course on solar heating and cooling of residential buildings. The course and text are directed toward sizing, installation, operation, and maintenance of solar systems for space heating and hot water supply, and solar cooling is treated only briefly. (MHR)

  8. Practical Analysis of a New Type Radiant Heating Technology in a Large Space Building 

    E-Print Network [OSTI]

    Feng, G.; Cao, G.; Gang, L.

    2006-01-01T23:59:59.000Z

    in the fields of heating in large space and building energy conservation? In an attempt to conserve energy and reduce energy loss, it has become necessary to seek effective means of reducing heat loss in energy consumption. The development of improved means...

  9. Practical Analysis of a New Type Radiant Heating Technology in a Large Space Building

    E-Print Network [OSTI]

    Feng, G.; Cao, G.; Gang, L.

    2006-01-01T23:59:59.000Z

    in the fields of heating in large space and building energy conservation? In an attempt to conserve energy and reduce energy loss, it has become necessary to seek effective means of reducing heat loss in energy consumption. The development of improved means...

  10. Heat Transfer in Buildings: Application to Solar Air Collector and Trombe Wall Design

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    11 Heat Transfer in Buildings: Application to Solar Air Collector and Trombe Wall Design H. Boyer applications are finally discussed. One concerns the modeling of a flat plate air collector and the second focuses on the modeling of Trombe solar walls. In each case, detailed modeling of heat transfer allows

  11. Hydronic Heating Retrofits for Low-Rise Multifamily Buildings - Phase 1: Boiler Control Replacement and Monitoring

    SciTech Connect (OSTI)

    Dentz, J.; Henderson, H.

    2012-04-01T23:59:59.000Z

    The ARIES Collaborative, a Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, MA to implement and study improvements to the heating system in one of the non-profit's housing developments. The heating control systems in the 42-unit Columbia CAST housing development were upgraded in an effort projected to reduce heating costs by 15 to 25 percent.

  12. Puerto Rico- Building Energy Code with Mandatory Solar Water Heating

    Broader source: Energy.gov [DOE]

    In 2009, the Governor of Puerto Rico provided assurance that Puerto Rico would update its building energy codes as part of the state's application for State Energy Program funds from the American...

  13. Innovative Control of Electric Heat in Multifamily Buildings

    E-Print Network [OSTI]

    Lempereur, D.; Bobker, M.

    2004-01-01T23:59:59.000Z

    This paper describes the application of web-based wireless technology for control of electric heating in a large multifamily housing complex. The control system architecture and components are described. A web-based application enables remote...

  14. Building America Webinar: Central Multifamily Water Heating Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to 4:30PM EST This free webinar will focus on the effective use of central heat pump water heaters (HPWHs) and control systems to reduce the energy use in hot water...

  15. Experimental plan for investigating building-earth heat transfer at the Joint Institute for Heavy Ion Research Building

    SciTech Connect (OSTI)

    Childs, K.W.

    1980-11-01T23:59:59.000Z

    An experimental plan is presented for investigating heat transfer between below-grade portions of building envelopes and the surrounding soil. Included is a detailing of data to be collected at an earth-sheltered structure (Joint Institute for Heavy Ion Research Building) to be constructed at Oak Ridge National Laboratory. The attributes of the required data collection instrumentation are defined and a program to assure the accuracy of the collected data is discussed. The experimental plan is intended to be used as a guide to selection, installation, and maintenance of instrumentation as well as in data collection and verification.

  16. Solar heating panel: Parks and Recreation Building, Saugatuck Township Park and Recreation Commission. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-12-04T23:59:59.000Z

    This report is an account of the design and installation of a solar heating system on an existing building in Saugatuck, MI, using existing technology. The purpose of this program is to demonstrate the possibilities of alternative energy, educate local craftsmen, and make the building more useful to the community. The structure of the building is described. The process of insulating the structure is described. The design of the solar panel, headers, and strong box full of rocks for heat storage is given complete with blueprints. The installation of the system is also described, including photographs of the solar panel being installed. Included is a performance report on this system by Purbolt's Inc., which describes measurements taken on the system and outlines the system's design and operation. Included also are 12 slides of the structure and the solar heating system. (LEW)

  17. Encouraging Combined Heat and Power in California Buildings

    E-Print Network [OSTI]

    's research priorities include an additional 6.5 GW of combined heat and power (CHP) by 2030. As of 2009, roughly 0.25 GW of small natural gas and biogas fired CHP is documented by the Self-Generation Incentive on the development of 20 GW of renewable energy will influence the CHP adoption. Thus, an integrated optimization

  18. Microgrids: An emerging paradigm for meeting building electricity and heat requirements efficiently and with appropriate energy quality

    E-Print Network [OSTI]

    Marnay, Chris; Firestone, Ryan

    2007-01-01T23:59:59.000Z

    in the Evolving Electricity Generation and Deliveryfor meeting building electricity and heat requirementswas funded by the Office of Electricity Delivery and Energy

  19. Economic Analysis and Optimization of Exterior Insulation Requirements for Ventilated Buildings at Power Generation Facilities with High Internal Heat Gain

    E-Print Network [OSTI]

    Hughes, Douglas E.

    2010-12-17T23:59:59.000Z

    Industrial buildings require a large amount of heating and ventilation equipment to maintain the indoor environment within acceptable levels for personnel protection and equipment protection. The required heating and ventilation equipment...

  20. The integration of water loop heat pump and building structural thermal storage systems

    SciTech Connect (OSTI)

    Marseille, T.J.; Schliesing, J.S.

    1990-09-01T23:59:59.000Z

    Commercial buildings often have extensive periods where one space needs cooling and another heating. Even more common is the need for heating during one part of the day and cooling during another in the same spaces. If a building's heating and cooling system could be integrated with the building's structural mass such that the mass can be used to collect, store, and deliver energy, significant energy might be saved. Computer models were developed to simulate this interaction for an existing office building in Seattle, Washington that has a decentralized water-source heat pump system. Metered data available for the building was used to calibrate a base'' building model (i.e., nonintegrated) prior to simulation of the integrated system. In the simulated integration strategy a secondary water loop was manifolded to the main HVAC hydronic loop. tubing in this loop was embedded in the building's concrete floor slabs. Water was routed to this loop by a controller to charge or discharge thermal energy to and from the slabs. The slabs were also in thermal communication with the conditioned spaces. Parametric studies of the building model, using weather data for five other cities in addition to Seattle, predicted that energy can be saved on cooling dominated days. On hot, dry days and during the night the cooling tower can beneficially be used as a free cooling'' source for thermally charging'' the floor slabs using cooled water. Through the development of an adaptive/predictive control strategy, annual HVAC energy savings as large as 30% appear to be possible in certain climates. 8 refs., 13 figs.

  1. Method of energy load management using PCM for heating and cooling of buildings

    DOE Patents [OSTI]

    Stovall, Therese K. (Knoxville, TN); Tomlinson, John J. (Knoxville, TN)

    1996-01-01T23:59:59.000Z

    A method of energy load management for the heating and cooling of a building. The method involves utilizing a wallboard as a portion of the building, the wallboard containing about 5 to about 30 wt. % a phase change material such that melting of the phase change material occurs during a rise in temperature within the building to remove heat from the air, and a solidification of the phase change material occurs during a lowering of the temperature to dispense heat into the air. At the beginning of either of these cooling or heating cycles, the phase change material is preferably "fully charged". In preferred installations one type of wallboard is used on the interior surfaces of exterior walls, and another type as the surface on interior walls. The particular PCM is chosen for the desired wall and room temperature of these locations. In addition, load management is achieved by using PCM-containing wallboard that form cavities of the building such that the cavities can be used for the air handling duct and plenum system of the building. Enhanced load management is achieved by using a thermostat with reduced dead band of about the upper half of a normal dead band of over three degree. In some applications, air circulation at a rate greater than normal convection provides additional comfort.

  2. Method of energy load management using PCM for heating and cooling of buildings

    DOE Patents [OSTI]

    Stovall, T.K.; Tomlinson, J.J.

    1996-03-26T23:59:59.000Z

    A method is described for energy load management for the heating and cooling of a building. The method involves utilizing a wallboard as a portion of the building, the wallboard containing about 5 to about 30 wt.% phase change material such that melting of the phase change material occurs during a rise in temperature within the building to remove heat from the air, and a solidification of the phase change material occurs during a lowering of the temperature to dispense heat into the air. At the beginning of either of these cooling or heating cycles, the phase change material is preferably ``fully charged``. In preferred installations one type of wallboard is used on the interior surfaces of exterior walls, and another type as the surface on interior walls. The particular PCM is chosen for the desired wall and room temperature of these locations. In addition, load management is achieved by using PCM-containing wallboards that form cavities of the building such that the cavities can be used for the air handling duct and plenum system of the building. Enhanced load management is achieved by using a thermostat with reduced dead band of about the upper half of a normal dead band of over three degrees. In some applications, air circulation at a rate greater than normal convection provides additional comfort. 7 figs.

  3. Whole-Building Energy Simulation with a Three-Dimensional Ground-Coupled Heat Transfer Model: Preprint

    SciTech Connect (OSTI)

    Deru, M.; Judkoff, R.; Neymark, J.

    2002-08-01T23:59:59.000Z

    A three-dimensional, finite-element, heat-transfer computer program was developed to study ground-coupled heat transfer from buildings. It was used in conjunction with the SUNREL whole-building energy simulation program to analyze ground-coupled heat transfer from buildings, and the results were compared with the simple ground-coupled heat transfer models used in whole-building energy simulation programs. The detailed model provides another method of testing and refining the simple models and analyzing complex problems. This work is part of an effort to improve the analysis of the ground-coupled heat transfer in building energy simulation programs. The output from this detailed model and several others will form a set of reference results for use with the BESTEST diagnostic procedure. We anticipate that the results from the work will be incorporated into ANSI/ASHRAE 140-2001, Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs.

  4. Building Integrated Heat and Moisture Exchange | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy FutureDepartment of Energy Building Energy-Efficient

  5. Building Integrated Heat and Moisture Exchange | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,3973 Audit Report: OAS-FS-14-03SavannahBudgetBuilding Integrated

  6. PREDICTING THE TIME RESPONSE OF A BUILDING UNDER HEAT INPUT CONDITIONS FOR ACTIVE SOLAR HEATING SYSTEMS

    E-Print Network [OSTI]

    Warren, Mashuri L.

    2013-01-01T23:59:59.000Z

    load calculations effects, some authors[4,5,6] neglect thermal capacitance do consider the response of room tempera- ture to sudden heat

  7. Building America Webinar: New Construction Hybrid-Ductless Heat Pumps

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronic HeatingManagementCrawlspacesII

  8. Feasibility Study of Using Ground Source Heat Pumps in Two Buildings

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    , it was assumed that natural gas-fired water heaters would replace the steam converters that presently provide hot water for the buildings. It would also be possible to use dedicated water-to-water ground source heat pumps to provide hot water. #12; 2 II. BACKGROUND AND BASE CASE A. Background on McCormick Center

  9. Fast evaluation of the fatigue lifetime of rubber-like materials based on a heat build-up protocol and

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Fast evaluation of the fatigue lifetime of rubber-like materials based on a heat build-up protocol Cedex, France Abstract The temperature of rubber-like materials increases under cyclic loadings, due results. Key words: rubber-like materials, heat build-up, infrared thermography, X-ray micro

  10. Solar heating and cooling of residential buildings: design of systems, 1980 edition

    SciTech Connect (OSTI)

    None

    1980-09-01T23:59:59.000Z

    This manual was prepared primarily for use in conducting a practical training course on the design of solar heating and cooling systems for residential and small office buildings, but may also be useful as a general reference text. The content level is appropriate for persons with different and varied backgrounds, although it is assumed that readers possess a basic understanding of heating, ventilating, and air-conditioning systems of conventional (non-solar) types. This edition is a revision of the manual with the same title, first printed and distributed by the US Government Printing Office in October 1977. The manual has been reorganized, new material has been added, and outdated information has been deleted. Only active solar systems are described. Liquid and air-heating solar systems for combined space and service water heating or service water heating are included. Furthermore, only systems with proven experience are discussed to any extent.

  11. Economic analysis of wind-powered farmhouse and farm building heating systems. Final report

    SciTech Connect (OSTI)

    Stafford, R.W.; Greeb, F.J.; Smith, M.F.; Des Chenes, C.; Weaver, N.L.

    1981-01-01T23:59:59.000Z

    The study evaluated the break-even values of wind energy for selected farmhouses and farm buildings focusing on the effects of thermal storage on the use of WECS production and value. Farmhouse structural models include three types derived from a national survey - an older, a more modern, and a passive solar structure. The eight farm building applications that were analyzed include: poultry-layers, poultry-brooding/layers, poultry-broilers, poultry-turkeys, swine-farrowing, swine-growing/finishing, dairy, and lambing. These farm buildings represent the spectrum of animal types, heating energy use, and major contributions to national agricultural economic values. All energy analyses were based on hour-by-hour computations which allowed for growth of animals, sensible and latent heat production, and ventilation requirements. Hourly or three-hourly weather data obtained from the National Climatic Center was used for the nine chosen analysis sites, located throughout the United States and corresponding to regional agricultural production centers.

  12. Initial findings: The integration of water loop heat pump and building structural thermal storage systems

    SciTech Connect (OSTI)

    Marseille, T.J.; Johnson, B.K.; Wallin, R.P.; Chiu, S.A.; Crawley, D.B.

    1989-01-01T23:59:59.000Z

    This report is one in a series of reports describing research activities in support of the US Department of Energy (DOE) Commercial Building System Integration Research Program. The goal of the program is to develop the scientific and technical basis for improving integrated decision-making during design and construction. Improved decision-making could significantly reduce buildings' energy use by the year 2010. The objectives of the Commercial Building System Integration Research Program are: to identify and quantify the most significant energy-related interactions among building subsystems; to develop the scientific and technical basis for improving energy related interactions in building subsystems; and to provide guidance to designers, owners, and builders for improving the integration of building subsystems for energy efficiency. The lead laboratory for this program is the Pacific Northwest Laboratory. A wide variety of expertise and resources from industry, academia, other government entities, and other DOE laboratories are used in planning, reviewing and conducting research activities. Cooperative and complementary research, development, and technology transfer activities with other interested organizations are actively pursued. In this report, the interactions of a water loop heat pump system and building structural mass and their effect on whole-building energy performance is analyzed. 10 refs., 54 figs., 1 tab.

  13. Diurnal heat storage in direct-gain passive-solar buildings

    SciTech Connect (OSTI)

    Balcomb, J.D.; Neeper, D.A.

    1983-01-01T23:59:59.000Z

    This paper presents a simplified method for predicting temperature swings in direct-gain buildings. It is called the DHC method due to the use of a diurnal heat capacity (DHC). Diurnal heat capacity is a measure of the effective amount of heat stored during a sunny day and then released at night - the typical 24-hour diurnal cycle. This enables prediction of the maximum temperature swings experienced in the building and can be calculated using a single 24-hour harmonic. The advantage is that closed-form analytic solutions can be obtained for a variety of simple and layered-wall configurations. Higher harmonic components are accounted for by a correction factor. The method is suitable for us by hand or on a programmable calculator.

  14. Computer Modeling VRF Heat Pumps in Commercial Buildings using EnergyPlus

    SciTech Connect (OSTI)

    Raustad, Richard

    2013-06-01T23:59:59.000Z

    Variable Refrigerant Flow (VRF) heat pumps are increasingly used in commercial buildings in the United States. Monitored energy use of field installations have shown, in some cases, savings exceeding 30% compared to conventional heating, ventilating, and air-conditioning (HVAC) systems. A simulation study was conducted to identify the installation or operational characteristics that lead to energy savings for VRF systems. The study used the Department of Energy EnergyPlus? building simulation software and four reference building models. Computer simulations were performed in eight U.S. climate zones. The baseline reference HVAC system incorporated packaged single-zone direct-expansion cooling with gas heating (PSZ-AC) or variable-air-volume systems (VAV with reheat). An alternate baseline HVAC system using a heat pump (PSZ-HP) was included for some buildings to directly compare gas and electric heating results. These baseline systems were compared to a VRF heat pump model to identify differences in energy use. VRF systems combine multiple indoor units with one or more outdoor unit(s). These systems move refrigerant between the outdoor and indoor units which eliminates the need for duct work in most cases. Since many applications install duct work in unconditioned spaces, this leads to installation differences between VRF systems and conventional HVAC systems. To characterize installation differences, a duct heat gain model was included to identify the energy impacts of installing ducts in unconditioned spaces. The configuration of variable refrigerant flow heat pumps will ultimately eliminate or significantly reduce energy use due to duct heat transfer. Fan energy is also studied to identify savings associated with non-ducted VRF terminal units. VRF systems incorporate a variable-speed compressor which may lead to operational differences compared to single-speed compression systems. To characterize operational differences, the computer model performance curves used to simulate cooling operation are also evaluated. The information in this paper is intended to provide a relative difference in system energy use and compare various installation practices that can impact performance. Comparative results of VRF versus conventional HVAC systems include energy use differences due to duct location, differences in fan energy when ducts are eliminated, and differences associated with electric versus fossil fuel type heating systems.

  15. Application analysis of ground source heat pumps in building space conditioning

    SciTech Connect (OSTI)

    Qian, Hua; Wang, Yungang

    2013-07-01T23:59:59.000Z

    The adoption of geothermal energy in space conditioning of buildings through utilizing ground source heat pump (GSHP, also known as geothermal heat pump) has increased rapidly during the past several decades. However, the impacts of the GSHP utilization on the efficiency of heat pumps and soil temperature distribution remained unclear and needs further investigation. This paper presents a novel model to calculate the soil temperature distribution and the coefficient of performance (COP) of GSHP. Different scenarios were simulated to quantify the impact of different factors on the GSHP performance, including heat balance, daily running mode, and spacing between boreholes. Our results show that GSHP is suitable for buildings with balanced cooling and heating loads. It can keep soil temperature at a relatively constant level for more than 10 years. Long boreholes, additional space between boreholes, intermittent running mode will improve the performance of GSHP, but large initial investment is required. The improper design will make the COP of GSHP even lower than traditional heat pumps. Professional design and maintenance technologies are greatly needed in order to promote this promising technology in the developing world.

  16. Optimal design of ground source heat pump system integrated with phase change cooling storage tank in an office building 

    E-Print Network [OSTI]

    Zhu, N.

    2014-01-01T23:59:59.000Z

    Optimal design of ground source heat pump system integrated with phase change cooling storage tank in an office building Na Zhu*, Yu Lei, Pingfang Hu, Linghong Xu, Zhangning Jiang Department of Building Environment and Equipment Engineering... heat pump system integrated with phase change cooling storage technology could save energy and shift peak load. This paper studied the optimal design of a ground source heat pump system integrated with phase change thermal storage tank in an office...

  17. Analysis of Heat Charging and Discharging on the Phase Change Energy-Storage Composite Wallboard (PCECW) in Building

    E-Print Network [OSTI]

    Yue, H.; Chen, C.; Liu, Y.; Guo, H.

    2006-01-01T23:59:59.000Z

    This research paper combines the phase change material and the basal building material to constitute a kind of new phase change energy- storage composite wallboard (PCECW), applied in a residential building in Beijing. We analyzed the energy-storage...

  18. Wireless RF Distribution in Buildings using Heating and Ventilation Ducts Christopher P. Diehl, Benjamin E. Henty, Nikhil Kanodia, and Daniel D. Stancil

    E-Print Network [OSTI]

    Stancil, Daniel D.

    Wireless RF Distribution in Buildings using Heating and Ventilation Ducts Christopher P. Diehl in buildings is proposed in which the heating and ventilation ducts are used as waveguides. Because

  19. Building, Testing, and Post Test Analysis of Durability Heat Pipe No.6

    SciTech Connect (OSTI)

    MOSS, TIMOTHY A.

    2002-03-01T23:59:59.000Z

    The Solar Thermal Program at Sandia supports work developing dish/Stirling systems to convert solar energy into electricity. Heat pipe technology is ideal for transferring the energy of concentrated sunlight from the parabolic dish concentrators to the Stirling engine heat tubes. Heat pipes can absorb the solar energy at non-uniform flux distributions and release this energy to the Stirling engine heater tubes at a very uniform flux distribution thus decoupling the design of the engine heater head from the solar absorber. The most important part of a heat pipe is the wick, which transports the sodium over the heated surface area. Bench scale heat pipes were designed and built to more economically, both in time and money, test different wicks and cleaning procedures. This report covers the building, testing, and post-test analysis of the sixth in a series of bench scale heat pipes. Durability heat pipe No.6 was built and tested to determine the effects of a high temperature bakeout, 950 C, on wick corrosion during long-term operation. Previous tests showed high levels of corrosion with low temperature bakeouts (650-700 C). Durability heat pipe No.5 had a high temperature bakeout and reflux cleaning and showed low levels of wick corrosion after long-term operation. After testing durability heat pipe No.6 for 5,003 hours at an operating temperature of 750 C, it showed low levels of wick corrosion. This test shows a high temperature bakeout alone will significantly reduce wick corrosion without the need for costly and time consuming reflux cleaning.

  20. Life Cycle cost Analysis of Waste Heat Operated Absorption Cooling Systems for Building HVAC Applications

    E-Print Network [OSTI]

    Saravanan, R.; Murugavel, V.

    2010-01-01T23:59:59.000Z

    effect from CO2 emission resulting from the combustion of fossil fuels in utility power plants and the use of chlorofluorocarbon refrigerants, which is currently thought to affect depletion of the ozone layer. The ban on fluorocarbon fluids has been...LIFE CYCLE COST ANALYSIS OF WASTE HEAT OPERATED ABSORPTION COOLING SYSTEMS FOR BUILDING HVAC APPLICATIONS V. Murugavel and R. Saravanan Refrigeration and Air conditioning Laboratory Department of Mechanical Engineering, Anna University...

  1. Microgrids: An emerging paradigm for meeting building electricityand heat requirements efficiently and with appropriate energyquality

    SciTech Connect (OSTI)

    Marnay, Chris; Firestone, Ryan

    2007-04-10T23:59:59.000Z

    The first major paradigm shift in electricity generation,delivery, and control is emerging in the developed world, notably Europe,North America, and Japan. This shift will move electricity supply awayfrom the highly centralised universal service quality model with which weare familiar today towards a more dispersed system with heterogeneousqualities of service. One element of dispersed control is the clusteringof sources and sinks into semi-autonomous mu grids (microgrids).Research, development, demonstration, and deployment (RD3) of mu gridsare advancing rapidly on at least three continents, and significantdemonstrations are currently in progress. This paradigm shift will resultin more electricity generation close to end-uses, often involvingcombined heat and power application for building heating and cooling,increased local integration of renewables, and the possible provision ofheterogeneous qualities of electrical service to match the requirementsof various end-uses. In Europe, mu grid RD3 is entering its third majorround under the 7th European Commission Framework Programme; in the U.S.,one specific mu grid concept is undergoing rigorous laboratory testing,and in Japan, where the most activity exists, four major publiclysponsored and two privately sponsored demonstrations are in progress.This evolution poses new challenges to the way buildings are designed,built, and operated. Traditional building energy supply systems willbecome much more complex in at least three ways: 1. one cannot simplyassume gas arrives at the gas meter, electricity at its meter, and thetwo systems are virtually independent of one another; rather, energyconversion, heat recovery and use, and renewable energy harvesting mayall be taking place simultaneously within the building energy system; 2.the structure of energy flows in the building must accommodate multipleenergy processes in a manner that permits high overall efficiency; and 3.multiple qualities of electricity may be supplied to various buildingfunctions.

  2. A bottom-up engineering estimate of the aggregate heating andcooling loads of the entire U.S. building stock

    SciTech Connect (OSTI)

    Huang, Yu Joe; Brodrick, Jim

    2000-08-01T23:59:59.000Z

    A recently completed project for the U.S. Department of Energy's (DOE) Office of Building Equipment combined DOE-2 results for a large set of prototypical commercial and residential buildings with data from the Energy Information Administration (EIA) residential and commercial energy consumption surveys (RECS, CBECS) to estimate the total heating and cooling loads in U.S. buildings attributable to different shell components such as windows, roofs, walls, etc., internal processes, and space-conditioning systems. This information is useful for estimating the national conservation potentials for DOE's research and market transformation activities in building energy efficiency. The prototypical building descriptions and DOE-2 input files were developed from 1986 to 1992 to provide benchmark hourly building loads for the Gas Research Institute (GRI) and include 112 single-family, 66 multi-family, and 481 commercial building prototypes. The DOE study consisted of two distinct tasks : (1) perform DOE-2 simulations for the prototypical buildings and develop methods to extract the heating and cooling loads attributable to the different building components; and (2) estimate the number of buildings or floor area represented by each prototypical building based on EIA survey information. These building stock data were then multiplied by the simulated component loads to derive aggregated totals by region, vintage, and building type. The heating and cooling energy consumption of the national building stock estimated by this bottom-up engineering approach was found to agree reasonably well with estimates from other sources, although significant differences were found for certain end-uses. The main added value from this study, however, is the insight it provides about the contributing factors behind this energy consumption, and what energy savings can be expected from efficiency improvements for different building components by region, vintage, and building type.

  3. Influence of Transfer Efficiency of the Outdoor Pipe Network and Boiler Operating Efficiency on the Building Heat Consumption Index

    E-Print Network [OSTI]

    Fang, X.; Wang, Z.; Liu, H.

    2006-01-01T23:59:59.000Z

    This paper analyzes the influence of transfer efficiency of the outdoor pipe network and operating efficiency of the boiler on the building heat consumption index, on the premise of saving up to 65 percent energy in different climates. The results...

  4. Total Facility Control - Applying New Intelligent Technologies to Energy Efficient Green Buildings 

    E-Print Network [OSTI]

    Bernstein, R.

    2010-01-01T23:59:59.000Z

    Energy efficiency through intelligent control is a core element of any "Green Building". We need smarter, more efficient ways of managing the energy consuming elements within a building. But what we think of as "the building" ...

  5. Building America Technology Solutions for New and Existing Homes: Multifamily Central Heat Pump Water Heaters (Fact Sheet)

    Broader source: Energy.gov [DOE]

    To evaluate the performance of central heat pump water heaters for multifamily applications, the Alliance for Residential Building Innovation team monitored the performance of a 10.5 ton central HPWH installed on a student apartment building at the West Village Zero Net Energy Community in Davis, California, for 16 months.

  6. The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    chillers that use waste heat for cooling (see also Stadlerfired natural gas chillers, waste heat or solar heat; •with HX can utilize waste heat for heating or cooling

  7. Advanced phase change materials and systems for solar passive heating and cooling of residential buildings

    SciTech Connect (OSTI)

    Salyer, I.O.; Sircar, A.K.; Dantiki, S.

    1988-01-01T23:59:59.000Z

    During the last three years under the sponsorship of the DOE Solar Passive Division, the University of Dayton Research Institute (UDRI) has investigated four phase change material (PCM) systems for utility in thermal energy storage for solar passive heating and cooling applications. From this research on the basis of cost, performance, containment, and environmental acceptability, we have selected as our current and most promising series of candidate phase change materials, C-15 to C-24 linear crystalline alkyl hydrocarbons. The major part of the research during this contract period was directed toward the following three objectives. Find, test, and develop low-cost effective phase change materials (PCM) that melt and freeze sharply in the comfort temperature range of 73--77{degree}F for use in solar passive heating and cooling of buildings. Define practical materials and processes for fire retarding plasterboard/PCM building products. Develop cost-effective methods for incorporating PCM into building construction materials (concrete, plasterboard, etc.) which will lead to the commercial manufacture and sale of PCM-containing products resulting in significant energy conservation.

  8. Energy analysis of facade-integrated photovoltaic systems applied to UAE commercial buildings

    SciTech Connect (OSTI)

    Radhi, Hassan [Architectural Engineering Department, UAE University, Al-ain (United Arab Emirates)

    2010-12-15T23:59:59.000Z

    Developments in the design and manufacture of photovoltaic cells have recently been a growing concern in the UAE. At present, the embodied energy pay-back time (EPBT) is the criterion used for comparing the viability of such technology against other forms. However, the impact of PV technology on the thermal performance of buildings is not considered at the time of EPBT estimation. If additional energy savings gained over the PV system life are also included, the total EPBT could be shorter. This paper explores the variation of the total energy of building integrated photovoltaic systems (BiPV) as a wall cladding system applied to the UAE commercial sector and shows that the ratio between PV output and saving in energy due to PV panels is within the range of 1:3-1:4. The result indicates that for the southern and western facades in the UAE, the embodied energy pay-back time for photovoltaic system is within the range of 12-13 years. When reductions in operational energy are considered, the pay-back time is reduced to 3.0-3.2 years. This study comes to the conclusion that the reduction in operational energy due to PV panels represents an important factor in the estimation of EPBT. (author)

  9. A Review of Ground Coupled Heat Pump Models Used in Whole-Building Computer Simulation Programs

    E-Print Network [OSTI]

    Do, S. L.; Haberl, J. S.

    system simulation module. The DOE-2.2 is the simulation engine of eQUEST. The eQUEST/DOE- 2.2 program uses an enhanced g-function algorithm, which was proposed by Eskilson (1987) at Lund University, Sweden, for fast calculation of the borehole wall... & Renewable Energy: http://apps1.eere.energy.gov/buildings/energyplus/ Eskilson, P. 1987. Thermal analysis of heat extraction boreholes. Lund, Sweden: Doctoral thesis, University of Lund, Dept. of Mathmatics. Fisher, D., & Rees, S. 2005. Modeling ground...

  10. NREL's Building-Integrated Supercomputer Provides Heating and Efficient Computing (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-09-01T23:59:59.000Z

    NREL's Energy Systems Integration Facility (ESIF) is meant to investigate new ways to integrate energy sources so they work together efficiently, and one of the key tools to that investigation, a new supercomputer, is itself a prime example of energy systems integration. NREL teamed with Hewlett-Packard (HP) and Intel to develop the innovative warm-water, liquid-cooled Peregrine supercomputer, which not only operates efficiently but also serves as the primary source of building heat for ESIF offices and laboratories. This innovative high-performance computer (HPC) can perform more than a quadrillion calculations per second as part of the world's most energy-efficient HPC data center.

  11. Building America Expert Meeting Final Report: Multifamily Hydronic and Steam Heating Controls and Distribution Retrofits

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronic Heating in Multifamily Buildings Jordan Dentz

  12. Apply: Funding Opportunity- Advancing Solutions to Improve Energy Efficiency of Commercial Buildings

    Broader source: Energy.gov [DOE]

    Closed Application Deadline: January 20, 2015 The Building Technologies Office (BTO) Commercial Buildings Integration Program has announced the availability of nearly $9 million for Funding Opportunity Announcement (FOA) DE-FOA-0001168, “Advancing Solutions to Improve the Energy Efficiency of U.S. Commercial Buildings

  13. Apply: Funding Opportunity- Building America Industry Partnerships for High Performance Housing Innovation

    Broader source: Energy.gov [DOE]

    Closed Application Deadline: February 4, 2015 The Building Technologies Office (BTO)’s Residential Buildings Integration Program has announced the availability of up to $4 million in 2015 for the Building America Industry Partnerships for High Performance Housing Innovation Funding Opportunity Announcement (FOA) DE-FOA-0001117.

  14. Thorough approach to measurement uncertainty analysis applied to immersed heat exchanger testing

    SciTech Connect (OSTI)

    Farrington, R.B.; Wells, C.V.

    1986-04-01T23:59:59.000Z

    This paper discusses the value of an uncertainty analysis, discusses how to determine measurement uncertainty, and then details the sources of error in instrument calibration, data acquisition, and data reduction for a particular experiment. Methods are discussed to determine both the systematic (or bias) error in an experiment as well as to determine the random (or precision) error in the experiment. The detailed analysis is applied to two sets of conditions in measuring the effectiveness of an immersed coil heat exchanger. It shows the value of such analysis as well as an approach to reduce overall measurement uncertainty and to improve the experiment. This paper outlines how to perform an uncertainty analysis and then provides a detailed example of how to apply the methods discussed in the paper. The authors hope this paper will encourage researchers and others to become more concerned with their measurement processes and to report measurement uncertainty with all of their test results.

  15. An in-depth Analysis of Space Heating Energy Use in Office Buildings

    E-Print Network [OSTI]

    Lin, Hung-Wen

    2013-01-01T23:59:59.000Z

    and operation of low energy buildings. In this study, thecommercial buildings with low energy consumption. The90.1-2004, Energy standard for buildings except low-rise

  16. On Variations of Space-heating Energy Use in Office Buildings

    E-Print Network [OSTI]

    Lin, Hung-Wen

    2014-01-01T23:59:59.000Z

    simulation results with the building databases forthe large office building in Chicago. Figure 9.simulation results with the building databases for the small

  17. Proposal for the award of a contract for the design, supply, installation and commissioning of an HVAC (Heating, Ventilation and Air Conditioning) system for Building 3862

    E-Print Network [OSTI]

    2014-01-01T23:59:59.000Z

    Proposal for the award of a contract for the design, supply, installation and commissioning of an HVAC (Heating, Ventilation and Air Conditioning) system for Building 3862

  18. Information Concerning the Contract for the Heating and Ventilation Installations for the Auxiliary Buildings of the 300 GeV Accelerator

    E-Print Network [OSTI]

    1974-01-01T23:59:59.000Z

    Information Concerning the Contract for the Heating and Ventilation Installations for the Auxiliary Buildings of the 300 GeV Accelerator

  19. Adjudication of a Contract for the Supply of the Heating and Ventilation Installations for the Auxiliary Buildings of the 300 GeV Accelerator

    E-Print Network [OSTI]

    1972-01-01T23:59:59.000Z

    Adjudication of a Contract for the Supply of the Heating and Ventilation Installations for the Auxiliary Buildings of the 300 GeV Accelerator

  20. An in-depth Analysis of Space Heating Energy Use in Office Buildings

    E-Print Network [OSTI]

    Lin, Hung-Wen

    2013-01-01T23:59:59.000Z

    reduction for a net zero energy building, ACEEE Summer Studybuilding or net zero energy building goals, which emphasize

  1. An in-depth Analysis of Space Heating Energy Use in Office Buildings

    E-Print Network [OSTI]

    Lin, Hung-Wen

    2013-01-01T23:59:59.000Z

    EIA] 2003 Commercial Building Energy Consumption Survey (EIA] Energy Information Administration. 2003. Commercial buildings energy consumption survey.

  2. Thermal mass assessment: an explanation of the mechanisms by which building mass influences heating and cooling energy requirements

    SciTech Connect (OSTI)

    Childs, K.W.; Courville, G.E.; Bales, E.L.

    1983-09-01T23:59:59.000Z

    The influence that building mass has on energy consumption for heating and cooling has been the subject of some controversy. This controversy is, in part, due to a lack of understanding of the heat transfer mechanics occurring within a building and of how they affect energy usage. This report offers a step-by-step development of the principles of heat transfer in buildings as they pertain to thermal mass. The report is targeted for persons who are unfamiliar with the topic of thermal mass, but who possess some technical background. It is concluded that for the mass of a building to reduce energy usage, the building must undergo alternating periods of net energy gain and loss. In other words, during the heating season the indoor temperature must at times float above the thermostat set point temperature to reduce energy consumption. During the cooling season, the indoor temperature must occasionally drop below the set point temperature. Other issues addressed include the effects of mass on peak loads, equipment cycling, thermostat setback, and comfort. Strategies to maximize benefits of mass are discussed.

  3. Evaluation and demonstration of decentralized space and water heating versus centralized services for new and rehabilitated multifamily buildings. Final report

    SciTech Connect (OSTI)

    Belkus, P. [Foster-Miller, Inc., Waltham, MA (US); Tuluca, A. [Steven Winter Associates, Inc., Norwalk, CT (US)

    1993-06-01T23:59:59.000Z

    The general objective of this research was aimed at developing sufficient technical and economic know-how to convince the building and design communities of the appropriateness and energy advantages of decentralized space and water heating for multifamily buildings. Two main goals were established to guide this research. First, the research sought to determine the cost-benefit advantages of decentralized space and water heating versus centralized systems for multifamily applications based on innovative gas piping and appliance technologies. The second goal was to ensure that this information is made available to the design community.

  4. Energy Impacts of Nonlinear Behavior of PCM When Applied into Building Envelope: Preprint

    SciTech Connect (OSTI)

    Tabares-Velasco, P. C.

    2012-08-01T23:59:59.000Z

    Previous research on phase change materials (PCM) for building applications has been done for several decades resulting in plenty of literature on PCM properties, temperature, and peak reduction potential. Thus, PCMs are a potential technology to reduce peak loads and HVAC energy consumption in buildings. There are few building energy simulation programs that have PCM modeling features, and even fewer have been validated. Additionally, there is no previous research that indicates the level of accuracy when simulating PCM from a building energy simulation perspective. This study analyzes the effects a nonlinear enthalpy profile has on thermal performance and expected energy benefits for PCM-enhanced insulation.

  5. Storage tank heat losses through thermosiphoning in two SFBP (the Solar in Federal Buildings Program) solar systems

    SciTech Connect (OSTI)

    Francetic, J.S.; Robinson, K.S.

    1987-07-01T23:59:59.000Z

    Comprehensive monitoring and performance analyses of Solar in Federal Buildings Program (SFBP) quality sites indicated that storage tank heat losses were significantly higher than design estimates. In some cases, measured losses were as much as 10 times the calculated losses. One potentially significant source of heat loss in solar systems is thermosiphoning. A series of tests was conducted at two SFBP quality solar systems to investigate the existence and magnitude of thermosiphon losses from storage subsystems.

  6. Solar heating and hot water system installed at office building, One Solar Place, Dallas, Texas. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-06-01T23:59:59.000Z

    This document is the Final Report of the Solar Energy System Installed at the First Solar Heated Office Building, One Solar Place, Dallas, Texas. The Solar System was designed to provide 87 percent of the space heating needs, 100 percent of the potable hot water needs and is sized for future absorption cooling. The collection subsystem consists of 28 Solargenics, series 76, flat plate collectors with a total area of 1596 square feet. The solar loop circulates an ethylene glycol-water solution through the collectors into a hot water system heat exchanger. The hot water storage subsystem consists of a heat exchanger, two 2300 gallon concrete hot water storage tanks with built in heat exchangers and a back-up electric boiler. The domestic hot water subsystem sends hot water to the 10,200 square feet floor area office building hot water fixtures. The building cold water system provides make-up to the solar loop, the heating loop, and the hot water concrete storage tanks. The design, construction, cost analysis, operation and maintenance of the solar system are described. The system became operational July 11, 1979.

  7. A model for thermally driven heat and air transport in passive solar buildings

    SciTech Connect (OSTI)

    Jones, G.F.; Balcomb, J.D.; Otis, D.R.

    1985-01-01T23:59:59.000Z

    A model for transient interzone heat and air flow transport in passive solar buildings is presented incorporating wall boundary layers in stratified zones, and with interzone transport via apertures (doors and windows). The model includes features that have been observed in measurements taken in more than a dozen passive solar buildings. The model includes integral formulations of the laminar and turbulent boundary layer equations for the vertical walls which are then coupled to a one-dimensional core model for each zone. The cores in each zone exchange mass and energy through apertures that are modeled by an orifice type equation. The procedure is transient in that time dependence is retained only in the core equations which are solved by an explicit method. The model predicts room stratification of about 2/sup 0/C/m (1.1/sup 0/F/ft) for a room-to-room temperature difference of 0.56/sup 0/C(1/sup 0/F) which is in general agreement with the data.

  8. Model for thermally driven heat and air transport in passive solar buildings

    SciTech Connect (OSTI)

    Jones, G.F.; Balcomb, J.D.; Otis, D.R.

    1985-01-01T23:59:59.000Z

    A model for transient interzone heat and air flow transport in passive solar buildings is presented incorporating wall boundary layers in stratified zones, and with interzone transport via apertures (doors and windows). The model includes features that have been observed in measurements taken in more than a dozen passive solar buildings. The model includes integral formulations of the laminar and turbulent boundary layer equations for the vertical walls which are then coupled to a one-dimensional core model for each zone. The cores in each zone exchange mass and energy through apertures that are modeled by an orifice type equation. The procedure is transient in that time dependence is retained only in the core equations which are solved by an explicit method. The model predicts room stratification of about 2/sup 0/C/m (1.1/sup 0/F/ft) for a room-to-room temperature difference of 0.56/sup 0/C(1/sup 0/F) which is in general agreement with the data. 38 references, 10 figures, 1 table.

  9. Applying the Leap Experience to Monitoring of Commercial Buildings in Hot and Humid Climates

    E-Print Network [OSTI]

    Mazzucchi, R. P.; Stoops, J. L.

    1988-01-01T23:59:59.000Z

    Energy use monitoring projects for commercial buildings must be carefully configured and managed to assure useful data products are produced in a timely and cost-effective manner. Many challenges associated with site selection, data definition...

  10. Apply: Building Energy Efficiency Frontiers and Innovation Technologies (BENEFIT)- 2015 Funding Opportunity Announcement

    Broader source: Energy.gov [DOE]

    Closed Application Deadline: January 12, 2015 This Building Energy Efficiency Frontiers and Innovations Technologies (BENEFIT) 2015 FOA contributes to advancement in two core technological areas: non-vapor compression HVAC technologies and advanced vapor compression HVAC technologies.

  11. St. Paul -West Bank District Heating-to-Cooling Conversion Plan Check the date your building's cooling system is scheduled to be on.

    E-Print Network [OSTI]

    Webb, Peter

    's cooling system is scheduled to be on. Status Color Code: On In Progress Not started Building Name BuildingSt. Paul - West Bank District Heating-to-Cooling Conversion Plan Check the date your building # Date Central Cooling On Status Date Window A/C Units installed Status 19th ave ramp 217 N/A N/A N/A 21

  12. Health Sciences District Heating-to-Cooling Conversion Plan Check the date your building's cooling system is scheduled to be on.

    E-Print Network [OSTI]

    Webb, Peter

    system is scheduled to be on. Status Color Code: On In Progress Not started *** - Typically between May 1Health Sciences District Heating-to-Cooling Conversion Plan Check the date your building's cooling-15, as requested. Building Name Building # Date Central Cooling On Status Date Window A/C Units installed Status

  13. East Bank District Heating-to-Cooling Conversion Plan Check the date your building's cooling system is scheduled to be on.

    E-Print Network [OSTI]

    Webb, Peter

    East Bank District Heating-to-Cooling Conversion Plan Check the date your building's cooling system is scheduled to be on. Status Color Code: On In Progress Not started Building Name Building # Date Central Cooling On Status Date Window A/C Units installed Status 1425 University Ave. 127 1901 University Ave SE

  14. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

  15. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

  16. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

  17. A comparison of analog methods in heat flow analysis with simplified mathematica methods as applied to flight structures

    E-Print Network [OSTI]

    Murray, William

    1960-01-01T23:59:59.000Z

    in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE January 1960 Maj or Subj ect: Mechanical Engineering A COMPARISON OF ANALOG METHODS IN HEAT FLOW ANALYSIS WITH SIMPLIFIED MATHEMATICAL METHODS AS APPLIED TO FLIGHT STRUCTURES... and require lengthy and sometimes difficult mathematical computations to arrive at a solution. It is obvious that there is a need for a simple, rapid, and reliable method of solving complex problems involving heat flow. It is the purpose...

  18. Measured piping and component heat losses from a typical SFBP (Solar in Federal Buildings Program) solar system

    SciTech Connect (OSTI)

    Francetic, J.S.; Robinson, K.S.

    1987-07-01T23:59:59.000Z

    Recent comprehensive monitoring of solar energy systems has indicated that heat losses from system piping and components are much higher than originally expected. Theoretical analyses conducted at the Energy Technology Engineering Center (ETEC) predict that operating plus standby (during shutdown) heat losses from a typical solar system could equal up to one-third of the total gross solar energy collected by the system. Detailed heat loss experiments were conducted on a Solar in Federal Buildings Program (SFBP)-monitored site to identify and quantify actual piping, component, and thermosiphon heat losses for a typical day. The selected solar system, SFBP 4008, is a solar space heating and domestic hot water (DHW) system located at the Eisenhower Memorial Museum at Abilene, Kansas. The system has 4200 ft/sup 2/ of collector array located at a considerable distance from the mechanical building. Long lengths of exterior above-ground and buried piping connect the collectors to the mechanical room. Valves and pumps are uninsulated. The heat loss experiments at the Eisenhower site showed that 25% of the energy collected on a summer day was lost in pipes and components. Detailed results are given. 8 refs., 64 figs., 17 tabs.

  19. Investigation of a Novel Solar Assisted Water Heating System with Enhanced Energy Yield for Buildings 

    E-Print Network [OSTI]

    Zhang, X.; Zhao, X.; Xu, J.; Yu, X.

    2012-01-01T23:59:59.000Z

    simulation and experimental verification. The unique characteristic of such system consists in the integrated loop heat pipe and heat pump unit (LHP-HP), which was proposed to improve solar photovoltaic (PV) generation, capture additional solar heat...

  20. Application analysis of ground source heat pumps in building space conditioning

    E-Print Network [OSTI]

    Qian, Hua

    2014-01-01T23:59:59.000Z

    for ground-source heat pumps. in ASHRAE Summer Meeting.savings of ground source heat pump systems in Europe: Afor ground-source heat pumps: A literature review,

  1. Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems

    E-Print Network [OSTI]

    Wetter, Michael

    2010-01-01T23:59:59.000Z

    a model with prescribed heat input into the medium, i.e. ,heat and towers. The air inlet temperature is obtained from an inputan input signal. There is also a constant effectiveness heat

  2. Apply

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative FuelsSanta3Appliance andApplicationBerkeleyAppliedApply

  3. Buildings Interoperability Landscape ? DRAFT

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Heating, Refrigerating, and Air-Conditioning Engineers BACS building automation and control system BCHP building-cooling-heating-power BPM Business Process Modeling BTO...

  4. Autonomous Correction of Sensor Data Applied to Building Technologies Utilizing Statistical Processing Methods

    E-Print Network [OSTI]

    Wang, Xiaorui "Ray"

    Ridge, TN outfitted with a total of 1,218 sensors. The focus of this paper is on three different types.S. ("Intergovernmental Panel," 2007). There is a need for integrated building strategies, according to the U.S. Green concerns relevant to sensors being used to collect a wide variety of variables (e.g., humidity ratio, solar

  5. Operability and Results of Retro and On-Going Commission Tools Applied to an Existing Building

    E-Print Network [OSTI]

    Ginestet, S.; Marchio, D.; Morisot, O.

    2004-01-01T23:59:59.000Z

    Several tools in the scope of Annex 40 (PECI Model Commissioning Plan and Guide specification, Emma-CTA, IPMVP) have been used to realise the retro and the on-going commissioning of an existing building. The aim of the work was to evaluate...

  6. The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    heat exchangers, solar thermal collectors, absorptioncells; • photovoltaics (PV) and solar thermal collectors; •for application of solar thermal and recovered heat to end-

  7. Modeling of Heat Transfer in Rooms in the Modelica Buildings Library

    E-Print Network [OSTI]

    Wetter, Michael

    2013-01-01T23:59:59.000Z

    of the room heat transfer model in the free open-sourcea layer-by-layer heat transfer model that computes infrared

  8. Applying Best Practices to Florida Local Government Retrofit Programs, Central Florida (Fact Sheet), Building America Case Study: Whole-House Solutions for Existing Homes, Building Technologies Office (BTO)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is alwaysISOSource Heat 1Power Express,Marketing,LPorApply

  9. Project title: Natural ventilation, solar heating and integrated low-energy building design

    E-Print Network [OSTI]

    2009-07-10T23:59:59.000Z

    greenhouse gas emissions from office buildings CMI E-Newsletter Issue 7 BP announces funding for CMI project on integrated low-energy building design No air conditioning, no sweat! Sustainable Building Design: Application Of Natural Ventilation Short... , such as China, where new buildings are being constructed at a rate far in excess of the level of development in developed countries, and where energy is relatively expensive. More Information For further information, please visit the Natural Ventilation...

  10. Proposal for the Award of a Contract for the Heating, Ventilation and Cooling Installations for the LHC Surface Buildings

    E-Print Network [OSTI]

    1999-01-01T23:59:59.000Z

    This document concerns the award of a contract for the heating, ventilation and cooling installations for the LHC surface buildings. Following a market survey carried out among 80 firms in fifteen Member States, a call for tenders (IT-2524/ST/LHC) was sent on 14 January 1999 to four firms and five consortia, two consisting of three firms and three consisting of two firms, in five Member States. By the closing date, CERN had received five tenders. The Finance Committee is invited to agree to the negotiation of a contract for the heating, ventilation and cooling installations for the LHC surface buildings with the consortium DSD (DE), AIR ET CHALEUR (BE) and SPIE TRINDEL (FR) for a total amount not exceeding 14 500 000 Swiss francs, not subject to revision until 31 December 2001. The consortium has announced that the work will be distributed as follows: DSD (DE) 67% - Air et Chaleur (BE) 21% - Spie Trindel (FR) 12%.

  11. Roof aperture system for selective collection and control of solar energy for building heating, cooling and daylighting

    DOE Patents [OSTI]

    Sanders, William J. (Kansas City, KS); Snyder, Marvin K. (Overland Park, KS); Harter, James W. (Independence, MO)

    1983-01-01T23:59:59.000Z

    The amount of building heating, cooling and daylighting is controlled by at least one pair of solar energy passing panels, with each panel of the pair of panels being exposed to a separate direction of sun incidence. A shutter-shade combination is associated with each pair of panels and the shutter is connected to the shade so that rectilinear movement of the shutter causes pivotal movement of the shade.

  12. Description and preliminary validation of a model for natural convection heat and air transport in passive solar buildings

    SciTech Connect (OSTI)

    Jones, G.F.; Balcomb, J.D.

    1985-01-01T23:59:59.000Z

    We have proposed a transient, quasi-two-dimensional, numerical model for interzone heat flow and airflow in passive solar buildings. The paths for heat flow and airflow are through connecting apertures such as doorways, hallways, and stairways. The model includes the major features that influence interzone convection as determined from the results of our flow visualization tests and temperature and airflow measurements taken in more than a dozen passive solar buildings. The model includes laminar and turbulent quasi-steady boundary-layer equations at vertical heated or cooled walls which are coupled to a one-dimensional core model for each zone. The cores in each zone exchange air and energy through the aperture which is modelled by a Bernoulli equation. Preliminary results from the model are in general agreement with data obtained in full-scale buildings and laboratory experiments. The model predicts room-core temperature stratification of about 2/sup 0/C/m (1.1/sup 0/ F/ft) and maximum aperture velocities of 0.08 m/s (15 ft/min.) for a room-to-room temperature difference of 1/sup 0/F.

  13. INTERACTION OF A SOLAR SPACE HEATING SYSTEM WITH THE THERMAL BEHAVIOR OF A BUILDING

    E-Print Network [OSTI]

    Vilmer, Christian

    2013-01-01T23:59:59.000Z

    solar con- trols test facility at Lawrence Berkeley Laboratory The interaction of baseboard, radiant panel, and furnace heating

  14. An in-depth Analysis of Space Heating Energy Use in Office Buildings

    E-Print Network [OSTI]

    Lin, Hung-Wen

    2013-01-01T23:59:59.000Z

    heat consumption of a low energy multifamily complex in Switzerland based on long-term experimental data,

  15. The impact of different climates on window and skylight design for daylighting and passive cooling and heating in residential buildings: A comparative study

    SciTech Connect (OSTI)

    Al-Sallal, K.A.

    1999-07-01T23:59:59.000Z

    The study aims to explore the effect of different climates on window and skylight design in residential buildings. The study house is evaluated against climates that have design opportunities for passive systems, with emphasis on passive cooling. The study applies a variety of methods to evaluate the design. It has found that earth sheltering and night ventilation have the potential to provide 12--29% and 25--77% of the cooling requirements respectively for the study house in the selected climates. The reduction of the glazing area from 174 ft{sup 2} to 115 ft{sup 2} has different impacts on the cooling energy cost in the different climates. In climates such Fresno and Tucson, one should put the cooling energy savings as a priority for window design, particularly when determining the window size. In other climates such as Albuquerque, the priority of window design should be first given to heating savings requirements.

  16. Building America Technology Solutions for New and Existing Homes: Field Performance of Heat Pump Water Heaters in the Northeast (Fact Sheet)

    Broader source: Energy.gov [DOE]

    In this project, the Consortium for Advanced Residential Buildings evaluated three newly released heat pump water heater products in order to provide publicly available field data on these products.

  17. Autonomous Correction of Sensor Data Applied to Building Technologies Using Filtering Methods

    SciTech Connect (OSTI)

    Castello, Charles C [ORNL] [ORNL; New, Joshua Ryan [ORNL] [ORNL; Smith, Matt K [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    Sensor data validity is extremely important in a number of applications, particularly building technologies where collected data are used to determine performance. An example of this is Oak Ridge National Laboratory s ZEBRAlliance research project, which consists of four single-family homes located in Oak Ridge, TN. The homes are outfitted with a total of 1,218 sensors to determine the performance of a variety of different technologies integrated within each home. Issues arise with such a large amount of sensors, such as missing or corrupt data. This paper aims to eliminate these problems using: (1) Kalman filtering and (2) linear prediction filtering techniques. Five types of data are the focus of this paper: (1) temperature; (2) humidity; (3) energy consumption; (4) pressure; and (5) airflow. Simulations show the Kalman filtering method performed best in predicting temperature, humidity, pressure, and airflow data, while the linear prediction filtering method performed best with energy consumption data.

  18. Modeling of Heat Transfer in Rooms in the Modelica Buildings Library

    E-Print Network [OSTI]

    Wetter, Michael

    2013-01-01T23:59:59.000Z

    Multizone Air- flow Model in Modelica. ” Edited by ChristianRecent developments of the Modelica buildings library forof the 8-th International Modelica Conference. Modelica

  19. Federal Technology Alert: Ground-Source Heat Pumps Applied to Federal Facilities--Second Edition

    SciTech Connect (OSTI)

    Hadley, Donald L.

    2001-03-01T23:59:59.000Z

    This Federal Technology Alert, which was sponsored by the U.S. Department of Energy's Office of Federal Energy Management Programs, provides the detailed information and procedures that a Federal energy manager needs to evaluate most ground-source heat pump applications. This report updates an earlier report on ground-source heat pumps that was published in September 1995. In the current report, general benefits of this technology to the Federal sector are described, as are ground-source heat pump operation, system types, design variations, energy savings, and other benefits. In addition, information on current manufacturers, technology users, and references for further reading are provided.

  20. Study on the use of adaptive control for energy conservation in large solar heated and cooled buildings

    SciTech Connect (OSTI)

    Farris, D.R.; Melsa, J.L.

    1980-01-01T23:59:59.000Z

    The National Security and Resources Study Center at LASL provides the basis for a general model used in this simulation. The NSRSC is a 59,000 ft/sup 2/ library and conference facility. A simplified model of the solar heating system is used. The adaptive optimal control technique is described and applied and the results are discussed. (MHR)

  1. The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    Darrow, K et al. (2009), “CHP Market Assessment” Integratedwith combined heat and power (CHP) capability deployment ingas emissions (GHG) reductions. CHP applications at large

  2. On Variations of Space-heating Energy Use in Office Buildings

    E-Print Network [OSTI]

    Lin, Hung-Wen

    2014-01-01T23:59:59.000Z

    space temperature, occupant thermal comfort, cooling and heating loads, HVAC equipment sizes, energy consumption, utility cost, air emissions, water usage, renewable

  3. An in-depth Analysis of Space Heating Energy Use in Office Buildings

    E-Print Network [OSTI]

    Lin, Hung-Wen

    2013-01-01T23:59:59.000Z

    space temperature, occupant thermal comfort, cooling and heating loads, HVAC equipment sizes, energy consumption, utility cost, air emissions, water usage, renewable

  4. Researching Complex Heat, Air and Moisture Interactions for a Wide-Range of Building Envelope Systems and Environmental Loads

    SciTech Connect (OSTI)

    Karagiozis, A.N.

    2007-05-15T23:59:59.000Z

    This document serves as the final report documenting work completed by Oak Ridge National Laboratory (ORNL) and the Fraunhofer Institute in Building Physics (Holzkirchen, Germany) under an international CRADA No. 0575 with Fraunhofer Institute of Bauphysics of the Federal Republic of Germany for Researching Complex Heat, Air and Moisture Interactions for a Wide Range of Building Envelope Systems and Environmental Loads. This CRADA required a multi-faceted approach to building envelope research that included a moisture engineering approach by blending extensive material property analysis, laboratory system and sub-system thermal and moisture testing, and advanced moisture analysis prediction performance. The Participant's Institute for Building physics (IBP) and the Contractor's Buildings Technology Center (BTC) identified potential research projects and activities capable of accelerating and advancing the development of innovative, low energy and durable building envelope systems in diverse climates. This allowed a major leverage of the limited resources available to ORNL to execute the required Department of Energy (DOE) directives in the area of moisture engineering. A joint working group (ORNL and Fraunhofer IBP) was assembled and a research plan was executed from May 2000 to May 2005. A number of key deliverables were produced such as adoption of North American loading into the WUFI-software. in addition the ORNL Weather File Analyzer was created and this has been used to address environmental loading for a variety of US climates. At least 4 papers have been co-written with the CRADA partners, and a chapter in the ASTM Manual 40 on Moisture Analysis and Condensation Control. All deliverables and goals were met and exceeded making this collaboration a success to all parties involves.

  5. Building America Case Study: Ground Source Heat Pump Research, TaC Studios Residence, Atlanta, Georigia (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-09-01T23:59:59.000Z

    As part of the NAHB Research Center Industry Partnership, Southface partnered with TaC Studios, an Atlanta based architecture firm specializing in residential and light commercial design, on the construction of a new test home in Atlanta, GA in the mixed-humid climate. This home serves as a residence and home office for the firm's owners, as well as a demonstration of their design approach to potential and current clients. Southface believes the home demonstrates current best practices for the mixed-humid climate, including a building envelope featuring advanced air sealing details and low density spray foam insulation, glazing that exceeds ENERGY STAR requirements, and a high performance heating and cooling system. Construction quality and execution was a high priority for TaC Studios and was ensured by a third party review process. Post construction testing showed that the project met stated goals for envelope performance, an air infiltration rate of 2.15 ACH50. The homeowner's wished to further validate whole house energy savings through the project's involvement with Building America and this long-term monitoring effort. As a Building America test home, this home was evaluated to detail whole house energy use, end use loads, and the efficiency and operation of the ground source heat pump and associated systems. Given that the home includes many non-typical end use loads including a home office, pool, landscape water feature, and other luxury features not accounted for in Building America modeling tools, these end uses were separately monitored to determine their impact on overall energy consumption.

  6. Combined Heat and Power for Saving Energy and Carbon in Residential Buildings

    E-Print Network [OSTI]

    2000-01-01T23:59:59.000Z

    the potential for CHP in residential homes at the case ofless than 10 kW) CHP for residential buildings. This isstates. Comparison of residential micro CHP technologies to

  7. A validated methodology for the prediction of heating and cooling energy demand for buildings within the Urban Heat Island: Case-study of London

    SciTech Connect (OSTI)

    Kolokotroni, Maria; Bhuiyan, Saiful [Mechanical Engineering, School of Engineering and Design, Brunel University, Uxbridge (United Kingdom); Davies, Michael; Croxford, Ben; Mavrogianni, Anna [The Bartlett School of Graduate Studies, University College London (United Kingdom)

    2010-12-15T23:59:59.000Z

    This paper describes a method for predicting air temperatures within the Urban Heat Island at discreet locations based on input data from one meteorological station for the time the prediction is required and historic measured air temperatures within the city. It uses London as a case-study to describe the method and its applications. The prediction model is based on Artificial Neural Network (ANN) modelling and it is termed the London Site Specific Air Temperature (LSSAT) predictor. The temporal and spatial validity of the model was tested using data measured 8 years later from the original dataset; it was found that site specific hourly air temperature prediction provides acceptable accuracy and improves considerably for average monthly values. It thus is a very reliable tool for use as part of the process of predicting heating and cooling loads for urban buildings. This is illustrated by the computation of Heating Degree Days (HDD) and Cooling Degree Hours (CDH) for a West-East Transect within London. The described method could be used for any city for which historic hourly air temperatures are available for a number of locations; for example air pollution measuring sites, common in many cities, typically measure air temperature on an hourly basis. (author)

  8. Reinforcement Learning, Neural Networks and PI Control Applied to a Heating Coil

    E-Print Network [OSTI]

    Kretchmar, R. Matthew

    situations, the degree of uncertainty in the model of the system being controlled limits the utility networks. Section 3 describes how a simple inverse model can be used to train a neural-network controller performance. 2 Heating Coil Model and PI Control Underwood and Crawford [9] developed a model of an existing

  9. Synthesis of Reinforcement Learning, Neural Networks, and PI Control Applied to a Simulated Heating Coil

    E-Print Network [OSTI]

    Anderson, Charles W.

    in sub-optimal control performance. In many situations, the degree of uncertainty in the model the control using neural networks. Section 3 describes how a simple inverse model can be used to train it results in improved performance. 2 Heating Coil Model and PI Control Underwoodand Crawford10 developeda

  10. Applying Learnable Evolution Model to Heat Exchanger Design Kenneth A. Kaufman and Ryszard S. Michalski*

    E-Print Network [OSTI]

    Michalski, Ryszard S.

    of the evaporator tubes in the heat exchanger of an air conditioner. This is a very difficult problem because conditioner, refrigerant flows through a loop. It is superheated and placed in contact with cooler outside air conditions, manufacturers of air conditioning systems currently assume in their models average operating

  11. Site selection and preliminary evaluation of potential solar-industrial-process-heat applications for federal buildings in Texas

    SciTech Connect (OSTI)

    Branz, M A

    1980-09-30T23:59:59.000Z

    The potential for solr process heat applications for federal buildings in Texas is assessed. The three sites considered are Reese Air Force Base, Lubbock; Fort Bliss, El Paso; and Dyess Air Force Base, Abilene. The application at Lubbock is an electroplating and descaling facility for aircraft maintenance. The one at El Paso is a laundry facility. The Abilene system would use solar heat to preheat boiler feedwater makeup for the base hospital boiler plant. The Lubbock site is found to be the most appropriate one for a demonstration plant, with the Abilene site as an alternate. The processes at each site are described. A preliminary evaluation of the potential contribution by solar energy to the electroplating facility at Reese AFB is included. (LEW)

  12. Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States

    SciTech Connect (OSTI)

    Stadler, Michael; Marnay, Chris; Siddiqui, Afzal; Lai, Judy; Coffey, Brian; Aki, Hirohisa

    2009-03-10T23:59:59.000Z

    Berkeley Lab has for several years been developing methods for selection of optimal microgrid systems, especially for commercial building applications, and applying these methods in the Distributed Energy Resources Customer Adoption Model (DER-CAM). This project began with 3 major goals: (1) to conduct detailed analysis to find the optimal equipment combination for microgrids at a few promising commercial building hosts in the two favorable markets of California and New York, (2) to extend the analysis capability of DER-CAM to include both heat and electricity storage, and (3) to make an initial effort towards adding consideration of power quality and reliability (PQR) to the capabilities of DER-CAM. All of these objectives have been pursued via analysis of the attractiveness of a Consortium for Electric Reliability Technology Solutions (CERTS) Microgrid consisting of multiple nameplate 100 kW Tecogen Premium Power Modules (CM-100). This unit consists of an asynchronous inverter-based variable speed internal combustion engine genset with combined heat and power (CHP) and power surge capability. The essence of CERTS Microgrid technology is that smarts added to the on-board power electronics of any microgrid device enables stable and safe islanded operation without the need for complex fast supervisory controls. This approach allows plug and play development of a microgrid that can potentially provide high PQR with a minimum of specialized site-specific engineering. A notable feature of the CM-100 is its time-limited surge rating of 125 kW, and DER-CAM capability to model this feature was also a necessary model enhancement.

  13. Solar space and water heating system at Stanford University Central Food Services Building. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-05-01T23:59:59.000Z

    This active hydronic domestic hot water and space heating system was 840 ft/sup 2/ of single-glazed, liquid, flat plate collectors and 1550 gal heat storage tanks. The following are discussed: energy conservation, design philosophy, operation, acceptance testing, performance data, collector selection, bidding, costs, economics, problems, and recommendations. An operation and maintenance manual and as-built drawings are included in appendices. (MHR)

  14. Natural ventilation - A new method based on the Walton model applied to cross-ventilated buildings having two large external openings

    E-Print Network [OSTI]

    Bastide, Alain; Boyer, Harry

    2012-01-01T23:59:59.000Z

    In order to provide comfort in a low energy consumption building, it is preferable to use natural ventilation rather than HVAC systems. To achieve this, engineers need tools that predict the heat and mass transfers between the building's interior and exterior. This article presents a method implemented in some building software, and the results are compared to CFD. The results show that the knowledge model is not sufficiently well-described to identify all the physical phenomena and the relationships between them. A model is developed which introduces a new building-dependent coefficient allowing the use of Walton's model, as extended by Roldan to large external openings, and which better represents the turbulent phenomena near large external openings. The formulation of the mass flow rates is inversed to identify modeling problems. It appears that the discharge coefficient is not the only or best parameter to obtain an indoor static pressure compatible with CFD results, or to calculate more realistic mass fl...

  15. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Comparison of Hydronic Heating Systems in MultiResidential Apartment Buildings

    E-Print Network [OSTI]

    ............................................................................................................14 2.3. Heat Supply Characterization

  16. Comparison of Energy Needed to Heat Greenhouses and Insulated Frame Buildings Used in Aquaculture1

    E-Print Network [OSTI]

    Watson, Craig A.

    , a filtering system, a temperature control system, a heating system and/or cooling system, the plumbing the disadvantages of a short lifetime, of requiring regular maintenance and of requiring a cooling system during authorized to provide research, educational information and other services only to individuals

  17. Building and Environment 44 (2009) 216226 Effect of volumetric heat sources on hysteresis phenomena

    E-Print Network [OSTI]

    Flynn, Morris R.

    2009-01-01T23:59:59.000Z

    phenomena in natural and mixed-mode ventilation M.R. Flynna,1 , C.P. Caulfieldb,Ã a Department of Mechanical this methodology may be extended to the converse problem of winter-time heating wherein hot, buoyant air is purposefully supplied to the interior space using a coupled ventilation scheme. A ``blocked'' flow regime

  18. Black Box Approach for Energy Monitoring of Commercial Buildings

    E-Print Network [OSTI]

    Komhard, S.; Neumann, C.

    be identified by comparing the predictions to real measurements. Models to monitor the daily heating and electricity demand are developed and applied to measured data from two demonstration buildings....

  19. Benchmarking Electron-Cloud Build-Up and Heat-Load Simulations against Large-Hadron-Collider Observations

    E-Print Network [OSTI]

    Dominguez, O; Maury, H; Rumolo, G; Zimmermann, F

    2011-01-01T23:59:59.000Z

    After reviewing the basic features of electron clouds in particle accelerators, the pertinent vacuum-chamber surface properties, and the electron-cloud simulation tools in use at CERN, we report recent observations of electron-cloud phenomena at the Large Hadron Collider (LHC) and ongoing attempts to benchmark the measured LHC vacuum pressure increases and heat loads against electron-cloud build-up simulations aimed at determining the actual surface parameters and at monitoring the so-called scrubbing process. Finally, some other electron-cloud studies related to the LHC are mentioned, and future study plans are described. Presented at MulCoPim2011, Valencia, Spain, 21-23 September 2011.

  20. Building America Webinar: New Construction Hybrid-Ductless Heat Pump Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronic HeatingManagementCrawlspacesII -Construction

  1. Topic 14. Retrofit and optimal operation of the building energy systems Performances of Low Temperature Radiant Heating Systems

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Temperature Radiant Heating Systems Milorad Boji1*, Dragan Cvetkovi1 , Jasmina Skerli1 , Danijela Nikoli1., University of Réunion Island, France * Corresponding email: bojic@kg.ac.rs Keywords: Low temperature heating, wall heating, floor heating, ceiling heating, EnergyPlus SUMMARY Low temperature heating panel systems

  2. Performance Test and Energy Saving Analysis of a Heat Pipe Dehumidifier

    E-Print Network [OSTI]

    Zhao, X.; Li, Q.; Yun, C.

    2006-01-01T23:59:59.000Z

    Heat pipe technology applied to ventilation, dryness, and cooling and heating radiator in a building is introduced in this paper. A new kind of heat pipe dehumidifier is designed and tested. The energy-saving ratio with the heat pipe dehumidifier...

  3. Performance Test and Energy Saving Analysis of a Heat Pipe Dehumidifier 

    E-Print Network [OSTI]

    Zhao, X.; Li, Q.; Yun, C.

    2006-01-01T23:59:59.000Z

    Heat pipe technology applied to ventilation, dryness, and cooling and heating radiator in a building is introduced in this paper. A new kind of heat pipe dehumidifier is designed and tested. The energy-saving ratio with the heat pipe dehumidifier...

  4. A pre-feasibility study to assess the potential of Open Loop Ground Source Heat to heat and cool the proposed Earth Science Systems Building

    E-Print Network [OSTI]

    A pre-feasibility study to assess the potential of Open Loop Ground Source Heat to heat and cool............................................................1 1.2. History of Ground Source Heat Pump Systems................................................3 1.3. Components of Ground Source Heat Pump Systems..........................................3 1.4. Types of Ground

  5. Co-simulation for performance prediction of integrated building and HVAC systems - An analysis of solution characteristics using a two-body system

    E-Print Network [OSTI]

    Trcka, Marija

    2010-01-01T23:59:59.000Z

    buildings and heating, ventilation and air- conditioning (building type, heating, ventilation and air-conditioning (

  6. NUMERICAL DETERMINATION AND TREATMENT OF CONVECTIVE HEAT TRANSFER COEFFICIENT IN THE COUPLED BUILDING ENERGY AND CFD SIMULATION

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    BUILDING ENERGY AND CFD SIMULATION Zhiqiang Zhai* Department of Civil, Environmental and Architectural, IN 47907-2088, USA ABSTRACT The integration of building Energy Simulation (ES) and Computational Fluid, Energy Simulation, CFD, Coupling INTRODUCTION A building energy simulation (ES) program predicts building

  7. Convective heat transfer on leeward building walls in an urban environment: Measurements in an outdoor scale model

    E-Print Network [OSTI]

    Nottrott, A.; Onomura, S.; Inagaki, A.; Kanda, M.; Kleissl, J.

    2011-01-01T23:59:59.000Z

    Vortex structure and heat transfer in turbulent flow over asurface, Proc. 5 th Int. Heat Transfer Conf. 3 (1974) 129-a vertical plate, J. Heat Transfer 109(1) [13] K. Patel,

  8. Microgrids: An emerging paradigm for meeting building electricity and heat requirements efficiently and with appropriate energy quality

    E-Print Network [OSTI]

    Marnay, Chris; Firestone, Ryan

    2007-01-01T23:59:59.000Z

    with heat recovery, solar thermal collection, and thermallynatural gas combustion solar thermal CHP heat storageelectric load thermal storage solar thermal storage charging

  9. Building America Webinar: Retrofitting Central Space Conditioning...

    Energy Savers [EERE]

    Strategies for Multifamily Buildings - Control strategies to improve hydronic space heating performance Building America Webinar: Retrofitting Central Space Conditioning...

  10. Analysis of improved fenestration for code-compliant residential buildings in hot and humid climates 

    E-Print Network [OSTI]

    Mukhopadhyay, Jaya

    2006-10-30T23:59:59.000Z

    -efficient fenestration products for residential buildings in both heating and cooling climates. Prominent among these options is the emergence of low-E coatings which are usually ultra-thin, heat-reflecting, metalized optical coatings applied to one or more surfaces... coated glazing immensely alters glazing properties. Low-E coatings applied to the outer surface of the inner pane of double pane fenestration help to retain heat trapped within the envelope, and hence is preferred for heating dominated climates (Johnson...

  11. Simulation and Analysis for Applying the Double-Stage Coupled Heat Pump System in the Villa of Cold Area 

    E-Print Network [OSTI]

    Yang, L.; Yao, Y.; Ma, Z.

    2006-01-01T23:59:59.000Z

    -to-water double-stage coupled heat pump system, is presented in this paper based on analyzing the characteristics of the villa district heating. Prediction and analysis of the feasibility of the double-stage coupled heat pump system in cold areas were carried...

  12. Simulation and Analysis for Applying the Double-Stage Coupled Heat Pump System in the Villa of Cold Area

    E-Print Network [OSTI]

    Yang, L.; Yao, Y.; Ma, Z.

    2006-01-01T23:59:59.000Z

    -to-water double-stage coupled heat pump system, is presented in this paper based on analyzing the characteristics of the villa district heating. Prediction and analysis of the feasibility of the double-stage coupled heat pump system in cold areas were carried...

  13. UQ and V&V techniques applied to experiments and simulations of heated pipes pressurized to failure.

    SciTech Connect (OSTI)

    Romero, Vicente Jose; Dempsey, J. Franklin; Antoun, Bonnie R.

    2014-05-01T23:59:59.000Z

    This report demonstrates versatile and practical model validation and uncertainty quantification techniques applied to the accuracy assessment of a computational model of heated steel pipes pressurized to failure. The Real Space validation methodology segregates aleatory and epistemic uncertainties to form straightforward model validation metrics especially suited for assessing models to be used in the analysis of performance and safety margins. The methodology handles difficulties associated with representing and propagating interval and/or probabilistic uncertainties from multiple correlated and uncorrelated sources in the experiments and simulations including: material variability characterized by non-parametric random functions (discrete temperature dependent stress-strain curves); very limited (sparse) experimental data at the coupon testing level for material characterization and at the pipe-test validation level; boundary condition reconstruction uncertainties from spatially sparse sensor data; normalization of pipe experimental responses for measured input-condition differences among tests and for random and systematic uncertainties in measurement/processing/inference of experimental inputs and outputs; numerical solution uncertainty from model discretization and solver effects.

  14. An improved procedure for developing a calibrated hourly simulation model of an electrically heated and cooled commercial building

    E-Print Network [OSTI]

    Bou-Saada, Tarek Edmond

    1994-01-01T23:59:59.000Z

    With the increased use of building energy simulation programs, calibration of simulated data to measured data has been recognized as an important factor in substantiating how well the model fits a real building. Model calibration to measured monthly...

  15. Building America Webinar: Central Multifamily Water Heating Systems- Energy-Efficient Controls for Multifamily Domestic Hot Water

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the U.S. Department of Energy Building America webinar on January 21, 2015.

  16. Green Energy Standards for Public Buildings

    Broader source: Energy.gov [DOE]

    In March 2012, West Virginia enacted the Green Buildings Act, which applies to all new construction of public buildings, buildings receiving state grant funds, and buildings receiving state...

  17. Measured energy performance of a US-China demonstration energy-efficient office building

    E-Print Network [OSTI]

    Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

    2006-01-01T23:59:59.000Z

    heating is provided by district heating. The building isis heated from a district heating system that provides hotconverts the heat from district heating system to the hot

  18. Total Space Heat-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

  19. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  20. Aerospace and Mechanical Engineers design and build unique, complex mechanical, optical, and electronic

    E-Print Network [OSTI]

    Rohs, Remo

    20 Aerospace and Mechanical Engineers design and build unique, complex mechanical, optical Engineering students conduct extensive basic and applied research within and crossing usual disciplinary vehicle aerodynamics, combustion, robotics, heat transfer and nonlinear dynamics. In addition, recent

  1. Aerospace and Mechanical Engineers design and build unique, complex mechanical, optical, and

    E-Print Network [OSTI]

    Rohs, Remo

    20 Aerospace and Mechanical Engineers design and build unique, complex mechanical, optical Engineering students conduct extensive basic and applied research within and crossing usual disciplinary vehicle aerodynamics, combustion, robotics, heat transfer and nonlinear dynamics. In addition, recent

  2. Solar Ready Buildings Planning Guide

    SciTech Connect (OSTI)

    Lisell, L.; Tetreault, T.; Watson, A.

    2009-12-01T23:59:59.000Z

    This guide offers a checklist for building design and construction to enable installation of solar photovoltaic and heating systems at some time after the building is constructed.

  3. Energy 101: Geothermal Heat Pumps

    Broader source: Energy.gov [DOE]

    An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe ...

  4. Field Test of High Efficiency Residential Buildings with Ground-source and Air-source Heat Pump Systems

    SciTech Connect (OSTI)

    Ally, Moonis Raza [ORNL] [ORNL; Munk, Jeffrey D [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    This paper describes the field performance of space conditioning and water heating equipment in four single-family residential structures with advanced thermal envelopes. Each structure features a different, advanced thermal envelope design: structural insulated panel (SIP); optimum value framing (OVF); insulation with embedded phase change materials (PCM) for thermal storage; and exterior insulation finish system (EIFS). Three of the homes feature ground-source heat pumps (GSHPs) for space conditioning and water heating while the fourth has a two-capacity air-source heat pump (ASHP) and a heat pump water heater (HPWH). Two of the GCHP-equipped homes feature horizontal ground heat exchange (GHX) loops that utillize the existing foundation and utility service trenches while the third features a vertical borehole with vertical u-tube GHX. All of the houses were operated under the same simulated occupancy conditions. Operational data on the house HVAC/Water heating (WH) systems are presented and factors influencing overall performance are summarized.

  5. ARE 3D HEAT TRANSFER FORMULATIONS WITH SHORT TIME STEP AND SUN PATCH EVOLUTION NECESSARY FOR BUILDING SIMULATION?

    E-Print Network [OSTI]

    Boyer, Edmond

    ; Savoyat et al., 2011). As a thermal model of a building envelope should take into account rapid A numerical model is developed to accurately simulate the transient thermal behaviour of rooms with sun of current transient thermal models when adapted to low energy buildings, defined as those with particularly

  6. Building America Technology Solutions for New and Existing Homes...

    Energy Savers [EERE]

    Replacing Resistance Heating with Mini-Split Heat Pumps Building America Technology Solutions for New and Existing Homes: Replacing Resistance Heating with Mini-Split Heat Pumps In...

  7. Mass and Heat Recovery 

    E-Print Network [OSTI]

    Hindawai, S. M.

    2010-01-01T23:59:59.000Z

    In the last few years heat recovery was under spot and in air conditioning fields usually we use heat recovery by different types of heat exchangers. The heat exchanging between the exhaust air from the building with the fresh air to the building...

  8. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaurn, FL)

    1982-01-01T23:59:59.000Z

    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  9. Physical protection: threat response and performance goals as applied at the nuclear material inspection and storage (NMIS) building

    SciTech Connect (OSTI)

    Sanford, T.H.

    1982-01-01T23:59:59.000Z

    Only one aspect of nuclear security has been discussed here, a disciplined approach to physical protection systems (PPS) design. The best security against a multitude of threats to the nuclear industry is a dynamic and multifaceted safeguards program. It is one that combines PPS design with employee screening, reliability or behavioral observation programs, procedural control, assessment techniques, response capabilities, and security hardware. To be effective, such a program must be supported by management and applied uniformly to all personnel, including the safeguards and security staff.

  10. Geothermal heat pumps for heating and cooling

    SciTech Connect (OSTI)

    Garg, S.C.

    1994-03-01T23:59:59.000Z

    Naval Facilities Engineering Service Center (NFESC) has been tasked by Naval Shore Facilities Energy Office to evaluate the NAS Patuxent River ground-source heat pump (GHP) installation. A large part of a building`s energy consumption consists of heating and air conditioning for occupant comfort. The space heating requirements are normally met by fossil-fuel-fired equipment or electric resistance heating. Cooling is provided by either air conditioners or heat pumps, both using electricity as an energy source.

  11. Allegations that low-cost solar space heating systems are being ruled out in the solar in Federal Buildings Demonstration Program

    SciTech Connect (OSTI)

    Not Available

    1981-10-28T23:59:59.000Z

    Results are given of an examination of allegations that Marshall Space Flight Center, in its role as technical reviewer for the DOE, arbitrarily recommended requirements which would effectively rule out the use of low-cost solar space heating systems in the solar in Federal Buildings Demonstration Program. The examination addressed whether Marshall's recommended requirements and its evaluation of the low-cost system in question were based on supporting criteria and data, and was not a technical assessment of the allegations. It was concluded that Marshall's recommended requirements and evaluation of the low-cost system in question were indeed based on supporting criteria and data, and were based on guidelines commonly used in the heating and cooling industry and on data collected by eight independent laboratories. The background information, a discussion of the findings, and a chronology of key events surrounding Marshall's recommended requirements and its evaluation are presented. (LEW)

  12. Energy-efficient comfort with a heated/cooled chair: Results from human subject tests

    E-Print Network [OSTI]

    Pasut, Wilmer; Zhang, Hui; Arens, Ed; Zhai, Yongchao

    2015-01-01T23:59:59.000Z

    Technology Roadmap. Energy-efficient Buildings: Heating andtechnology for both improving occupants’ thermal comfort and simultaneously reducing buildings’ heating and

  13. Two (2) 175 Ton (350 Tons total) Chiller Geothermal Heat Pumps for recently commissioned LEED Platinum Building

    Broader source: Energy.gov [DOE]

    This project will operate; collect data; and market the energy savings and capital costs of a recently commissioned chiller geothermal heat pump project to promote the wide-spread adoption of this mature technology.

  14. Initial Evaluation of the Heat-Affected Zone, Local Embrittlement Phenomenon as it Applies to Nuclear Reactor Vessels

    SciTech Connect (OSTI)

    McCabe, D.E.

    1999-09-01T23:59:59.000Z

    The objective of this project was to determine if the local brittle zone (LBZ) problem, encountered in the testing of the heat-affected zone (HAZ) part of welds in offshore platform construction, can also be found in reactor pressure vessel (RPV) welds. Both structures have multipass welds and grain coarsening along the fusion line. Literature was obtained that described the metallurgical evidence and the type of research work performed on offshore structure welds.

  15. Building America Technology Solutions for New and Existing Homes...

    Broader source: Energy.gov (indexed) [DOE]

    (Fact Sheet) Building America Technology Solutions for New and Existing Homes: Boiler Control Replacement for Hydronically Heated Multifamily Buildings, Cambridge,...

  16. Applied Intelligence 18, 155177, 2003 c 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

    E-Print Network [OSTI]

    Casillas Barranquero, Jorge

    controllers dedicated to the control of heating, ventilating and air conditioning systems concerning energy applied only to the control of active systems, i.e., Heating, Ventilating, and Air Conditioning (HVAC in buildings. The energy consumption as well as indoor comfort aspects of ven- tilated and air conditioned

  17. Effect of Heat and Electricity Storage and Reliability on Microgrid Viability:A Study of Commercial Buildings in California and New York States

    SciTech Connect (OSTI)

    Stadler, Michael; Marnay, Chris; Siddiqui, Afzal; Lai, Judy; Coffey, Brian; Aki, Hirohisa

    2008-12-01T23:59:59.000Z

    In past work, Berkeley Lab has developed the Distributed Energy Resources Customer Adoption Model (DER-CAM). Given end-use energy details for a facility, a description of its economic environment and a menu of available equipment, DER-CAM finds the optimal investment portfolio and its operating schedule which together minimize the cost of meeting site service, e.g., cooling, heating, requirements. Past studies have considered combined heat and power (CHP) technologies. Methods and software have been developed to solve this problem, finding optimal solutions which take simultaneity into account. This project aims to extend on those prior capabilities in two key dimensions. In this research storage technologies have been added as well as power quality and reliability (PQR) features that provide the ability to value the additional indirect reliability benefit derived from Consortium for Electricity Reliability Technology Solutions (CERTS) Microgrid capability. This project is intended to determine how attractive on-site generation becomes to a medium-sized commercial site if economical storage (both electrical and thermal), CHP opportunities, and PQR benefits are provided in addition to avoiding electricity purchases. On-site electrical storage, generators, and the ability to seamlessly connect and disconnect from utility service would provide the facility with ride-through capability for minor grid disturbances. Three building types in both California and New York are assumed to have a share of their sensitive electrical load separable. Providing enhanced service to this load fraction has an unknown value to the facility, which is estimated analytically. In summary, this project began with 3 major goals: (1) to conduct detailed analysis to find the optimal equipment combination for microgrids at a few promising commercial building hosts in the two favorable markets of California and New York; (2) to extend the analysis capability of DER-CAM to include both heat and electricity storage; and (3) to make an initial effort towards adding consideration of PQR into the capabilities of DER-CAM.

  18. Heat Flow and Gas Hydrates on the Continental Margin of India: Building on Results from NGHP Expedition 01

    SciTech Connect (OSTI)

    Anne Trehu; Peter Kannberg

    2011-06-30T23:59:59.000Z

    The Indian National Gas Hydrate Program (NGHP) Expedition 01 presented the unique opportunity to constrain regional heat flow derived from seismic observations by using drilling data in three regions on the continental margin of India. The seismic bottom simulating reflection (BSR) is a well-documented feature in hydrate bearing sediments, and can serve as a proxy for apparent heat flow if data are available to estimate acoustic velocity and density in water and sediments, thermal conductivity, and seafloor temperature. Direct observations of temperature at depth and physical properties of the sediment obtained from drilling can be used to calibrate the seismic observations, decreasing the uncertainty of the seismically-derived estimates. Anomalies in apparent heat flow can result from a variety of sources, including sedimentation, erosion, topographic refraction and fluid flow. We constructed apparent heat flow maps for portions of the Krishna-Godavari (K-G) basin, the Mahanadi basin, and the Andaman basin and modeled anomalies using 1-D conductive thermal models. Apparent heat flow values in the Krishna-Godavari (K-G) basin and Mahanadi basin are generally 0.035 to 0.055 watts per square meter (W/m{sup 2}). The borehole data show an increase in apparent heat flow as water depth increases from 900 to 1500 m. In the SW part of the seismic grid, 1D modeling of the effect of sedimentation on heat flow shows that {approx}50% of the observed increase in apparent heat flow with increasing water depth can be attributed to trapping of sediments behind a 'toe-thrust' ridge that is forming along the seaward edge of a thick, rapidly accumulating deltaic sediment pile. The remainder of the anomaly can be explained either by a decrease in thermal conductivity of the sediments filling the slope basin or by lateral advection of heat through fluid flow along stratigraphic horizons within the basin and through flexural faults in the crest of the anticline. Such flow probably plays a role in bringing methane into the ridge formed by the toe-thrust. Because of the small anomaly due to this process and the uncertainty in thermal conductivity, we did not model this process explicitly. In the NE part of the K-G basin seismic grid, a number of local heat flow lows and highs are observed, which can be attributed to topographic refraction and to local fluid flow along faults, respectively. No regional anomaly can be resolved. Because of lack of continuity between the K-G basin sites within the seismic grid and those {approx}70 km to the NE in water depths of 1200 to 1500 m, we do not speculate on the reason for higher heat flow at these depths. The Mahanadi basin results, while limited in geographic extent, are similar to those for the K-G basin. The Andaman basin exhibits much lower apparent heat flow values, ranging from 0.015 to 0.025 W/m{sup 2}. Heat flow here also appears to increase with increasing water depth. The very low heat flow here is among the lowest heat flow observed anywhere and gives rise to a very thick hydrate stability zone in the sediments. Through 1D models of sedimentation (with extremely high sedimentation rates as a proxy for tectonic thickening), we concluded that the very low heat flow can probably be attributed to the combined effects of high sedimentation rate, low thermal conductivity, tectonic thickening of sediments and the cooling effect of a subducting plate in a subduction zone forearc. Like for the K-G basin, much of the local variability can be attributed to topography. The regional increase in heat flow with water depth remains unexplained because the seismic grid available to us did not extend far enough to define the local tectonic setting of the slope basin controlling this observational pattern. The results are compared to results from other margins, both active and passive. While an increase in apparent heat flow with increasing water depth is widely observed, it is likely a result of different processes in different places. The very low heat flow due to sedimentation and tectonics in the Andaman basi

  19. Heat Flow and Gas Hydrates on the Continental Margin of India: Building on Results from NGHP Expedition 01

    SciTech Connect (OSTI)

    Trehu, Anne; Kannberg, Peter

    2011-06-30T23:59:59.000Z

    The Indian National Gas Hydrate Program (NGHP) Expedition 01 presented the unique opportunity to constrain regional heat flow derived from seismic observations by using drilling data in three regions on the continental margin of India. The seismic bottom simulating reflection (BSR) is a well-documented feature in hydrate bearing sediments, and can serve as a proxy for apparent heat flow if data are available to estimate acoustic velocity and density in water and sediments, thermal conductivity, and seafloor temperature. Direct observations of temperature at depth and physical properties of the sediment obtained from drilling can be used to calibrate the seismic observations, decreasing the uncertainty of the seismically-derived estimates. Anomalies in apparent heat flow can result from a variety of sources, including sedimentation, erosion, topographic refraction and fluid flow. We constructed apparent heat flow maps for portions of the Krishna-Godavari (K-G) basin, the Mahanadi basin, and the Andaman basin and modeled anomalies using 1-D conductive thermal models. Apparent heat flow values in the Krishna-Godavari (K-G) basin and Mahanadi basin are generally 0.035 to 0.055 watts per square meter (W/m2). The borehole data show an increase in apparent heat flow as water depth increases from 900 to 1500 m. In the SW part of the seismic grid, 1D modeling of the effect of sedimentation on heat flow shows that ~50% of the observed increase in apparent heat flow with increasing water depth can be attributed to trapping of sediments behind a "toe-thrust" ridge that is forming along the seaward edge of a thick, rapidly accumulating deltaic sediment pile. The remainder of the anomaly can be explained either by a decrease in thermal conductivity of the sediments filling the slope basin or by lateral advection of heat through fluid flow along stratigraphic horizons within the basin and through flexural faults in the crest of the anticline. Such flow probably plays a role in bringing methane into the ridge formed by the toe-thrust. Because of the small anomaly due to this process and the uncertainty in thermal conductivity, we did not model this process explicitly. In the NE part of the K-G basin seismic grid, a number of local heat flow lows and highs are observed, which can be attributed to topographic refraction and to local fluid flow along faults, respectively. No regional anomaly can be resolved. Because of lack of continuity between the K-G basin sites within the seismic grid and those ~70 km to the NE in water depths of 1200 to 1500 m, we do not speculate on the reason for higher heat flow at these depths. The Mahanadi basin results, while limited in geographic extent, are similar to those for the KG basin. The Andaman basin exhibits much lower apparent heat flow values, ranging from 0.015 to 0.025 W/m2. Heat flow here also appears to increase with increasing water depth. The very low heat flow here is among the lowest heat flow observed anywhere and gives rise to a very thick hydrate stability zone in the sediments. Through 1D models of sedimentation (with extremely high sedimentation rates as a proxy for tectonic thickening), we concluded that the very low heat flow can probably be attributed to the combined effects of high sedimentation rate, low thermal conductivity, tectonic thickening of sediments and the cooling effect of a subducting plate in a subduction zone forearc. Like for the K-G basin, much of the local variability can be attributed to topography. The regional increase in heat flow with water depth remains unexplained because the seismic grid available to us did not extend far enough to define the local tectonic setting of the slope basin controlling this observational pattern. The results are compared to results from other margins, both active and passive. While an increase in apparent heat flow with increasing water depth is widely observed, it is likely a result of different processes in different places. The very low heat flow due to sedimentation and tectonics in the Andaman basin is at the low end of glob

  20. Cost benefits from applying advanced heat rejection concepts to a wet/dry-cooled binary geothermal plant

    SciTech Connect (OSTI)

    Faletti, D.W.

    1981-03-01T23:59:59.000Z

    Optimized ammonia heat rejection system designs were carried out for three water allocations equivalent to 9, 20, and 31% of that of a 100% wet-cooled plant. The Holt/Procon design of a 50-MWe binary geothermal plant for the Heber site was used as a design basis. The optimization process took into account the penalties for replacement power, gas turbine capital, and lost capacity due to increased heat rejection temperature, as well as added base plant capacity and fuel to provide fan and pump power to the heat rejection system. Descriptions of the three plant designs are presented. For comparison, a wet tower loop was costed out for a 100% wet-cooled plant using the parameters of the Holt/Procon design. Wet/dry cooling was found to increase the cost of electricity by 28% above that of a 100% wet-cooled plant for all three of the water allocations studied (9, 20, and 31%). The application selected for a preconceptual evaluation of the BCT (binary cooling tower) system was the use of agricultural waste water from the New River, located in California's Imperial Valley, to cool a 50-MWe binary geothermal plant. Technical and cost evaluations at the preconceptual level indicated that performance estimates provided by Tower Systems Incorporated (TSI) were reasonable and that TSI's tower cost, although 2 to 19% lower than PNL estimates, was also reasonable. Electrical cost comparisonswere made among the BCT system, a conventional 100% wet system, and a 9% wet/dry ammonia system, all using agricultural waste water with solar pond disposal. The BCT system cost the least, yielding a cost of electricity only 13% above that of a conventional wet system using high quality water and 14% less than either the conventional 100% wet or the 9% wet/dry ammonia system.

  1. TCES Energy Performance 1. Overview of building systems

    E-Print Network [OSTI]

    Schladow, S. Geoffrey

    building heat supply about 25% of time in winter. Furnaces turn on while cogen heat supply is replenished

  2. KNOWLEDGE: Building, Securing, Sharing & Applying

    E-Print Network [OSTI]

    Non-intrusive data gathering techniques Rutgers University - Lead Institution Alcatel-Lucent Bell Labs

  3. An improved procedure for developing a calibrated hourly simulation model of an electrically heated and cooled commercial building 

    E-Print Network [OSTI]

    Bou-Saada, Tarek Edmond

    1994-01-01T23:59:59.000Z

    Sections . . . . 85 4. 7 Daycare Center . . . . . . . 86 4, 8 Sun Angle Calculator and Altitude Measurement Device . . . 4. 9 Photovoltaic and Domestic Hot Water Solar Panels. . . . . . . . . . 92 4. 10 Heating, Ventilating, and Air... and Daily Minutes of Sunshine . . . . . . . I 1 5 4. 18 Sky Clearness and Daily Percent Possible Sunshine . . . . . . . . 116 4. 19 Hourly Photovoltaic Electricity and Hourly Solar Radiation. . . . . . . . . . 1 1 8 4. 20 Solar Data Example . . . . . 121...

  4. STORAGE OF HEAT AND COOLTH IN HOLLOW-CORE CONCRETE SLABS. SWEDISH EXPERIENCE, AND APPLICATION TO LARGE, AMERICAN-STYLE BUILDINGS

    E-Print Network [OSTI]

    Andersson, L.O.

    2011-01-01T23:59:59.000Z

    of Technology, Department of Heating And Ventilating.of Technology (Divi- sion of Heating and Ventilating),of Heating and Ventilation at the Institute of Technology in

  5. Risk Factors in Heating, Ventilating, and Air-Conditioning Systemsfor Occupant Symptoms in U.S. Office Buildings: the EPA BASE Study

    SciTech Connect (OSTI)

    Mendell, M.J.; Lei-Gomez, Q.; Mirer, A.; Seppanen, O.; Brunner, G.

    2006-10-01T23:59:59.000Z

    Nonspecific building-related symptoms among occupants of modern office buildings worldwide are common and may be associated with important reductions in work performance, but their etiology remains uncertain. Characteristics of heating, ventilating, and air-conditioning (HVAC) systems in office buildings that increase risk of indoor contaminants or reduce effectiveness of ventilation may cause adverse exposures and subsequent increase in these symptoms among occupants. We analyzed data collected by the U.S. EPA from a representative sample of 100 large U.S. office buildings--the Building Assessment and Survey Evaluation (BASE) study--using multivariate logistic regression models with generalized estimating equations adjusted for potential personal and building confounders. We estimated odds ratios (ORs) and 95% confidence intervals (CIs) for associations between seven building-related symptom outcomes and selected HVAC system characteristics. Among factors of HVAC design or configuration: Outdoor air intakes less than 60 m above the ground were associated with approximately doubled odds of most symptoms assessed. Sealed (non-operable) windows were associated with increases in skin and eye symptoms (ORs= 1.9, 1.3, respectively). Outdoor air intake without an intake fan was associated with an increase in eye symptoms (OR=1.7). Local cooling coils were associated with increased headache (OR=1.5). Among factors of HVAC condition, maintenance, or operation: the presence of humidification systems in good condition was associated with an increase in headache (OR=1.4), whereas the presence of humidification systems in poor condition was associated with increases in fatigue/difficulty concentrating, as well as upper respiratory symptoms (ORs=1.8, 1.5). No regularly scheduled inspections for HVAC components was associated with increased eye symptoms, cough and upper respiratory symptoms (ORs=2.2, 1.6, 1.5). Less frequent cleaning of cooling coils or drip pans was associated with increased headache (OR=1.6). Fair or poor condition of duct liner was associated with increased upper respiratory symptoms (OR=1.4). Most of the many potential risk factors assessed here had not been investigated previously, and associations found with single symptoms may have been by chance, including several associations that were the reverse of expected. Risk factors newly identified in these analyses that deserve attention include outdoor air intakes less than 60 m above the ground, lack of operable windows, poorly maintained humidification systems, and lack of scheduled inspection for HVAC systems. Infrequent cleaning of cooling coils and drain pans were associated with increases in several symptoms in these as well as prior analyses of BASE data. Replication of these findings is needed, using more objective measurements of both exposure and health response. Confirmation of the specific HVAC factors responsible for increased symptoms in buildings, and development of prevention strategies could have major public health and economic benefits worldwide.

  6. Building America Case Study: Evaluation of Residential Integrated Space/Water Heat Systems, Illinois and New York (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-11-01T23:59:59.000Z

    This multi-unit field demonstration of combined space and water heating (combi) systems was conducted to help document combi system installation and performance issues that needed to be addressed through research. The objective of the project was to put commercialized forced-air tankless combi units into the field through local contractors that were trained by manufacturers and GTI staff under the auspices of utility-implemented Emerging Technology Programs. With support from PARR, NYSERDA and other partners, the project documented system performance and installations in Chicago and New York. Combi systems were found to save nearly 200 therms in cold climates at efficiencies between about 80% and 94%. Combi systems using third-party air handler units specially designed for condensing combi system operation performed better than the packaged integrated combi systems available for the project. Moreover, combi systems tended to perform poorly when the tankless water heaters operating at high turn-down ratios. Field tests for this study exposed installation deficiencies due to contractor unfamiliarity with the products and the complexity of field engineering and system tweaking to achieve high efficiencies. Widespread contractor education must be a key component to market expansion of combi systems. Installed costs for combi systems need to come down about 5% to 10% to satisfy total resource calculations for utility-administered energy efficiency programs. Greater sales volumes and contractor familiarity can drive costs down. More research is needed to determine how well heating systems such as traditional furnace/water heater, combis, and heat pumps compare in similar as-installed scenarios, but under controlled conditions.

  7. Cold Climate and Retrofit Applications for Air-to-Air Heat Pumps

    SciTech Connect (OSTI)

    Baxter, Van D [ORNL

    2015-01-01T23:59:59.000Z

    Air source heat pumps (ASHP) including air-to-air ASHPs are easily applied to buildings almost anywhere for new construction as well as retrofits or renovations. They are widespread in milder climate regions but their use in cold regions is hampered due to low heating efficiency and capacity at cold outdoor temperatures. Retrofitting air-to-air ASHPs to existing buildings is relatively easy if the building already has an air distribution system. For buildings without such systems alternative approaches are necessary. Examples are ductless, minisplit heat pumps or central heat pumps coupled to small diameter, high velocity (SDHV) air distribution systems. This article presents two subjects: 1) a summary of R&D investigations aimed at improving the cold weather performance of ASHPs, and 2) a brief discussion of building retrofit options using air-to-air ASHP systems.

  8. Assessment of Building Energy-Saving Policies and Programs in China During the 11th Five Year Plan

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    building retrofits and heat supply system reform, followedretrofit particularly heat supply system reform lags theof carrying out the heat supply system reform task. Building

  9. Passive solar space heating

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1980-01-01T23:59:59.000Z

    An overview of passive solar space heating is presented indicating trends in design, new developments, performance measures, analytical design aids, and monitored building results.

  10. OSU Building and Environmental Thermal Systems Research Group Citation Index

    E-Print Network [OSTI]

    countries. Renewable and Sustainable Energy Reviews 13(6-7):1383- 1394. Li, S., W. Yang, and X. Zhang. 2009-borehole ground-coupled heat pumps: A review of models and systems. Applied Energy 87(1):16-27. Fabrizio, E., M., and S. Wang 2009. Building energy research in Hong Kong: A review. Renewable and Sustainable Energy

  11. Gosselin, J.R. and Chen, Q. 2008. "A computational method for calculating heat transfer and airflow through a dual airflow window," Energy and Buildings, 40(4), 452-458.

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    and airflow through a dual airflow window," Energy and Buildings, 40(4), 452-458. A computational method for calculating heat transfer and airflow through a dual-airflow window Jennifer R. Gosselin, Qingyan (Yan) Chen, and their energy performance can be studied using several computational models. A dual-airflow window with triple

  12. Solar buildings. Overview: The Solar Buildings Program

    SciTech Connect (OSTI)

    Not Available

    1998-04-01T23:59:59.000Z

    Buildings account for more than one third of the energy used in the United States each year, consuming vast amounts of electricity, natural gas, and fuel oil. Given this level of consumption, the buildings sector is rife with opportunity for alternative energy technologies. The US Department of Energy`s Solar Buildings Program was established to take advantage of this opportunity. The Solar Buildings Program is engaged in research, development, and deployment on solar thermal technologies, which use solar energy to produce heat. The Program focuses on technologies that have the potential to produce economically competitive energy for the buildings sector.

  13. Quantitative Analysis of the Principal-Agent Problem in Commercial Buildings in the U.S.: Focus on Central Space Heating and Cooling

    E-Print Network [OSTI]

    Blum, Helcio

    2010-01-01T23:59:59.000Z

    1b] over different ranges of building area. Table 5. Results6. Results from Model [1b] for Different Ranges of BuildingArea Building Area ?50k sq. ft. 50<…<600k sq. ft. ?600k sq.

  14. Building and Facility Codes Code Building Location Bldg # Coordinates

    E-Print Network [OSTI]

    Russell, Lynn

    Building and Facility Codes Code Building Location Bldg # Coordinates APM Applied Physics & Mathematics Building Muir 249 F7 ASANT Asante Hall Eleanor Roosevelt 446 F5 BIO Biology Building Muir 259 F7 BIRCH Birch Aquarium SIO 2300 S-D7 BONN Bonner Hall Revelle 131 G8 BSB Biomedical Sciences Building

  15. UNDERSTANDING FLOW OF ENERGY IN BUILDINGS USING MODAL ANALYSIS METHODOLOGY

    SciTech Connect (OSTI)

    John Gardner; Kevin Heglund; Kevin Van Den Wymelenberg; Craig Rieger

    2013-07-01T23:59:59.000Z

    It is widely understood that energy storage is the key to integrating variable generators into the grid. It has been proposed that the thermal mass of buildings could be used as a distributed energy storage solution and several researchers are making headway in this problem. However, the inability to easily determine the magnitude of the building’s effective thermal mass, and how the heating ventilation and air conditioning (HVAC) system exchanges thermal energy with it, is a significant challenge to designing systems which utilize this storage mechanism. In this paper we adapt modal analysis methods used in mechanical structures to identify the primary modes of energy transfer among thermal masses in a building. The paper describes the technique using data from an idealized building model. The approach is successfully applied to actual temperature data from a commercial building in downtown Boise, Idaho.

  16. Colorado State Capitol Building Geothermal Program

    Broader source: Energy.gov [DOE]

    Retrofit a large scale ground source heat pump system into a historic building located in a built up urban area.

  17. Building Commissioning in the Chinese Mainland

    E-Print Network [OSTI]

    Zhu, Y.

    2006-01-01T23:59:59.000Z

    Governmental buildingsGovernmental buildings Building InformationBuilding Information Electric chiller ( FCU, AHU )Electric chiller ( FCU, AHU ) 29302930 18001800 39, 60039, 600 JJGasGas--burned Heat Absorption Chiller (FCU)burned Heat Absorption Chiller (FCU...)2456245660060041, 51041, 510GGGasGas--burned Heat Absorption Chiller + Electric chiller burned Heat Absorption Chiller + Electric chiller (FCU)(FCU)65326532>800>80050, 00050, 000HH Electric chiller ( FCU, AHU )Electric chiller ( FCU, AHU ) 47004700 560560 45, 45045...

  18. Locating Heat Recovery Opportunities 

    E-Print Network [OSTI]

    Waterland, A. F.

    1981-01-01T23:59:59.000Z

    Basic concepts of heat recovery are defined as they apply to the industrial community. Methods for locating, ranking, and developing heat recovery opportunities are presented and explained. The needs for useful heat 'sinks' are emphasized as equal...

  19. Locating Heat Recovery Opportunities

    E-Print Network [OSTI]

    Waterland, A. F.

    1981-01-01T23:59:59.000Z

    Basic concepts of heat recovery are defined as they apply to the industrial community. Methods for locating, ranking, and developing heat recovery opportunities are presented and explained. The needs for useful heat 'sinks' are emphasized as equal...

  20. Building Retrofits for Increased Protection Against Airborne

    E-Print Network [OSTI]

    shutdown and purge cycles, and automated heating, ventilating and air-conditioning (HVAC) operational degrees of applicability to particular buildings and ventilation systems. This document presents ventilation system recommissioning, building envelope airtightening, building pressurization, relocation

  1. Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01T23:59:59.000Z

    CA nursing homes is the constant total NYC heating load. Theand heating demand were performed for the CA nursing home.home meets all of its electricity demand via utility purchases and heating

  2. International Energy Agency Implementing Agreements and Annexes: A Guide for Building Technologies Program Managers

    E-Print Network [OSTI]

    Evans, Meredydd

    2008-01-01T23:59:59.000Z

    solar and low energy buildings Solar heat for industrial processSolar and Low Energy Buildings Solar Heat for Industrial ProcessSolar and Low Energy Buildings Solar Heat for Industrial Process

  3. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01T23:59:59.000Z

    main building with large glass curtain walls and an annex.  monochromatic vacuum glass curtain wall heating systembuilding with large glass curtain walls and an annex. Total

  4. Air Source Heat Pumps for Cold Climate Applications: Recent U. S. R&D Results from IEA HPP Annex 41

    SciTech Connect (OSTI)

    Baxter, Van D [ORNL; Groll, Dr. Eckhard A. [Purdue University, Ray W. Herrick Laboratories; Shen, Bo [ORNL

    2014-01-01T23:59:59.000Z

    Air source heat pumps are easily applied to buildings almost anywhere. They are widespread in milder climate regions but their use in cold regions is hampered due to low efficiency and heating capacity at cold outdoor temperatures. This article describes selected R&D activities aimed at improving their cold weather performance.

  5. Heat distribution by natural convection

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1985-01-01T23:59:59.000Z

    Natural convection can provide adequate heat distribution in many situtations that arise in buildings. This is appropriate, for example, in passive solar buildings where some rooms tend to be more strongly solar heated than others or to reduce the number of heating units required in a building. Natural airflow and heat transport through doorways and other internal building apertures is predictable and can be accounted for in the design. The nature of natural convection is described, and a design chart is presented appropriate to a simple, single-doorway situation. Natural convective loops that can occur in buildings are described and a few design guidelines are presented.

  6. Evaluation of the Heating & Cooling Energy Demand of a Case Residential Building by Comparing The National Calculation Methodology of Turkey and EnergyPlus through Thermal Capacity Calculations

    E-Print Network [OSTI]

    Atamaca, Merve; Kalaycioglu, Ece; Yilmaz, Zerrin

    2011-10-01T23:59:59.000Z

    usage and energy performance in buildings was published by European Union. In this scope, Turkey has developed a National Building Energy Performance Calculation Methodology, BepTr, which is based on simple hourly method in ISO EN 13790 Umbrella Document...

  7. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 5, NO. 1, FEBRUARY 2012 89 A Hybrid Approach for Building Extraction From

    E-Print Network [OSTI]

    Du, Jenny (Qian)

    , utility transportation, land-use/land-cover change detection, water distribution, and drainage systems images leads to the development of efficient detection of complex urban details with high precision. This urban land use study is focused on building extraction and height estimation from spaceborne optical

  8. Energy 101: Geothermal Heat Pumps

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together.

  9. Energy 101: Geothermal Heat Pumps

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together.

  10. APPLIED THERMAL ENGINEERING Manuscript Draft

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    with PCM integrated in a air ventilation system · Laboratory experiment to analyze the heat exchanger of a PCM to air heat exchanger storage system for building ventilation application Labat M.1,3 , Virgone J deviation difference Subscripts A air HVAC Heating Ventilation Air Conditioning Meas measured PCM phase

  11. Energy 101: Geothermal Heat Pumps | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    - 12:15pm Addthis An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground)...

  12. 3-100.1 Building Evacuation 1 Building Evacuation

    E-Print Network [OSTI]

    Glebov, Leon

    3-100.1 Building Evacuation 1 SUBJECT: Building Evacuation Effective Date: 10-20-10 Policy Number and Safety APPLICABILITY/ACCOUNTABILITY: This policy applies to all individuals in all buildings on all University of Central Florida campuses. BACKGROUND INFORMATION: University buildings occasionally need

  13. Quantitative Analysis of the Principal-Agent Problem in Commercial Buildings in the U.S.: Focus on Central Space Heating and Cooling

    E-Print Network [OSTI]

    Blum, Helcio

    2010-01-01T23:59:59.000Z

    2007): “Market Barriers Affecting Water Heating in Norway. ”heating and cooling energy consumed by centrally installed equipment in order to verify whether a marketheating and cooling. The non-existence of the equipment efficiency-related market

  14. Building America Technology Solutions for New and Existing Homes...

    Energy Savers [EERE]

    Boiler Control Replacement for Hydronically Heated Multifamily Buildings, Cambridge, Massachusetts Building America Technology Solutions for New and Existing Homes: Boiler Control...

  15. Energy Management Systems Package for Small Commercial Buildings...

    Energy Savers [EERE]

    More Documents & Publications Building America System Research Multi-Function Fuel-Fired Heat Pump - 2013 Peer Review Buildings Performance Database - 2013 BTO...

  16. Building America Technology Solutions for New and Existing Homes...

    Energy Savers [EERE]

    Building America Technology Solutions for New and Existing Homes: Performance of a Heat Pump Water Heater in the Hot-Humid Climate, Windermere, Florida (Fact Sheet) Building...

  17. area operations building: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reference of the suitable plans for the energy efficient reconstruction of buildings in cold area. 2. ANALYSIS ON HEATING ENERGY CONSUMPTION 2.1 Building Situation Based... on...

  18. Building America Whole-House Solutions for New Homes: Hydronic...

    Broader source: Energy.gov (indexed) [DOE]

    Building America Whole-House Solutions for New Homes: Hydronic Heating Coil Versus Propane Furnace (Fact Sheet) Building America Whole-House Solutions for New Homes: Hydronic...

  19. Modeling of Heat Transfer in Geothermal Heat Exchangers 

    E-Print Network [OSTI]

    Cui, P.; Man, Y.; Fang, Z.

    2006-01-01T23:59:59.000Z

    Ground-coupled heat pump (GCHP) systems have been gaining increasing popularity for space conditioning in residential and commercial buildings. The geothermal heat exchanger (GHE) is devised for extraction or injection of thermal energy from...

  20. Central Multifamily Water Heating Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Building America Program is hosting a no-cost, webinar-based training on Central Multifamily Water Heating Systems. The webinar will focus the effective use of central heat pump water heaters...

  1. Future Cities Existing Buildings Solving the Conundrum

    E-Print Network [OSTI]

    Painter, Kevin

    Heat Pump #12;ATES - Aquifer Thermal Energy Storage Seasonal storage of coolth and heat #12;Urban Heat Warming Buildings Heat Gain Heat Losses Underground Thermal Energy Storage; The Principle Free Cooling feasibility of Aquifer Thermal Energy Storage #12;The Dutch Experience The work of IF Technology in Holland

  2. Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings

    E-Print Network [OSTI]

    Fridley, David G.

    2008-01-01T23:59:59.000Z

    such as increasing boiler efficiency from 68% averageBuildings: Water Heating Efficiency Boiler Gas Boiler SmallSpace Heating Efficiency District Heating Boiler Gas Boiler

  3. A CLASSIFICATION SCHEME FOR THE COMMON PASSIVE AND HYBRID HEATING AND COOLING SYSTEMS

    E-Print Network [OSTI]

    Holtz, Michael J.

    2011-01-01T23:59:59.000Z

    all zones equally. Remote heating systems can be designed toremote from the building envelope proper. South wall heating

  4. Building America Whole-House Solutions for New Homes: Testing...

    Energy Savers [EERE]

    and other sources related to building-efficiency measures that focus on the DHPhybrid heating system and heat recovery ventilation (HRV) system; Evaluate the thermal...

  5. Building America Whole-House Solutions for Existing Homes: Multifamily...

    Energy Savers [EERE]

    Multifamily Individual Heating and Ventilation Systems Building America Whole-House Solutions for Existing Homes: Multifamily Individual Heating and Ventilation Systems The...

  6. Building America Technology Solutions for New and Existing Homes...

    Energy Savers [EERE]

    Ground Source Heat Pump Research, TaC Studios Residence, Atlanta, Georigia (Fact Sheet), Building America Technology Solutions for New and Existing Homes: Ground Source Heat Pump...

  7. Advanced Technologies and Practices - Building America Top Innovations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in specific technologies and construction practices that improve the building envelope; heating, ventilation, and air conditioning (HVAC); water heating components; and indoor...

  8. Integrated Energy Systems (IES) for Buildings: A Market Assessment...

    Broader source: Energy.gov (indexed) [DOE]

    Heating, and Power for Industry: A Market Assessment, August 2003 The Future of Absorption Technology in America: A Critical Look at the Impact of Building, Cooling, Heating,...

  9. Heat Pump Markets UK in Europe

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Heat Pump Markets UK in Europe IEA Heat Pump Workshop 13. November 2012 Zoltan Karpathy #12;2 Excellence in Market Intelligence Agenda About BSRIA WMI UK in the European Heat Pump Market Heating BSRIA WMI UK in the European Heat Pump Market Heating Technologies in New and Existing Buildings Hybrid

  10. Building Stones

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    3). Photographs by the author. Building Stones, Harrell, UEEOxford Short Citation: Harrell, 2012, Building Stones. UEE.Harrell, James A. , 2012, Building Stones. In Willeke

  11. Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01T23:59:59.000Z

    and Abbreviations AC CA CCHP CEC CERTS CEUS CHP ConEd COPcombined cooling heat and power (CCHP) system was installed

  12. Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01T23:59:59.000Z

    optimal could be acquired. Battery storage costs are roughlylead/acid battery) and thermal storage, capabilities, withcell electric storage heat storage flow battery abs. chiller

  13. Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01T23:59:59.000Z

    heating value internal combustion engine Internationalbased variable speed internal combustion engine genset withdescription of internal combustion engines (ICE) as well as

  14. Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01T23:59:59.000Z

    ES 2. CA nursing home electricity pattern: July weekday lowJanuary and July weekday electricity and total heat (space +CA school weekday total electricity (inclusive of cooling)

  15. Analysis of the Chinese Market for Building Energy Efficiency

    SciTech Connect (OSTI)

    Yu, Sha; Evans, Meredydd; Shi, Qing

    2014-03-20T23:59:59.000Z

    China will account for about half of the new construction globally in the coming decade. Its floorspace doubled from 1996 to 2011, and Chinese rural buildings alone have as much floorspace as all of U.S. residential buildings. Building energy consumption has also grown, increasing by over 40% since 1990. To curb building energy demand, the Chinese government has launched a series of policies and programs. Combined, this growth in buildings and renovations, along with the policies to promote green buildings, are creating a large market for energy efficiency products and services. This report assesses the impact of China’s policies on building energy efficiency and on the market for energy efficiency in the future. The first chapter of this report introduces the trends in China, drawing on both historical analysis, and detailed modeling of the drivers behind changes in floorspace and building energy demand such as economic and population growth, urbanization, policy. The analysis describes the trends by region, building type and energy service. The second chapter discusses China’s policies to promote green buildings. China began developing building energy codes in the 1980s. Over time, the central government has increased the stringency of the code requirements and the extent of enforcement. The codes are mandatory in all new buildings and major renovations in China’s cities, and they have been a driving force behind the expansion of China’s markets for insulation, efficient windows, and other green building materials. China also has several other important policies to encourage efficient buildings, including the Three-Star Rating System (somewhat akin to LEED), financial incentives tied to efficiency, appliance standards, a phasing out of incandescent bulbs and promotion of efficient lighting, and several policies to encourage retrofits in existing buildings. In the third chapter, we take “deep dives” into the trends affecting key building components. This chapter examines insulation in walls and roofs; efficient windows and doors; heating, air conditioning and controls; and lighting. These markets have seen significant growth because of the strength of the construction sector but also the specific policies that require and promote efficient building components. At the same time, as requirements have become more stringent, there has been fierce competition, and quality has at time suffered, which in turn has created additional challenges. Next we examine existing buildings in chapter four. China has many Soviet-style, inefficient buildings built before stringent requirements for efficiency were more widely enforced. As a result, there are several specific market opportunities related to retrofits. These fall into two or three categories. First, China now has a code for retrofitting residential buildings in the north. Local governments have targets of the number of buildings they must retrofit each year, and they help finance the changes. The requirements focus on insulation, windows, and heat distribution. Second, the Chinese government recently decided to increase the scale of its retrofits of government and state-owned buildings. It hopes to achieve large scale changes through energy service contracts, which creates an opportunity for energy service companies. Third, there is also a small but growing trend to apply energy service contracts to large commercial and residential buildings. This report assesses the impacts of China’s policies on building energy efficiency. By examining the existing literature and interviewing stakeholders from the public, academic, and private sectors, the report seeks to offer an in-depth insights of the opportunities and barriers for major market segments related to building energy efficiency. The report also discusses trends in building energy use, policies promoting building energy efficiency, and energy performance contracting for public building retrofits.

  16. Optimisation of buildings' solar irradiation availability

    SciTech Connect (OSTI)

    Kaempf, Jerome Henri; Montavon, Marylene; Bunyesc, Josep; Robinson, Darren [Solar Energy and Building Physics Laboratory, Station 18, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne (Switzerland); Bolliger, Raffaele [Industrial Energy Systems Laboratory, Station 9, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne (Switzerland)

    2010-04-15T23:59:59.000Z

    In order to improve the sustainability of new and existing urban settlements it is desirable to maximise the utilisation of the solar energy incident on the building envelope, whether by passive or active means. To this end we have coupled a multi-objective optimisation algorithm with the backwards ray tracing program RADIANCE which itself uses a cumulative sky model for the computation of incident irradiation (W h/m{sup 2}) in a single simulation. The parameters to optimise are geometric (the height of buildings up to their facade and the height and orientation of roofs), but with the constraint of maintaining an overall built volume, and the objective function is heating season solar irradiation offset by envelope heat losses. This methodology has been applied to a range of urban typologies and produces readily interpretable results. The focus of this work is on the design of new urban forms but the method could equally be applied to examine the relative efficiency of existing urban settlements, by comparison of existing forms with the calculated optima derived from relevant specifications of the building envelope. (author)

  17. Full-scale study of a building equipped with phase change material wallboards and a multi-layer rack latent heat thermal energy store system

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    -layer rack latent heat thermal energy store system Julien Borderon1 , Joseph Virgone2 , Richard Cantin1 installed as wallboard and as latent heat thermal energy storage system coupled with the ventilation system for the ventilation air is efficient. INTRODUCTION Nowadays, thermal energy storage systems are one way for reducing

  18. "Designing equipment and buildings to more quickly respond to occupant

    E-Print Network [OSTI]

    Acton, Scott

    energy with only $25 in sensors. As an extension of this work, we propose installing servers into homes, apartment buildings, and office buildings, and to use the exhaust heat as a primary heat source

  19. Tribal Renewable Energy Foundational Course: Direct Use for Building...

    Office of Environmental Management (EM)

    Direct Use for Building Heat and Hot Water Tribal Renewable Energy Foundational Course: Direct Use for Building Heat and Hot Water Watch the U.S. Department of Energy Office of...

  20. Visualizing a Living Building

    E-Print Network [OSTI]

    Padget, Steve

    2013-01-01T23:59:59.000Z

    This paper will chronicle the design process of the Odum School of Ecology at the University of Georgia and its objective to accomplish Living BuildingTM certification. In order to accomplish this, the architect (BNIM) and project partners applied...

  1. Passive solar buildings research

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1992-12-31T23:59:59.000Z

    This chapter covers research advances in passive solar buildings research during the time span from 1982 through 1991. These advances fall within the following categories: (1) short-term energy monitoring, (2) heat transport by natural convection within buildings, and (3) design guidelines and design tools. In short-term energy monitoring, a simulation model of the building is calibrated, based on data taken in a 3-day test. The method accurately predicts performance over an extended period. Heat transport through doorways is characterized for complex situations that arise in passive solar buildings. Simple concepts and models adequately describe the energy transport in many situations of interest. In a new approach, design guidelines are automatically generated for any specific locality. Worksheets or an accompanying computer program allow the designer to quickly and accurately evaluate performance and investigate design alternatives. 29 refs., 19 figs., 2 tabs.

  2. CONTROL SYSTEM FOR SOLAR HEATING and COOLING

    E-Print Network [OSTI]

    Dols, C.

    2010-01-01T23:59:59.000Z

    Research Applied to National Needs. EXPERIMENTAL SYSTEM A generalized system for solar heating and cooling

  3. Heat Transfer Interface for Thermo-Solar Energy - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Solar Thermal Building Energy Efficiency Building Energy Efficiency Find More Like This Return to Search Heat Transfer Interface for Thermo-Solar Energy Lawrence Berkeley...

  4. The Thermal Test and Analysis of Envelope in Existing Buildings

    E-Print Network [OSTI]

    Liu, X.; Li, X.; Sun, J.; Wang, Z.

    2006-01-01T23:59:59.000Z

    to improve the health and comfort and minimize the energy consumption costs of existing buildings is quite important. Improving existing buildings can be divided into two parts, envelope and heating system. Much research has been done on building conservation...

  5. Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01T23:59:59.000Z

    ab’), photovoltaic (‘pv’), and solar thermal (‘st’)} t u Daym,t,h Net heat from solar thermal during hour h, type of daysame alignment of the solar thermal panel it can be used for

  6. FORESTRY BUILDING: BUILDING EMERGENCY PLAN

    E-Print Network [OSTI]

    FORESTRY BUILDING: BUILDING EMERGENCY PLAN Date Adopted: August 18, 2009 Date Revised June 17, 2013 Prepared By: Diana Evans and Jennifer Meyer #12;PURDUE UNIVERSITY BUILDING EMERGENCY PLAN VERSION 3 2 Table Suspension or Campus Closure SECTION 3: BUILDING INFORMATION 3.1 Building Deputy/Alternate Building Deputy

  7. A Case Study of a Commissioning Process for Demand Side Energy Conservation of the Large Heat Source Plant in Kyoto Station Building-APCBC

    E-Print Network [OSTI]

    Matsushita, N.; Yoshida,H.

    2014-01-01T23:59:59.000Z

    5 Heat source plant ?Total capacity?26.3MW? Substation ? ? ? Total : 6 Substations Bleed-in Control Substation ? ? ? The chilled water delivery system Large heat source plant similar to a DHC plant ? Total refrigerator capacity 26.3 MW ? Chilled... water is supplied 6 substations - Department store - Hotel - Theater - Train station etc. ? Bleed-in Control ? Commonly equipped in the substations of DHC plants. ? This control maintains the return water temperature to the plant by controlling...

  8. Building America Webinar: High Performance Space Conditioning...

    Energy Savers [EERE]

    Heat Pumps Building America Whole-House Solutions for New Homes: Transformations, Inc. Net Zero Energy Communities (Fact Sheet) DOE Zero Energy Ready Home Case Study:...

  9. Building Energy Modeling (BEM) Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    effective application of advanced BEM 3 DOE's Role BEM differs from windows, heat pumps & sensors * Information technology with no "unit" cost DOE can build it * An evaluation...

  10. Building America Webinar: Retrofitting Central Space Conditioning...

    Broader source: Energy.gov (indexed) [DOE]

    of various control strategies to improve hydronic space heating performance in three low-rise multifamily buildings in Cambridge, MA. Presenters showed results from an analysis...

  11. BUILDING NAME HEYDON-LAURENCE BUILDING

    E-Print Network [OSTI]

    Viglas, Anastasios

    BUILDING NAME HEYDON-LAURENCE BUILDING PHARMACY AND BANK BUILDING JOHN WOOLEY BUILDING OLD TEARCHER'S BUILDING PHYSICS BUILDING BAXTER'S LODGE INSTITUTE BUILDING CONSERVATION WORKS R.D.WATT BUILDING MACLEAY BUILDING THE QUARANGLE BADHAM BUILDING J.D. STEWART BUILDING BLACKBURN BUILDING MADSEN BUILDING STORE

  12. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F.; Moore, Paul B.

    1983-06-21T23:59:59.000Z

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  13. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F. (Shaker Heights, OH); Moore, Paul B. (Fedhaven, FL)

    1983-01-01T23:59:59.000Z

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  14. Data Analysis from Ground Source Heat Pump Demonstration Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis from Ground Source Heat Pump Demonstration Projects Data Analysis from Ground Source Heat Pump Demonstration Projects Comparison of building energy use before and after...

  15. ITP Industrial Distributed Energy: Promoting Combined Heat and...

    Broader source: Energy.gov (indexed) [DOE]

    residential applications the heat can be used for domestic hot water, space heating, absorption cooling, or dehumidifying at the building where it is produced. CHP systems consist...

  16. Energy Savings in Industrial Buildings 

    E-Print Network [OSTI]

    Zhou, A.; Tutterow, V.; Harris, J.

    2009-01-01T23:59:59.000Z

    , and electricity for equipment such as pumps, air compressors, and fans. Lesser, yet significant, amounts of energy are used for industrial buildings – heating, ventilation, and air conditioning (HVAC), lighting and facility use (such as office equipment). Due...

  17. Heat storage duration

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1981-01-01T23:59:59.000Z

    Both the amount and duration of heat storage in massive elements of a passive building are investigated. Data taken for one full winter in the Balcomb solar home are analyzed with the aid of sub-system simulation models. Heat storage duration is tallied into one-day intervals. Heat storage location is discussed and related to overall energy flows. The results are interpreted and conclusions drawn.

  18. Assessment of Building Energy-Saving Policies and Programs in China During the 11th Five Year Plan

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    retrofit in northern area district heating Special fund forbuildings that have district heating system (Wu, 2009). Thein heating load is assumed for buildings using district

  19. Assessment of Building Energy-Saving Policies and Programs in China During the 11th Five Year Plan

    E-Print Network [OSTI]

    Zhou, Nan

    2011-01-01T23:59:59.000Z

    retrofit in northern area district heating Special fund forbuildings that have district heating system (Wu, 2009). Thein heating load is assumed for buildings using district

  20. Assessment of Building Energy-Saving Policies and Programs in China During the 11th Five Year Plan

    E-Print Network [OSTI]

    Zhou, Nan

    2011-01-01T23:59:59.000Z

    building retrofits and heat supply system reform, followedof carrying out the heat supply system reform task. Buildingbuilding retrofits and heat supply system reform, followed

  1. Around Buildings

    E-Print Network [OSTI]

    Treib, Marc

    1987-01-01T23:59:59.000Z

    Around Buildings W h y startw i t h buildings and w o r k o u t wa r d ? For one, buildings are difficult t o a v o i d these

  2. BUILDING INSPECTION Building, Infrastructure, Transportation

    E-Print Network [OSTI]

    BUILDING INSPECTION Building, Infrastructure, Transportation City of Redwood City 1017 Middlefield Sacramento, Ca 95814-5514 Re: Green Building Ordinance and the Building Energy Efficiency Standards Per of Redwood City enforce the current Title 24 Building Energy Efficiency Standards as part

  3. Estimation of Building Parameters Using Simplified Energy Balance Model and Metered Whole Building Energy Use

    E-Print Network [OSTI]

    Masuda, H.; Claridge, D.

    2012-01-01T23:59:59.000Z

    , cooling and heating and weather data using multiple linear regression models based on the simplified steady-state energy balance for a whole building. Two approaches using different response variables: the energy balance load (EBL) and the building thermal...

  4. Estimation of Building Parameters Using Simplified Energy Balance Model and Metered Whole Building Energy Use 

    E-Print Network [OSTI]

    Masuda, H.; Claridge, D.

    2012-01-01T23:59:59.000Z

    , cooling and heating and weather data using multiple linear regression models based on the simplified steady-state energy balance for a whole building. Two approaches using different response variables: the energy balance load (EBL) and the building thermal...

  5. Building Cost and Performance Metrics: Data Collection Protocol, Revision 1.0

    SciTech Connect (OSTI)

    Fowler, Kimberly M.; Solana, Amy E.; Spees, Kathleen L.

    2005-09-29T23:59:59.000Z

    This technical report describes the process for selecting and applying the building cost and performance metrics for measuring sustainably designed buildings in comparison to traditionally designed buildings.

  6. HOCHSCHULE ESSLINGEN: University of Applied Sciences

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    and Electrical Engineering Social work, health and nursing Building services, energy and environmental, Energy and Environmental Engineering Energy and Environmental Engineering Building Services Social workHOCHSCHULE ESSLINGEN: University of Applied Sciences Esslingen, Germany About: Engineering

  7. Building America Webinar: Retrofitting Central Space Conditioning Strategies for Multifamily Buildings

    Broader source: Energy.gov [DOE]

    The webinar focused on improving the performance of central space conditioning systems in multifamily buildings, including hydronic heating strategies and the evaluation of thermostatically controlled radiator valves (TRVs).

  8. Heat distribution by natural convection

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1985-01-01T23:59:59.000Z

    Natural convection can provide adequate heat distribution in many situations that arise in buildings. This is appropriate, for example, in passive solar buildings where some rooms tend to be more strongly solar heated than others. Natural convection can also be used to reduce the number of auxiliary heating units required in a building. Natural airflow and heat transport through doorways and other internal building apertures are predictable and can be accounted for in the design. The nature of natural convection is described, and a design chart is presented appropriate to a simple, single-doorway situation. Experimental results are summarized based on the monitoring of 15 passive solar buildings which employ a wide variety of geometrical configurations including natural convective loops.

  9. Hysteresis effects in hybrid building ventilation

    E-Print Network [OSTI]

    Flynn, Morris R.

    = Heating, ventilation & air conditioning Buildings and energy consumption #12;· Notwithstanding this energy-breeze, displacement ventilation dissipate internal heat gains e.g. from kitchen stove · Wintertime: Spaces filledHysteresis effects in hybrid building ventilation Morris R. Flynn Dept. of Mechanical & Aerospace

  10. Healthy Zero Energy Buildings ENVIRONMENTAL AREA RESEARCH

    E-Print Network [OSTI]

    from buildings. Ventilation, however, comes with a significant energy cost. Currently, heating, with roughly onethird of this energy used to heat and cool ventilation air. As buildings strive to become.energy.ca.gov/research/ environmental March 2011 The Issue Previous studies have associated low ventilation rates with reduced worker

  11. Ecological and Economical efficient Heating and Cooling by innovative Gas Motor Heat Pump Systems and Solutions

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;Ecological and Economical efficient Heating and Cooling by innovative Gas Motor Heat Pump use of buildings Gas Heat Pump Solution #12;Gas Heat Pump - deserves special attention due to its source in addition to the outside air ·A further essential component of Gas Heat Pump air conditioning

  12. Control and Room Temperature Optimization of Energy Efficient Buildings

    SciTech Connect (OSTI)

    Djouadi, Seddik M [ORNL] [ORNL; Kuruganti, Phani Teja [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    The building sector consumes a large part of the energy used in the United States and is responsible for nearly 40% of greenhouse gas emissions. It is therefore economically and environmentally important to reduce the building energy consumption to realize massive energy savings. In this paper, a method to control room temperature in buildings is proposed. The approach is based on a distributed parameter model represented by a three dimensional (3D) heat equation in a room with heater/cooler located at ceiling. The latter is resolved using finite element methods, and results in a model for room temperature with thousands of states. The latter is not amenable to control design. A reduced order model of only few states is then derived using Proper Orthogonal Decomposition (POD). A Linear Quadratic Regulator (LQR) is computed based on the reduced model, and applied to the full order model to control room temperature.

  13. Lorentzweg 1 Applied Physics Building (22)

    E-Print Network [OSTI]

    and on the Teaching and Examination Regulations. Contact: M.Bruggink@tudelft.nl Blackboardcommunity SEC As soon as you

  14. Work measurement applied to building maintenance

    E-Print Network [OSTI]

    Dunkle, Bernard Edward

    1956-01-01T23:59:59.000Z

    . 81 Floor Plan, Third Floor Unit II . . . . . . . 82 8. 10m Analysis of amounts of time required for cleaning each frequency group si~ days a week (to illustrate Table III). . . . . ~ . . . . . 83 Comparison of the hours required for clean- ing... in ths ffeld of manufacturing. The manufacturing lndustrlos are interested in anything which shows promise of rsduaing dfrsct and indirect costs and have accordingly made extensive uso of ?ork-samplfxxg? M. T. M. , memo-motion study and other...

  15. BUILDING, TESTING, AND APPLYING CONCEPT HIERARCHIES

    E-Print Network [OSTI]

    Sanderson, Mark

    of Information Studies University of Sheffield, Western Bank Sheffield, S10 2TN, UK +44 114 22 22648 m-based cluster label taken from Hearst and Pedersen, 1996: battery california technology mile state recharge

  16. Building America Case Study: Foundation Heat Exchanger, Oak Ridge, Tennessee (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future of CSP:Brookhaven TeachingCommunity-ScaleTotal Heating

  17. Building America Whole-House Solutions for New Homes: Shaw Constructio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Whole-House Solutions for Existing Homes: Multifamily Individual Heating and Ventilation Systems Building America Whole-House Solutions for New Homes:...

  18. Reassessing Residential Design in Hawaii: Design Construction Building Analysis and Publishing Design Guidelines for a Passive-Design Model Home on Hawaiian Homeland

    E-Print Network [OSTI]

    Meder, S.

    2006-01-01T23:59:59.000Z

    the considerations of building orientation, the building envelope’s solar heat gain mitigation potential, natural ventilation and daylighting opportunities, often increases the demand for higher energy consumption by elevating the need for air conditioning... partnerships. They also applied for, and received, a US Department of Energy grant to partially fund the project. The concept was to conduct research and to provide educational outreach material and design guidelines to the design professions and general...

  19. Residential Air-Source Heat Pump Program

    Broader source: Energy.gov [DOE]

    Massachusetts offers rebates of up to $3,750 for the installation of high-efficiency, cold-climate air-source heat pumps (ASHPs) in residential buildings of one to four units. Heat pumps must be ...

  20. ANNUAL HEATING AND COOLING REQUIREMENTS AND DESIGN DAY PERFORMANCE FOR A RESIDENTIAL MODEL IN SIX CLIMATES: A COMPARISON OF NBSLD, BLAST 2, AND DOE-2.1

    E-Print Network [OSTI]

    Carroll, William L.

    2011-01-01T23:59:59.000Z

    detailed heat-balance approach f or load calculations, DOE-Loads for Computerized Energy Calculations: Algorithms for Building Heat

  1. Space Heating and Cooling Basics | Department of Energy

    Office of Environmental Management (EM)

    Homes & Buildings Space Heating and Cooling Basics Space Heating and Cooling Basics August 16, 2013 - 1:04pm Addthis A wide variety of technologies are available for heating and...

  2. Experimental Research of an Active Solar Heating System 

    E-Print Network [OSTI]

    Gao, X.; Li, D.

    2006-01-01T23:59:59.000Z

    : Solar is an abundant renewable energy, which is used more and more frequently with the emphasis on environment protection, especially in building heating. The different devised methods between an active solar heating system and normal heating...

  3. BP8.00119 Solar Coronal Heating and Magnetic Energy Build-Up in a Tectonics Model1 , M. GILSON, C.S. NG, A. BHATTACHARJEE, Center for Integrated Computation and Analysis of Reconnection and Turbulence and Center for Magnetic Self-

    E-Print Network [OSTI]

    Ng, Chung-Sang

    BP8.00119 Solar Coronal Heating and Magnetic Energy Build-Up in a Tectonics Model1 , M. GILSON, C.S. NG, A. BHATTACHARJEE, Center for Integrated Computation and Analysis of Reconnection and Turbulence. Title, Astrophys. J. 576, 533 (2002)] and shown, based on analysis and numerical simulations

  4. Building Simulation Modelers Are we big data ready?

    E-Print Network [OSTI]

    Tennessee, University of

    · Plugs · Lights · Range · Washer · Radiated heat · Dryer · Refrigerator · Dishwasher · Heat pump air flow buildings during the development process. Fleet of Residential `Test Buildings' Two Light Commercial `Test Buildings' #12;7 Real demonstration facilities Residential homes 2800 ft2 residence 269 sensors @ 15-minutes

  5. City of Chicago- Building Energy Code

    Broader source: Energy.gov [DOE]

    The Chicago Energy Conservation Code (CECC) requires residential buildings applying for building permits to comply with energy efficient measures which go beyond those required by the [http://www...

  6. Heat Integrate Heat Engines in Process Plants

    E-Print Network [OSTI]

    Hindmarsh, E.; Boland, D.; Townsend, D. W.

    ~C. T min Table 3. Problem Table Algorithm Applied to Petrochemicals Process Interval GJ ltiour 'Temperatures ! C! 2 ) ? ~ Cold. Hot Aecumulated Heat Heat FJ.owa Interval Streams StrePlS Deficit. Input OUtput -OUtt!utInput. 20 30 -2... of heat which can be passed on in this manner is performed in column 2 and column 3 of Table 3. It is initially assumed that the heat input from external utilities is zero. This is represented in Table 3 by a zero input to the top interval. Having...

  7. Building America

    SciTech Connect (OSTI)

    Brad Oberg

    2010-12-31T23:59:59.000Z

    IBACOS researched the constructability and viability issues of using high performance windows as one component of a larger approach to building houses that achieve the Building America 70% energy savings target.

  8. Apply: Funding Opportunity - Advancing Solutions to Improve Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply: Funding Opportunity - Advancing Solutions to Improve Energy Efficiency of Commercial Buildings Apply: Funding Opportunity - Advancing Solutions to Improve Energy Efficiency...

  9. Foundation Heat Exchanger Final Report: Demonstration, Measured Performance, and Validated Model and Design Tool

    SciTech Connect (OSTI)

    Hughes, Patrick [ORNL; Im, Piljae [ORNL

    2012-01-01T23:59:59.000Z

    Geothermal heat pumps, sometimes called ground-source heat pumps (GSHPs), have been proven capable of significantly reducing energy use and peak demand in buildings. Conventional equipment for controlling the temperature and humidity of a building, or supplying hot water and fresh outdoor air, must exchange energy (or heat) with the building's outdoor environment. Equipment using the ground as a heat source and heat sink consumes less non-renewable energy (electricity and fossil fuels) because the earth is cooler than outdoor air in summer and warmer in winter. The most important barrier to rapid growth of the GSHP industry is high first cost of GSHP systems to consumers. The most common GSHP system utilizes a closed-loop ground heat exchanger. This type of GSHP system can be used almost anywhere. There is reason to believe that reducing the cost of closed-loop systems is the strategy that would achieve the greatest energy savings with GSHP technology. The cost premium of closed-loop GSHP systems over conventional space conditioning and water heating systems is primarily associated with drilling boreholes or excavating trenches, installing vertical or horizontal ground heat exchangers, and backfilling the excavations. This project investigates reducing the cost of horizontal closed-loop ground heat exchangers by installing them in the construction excavations, augmented when necessary with additional trenches. This approach applies only to new construction of residential and light commercial buildings or additions to such buildings. In the business-as-usual scenario, construction excavations are not used for the horizontal ground heat exchanger (HGHX); instead the HGHX is installed entirely in trenches dug specifically for that purpose. The potential cost savings comes from using the construction excavations for the installation of ground heat exchangers, thereby minimizing the need and expense of digging additional trenches. The term foundation heat exchanger (FHX) has been coined to refer exclusively to ground heat exchangers installed in the overcut around the basement walls. The primary technical challenge undertaken by this project was the development and validation of energy performance models and design tools for FHX. In terms of performance modeling and design, ground heat exchangers in other construction excavations (e.g., utility trenches) are no different from conventional HGHX, and models and design tools for HGHX already exist. This project successfully developed and validated energy performance models and design tools so that FHX or hybrid FHX/HGHX systems can be engineered with confidence, enabling this technology to be applied in residential and light commercial buildings. The validated energy performance model also addresses and solves another problem, the longstanding inadequacy in the way ground-building thermal interaction is represented in building energy models, whether or not there is a ground heat exchanger nearby. Two side-by-side, three-level, unoccupied research houses with walkout basements, identical 3,700 ft{sup 2} floor plans, and hybrid FHX/HGHX systems were constructed to provide validation data sets for the energy performance model and design tool. The envelopes of both houses are very energy efficient and airtight, and the HERS ratings of the homes are 44 and 45 respectively. Both houses are mechanically ventilated with energy recovery ventilators, with space conditioning provided by water-to-air heat pumps with 2 ton nominal capacities. Separate water-to-water heat pumps with 1.5 ton nominal capacities were used for water heating. In these unoccupied research houses, human impact on energy use (hot water draw, etc.) is simulated to match the national average. At House 1 the hybrid FHX/HGHX system was installed in 300 linear feet of excavation, and 60% of that was construction excavation (needed to construct the home). At House 2 the hybrid FHX/HGHX system was installed in 360 feet of excavation, 50% of which was construction excavation. There are six pipes in all excavations (three par

  10. buildings in Continued on p. 5

    E-Print Network [OSTI]

    Pennycook, Steve

    systems; ground-source and distributed heat pumps; and building-inte- grated, solar, combined heat for the waste heat recovery system using exhaust from the light-duty diesel engine Exhaust from diesel vehicles is fraught with promise and peril. The danger lies in its potentially hazardous pollutants and particulates

  11. Building technologies

    SciTech Connect (OSTI)

    Jackson, Roderick

    2014-07-14T23:59:59.000Z

    After growing up on construction sites, Roderick Jackson is now helping to make buildings nationwide far more energy efficient.

  12. Building technologies

    ScienceCinema (OSTI)

    Jackson, Roderick

    2014-07-15T23:59:59.000Z

    After growing up on construction sites, Roderick Jackson is now helping to make buildings nationwide far more energy efficient.

  13. An indoorâ??outdoor building energy simulator to study urban modification effects on building energy use â?? Model description and validation

    E-Print Network [OSTI]

    Yaghoobian, Neda; Kleissl, Jan

    2012-01-01T23:59:59.000Z

    An experimental study, Energy and Buildings 43 (2011) 573?and  nthropogenic heat, Energy and  Buildings 25 (1997) 99?in  an  urban context, Energy and Buildings 43 (2011) 1549?

  14. Beardmore Building

    High Performance Buildings Database

    Priest River, ID Originally built in 1922 by Charles Beardmore, the building housed offices, mercantile shops, a ballroom and a theater. After decades of neglect under outside ownership, Brian Runberg, an architect and great-grandson of Charles Beardmore, purchased the building in 2006 and began an extensive whole building historic restoration.

  15. Building America Residential Buildings Energy Efficiency Meeting...

    Energy Savers [EERE]

    Building America Residential Buildings Energy Efficiency Meeting: July 2010 Building America Residential Buildings Energy Efficiency Meeting: July 2010 On this page, you may link...

  16. Co-simulation for performance prediction of integrated building and HVAC systems -An analysis of solution

    E-Print Network [OSTI]

    performance simulation of buildings and heating, ventilation and air- conditioning (HVAC) systems can help, heating, ventilation and air-conditioning (HVAC) systems are responsible for 10%-60% of the total building

  17. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2750-C Segerstrom Ave., Santa Ana, CA 92704)

    1980-01-01T23:59:59.000Z

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.

  18. Systems and methods for controlling energy use in a building management system using energy budgets

    SciTech Connect (OSTI)

    Wenzel, Michael J.

    2012-06-17T23:59:59.000Z

    Systems and methods for limiting power consumption by a heating, ventilation, and air conditioning (HVAC) subsystem of a building are shown and described. A mathematical linear operator is found that transforms the unused or deferred cooling power usage of the HVAC system based on pre-determined temperature settings to a target cooling power usage. The mathematical operator is applied to the temperature settings to create a temperature setpoint trajectory expected to provide the target cooling power usage.

  19. Heat distribution ceramic processing method

    DOE Patents [OSTI]

    Tiegs, Terry N. (Lenoir City, TN); Kiggans, Jr., James O. (Oak Ridge, TN)

    2001-01-01T23:59:59.000Z

    A multi-layered heat distributor system is provided for use in a microwave process. The multi-layered heat distributors includes a first inner layer of a high thermal conductivity heat distributor material, a middle insulating layer and an optional third insulating outer layer. The multi-layered heat distributor system is placed around the ceramic composition or article to be processed and located in a microwave heating system. Sufficient microwave energy is applied to provide a high density, unflawed ceramic product.

  20. Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems

    E-Print Network [OSTI]

    Hong, Tainzhen

    2010-01-01T23:59:59.000Z

    dual compressor available on the market Compared with the selected building, a more energy efficient building will have lower space cooling and heating

  1. Practical Integration Approach and Whole Building Energy Simulation of Three Energy Efficient Building Technologies: Preprint

    SciTech Connect (OSTI)

    Miller, J. P.; Zhivov, A.; Heron, D.; Deru, M.; Benne, K.

    2010-08-01T23:59:59.000Z

    Three technologies that have potential to save energy and improve sustainability of buildings are dedicated outdoor air systems, radiant heating and cooling systems and tighter building envelopes. To investigate the energy savings potential of these three technologies, whole building energy simulations were performed for a barracks facility and an administration facility in 15 U.S. climate zones and 16 international locations.

  2. Building-integrated photovoltaics

    SciTech Connect (OSTI)

    NONE

    1993-01-01T23:59:59.000Z

    This is a study of the issues and opportunities for building-integrated PV products, seen primarily from the perspective of the design community. Although some quantitative analysis is included, and limited interviews are used, the essence of the study is qualitative and subjective. It is intended as an aid to policy makers and members of the technical community in planning and setting priorities for further study and product development. It is important to remember that the success of a product in the building market is not only dependent upon its economic value; the diverse group of building owners, managers, regulators, designers, tenants and users must also find it practical, aesthetically appealing and safe. The report is divided into 11 sections. A discussion of technical and planning considerations is followed by illustrative diagrams of different wall and roof assemblies representing a range of possible PV-integration schemes. Following the diagrams, several of these assemblies are then applied to a conceptual test building which is analyzed for PV performance. Finally, a discussion of mechanical/electrical building products incorporating PVs is followed by a brief surveys of cost issues, market potential and code implications. The scope of this report is such that most of the discussion does not go beyond stating the questions. A more detailed analysis will be necessary to establish the true costs and benefits PVs may provide to buildings, taking into account PV power revenue, construction costs, and hidden costs and benefits to building utility and marketability.

  3. Analysis of savings due to multiple energy retrofits in a large office building

    SciTech Connect (OSTI)

    McLain, H.A.; Leigh, S.B.; MacDonald, J.M.

    1994-05-01T23:59:59.000Z

    The objective of this analysis was to characterize the benefits of the individual energy conservation measures that were applied to an existing large office building. The measures included those for lighting; those for the heating, ventilation, and air conditioning (HVAC) systems; and an energy management and control system (EMCS). The purpose was to improve our understanding of the impacts of the individual measures in contrast to the entire group of measures that were installed during a building improvement project. The scope of the study was primarily analytical; it used an hourly building simulation model to estimate the benefits. Input parameters for this model were adjusted so that the calculated results matched closely with the available monthly electrical billing data. Supplemental building energy use data were collected and used to improve the adjustment of these parameters. The benefits of the individual measures were then calculated using the matched model.

  4. Sustainable Building Tax Credit (Personal)

    Broader source: Energy.gov [DOE]

    SB 463, enacted in April 2007, established a personal tax credit and a corporate tax credit for sustainable buildings in New Mexico. The tax credits apply to both commercial and residential...

  5. January 2010 Building Assembly Areas Alumni House By the gazebo

    E-Print Network [OSTI]

    Rusu, Adrian

    , the following assembly areas have been designated for employees to assemble after evacuation from the buildingJanuary 2010 Building Assembly Areas Alumni House By the gazebo Bole Hall Parking Lot P Bole Hall In front of building ­ Linden Hall Side John B. Sangree Greenhouse In front of building Hering Heating

  6. Building Technologies Research and Integration Center | ornl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Integration Center October 02, 2014 Today, through the Building Technologies Research and Integration Center (BTRIC) and associated Centers of Excellence, ORNL applies...

  7. Better Buildings Residential Network Membership Form

    Energy Savers [EERE]

    Membership Form BETTER BUILDINGS RESIDENTIAL NETWORK Type of Organization (Check all that apply) ConsultantAdvisor Manufacturer ContractorTrade ally Nonprofit organization...

  8. A Methodology to Measure Retrofit Energy Savings in Commercial Buildings 

    E-Print Network [OSTI]

    Kissock, John Kelly

    2008-01-16T23:59:59.000Z

    . This dissertation develops a methodology to measure retrofit energy savings and the uncertainty of the savings in commercial buildings. The functional forms of empirical models of cooling and heating energy use in commercial buildings are derived from an engineering...

  9. Hybrid Model for Building Performance Diagnosis and Optimal Control 

    E-Print Network [OSTI]

    Wang, S.; Xu, X.

    2003-01-01T23:59:59.000Z

    Modern buildings require continuous performance monitoring, automatic diagnostics and optimal supervisory control. For these applications, simplified dynamic building models are needed to predict the cooling and heating requirement viewing...

  10. A Study on Design Parameters of Stirling Engines for Buildings

    E-Print Network [OSTI]

    Ding, G.; Huang, S.; Zhang, C.; Hu, X.; Zhang, X.

    2006-01-01T23:59:59.000Z

    One of the most promising projects in the application of combined heat and power(CHP) lies in energy production for buildings. Stirling engines are very applicable to residential buildings, especially because of the higher electricity...

  11. Heat Plan DenmarkHeat Plan Denmark Anders Dyrelundy

    E-Print Network [OSTI]

    the supply and the demand side · An eye-opener for the Danish politicians · Could be a model for otherHeat Plan DenmarkHeat Plan Denmark Anders Dyrelundy Market Manager for Energy and Climate Rambøll Möller · The first study in Denmark, really to integrate the energy and building sectors ­ to combine

  12. Water Heating Requirements Overview Page 5-1 5 Water Heating Requirements

    E-Print Network [OSTI]

    Water Heating Requirements ­ Overview Page 5-1 5 Water Heating Requirements 5.1 Overview 5.1.1 Water Heating Energy Water heating energy use is an important end use in low-rise residential buildings. Roughly 90 percent of California households use natural gas fueled water heaters, typically storage gas

  13. A Guide to Building Commissioning

    SciTech Connect (OSTI)

    Baechler, Michael C.

    2011-09-01T23:59:59.000Z

    Commissioning is the process of verifying that a building's heating, ventilation, and air conditioning (HVAC) and lighting systems perform correctly and efficiently. Without commissioning, system and equipment problems can result in higher than necessary utility bills and unexpected and costly equipment repairs. This report reviews the benefits of commissioning, why it is a requirement for Leadership in Energy and Environmental Design (LEED) certification, and why building codes are gradually adopting commissioning activities into code.

  14. Solar Federal Buildings Program plan

    SciTech Connect (OSTI)

    Not Available

    1980-02-01T23:59:59.000Z

    The Solar Federal Buildings Program (SFBP) is a multi-year program designed to stimulate the growth and improve the efficiency of the solar industry by providing funds to Federal agencies for the design, acquisition, construction, and installation of commercially applicable solar hot water, heating, cooling, and process systems in new and existing Federal buildings. This document outlines the Program Plan to be used in implementing this major solar commercialization effort.

  15. Eagle County- Eagle County Efficient Building Code (ECO-Green Build)

    Broader source: Energy.gov [DOE]

    In an effort to reduce county-wide energy consumption and improve the environment, Eagle County established their own efficient building code (ECO-Green Build) which applies to all new construction...

  16. Solar heating system

    DOE Patents [OSTI]

    Schreyer, James M. (Oak Ridge, TN); Dorsey, George F. (Concord, TN)

    1982-01-01T23:59:59.000Z

    An improved solar heating system in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75.degree. to 180.degree. F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing and releasing heat for distribution.

  17. Improved solar heating systems

    DOE Patents [OSTI]

    Schreyer, J.M.; Dorsey, G.F.

    1980-05-16T23:59:59.000Z

    An improved solar heating system is described in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75 to 180/sup 0/F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing ad releasing heat for distribution.

  18. Russia’s R&D for Low Energy Buildings: Insights for Cooperation with Russia

    SciTech Connect (OSTI)

    Schaaf, Rebecca E.; Evans, Meredydd

    2010-05-01T23:59:59.000Z

    Russian buildings, Russian buildings sector energy consumption. Russian government has made R&D investment a priority again. The government and private sector both invest in a range of building energy technologies. In particular, heating, ventilation and air conditioning, district heating, building envelope, and lighting have active technology research projects and programs in Russia.

  19. Building Stones

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    was no good source of local building stone, rock was usuallyrock-cut shrines and especially tombs, and these are the sources

  20. Building America Expert Meeting: Exploring the Disconnect Between...

    Energy Savers [EERE]

    Expert Meeting: Exploring the Disconnect Between Rated and Field Performance of Water Heating Systems Building America Expert Meeting: Exploring the Disconnect Between Rated and...

  1. Building America Expert Meeting: Multifamily Hydronic and Steam...

    Broader source: Energy.gov (indexed) [DOE]

    controls and distribution retrofit options for hot water and steam space heating systems in multi-family buildings with the goals of reducing energy waste and...

  2. New York building stands out, saves energy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and other features, the building mitigates heat radiation. A rain water harvesting unit reduces runoff into the sewage system, and the water is reused for nonpotable purposes...

  3. Building America Expert Meeting Report: Exploring the Disconnect...

    Broader source: Energy.gov (indexed) [DOE]

    Building America Technology Solutions for New and Existing Homes: Performance of a Heat Pump Water Heater in the Hot-Humid Climate, Windermere, Florida (Fact Sheet) Regional...

  4. Building America Expert Meeting Final Report: Multifamily Hydronic...

    Broader source: Energy.gov (indexed) [DOE]

    Meeting Final Report: Multifamily Hydronic and Steam Heating Controls and Distribution Retrofits Building America Expert Meeting Final Report: Multifamily Hydronic and Steam...

  5. Building America Technology Solutions for New and Existing Homes...

    Broader source: Energy.gov (indexed) [DOE]

    America Technology Solutions for New and Existing Homes: Field Performance of Heat Pump Water Heaters in the Northeast (Fact Sheet) Building America Technology Solutions for New...

  6. Fourier analysis of conductive heat transfer for glazed roofing materials

    SciTech Connect (OSTI)

    Roslan, Nurhana Lyana; Bahaman, Nurfaradila; Almanan, Raja Noorliyana Raja; Ismail, Razidah [Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); Zakaria, Nor Zaini [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia)

    2014-07-10T23:59:59.000Z

    For low-rise buildings, roof is the most exposed surface to solar radiation. The main mode of heat transfer from outdoor via the roof is conduction. The rate of heat transfer and the thermal impact is dependent on the thermophysical properties of roofing materials. Thus, it is important to analyze the heat distribution for the various types of roofing materials. The objectives of this paper are to obtain the Fourier series for the conductive heat transfer for two types of glazed roofing materials, namely polycarbonate and polyfilled, and also to determine the relationship between the ambient temperature and the conductive heat transfer for these materials. Ambient and surface temperature data were collected from an empirical field investigation in the campus of Universiti Teknologi MARA Shah Alam. The roofing materials were installed on free-standing structures in natural ventilation. Since the temperature data are generally periodic, Fourier series and numerical harmonic analysis are applied. Based on the 24-point harmonic analysis, the eleventh order harmonics is found to generate an adequate Fourier series expansion for both glazed roofing materials. In addition, there exists a linear relationship between the ambient temperature and the conductive heat transfer for both glazed roofing materials. Based on the gradient of the graphs, lower heat transfer is indicated through polyfilled. Thus polyfilled would have a lower thermal impact compared to polycarbonate.

  7. A prediction of energy savings resulting from building infiltration control

    E-Print Network [OSTI]

    McWatters, Kenneth Rob

    1995-01-01T23:59:59.000Z

    This thesis provides a description of the methods of application of theoretical models of heat transfer in computer simulations, to determine the energy performance of a wall or building. The heat transfer simulations include calculation equations...

  8. An Exploratory Energy Analysis of Electrochromic Windows in Small and Medium Office Buildings - Simulated Results Using EnergyPlus

    SciTech Connect (OSTI)

    Belzer, David B.

    2010-08-01T23:59:59.000Z

    The Department of Energy’s (DOE) Building Technologies Program (BTP) has had an active research program in supporting the development of electrochromic (EC) windows. Electrochromic glazings used in these windows have the capability of varying the transmittance of light and heat in response to an applied voltage. This dynamic property allows these windows to reduce lighting, cooling, and heating energy in buildings where they are employed. The exploratory analysis described in this report examined three different variants of EC glazings, characterized by the amount of visible light and solar heat gain (as measured by the solar heat gain coefficients [SHGC] in their “clear” or transparent states). For these EC glazings, the dynamic range of the SHGC’s between their “dark” (or tinted) state and the clear state were: (0.22 - 0.70, termed “high” SHGC); (0.16 - 0.39, termed “low” SHGC); and (0.13 - 0.19; termed “very low” SHGC). These glazings are compared to conventional (static) glazing that meets the ASHRAE Standard 90.1-2004 energy standard for five different locations in the U.S. All analysis used the EnergyPlus building energy simulation program for modeling EC windows and alternative control strategies. The simulations were conducted for a small and a medium office building, where engineering specifications were taken from the set of Commercial Building Benchmark building models developed by BTP. On the basis of these simulations, total source-level savings in these buildings were estimated to range between 2 to 7%, depending on the amount of window area and building location.

  9. Better Buildings

    E-Print Network [OSTI]

    Neukomm, M.

    2012-01-01T23:59:59.000Z

    efficiency as top priority energy resource Revolutionary change in market Robust energy efficiency industry Prime the market for new technology Better Buildings Challenge Goals Make commercial & industrial buildings 20% more efficient by 2020... opportunities for energy efficiency 2 Great opportunities in the residential, commercial and industrial sectors 20% + savings is average Other benefits: Jobs, Environment, Competitiveness But persistent barriers exist?? ?Energy efficiency...

  10. Country Report on Building Energy Codes in India

    SciTech Connect (OSTI)

    Evans, Meredydd; Shui, Bin; Somasundaram, Sriram

    2009-04-07T23:59:59.000Z

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America. This reports gives an overview of the development of building energy codes in India, including national energy policies related to building energy codes, history of building energy codes in India, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial buildings in India.

  11. Country Report on Building Energy Codes in Canada

    SciTech Connect (OSTI)

    Shui, Bin; Evans, Meredydd

    2009-04-06T23:59:59.000Z

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America . This reports gives an overview of the development of building energy codes in Canada, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial and residential buildings in Canada.

  12. Country Report on Building Energy Codes in the United States

    SciTech Connect (OSTI)

    Halverson, Mark A.; Shui, Bin; Evans, Meredydd

    2009-04-30T23:59:59.000Z

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in U.S., including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial and residential buildings in the U.S.

  13. THE DOE-2 COMPUTER PROGRAM FOR THERMAL SIMULATION OF BUILDINGS

    E-Print Network [OSTI]

    of the energy addition and extraction actually to be supplied at the heating and cooling coils by the HVAC of the hour-by-hour heat loss and gain to the building spaces and the heating and cooling loads imposed upon of the HVAC system, the time-varying temperature set-points, and the heating, cooling and fan schedules

  14. Ground source heat storage and thermo-physical response of soft clay

    E-Print Network [OSTI]

    Saxe, Shoshanna Dawn

    2009-01-01T23:59:59.000Z

    Ground source heat storage can condition buildings with reduced consumption of fossil fuels, an important issue in modem building design. However, seasonal heat storage can cause soil temperature fluctuations and possibly ...

  15. Enhancing Residential Building Operation through its Envelope

    E-Print Network [OSTI]

    Vazifeshenas, Y.; Sajjadi, H.

    2010-01-01T23:59:59.000Z

    In this study heat loss is evaluated with the modeling software of Iranian Construction Engineering Organization, for both with and without insulation in the building. Of course the evaluation is in accordance with the laws of this organization...

  16. www.heatpumpcentre.org IEA HEAT PUMP PROGRAMME

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    for buildings in cold climates Annex 40 - Heat pump concepts for near zero- energy buildings (Operating Agent boilers and gas boilers Annex 38 - Systems using solar thermal energy in combination with heat pumps (Operating Agent: CH) The aim is to analyse solar and heat pump configurations with respect to energy savings

  17. Revision Date: 8/29/11 ETME 425 -Building Systems Fall 2011

    E-Print Network [OSTI]

    Dyer, Bill

    system integration. Incorporate the elements (pumps, fans, compressors, heat exchangers, heaters. HVAC Equipment 10. Sanitary Venting and Draining 3. Heat Loss and Heat Gain 7. Building Water Supply in modern buildings - including system selection, heating and cooling load calculations, component selection

  18. 2008 Residential Building Efficiency Standards 1 Efficiency Ratings and Performance Modeling Inputs

    E-Print Network [OSTI]

    Inputs for the Daiken AC (Americas), Inc. Altherma Air-to-Water Source Heat Pump System The Building-to-Water Source Heat Pump can provide space heating, space cooling and domestic water heating functions Required Compliance Software Inputs-- The Altherma Air-to-Water Source Heat Pump system is an electric heat

  19. Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings

    E-Print Network [OSTI]

    Fridley, David G.

    2008-01-01T23:59:59.000Z

    Geothermal Heat Pump Central AC by NG Electric water heaterwater heating Technologies Electric heater Gas boiler Coal Boiler Small cogen Stove District heating Heat pumpHeat Pump* *COP Reference Case Alternative Case Table 10 Office Buildings: Water Heating Efficiency Boiler Gas Boiler Small Cogen Electric Water Heater

  20. Building Energy Monitoring and Analysis

    SciTech Connect (OSTI)

    Hong, Tianzhen; Feng, Wei; Lu, Alison; Xia, Jianjun; Yang, Le; Shen, Qi; Im, Piljae; Bhandari, Mahabir

    2013-06-01T23:59:59.000Z

    This project aimed to develop a standard methodology for building energy data definition, collection, presentation, and analysis; apply the developed methods to a standardized energy monitoring platform, including hardware and software, to collect and analyze building energy use data; and compile offline statistical data and online real-time data in both countries for fully understanding the current status of building energy use. This helps decode the driving forces behind the discrepancy of building energy use between the two countries; identify gaps and deficiencies of current building energy monitoring, data collection, and analysis; and create knowledge and tools to collect and analyze good building energy data to provide valuable and actionable information for key stakeholders.

  1. Building America Webinar: Ventilation in Multifamily Buildings...

    Energy Savers [EERE]

    Ventilation in Multifamily Buildings Building America Webinar: Ventilation in Multifamily Buildings This webinar was presented by research team Consortium for Advanced Residential...

  2. Building America Expert Meeting: Transforming Existing Buildings...

    Energy Savers [EERE]

    Transforming Existing Buildings through New Media--An Idea Exchange Building America Expert Meeting: Transforming Existing Buildings through New Media--An Idea Exchange This report...

  3. Towards Occupancy-Driven Heating and Cooling

    E-Print Network [OSTI]

    Whitehouse, Kamin

    Burke Parabola Architects Galen Staengl Staengl Engineering h HEATING, VENTILATION, AND cooling (HVAC required for heating, ventilation, and cooling (HVAC) by 20%­30% by tailoring the conditioning of buildingsTowards Occupancy-Driven Heating and Cooling Kamin Whitehouse, Juhi Ranjan, Jiakang Lu, Tamim

  4. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

    1984-01-01T23:59:59.000Z

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  5. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

    1984-01-01T23:59:59.000Z

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate intallation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  6. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

    1984-01-01T23:59:59.000Z

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to faciliate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  7. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

    1981-01-01T23:59:59.000Z

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  8. Comparison of Building Energy Efficiency and Life Span for Different Envelopes 

    E-Print Network [OSTI]

    Li, Z.; Li, D.; Li, L.; Zhang, G.; Liu, J.

    2006-01-01T23:59:59.000Z

    favorable protection and decoration between border upon place (door, window, pipeline) and corner of wall, thus the application is more and more exclusive. The application of external heat preservation can make the residential buildings keep original... in building envelope heat preservation, the expense in heating system will also decrease simultaneously. Once the favorable heat preservation application is successfully carried out, the design capacity of heat source, pipeline, pumps and heat exchangers...

  9. Assessment of Distributed Generation Potential in JapaneseBuildings

    SciTech Connect (OSTI)

    Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida,Masaru

    2005-05-25T23:59:59.000Z

    To meet growing energy demands, energy efficiency, renewable energy, and on-site generation coupled with effective utilization of exhaust heat will all be required. Additional benefit can be achieved by integrating these distributed technologies into distributed energy resource (DER) systems (or microgrids). This research investigates a method of choosing economically optimal DER, expanding on prior studies at the Berkeley Lab using the DER design optimization program, the Distributed Energy Resources Customer Adoption Model (DER-CAM). DER-CAM finds the optimal combination of installed equipment from available DER technologies, given prevailing utility tariffs, site electrical and thermal loads, and a menu of available equipment. It provides a global optimization, albeit idealized, that shows how the site energy loads can be served at minimum cost by selection and operation of on-site generation, heat recovery, and cooling. Five prototype Japanese commercial buildings are examined and DER-CAM applied to select the economically optimal DER system for each. The five building types are office, hospital, hotel, retail, and sports facility. Based on the optimization results, energy and emission reductions are evaluated. Furthermore, a Japan-U.S. comparison study of policy, technology, and utility tariffs relevant to DER installation is presented. Significant decreases in fuel consumption, carbon emissions, and energy costs were seen in the DER-CAM results. Savings were most noticeable in the sports facility (a very favourable CHP site), followed by the hospital, hotel, and office building.

  10. Renewable Energy Applications for Existing Buildings: Preprint

    SciTech Connect (OSTI)

    Hayter, S. J.; Kandt, A.

    2011-08-01T23:59:59.000Z

    This paper introduces technical opportunities, means, and methods for incorporating renewable energy (RE) technologies into building designs and operations. It provides an overview of RE resources and available technologies used successfully to offset building electrical and thermal energy loads. Methods for applying these technologies in buildings and the role of building energy efficiency in successful RE projects are addressed along with tips for implementing successful RE projects.

  11. HEDCO Education Building Eugene, Oregon

    E-Print Network [OSTI]

    Oregon, University of

    a dedicated heat recovery unit which operates on 100% outside air. #12;| ASHRAE Level One Energy Audit4 Air central plant. Chilled water enters the building through the steam tunnel in the basement and feeds is provided by two mini-split air conditioning units. These two units do not run often because the garage

  12. Adoption of Voluntary Environmental Standards: The Role of Signaling and Intrinsic Benefits in the Diffusion of the LEED Green Building Standards.

    E-Print Network [OSTI]

    Corbett, C.J.; Muthulingam, S.

    2007-01-01T23:59:59.000Z

    the Diffusion of Green Building Practices. ” AppliedCosts and Financial Benefits of Green Buildings: A Report toDiffusion of the LEED Green Building Standards August 17,

  13. Design for Energy Efficiency in Residential Buildings

    E-Print Network [OSTI]

    Song, M.; Zhang, Y.; Yang, G.

    2006-01-01T23:59:59.000Z

    -saving efficiency was 50%. Tab. 1 Difference of over all heat transfer coefficient limitation of building Exterior wall Exterior window Roof 65% energy-saving residence buildings in Beijing (>5 stories) 0.6 2.8 0.6 South of Sweden 0.17 2.5 0...

  14. THERMAL BUILDING PERFORMANCE OPTIMIZATION USING SPATIAL ARCHETYPES

    E-Print Network [OSTI]

    Papalambros, Panos

    process. An increasing number of countries in the world are developing or updating their building energy is spent for heating and cooling systems, see Figure 1.2. Figure 1.1 Primary energy consumption by sector encouragement, love and support #12;1 CHAPTER 1 INTRODUCTION 1.1. Energy Consumption Energy conscious building

  15. Frederick Albert Sutton Building Quick Green Facts

    E-Print Network [OSTI]

    Feschotte, Cedric

    of the project. · Site lighting planning and carefully selected fixtures reduce light pollution. WATER EFFICIENCY. ENERGY & ATMOSPHERE · The building energy usage is reduced by 30.6% annually from efficient heating, plastic and metal will be collected for recycling from the building. · 81.9% of construction waste

  16. Low temperature barriers with heat interceptor wells for in situ processes

    DOE Patents [OSTI]

    McKinzie, II, Billy John (Houston, TX)

    2008-10-14T23:59:59.000Z

    A system for reducing heat load applied to a frozen barrier by a heated formation is described. The system includes heat interceptor wells positioned between the heated formation and the frozen barrier. Fluid is positioned in the heat interceptor wells. Heat transfers from the formation to the fluid to reduce the heat load applied to the frozen barrier.

  17. Office Buildings: Assessing and Reducing Plug and Process Loads in Office Buildings (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-04-01T23:59:59.000Z

    Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use in office spaces are poorly understood.

  18. Retail Buildings: Assessing and Reducing Plug and Process Loads in Retail Buildings (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-04-01T23:59:59.000Z

    Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use in retail spaces are poorly understood.

  19. Compressor Selection and Equipment Sizing for Cold Climate Heat Pumps

    SciTech Connect (OSTI)

    Shen, Bo [ORNL] [ORNL; Abdelaziz, Omar [ORNL] [ORNL; Rice, C Keith [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    In order to limit heating capacity degradation at -25 C (-13 F) ambient to 25%, compared to the nominal rating point capacity at 8.3 C (47 F), an extensive array of design and sizing options were investigated, based on fundamental equipment system modeling and building energy simulation. Sixteen equipment design options were evaluated in one commercial building and one residential building, respectively in seven cities. The energy simulation results were compared to three baseline cases: 100% electric resistance heating, a 9.6 HSPF single-speed heat pump unit, and 90% AFUE gas heating system. The general recommendation is that variable-speed compressors and tandem compressors, sized such that their rated heating capacity at a low speed matching the building design cooling load, are able to achieve the capacity goal at low ambient temperatures by over-speeding, for example, a home with a 3.0 ton design cooling load, a tandem heat pump could meet this cooling load running a single compressor, while running both compressors to meet heating load at low ambient temperatures in a cold climate. Energy savings and electric resistance heat reductions vary with building types, energy codes and climate zones. Oversizing a heat pump can result in larger energy saving in a less energy efficient building and colder regions due to reducing electric resistance heating. However, in a more energy-efficient building or for buildings in warmer climates, one has to consider balance between reduction of resistance heat and addition of cyclic loss.

  20. Building Science

    Broader source: Energy.gov [DOE]

    This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question How do we first do no harm with high-r enclosures??

  1. Building debris

    E-Print Network [OSTI]

    Dahmen, Joseph (Joseph F. D.)

    2006-01-01T23:59:59.000Z

    This thesis relates architectural practices to intelligent use of resources and the reuse of derelict spaces. The initial investigation of rammed earth as a building material is followed by site-specific operations at the ...

  2. Building Stones

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    1992 Are the pyramids of Egypt built of poured concreteel-Anba’ut, Red Sea coast, Egypt. Marmora 6, pp. 45 - 56.building stones of ancient Egypt are those relatively soft,

  3. Healthy buildings

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    This book is covered under the following headings: Healthy building strategies/productivity, Energy and design issues, Ventilation, Contaminants, Thermal, airflow, and humidity issues, School-related issues, Sources and sinks, Filtering, Operation and maintenance.

  4. Proceedings of the SPIE, Vol. 3700, April 6-8, 1999. This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building

    E-Print Network [OSTI]

    through components of building thermal envelopes. Two thermal chambers maintain steady-state heat flow the barrier between the outdoor weather and conditioned inside space. A building's thermal envelope consists to increase the efficiency of building heating and cooling. Heat flow through the building thermal envelope

  5. Healthy buildings

    SciTech Connect (OSTI)

    Geshwiler, M.; Montgomery, L.; Moran, M. (eds.)

    1991-01-01T23:59:59.000Z

    This proceedings is of the Indoor Air Quality (IAQ) Conference held September 4--8, 1991 in Washington, D.C. Entitled the IAQ 91, Healthy Buildings,'' the major topics of discussion included: healthy building strategies/productivity; energy and design issues; ventilation; contaminants; thermal, airflow, and humidity issues; school-related issues; sources and sinks; filtering; and operation and maintenance. For these conference proceedings, individual papers are processed separately for input into the Energy Data Base. (BN)

  6. Low-Cost Gas Heat Pump for Building Space Heating

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTerms LoanLosCombustionTim ReinhardtSystem

  7. Low-Cost Gas Heat Pump for Building Space Heating

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTerms LoanLosCombustionTim

  8. Archive Reference Buildings by Building Type: Supermarket

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

  9. Archive Reference Buildings by Building Type: Warehouse

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

  10. High Heat Flux Components Program

    SciTech Connect (OSTI)

    Whitley, J.B.

    1983-01-01T23:59:59.000Z

    Purpose is the development of the technologies necessary to design, build and operate high heat flux components such as actively cooled limiters, divertor collector plates, R.F. antennas, mirror end cells, mirror halo collectors, direct convertor collectors, and neutral beam dumps. These components require an integrated design that considers the plasma-materials interaction (PMI) issues, heat removal problems and materials issues (including possible low Z coatings and claddings). As a general definition, high heat flux components see heat fluxes ranging from 1 to 100 MW/m/sup 2/. Suitable materials include copper and copper alloys.

  11. Solar Correction Factors of Building Envelope in Tebei

    E-Print Network [OSTI]

    Wang, D.; Tang, M.

    2006-01-01T23:59:59.000Z

    Tebei has very rich solar energy in China and needs heating in winter,but the present energy building design code has no solar correction factor for the overall heat transfer coefficient of building envelope for Tebei. Based on the typical year...

  12. Solar Correction Factors of Building Envelope in Tebei 

    E-Print Network [OSTI]

    Wang, D.; Tang, M.

    2006-01-01T23:59:59.000Z

    Tebei has very rich solar energy in China and needs heating in winter,but the present energy building design code has no solar correction factor for the overall heat transfer coefficient of building envelope for Tebei. Based on the typical year...

  13. Building envelope thermal anomaly analysis

    SciTech Connect (OSTI)

    Melton, B.S.; Mulroney, P.; Scott, T.; Childs, K.W.

    1987-12-01T23:59:59.000Z

    A detailed study has been made of building energy thermal anomalies (BETA's) in a large modern office building using computer simulation, on-site inspections, and infrared thermography. The goal was to better understand the heat and moisture flow through these ''bridges,'' develop the beginnings of a classification scheme, and establish techniques for assessing the potential for retrofit or initial design modifications. In terms of presently available analytical techniques, a one-dimensional equivalent of the bridge and its affected area can be created from a steady-state computer simulation. This equivalent, combined with a degree day model, yields good estimates of the bridge behavior in buildings employing heating only. With heating and cooling, the equivalent must be used with an hour-by-hour simulation. A classification scheme based on the one-dimensional equivalent is proposed which should make it possible to create a catalog of basic bridge types that can be used to estimate their effects without requiring a complete hour-by-hour simulation of each building. The classification relates both energy loss and moisture condensation potential to the bridge configuration and the building envelope. The potential for moisture condensation on interior surfaces near a BETA was found to be as significant as the energy loss and this factor needds to be considered in assessing the complete detrimental effects of a bridge. With such a catalog, building designers and analysts would be able to determine and estimate the advantages or disadvantages of modifying the building envelope to reduce the impact of a thermal bridge. 18 refs., 31 figs., 17 tabs.

  14. Advanced Variable Speed Air-Source Integrated Heat Pump 2013...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pump 2013 Peer Review Advanced Variable Speed Air-Source Integrated Heat Pump 2013 Peer Review Emerging Technologies Project for the 2013 Building Technologies Office's Program...

  15. Non-Residential Solar Water Heating Site Assessment at Milwaukee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Non-Residential Solar Water Heating Site Assessment at Milwaukee Apartment Buildings The Midwest Renewable Energy Association's certified site assessors conducted 25 site...

  16. natural gas+ condensing flue gas heat recovery+ water creation...

    Open Energy Info (EERE)

    natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building energy efficiency+ industrial energy...

  17. Illustrative Calculation of Economics for Heat Pump and "Grid...

    Broader source: Energy.gov (indexed) [DOE]

    America Technology Solutions for New and Existing Homes: Performance of a Heat Pump Water Heater in the Hot-Humid Climate, Windermere, Florida (Fact Sheet) Building America...

  18. Building Energy Monitoring and Analysis

    SciTech Connect (OSTI)

    Hong, Tianzhen; Feng, Wei; Lu, Alison; Xia, Jianjun; Yang, Le; Shen, Qi; Im, Piljae; Bhandari, Mahabir

    2013-06-01T23:59:59.000Z

    U.S. and China are the world’s top two economics. Together they consumed one-third of the world’s primary energy. It is an unprecedented opportunity and challenge for governments, researchers and industries in both countries to join together to address energy issues and global climate change. Such joint collaboration has huge potential in creating new jobs in energy technologies and services. Buildings in the US and China consumed about 40% and 25% of the primary energy in both countries in 2010 respectively. Worldwide, the building sector is the largest contributor to the greenhouse gas emission. Better understanding and improving the energy performance of buildings is a critical step towards sustainable development and mitigation of global climate change. This project aimed to develop a standard methodology for building energy data definition, collection, presentation, and analysis; apply the developed methods to a standardized energy monitoring platform, including hardware and software, to collect and analyze building energy use data; and compile offline statistical data and online real-time data in both countries for fully understanding the current status of building energy use. This helps decode the driving forces behind the discrepancy of building energy use between the two countries; identify gaps and deficiencies of current building energy monitoring, data collection, and analysis; and create knowledge and tools to collect and analyze good building energy data to provide valuable and actionable information for key stakeholders.

  19. CCHP System with Interconnecting Cooling and Heating Network 

    E-Print Network [OSTI]

    Fu, L.; Geng, K.; Zheng, Z.; Jiang, Y.

    2006-01-01T23:59:59.000Z

    The consistency between building heating load, cooling load and power load are analyzed in this paper. The problem of energy waste and low equipment usage in a traditional CCHP (combined cooling, heating and power) system with generated electricity...

  20. CCHP System with Interconnecting Cooling and Heating Network

    E-Print Network [OSTI]

    Fu, L.; Geng, K.; Zheng, Z.; Jiang, Y.

    2006-01-01T23:59:59.000Z

    The consistency between building heating load, cooling load and power load are analyzed in this paper. The problem of energy waste and low equipment usage in a traditional CCHP (combined cooling, heating and power) system with generated electricity...

  1. Efficient Engine-Driven Heat Pump for the Residential Sector

    Broader source: Energy.gov [DOE]

    Building on previous work on an 11-ton packaged natural gas heat pump, this project will develop hardware and software for engine and system controls for a residential gas heat pump system that...

  2. Development of a Computer Heating Monitoring System and Its Applications 

    E-Print Network [OSTI]

    Chen, H.; Li, D.; Shen, L.

    2006-01-01T23:59:59.000Z

    This paper develops a computer heating monitoring system, introduces the components and principles of the monitoring system, and provides a study on its application to residential building heating including analysis of indoor and outdoor air...

  3. Building America Webinar: Retrofitting Central Space Conditioning Strategies for Multifamily Buildings

    Broader source: Energy.gov [DOE]

    This webinar will focus on improving the performance of central space conditioning systems in multifamily buildings. Presenters will discuss hydronic heating strategies and the evaluation of thermostatically controlled radiator valves (TRVs).

  4. Monitoring and Optimization of Building Operations of a Low-Energy School Building

    E-Print Network [OSTI]

    Koenigsdorff, R.; Heinrich, S.; Baumann, O.; Reiser, C.

    consumption was almost met during the second year of operation in 2006 and finally achieved in 2007, due to well-working optimization measures, which were identified through monitoring of the building operation. Heating and cooling energy is mainly provided...

  5. Experimental Investigation on Thermal Properties of a Steel-jacketed Steam Heating Pipeline with Vacuum Insulation 

    E-Print Network [OSTI]

    Na, W.; Zou, P.

    2006-01-01T23:59:59.000Z

    The steel-jacketed steam heating pipeline employs vacuum insulation to improve the insulating effect and reduce the corrosion, and hence increases the heat transfer efficiency of the heating network and building energy efficiency. It is important...

  6. Automatic Construction of Building Footprints from Airborne LIDAR Data

    E-Print Network [OSTI]

    Chen, Shu-Ching

    data are essential for construc- tion of urban landscape models, assessment of urban heat island effect for extraction of building footprints. Manual derivation of building geometric data from a remote sensing image due to the influence of sun shadow and relief displacement of high buildings in remote sensing images

  7. Economic Analysis and Comparison of Waste Water Resource Heat Pump Heating and Air-Conditioning System 

    E-Print Network [OSTI]

    Zhang, C.; Wang, S.; Chen, H.; Shi, Y.

    2006-01-01T23:59:59.000Z

    Based on the heating and air-conditioning system of a high-rise residential building in Northern city, this paper provides a discussion on the choice and matching of different types of Waste Water Resource Heat Pump (WWRHP) heating and air...

  8. Economic Analysis and Comparison of Waste Water Resource Heat Pump Heating and Air-Conditioning System

    E-Print Network [OSTI]

    Zhang, C.; Wang, S.; Chen, H.; Shi, Y.

    2006-01-01T23:59:59.000Z

    Based on the heating and air-conditioning system of a high-rise residential building in Northern city, this paper provides a discussion on the choice and matching of different types of Waste Water Resource Heat Pump (WWRHP) heating and air...

  9. Building Interoperability

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy FutureDepartment of Energy Building Energy-EfficientBuilding

  10. Building Interoperability

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy FutureDepartment of Energy Building Energy-EfficientBuilding

  11. Molecular heat pump

    E-Print Network [OSTI]

    Dvira Segal; Abraham Nitzan

    2005-10-11T23:59:59.000Z

    We propose a novel molecular device that pumps heat against a thermal gradient. The system consists of a molecular element connecting two thermal reservoirs that are characterized by different spectral properties. The pumping action is achieved by applying an external force that periodically modulates molecular levels. This modulation affects periodic oscillations of the internal temperature of the molecule and the strength of its coupling to each reservoir resulting in a net heat flow in the desired direction. The heat flow is examined in the slow and fast modulation limits and for different modulation waveforms, thus making it possible to optimize the device performance.

  12. Low Temperature Heat Recovery for Boiler Systems 

    E-Print Network [OSTI]

    Shook, J. R.; Luttenberger, D. B.

    1986-01-01T23:59:59.000Z

    Low temperature corrosion proof heat exchangers designed to reduce boiler flue gas temperatures to 150°F or lower are now being commercially operated on gas, oil and coal fired boilers. These heat exchangers, when applied to boiler flue gas...

  13. Building environment modeling and minimum-energy control

    E-Print Network [OSTI]

    Godfrey, James Bradford

    1980-01-01T23:59:59.000Z

    be expanded to study energy loss due to vapor condensation. The mathematical model of the building environment is simplified so that optimal temperature control can be studied. Simulations of the building environment heating system using feed- back.... Heating System Simulation. . OPTIMAL TEMPERATURE CONTROL. . . A. Def i ni ti ons 8, Model for the Dynamic Programming Algorithm C. The Dynamic Programming Algorithm. . D. Stochastic External Forcing Terms. . E. Optimal Stochastic Heating Control...

  14. Overview of DOE-Sponsored Heat Pump Research DOE research activities related to residential and commercial heat pump

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;Overview of DOE-Sponsored Heat Pump Research DOE research activities related to residential and commercial heat pump technology are supported by the Office of Building Energy Research and Development%) allocated to elec- tric and heat-actuated heat pump research. The remaining 15% is allocated to appliance

  15. ITER have a need for ion cyclotron heating (ICH) as part of the plasma heating system mix to reach the

    E-Print Network [OSTI]

    frequency heating www.ccfe.ac.uk JG11.199-RFH Contact details Technology Services, Building K2/0/14 CulhamBackground ITER have a need for ion cyclotron heating (ICH) as part of the plasma heating system, maintainable and capable of being manufactured case study Radio frequency heating Engineering systems design

  16. Ecologically friendly buildings The new de Picciotto building for scientific and technical research which will be

    E-Print Network [OSTI]

    Shapiro, Ehud

    with vegetation which offers the pro's to isolate the roof from heat, they absorb moisture and reduce temperatures for the separation of waste at source in the kitchens and other central areas in the building. Electric hand dryers in the building. #12;Separation of Biodegradable Waste The separation of biodegradable waste started in January

  17. PipelinePipelineJuly 2011 Volume 3, Issue 4 The Donhowe Building, located at the

    E-Print Network [OSTI]

    Webb, Peter

    to the building's mechanical and electrical systems' performance, including installing a heat pump equipped water on washing machines and water heaters, the EPA also administers a scoring system for buildings. This tool heater and optimizing the building's heating and cooling air flow rates. Energy Management intends

  18. History of Heating Oil Reserve Releases

    Broader source: Energy.gov [DOE]

    The Northeast Home Heating Oil Reserve (NEHHOR), a one million barrel supply of ultra low sulfur distillate (diesel), was created to build a buffer to allow commercial companies to compensate for...

  19. CONTROL SYSTEM FOR SOLAR HEATING and COOLING

    E-Print Network [OSTI]

    Dols, C.

    2010-01-01T23:59:59.000Z

    LBL buildings, with the solar collectors on the roof, theCBB 757-5496 Figure 3: Solar Collectors Mounted· on the RoofSolar Heating and Cooling Systems. The components include Collectors (

  20. Berkeley Lab to Help Build Straw Bale Building

    SciTech Connect (OSTI)

    Worsham, S.A.; Van Mechelen, G.

    1998-12-01T23:59:59.000Z

    The Shorebird Environmental Learning Center (SELC) is a new straw bale building that will showcase current and future technologies and techniques that will reduce the environmental impacts of building construction and operations. The building will also serve as a living laboratory to test systems and monitor their performance. The project will be the model for a building process that stops using our precious resources and reduces waste pollution. The rice straw that will be used for the bale construction is generally waste material that is typically burned--millions of tons of it a year--especially in California's San Joaquin Valley. Buildings have significant impacts on the overall environment. Building operations, including lighting, heating, and cooling, consume about 30% of the energy used in the United States. Building construction and the processes into making building materials consume an additional 8% of total energy. Construction also accounts for 39% of wood consumed in the U S, while 25% of solid waste volume is construction and demolition (C &D) debris. The SELC will incorporate a variety of materials and techniques that will address these and other issues, while providing a model of environmentally considered design for Bay Area residents and builders. Environmental considerations include energy use in construction and operations, selection of materials, waste minimization, and indoor air quality. We have developed five major environmental goals for this project: (1) Minimize energy use in construction and operations; (2) Employ material sources that are renewable, salvaged, recycled, and/or recyclable; (3) Increase building lifespan with durable materials and designs that permit flexibility and modification with minimal demolition; (4) Reduce and strive to eliminate construction debris; and (5) Avoid products that create toxic pollutants and make a healthy indoor environment.

  1. Idaho Falls Power- Energy Efficient Heat Pump Loan Program

    Broader source: Energy.gov [DOE]

    Idaho Falls Power offers zero interest loans to all eligible customers for the purchase and installation of energy efficient heat pumps. The Heat Pump Program applies to heating or cooling in...

  2. Home | Better Buildings Workforce

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Better Buildings Logo EERE Home | Programs & Offices | Consumer Information Search form Search Search Better Buildings Logo Connect with Us LinkedIn Twitter Better Buildings...

  3. Energy Gaining Windows for Residential Buildings Jesper Kragh, Assistant Professor,

    E-Print Network [OSTI]

    season. It is assumed that in northern cold climates all of the solar gain during the heating season can profiles, solar gain, net energy gain, low energy houses SUMMARY: This paper presents some of the research buildings. The net energy gain of windows is the solar gain minus the heat loss integrated over the heating

  4. DRAFT FOR REVIEW AND DISCUSSION* Building Greener Buildings with No Increase in Budget

    E-Print Network [OSTI]

    Rose, Michael R.

    water heaters can be economically provided. Buildings should use HTW for sizable heating water, the campus must maximize the use of high temperature water (HTW) * Revised February 2008 based on Labs21 heat loads demand massive quantities of industrial and potable hot water. For example, vivariums have

  5. Better than Average? - Green Building Certification in International Projects

    E-Print Network [OSTI]

    Baumann, O.

    2008-01-01T23:59:59.000Z

    . An Enterprise of the Ebert-Consulting Group 1004 Pennsylvania Avenue, SE Washington, D.C. 20003, USA 00 12 02/ 6 08 - 13 34 o.baumann@eb-engineers.com Better than Average? - Green Building Certification in International Projects Green Building..., green building rating systems focus on sustainability for the entire life-cycle of buildings and therefore offer great opportunities for enhancing building operation, when applied and used appropriately. This presentation gives an overview...

  6. Building Energy Optimization Analysis Method (BEopt) - Building...

    Energy Savers [EERE]

    about BEopt. See an example of a Building America project that used BEopt. Find more case studies of Building America projects across the country that incorporate BEopt when...

  7. Thermal response of a flat heat pipe sandwich structure to a localized heat flux

    E-Print Network [OSTI]

    Wadley, Haydn

    The temperature distribution across a flat heat pipe sandwich structure, subjected to an intense localized thermal metal foam wick and distilled water as the working fluid. Heat was applied via a propane torch and radiative heat transfer. A novel method was developed to estimate experimentally, the heat flux distribution

  8. Heat sinking for printed circuitry

    DOE Patents [OSTI]

    Wilson, S.K.; Richardson, G.; Pinkerton, A.L.

    1984-09-11T23:59:59.000Z

    A flat pak or other solid-state device mounted on a printed circuit board directly over a hole extends therethrough so that the bottom of the pak or device extends beyond the bottom of the circuit board. A heat sink disposed beneath the circuit board contacts the bottom of the pak or device and provides direct heat sinking thereto. Pressure may be applied to the top of the pak or device to assure good mechanical and thermal contact with the heat sink.

  9. Susanville District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

  10. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  11. Green Building- Efficient Life Cycle 

    E-Print Network [OSTI]

    Kohns, R.

    2008-01-01T23:59:59.000Z

    Energy saving does not just apply to traffic, production or agriculture. Buildings are also contributing to the climate change. The focus here is on the energy they use and on their CO2 emissions. Each year, Siemens invests more than two billion...

  12. Green Building- Efficient Life Cycle

    E-Print Network [OSTI]

    Kohns, R.

    Energy saving does not just apply to traffic, production or agriculture. Buildings are also contributing to the climate change. The focus here is on the energy they use and on their CO2 emissions. Each year, Siemens invests more than two billion...

  13. Video Entity Resolution: Applying ER Techniques for Smart Video Surveillance

    E-Print Network [OSTI]

    Kalashnikov, Dmitri V.

    buildings, smart grid, and so on. In this paper, we focus on smart surveillance systems wherein video improvements on how the building is used. One of the key challenges in building smart surveillance systemsVideo Entity Resolution: Applying ER Techniques for Smart Video Surveillance Liyan Zhang Ronen

  14. This paper has been downloaded from the Building and Environmental Thermal Systems Research Group at Oklahoma State University (www.hvac.okstate.edu)

    E-Print Network [OSTI]

    Ghajar, Afshin J.

    ,J. The correlations form the basis of a newconvective heat transfer model. This modelhas been tested in the Building

  15. "We retrofitted mechanical systems in 8 buildings!"

    E-Print Network [OSTI]

    "We retrofitted mechanical systems in 8 buildings!" LOW INTEREST RATE LOANS AVAILABLE NOW! County of Contra Costa California Energy Commission Apply Today! See Case Study on Back of Flyer "Our low interest and cooling systems in eight buildings. The energy efficient measures include replacing pneumatic controls

  16. Progressing for Intelligent to Smart Buildings

    E-Print Network [OSTI]

    Buckman, A. H.; Mayfield, M.; Meijer, R.; Beck, S. B. M.

    2013-01-01T23:59:59.000Z

    This paper addresses the issue of the misunderstandings surrounding the terms intelligent and smart when applied to modern buildings. The terms have increasingly been used interchangeably which has led to confusion for designers, researchers...

  17. International Energy Agency Building Energy Simulation Test and Diagnostic Method (IEA BESTEST): In-Depth Diagnostic Cases for Ground Coupled Heat Transfer Related to Slab-on-Grade Construction

    SciTech Connect (OSTI)

    Neymark, J.; Judkoff, R.; Beausoleil-Morrison, I.; Ben-Nakhi, A.; Crowley, M.; Deru, M.; Henninger, R.; Ribberink, H.; Thornton, J.; Wijsman, A.; Witte, M.

    2008-09-01T23:59:59.000Z

    This report documents a set of idealized in-depth diagnostic test cases for use in validating ground-coupled floor slab heat transfer models. These test cases represent an extension to IEA BESTEST.

  18. Lighting a building with a single bulb : toward a system for illumination in the 21st c.; or, A centralized illumination system for the efficient decoupling and recovery of lighting related heat

    E-Print Network [OSTI]

    Levens, Kurt Antony, 1961-

    1997-01-01T23:59:59.000Z

    Piping light represents the first tenable method for recovery and reutilization of lighting related heat. It can do this by preserving the energy generated at the lamp as radiative, departing from precedent and avoiding ...

  19. FACULTY OF APPLIED SCIENCE ENGINEERING NEWS

    E-Print Network [OSTI]

    Pulfrey, David L.

    how his research in the Pulp and Paper Centre -- applying and heating thermoplastic polymers to lift found an ingenious way to relieve the stress of dropped calls by using radio and TV channels to transmit

  20. Industrial Buildings

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0 0.0Decade4Year114,937