National Library of Energy BETA

Sample records for applied dynamic analysis

  1. Systematic analysis of protein–detergent complexes applying dynamic light scattering to optimize solutions for crystallization trials

    SciTech Connect (OSTI)

    Meyer, Arne [University of Hamburg, c/o DESY, Building 22a, Notkestrasse 85, 22603 Hamburg (Germany); Dierks, Karsten [University of Hamburg, c/o DESY, Building 22a, Notkestrasse 85, 22603 Hamburg (Germany); XtalConcepts, Marlowring 19, 22525 Hamburg (Germany); Hussein, Rana [University of Hamburg, c/o DESY, Building 22a, Notkestrasse 85, 22603 Hamburg (Germany); Brillet, Karl [ESBS, Pôle API, 300 Boulevard Sébastien Brant, CS10413, 67412 Illkirch CEDEX (France); Brognaro, Hevila [Săo Paulo State University, UNESP/IBILCE, Caixa Postal 136, Săo José do Rio Preto-SP, 15054 (Brazil); Betzel, Christian, E-mail: christian.betzel@uni-hamburg.de [University of Hamburg, c/o DESY, Building 22a, Notkestrasse 85, 22603 Hamburg (Germany)

    2015-01-01

    Application of in situ dynamic light scattering to solutions of protein–detergent complexes permits characterization of these complexes in samples as small as 2 ”l in volume. Detergents are widely used for the isolation and solubilization of membrane proteins to support crystallization and structure determination. Detergents are amphiphilic molecules that form micelles once the characteristic critical micelle concentration (CMC) is achieved and can solubilize membrane proteins by the formation of micelles around them. The results are presented of a study of micelle formation observed by in situ dynamic light-scattering (DLS) analyses performed on selected detergent solutions using a newly designed advanced hardware device. DLS was initially applied in situ to detergent samples with a total volume of approximately 2 ”l. When measured with DLS, pure detergents show a monodisperse radial distribution in water at concentrations exceeding the CMC. A series of all-transn-alkyl-?-d-maltopyranosides, from n-hexyl to n-tetradecyl, were used in the investigations. The results obtained verify that the application of DLS in situ is capable of distinguishing differences in the hydrodynamic radii of micelles formed by detergents differing in length by only a single CH{sub 2} group in their aliphatic tails. Subsequently, DLS was applied to investigate the distribution of hydrodynamic radii of membrane proteins and selected water-insoluble proteins in presence of detergent micelles. The results confirm that stable protein–detergent complexes were prepared for (i) bacteriorhodopsin and (ii) FetA in complex with a ligand as examples of transmembrane proteins. A fusion of maltose-binding protein and the Duck hepatitis B virus X protein was added to this investigation as an example of a non-membrane-associated protein with low water solubility. The increased solubility of this protein in the presence of detergent could be monitored, as well as the progress of proteolytic cleavage to

  2. The generalized finite element method applied to the dynamic...

    Office of Scientific and Technical Information (OSTI)

    Title: The generalized finite element method applied to the dynamic response of heterogeneous media. Authors: Robbins, Joshua ; Voth, Thomas E. Publication Date: 2013-02-01 OSTI ...

  3. Artificial intelligence technologies applied to terrain analysis

    SciTech Connect (OSTI)

    Wright, J.C. ); Powell, D.R. )

    1990-01-01

    The US Army Training and Doctrine Command is currently developing, in cooperation with Los Alamos National Laboratory, a Corps level combat simulation to support military analytical studies. This model emphasizes high resolution modeling of the command and control processes, with particular attention to architectural considerations that enable extension of the model. A planned future extension is the inclusion of an computer based planning capability for command echelons that can be dynamical invoked during the execution of then model. Command and control is the process through which the activities of military forces are directed, coordinated, and controlled to achieve the stated mission. To perform command and control the commander must understand the mission, perform terrain analysis, understand his own situation and capabilities as well as the enemy situation and his probable actions. To support computer based planning, data structures must be available to support the computer's ability to understand'' the mission, terrain, own capabilities, and enemy situation. The availability of digitized terrain makes it feasible to apply artificial intelligence technologies to emulate the terrain analysis process, producing data structures for uses in planning. The work derived thus for to support the understanding of terrain is the topic of this paper. 13 refs., 5 figs., 6 tabs.

  4. Dynamic cable analysis models

    SciTech Connect (OSTI)

    Palo, P.A.; Meggitt, D.J.; Nordell, W.J.

    1983-05-01

    This paper presents a summary of the development and validation of undersea cable dynamics computer models by the Naval Civil Engineering Laboratory (NCEL) under the sponsorship of the Naval Facilities Engineering Command. These models allow for the analysis of both small displacement (strumming) and large displacement (static and dynamic) deformations of arbitrarily configured cable structures. All of the large displacement models described in this paper are available to the public. This paper does not emphasize the theoretical development of the models (this information is available in other references) but emphasizes the various features of the models, the comparisons between model output and experimental data, and applications for which the models have been used.

  5. Dynamical coupled-channel analysis at EBAC

    SciTech Connect (OSTI)

    T.-S. H. Lee

    2007-08-01

    The status and progress of the dynamical coupled-channel analysis at the Excited Baryon Analysis Center (EBAC) is reported.

  6. Apply

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied Studies and Technology (AS&T) Applied Studies and Technology (AS&T) Applied Studies and Technology (AS&T) DOE established the Environmental Sciences Laboratory (ESL) in Grand Junction, Colorado, in 1991 to support its programs. ESL scientists perform applied research and laboratory-scale demonstrations of soil and groundwater remediation and treatment technologies. Capabilities Installation, monitoring, and operation of permeable reactive barriers Research of permeable

  7. Behavioral Economics Applied to Energy Demand Analysis: A Foundation

    U.S. Energy Information Administration (EIA) Indexed Site

    Behavioral Economics Applied to Energy Demand Analysis: A Foundation October 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Behavioral Economics Applied to Energy Demand Analysis i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of

  8. Apply

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply Application Process Bringing together top space science students with internationally recognized researchers at Los Alamos in an educational and collaborative atmosphere. ...

  9. Advanced Multivariate Analysis Tools Applied to Surface Analysis...

    Office of Scientific and Technical Information (OSTI)

    Resource Relation: Conference: Proposed for presentation at the Microscopy and ... SUPERCONDUCTIVITY AND SUPERFLUIDITY; MICROANALYSIS; MICROSCOPY; MULTIVARIATE ANALYSIS

  10. Insight Gained from Simplified Dynamic Analysis

    Broader source: Energy.gov [DOE]

    Insight Gained from Simplified Dynamic Analysis ... or Everything Old is New Again October 21, 2014 Greg Mertz Consultant

  11. Dynamical analysis of highly excited molecular spectra

    SciTech Connect (OSTI)

    Kellman, M.E.

    1993-12-01

    The goal of this program is new methods for analysis of spectra and dynamics of highly excited vibrational states of molecules. In these systems, strong mode coupling and anharmonicity give rise to complicated classical dynamics, and make the simple normal modes analysis unsatisfactory. New methods of spectral analysis, pattern recognition, and assignment are sought using techniques of nonlinear dynamics including bifurcation theory, phase space classification, and quantization of phase space structures. The emphasis is chaotic systems and systems with many degrees of freedom.

  12. Behavioral Economics Applied to Energy Demand Analysis: A Foundation -

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Information Administration Appendix A Behavioral Economics Applied to Energy Demand Analysis: A Foundation Release date: October 15, 2014 Neoclassical economics has shaped our understanding of human behavior for several decades. While still an important starting point for economic studies, neoclassical frameworks have generally imposed strong assumptions, for example regarding utility maximization, information, and foresight, while treating consumer preferences as given or external to

  13. INDEPENDENT COMPONENT ANALYSIS (ICA) APPLIED TO LONG BUNCH BEAMS IN THE LOS ALAMOS PROTON STORAGE RING

    SciTech Connect (OSTI)

    Kolski, Jeffrey S.; Macek, Robert J.; McCrady, Rodney C.; Pang, Xiaoying

    2012-05-14

    Independent component analysis (ICA) is a powerful blind source separation (BSS) method. Compared to the typical BSS method, principal component analysis (PCA), which is the BSS foundation of the well known model independent analysis (MIA), ICA is more robust to noise, coupling, and nonlinearity. ICA of turn-by-turn beam position data has been used to measure the transverse betatron phase and amplitude functions, dispersion function, linear coupling, sextupole strength, and nonlinear beam dynamics. We apply ICA in a new way to slices along the bunch and discuss the source signals identified as betatron motion and longitudinal beam structure.

  14. Seismic analysis applied to the delimiting of a gas reservoir

    SciTech Connect (OSTI)

    Ronquillo, G.; Navarro, M.; Lozada, M.; Tafolla, C.

    1996-08-01

    We present the results of correlating seismic models with petrophysical parameters and well logs to mark the limits of a gas reservoir in sand lenses. To fulfill the objectives of the study, we used a data processing sequence that included wavelet manipulation, complex trace attributes and pseudovelocities inversion, along with several quality control schemes to insure proper amplitude preservation. Based on the analysis and interpretation of the seismic sections, several areas of interest were selected to apply additional signal treatment as preconditioning for petrophysical inversion. Signal classification was performed to control the amplitudes along the horizons of interest, and to be able to find an indirect interpretation of lithologies. Additionally, seismic modeling was done to support the results obtained and to help integrate the interpretation. The study proved to be a good auxiliary tool in the location of the probable extension of the gas reservoir in sand lenses.

  15. Applied Dynamic Analysis of the Global Economy (ADAGE) Model...

    Open Energy Info (EERE)

    model capable of examining many types of economic, energy, environmental, climate change mitigation, and trade policies at the international, national, U.S. regional, and U.S....

  16. A Hygrothermal Risk Analysis Applied to Residential Unvented Attics

    SciTech Connect (OSTI)

    Pallin, Simon B; Kehrer, Manfred

    2013-01-01

    Aresidential building, constructed with an unvented attic, is acommonroof assembly in the United States.The expected hygrothermal performance and service life of the roof are difficult to estimate due to a number of varying parameters.Typical parameters expected to vary are the climate, direction, and slope of the roof as well as the radiation properties of the surface material. Furthermore, influential parameters are indoor moisture excess, air leakages through the attic floor, and leakages from air-handling unit and ventilation ducts. In addition, the type of building materials such as the insulation material and closed or open cell spray polyurethane foam will influence the future performance of the roof. A development of a simulation model of the roof assembly will enable a risk and sensitivity analysis, in which the most important varying parameters on the hygrothermal performance can be determined. The model is designed to perform probabilistic simulations using mathematical and hygrothermal calculation tools. The varying input parameters can be chosen from existing measurements, simulations, or standards. An analysis is applied to determine the risk of consequences, such as mold growth, rot, or energy demand of the HVAC unit. Furthermore, the future performance of the roof can be simulated in different climates to facilitate the design of an efficient and reliable roof construction with the most suitable technical solution and to determine the most appropriate building materials for a given climate

  17. Spin echo dynamics under an applied drift field in graphene nanoribbon superlattices

    SciTech Connect (OSTI)

    Prabhakar, Sanjay; Melnik, Roderick; Gregorio Millan Institute, Universidad Carlos III de Madrid, 28911 Leganes ; Bonilla, Luis L.; Raynolds, James E.

    2013-12-02

    We investigate the evolution of spin dynamics in graphene nanoribbon superlattices (GNSLs) with armchair and zigzag edges in the presence of a drift field. We determine the exact evolution operator and show that it exhibits spin echo phenomena due to rapid oscillations of the quantum states along the ribbon. The evolution of the spin polarization is accompanied by strong beating patterns. We also provide detailed analysis of the band structure of GNSLs with armchair and zigzag edges.

  18. Dynamic Event Tree Analysis Through RAVEN

    SciTech Connect (OSTI)

    A. Alfonsi; C. Rabiti; D. Mandelli; J. Cogliati; R. A. Kinoshita; A. Naviglio

    2013-09-01

    Conventional Event-Tree (ET) based methodologies are extensively used as tools to perform reliability and safety assessment of complex and critical engineering systems. One of the disadvantages of these methods is that timing/sequencing of events and system dynamics is not explicitly accounted for in the analysis. In order to overcome these limitations several techniques, also know as Dynamic Probabilistic Risk Assessment (D-PRA), have been developed. Monte-Carlo (MC) and Dynamic Event Tree (DET) are two of the most widely used D-PRA methodologies to perform safety assessment of Nuclear Power Plants (NPP). In the past two years, the Idaho National Laboratory (INL) has developed its own tool to perform Dynamic PRA: RAVEN (Reactor Analysis and Virtual control ENvironment). RAVEN has been designed in a high modular and pluggable way in order to enable easy integration of different programming languages (i.e., C++, Python) and coupling with other application including the ones based on the MOOSE framework, developed by INL as well. RAVEN performs two main tasks: 1) control logic driver for the new Thermo-Hydraulic code RELAP-7 and 2) post-processing tool. In the first task, RAVEN acts as a deterministic controller in which the set of control logic laws (user defined) monitors the RELAP-7 simulation and controls the activation of specific systems. Moreover, RAVEN also models stochastic events, such as components failures, and performs uncertainty quantification. Such stochastic modeling is employed by using both MC and DET algorithms. In the second task, RAVEN processes the large amount of data generated by RELAP-7 using data-mining based algorithms. This paper focuses on the first task and shows how it is possible to perform the analysis of dynamic stochastic systems using the newly developed RAVEN DET capability. As an example, the Dynamic PRA analysis, using Dynamic Event Tree, of a simplified pressurized water reactor for a Station Black-Out scenario is presented.

  19. Dynamic Analysis of Fuel Cycle Transitioning

    SciTech Connect (OSTI)

    Brent Dixon; Steve Piet; David Shropshire; Gretchen Matthern

    2009-09-01

    This paper examines the time-dependent dynamics of transitioning from a once-through fuel cycle to a closed fuel cycle. The once-through system involves only Light Water Reactors (LWRs) operating on uranium oxide fuel UOX), while the closed cycle includes both LWRs and fast spectrum reactors (FRs) in either a single-tier system or two-tier fuel system. The single-tier system includes full transuranic recycle in FRs while the two-tier system adds one pass of mixed oxide uranium-plutonium (MOX U-Pu) fuel in the LWR. While the analysis primarily focuses on burner fast reactors, transuranic conversion ratios up to 1.0 are assessed and many of the findings apply to any fuel cycle transitioning from a thermal once-through system to a synergistic thermal-fast recycle system. These findings include uranium requirements for a range of nuclear electricity growth rates, the importance of back end fuel cycle facility timing and magnitude, the impact of employing a range of fast reactor conversion ratios, system sensitivity to used fuel cooling time prior to recycle, impacts on a range of waste management indicators, and projected electricity cost ranges for once-through, single-tier and two-tier systems. The study confirmed that significant waste management benefits can be realized as soon as recycling is initiated, but natural uranium savings are minimal in this century. The use of MOX in LWRs decouples the development of recycle facilities from fast reactor fielding, but also significantly delays and limits fast reactor deployment. In all cases, fast reactor deployment was significantly below than predicted by static equilibrium analyses.

  20. Final Report Computational Analysis of Dynamical Systems

    SciTech Connect (OSTI)

    Guckenheimer, John

    2012-05-08

    This is the final report for DOE Grant DE-FG02-93ER25164, initiated in 1993. This grant supported research of John Guckenheimer on computational analysis of dynamical systems. During that period, seventeen individuals received PhD degrees under the supervision of Guckenheimer and over fifty publications related to the grant were produced. This document contains copies of these publications.

  1. EVMS Training Snippet Library: 6.2 Applied Predictive Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Notes More Documents & Publications EVMS Training Snippet: 5.7 PARSII Analysis: OAPM Red Yellow Report EVMS Training Snippet: 6.1 Predictive Analysis EVMS Training Snippet: 5.1...

  2. Measurement uncertainty analysis techniques applied to PV performance measurements

    SciTech Connect (OSTI)

    Wells, C.

    1992-10-01

    The purpose of this presentation is to provide a brief introduction to measurement uncertainty analysis, outline how it is done, and illustrate uncertainty analysis with examples drawn from the PV field, with particular emphasis toward its use in PV performance measurements. The uncertainty information we know and state concerning a PV performance measurement or a module test result determines, to a significant extent, the value and quality of that result. What is measurement uncertainty analysis It is an outgrowth of what has commonly been called error analysis. But uncertainty analysis, a more recent development, gives greater insight into measurement processes and tests, experiments, or calibration results. Uncertainty analysis gives us an estimate of the I interval about a measured value or an experiment's final result within which we believe the true value of that quantity will lie. Why should we take the time to perform an uncertainty analysis A rigorous measurement uncertainty analysis: Increases the credibility and value of research results; allows comparisons of results from different labs; helps improve experiment design and identifies where changes are needed to achieve stated objectives (through use of the pre-test analysis); plays a significant role in validating measurements and experimental results, and in demonstrating (through the post-test analysis) that valid data have been acquired; reduces the risk of making erroneous decisions; demonstrates quality assurance and quality control measures have been accomplished; define Valid Data as data having known and documented paths of: Origin, including theory; measurements; traceability to measurement standards; computations; uncertainty analysis of results.

  3. Dynamic analysis of tension-leg platforms

    SciTech Connect (OSTI)

    Morgan, J.R.

    1983-01-01

    The dynamic response of tension-leg platforms subjected to wave loading was investigated using a deterministic dynamic analysis. The model employed in this study is based on coupled nonlinear stiffness coefficients and closed form inertia and drag forcing functions derived using Morison's equation. The forcing functions include relative motion behavior between the fluid particles and the structure. These forcing functions are integrated manually thereby avoiding the need for expensive numerical integration. A set of coupled nonlinear differential equations was integrated sequentially in the time domain using the Newmark beta-method. A computer program was developed to simulate the time history response of the platform motion.

  4. Measurement uncertainty analysis techniques applied to PV performance measurements

    SciTech Connect (OSTI)

    Wells, C.

    1992-10-01

    The purpose of this presentation is to provide a brief introduction to measurement uncertainty analysis, outline how it is done, and illustrate uncertainty analysis with examples drawn from the PV field, with particular emphasis toward its use in PV performance measurements. The uncertainty information we know and state concerning a PV performance measurement or a module test result determines, to a significant extent, the value and quality of that result. What is measurement uncertainty analysis? It is an outgrowth of what has commonly been called error analysis. But uncertainty analysis, a more recent development, gives greater insight into measurement processes and tests, experiments, or calibration results. Uncertainty analysis gives us an estimate of the I interval about a measured value or an experiment`s final result within which we believe the true value of that quantity will lie. Why should we take the time to perform an uncertainty analysis? A rigorous measurement uncertainty analysis: Increases the credibility and value of research results; allows comparisons of results from different labs; helps improve experiment design and identifies where changes are needed to achieve stated objectives (through use of the pre-test analysis); plays a significant role in validating measurements and experimental results, and in demonstrating (through the post-test analysis) that valid data have been acquired; reduces the risk of making erroneous decisions; demonstrates quality assurance and quality control measures have been accomplished; define Valid Data as data having known and documented paths of: Origin, including theory; measurements; traceability to measurement standards; computations; uncertainty analysis of results.

  5. EVMS Training Snippet Library: 6.2 Applied Predictive Analysis

    Broader source: Energy.gov [DOE]

    This EVMS Training Snippet, sponsored by the Office of Project Management (PM) provides examples of using PARS II analysis reports to examine current performance and use it to predict future...

  6. Dynamic analysis of pressure infiltration processes

    SciTech Connect (OSTI)

    Biswas, D.K.; Gatica, J.E.; Tewari, S.N.

    1995-12-01

    Unidirectional pressure infiltration of porous preforms by molten metal/alloys is investigated in this study. The dynamics of the process is analyzed via the numerical solution of a mathematical model. Comparison against classical asymptotic analyses shows that, for realistic samples, end effects may become important and render asymptotic results unreliable. A comparison with experiments proves the model to be an efficient predictive tool in the analysis of infiltration processes for different preform/melt systems.

  7. Dynamic Analysis of Nuclear Energy System Strategies

    Energy Science and Technology Software Center (OSTI)

    2004-06-17

    DANESS is an integrated process model for nuclear energy systems allowing the simulation of multiple reactors and fuel cycles in a continuously changing nuclear reactor park configuration. The model is energy demand driven and simulates all nuclear fuel cycle facilites, up to 10 reactors and fuels. Reactor and fuel cycle facility history are traced and the cost of generating energy is calculated per reactor and for total nuclear energy system. The DANESS model aims atmore » performing dynamic systems analysis of nuclear energy development used for integrated analysis of development paths for nuclear energy, parameter scoping for new nuclear energy systems, economic analysis of nuclear energy, government role analysis, and education.« less

  8. RAVEN, a New Software for Dynamic Risk Analysis (Conference)...

    Office of Scientific and Technical Information (OSTI)

    RAVEN, a New Software for Dynamic Risk Analysis Citation Details In-Document Search Title: RAVEN, a New Software for Dynamic Risk Analysis RAVEN is a generic software driver to ...

  9. Current Human Reliability Analysis Methods Applied to Computerized Procedures

    SciTech Connect (OSTI)

    Ronald L. Boring

    2012-06-01

    Computerized procedures (CPs) are an emerging technology within nuclear power plant control rooms. While CPs have been implemented internationally in advanced control rooms, to date no US nuclear power plant has implemented CPs in its main control room (Fink et al., 2009). Yet, CPs are a reality of new plant builds and are an area of considerable interest to existing plants, which see advantages in terms of enhanced ease of use and easier records management by omitting the need for updating hardcopy procedures. The overall intent of this paper is to provide a characterization of human reliability analysis (HRA) issues for computerized procedures. It is beyond the scope of this document to propose a new HRA approach or to recommend specific methods or refinements to those methods. Rather, this paper serves as a review of current HRA as it may be used for the analysis and review of computerized procedures.

  10. Applied & Computational MathematicsChallenges for the Design and Control of Dynamic Energy Systems

    SciTech Connect (OSTI)

    Brown, D L; Burns, J A; Collis, S; Grosh, J; Jacobson, C A; Johansen, H; Mezic, I; Narayanan, S; Wetter, M

    2011-03-10

    The Energy Independence and Security Act of 2007 (EISA) was passed with the goal 'to move the United States toward greater energy independence and security.' Energy security and independence cannot be achieved unless the United States addresses the issue of energy consumption in the building sector and significantly reduces energy consumption in buildings. Commercial and residential buildings account for approximately 40% of the U.S. energy consumption and emit 50% of CO{sub 2} emissions in the U.S. which is more than twice the total energy consumption of the entire U.S. automobile and light truck fleet. A 50%-80% improvement in building energy efficiency in both new construction and in retrofitting existing buildings could significantly reduce U.S. energy consumption and mitigate climate change. Reaching these aggressive building efficiency goals will not happen without significant Federal investments in areas of computational and mathematical sciences. Applied and computational mathematics are required to enable the development of algorithms and tools to design, control and optimize energy efficient buildings. The challenge has been issued by the U.S. Secretary of Energy, Dr. Steven Chu (emphasis added): 'We need to do more transformational research at DOE including computer design tools for commercial and residential buildings that enable reductions in energy consumption of up to 80 percent with investments that will pay for themselves in less than 10 years.' On July 8-9, 2010 a team of technical experts from industry, government and academia were assembled in Arlington, Virginia to identify the challenges associated with developing and deploying newcomputational methodologies and tools thatwill address building energy efficiency. These experts concluded that investments in fundamental applied and computational mathematics will be required to build enabling technology that can be used to realize the target of 80% reductions in energy consumption. In addition the

  11. Dynamic Analysis of Mobile Device Applications

    SciTech Connect (OSTI)

    Corey Thuen

    2013-01-01

    The On-Device Dynamic Analysis of Mobile Applications (ODAMA) project was started in an effort to protect mobile devices used in Industrial Control Systems (ICS) from cyber attack. Because mobile devices hide as much of the “computer” as possible, the user’s ability to assess the software running on their system is limited. The research team chose Google’s Android platform for this initial research because it is open source and it would give us freedom in our approach, including the ability to modify the mobile device’s operating system itself. The research team concluded that a Privileged Application was the right approach, and the result was ODAMA. This project is an important piece of the work to secure the expanding use of mobile devices with our nation’s critical infrastructure.

  12. Performance analysis of high quality parallel preconditioners applied to 3D finite element structural analysis

    SciTech Connect (OSTI)

    Kolotilina, L.; Nikishin, A.; Yeremin, A.

    1994-12-31

    The solution of large systems of linear equations is a crucial bottleneck when performing 3D finite element analysis of structures. Also, in many cases the reliability and robustness of iterative solution strategies, and their efficiency when exploiting hardware resources, fully determine the scope of industrial applications which can be solved on a particular computer platform. This is especially true for modern vector/parallel supercomputers with large vector length and for modern massively parallel supercomputers. Preconditioned iterative methods have been successfully applied to industrial class finite element analysis of structures. The construction and application of high quality preconditioners constitutes a high percentage of the total solution time. Parallel implementation of high quality preconditioners on such architectures is a formidable challenge. Two common types of existing preconditioners are the implicit preconditioners and the explicit preconditioners. The implicit preconditioners (e.g. incomplete factorizations of several types) are generally high quality but require solution of lower and upper triangular systems of equations per iteration which are difficult to parallelize without deteriorating the convergence rate. The explicit type of preconditionings (e.g. polynomial preconditioners or Jacobi-like preconditioners) require sparse matrix-vector multiplications and can be parallelized but their preconditioning qualities are less than desirable. The authors present results of numerical experiments with Factorized Sparse Approximate Inverses (FSAI) for symmetric positive definite linear systems. These are high quality preconditioners that possess a large resource of parallelism by construction without increasing the serial complexity.

  13. EVMS Training Snippet: 6.2 Applied Predictive Analysis | Department of

    Office of Environmental Management (EM)

    Energy 2 Applied Predictive Analysis EVMS Training Snippet: 6.2 Applied Predictive Analysis This EVMS Training Snippet, sponsored by the Office of Project Management (PM) provides examples of using PARS II analysis reports to examine current performance and use it to predict future performance. Link to Video Presentation (11:05) | Prior Snippet (6.1) | Next Snippet | Return to Index Slides Only (263.83 KB) Slides with Notes (1.25 MB) Key Resources PMCDP EVMS PARS IIe FPD Resource Center PM

  14. Experts Meeting: Behavioral Economics as Applied to Energy Demand Analysis and Energy Efficiency Programs

    U.S. Energy Information Administration (EIA) Indexed Site

    Experts Meeting: Behavioral Economics as Applied to Energy Demand Analysis and Energy Efficiency Programs EIA Office of Energy Consumption and Efficiency Analysis July 17, 2013 | Washington, DC Meeting Agenda Jim Turnure, Director, Office of Energy Consumption and Efficiency Analysis July 17, 2013 2 * EIA WELCOME AND INTRODUCTION (15 minutes) * ORIENTATION/PRESENTATION: OVERVIEW OF EIA RESIDENTIAL AND COMMERCIAL DEMAND MODELS AND CURRENT METHODS FOR INCORPORATING ENERGY EFFICIENCY/EFFICIENCY

  15. Dislocation mechanics based constitutive equation incorporating dynamic recovery and applied to thermomechanical shear instability

    SciTech Connect (OSTI)

    Zerilli, Frank J.; Armstrong, Ronald W.

    1998-07-10

    A closer look into the predicted large strain response and plastic shear instability behavior derived from the so-called Z-A equations, incorporating thermally activated yielding of bcc metals (due to their high Peierls stresses) and thermally activated strain hardening of fcc metals (produced by dislocation intersections), shows the need for including dynamic recovery effects in the strain hardening for both bcc and fcc cases. Recovery effects are observed in the stress/strain behavior of tantalum and the bcc-like Ti-6A1-4V titanium alloy. Critical strains for shear banding are computed for Ti-6Al-4V, copper, and ARMCO iron. In addition, a recent result on ductile fracture is reported.

  16. PArallel Reacting Multiphase FLOw Computational Fluid Dynamic Analysis

    Energy Science and Technology Software Center (OSTI)

    2002-06-01

    PARMFLO is a parallel multiphase reacting flow computational fluid dynamics (CFD) code. It can perform steady or unsteady simulations in three space dimensions. It is intended for use in engineering CFD analysis of industrial flow system components. Its parallel processing capabilities allow it to be applied to problems that use at least an order of magnitude more computational cells than the number that can be used on a typical single processor workstation (about 106 cellsmore » in parallel processing mode versus about io cells in serial processing mode). Alternately, by spreading the work of a CFD problem that could be run on a single workstation over a group of computers on a network, it can bring the runtime down by an order of magnitude or more (typically from many days to less than one day). The software was implemented using the industry standard Message-Passing Interface (MPI) and domain decomposition in one spatial direction. The phases of a flow problem may include an ideal gas mixture with an arbitrary number of chemical species, and dispersed droplet and particle phases. Regions of porous media may also be included within the domain. The porous media may be packed beds, foams, or monolith catalyst supports. With these features, the code is especially suited to analysis of mixing of reactants in the inlet chamber of catalytic reactors coupled to computation of product yields that result from the flow of the mixture through the catalyst coaled support structure.« less

  17. Nucleation Rate Analysis of Methane Hydrate from Molecular Dynamics Simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yuhara, Daisuke; Barnes, Brian C.; Suh, Donguk; Knott, Brandon C.; Beckham, Gregg T.; Yasuoka, Kenji; Wu, David T.; Amadeu K. Sum

    2015-01-06

    Clathrate hydrates are solid crystalline structures most commonly formed from solutions that have nucleated to form a mixed solid composed of water and gas. Understanding the mechanism of clathrate hydrate nucleation is essential to grasp the fundamental chemistry of these complex structures and their applications. Molecular dynamics (MD) simulation is an ideal method to study nucleation at the molecular level because the size of the critical nucleus and formation rate occur on the nano scale. Moreover, various analysis methods for nucleation have been developed through MD to analyze nucleation. In particular, the mean first-passage time (MFPT) and survival probability (SP)more » methods have proven to be effective in procuring the nucleation rate and critical nucleus size for monatomic systems. This study assesses the MFPT and SP methods, previously used for monatomic systems, when applied to analyzing clathrate hydrate nucleation. Because clathrate hydrate nucleation is relatively difficult to observe in MD simulations (due to its high free energy barrier), these methods have yet to be applied to clathrate hydrate systems. In this study, we have analyzed the nucleation rate and critical nucleus size of methane hydrate using MFPT and SP methods from data generated by MD simulations at 255 K and 50 MPa. MFPT was modified for clathrate hydrate from the original version by adding the maximum likelihood estimate and growth effect term. The nucleation rates were calculated by MFPT and SP methods and are within 5%; the critical nucleus size estimated by the MFPT method was 50% higher, than values obtained through other more rigorous but computationally expensive estimates. These methods can also be extended to the analysis of other clathrate hydrates.« less

  18. Microwave heating device for internal heating convection experiments, applied to Earth's mantle dynamics

    SciTech Connect (OSTI)

    Surducan, E.; Surducan, V.; Neamtu, C.; Limare, A.; Di Giuseppe, E.

    2014-12-15

    We report the design, construction, and performances of a microwave (MW) heating device for laboratory experiments with non-contact, homogeneous internal heating. The device generates MW radiation at 2.47 GHz from a commercial magnetron supplied by a pulsed current inverter using proprietary, feedback based command and control hardware and software. Specially designed MW launchers direct the MW radiation into the sample through a MW homogenizer, devised to even the MW power distribution into the sample's volume. An adjustable MW circuit adapts the MW generator to the load (i.e., the sample) placed in the experiment chamber. Dedicated heatsinks maintain the MW circuits at constant temperature throughout the experiment. Openings for laser scanning for image acquisition with a CCD camera and for the cooling circuits are protected by special MW filters. The performances of the device are analyzed in terms of heating uniformity, long term output power stability, and load matching. The device is used for small scale experiments simulating Earth's mantle convection. The 30 Ś 30 Ś 5 cm{sup 3} convection tank is filled with a water?based viscous fluid. A uniform and constant temperature is maintained at the upper boundary by an aluminum heat exchanger and adiabatic conditions apply at the tank base. We characterize the geometry of the convective regime as well as its bulk thermal evolution by measuring the velocity field by Particle Image Velocimetry and the temperature field by using Thermochromic Liquid Crystals.

  19. Simple Analysis of Flame Dynamics via Flexible Convected Disturbance...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Simple Analysis of Flame Dynamics via Flexible Convected Disturbance ... OSTI Identifier: 1160232 Report Number(s): A-NETL-PUB-020 Journal ID: ISSN 0748-4658 ...

  20. Quality analysis of the solution produced by dissection algorithms applied to the traveling salesman problem

    SciTech Connect (OSTI)

    Cesari, G.

    1994-12-31

    The aim of this paper is to analyze experimentally the quality of the solution obtained with dissection algorithms applied to the geometric Traveling Salesman Problem. Starting from Karp`s results. We apply a divide and conquer strategy, first dividing the plane into subregions where we calculate optimal subtours and then merging these subtours to obtain the final tour. The analysis is restricted to problem instances where points are uniformly distributed in the unit square. For relatively small sets of cities we analyze the quality of the solution by calculating the length of the optimal tour and by comparing it with our approximate solution. When the problem instance is too large we perform an asymptotical analysis estimating the length of the optimal tour. We apply the same dissection strategy also to classical heuristics by calculating approximate subtours and by comparing the results with the average quality of the heuristic. Our main result is the estimate of the rate of convergence of the approximate solution to the optimal solution as a function of the number of dissection steps, of the criterion used for the plane division and of the quality of the subtours. We have implemented our programs on MUSIC (MUlti Signal processor system with Intelligent Communication), a Single-Program-Multiple-Data parallel computer with distributed memory developed at the ETH Zurich.

  1. Integrated dynamic modeling and management system mission analysis

    SciTech Connect (OSTI)

    Lee, A.K.

    1994-12-28

    This document summarizes the mission analysis performed on the Integrated Dynamic Modeling and Management System (IDMMS). The IDMMS will be developed to provide the modeling and analysis capability required to understand the TWRS system behavior in terms of the identified TWRS performance measures. The IDMMS will be used to demonstrate in a verified and validated manner the satisfactory performance of the TWRS system configuration and assurance that the requirements have been satisfied.

  2. Gas Diffusion in a Porous Organic Cage: Analysis of Dynamic Pore...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Diffusion in a Porous Organic Cage: Analysis of Dynamic Pore Connectivity Using Molecular Dynamics Simulations Previous Next List Daniel Holden, Kim E. Jelfs, Abbie Trewin, David...

  3. Analysis Of Dynamic Dent Resistance Of Auto Body Panel

    SciTech Connect (OSTI)

    Deolgaonkar, S. S.; Nandedkar, V. M.

    2007-04-07

    In automotive industry there is increasing demand for higher quality exterior panels, better functional properties and lower weight. The demand for weight reduction has led to thinner sheets, greater use of high strength steels and a change from steel to aluminum grades. This thickness reduction, which causes decrease in the dent resistance, promoted examination of the dent resistance against static and dynamic concentrated loads. This paper describes an investigation of the suitability of explicit dynamic FE analysis as a mean to determine the dynamic dent properties of the panel. This investigation is carried out on the body panel of utility vehicle and covers two parts, in first experimental analysis is carried out on developed test rig, which is interfaced with the computer. This test rig measures deflection with accuracy of .001mm. The experimental results are then compared with the simulation results, which is the second part. Simulation is carried with non-linear transient dynamic explicit analysis using Ansys -Ls Dyna. The experimental results show great accuracy with simulation results. The effect of change in thickness and geometry of the existing fender is then studied with help of simulation technique. By considering the best possible option overall weight of fender is reduced by 7.07 % by keeping the dent resistance of the panel constant.

  4. Applying high resolution SyXRD analysis on sulfate attacked concrete field samples

    SciTech Connect (OSTI)

    Stroh, J.; Schlegel, M.-C.; Irassar, E.F.; Meng, B.; Emmerling, F.

    2014-12-15

    High resolution synchrotron X-ray diffraction (SyXRD) was applied for a microstructural profile analysis of concrete deterioration after sulfate attack. The cement matrices consist of ordinary Portland cement and different amounts of supplementary cementitious materials, such as fly ash, natural pozzolana and granulated blast furnace slag. The changes of the phase composition were determined along the direction of sulfate ingress. This approach allows the identification of reaction fronts and zones of different phase compositions and conclusions about the mechanisms of sulfate attack. Two reaction fronts were localized in the initial 4 mm from the sample surface. The mechanism of deterioration caused by the exposition in the sulfate-bearing soil is discussed. SyXRD is shown to be a reliable method for investigation of cementitious materials with aggregates embedded in natural environments.

  5. RAVEN, a New Software for Dynamic Risk Analysis

    SciTech Connect (OSTI)

    Cristian Rabiti; Andrea Alfonsi; Joshua Cogliati; Diego Mandelli; Robert Kinoshita

    2014-06-01

    RAVEN is a generic software driver to perform parametric and probabilistic analysis of code simulating complex systems. Initially developed to provide dynamic risk analysis capabilities to the RELAP-7 code [1] is currently being generalized with the addition of Application Programming Interfaces (APIs). These interfaces are used to extend RAVEN capabilities to any software as long as all the parameters that need to be perturbed are accessible by inputs files or directly via python interfaces. RAVEN is capable to investigate the system response probing the input space using Monte Carlo, grid strategies, or Latin Hyper Cube schemes, but its strength is its focus toward system feature discovery like limit surfaces separating regions of the input space leading to system failure using dynamic supervised learning techniques. The paper will present an overview of the software capabilities and their implementation schemes followed by same application examples.

  6. NREL: Dynamic Maps, GIS Data, and Analysis Tools Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Dynamic Maps, Geographic Information System (GIS) Data and Analysis Tools website provides maps, data and tools for renewable energy resources that determine which energy technologies are viable solutions in domestic and international regions. MapSearch - While this site contains detailed information and quality data, if you want to search for the latest and most up-to-date maps created by NREL, please visit our MapSearch: http://www.nrel.gov/gis/mapsearch/ Renewable Energy Technical

  7. WEC and Support Bridge Control Structural Dynamic Interaction Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Support Bridge Control Structural Dynamic Interaction Analysis David Wilson 1 , Giorgio Bacelli 1 , Ryan G. Coe 1 , Rush D. Robinett III 2 , Gareth Thomas 3 , Daniel Linehan 3 , David Newborn 4 , Miguel Quintero 4 1 Sandia National Laboratories 2 Michigan Technological University 3 ATA Engineering, Inc. 4 Naval Surface Warfare Center Carderock Division ABSTRACT Experimental testing is a critical step in the development of models describing the behavior of a system. The objective of the

  8. Dynamic extension of the Simulation Problem Analysis Kernel (SPANK)

    SciTech Connect (OSTI)

    Sowell, E.F. . Dept. of Computer Science); Buhl, W.F. )

    1988-07-15

    The Simulation Problem Analysis Kernel (SPANK) is an object-oriented simulation environment for general simulation purposes. Among its unique features is use of the directed graph as the primary data structure, rather than the matrix. This allows straightforward use of graph algorithms for matching variables and equations, and reducing the problem graph for efficient numerical solution. The original prototype implementation demonstrated the principles for systems of algebraic equations, allowing simulation of steady-state, nonlinear systems (Sowell 1986). This paper describes how the same principles can be extended to include dynamic objects, allowing simulation of general dynamic systems. The theory is developed and an implementation is described. An example is taken from the field of building energy system simulation. 2 refs., 9 figs.

  9. Dynamic proteome analysis of Cyanothece sp. ATCC 51142 under constant light

    SciTech Connect (OSTI)

    Aryal, Uma K.; Stockel, Jana; Welsh, Eric A.; Gritsenko, Marina A.; Nicora, Carrie D.; Koppenaal, David W.; Smith, Richard D.; Pakrasi, Himadri B.; Jacobs, Jon M.

    2012-02-03

    Understanding the dynamic nature of protein abundances provides insights into protein turnover not readily apparent from conventional, static mass spectrometry measurements. This level of data is particularly informative when surveying protein abundances in biological systems subjected to large perturbations or alterations in environment such as cyanobacteria. Our current analysis expands upon conventional proteomic approaches in cyanobacteria by measuring dynamic changes of the proteome using a 13C15N-L-leucine metabolic labeling in Cyanothece ATCC51142. Metabolically labeled Cyanothece ATCC51142 cells grown under nitrogen sufficient conditions in continuous light were monitored longitudinally for isotope incorporation over a 48 h period, revealing 422 proteins with dynamic changes in abundances. In particular, proteins involved in carbon fixation, pentose phosphate pathway, cellular protection, redox regulation, protein folding, assembly and degradation showed higher levels of isotope incorporation suggesting that these biochemical pathways are important for growth under non-diazotrophic conditions. Calculation of relative isotope abundances (RIA) values allowed to measure actual active protein synthesis over time for different biochemical pathways under non-diazotrophic conditions. Overall results demonstrated the utility of 'non-steady state' pulsed metabolic labeling for systems-wide dynamic quantification of the proteome in Cyanothece ATCC51142 that can also be applied to other cyanobacteria.

  10. Analysis methods for fast impurity ion dynamics data

    SciTech Connect (OSTI)

    Den Hartog, D.J.; Almagri, A.F.; Prager, S.C.; Fonck, R.J.

    1994-08-01

    A high resolution spectrometer has been developed and used on the MST reversed-field pinch (RFP) to measure passively impurity ion temperatures and flow velocities with 10 {mu}s temporal resolution. Such measurements of MHD-scale fluctuations are particularly relevant in the RFP because the flow velocity fluctuation induced transport of current (the ``MHD dynamo``) may produce the magnetic field reversal characteristic of an RFP. This instrument will also be used to measure rapid changes in the equilibrium flow velocity, such as occur during locking and H-mode transition. The precision of measurements made to date is <0.6 km/s. The authors are developing accurate analysis techniques appropriate to the reduction of this fast ion dynamics data. Moment analysis and curve-fitting routines have been evaluated for noise sensitivity and robustness. Also presented is an analysis method which correctly separates the flux-surface average of the correlated fluctuations in u and B from the fluctuations due to rigid shifts of the plasma column.

  11. Analysis of electron dynamics in non-ideal Penning traps

    SciTech Connect (OSTI)

    Coppa, G.; Mulas, R.; D'Angola, A.

    2012-06-15

    Penning traps that are used for particular applications, such as in ion pump technology, Larmor, bouncing, and diocotron frequencies, can be of the same order of magnitude. The paper deals with the dynamics of electrons confined in such devices starting from the study of the properties of the trajectories. In cases of interest, in which electron-neutral collision frequency is much smaller with respect to the characteristic frequencies of the motion, suitable time averages of the trajectories are introduced in order to simplify the analysis of the problem. In the work, time averages have been calculated in a simple way by using an approximate r-z decoupling of the effective potential. Results obtained with the method are presented and discussed in both linear and nonlinear regimes.

  12. State machine analysis of sensor data from dynamic processes

    DOE Patents [OSTI]

    Cook, William R.; Brabson, John M.; Deland, Sharon M.

    2003-12-23

    A state machine model analyzes sensor data from dynamic processes at a facility to identify the actual processes that were performed at the facility during a period of interest for the purpose of remote facility inspection. An inspector can further input the expected operations into the state machine model and compare the expected, or declared, processes to the actual processes to identify undeclared processes at the facility. The state machine analysis enables the generation of knowledge about the state of the facility at all levels, from location of physical objects to complex operational concepts. Therefore, the state machine method and apparatus may benefit any agency or business with sensored facilities that stores or manipulates expensive, dangerous, or controlled materials or information.

  13. Dynamic Analysis of Hybrid Energy Systems under Flexible Operation and Variable Renewable Generation -- Part I: Dynamic Performance Analysis and Part II: Dynamic Cost

    SciTech Connect (OSTI)

    Humberto E. Garcia; Amit Mohanty; Wen-Chiao Lin; Robert S. Cherry

    2013-04-01

    Dynamic analysis of hybrid energy systems (HES) under flexible operation and variable renewable generation is considered in order to better understand various challenges and opportunities associated with the high system variability arising from the integration of renewable energy into the power grid. Unique consequences are addressed by devising advanced HES solutions in which multiple forms of energy commodities, such as electricity and chemical products, may be exchanged. Dynamic models of various unit operations are developed and integrated within two different HES options. One HES option, termed traditional, produces electricity only and consists of a primary heat generator (PHG) (e.g., a small modular reactor), a steam turbine generator, a wind farm, and a battery storage. The other HES option, termed advanced, includes not only the components present in the traditional option but also a chemical plant complex to repurpose excess energy for non-electricity services, such as for the production of chemical goods (e.g., transportation fuel). In either case, a given HES is connected to the power grid at a point of common coupling and requested to deliver a certain electricity generation profile as dictated by a regional power grid operator based on a predicted demand curve. Dynamic analysis of these highly-coupled HES are performed to identify their key dynamical properties and limitations and to prescribe solutions for best managing and mitigating the high variability introduced from incorporating renewable energy into the energy mix. A comparative dynamic cost analysis is also conducted to determine best HES options. The cost function includes a set of metrics for computing fixed costs, such as fixed operations and maintenance (O&M) and overnight capital costs, and also variable operational costs, such as cost of variability, variable O&M cost, and cost of environmental impact, together with revenues. Assuming different options for implementing PHG (e

  14. Vehicle Technologies Office Merit Review 2016: Applied Analysis of Connected and Automated Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory (ANL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Analysis

  15. Microsoft PowerPoint - Snippet 6.2 Applied Predictive Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    project analysis. These reports are also explained in detail in the OAPM Snippets Training Library, Group 5. For the purposes of this Snippet, we will focus on just a few of these ...

  16. Integrated dynamic landscape analysis and modeling system (IDLAMS) : installation manual.

    SciTech Connect (OSTI)

    Li, Z.; Majerus, K. A.; Sundell, R. C.; Sydelko, P. J.; Vogt, M. C.

    1999-02-24

    The Integrated Dynamic Landscape Analysis and Modeling System (IDLAMS) is a prototype, integrated land management technology developed through a joint effort between Argonne National Laboratory (ANL) and the US Army Corps of Engineers Construction Engineering Research Laboratories (USACERL). Dr. Ronald C. Sundell, Ms. Pamela J. Sydelko, and Ms. Kimberly A. Majerus were the principal investigators (PIs) for this project. Dr. Zhian Li was the primary software developer. Dr. Jeffrey M. Keisler, Mr. Christopher M. Klaus, and Mr. Michael C. Vogt developed the decision analysis component of this project. It was developed with funding support from the Strategic Environmental Research and Development Program (SERDP), a land/environmental stewardship research program with participation from the US Department of Defense (DoD), the US Department of Energy (DOE), and the US Environmental Protection Agency (EPA). IDLAMS predicts land conditions (e.g., vegetation, wildlife habitats, and erosion status) by simulating changes in military land ecosystems for given training intensities and land management practices. It can be used by military land managers to help predict the future ecological condition for a given land use based on land management scenarios of various levels of training intensity. It also can be used as a tool to help land managers compare different land management practices and further determine a set of land management activities and prescriptions that best suit the needs of a specific military installation.

  17. Comprehensive Mechanisms for Combustion Chemistry: An Experimental and Numerical Study with Emphasis on Applied Sensitivity Analysis

    SciTech Connect (OSTI)

    Dryer, Frederick L.

    2009-04-10

    This project was an integrated experimental/numerical effort to study pyrolysis and oxidation reactions and mechanisms for small-molecule hydrocarbon structures under conditions representative of combustion environments. The experimental aspects of the work were conducted in large-diameter flow reactors, at 0.3 to 18 atm pressure, 500 to 1100 K temperature, and 10-2 to 2 seconds reaction time. Experiments were also conducted to determine reference laminar flame speeds using a premixed laminar stagnation flame experiment and particle image velocimetry, as well as pressurized bomb experiments. Flow reactor data for oxidation experiments include: (1)adiabatic/isothermal species time-histories of a reaction under fixed initial pressure, temperature, and composition; to determine the species present after a fixed reaction time, initial pressure; (2)species distributions with varying initial reaction temperature; (3)perturbations of a well-defined reaction systems (e.g. CO/H2/O2 or H2/O2)by the addition of small amounts of an additive species. Radical scavenging techniques are applied to determine unimolecular decomposition rates from pyrolysis experiments. Laminar flame speed measurements are determined as a function of equivalence ratio, dilution, and unburned gas temperature at 1 atm pressure. Hierarchical, comprehensive mechanistic construction methods were applied to develop detailed kinetic mechanisms which describe the measurements and literature kinetic data. Modeling using well-defined and validated mechanisms for the CO/H2/Oxidant systems and perturbations of oxidation experiments by small amounts of additives were also used to derive absolute reaction rates and to investigate the compatibility of published elementary kinetic and thermochemical information. Numerical tools were developed and applied to assess the importance of individual elementary reactions to the predictive performance of the

  18. Analysis of Petroleum Technology Advances Through Applied Research by Independent Oil Producers

    SciTech Connect (OSTI)

    Brashear, Jerry P.; North, Walter B.; Thomas Charles P.; Becker, Alan B.; Faulder, David D.

    2000-01-12

    Petroleum Technology Advances Through Applied Research by Independent Oil Producers is a program of the National Oil Research Program, U.S. Department of Energy. Between 1995 and 1998, the program competitively selected and cost-shared twenty-two projects with small producers. The purpose was to involve small independent producers in testing technologies of interest to them that would advance (directly or indirectly) one or more of four national program objectives: (1) Extend the productive life of reservoirs; (2) Increase production and/or reserves; (3) Improve environmental performance; and (4) Broaden the exchange of technology information.

  19. Analysis of the influence of tool dynamics in diamond turning

    SciTech Connect (OSTI)

    Fawcett, S.C.; Luttrell, D.E.; Keltie, R.F.

    1988-12-01

    This report describes the progress in defining the role of machine and interface dynamics on the surface finish in diamond turning. It contains a review of literature from conventional and diamond machining processes relating tool dynamics, material interactions and tool wear to surface finish. Data from experimental measurements of tool/work piece interface dynamics are presented as well as machine dynamics for the DTM at the Center.

  20. Residual and applied stress analysis of an alloy 600 row 1 U-bend: Final report

    SciTech Connect (OSTI)

    Ruud, C.O.

    1987-09-01

    Residual stresses in Inconel alloy 600, row 1, U-bend tubes, used in heat exchanges in nuclear reactors, were studied using an advanced x-ray diffraction instrument. Both axial and circumferential (hoop) stresses on the extrados, intrados, and flanks on the O.D. surface of several U-bends were mapped. The I.D. surface residual stresses at the extrados of the U-bend were mapped on one tube and subsurface stress measurements were made on the I.D. and O.D. surfaces of that tube. Service loads were simulated on one tube to ascertain combined effect of residual and applied stresses. Data from wall thickness and profilometry measurements were also correlated with residual stress measurements. 21 refs., 42 figs.

  1. Multi-attribute criteria applied to electric generation energy system analysis LDRD.

    SciTech Connect (OSTI)

    Kuswa, Glenn W.; Tsao, Jeffrey Yeenien; Drennen, Thomas E.; Zuffranieri, Jason V.; Paananen, Orman Henrie; Jones, Scott A.; Ortner, Juergen G.; Brewer, Jeffrey D.; Valdez, Maximo M.

    2005-10-01

    This report began with a Laboratory-Directed Research and Development (LDRD) project to improve Sandia National Laboratories multidisciplinary capabilities in energy systems analysis. The aim is to understand how various electricity generating options can best serve needs in the United States. The initial product is documented in a series of white papers that span a broad range of topics, including the successes and failures of past modeling studies, sustainability, oil dependence, energy security, and nuclear power. Summaries of these projects are included here. These projects have provided a background and discussion framework for the Energy Systems Analysis LDRD team to carry out an inter-comparison of many of the commonly available electric power sources in present use, comparisons of those options, and efforts needed to realize progress towards those options. A computer aid has been developed to compare various options based on cost and other attributes such as technological, social, and policy constraints. The Energy Systems Analysis team has developed a multi-criteria framework that will allow comparison of energy options with a set of metrics that can be used across all technologies. This report discusses several evaluation techniques and introduces the set of criteria developed for this LDRD.

  2. Leakage risk assessment of the In Salah CO2 storage project: Applying the Certification Framework in a dynamic context.

    SciTech Connect (OSTI)

    Oldenburg, C.M.; Jordan, P.D.; Nicot, J.-P.; Mazzoldi, A.; Gupta, A.K.; Bryant, S.L.

    2010-08-01

    The Certification Framework (CF) is a simple risk assessment approach for evaluating CO{sub 2} and brine leakage risk at geologic carbon sequestration (GCS) sites. In the In Salah CO{sub 2} storage project assessed here, five wells at Krechba produce natural gas from the Carboniferous C10.2 reservoir with 1.7-2% CO{sub 2} that is delivered to the Krechba gas processing plant, which also receives high-CO{sub 2} natural gas ({approx}10% by mole fraction) from additional deeper gas reservoirs and fields to the south. The gas processing plant strips CO{sub 2} from the natural gas that is then injected through three long horizontal wells into the water leg of the Carboniferous gas reservoir at a depth of approximately 1,800 m. This injection process has been going on successfully since 2004. The stored CO{sub 2} has been monitored over the last five years by a Joint Industry Project (JIP) - a collaboration of BP, Sonatrach, and Statoil with co-funding from US DOE and EU DG Research. Over the years the JIP has carried out extensive analyses of the Krechba system including two risk assessment efforts, one before injection started, and one carried out by URS Corporation in September 2008. The long history of injection at Krechba, and the accompanying characterization, modeling, and performance data provide a unique opportunity to test and evaluate risk assessment approaches. We apply the CF to the In Salah CO{sub 2} storage project at two different stages in the state of knowledge of the project: (1) at the pre-injection stage, using data available just prior to injection around mid-2004; and (2) after four years of injection (September 2008) to be comparable to the other risk assessments. The main risk drivers for the project are CO{sub 2} leakage into potable groundwater and into the natural gas cap. Both well leakage and fault/fracture leakage are likely under some conditions, but overall the risk is low due to ongoing mitigation and monitoring activities. Results of

  3. Hybrid Technique in SCALE for Fission Source Convergence Applied to Used Nuclear Fuel Analysis

    SciTech Connect (OSTI)

    Ibrahim, Ahmad M; Peplow, Douglas E.; Bekar, Kursat B; Celik, Cihangir; Scaglione, John M; Ilas, Dan; Wagner, John C

    2013-01-01

    The new hybrid SOURCE ConveRgence accelERator (SOURCERER) sequence in SCALE deterministically computes a fission distribution and uses it as the starting source in a Monte Carlo eigenvalue criticality calculation. In addition to taking the guesswork out of defining an appropriate, problem-dependent starting source, the more accurate starting source provided by the deterministic calculation decreases the probability of producing inaccurate tally estimates associated with undersampling problems caused by inadequate source convergence. Furthermore, SOURCERER can increase the efficiency of the overall simulation by decreasing the number of cycles that has to be skipped before the keff accumulation. SOURCERER was applied to a representative example for a used nuclear fuel cask utilized at the Maine Yankee storage site {Scaglione and Ilas}. Because of the time constraints of the Used Fuel Research, Development, and Demonstration project, it was found that using more than 30,000 neutrons per cycle will lead to inaccurate Monte Carlo calculation of keff due to the inevitable decrease in the number of skipped and active cycles used with this problem. For a fixed uncertainty objective and by using 30,000 neutron per cycle, the use of SOURCERER increased the efficiency of the keff calculation by 60%compared to a Monte Carlo calculation that used a starting source distributed uniformly in fissionable regions, even with the inclusion of the extra computational time required by the deterministic calculation. Additionally, the use of SOURCERER increased the reliability of keff calculation using any number of skipped cycles below 350.

  4. Energy analysis of facade-integrated photovoltaic systems applied to UAE commercial buildings

    SciTech Connect (OSTI)

    Radhi, Hassan

    2010-12-15

    Developments in the design and manufacture of photovoltaic cells have recently been a growing concern in the UAE. At present, the embodied energy pay-back time (EPBT) is the criterion used for comparing the viability of such technology against other forms. However, the impact of PV technology on the thermal performance of buildings is not considered at the time of EPBT estimation. If additional energy savings gained over the PV system life are also included, the total EPBT could be shorter. This paper explores the variation of the total energy of building integrated photovoltaic systems (BiPV) as a wall cladding system applied to the UAE commercial sector and shows that the ratio between PV output and saving in energy due to PV panels is within the range of 1:3-1:4. The result indicates that for the southern and western facades in the UAE, the embodied energy pay-back time for photovoltaic system is within the range of 12-13 years. When reductions in operational energy are considered, the pay-back time is reduced to 3.0-3.2 years. This study comes to the conclusion that the reduction in operational energy due to PV panels represents an important factor in the estimation of EPBT. (author)

  5. Multivariate calibration techniques applied to NIRA (near infrared reflectance analysis) and FTIR (Fourier transform infrared) data

    SciTech Connect (OSTI)

    Long, C.L.

    1991-02-01

    Multivariate calibration techniques can reduce the time required for routine testing and can provide new methods of analysis. Multivariate calibration is commonly used with near infrared reflectance analysis (NIRA) and Fourier transform infrared (FTIR) spectroscopy. Two feasibility studies were performed to determine the capability of NIRA, using multivariate calibration techniques, to perform analyses on the types of samples that are routinely analyzed at this laboratory. The first study performed included a variety of samples and indicated that NIRA would be well-suited to perform analyses on selected materials properties such as water content and hydroxyl number on polyol samples, epoxy content on epoxy resins, water content of desiccants, and the amine values of various amine cure agents. A second study was performed to assess the capability of NIRA to perform quantitative analysis of hydroxyl numbers and water contents of hydroxyl-containing materials. Hydroxyl number and water content were selected for determination because these tests are frequently run on polyol materials and the hydroxyl number determination is time consuming. This study pointed out the necessity of obtaining calibration standards identical to the samples being analyzed for each type of polyol or other material being analyzed. Multivariate calibration techniques are frequently used with FTIR data to determine the composition of a large variety of complex mixtures. A literature search indicated many applications of multivariate calibration to FTIR data. Areas identified where quantitation by FTIR would provide a new capability are quantitation of components in epoxy and silicone resins, polychlorinated biphenyls (PCBs) in oils, and additives to polymers. 19 refs., 15 figs., 6 tabs.

  6. Dynamic Mechanical Thermal Analysis of Virgin TR-55 Silicone...

    Office of Scientific and Technical Information (OSTI)

    limit of the linear viscoelastic region of the material based on initial dynamic strain sweep tests. Master curves of Gprime and Gdoubleprime as a function of frequency ...

  7. A Method for Selecting Software for Dynamic Event Analysis II: the Taylor Anvil and Dynamic Brazilian Tests

    SciTech Connect (OSTI)

    W. D. Richins; J. M. Lacy; T. K. Larson; S. R. Novascone

    2008-05-01

    New nuclear power reactor designs will require resistance to a variety of possible malevolent attacks as well as traditional dynamic accident scenarios. The design/analysis team may be faced with a broad range of phenomena including air and ground blasts, high-velocity penetrators or shaped charges, and vehicle or aircraft impacts. With a host of software tools available to address these high-energy events, the analysis team must evaluate and select the software most appropriate for their particular set of problems. The accuracy of the selected software should then be validated with respect to the phenomena governing the interaction of the threat and structure. Several software codes are available for the study of blast, impact, and other shock phenomena. At the Idaho National Laboratory (INL), a study is underway to investigate the comparative characteristics of a group of shock and high-strain rate physics codes including ABAQUS, LS-DYNA, CTH, ALEGRA, and ALE-3D. In part I of this report, a series of five benchmark problems to exercise some important capabilities of the subject software was identified. The benchmark problems selected are a Taylor cylinder test, a split Hopkinson pressure bar test, a free air blast, the dynamic splitting tension (Brazilian) test, and projectile penetration of a concrete slab. Part II-- this paper-- reports the results of two of the benchmark problems: the Taylor cylinder and the dynamic Brazilian test. The Taylor cylinder test is a method to determine the dynamic yield properties of materials. The test specimen is a right circular cylinder which is impacted against a theoretically rigid target. The cylinder deforms upon impact, with the final shape depending upon the dynamic yield stress, in turn a function of strain and strain rate. The splitting tension test, or Brazilian test, is a method to measure the tensile strength of concrete using a cylindrical specimen. The specimen is loaded diametrically in compression, producing a

  8. Code System for Static and Dynamic Piping System Analysis.

    Energy Science and Technology Software Center (OSTI)

    2000-07-07

    EPIPE is used for design or design evaluation of complex large piping systems. The piping systems can be viewed as a network of straight pipe elements (or tangents) and curved elements (pipe bends) interconnected at joints (or nodes) with intermediate supports and anchors. The system may be subject to static loads such as thermal, dead weight, internal pressure, or dynamic loads such as earthquake motions and flow-induced vibrations, or any combination of these.

  9. NREL: Dynamic Maps, GIS Data, and Analysis Tools - Renewable...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy Technical Potentials: A GIS-Based Analysis (PDF 2.7 MB) represents the ... Printable Version NREL GIS Home About NREL GIS Renewable Energy Technical Potential ...

  10. NREL: Dynamic Maps, GIS Data, and Analysis Tools - Federal Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Federal Energy Management Program (FEMP) teamed with Geospatial Analysis staff at NREL ... Data Resources Data Visualization & Geospatial Tools Geospatial Data Science Team ...

  11. Dynamic

    Office of Legacy Management (LM)

    Dynamic , and Static , Res.ponse of the Government Oil Shale Mine at ' , . , Rifle, ... AND STATIC RESPONSE 'OF THE GOVERNMENT OIL SHALE MINE A T RIFLE, COLORADO, T O THE, ...

  12. Dynamic Systems Analysis Report for Nuclear Fuel Recycle

    SciTech Connect (OSTI)

    Brent Dixon; Sonny Kim; David Shropshire; Steven Piet; Gretchen Matthern; Bill Halsey

    2008-12-01

    This report examines the time-dependent dynamics of transitioning from the current United States (U.S.) nuclear fuel cycle where used nuclear fuel is disposed in a repository to a closed fuel cycle where the used fuel is recycled and only fission products and waste are disposed. The report is intended to help inform policy developers, decision makers, and program managers of system-level options and constraints as they guide the formulation and implementation of advanced fuel cycle development and demonstration efforts and move toward deployment of nuclear fuel recycling infrastructure.

  13. Identification and quantification analysis of nonlinear dynamics properties of combustion instability in a diesel engine

    SciTech Connect (OSTI)

    Yang, Li-Ping Ding, Shun-Liang; Song, En-Zhe; Ma, Xiu-Zhen; Litak, Grzegorz

    2015-01-15

    The cycling combustion instabilities in a diesel engine have been analyzed based on chaos theory. The objective was to investigate the dynamical characteristics of combustion in diesel engine. In this study, experiments were performed under the entire operating range of a diesel engine (the engine speed was changed from 600 to 1400 rpm and the engine load rate was from 0% to 100%), and acquired real-time series of in-cylinder combustion pressure using a piezoelectric transducer installed on the cylinder head. Several methods were applied to identify and quantitatively analyze the combustion process complexity in the diesel engine including delay-coordinate embedding, recurrence plot (RP), Recurrence Quantification Analysis, correlation dimension (CD), and the largest Lyapunov exponent (LLE) estimation. The results show that the combustion process exhibits some determinism. If LLE is positive, then the combustion system has a fractal dimension and CD is no more than 1.6 and within the diesel engine operating range. We have concluded that the combustion system of diesel engine is a low-dimensional chaotic system and the maximum values of CD and LLE occur at the lowest engine speed and load. This means that combustion system is more complex and sensitive to initial conditions and that poor combustion quality leads to the decrease of fuel economy and the increase of exhaust emissions.

  14. Dynamic analysis of the urban-based low-carbon policy using system dynamics: Focused on housing and green space

    SciTech Connect (OSTI)

    Hong, Taehoon; Kim, Jimin Jeong, Kwangbok; Koo, Choongwan

    2015-02-09

    To systematically manage the energy consumption of existing buildings, the government has to enforce greenhouse gas reduction policies. However, most of the policies are not properly executed because they do not consider various factors from the urban level perspective. Therefore, this study aimed to conduct a dynamic analysis of an urban-based low-carbon policy using system dynamics, with a specific focus on housing and green space. This study was conducted in the following steps: (i) establishing the variables of urban-based greenhouse gases (GHGs) emissions; (ii) creating a stock/flow diagram of urban-based GHGs emissions; (iii) conducting an information analysis using the system dynamics; and (iv) proposing the urban-based low-carbon policy. If a combined energy policy that uses the housing sector (30%) and the green space sector (30%) at the same time is implemented, 2020 CO{sub 2} emissions will be 7.23 million tons (i.e., 30.48% below 2020 business-as-usual), achieving the national carbon emissions reduction target (26.9%). The results of this study could contribute to managing and improving the fundamentals of the urban-based low-carbon policies to reduce greenhouse gas emissions.

  15. NREL: Dynamic Maps, GIS Data, and Analysis Tools - Geothermal Prospector

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Prospector Start exploring U.S. geothermal resources with an easy-to-use map by selecting data layers that are NGDS compatible. Bookmark and Share Geothermal Prospector The Geothermal Prospector mapping tool provides an excellent data resource for visual exploration of geothermal resources using the tools and datasets required to produce and disseminate both exploration gap analysis and Enhanced Geothermal System (EGS) planning and analysis. In 2010, NREL developed Geothermal

  16. Electrical Power Grid Delivery Dynamic Analysis: Using Prime Mover Engines to Balance Dynamic Wind Turbine Output

    SciTech Connect (OSTI)

    Diana K. Grauer; Michael E. Reed

    2011-11-01

    This paper presents an investigation into integrated wind + combustion engine high penetration electrical generation systems. Renewable generation systems are now a reality of electrical transmission. Unfortunately, many of these renewable energy supplies are stochastic and highly dynamic. Conversely, the existing national grid has been designed for steady state operation. The research team has developed an algorithm to investigate the feasibility and relative capability of a reciprocating internal combustion engine to directly integrate with wind generation in a tightly coupled Hybrid Energy System. Utilizing the Idaho National Laboratory developed Phoenix Model Integration Platform, the research team has coupled demand data with wind turbine generation data and the Aspen Custom Modeler reciprocating engine electrical generator model to investigate the capability of reciprocating engine electrical generation to balance stochastic renewable energy.

  17. Response margins of the dynamic analysis of piping systems

    SciTech Connect (OSTI)

    Johnson, J.J.; Benda, B.J.; Chuang, T.Y.; Smith, P.D.

    1984-04-01

    This report is organized as follows: Section 2 describes the three piping systems of the Zion nuclear power plant which formed the basis of the present study. The auxiliary feedwater (AFW) piping from steam generator to containment, the residual heat removal (RHR) and safety injection piping in the auxiliary building, and the reactor coolant loops (RCL) including a portion of the branch lines were analyzed. Section 3 describes the analysis methods and the analyses performed. Section 4 presents the numerical results; the principal results presented as comparisons of response calculated by best estimate time history analysis methods vs. the SRP response spectrum technique. Section 5 draws conclusions from the results. Appendix A contains a brief description of the mathematical models that defined the structures containing the three piping systems. Response from these models provided input to the piping models. Appendix B provides a detailed derivation of the pseudostatic mode approach to the multisupport time history analysis method used in this study.

  18. Dynamic simulation of kinematic Stirling engines: Coupled and decoupled analysis

    SciTech Connect (OSTI)

    Fischer, K.; Lemrani, H.; Stouffs, P.

    1995-12-31

    A coupled analysis modelling method of Stirling engines is presented. The main feature of this modelling method is the use of a software package combining the capabilities of a pre-/post-processor with a differential algebraic equations solver. As a result, modelling is merely a matter of linking appropriate objects from a model library and the outcoming tool is very flexible and powerful. Some simulation results are presented and compared with those obtained from a decoupled analysis. It clearly appears that the main imperfection of the model does not come from the modelling process itself but from their incomplete knowledge of the physics behind the Stirling engine operation.

  19. Cluster Analysis of Cloud Regimes and Characteristic Dynamics of Mid-Latitude Synoptic Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cluster Analysis of Cloud Regimes and Characteristic Dynamics of Mid-Latitude Synoptic Systems N. D. Gordon and J. R. Norris Scripps Institution of Oceanography University of California San Diego, La Jolla, California C. P. Weaver Center for Environmental Prediction Rutgers University New Brunswick, New Jersey S. A. Klein Geophysical Fluid Dynamics Laboratory Princeton University Princeton, New Jersey Introduction This study uses a clustering algorithm to group meteorological regimes by cloud

  20. Analysis of forward and inverse problems in chemical dynamics and spectroscopy

    SciTech Connect (OSTI)

    Rabitz, H.

    1993-12-01

    The overall scope of this research concerns the development and application of forward and inverse analysis tools for problems in chemical dynamics and chemical kinetics. The chemical dynamics work is specifically associated with relating features in potential surfaces and resultant dynamical behavior. The analogous inverse research aims to provide stable algorithms for extracting potential surfaces from laboratory data. In the case of chemical kinetics, the focus is on the development of systematic means to reduce the complexity of chemical kinetic models. Recent progress in these directions is summarized below.

  1. Computational Fluid Dynamics Analysis of Flexible Duct Junction Box Design

    SciTech Connect (OSTI)

    Beach, Robert; Prahl, Duncan; Lange, Rich

    2013-12-01

    IBACOS explored the relationships between pressure and physical configurations of flexible duct junction boxes by using computational fluid dynamics (CFD) simulations to predict individual box parameters and total system pressure, thereby ensuring improved HVAC performance. Current Air Conditioning Contractors of America (ACCA) guidance (Group 11, Appendix 3, ACCA Manual D, Rutkowski 2009) allows for unconstrained variation in the number of takeoffs, box sizes, and takeoff locations. The only variables currently used in selecting an equivalent length (EL) are velocity of air in the duct and friction rate, given the first takeoff is located at least twice its diameter away from the inlet. This condition does not account for other factors impacting pressure loss across these types of fittings. For each simulation, the IBACOS team converted pressure loss within a box to an EL to compare variation in ACCA Manual D guidance to the simulated variation. IBACOS chose cases to represent flows reasonably correlating to flows typically encountered in the field and analyzed differences in total pressure due to increases in number and location of takeoffs, box dimensions, and velocity of air, and whether an entrance fitting is included. The team also calculated additional balancing losses for all cases due to discrepancies between intended outlet flows and natural flow splits created by the fitting. In certain asymmetrical cases, the balancing losses were significantly higher than symmetrical cases where the natural splits were close to the targets. Thus, IBACOS has shown additional design constraints that can ensure better system performance.

  2. Human Performance Modeling for Dynamic Human Reliability Analysis

    SciTech Connect (OSTI)

    Boring, Ronald Laurids; Joe, Jeffrey Clark; Mandelli, Diego

    2015-08-01

    Part of the U.S. Department of Energy’s (DOE’s) Light Water Reac- tor Sustainability (LWRS) Program, the Risk-Informed Safety Margin Charac- terization (RISMC) Pathway develops approaches to estimating and managing safety margins. RISMC simulations pair deterministic plant physics models with probabilistic risk models. As human interactions are an essential element of plant risk, it is necessary to integrate human actions into the RISMC risk framework. In this paper, we review simulation based and non simulation based human reliability analysis (HRA) methods. This paper summarizes the founda- tional information needed to develop a feasible approach to modeling human in- teractions in RISMC simulations.

  3. Dynamic multiplexed analysis method using ion mobility spectrometer

    DOE Patents [OSTI]

    Belov, Mikhail E [Richland, WA

    2010-05-18

    A method for multiplexed analysis using ion mobility spectrometer in which the effectiveness and efficiency of the multiplexed method is optimized by automatically adjusting rates of passage of analyte materials through an IMS drift tube during operation of the system. This automatic adjustment is performed by the IMS instrument itself after determining the appropriate levels of adjustment according to the method of the present invention. In one example, the adjustment of the rates of passage for these materials is determined by quantifying the total number of analyte molecules delivered to the ion trap in a preselected period of time, comparing this number to the charge capacity of the ion trap, selecting a gate opening sequence; and implementing the selected gate opening sequence to obtain a preselected rate of analytes within said IMS drift tube.

  4. Dynamic Analysis of Wind Turbine Planetary Gears Using an Extended Harmonic Balance Approach: Preprint

    SciTech Connect (OSTI)

    Guo, Y.; Keller, J.; Parker, R. G.

    2012-06-01

    The dynamics of wind turbine planetary gears with gravity effects are investigated using an extended harmonic balance method that extends established harmonic balance formulations to include simultaneous internal and external excitations. The extended harmonic balance method with arc-length continuation and Floquet theory is applied to a lumped-parameter planetary gear model including gravity, fluctuating mesh stiffness, bearing clearance, and nonlinear tooth contact to obtain the planetary gear dynamic response. The calculated responses compare well with time domain integrated mathematical models and experimental results. Gravity is a fundamental vibration source in wind turbine planetary gears and plays an important role in system dynamics, causing hardening effects induced by tooth wedging and bearing-raceway contacts. Bearing clearance significantly reduces the lowest resonant frequencies of translational modes. Gravity and bearing clearance together lowers the speed at which tooth wedging occurs lower than the resonant frequency.

  5. The glass transition temperature of glassy polymers using dynamic mechanical analysis

    SciTech Connect (OSTI)

    Rodriguez, E.L.

    1994-09-01

    Dynamic Mechanical Analysis (DMA) is presented for four glassy polymers. Poly(vinyl acetate), poly(vinyl chloride), poly(styrene), and poly(carbonate) were studied as a function of the heating rate using ramp and step heating programs and a constant frequency of 1 Hz. The effect of frequency on the dynamic mechanical parameters was also examined from 0.01 Hz to 10 Hz. The dynamic elastic storage modulus (E{double_prime}), the dynamic elastic loss modulus (E{double_prime}) and the tan{delta} (E{double_prime}/E{prime}) were affected by both the heating rate and the frequency. Apparent activation energies for the glass transition were also determined for the four polymers which were in the range from 98 of 194 kcal/mol.

  6. Sensitivity Analysis of Dynamic Stability Indicators in Power Systems

    SciTech Connect (OSTI)

    Nguyen, Tony B.; Pai, M. A.

    2006-01-01

    Real time stability evaluation and preventive scheduling in power systems offers many challenges in a stressed power system. Through fast simulation of contingencies in real time it is possible to extract suitable information from the data and develop reliable metrics or indices to evaluate proximity of the system to an unstable condition. In this chapter we review the recent applications of the trajectory sensitivity analysis (TSA) technique in developing such indicators. Trajectory sensitivities can be used to compute critical parameters such as clearing time of circuit breakers, tie line flow, etc. in a power system by developing suitable norms for ease of interpretation. Alternatively it can be used along with the notion of Principal Singular Surfaces (PSS) to detect mode of instability (MOI). The TSA technique has the advantage that model complexity is not a limitation and the sensitivities are computed numerically. Suitable metrics are developed from these sensitivities. In addition to computing critical parameters, the TSA technique can be extended to do preventive rescheduling. A brief discussion of other applications of TSA is included as well as future areas of research.

  7. Numerical analysis for finite-range multitype stochastic contact financial market dynamic systems

    SciTech Connect (OSTI)

    Yang, Ge; Wang, Jun; Fang, Wen

    2015-04-15

    In an attempt to reproduce and study the dynamics of financial markets, a random agent-based financial price model is developed and investigated by the finite-range multitype contact dynamic system, in which the interaction and dispersal of different types of investment attitudes in a stock market are imitated by viruses spreading. With different parameters of birth rates and finite-range, the normalized return series are simulated by Monte Carlo simulation method and numerical studied by power-law distribution analysis and autocorrelation analysis. To better understand the nonlinear dynamics of the return series, a q-order autocorrelation function and a multi-autocorrelation function are also defined in this work. The comparisons of statistical behaviors of return series from the agent-based model and the daily historical market returns of Shanghai Composite Index and Shenzhen Component Index indicate that the proposed model is a reasonable qualitative explanation for the price formation process of stock market systems.

  8. Validation of analysis methods for assessing flawed piping subjected to dynamic loading

    SciTech Connect (OSTI)

    Olson, R.J.; Wolterman, R.L.; Wilkowski, G.M.; Kot, C.A.

    1994-08-01

    Argonne National Laboratory and Battelle have jointly conducted a research program for the USNRC to evaluate the ability of current engineering analysis methods and one state-of-the-art analysis method to predict the behavior of circumferentially surface-cracked pipe system water-hammer experiment. The experimental data used in the evaluation were from the HDR Test Group E31 series conducted by the Kernforschungszentrum Karlsruhe (KfK) in Germany. The incentive for this evaluation was that simplified engineering methods, as well as newer ``state-of-the-art`` fracture analysis methods, have been typically validated only with static experimental data. Hence, these dynamic experiments were of high interest. High-rate dynamic loading can be classified as either repeating, e.g., seismic, or nonrepeating, e.g., water hammer. Development of experimental data and validation of cracked pipe analyses under seismic loading (repeating dynamic loads) are being pursued separately within the NRC`s International Piping Integrity Research Group (IPIRG) program. This report describes developmental and validation efforts to predict crack stability under water hammer loading, as well as comparisons using currently used analysis procedures. Current fracture analysis methods use the elastic stress analysis loads decoupled from the fracture mechanics analysis, while state-of-the-art methods employ nonlinear cracked-pipe time-history finite element analyses. The results showed that the current decoupled methods were conservative in their predictions, whereas the cracked pipe finite element analyses were more accurate, yet slightly conservative. The nonlinear time-history cracked-pipe finite element analyses conducted in this program were also attractive in that they were done on a small Apollo DN5500 workstation, whereas other cracked-pipe dynamic analyses conducted in Europe on the same experiments required the use of a CRAY2 supercomputer, and were less accurate.

  9. Preliminary Dynamic Siol-Structure-Interaction Analysis for the Waste Handling Building

    SciTech Connect (OSTI)

    G. Wagenblast

    2000-05-01

    The objective of this analysis package is to document a preliminary dynamic seismic evaluation of a simplified design concept of the Wade Handling Building (WHB). Preliminary seismic ground motions and soil data will be used. Loading criteria of the WHB System Design Description will be used. Detail design of structural members will not be performed.. The results of the analysis will be used to determine preliminary sizes of structural concrete and steel members and to determine whether the seismic response of the structure is within an acceptable level for future License Application design of safety related facilities. In order to complete this preliminary dynamic evaluation to meet the Site Recommendation (SR) schedule, the building configuration was ''frozen in time'' as the conceptual design existed in October 1999. Modular design features and dry or wet waste storage features were intentionally excluded from this preliminary dynamic seismic evaluation. The document was prepared in accordance with the Development Plan for the ''Preliminary/Dynamic Soil Structure Interaction Analysis for the Waste Handling Building'' (CRWMS M&O 2000b), which was completed, in accordance with AP-2.13Q, ''Technical Product Development Planning''.

  10. Piping benchmark problems. Volume 1. Dynamic analysis uniform support motion response spectrum method

    SciTech Connect (OSTI)

    Bezler, P.; Hartzman, M.; Reich, M.

    1980-08-01

    A set of benchmark problems and solutions have been developed for verifying the adequacy of computer programs used for dynamic analysis and design of nuclear piping systems by the Response Spectrum Method. The problems range from simple to complex configurations which are assumed to experience linear elastic behavior. The dynamic loading is represented by uniform support motion, assumed to be induced by seismic excitation in three spatial directions. The solutions consist of frequencies, participation factors, nodal displacement components and internal force and moment components. Solutions to associated anchor point motion static problems are not included.

  11. SU-E-J-261: Statistical Analysis and Chaotic Dynamics of Respiratory Signal of Patients in BodyFix

    SciTech Connect (OSTI)

    Michalski, D; Huq, M; Bednarz, G; Lalonde, R; Yang, Y; Heron, D

    2014-06-01

    Purpose: To quantify respiratory signal of patients in BodyFix undergoing 4DCT scan with and without immobilization cover. Methods: 20 pairs of respiratory tracks recorded with RPM system during 4DCT scan were analyzed. Descriptive statistic was applied to selected parameters of exhale-inhale decomposition. Standardized signals were used with the delay method to build orbits in embedded space. Nonlinear behavior was tested with surrogate data. Sample entropy SE, Lempel-Ziv complexity LZC and the largest Lyapunov exponents LLE were compared. Results: Statistical tests show difference between scans for inspiration time and its variability, which is bigger for scans without cover. The same is for variability of the end of exhalation and inhalation. Other parameters fail to show the difference. For both scans respiratory signals show determinism and nonlinear stationarity. Statistical test on surrogate data reveals their nonlinearity. LLEs show signals chaotic nature and its correlation with breathing period and its embedding delay time. SE, LZC and LLE measure respiratory signal complexity. Nonlinear characteristics do not differ between scans. Conclusion: Contrary to expectation cover applied to patients in BodyFix appears to have limited effect on signal parameters. Analysis based on trajectories of delay vectors shows respiratory system nonlinear character and its sensitive dependence on initial conditions. Reproducibility of respiratory signal can be evaluated with measures of signal complexity and its predictability window. Longer respiratory period is conducive for signal reproducibility as shown by these gauges. Statistical independence of the exhale and inhale times is also supported by the magnitude of LLE. The nonlinear parameters seem more appropriate to gauge respiratory signal complexity since its deterministic chaotic nature. It contrasts with measures based on harmonic analysis that are blind for nonlinear features. Dynamics of breathing, so crucial for

  12. Experimental nonlinear dynamical studies in cesium magneto-optical trap using time-series analysis

    SciTech Connect (OSTI)

    Anwar, M. Islam, R.; Faisal, M.; Sikandar, M.; Ahmed, M.

    2015-03-30

    A magneto-optical trap of neutral atoms is essentially a dissipative quantum system. The fast thermal atoms continuously dissipate their energy to the environment via spontaneous emissions during the cooling. The atoms are, therefore, strongly coupled with the vacuum reservoir and the laser field. The vacuum fluctuations as well as the field fluctuations are imparted to the atoms as random photon recoils. Consequently, the external and internal dynamics of atoms becomes stochastic. In this paper, we have investigated the stochastic dynamics of the atoms in a magneto-optical trap during the loading process. The time series analysis of the fluorescence signal shows that the dynamics of the atoms evolves, like all dissipative systems, from deterministic to the chaotic regime. The subsequent disappearance and revival of chaos was attributed to chaos synchronization between spatially different atoms in the magneto-optical trap.

  13. Rotor dynamic analysis of GCEP (Gas Centrifuge Enrichment Plant) Tails Withdrawal Test Facility AC-12 compressor

    SciTech Connect (OSTI)

    Spencer, J.W.

    1982-01-22

    The reliable operation of the centrifugal compressors utilized in the gaseous diffusion process is of great importance due to the critical function of these machines in product and tails withdrawal, cascade purge and evacuation processes, the purge cascade and product booster applications. The same compressors will be used in equally important applications within the Gas Centrifuge Enrichment Plant (GCEP). In response to concern over the excessive vibration exhibited by the AC-12 compressor in the No. 3 position of the GCEP Tails Withdrawal Test Facility, a rotor-bearing dynamic analysis was performed on the compressor. This analysis included the acquisition and reduction of compressor vibration data, characterization and modeling of the rotorbearing system, a computer dynamic study, and recommendations for machine modification. The compressor dynamic analysis was performed for rotor speeds of 9000 rpm and 7200 to 7800 rpm, which includes all possible opreating speeds of the compressor in the GCEP Test Facility. While the analysis was performed on this particular AC-12 compressor, the results should be pertinent to other AC-12 applications as well. Similar diagnostic and analytical techniques can be used to evaluate operation of other types of centrifugal compressors.

  14. Two worlds collide: Image analysis methods for quantifying structural variation in cluster molecular dynamics

    SciTech Connect (OSTI)

    Steenbergen, K. G.; Gaston, N.

    2014-02-14

    Inspired by methods of remote sensing image analysis, we analyze structural variation in cluster molecular dynamics (MD) simulations through a unique application of the principal component analysis (PCA) and Pearson Correlation Coefficient (PCC). The PCA analysis characterizes the geometric shape of the cluster structure at each time step, yielding a detailed and quantitative measure of structural stability and variation at finite temperature. Our PCC analysis captures bond structure variation in MD, which can be used to both supplement the PCA analysis as well as compare bond patterns between different cluster sizes. Relying only on atomic position data, without requirement for a priori structural input, PCA and PCC can be used to analyze both classical and ab initio MD simulations for any cluster composition or electronic configuration. Taken together, these statistical tools represent powerful new techniques for quantitative structural characterization and isomer identification in cluster MD.

  15. Significance of Dynamic and Transient Analysis in the Design and Operation of Hybrid Energy Systems

    SciTech Connect (OSTI)

    Panwar, Mayank; Mohanpurkar, Manish; Hovsapian, Rob; Osorio, Julian D.

    2015-02-01

    Energy systems were historically designed and operated with a specific energy conversion objective, while managing loads and resources. In the recent years, the increased utilization of non-dispatchable renewable sources such as wind and solar has played a role in power quality and the reliability of power systems. In order to mitigate the risk associated with the non-dispatchable resources an integrated approach, such as Hybrid Energy Systems (HES), has to be taken, integrating the loads and resource management between the traditional thermal power plants and the non-dispatchable resources. As our electric energy becomes more diverse in its generation resources, the HES with its operational control system, its real-time view and its dynamic decisions making will become an essential part of the integrated energy systems and improve the overall grid reliability. The operational constraints of the energy sources on both the thermal power plants and the non-dispatchable resources in HES, plays a vital role in the planning and design stage. It is an established fact that the choice of energy source depends on the available natural resources and possible infrastructure. A critical component of decision-making depends on the complementary nature and controllability of the energy sources to supply the load demands with high reliability. Controllability of complex HES to achieve desired performance and flexibility is implemented via coordinated control systems while simultaneously generating electricity and other useful products such as useful heat or hydrogen. These systems are based on instrumentation, signal processing, control theory, and engineering system design. The entire HES along with the control systems are characterized by widely varying time constants. Hence, for a well-coordinated control and operation, we propose physics based modeling of the subsystems to assist in a dynamic and transient analysis. Dynamic and transient analysis in real and non-real time

  16. Mathematical framework for the analysis of dynamic stochastic systems with the RAVEN code

    SciTech Connect (OSTI)

    Rabiti, C.; Mandelli, D.; Alfonsi, A.; Cogliati, J.; Kinoshita, R.

    2013-07-01

    RAVEN (Reactor Analysis and Virtual control Environment) is a software code under development at Idaho National Laboratory aimed at performing probabilistic risk assessment and uncertainty quantification using RELAP-7, for which it acts also as a simulation controller. In this paper we will present the equations characterizing a dynamic stochastic system and we will then discuss the behavior of each stochastic term and how it is accounted for in the RAVEN software design. Moreover we will present preliminary results of the implementation. (authors)

  17. Applied combustion

    SciTech Connect (OSTI)

    1993-12-31

    From the title, the reader is led to expect a broad practical treatise on combustion and combustion devices. Remarkably, for a book of modest dimension, the author is able to deliver. The text is organized into 12 Chapters, broadly treating three major areas: combustion fundamentals -- introduction (Ch. 1), thermodynamics (Ch. 2), fluid mechanics (Ch. 7), and kinetics (Ch. 8); fuels -- coal, municipal solid waste, and other solid fuels (Ch. 4), liquid (Ch. 5) and gaseous (Ch. 6) fuels; and combustion devices -- fuel cells (Ch. 3), boilers (Ch. 4), Otto (Ch. 10), diesel (Ch. 11), and Wankel (Ch. 10) engines and gas turbines (Ch. 12). Although each topic could warrant a complete text on its own, the author addresses each of these major themes with reasonable thoroughness. Also, the book is well documented with a bibliography, references, a good index, and many helpful tables and appendices. In short, Applied Combustion does admirably fulfill the author`s goal for a wide engineering science introduction to the general subject of combustion.

  18. Internal air flow analysis of a bladeless micro aerial vehicle hemisphere body using computational fluid dynamic

    SciTech Connect (OSTI)

    Othman, M. N. K. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Zuradzman, M. Razlan E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Hazry, D. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Khairunizam, Wan E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Shahriman, A. B. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Yaacob, S. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Ahmed, S. Faiz E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; and others

    2014-12-04

    This paper explain the analysis of internal air flow velocity of a bladeless vertical takeoff and landing (VTOL) Micro Aerial Vehicle (MAV) hemisphere body. In mechanical design, before produce a prototype model, several analyses should be done to ensure the product's effectiveness and efficiency. There are two types of analysis method can be done in mechanical design; mathematical modeling and computational fluid dynamic. In this analysis, I used computational fluid dynamic (CFD) by using SolidWorks Flow Simulation software. The idea came through to overcome the problem of ordinary quadrotor UAV which has larger size due to using four rotors and the propellers are exposed to environment. The bladeless MAV body is designed to protect all electronic parts, which means it can be used in rainy condition. It also has been made to increase the thrust produced by the ducted propeller compare to exposed propeller. From the analysis result, the air flow velocity at the ducted area increased to twice the inlet air. This means that the duct contribute to the increasing of air velocity.

  19. Compact Graph Representations and Parallel Connectivity Algorithms for Massive Dynamic Network Analysis

    SciTech Connect (OSTI)

    Madduri, Kamesh; Bader, David A.

    2009-02-15

    Graph-theoretic abstractions are extensively used to analyze massive data sets. Temporal data streams from socioeconomic interactions, social networking web sites, communication traffic, and scientific computing can be intuitively modeled as graphs. We present the first study of novel high-performance combinatorial techniques for analyzing large-scale information networks, encapsulating dynamic interaction data in the order of billions of entities. We present new data structures to represent dynamic interaction networks, and discuss algorithms for processing parallel insertions and deletions of edges in small-world networks. With these new approaches, we achieve an average performance rate of 25 million structural updates per second and a parallel speedup of nearly28 on a 64-way Sun UltraSPARC T2 multicore processor, for insertions and deletions to a small-world network of 33.5 million vertices and 268 million edges. We also design parallel implementations of fundamental dynamic graph kernels related to connectivity and centrality queries. Our implementations are freely distributed as part of the open-source SNAP (Small-world Network Analysis and Partitioning) complex network analysis framework.

  20. Computational Fluid Dynamic Analysis of the VHTR Lower Plenum Standard Problem

    SciTech Connect (OSTI)

    Richard W. Johnson; Richard R. Schultz

    2009-07-01

    The United States Department of Energy is promoting the resurgence of nuclear power in the U. S. for both electrical power generation and production of process heat required for industrial processes such as the manufacture of hydrogen for use as a fuel in automobiles. The DOE project is called the next generation nuclear plant (NGNP) and is based on a Generation IV reactor concept called the very high temperature reactor (VHTR), which will use helium as the coolant at temperatures ranging from 450 ÂșC to perhaps 1000 ÂșC. While computational fluid dynamics (CFD) has not been used for past safety analysis for nuclear reactors in the U. S., it is being considered for safety analysis for existing and future reactors. It is fully recognized that CFD simulation codes will have to be validated for flow physics reasonably close to actual fluid dynamic conditions expected in normal and accident operational situations. To this end, experimental data have been obtained in a scaled model of a narrow slice of the lower plenum of a prismatic VHTR. The present report presents results of CFD examinations of these data to explore potential issues with the geometry, the initial conditions, the flow dynamics and the data needed to fully specify the inlet and boundary conditions; results for several turbulence models are examined. Issues are addressed and recommendations about the data are made.

  1. Compartmentalized microchannel array for high-throughput analysis of single cell polarized growth and dynamics

    SciTech Connect (OSTI)

    Geng, Tao; Bredeweg, Erin L.; Szymanski, Craig J.; Liu, Bingwen; Baker, Scott E.; Orr, Galya; Evans, James E.; Kelly, Ryan T.

    2015-11-04

    Interrogating polarized growth is technologically challenging due to extensive cellular branching and uncontrollable environmental conditions in conventional assays. Here we present a robust and high-performance microfluidic system that enables observations of polarized growth with enhanced temporal and spatial control over prolonged periods. The system has built-in tunability and versatility to accommodate a variety of science applications requiring precisely controlled environments. Using the model filamentous fungus, Neurospora crassa, this microfluidic system enabled direct visualization and analysis of cellular heterogeneity in a clonal fungal cell population, nuclear distribution and dynamics at the subhyphal level, and quantitative dynamics of gene expression with single hyphal compartment resolution in response to carbon source starvation and exchange experiments. Although the microfluidic device is demonstrated on filamentous fungi, our technology is immediately extensible to a wide array of other biosystems that exhibit similar polarized cell growth with applications ranging from bioenergy production to human health.

  2. Compartmentalized microchannel array for high-throughput analysis of single cell polarized growth and dynamics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Geng, Tao; Bredeweg, Erin L.; Szymanski, Craig J.; Liu, Bingwen; Baker, Scott E.; Orr, Galya; Evans, James E.; Kelly, Ryan T.

    2015-11-04

    Here, interrogating polarized growth is technologically challenging due to extensive cellular branching and uncontrollable environmental conditions in conventional assays. Here we present a robust and high-performance microfluidic system that enables observations of polarized growth with enhanced temporal and spatial control over prolonged periods. The system has built-in tunability and versatility to accommodate a variety of science applications requiring precisely controlled environments. Using the model filamentous fungus, Neurospora crassa, this microfluidic system enabled direct visualization and analysis of cellular heterogeneity in a clonal fungal cell population, nuclear distribution and dynamics at the subhyphal level, and quantitative dynamics of gene expression withmore » single hyphal compartment resolution in response to carbon source starvation and exchange experiments. Although the microfluidic device is demonstrated on filamentous fungi, our technology is immediately extensible to a wide array of other biosystems that exhibit similar polarized cell growth with applications ranging from bioenergy production to human health.« less

  3. Compartmentalized microchannel array for high-throughput analysis of single cell polarized growth and dynamics

    SciTech Connect (OSTI)

    Geng, Tao; Bredeweg, Erin L.; Szymanski, Craig J.; Liu, Bingwen; Baker, Scott E.; Orr, Galya; Evans, James E.; Kelly, Ryan T.

    2015-11-04

    Here, interrogating polarized growth is technologically challenging due to extensive cellular branching and uncontrollable environmental conditions in conventional assays. Here we present a robust and high-performance microfluidic system that enables observations of polarized growth with enhanced temporal and spatial control over prolonged periods. The system has built-in tunability and versatility to accommodate a variety of science applications requiring precisely controlled environments. Using the model filamentous fungus, Neurospora crassa, this microfluidic system enabled direct visualization and analysis of cellular heterogeneity in a clonal fungal cell population, nuclear distribution and dynamics at the subhyphal level, and quantitative dynamics of gene expression with single hyphal compartment resolution in response to carbon source starvation and exchange experiments. Although the microfluidic device is demonstrated on filamentous fungi, our technology is immediately extensible to a wide array of other biosystems that exhibit similar polarized cell growth with applications ranging from bioenergy production to human health.

  4. Equilibrium Response and Transient Dynamics Datasets from VEMAP: Vegetation/Ecosystem Modeling and Analysis Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Users of the VEMAP Portal can access input files of numerical data that include monthly and daily files of geographic data, soil and site files, scenario files, etc. Model results from Phase I, the Equilibrium Response datasets, are available through the NCAR anonymous FTP site at http://www.cgd.ucar.edu/vemap/vresults.html. Phase II, Transient Dynamics, include climate datasets, models results, and analysis tools. Many supplemental files are also available from the main data page at http://www.cgd.ucar.edu/vemap/datasets.html.

  5. A Systematic Comprehensive Computational Model for Stake Estimation in Mission Assurance: Applying Cyber Security Econometrics System (CSES) to Mission Assurance Analysis Protocol (MAAP)

    SciTech Connect (OSTI)

    Abercrombie, Robert K; Sheldon, Frederick T; Grimaila, Michael R

    2010-01-01

    In earlier works, we presented a computational infrastructure that allows an analyst to estimate the security of a system in terms of the loss that each stakeholder stands to sustain as a result of security breakdowns. In this paper, we discuss how this infrastructure can be used in the subject domain of mission assurance as defined as the full life-cycle engineering process to identify and mitigate design, production, test, and field support deficiencies of mission success. We address the opportunity to apply the Cyberspace Security Econometrics System (CSES) to Carnegie Mellon University and Software Engineering Institute s Mission Assurance Analysis Protocol (MAAP) in this context.

  6. Applying Nonlinear Signal Analysis Technologies to Flame Scanner Signals to Improve Staging of Cyclone Boilers for NOx control

    SciTech Connect (OSTI)

    Flynn, T. J.; Bailey, R. T.; Fuller, T. A.; FINNEY, Charles E A; Daw, C Stuart; Stallings, J.; Himes, R.; Bermke, R.

    2006-08-01

    Cyclone{trademark} boiler owners continue to drive down NO{sub x} emissions by increasingly sophisticated staging and air distribution schemes. For example, Alliant Energy has employed RMT's SmartBurn{reg_sign} technology, and Ameren UE has pioneered neural nets to reduce emissions. Over the last 11 years under sponsorship of EPRI, the team of ORNL and B&W has developed pulverized coal burner diagnostic technology by applying nonlinear signal analysis techniques to flame scanner signals. The team has extended the technology to cyclones to facilitate deeper staging of the cyclones to reduce NO{sub x} emissions. Development projects were conducted at the Alliant Energy Edgewater Units 3 and 4, and Ameren UE Sioux Unit 1. Nonlinear analysis statistics were correlated to upsets in cyclone operation resulting from poor air distribution in the burner and barrel. The team demonstrated that the lighter and main flame scanners can be used to independently guide adjustments to the burner and barrel.

  7. Multi analysis of the effect of grain size on the dynamic behavior of microalloyed steels

    SciTech Connect (OSTI)

    Zurek, Anna K; Muszka, K; Majta, J; Wielgus, M

    2009-01-01

    This study presents some aspects of multiscale analysis and modeling of variously structured materials behavior in quasi-static and dynamic loading conditions. The investigation was performed for two different materials of common application: high strength microalloyed steel (HSLA, X65), and as a reference more ductile material, Ti-IF steel. The MaxStrain technique and one pass hot rolling processes were used to produce ultrafine-grained and coarse-grained materials. The efficiency and inhomogeneity of microstructure refinement were examined because of their important role in work hardening and the initiation and growth of fracture under tensile stresses. It is shown that the combination of microstructures characterized by their different features contributes to the dynamic behavior and final properties of the product. In particular, the role of solute segregation at grain boundaries as well as precipitation of carbonitrides in coarse and ultrafine-grained structures is assessed. The predicted mechanical response of ultrafine-grained structures, using modified KHL model is in reasonable agreement with the experiments. This is a result of proper representation of the role of dislocation structure and the grain boundary and their multiscale effects included in this model.

  8. DYNAMIC ANALYSIS OF HANFORD UNIRRADIATED FUEL PACKAGE SUBJECTED TO SEQUENTIAL LATERAL LOADS IN HYPOTHETICAL ACCIDENT CONDITIONS

    SciTech Connect (OSTI)

    Wu, T

    2008-04-30

    Large fuel casks present challenges when evaluating their performance in the Hypothetical Accident Conditions (HAC) specified in the Code of Federal Regulations Title 10 part 71 (10CFR71). Testing is often limited by cost, difficulty in preparing test units and the limited availability of facilities which can carry out such tests. In the past, many casks were evaluated without testing by using simplified analytical methods. This paper presents a numerical technique for evaluating the dynamic responses of large fuel casks subjected to sequential HAC loading. A nonlinear dynamic analysis was performed for a Hanford Unirradiated Fuel Package (HUFP) [1] to evaluate the cumulative damage after the hypothetical accident Conditions of a 30-foot lateral drop followed by a 40-inch lateral puncture as specified in 10CFR71. The structural integrity of the containment vessel is justified based on the analytical results in comparison with the stress criteria, specified in the ASME Code, Section III, Appendix F [2], for Level D service loads. The analyzed cumulative damages caused by the sequential loading of a 30-foot lateral drop and a 40-inch lateral puncture are compared with the package test data. The analytical results are in good agreement with the test results.

  9. An extended supersonic combustion model for the dynamic analysis of hypersonic vehicles. Interim Task Report

    SciTech Connect (OSTI)

    Bossard, J.A.; Peck, R.E.; Schmidt, D.K.

    1993-03-01

    The development of an advanced dynamic model for aeroelastic hypersonic vehicles powered by air breathing engines requires an adequate engine model. This report provides a discussion of some of the more important features of supersonic combustion and their relevance to the analysis and design of supersonic ramjet engines. Of particular interest are those aspects of combustion that impact the control of the process. Furthermore, the report summarizes efforts to enhance the aeropropulsive/aeroelastic dynamic model developed at the Aerospace Research Center of Arizona State University by focusing on combustion and improved modeling of this flow. The expanded supersonic combustor model described here has the capability to model the effects of friction, area change, and mass addition, in addition to the heat addition process. A comparison is made of the results from four cases: (1) heat addition only; (2) heat addition plus friction; (3) heat addition, friction, and area reduction, and (4) heat addition, friction, area reduction, and mass addition. The relative impact of these effects on the Mach number, static temperature, and static pressure distributions within the combustor are then shown. Finally, the effects of frozen versus equilibrium flow conditions within the exhaust plume is discussed.

  10. Analysis of liquid natural gas as a truck fuel: a system dynamics approach

    SciTech Connect (OSTI)

    Bray, M.A.; Sebo, D.E.; Mason, T.L.; Mills, J.I.; Rice, R.E.

    1996-10-01

    The purpose of this analysis is to evaluate the potential for growth in use of liquid natural gas (LNG) fueled trucks. . A system dynamics model was constructed for the analysis and a variety of scenarios were investigated. The analysis considers the economics of LNG fuel in the context of the trucking industry to identify barriers to the increased use of LNG trucks and potential interventions or leverage points which may overcome these barriers. The study showed that today, LNG use in trucks is not yet economically viable. A large change in the savings from fuel cost or capital cost is needed for the technology to take off. Fleet owners have no way now to benefit from the environmental benefits of LNG fuel nor do they benefit from the clean burning nature of the fuel. Changes in the fuel cost differential between diesel and LNG are not a research issue. However, quantifying the improvements in reliability and wear from the use of clean fuel could support increased maintenance and warranty periods. Many people involved in the use of LNG for trucks believe that LNG has the potential to occupy a niche within the larger diesel truck business. But if LNG in trucks can become economic, the spread of fuel stations and technology improvements could lead to LNG trucks becoming the dominant technology. An assumption in our simulation work is that LNG trucks will be purchased when economically attractive. None of the simulation results show LNG becoming economic but then only to the level of a niche market.

  11. Dynamic nuclear renography kinetic analysis: Four-compartment model for assessing kidney function

    SciTech Connect (OSTI)

    Raswan, T. R. Haryanto, F.

    2014-09-30

    Dynamic nuclear renography method produces TACs of kidneys and bladder. Multiple TACs data can be further analyzed to obtain the overview of urinary system's condition. Tracer kinetic analysis was performed using four-compartment models. The system's model consist of four irreversible compartment with four transport constants (k1, k2, k3 and k4). The mathematical expressions of tracer's distributions is fitted to experimental data (TACs) resulting in model constants. This transport constants represent the urinary system behavior, and later can be used for analyzing system's condition. Different intervals of kinetics parameter are clearly shown by abnormal system with respect to the normal one. Furthermore, the system with delayed uptake has 82% lower uptake parameters (k1 and k2) than normal one. Meanwhile, the system with prolonged clearance time has its kinetics parameters k3 or k4 lower than the others. This model is promising for quantitatively describe urinary system's function especially if supplied with more data.

  12. Validation of a plant dynamics code for 4S - Test analysis of natural circulation behavior

    SciTech Connect (OSTI)

    Sebe, F.; Horie, H.; Matsumiya, H.; Fanning, T. H.

    2012-07-01

    A plant transient dynamics code for a sodium-cooled fast reactor was developed by Toshiba. The code is used to evaluate the safety performance of Super-Safe, Small, and Simple reactor (4S) for Anticipated Operational Occurrences (AOOs), Design Basis Accident (DBA) and Beyond DBA (BDBA). The code is currently undergoing verification and validation (V and V). As one of the validation, test analysis of the Shutdown Heat Removal Test (SHRT)-17 performed in the Experimental Breeder Reactor (EBR)-II was conducted. The SHRT-17 is protected loss of flow test. The purpose of this validation is to confirm capability of the code to simulate natural circulation behavior of the plant. As a result, good agreements are shown between the analytical results and the measured data which were available from instrumented subassembly. The detailed validation result of the natural circulation behavior is described in this paper. (authors)

  13. Retrospective Analysis of Communication Events - Understanding the Dynamics of Collaborative Multi-Party Discourse

    SciTech Connect (OSTI)

    Cowell, Andrew J.; Haack, Jereme N.; McColgin, Dave W.

    2006-06-08

    This research is aimed at understanding the dynamics of collaborative multi-party discourse across multiple communication modalities. Before we can truly make sig-nificant strides in devising collaborative communication systems, there is a need to understand how typical users utilize com-putationally supported communications mechanisms such as email, instant mes-saging, video conferencing, chat rooms, etc., both singularly and in conjunction with traditional means of communication such as face-to-face meetings, telephone calls and postal mail. Attempting to un-derstand an individual’s communications profile with access to only a single modal-ity is challenging at best and often futile. Here, we discuss the development of RACE – Retrospective Analysis of Com-munications Events – a test-bed prototype to investigate issues relating to multi-modal multi-party discourse.

  14. Molecular-dynamics analysis of mobile helium cluster reactions near surfaces of plasma-exposed tungsten

    SciTech Connect (OSTI)

    Hu, Lin; Maroudas, Dimitrios; Hammond, Karl D.; Wirth, Brian D.

    2015-10-28

    We report the results of a systematic atomic-scale analysis of the reactions of small mobile helium clusters (He{sub n}, 4 ≀ n ≀ 7) near low-Miller-index tungsten (W) surfaces, aiming at a fundamental understanding of the near-surface dynamics of helium-carrying species in plasma-exposed tungsten. These small mobile helium clusters are attracted to the surface and migrate to the surface by Fickian diffusion and drift due to the thermodynamic driving force for surface segregation. As the clusters migrate toward the surface, trap mutation (TM) and cluster dissociation reactions are activated at rates higher than in the bulk. TM produces W adatoms and immobile complexes of helium clusters surrounding W vacancies located within the lattice planes at a short distance from the surface. These reactions are identified and characterized in detail based on the analysis of a large number of molecular-dynamics trajectories for each such mobile cluster near W(100), W(110), and W(111) surfaces. TM is found to be the dominant cluster reaction for all cluster and surface combinations, except for the He{sub 4} and He{sub 5} clusters near W(100) where cluster partial dissociation following TM dominates. We find that there exists a critical cluster size, n = 4 near W(100) and W(111) and n = 5 near W(110), beyond which the formation of multiple W adatoms and vacancies in the TM reactions is observed. The identified cluster reactions are responsible for important structural, morphological, and compositional features in the plasma-exposed tungsten, including surface adatom populations, near-surface immobile helium-vacancy complexes, and retained helium content, which are expected to influence the amount of hydrogen re-cycling and tritium retention in fusion tokamaks.

  15. Equilibrium Response and Transient Dynamics Datasets from VEMAP: Vegetation/Ecosystem Modeling and Analysis Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Vegetation-Ecosystem Modeling and Analysis Project (VEMAP) was a large, collaborative, multi-agency program to simulate and understand ecosystem dynamics for the continental U.S. The project involved the development of common data sets for model input including a high-resolution topographically-adjusted climate history of the U.S. from 1895-1993 on a 0.5? grid, with soils and vegetation cover. The vegetation cover data set includes a detailed agricultural data base based on USDA statistics and remote sensing, as well as natural vegetation (also derived from satellite imagery). Two principal model experiments were run. First, a series of ecosystem models were run from 1895 to 1993 to simulate current ecosystem biogeochemistry. Second, these same models were integrated forward using the output from two climate system models (CCC (Canadian Climate Centre) and Hadley Centre models) using climate results translated into the VEMAP grid and re-adjusted for high-resolution topography for the simulated period 1994-2100.[Quoted from http://www.cgd.ucar.edu/vemap/findings.html] The VEMAP Data Portal is a central collection of files maintained and serviced by the NCAR Data Group. These files (the VEMAP Community Datasets) represent a complete and current collection of VEMAP data files. All data files available through the Data Portal have undergone extensive quality assurance.[Taken from http://www.cgd.ucar.edu/vemap/datasets.html] Users of the VEMAP Portal can access input files of numerical data that include monthly and daily files of geographic data, soil and site files, scenario files, etc. Model results from Phase I, the Equilibrium Response datasets, are available through the NCAR anonymous FTP site at http://www.cgd.ucar.edu/vemap/vresults.html. Phase II, Transient Dynamics, include climate datasets, models results, and analysis tools. Many supplemental files are also available from the main data page at http://www.cgd.ucar.edu/vemap/datasets.html.

  16. Analysis of supercritical CO{sub 2} cycle control strategies and dynamic response for Generation IV Reactors.

    SciTech Connect (OSTI)

    Moisseytsev, A.; Sienicki, J. J.

    2011-04-12

    The analysis of specific control strategies and dynamic behavior of the supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle has been extended to the two reactor types selected for continued development under the Generation IV Nuclear Energy Systems Initiative; namely, the Very High Temperature Reactor (VHTR) and the Sodium-Cooled Fast Reactor (SFR). Direct application of the standard S-CO{sub 2} recompression cycle to the VHTR was found to be challenging because of the mismatch in the temperature drop of the He gaseous reactor coolant through the He-to-CO{sub 2} reactor heat exchanger (RHX) versus the temperature rise of the CO{sub 2} through the RHX. The reference VHTR features a large temperature drop of 450 C between the assumed core outlet and inlet temperatures of 850 and 400 C, respectively. This large temperature difference is an essential feature of the VHTR enabling a lower He flow rate reducing the required core velocities and pressure drop. In contrast, the standard recompression S-CO{sub 2} cycle wants to operate with a temperature rise through the RHX of about 150 C reflecting the temperature drop as the CO{sub 2} expands from 20 MPa to 7.4 MPa in the turbine and the fact that the cycle is highly recuperated such that the CO{sub 2} entering the RHX is effectively preheated. Because of this mismatch, direct application of the standard recompression cycle results in a relatively poor cycle efficiency of 44.9%. However, two approaches have been identified by which the S-CO{sub 2} cycle can be successfully adapted to the VHTR and the benefits of the S-CO{sub 2} cycle, especially a significant gain in cycle efficiency, can be realized. The first approach involves the use of three separate cascaded S-CO{sub 2} cycles. Each S-CO{sub 2} cycle is coupled to the VHTR through its own He-to-CO{sub 2} RHX in which the He temperature is reduced by 150 C. The three respective cycles have efficiencies of 54, 50, and 44%, respectively, resulting in a net cycle

  17. Dynamic impact and pressure analysis of the insensitive munitions container PA103 with modified design features

    SciTech Connect (OSTI)

    Handy, K.D.

    1993-06-01

    This report presents analytical analyses of the insensitive munitions container PA103, with modified design features for a static internal pressure of 500 psi and for a dynamic impact resulting from a 7-ft free fall onto a rigid surface. The modified design features addressed by the analyses were the inclusion of a score pattern on the container cylindrical body and a plastic plate (fuse) sandwiched between metal flanges on the container end. The objectives of both the pressure and impact analyses were to determine if the induced stresses at the score patterns in the cylindrical body of the container were sufficient to induce failure. Analytical responses of the container to the imposed loads were obtained with finite element analysis methodology. The computer codes ABAQUS and VEC/DYNA3D were used to obtain the results. Results of the pressure analysis indicate that failure of the container body would be expected to occur at the score pattern for a static internal pressure of 500 psi. Also, results from three impact orientations for a 7-ft drop indicate that membrane stresses in the vicinity of the score pattern are above critical crack growth stress magnitudes, especially at low ([minus]60[degrees]F) temperatures.

  18. Dynamic impact and pressure analysis of the insensitive munitions container PA103 with modified design features

    SciTech Connect (OSTI)

    Handy, K.D.

    1993-06-01

    This report presents analytical analyses of the insensitive munitions container PA103, with modified design features for a static internal pressure of 500 psi and for a dynamic impact resulting from a 7-ft free fall onto a rigid surface. The modified design features addressed by the analyses were the inclusion of a score pattern on the container cylindrical body and a plastic plate (fuse) sandwiched between metal flanges on the container end. The objectives of both the pressure and impact analyses were to determine if the induced stresses at the score patterns in the cylindrical body of the container were sufficient to induce failure. Analytical responses of the container to the imposed loads were obtained with finite element analysis methodology. The computer codes ABAQUS and VEC/DYNA3D were used to obtain the results. Results of the pressure analysis indicate that failure of the container body would be expected to occur at the score pattern for a static internal pressure of 500 psi. Also, results from three impact orientations for a 7-ft drop indicate that membrane stresses in the vicinity of the score pattern are above critical crack growth stress magnitudes, especially at low ({minus}60{degrees}F) temperatures.

  19. Analysis of Real Ship Rolling Dynamics under Wave Excitement Force Composed of Sums of Cosine Functions

    SciTech Connect (OSTI)

    Zhang, Y. S. [Department of Scientific Research, Dalian Naval Academy, Dalian 116018 (China); Cai, F. [Department of Navigation, Dalian Naval Academy, Dalian 116018 (China); Xu, W. M. [Department of Hydrography and Cartography, Dalian Naval Academy, Dalian 116018 (China)

    2011-09-28

    The ship motion equation with a cosine wave excitement force describes the slip moments in regular waves. A new kind of wave excitement force model, with the form as sums of cosine functions was proposed to describe ship rolling in irregular waves. Ship rolling time series were obtained by solving the ship motion equation with the fourth-order-Runger-Kutta method. These rolling time series were synthetically analyzed with methods of phase-space track, power spectrum, primary component analysis, and the largest Lyapunove exponent. Simulation results show that ship rolling presents some chaotic characteristic when the wave excitement force was applied by sums of cosine functions. The result well explains the course of ship rolling's chaotic mechanism and is useful for ship hydrodynamic study.

  20. Dynamic Slope Stability Analysis of Mine Tailing Deposits: the Case of Raibl Mine

    SciTech Connect (OSTI)

    Roberto, Meriggi; Marco, Del Fabbro; Erica, Blasone; Erica, Zilli

    2008-07-08

    Over the last few years, many embankments and levees have collapsed during strong earthquakes or floods. In the Friuli Venezia Giulia Region (North-Eastern Italy), the main source of this type of risk is a slag deposit of about 2x10{sup 6} m{sup 3} deriving from galena and lead mining activity until 1991 in the village of Raibl. For the final remedial action plan, several in situ tests were performed: five boreholes equipped with piezometers, four CPTE and some geophysical tests with different approaches (refraction, ReMi and HVSR). Laboratory tests were conducted on the collected samples: geotechnical classification, triaxial compression tests and constant head permeability tests in triaxial cell. Pressure plate tests were also done on unsaturated slag to evaluate the characteristic soil-water curve useful for transient seepage analysis. A seepage analysis was performed in order to obtain the maximum pore water pressures during the intense rainfall event which hit the area on 29th August 2003. The results highlight that the slag low permeability prevents the infiltration of rainwater, which instead seeps easily through the boundary levees built with coarse materials. For this reason pore water pressures inside the deposits are not particularly influenced by rainfall intensity and frequency. Seismic stability analysis was performed with both the pseudo-static method, coupled with Newmark's method, and dynamic methods, using as design earthquake the one registered in Tolmezzo (Udine) on 6{sup th} May 1976. The low reduction of safety factors and the development of very small cumulative displacements show that the stability of embankments is assured even if an earthquake of magnitude 6.4 and a daily rainfall of 141.6 mm occur at the same time.

  1. Extending the Capabilities of the Mooring Analysis Program: A Survey of Dynamic Mooring Line Theories for Integration into FAST: Preprint

    SciTech Connect (OSTI)

    Masciola, M.; Jonkman, J.; Robertson, A.

    2014-03-01

    Techniques to model dynamic mooring lines come in various forms. The most widely used models include either a heuristic representation of the physics (such as a Lumped-Mass, LM, system), a Finite-Element Analysis (FEA) discretization of the lines (discretized in space), or a Finite-Difference (FD) model (which is discretized in both space and time). In this paper, we explore the features of the various models, weigh the advantages of each, and propose a plan for implementing one dynamic mooring line model into the open-source Mooring Analysis Program (MAP). MAP is currently used as a module for the FAST offshore wind turbine computer-aided engineering (CAE) tool to model mooring systems quasi-statically, although dynamic mooring capabilities are desired. Based on the exploration in this manuscript, the lumped-mass representation is selected for implementation in MAP based on its simplicity, computational cost, and ability to provide similar physics captured by higher-order models.

  2. Dynamic Analysis of Electrical Power Grid Delivery: Using Prime Mover Engines to Balance Dynamic Wind Turbine Output

    SciTech Connect (OSTI)

    Diana K. Grauer

    2011-10-01

    This paper presents an investigation into integrated wind + combustion engine high penetration electrical generation systems. Renewable generation systems are now a reality of electrical transmission. Unfortunately, many of these renewable energy supplies are stochastic and highly dynamic. Conversely, the existing national grid has been designed for steady state operation. The research team has developed an algorithm to investigate the feasibility and relative capability of a reciprocating internal combustion engine to directly integrate with wind generation in a tightly coupled Hybrid Energy System. Utilizing the Idaho National Laboratory developed Phoenix Model Integration Platform, the research team has coupled demand data with wind turbine generation data and the Aspen Custom Modeler reciprocating engine electrical generator model to investigate the capability of reciprocating engine electrical generation to balance stochastic renewable energy.

  3. NASTRAN-based computer program for structural dynamic analysis of horizontal axis wind turbines

    SciTech Connect (OSTI)

    Lobitz, D.W.

    1984-01-01

    This paper describes a computer program developed for structural dynamic analysis of horizontal axis wind turbines (HAWTs). It is based on the finite element method through its reliance on NASTRAN for the development of mass, stiffness, and damping matrices of the tower and rotor, which are treated in NASTRAN as separate structures. The tower is modeled in a stationary frame and the rotor in one rotating at a constant angular velocity. The two structures are subsequently joined together (external to NASTRAN) using a time-dependent transformation consistent with the hub configuration. Aerodynamic loads are computed with an established flow model based on strip theory. Aeroelastic effects are included by incorporating the local velocity and twisting deformation of the blade in the load computation. The turbulent nature of the wind, both in space and time, is modeled by adding in stochastic wind increments. The resulting equations of motion are solved in the time domain using the implicit Newmark-Beta integrator. Preliminary comparisons with data from the Boeing/NASA MOD2 HAWT indicate that the code is capable of accurately and efficiently predicting the response of HAWTs driven by turbulent winds.

  4. Dynamical magnetic correlations in the YbB{sub 12} kondo insulator: Neutron investigations with a polarization analysis

    SciTech Connect (OSTI)

    Alekseev, P. A. Nemkovski, K. S.; Mignot, J.-M.; Nefeodova, E. V.; Sadikov, I. P.; Iga, F.; Takabatake, T.

    2007-05-15

    The results of investigations into the spin dynamics in the YbB{sub 12} Kondo insulator with the use of inelastic neutron scattering, including experiments with a polarization analysis, are discussed. It is shown that, at low temperatures, the dynamic magnetic response in the structure of the YbB{sub 12} Kondo insulator is characterized by three dispersive excitations with a nontrivial q-dependence of the intensity. An increase in the temperature results in a crossover to the single-site spin fluctuation regime accompanied by suppression of collective excitations.

  5. Dynamics Modeling and Loads Analysis of an Offshore Floating Wind Turbine

    SciTech Connect (OSTI)

    Jonkman, J. M.

    2007-12-01

    This report describes the development, verification, and application of a comprehensive simulation tool for modeling coupled dynamic responses of offshore floating wind turbines.

  6. Integrated Experimental and Model-based Analysis Reveals the Spatial Aspects of EGFR Activation Dynamics

    SciTech Connect (OSTI)

    Shankaran, Harish; Zhang, Yi; Chrisler, William B.; Ewald, Jonathan A.; Wiley, H. S.; Resat, Haluk

    2012-10-02

    The epidermal growth factor receptor (EGFR) belongs to the ErbB family of receptor tyrosine kinases, and controls a diverse set of cellular responses relevant to development and tumorigenesis. ErbB activation is a complex process involving receptor-ligand binding, receptor dimerization, phosphorylation, and trafficking (internalization, recycling and degradation), which together dictate the spatio-temporal distribution of active receptors within the cell. The ability to predict this distribution, and elucidation of the factors regulating it, would help to establish a mechanistic link between ErbB expression levels and the cellular response. Towards this end, we constructed mathematical models for deconvolving the contributions of receptor dimerization and phosphorylation to EGFR activation, and to examine the dependence of these processes on sub-cellular location. We collected experimental datasets for EGFR activation dynamics in human mammary epithelial cells, with the specific goal of model parameterization, and used the data to estimate parameters for several alternate models. Model-based analysis indicated that: 1) signal termination via receptor dephosphorylation in late endosomes, prior to degradation, is an important component of the response, 2) less than 40% of the receptors in the cell are phosphorylated at any given time, even at saturating ligand doses, and 3) receptor dephosphorylation rates at the cell surface and early endosomes are comparable. We validated the last finding by measuring EGFR dephosphorylation rates at various times following ligand addition both in whole cells, and in endosomes using ELISAs and fluorescent imaging. Overall, our results provide important information on how EGFR phosphorylation levels are regulated within cells. Further, the mathematical model described here can be extended to determine receptor dimer abundances in cells co-expressing various levels of ErbB receptors. This study demonstrates that an iterative cycle of

  7. A METHOD FOR SELECTING SOFTWARE FOR DYNAMIC EVENT ANALYSIS I: PROBLEM SELECTION

    SciTech Connect (OSTI)

    J. M. Lacy; S. R. Novascone; W. D. Richins; T. K. Larson

    2007-08-01

    New nuclear power reactor designs will require resistance to a variety of possible malevolent attacks, as well as traditional dynamic accident scenarios. The design/analysis team may be faced with a broad range of phenomena including air and ground blasts, high-velocity penetrators or shaped charges, and vehicle or aircraft impacts. With a host of software tools available to address these high-energy events, the analysis team must evaluate and select the software most appropriate for their particular set of problems. The accuracy of the selected software should then be validated with respect to the phenomena governing the interaction of the threat and structure. In this paper, we present a method for systematically comparing current high-energy physics codes for specific applications in new reactor design. Several codes are available for the study of blast, impact, and other shock phenomena. Historically, these packages were developed to study specific phenomena such as explosives performance, penetrator/target interaction, or accidental impacts. As developers generalize the capabilities of their software, legacy biases and assumptions can remain that could affect the applicability of the code to other processes and phenomena. R&D institutions generally adopt one or two software packages and use them almost exclusively, performing benchmarks on a single-problem basis. At the Idaho National Laboratory (INL), new comparative information was desired to permit researchers to select the best code for a particular application by matching its characteristics to the physics, materials, and rate scale (or scales) representing the problem at hand. A study was undertaken to investigate the comparative characteristics of a group of shock and high-strain rate physics codes including ABAQUS, LS-DYNA, CTH, ALEGRA, ALE-3D, and RADIOSS. A series of benchmark problems were identified to exercise the features and capabilities of the subject software. To be useful, benchmark problems

  8. Applied Mathematics and Plasma Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Applied Mathematics and Plasma Physics Maintaining mathematic, theory, modeling, and simulation capabilities in a broad set of areas Leadership Group Leader Pieter Swart Email Deputy Group Leader (Acting) Luis Chacon Email Contact Us Administrator Charlotte Lehman Email Electron density simulation Electron density from an orbital-free quantum molecular dynamics simulation for a warm dense plasma of deuterium at density 10 g/cc and temperature 10 eV. Mathematical, theory, modeling, and

  9. How To Apply

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CSCNSI How To Apply How to Apply for Computer System, Cluster, and Networking Summer Institute Emphasizes practical skills development Contact Leader Stephan Eidenbenz (505)...

  10. A complex systems analysis of stick-slip dynamics of a laboratory fault

    SciTech Connect (OSTI)

    Walker, David M.; Tordesillas, Antoinette; Small, Michael; Behringer, Robert P.; Tse, Chi K.

    2014-03-15

    We study the stick-slip behavior of a granular bed of photoelastic disks sheared by a rough slider pulled along the surface. Time series of a proxy for granular friction are examined using complex systems methods to characterize the observed stick-slip dynamics of this laboratory fault. Nonlinear surrogate time series methods show that the stick-slip behavior appears more complex than a periodic dynamics description. Phase space embedding methods show that the dynamics can be locally captured within a four to six dimensional subspace. These slider time series also provide an experimental test for recent complex network methods. Phase space networks, constructed by connecting nearby phase space points, proved useful in capturing the key features of the dynamics. In particular, network communities could be associated to slip events and the ranking of small network subgraphs exhibited a heretofore unreported ordering.

  11. Applied Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARC Privacy and Security Notice Skip over navigation Search the JLab Site Applied Research Center Please upgrade your browser. This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to any browser. Concerns? Applied Research Center ARC Home Consortium News EH&S Reports print version ARC Resources Commercial Tenants ARC Brochure Library Conference Room Applied Research Center Applied Research Center front view Applied Research

  12. Nuclear Dynamics Consequence Analysis (NDCA) for the Disposal of Spent Nuclear Fuel in an Underground Geologic Repository - Volume 3: Appendices

    SciTech Connect (OSTI)

    Taylor, L.L.; Wilson, J.R.; Sanchez, L.C.; Aguilar, R.; Trellue, H.R.; Cochrane, K.; Rath, J.S.

    1998-10-01

    The United States Department of Energy Office of Environmental Management's (DOE/EM's) National Spent Nuclear Fuel Program (NSNFP), through a collaboration between Sandia National Laboratories (SNL) and Idaho National Engineering and Environmental Laboratory (INEEL), is conducting a systematic Nuclear Dynamics Consequence Analysis (NDCA) of the disposal of SNFs in an underground geologic repository sited in unsaturated tuff. This analysis is intended to provide interim guidance to the DOE for the management of the SNF while they prepare for final compliance evaluation. This report presents results from a Nuclear Dynamics Consequence Analysis (NDCA) that examined the potential consequences and risks of criticality during the long-term disposal of spent nuclear fuel owned by DOE-EM. This analysis investigated the potential of post-closure criticality, the consequences of a criticality excursion, and the probability frequency for post-closure criticality. The results of the NDCA are intended to provide the DOE-EM with a technical basis for measuring risk which can be used for screening arguments to eliminate post-closure criticality FEPs (features, events and processes) from consideration in the compliance assessment because of either low probability or low consequences. This report is composed of an executive summary (Volume 1), the methodology and results of the NDCA (Volume 2), and the applicable appendices (Volume 3).

  13. A Massively Parallel Sparse Eigensolver for Structural Dynamics Finite Element Analysis

    SciTech Connect (OSTI)

    Day, David M.; Reese, G.M.

    1999-05-01

    Eigenanalysis is a critical component of structural dynamics which is essential for determinating the vibrational response of systems. This effort addresses the development of numerical algorithms associated with scalable eigensolver techniques suitable for use on massively parallel, distributed memory computers that are capable of solving large scale structural dynamics problems. An iterative Lanczos method was determined to be the best choice for the application. Scalability of the eigenproblem depends on scalability of the underlying linear solver. A multi-level solver (FETI) was selected as most promising for this component. Issues relating to heterogeneous materials, mechanisms and multipoint constraints have been examined, and the linear solver algorithm has been developed to incorporate features that result in a scalable, robust algorithm for practical structural dynamics applications. The resulting tools have been demonstrated on large problems representative of a weapon's system.

  14. Fluid Dynamics and Solid Mechanics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Solid Mechanics Basic and applied research in theoretical continuum dynamics, modern hydrodynamic theory, materials modeling, global climate modeling, numerical...

  15. Dynamical mean-field theory and weakly non-linear analysis for the phase separation of active Brownian particles

    SciTech Connect (OSTI)

    Speck, Thomas; Menzel, Andreas M.; Bialké, Julian; Löwen, Hartmut

    2015-06-14

    Recently, we have derived an effective Cahn-Hilliard equation for the phase separation dynamics of active Brownian particles by performing a weakly non-linear analysis of the effective hydrodynamic equations for density and polarization [Speck et al., Phys. Rev. Lett. 112, 218304 (2014)]. Here, we develop and explore this strategy in more detail and show explicitly how to get to such a large-scale, mean-field description starting from the microscopic dynamics. The effective free energy emerging from this approach has the form of a conventional Ginzburg-Landau function. On the coarsest scale, our results thus agree with the mapping of active phase separation onto that of passive fluids with attractive interactions through a global effective free energy (motility-induced phase transition). Particular attention is paid to the square-gradient term necessary for the phase separation kinetics. We finally discuss results from numerical simulations corroborating the analytical results.

  16. Applied Science/Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Spectroscopic Technique Reveals the Dynamics of Operating Battery Electrodes ... The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into Focus Laser ...

  17. RESONANCES REQUIRED: DYNAMICAL ANALYSIS OF THE 24 Sex AND HD 200964 PLANETARY SYSTEMS

    SciTech Connect (OSTI)

    Wittenmyer, Robert A.; Horner, Jonathan; Tinney, C. G.

    2012-12-20

    We perform several suites of highly detailed dynamical simulations to investigate the architectures of the 24 Sextantis and HD 200964 planetary systems. The best-fit orbital solution for the two planets in the 24 Sex system places them on orbits with periods that lie very close to 2:1 commensurability, while that for the HD 200964 system places the two planets therein in orbits whose periods lie close to a 4:3 commensurability. In both cases, the proposed best-fit orbits are mutually crossing-a scenario that is only dynamically feasible if the planets are protected from close encounters by the effects of mutual mean-motion resonance (MMR). Our simulations reveal that the best-fit orbits for both systems lie within narrow islands of dynamical stability, and are surrounded by much larger regions of extreme instability. As such, we show that the planets are only feasible if they are currently trapped in mutual MMR-the 2:1 resonance in the case of 24 Sex b and c, and the 4:3 resonance in the case of HD 200964 b and c. In both cases, the region of stability is strongest and most pronounced when the planetary orbits are mutually coplanar. As the inclination of planet c with respect to planet b is increased, the stability of both systems rapidly collapses.

  18. Analysis of nanoscale two-phase flow of argon using molecular dynamics

    SciTech Connect (OSTI)

    Verma, Abhishek Kumar; Kumar, Rakesh

    2014-12-09

    Two phase flows through micro and nanochannels have attracted a lot of attention because of their immense applicability to many advanced fields such as MEMS/NEMS, electronic cooling, bioengineering etc. In this work, a molecular dynamics simulation method is employed to study the condensation process of superheated argon vapor force driven flow through a nanochannel combining fluid flow and heat transfer. A simple and effective particle insertion method is proposed to model phase change of argon based on non-periodic boundary conditions in the simulation domain. Starting from a crystalline solid wall of channel, the condensation process evolves from a transient unsteady state where we study the influence of different wall temperatures and fluid wall interactions on interfacial and heat transport properties of two phase flows. Subsequently, we analyzed transient temperature, density and velocity fields across the channel and their dependency on varying wall temperature and fluid wall interaction, after a dynamic equilibrium is achieved in phase transition. Quasi-steady nonequilibrium temperature profile, heat flux and interfacial thermal resistance were analyzed. The results demonstrate that the molecular dynamics method, with the proposed particle insertion method, effectively solves unsteady nonequilibrium two phase flows at nanoscale resolutions whose interphase between liquid and vapor phase is typically of the order of a few molecular diameters.

  19. Ethanol Distribution, Dispensing, and Use: Analysis of a Portion of the Biomass-to-Biofuels Supply Chain Using System Dynamics

    SciTech Connect (OSTI)

    Vimmerstedt, L. J.; Bush, B.; Peterson, S.

    2012-05-01

    The Energy Independence and Security Act of 2007 targets use of 36 billion gallons of biofuels per year by 2022. Achieving this may require substantial changes to current transportation fuel systems for distribution, dispensing, and use in vehicles. The U.S. Department of Energy and the National Renewable Energy Laboratory designed a system dynamics approach to help focus government action by determining what supply chain changes would have the greatest potential to accelerate biofuels deployment. The National Renewable Energy Laboratory developed the Biomass Scenario Model, a system dynamics model which represents the primary system effects and dependencies in the biomass-to-biofuels supply chain. The model provides a framework for developing scenarios and conducting biofuels policy analysis. This paper focuses on the downstream portion of the supply chain-represented in the distribution logistics, dispensing station, and fuel utilization, and vehicle modules of the Biomass Scenario Model. This model initially focused on ethanol, but has since been expanded to include other biofuels. Some portions of this system are represented dynamically with major interactions and feedbacks, especially those related to a dispensing station owner's decision whether to offer ethanol fuel and a consumer's choice whether to purchase that fuel. Other portions of the system are modeled with little or no dynamics; the vehicle choices of consumers are represented as discrete scenarios. This paper explores conditions needed to sustain an ethanol fuel market and identifies implications of these findings for program and policy goals. A large, economically sustainable ethanol fuel market (or other biofuel market) requires low end-user fuel price relative to gasoline and sufficient producer payment, which are difficult to achieve simultaneously. Other requirements (different for ethanol vs. other biofuel markets) include the need for infrastructure for distribution and dispensing and

  20. ADAPT (Analysis of Dynamic Accident Progression Trees) Beta Version 0.9

    Energy Science and Technology Software Center (OSTI)

    2010-01-07

    The purpose of the ADAPT code is to generate Dynamic Event Trees (DET) using a user specified simulator. ADAPT can utilize any simulation tool which meets a minimal set of requirements. ADAPT is based on the concept of DET which use explicit modeling of the deterministic dynamic processes that take place during a nuclear reactor plant system evolution along with stochastic modeling. When DET are used to model different aspects of Probabilistic Risk Assessment (PRA),more » all accident progression scenarios starting from an initiating event are considered simultaneously. The DET branching occurs at user specified times and/or when an action is required by the system and/or the operator. These outcomes then decide how the dynamic system variables will evolve in time for each DET branch. Since two different outcomes at a DET branching may lead to completely different paths for system evolution, the next branching for these paths may occur not only at different times, but can be based on different branching criteria. The computational infrastructure allows for flexibility in ADAPT to link with different system simulation codes, parallel processing of the scenarios under consideration, on-line scenario management (initiation as well as termination) and user friendly graphical capabilities. The ADAPT system is designed for a distributed computing environment; the scheduler can track multiple concurrent branches simultaneously. The scheduler is modularized so that the DET branching strategy can be modified (e.g. biasing towards the worse case scenario/event). Independent database systems store data from the simulation tasks and the DET structure so that the event tree can be constructed and analyzed later. ADAPT is provided with a user-friendly client which can easily sort through and display the results of an experiment, precluding the need for the user to manually inspect individual simulator runs.« less

  1. DYNA3D user's manual (nonlinear dynamic analysis of solids in three-dimensions)

    SciTech Connect (OSTI)

    Hallquist, J.O.

    1982-11-01

    This report provides an updated user's manual for DYNA3D, an explicit three-dimensional finite-element code for analyzing the large-deformation dynamic response of inelastic solids. A contact-impact algorithm permits gaps and sliding along material interfaces. By a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 8-node solid elements, and the equations-of-motion are integrated by the central difference method. DYNA3D contains fifteen material models and nine equations of state to cover a wide range of material behavior.

  2. DYNA3D user's manual (nonlinear dynamic analysis of solids in three dimensions)

    SciTech Connect (OSTI)

    Hallquist, J.O.

    1984-04-01

    This report provides an updated user's manual for DYNA3D, an explicit three-dimensional finite element code for analyzing the large deformation dynamic response of inelastic solids. A contact-impact algorithm permits gaps and sliding along material interfaces. By a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 8-node solid elements, and the equations-of-motion are integrated by the central difference method. DYNA3D contains fifteen material models and nine equations of state to cover a wide range of material behavior.

  3. Nonlinear Raman Techniques in Femtosecond Time Resolved Spectroscopy for the Analysis and Control of Molecular Dynamics

    SciTech Connect (OSTI)

    Materny, Arnulf; Konradi, Jakow; Namboodiri, Vinu; Namboodiri, Mahesh; Scaria, Abraham

    2008-11-14

    The use of four-wave mixing techniques in femtosecond time-resolved spectroscopy has considerable advantages. Due to the many degrees of freedom offered e.g. by coherent anti-Stokes Raman scattering (CARS), the dynamics even of complex systems can be analyzed in detail. Using pulse shaping techniques in combination with a self-learning loop approach, molecular mode excitation can be controlled very efficiently in a multi-photon excitation process. Results obtained from the optimal control of CARS on {beta}-carotene are discussed.

  4. Microscopic analysis of non-equilibrium dynamics in the semiconductor-laser gain medium

    SciTech Connect (OSTI)

    Hader, J.; Moloney, J. V.; Koch, S. W.

    2014-04-14

    Fully microscopic many-body calculations are used to analyze the carrier dynamics in situations where a strong sub-picosecond pulse interacts with an inverted semiconductor quantum well. Electron-electron and electron-phonon scatterings are calculated on a second Born-Markov level. Intra-subband scatterings on a scale of tens of femtoseconds are shown to quickly re-fill the kinetic holes created in the carrier distributions during the pulse amplification. Even for sub-100 fs pulses, this significantly influences the pulse amplification as well as its spectral dependence. Interband scatterings on a few picosecond timescale limit the possibly achievable repetition rate in pulsed semiconductor lasers.

  5. Applied & Computational Math

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Computational Math - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Twitter Google + Vimeo GovDelivery SlideShare Applied & Computational Math HomeEnergy ...

  6. Applied Computer Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Applied Computer Science Innovative co-design of applications, algorithms, and architectures in order to enable scientific simulations at extreme scale Leadership Group Leader ...

  7. DYNAMIC ANALYSIS OF THE BULK TRITIUM SHIPPING PACKAGE SUBJECTED TO CLOSURE TORQUES AND SEQUENTIAL IMPACTS

    SciTech Connect (OSTI)

    Wu, T; Paul Blanton, P; Kurt Eberl, K

    2007-07-09

    This paper presents a finite-element technique to simulate the structural responses and to evaluate the cumulative damage of a radioactive material packaging requiring bolt closure-tightening torque and subjected to the scenarios of the Hypothetical Accident Conditions (HAC) defined in the Code of Federal Regulations Title 10 part 71 (10CFR71). Existing finite-element methods for modeling closure stresses from bolt pre-load are not readily adaptable to dynamic analyses. The HAC events are required to occur sequentially per 10CFR71 and thus the evaluation of the cumulative damage is desirable. Generally, each HAC event is analyzed separately and the cumulative damage is partially addressed by superposition. This results in relying on additional physical testing to comply with 10CFR71 requirements for assessment of cumulative damage. The proposed technique utilizes the combination of kinematic constraints, rigid-body motions and structural deformations to overcome some of the difficulties encountered in modeling the effect of cumulative damage. This methodology provides improved numerical solutions in compliance with the 10CFR71 requirements for sequential HAC tests. Analyses were performed for the Bulk Tritium Shipping Package (BTSP) designed by Savannah River National Laboratory to demonstrate the applications of the technique. The methodology proposed simulates the closure bolt torque preload followed by the sequential HAC events, the 30-foot drop and the 30-foot dynamic crush. The analytical results will be compared to the package test data.

  8. Conformational selection in a protein-protein interaction revealed by dynamic pathway analysis

    SciTech Connect (OSTI)

    Chakrabarti, Kalyan S.; Agafonov, Roman V.; Pontiggia, Francesco; Otten, Renee; Higgins, Matthew K.; Schertler, Gebhard F. X.; Oprian, Daniel D.; Kern, Dorothee

    2015-12-24

    Molecular recognition plays a central role in biology, and protein dynamics has been acknowledged to be important in this process. However, it is highly debated whether conformational changes happen before ligand binding to produce a binding-competent state (conformational selection) or are caused in response to ligand binding (induced fit). Proposals for both mechanisms in protein/protein recognition have been primarily based on structural arguments. However, the distinction between them is a question of the probabilities of going via these two opposing pathways. Here we present a direct demonstration of exclusive conformational selection in protein/protein recognition by measuring the flux for rhodopsin kinase binding to its regulator recoverin, an important molecular recognition in the vision system. Using NMR spectroscopy, stopped-flow kinetics and isothermal titration calorimetry we show that recoverin populates a minor conformation in solution that exposes a hydrophobic binding pocket responsible for binding rhodopsin kinase. Lastly, protein dynamics in free recoverin limits the overall rate of binding.

  9. Conformational selection in a protein-protein interaction revealed by dynamic pathway analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chakrabarti, Kalyan S.; Agafonov, Roman V.; Pontiggia, Francesco; Otten, Renee; Higgins, Matthew K.; Schertler, Gebhard F. X.; Oprian, Daniel D.; Kern, Dorothee

    2015-12-24

    Molecular recognition plays a central role in biology, and protein dynamics has been acknowledged to be important in this process. However, it is highly debated whether conformational changes happen before ligand binding to produce a binding-competent state (conformational selection) or are caused in response to ligand binding (induced fit). Proposals for both mechanisms in protein/protein recognition have been primarily based on structural arguments. However, the distinction between them is a question of the probabilities of going via these two opposing pathways. Here we present a direct demonstration of exclusive conformational selection in protein/protein recognition by measuring the flux for rhodopsinmore » kinase binding to its regulator recoverin, an important molecular recognition in the vision system. Using NMR spectroscopy, stopped-flow kinetics and isothermal titration calorimetry we show that recoverin populates a minor conformation in solution that exposes a hydrophobic binding pocket responsible for binding rhodopsin kinase. Lastly, protein dynamics in free recoverin limits the overall rate of binding.« less

  10. HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution) Model Analysis

    Broader source: Energy.gov [DOE]

    Presentation by NREL's Cory Welch at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting on August 9 - 10, 2006 in Washington, D.C.

  11. Numerical analysis of laser-driven reservoir dynamics for shockless loading

    SciTech Connect (OSTI)

    Li Mu; Zhang Hongping; Sun Chengwei; Zhao Jianheng; Yuan Hong

    2011-05-01

    Laser-driven plasma loader for shockless compression provides a new approach to study the rapid compression response of materials not attainable in conventional shock experiments. In this method, the strain rate is varied from {approx}10{sup 6}/s to {approx}10{sup 8}/s, significantly higher than other shockless compression methods. Thus, this loading process is attractive in the research of solid material dynamics and astrophysics. The objective of the current study is to demonstrate the dynamic properties of the jet from the rear surface of the reservoir, and how important parameters such as peak load, rise time, shockless compression depth, and stagnating melt depth in the sample vary with laser intensity, laser pulse length, reservoir thickness, vacuum gap size, and even the sample material. Numerical simulations based on the space-time conservation element and solution element method, together with the bulk ablation model, were used. The dynamics of the reservoir depend on the laser intensity, pulse length, equation of state, as well as the molecular structure of the reservoir. The critical pressure condition at which the reservoir will unload, similar to a gas or weak plasma, is 40-80 GPa before expansion. The momentum distribution bulges downward near the front of the plasma jet, which is an important characteristic that determines shockless compression. The total energy density is the most important parameter, and has great influence on the jet characteristics, and consequently on the shockless compression characteristics. If the reservoir is of a single material irradiated at a given laser condition, the relation of peak load and shockless compression depth is in conflict, and the highest loads correspond to the smallest thickness of sample. The temperature of jet front runs up several electron volts after impacting on the sample, and the heat transfer between the stagnating plasma and the sample is sufficiently significant to induce the melting of the

  12. DYNA3D (Nonlinear Dynamic Analysis of Structures in Three Dimensions) user's manual

    SciTech Connect (OSTI)

    Hallquist, J.O.

    1988-04-01

    This report provides an updated user's manual for DYNA3D, an explicit three-dimensional finite element code for analyzing the large deformation dynamic response of inelastic solids and structures. A contact-impact algorithm permits gaps and sliding along material interfaces with friction. By a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 8-node solid elements, 2-node beam elements, 4-node shell elements, 8-node solid shell elements, and rigid bodies. The equations-of-motion are integrated in time by the central difference method. DYNA3D contains twenty-eight material models and eleven equations of state to cover a wide range of material behavior. 56 refs., 46 figs.

  13. User's manuals for DYNA3D and DYNAP: nonlinear dynamic analysis of solids in three dimensions

    SciTech Connect (OSTI)

    Hallquist, J.O.

    1981-07-01

    This report provides a user's manual for DYNA3D, an explicit three-dimensional finite element code for analyzing the large deformation dynamic response of inelastic solids. A contact-impact algorithm permits gaps and sliding along material interfaces. By a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 8-node solid elements, and the equations-of-motion are integrated by the central difference method. Post-processors for DYNA3D include GRAPE for plotting deformed shapes and stress contours and DYNAP for plotting time histories. A user's manual for DYNAP is also provided in this report.

  14. DYNA3D user's manual (nonlinear dynamic analysis of structures in three dimensions)

    SciTech Connect (OSTI)

    Hallquist, J.O.; Benson, D.J.

    1987-07-01

    This report provides an updated user's manual for DYNA3D, an explicit three-dimensional finite element code for analyzing the large deformation dynamic response of inelastic solids and structures. A contact-impact algorithm permits gaps and sliding along material interfaces with friction. By a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 8-node solid elements, 2-node beam elements, 4-node shell elements, 8-node solid shell elements, and rigid bodies. The equations-of-motion are integrated in time by the central difference method. DYNA3D contains twenty-five material models and eleven equations of state to cover a wide range of material behavior.

  15. DYNA3D user's manual (nonlinear dynamic analysis of structures in three dimensions). Revision 2

    SciTech Connect (OSTI)

    Hallquist, J.O.; Benson, D.J.

    1986-03-01

    The user's manual for DYNA3D, an explicit three-dimensional finite element code for analyzing the large deformation dynamic response of inelastic solids and structures is updated. A contact-impact algorithm permit gaps and sliding along material interfaces with friction. By a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 8-node solid elements, 2-node beam elements, 4-node shell elements, 8-node solid shell elements, and rigid bodies. The equations-of-motion are integrated in time by the central difference method. DYNA3D contains sixteen material models and nine equations of state to cover a wide range of material behavior. 40 refs., 43 figs.

  16. Dynamic structural analysis of a head assembly for a large loop-type LMFBR

    SciTech Connect (OSTI)

    Kulak, R.F.; Fiala, C.

    1984-01-01

    An investigation is presented on the dynamic structural response of the primary vessel's head closure to slug impact loadings generated from a 1000 MJ source term. The reference reactor considered was designed in a loop configuration. The head structure consisted of a deck and a triple rotatable plug assembly. Two designs were considered for the deck structure: a reference design and an alternate design. The reference deck was designed as a single flat annular plate. For the alternate design, the deck plate was reinforced by adding an extender cylinder with a flange and flanged webs between the deck-plate and cylinder. The investigation showed that the reference design cannot maintain containment integrity when subjected to slug loading generated by a 1000 MJ source term. It was determined that the head deformed excessively.

  17. Dynamic strain gages analysis of critical welds used in power plant circuit breakers

    SciTech Connect (OSTI)

    MacDougall, E.A. ); Wilhelm, W.G. )

    1990-01-01

    A history of failures in power plant circuit breakers associated with critical welds in the internal pole shafts has been investigated. This paper describes the test, equipment, and instrumentation and summarized the preliminary results of testing performed on these breakers at Brookhaven National Laboratory. It includes the description of the instrumentation including the use of a full bridge strain gage sensor and instrumentation amplifier connected to an oscilloscope. The combination provided a sensitive instrument capable of revealing subtle changes in circuit breaker performance. The strain gages were attached to pole shafts and monitored dynamically. The observed changes in wave signature were recorded as a function of accumulated operating cycles. Complex changes in wave shape recorded on an oscillograph indicate patterns related to impending weld failure. The life expectancy measured in the number of circuit breaker open and closing cycles is compared with the weld and other component failures. 8 refs., 4 figs.

  18. Molecular Dynamics Simulation and Analysis of Interfacial Water at Selected Sulfide Mineral Surfaces under Anaerobic Conditions

    SciTech Connect (OSTI)

    Jin, Jiaqi; Miller, Jan D.; Dang, Liem X.

    2014-04-10

    In this paper, we report on a molecular dynamics simulation (MDS) study of the behavior of interfacial water at selected sulfide mineral surfaces under anaerobic conditions. The study revealed the interfacial water structure and wetting characteristics of the pyrite (100) surface, galena (100) surface, chalcopyrite (012) surface, sphalerite (110) surface, and molybdenite surfaces (i.e., the face, armchair-edge, and zigzag-edge surfaces), including simulated contact angles, relative number density profiles, water dipole orientations, hydrogen-bonding, and residence times. For force fields of the metal and sulfur atoms in selected sulfide minerals used in the MDS, we used the universal force field (UFF) and another set of force fields optimized by quantum chemical calculations for interactions with interfacial water molecules at selected sulfide mineral surfaces. Simulation results for the structural and dynamic properties of interfacial water molecules indicate the natural hydrophobic character for the selected sulfide mineral surfaces under anaerobic conditions as well as the relatively weak hydrophobicity for the sphalerite (110) surface and two molybdenite edge surfaces. Part of the financial support for this study was provided by the U.S. Department of Energy (DOE) under Basic Science Grant No. DE-FG-03-93ER14315. The Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences (BES), of the DOE, funded work performed by Liem X. Dang. Battelle operates Pacific Northwest National Laboratory for DOE. The calculations were carried out using computer resources provided by BES. The authors are grateful to Professor Tsun-Mei Chang for valuable discussions.

  19. The liquid surface of chiral ionic liquids as seen from molecular dynamics simulations combined with intrinsic analysis

    SciTech Connect (OSTI)

    LĂ­sal, Martin

    2013-12-07

    We present molecular-level insight into the liquid/gas interface of two chiral room-temperature ionic liquids (RTILs) derived from 1-n-butyl-3-methylimidazolium bromide ([bmim][Br]); namely, (R)-1-butyl-3-(3-hydroxy-2-methylpropyl)imidazolium bromide (hydroxypropyl) and 1-butyl-3-[(1R)-nopyl]imidazolium bromide (nopyl). We use our currently developed force field which was validated against the experimental bulk density, heat of vaporization, and surface tension of [bmim][Br]. The force field for the RTILs adopts the Chemistry at Harvard Molecular Mechanics (CHARMM) parameters for the intramolecular and repulsion-dispersion interactions along with the reduced partial atomic charges based on ab initio calculations. The net charges of the ions are around ±0.8e, which mimic the anion to cation charge transfer and many-body effects. Molecular dynamics simulations in the slab geometry combined with the intrinsic interface analysis are employed to provide a detailed description of the RTIL/gas interface in terms of the structural and dynamic properties of the interfacial, sub-interfacial, and central layers at a temperature of 300 K. The focus is on the comparison of the liquid/gas interface for the chiral RTILs with the interface for parent [bmim][Br]. The structure of the interface is elucidated by evaluating the surface roughness, intrinsic atomic density profiles, and orientation ordering of the cations. The dynamics of the ions at the interfacial region is characterized by computing the survival probability, and normal and lateral self-diffusion coefficients in the layers.

  20. International combustion engines; Applied thermosciences

    SciTech Connect (OSTI)

    Ferguson, C.R.

    1985-01-01

    Focusing on thermodynamic analysis - from the requisite first law to more sophisticated applications - and engine design, this book is an introduction to internal combustion engines and their mechanics. It covers the many types of internal combustion engines, including spark ignition, compression ignition, and stratified charge engines, and examines processes, keeping equations of state simple by assuming constant specific heats. Equations are limited to heat engines and later applied to combustion engines. Topics include realistic equations of state, stroichiometry, predictions of chemical equilibrium, engine performance criteria, and friction, which is discussed in terms of the hydrodynamic theory of lubrication and experimental methods such as dimensional analysis.

  1. Applied Science/Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied ScienceTechniques Print The ALS is an excellent incubator of new scientific techniques and instrumentation. Many of the technical advances that make the ALS a world-class...

  2. Analysis of structure and orientation of adsorbed polymers in solution subject to a dynamic shear stress

    SciTech Connect (OSTI)

    Smith, G.; Baker, S.; Toprakcioglu, C.

    1996-09-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Polymer-based separation techniques rely on the ability of a binding portion of the polymer to interact with a specific molecule in a solution flowing past the polymer. The location of the binding site within or out of the entangled polymer chains is thus crucial to the effectiveness of these methods. For this reason, the details of flow induced deformation of the polymer chains is important in such applications as exclusion chromatography, waste water treatment, ultrafiltration, enhanced oil recovery and microbial adhesion. Few techniques exist to examine the structure and orientation of polymeric materials, and even fewer to examine systems in a dynamic fluid flow. The goal of this project was to understand the molecular structure and orientation of adsorbed polymers with and without active binding ligands as a function of solvent shear rate, solvent power, polymer molecular weight, surface polymer coverage and heterogeneity of the surface polymer chains by neutron reflectometry in a newly designed shear cell. Geometrical effects on binding of molecules in the flow was also studied subject to the same parameters.

  3. First principles analysis of lattice dynamics for Fe-based superconductors and entropically-stabilized phases

    SciTech Connect (OSTI)

    Hahn, Steven

    2012-07-20

    Modern calculations are becoming an essential, complementary tool to inelastic x-ray scattering studies, where x-rays are scattered inelastically to resolve meV phonons. Calculations of the inelastic structure factor for any value of Q assist in both planning the experiment and analyzing the results. Moreover, differences between the measured data and theoretical calculations help identify important new physics driving the properties of novel correlated systems. We have used such calculations to better and more e#14;ciently measure the phonon dispersion and elastic constants of several iron pnictide superconductors. This dissertation describes calculations and measurements at room temperature in the tetragonal phase of CaFe{sub 2}As{sub 2} and LaFeAsO. In both cases, spin-polarized calculations imposing the antiferromagnetic order present in the low-temperature orthorhombic phase dramatically improves the agreement between theory and experiment. This is discussed in terms of the strong antiferromagnetic correlations that are known to persist in the tetragonal phase. In addition, we discuss a relatively new approach called self-consistent ab initio lattice dynamics (SCAILD), which goes beyond the harmonic approximation to include phonon-phonon interactions and produce a temperature-dependent phonon dispersion. We used this technique to study the HCP to BCC transition in beryllium.

  4. Dynamic simulations of geologic materials using combined FEM/DEM/SPH analysis

    SciTech Connect (OSTI)

    Morris, J P; Johnson, S M

    2008-03-26

    An overview of the Lawrence Discrete Element Code (LDEC) is presented, and results from a study investigating the effect of explosive and impact loading on geologic materials using the Livermore Distinct Element Code (LDEC) are detailed. LDEC was initially developed to simulate tunnels and other structures in jointed rock masses using large numbers of polyhedral blocks. Many geophysical applications, such as projectile penetration into rock, concrete targets, and boulder fields, require a combination of continuum and discrete methods in order to predict the formation and interaction of the fragments produced. In an effort to model this class of problems, LDEC now includes implementations of Cosserat point theory and cohesive elements. This approach directly simulates the transition from continuum to discontinuum behavior, thereby allowing for dynamic fracture within a combined finite element/discrete element framework. In addition, there are many application involving geologic materials where fluid-structure interaction is important. To facilitate solution of this class of problems a Smooth Particle Hydrodynamics (SPH) capability has been incorporated into LDEC to simulate fully coupled systems involving geologic materials and a saturating fluid. We will present results from a study of a broad range of geomechanical problems that exercise the various components of LDEC in isolation and in tandem.

  5. Dynamic Faraday cup signal analysis and the measurement of energetic ions emitted by plasma focus

    SciTech Connect (OSTI)

    Pestehe, S. J. Mohammadnejad, M.; Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz ; Irani Mobaraki, S.

    2014-03-15

    A theoretical model is developed to study the signals from a typical dynamic Faraday cup, and using this model the output signals from this structure are obtained. A detailed discussion on the signal structure, using different experimental conditions, is also given. It is argued that there is a possibility of determining the total charge of the generated ion pulse, the maximum velocity of the ions, ion velocity distribution, and the number of ion species for mixed working gases, under certain conditions. In addition, the number of different ionization stages, the number of different pinches in one shot, and the number of different existing acceleration mechanisms can also be determined provided that the mentioned conditions being satisfied. An experiment is carried out on the Filippov type 90 kJ Sahand plasma focus using Ar as the working gas at the pressure of 0.25 Torr. The data from a typical shot are fitted to a signal from the model and the total charge of the related energetic ion pulse is deduced using the values of the obtained fit parameters. Good agreement between the obtained amount of the total charge and the values obtained during other experiments on the same plasma focus device is observed.

  6. How To Apply

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How To Apply How to Apply for Computer System, Cluster, and Networking Summer Institute Emphasizes practical skills development Contacts Program Lead Carolyn Connor (505) 665-9891 Email Professional Staff Assistant Nickole Aguilar Garcia (505) 665-3048 Email The 2016 application process will commence January 5 through February 13, 2016. Applicants must be U.S. citizens. Required Materials Current resume Official university transcript (with Spring courses posted and/or a copy of Spring 2016

  7. Dynamics near QCD critical point by dynamic renormalization group

    SciTech Connect (OSTI)

    Minami, Yuki

    2011-05-01

    We work out the basic analysis on dynamics near the QCD critical point (CP) by the dynamic renormalization group (RG). In addition to the RG analysis by coarse-graining, we construct the nonlinear Langevin equation as a basic equation for the critical dynamics. Our construction is based on the generalized Langevin theory and the relativistic hydrodynamics. Applying the dynamic RG to the constructed equation, we derive the RG equation for the transport coefficients and analyze their critical behaviors. We find that the resulting RG equation turns out to be the same as that for the liquid-gas CP except for an insignificant constant. Therefore, the bulk viscosity and the thermal conductivity strongly diverge at the QCD CP. We also show that the thermal and viscous diffusion modes exhibit critical slowing down with the dynamic critical exponents z{sub thermal}{approx}3 and z{sub viscous}{approx}2, respectively. In contrast, the sound propagating mode shows critical speeding up with the negative exponent z{sub sound}{approx}-0.8.

  8. Improved Protein Arrays for Quantitative Systems Analysis of the Dynamics of Signaling Pathway Interactions

    SciTech Connect (OSTI)

    YANG, CHIN-RANG

    2013-12-11

    Astronauts and workers in nuclear plants who repeatedly exposed to low doses of ionizing radiation (IR, <10 cGy) are likely to incur specific changes in signal transduction and gene expression in various tissues of their body. Remarkable advances in high throughput genomics and proteomics technologies enable researchers to broaden their focus from examining single gene/protein kinetics to better understanding global gene/protein expression profiling and biological pathway analyses, namely Systems Biology. An ultimate goal of systems biology is to develop dynamic mathematical models of interacting biological systems capable of simulating living systems in a computer. This Glue Grant is to complement Dr. Boothman’s existing DOE grant (No. DE-FG02-06ER64186) entitled “The IGF1/IGF-1R-MAPK-Secretory Clusterin (sCLU) Pathway: Mediator of a Low Dose IR-Inducible Bystander Effect” to develop sensitive and quantitative proteomic technology that suitable for low dose radiobiology researches. An improved version of quantitative protein array platform utilizing linear Quantum dot signaling for systematically measuring protein levels and phosphorylation states for systems biology modeling is presented. The signals are amplified by a confocal laser Quantum dot scanner resulting in ~1000-fold more sensitivity than traditional Western blots and show the good linearity that is impossible for the signals of HRP-amplification. Therefore this improved protein array technology is suitable to detect weak responses of low dose radiation. Software is developed to facilitate the quantitative readout of signaling network activities. Kinetics of EGFRvIII mutant signaling was analyzed to quantify cross-talks between EGFR and other signaling pathways.

  9. Charge-carrier dynamics in polycrystalline thin-film CuIn{sub 1−x}Ga{sub x}Se{sub 2} photovoltaic devices after pulsed laser excitation: Interface and space-charge region analysis

    SciTech Connect (OSTI)

    Kuciauskas, Darius; Li, Jian V.; Kanevce, Ana; Guthrey, Harvey; Contreras, Miguel; Pankow, Joel; Dippo, Pat; Ramanathan, Kannan

    2015-05-14

    We used time-resolved photoluminescence (TRPL) spectroscopy to analyze time-domain and spectral-domain charge-carrier dynamics in CuIn{sub 1−x}Ga{sub x}Se{sub 2} (CIGS) photovoltaic (PV) devices. This new approach allowed detailed characterization for the CIGS/CdS buffer interface and for the space-charge region. We find that dynamics at the interface is dominated by diffusion, where the diffusion rate is several times greater than the thermionic emission or interface recombination rate. In the space-charge region, the electric field of the pn junction has the largest effect on the carrier dynamics. Based on the minority-carrier (electron) drift-rate dependence on the electric field strength, we estimated drift mobility in compensated CuIn{sub 1−x}Ga{sub x}Se{sub 2} (with x ≈ 0.3) as 22 ± 2 cm{sup 2}(Vs){sup −1}. Analysis developed in this study could be applied to evaluate interface and junction properties of PV and other electronic devices. For CIGS PV devices, TRPL spectroscopy could contribute to understanding effects due to absorber compositional grading, which is one of the focus areas in developing record-efficiency CIGS solar cells.

  10. TRAJECTORY SENSITIVITY ANALYSIS FOR DYNAMIC SECURITY ASSESSMENT AND OTHER APPLICATIONS IN POWER SYSTEMS

    SciTech Connect (OSTI)

    Nguyen, Tony B.; Pai, M. A.

    2014-07-10

    Real time stability evaluation and preventive scheduling in power systems offer many challenges in a stressed power system. Trajectory sensitivity analysis (TSA) is a useful tool for this and other applications in the emerging smart grid area. In this chapter we outline the basic approach of TSA, to extract suitable information from the data and develop reliable metrics or indices to evaluate proximity of the system to an unstable condition. Trajectory sensitivities can be used to compute critical parameters such as clearing time of circuit breakers, tie line flow, etc. in a power system by developing suitable norms for ease of interpretation. The TSA technique has the advantage that model complexity is not a limitation, and the sensitivities can be computed numerically. Suitable metrics are developed from these sensitivities. The TSA technique can be extended to do preventive rescheduling. A brief discussion of other applications of TSA in placement of distributed generation is indicated.

  11. Apply for Beamtime

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply for Beamtime Apply for Beamtime Print Friday, 28 August 2009 13:23 Available Beamlines Determine which ALS beamlines are suitable for your experiment. To do this, you can review the ALS Beamlines Directory, contact the appropriate beamline scientist listed on the Directory, and/or contact the This e-mail address is being protected from spambots. You need JavaScript enabled to view it . Log In to the ALSHub user portal ALSHub Login For More Information About the Types of Proposals To learn

  12. Dynamical systems probabilistic risk assessment.

    SciTech Connect (OSTI)

    Denman, Matthew R.; Ames, Arlo Leroy

    2014-03-01

    Probabilistic Risk Assessment (PRA) is the primary tool used to risk-inform nuclear power regulatory and licensing activities. Risk-informed regulations are intended to reduce inherent conservatism in regulatory metrics (e.g., allowable operating conditions and technical specifications) which are built into the regulatory framework by quantifying both the total risk profile as well as the change in the risk profile caused by an event or action (e.g., in-service inspection procedures or power uprates). Dynamical Systems (DS) analysis has been used to understand unintended time-dependent feedbacks in both industrial and organizational settings. In dynamical systems analysis, feedback loops can be characterized and studied as a function of time to describe the changes to the reliability of plant Structures, Systems and Components (SSCs). While DS has been used in many subject areas, some even within the PRA community, it has not been applied toward creating long-time horizon, dynamic PRAs (with time scales ranging between days and decades depending upon the analysis). Understanding slowly developing dynamic effects, such as wear-out, on SSC reliabilities may be instrumental in ensuring a safely and reliably operating nuclear fleet. Improving the estimation of a plant's continuously changing risk profile will allow for more meaningful risk insights, greater stakeholder confidence in risk insights, and increased operational flexibility.

  13. Perturbation analysis of trapped-particle dynamics in axisymmetric dipole geometry

    SciTech Connect (OSTI)

    Duthoit, F.-X.; Brizard, A. J.; Peysson, Y.; Decker, J.

    2010-10-15

    The bounce-action-angle coordinates (J,{zeta}) for charged particles trapped in an axisymmetric dipole magnetic field are constructed by perturbation analysis. First, the lowest-order bounce-action-angle coordinates (J{sub 0},{zeta}{sub 0}) are derived for deeply trapped particles in the harmonic-oscillator approximation. Next, the Lie-transform perturbation method is used to derive higher-order anharmonic action-angle corrections (J=J{sub 0}+{epsilon}{sub t}J{sub 1}, {zeta}={zeta}{sub 0}+{epsilon}{sub t{zeta}1}), where the dimensionless parameter {epsilon}{sub t{identical_to}}(s{sub b}/r{sub e}){sup 2}<<1 is defined as the ratio of the turning-point distance |s{sub b}| (measured from the equator) along a magnetic field line labeled by the equatorial distance r{sub e}. Explicit expressions (with anharmonic corrections) for the canonical parallel coordinates s(J,{zeta}) and p{sub ||}(J,{zeta}) are presented, which satisfy the canonical identity {l_brace}s,p{sub ||{r_brace}{identical_to}}1. Lastly, analytical expressions for the bounce and drift frequencies (which include anharmonic corrections) yield excellent agreement with exact numerical results.

  14. Analysis of shockless dynamic compression data on solids to multi-megabar pressures: Application to tantalum

    SciTech Connect (OSTI)

    Davis, Jean -Paul; Brown, Justin L.; Knudson, Marcus D.; Lemke, Raymond W.

    2014-11-26

    In this research, magnetically-driven, planar shockless-compression experiments to multi-megabar pressures were performed on tantalum samples using a stripline target geometry. Free-surface velocity waveforms were measured in 15 cases; nine of these in a dual-sample configuration with two samples of different thicknesses on opposing electrodes, and six in a single-sample configuration with a bare electrode opposite the sample. Details are given on the application of inverse Lagrangian analysis (ILA) to these data, including potential sources of error. The most significant source of systematic error, particularly for single-sample experiments, was found to arise from the pulse-shape dependent free-surface reflected wave interactions with the deviatoric-stress response of tantalum. This could cause local, possibly temporary, unloading of material from a ramp compressed state, and thus multi-value response in wave speed that invalidates the free-surface to in-material velocity mapping step of ILA. By averaging all 15 data sets, a final result for the principal quasi-isentrope of tantalum in stress-strain was obtained to a peak longitudinal stress of 330 GPa with conservative uncertainty bounds of ±4.5% in stress. The result agrees well with a tabular equation of state developed at Los Alamos National Laboratory.

  15. Analysis of shockless dynamic compression data on solids to multi-megabar pressures: Application to tantalum

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Davis, Jean -Paul; Brown, Justin L.; Knudson, Marcus D.; Lemke, Raymond W.

    2014-11-26

    In this research, magnetically-driven, planar shockless-compression experiments to multi-megabar pressures were performed on tantalum samples using a stripline target geometry. Free-surface velocity waveforms were measured in 15 cases; nine of these in a dual-sample configuration with two samples of different thicknesses on opposing electrodes, and six in a single-sample configuration with a bare electrode opposite the sample. Details are given on the application of inverse Lagrangian analysis (ILA) to these data, including potential sources of error. The most significant source of systematic error, particularly for single-sample experiments, was found to arise from the pulse-shape dependent free-surface reflected wave interactions withmore » the deviatoric-stress response of tantalum. This could cause local, possibly temporary, unloading of material from a ramp compressed state, and thus multi-value response in wave speed that invalidates the free-surface to in-material velocity mapping step of ILA. By averaging all 15 data sets, a final result for the principal quasi-isentrope of tantalum in stress-strain was obtained to a peak longitudinal stress of 330 GPa with conservative uncertainty bounds of ±4.5% in stress. The result agrees well with a tabular equation of state developed at Los Alamos National Laboratory.« less

  16. Equilibrium Distribution of Heavy Quarks in Fokker-Planck Dynamics

    SciTech Connect (OSTI)

    Walton, D. Brian; Rafelski, Johann

    2000-01-03

    We obtain an explicit generalization, within Fokker-Planck dynamics, of Einstein's relation between drag, diffusion, and the equilibrium distribution for a spatially homogeneous system, considering both the transverse and longitudinal diffusion for dimension n>1 . We provide a complete characterization of the equilibrium distribution in terms of the drag and diffusion transport coefficients. We apply this analysis to charm quark dynamics in a thermal quark-gluon plasma for the case of collisional equilibration. (c) 1999 The American Physical Society.

  17. Development of a Dynamic DOE Calibration Model

    Broader source: Energy.gov [DOE]

    A dynamic heavy duty diesel engine model was developed. The model can be applied for calibration and control system optimization.

  18. Applied Cathode Enhancement and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied Cathode Enhancement and Robustness Technologies (ACERT) Team Our project team, a part of Los Alamos National Laboratory (LANL) comprised of world leading experts from fields of accelerator design & testing, chemical synthesis of nanomaterials (quantum dots), and shielding application of nanomaterials (graphene and other atomically-thin sheets). Our goal is to develop and demonstrate 'designer' cold cathode electron sources with tunable parameters (bandgap, efficiency, optical

  19. Applied Computer Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Applied Computer Science Innovative co-design of applications, algorithms, and architectures in order to enable scientific simulations at extreme scale Leadership Group Leader Linn Collins Email Deputy Group Leader (Acting) Bryan Lally Email Climate modeling visualization Results from a climate simulation computed using the Model for Prediction Across Scales (MPAS) code. This visualization shows the temperature of ocean currents using a green and blue color scale. These colors were

  20. Applied Modern Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Applied Modern Physics From the first bionic eye to airport scanners that detect liquid explosives, our expertise in developing advanced diagnostics results in real-world innovations. Contact Us Group Leader (acting) John George Email Deputy Group Leader Larry Schultz Email Group Office (505) 665-2545 Email QkarD Quantum key distribution technology could ensure truly secure commerce, banking, communications and data transfer. Read more... A history of excellence in the development and use of

  1. Investigation of the dynamic stress–strain response of compressible polymeric foam using a non-parametric analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Koohbor, Behrad; Kidane, Addis; Lu, Wei -Yang; Sutton, Michael A.

    2016-01-25

    Dynamic stress–strain response of rigid closed-cell polymeric foams is investigated in this work by subjecting high toughness polyurethane foam specimens to direct impact with different projectile velocities and quantifying their deformation response with high speed stereo-photography together with 3D digital image correlation. The measured transient displacement field developed in the specimens during high stain rate loading is used to calculate the transient axial acceleration field throughout the specimen. A simple mathematical formulation based on conservation of mass is also proposed to determine the local change of density in the specimen during deformation. By obtaining the full-field acceleration and density distributions,more » the inertia stresses at each point in the specimen are determined through a non-parametric analysis and superimposed on the stress magnitudes measured at specimen ends to obtain the full-field stress distribution. Furthermore, the process outlined above overcomes a major challenge in high strain rate experiments with low impedance polymeric foam specimens, i.e. the delayed equilibrium conditions can be quantified.« less

  2. Integrated systems analysis applied to environmental remediation

    SciTech Connect (OSTI)

    Thayer, G.R.; Hardie, R.W.; Catherwood, R.; Springer, E.P.

    1997-12-31

    At the request of the Congressional Task Force on the Salton Sea and the Salton Sea Authority, the authors examined various technologies that have been proposed to reduce the decline in the Salton Sea. The primary focus of the technologies was to reduce the salinity of the Salton Sea, with secondary objectives of maintaining the present shoreline and to have a minimum cost. The authors found that two technologies, pump-out and diking, could provide the required salinity reduction. The pump-out option would result in a smaller Sea while to diking option would create a high salinity impoundment area in the Sea. The costs for the two options were similar. Desalination and pump-in; pump-out options were rejected because of high costs and because they did not provide a sufficient reduction in the salinity of the Salton Sea. The end product of the project was testimony before the Subcommittee on Water and Power, U.S. House of Representatives Committee on Resources, given October 3, 1997.

  3. Applied ALARA techniques

    SciTech Connect (OSTI)

    Waggoner, L.O.

    1998-02-05

    The presentation focuses on some of the time-proven and new technologies being used to accomplish radiological work. These techniques can be applied at nuclear facilities to reduce radiation doses and protect the environment. The last reactor plants and processing facilities were shutdown and Hanford was given a new mission to put the facilities in a safe condition, decontaminate, and prepare them for decommissioning. The skills that were necessary to operate these facilities were different than the skills needed today to clean up Hanford. Workers were not familiar with many of the tools, equipment, and materials needed to accomplish:the new mission, which includes clean up of contaminated areas in and around all the facilities, recovery of reactor fuel from spent fuel pools, and the removal of millions of gallons of highly radioactive waste from 177 underground tanks. In addition, this work has to be done with a reduced number of workers and a smaller budget. At Hanford, facilities contain a myriad of radioactive isotopes that are 2048 located inside plant systems, underground tanks, and the soil. As cleanup work at Hanford began, it became obvious early that in order to get workers to apply ALARA and use hew tools and equipment to accomplish the radiological work it was necessary to plan the work in advance and get radiological control and/or ALARA committee personnel involved early in the planning process. Emphasis was placed on applying,ALARA techniques to reduce dose, limit contamination spread and minimize the amount of radioactive waste generated. Progress on the cleanup has,b6en steady and Hanford workers have learned to use different types of engineered controls and ALARA techniques to perform radiological work. The purpose of this presentation is to share the lessons learned on how Hanford is accomplishing radiological work.

  4. Apply for Beamtime

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply for Beamtime Print Available Beamlines Determine which ALS beamlines are suitable for your experiment. To do this, you can review the ALS Beamlines Directory, contact the appropriate beamline scientist listed on the Directory, and/or contact the This e-mail address is being protected from spambots. You need JavaScript enabled to view it . Log In to the ALSHub user portal ALSHub Login For More Information About the Types of Proposals To learn more about the three different types of

  5. Apply for Beamtime

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply for Beamtime Print Available Beamlines Determine which ALS beamlines are suitable for your experiment. To do this, you can review the ALS Beamlines Directory, contact the appropriate beamline scientist listed on the Directory, and/or contact the This e-mail address is being protected from spambots. You need JavaScript enabled to view it . Log In to the ALSHub user portal ALSHub Login For More Information About the Types of Proposals To learn more about the three different types of

  6. Statistical analysis of the dynamics of secondary electrons in the flare of a high-voltage beam-type discharge

    SciTech Connect (OSTI)

    Demkin, V. P.; Mel'nichuk, S. V.

    2014-09-15

    In the present work, results of investigations into the dynamics of secondary electrons with helium atoms in the presence of the reverse electric field arising in the flare of a high-voltage pulsed beam-type discharge and leading to degradation of the primary electron beam are presented. The electric field in the discharge of this type at moderate pressures can reach several hundred V/cm and leads to considerable changes in the kinetics of secondary electrons created in the process of propagation of the electron beam generated in the accelerating gap with a grid anode. Moving in the accelerating electric field toward the anode, secondary electrons create the so-called compensating current to the anode. The character of electron motion and the compensating current itself are determined by the ratio of the field strength to the concentration of atoms (E/n). The energy and angular spectra of secondary electrons are calculated by the Monte Carlo method for different ratios E/n of the electric field strength to the helium atom concentration. The motion of secondary electrons with threshold energy is studied for inelastic collisions of helium atoms and differential analysis is carried out of the collisional processes causing energy losses of electrons in helium for different E/n values. The mechanism of creation and accumulation of slow electrons as a result of inelastic collisions of secondary electrons with helium atoms and selective population of metastable states of helium atoms is considered. It is demonstrated that in a wide range of E/n values the motion of secondary electrons in the beam-type discharge flare has the character of drift. At E/n values characteristic for the discharge of the given type, the drift velocity of these electrons is calculated and compared with the available experimental data.

  7. System Dynamics Model | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynamics Model content top Chemical Supply Chain Analysis Posted by Admin on Mar 1, 2012 in | Comments 0 comments Chemical Supply Chain Analysis NISAC has developed a range of...

  8. ORISE: Applied health physics projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied health physics projects The Oak Ridge Institute for Science and Education (ORISE) provides applied health physics services to government agencies needing technical support ...

  9. Information Science, Computing, Applied Math

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Science, Computing, Applied Math Information Science, Computing, Applied Math National security depends on science and technology. The United States relies on Los ...

  10. Applied Optoelectronics | Open Energy Information

    Open Energy Info (EERE)

    optical semiconductor devices, packaged optical components, optical subsystems, laser transmitters, and fiber optic transceivers. References: Applied Optoelectronics1...

  11. NREL: Energy Analysis: Geospatial Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. Renewable Energy Technical Potentials: A GIS-Based Analysis This study summarizes the ... (tools, maps, data): Dynamic Maps, GIS Data and Analysis Tools website provides ...

  12. Entanglement dynamics in chaotic systems

    SciTech Connect (OSTI)

    Ghose, Shohini [Institute for Quantum Information Science, University of Calgary, Alberta, T2N 1N4 (Canada); Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Sanders, Barry C. [Institute for Quantum Information Science, University of Calgary, Alberta, T2N 1N4 (Canada); Centre for Quantum Computer Technology, Macquarie University, Sydney, New South Wales (Australia)

    2004-12-01

    We study quantum chaos for systems with more than one degree of freedom, for which we present an analysis of the dynamics of entanglement. Our analysis explains the main features of entanglement dynamics and identifies entanglement-based signatures of quantum chaos. We discuss entanglement dynamics for a feasible experiment involving an atom in a magneto-optical trap and compare the results with entanglement dynamics for the well-studied quantum kicked top.

  13. Micromagnetic analysis of dynamical bubble-like solitons based on the time domain evolution of the topological density

    SciTech Connect (OSTI)

    Puliafito, Vito Azzerboni, Bruno; Finocchio, Giovanni; Torres, Luis; Ozatay, Ozhan

    2014-05-07

    Dynamical bubble-like solitons have been recently investigated in nanocontact-based spin-torque oscillators with a perpendicular free layer. Those magnetic configurations can be excited also in different geometries as long as they consist of perpendicular materials. Thus, in this paper, a systematic study of the influence of both external field and high current on that kind of dynamics is performed for a spin-valve point-contact geometry where both free and fixed layers present strong perpendicular anisotropy. The usage of the topological density tool highlights the excitation of complex bubble/antibubble configurations. In particular, at high currents, a deformation of the soliton and its simultaneous shift from the contact area are observed and can be ascribable to the Oersted field. Results provide further detailed information on the excitation of solitons in perpendicular materials for application in spintronics, magnonics, and domain wall logic.

  14. Apply

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unofficial transcripts are acceptable. If transcripts are not in English, provide a translation. If grades are not in the U.S.-traditional lettered (A,B,C), or GPA (out of 4.0)...

  15. Generation cost frontier analysis, dynamic market adjustment, and strategic gaming: Integrated tools for benchmarking, competitive market analysis, and strategy formulation under conditions of uncertainty in the transition to a competitive electricity market

    SciTech Connect (OSTI)

    Corio, M.R.; Bellucci, J.W.; Boyd, G.A.; Perl, K.E.

    1998-07-01

    The authors describe a three dimensional frontier consisting of: spending, availability/reliability, and utilization/heat rate. To determine optimal behavior in a future deregulated market, one must also find the optimal adjustment path from present to long-run frontier operation, and the optimal strategic action/response as determined by game theory. One can also perform more limited optimizations along either the two dimensional spending/reliability or spending/utilization frontiers. Although the authors mainly discuss optimizing existing domestic plants, frontier analysis could easily be applied to an electric producer's plants or acquisition targets internationally. Efficient operation saves money even in countries where electric markets are still regulated and can also confer indirect environmental benefits. AER is also applying these frontier analysis and game theory techniques to environmental decision-making, specifically to environmental retrofit decisions.

  16. Multi-scaled normal mode analysis method for dynamics simulation of protein-membrane complexes: A case study of potassium channel gating motion correlations

    SciTech Connect (OSTI)

    Wu, Xiaokun; Han, Min; Ming, Dengming

    2015-10-07

    Membrane proteins play critically important roles in many cellular activities such as ions and small molecule transportation, signal recognition, and transduction. In order to fulfill their functions, these proteins must be placed in different membrane environments and a variety of protein-lipid interactions may affect the behavior of these proteins. One of the key effects of protein-lipid interactions is their ability to change the dynamics status of membrane proteins, thus adjusting their functions. Here, we present a multi-scaled normal mode analysis (mNMA) method to study the dynamics perturbation to the membrane proteins imposed by lipid bi-layer membrane fluctuations. In mNMA, channel proteins are simulated at all-atom level while the membrane is described with a coarse-grained model. mNMA calculations clearly show that channel gating motion can tightly couple with a variety of membrane deformations, including bending and twisting. We then examined bi-channel systems where two channels were separated with different distances. From mNMA calculations, we observed both positive and negative gating correlations between two neighboring channels, and the correlation has a maximum as the channel center-to-center distance is close to 2.5 times of their diameter. This distance is larger than recently found maximum attraction distance between two proteins embedded in membrane which is 1.5 times of the protein size, indicating that membrane fluctuation might impose collective motions among proteins within a larger area. The hybrid resolution feature in mNMA provides atomic dynamics information for key components in the system without costing much computer resource. We expect it to be a conventional simulation tool for ordinary laboratories to study the dynamics of very complicated biological assemblies. The source code is available upon request to the authors.

  17. Applied Materials | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to apply the resulting insights to the design, synthesis, and testing of materials with improved properties and performance, including accident-tolerant and higher burn-up fuels. ...

  18. Applied Materials | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Applied Materials Address: 3050 Bowers Avenue Place: Santa Clara, California Zip: 95054 Sector: Solar Website: www.appliedmaterials.com...

  19. Computational fluid dynamics analysis of a wire-feed, high-velocity oxygen-fuel (HVOF) thermal spray torch

    SciTech Connect (OSTI)

    Lopez, A.R.; Hassan, B.; Oberkampf, W.L.; Neiser, R.A.; Roemer, T.J.

    1996-09-01

    The fluid and particle dynamics of a High-Velocity Oxygen-Fuel Thermal Spray torch are analyzed using computational and experimental techniques. Three-dimensional Computational Fluid Dynamics (CFD) results are presented for a curved aircap used for coating interior surfaces such as engine cylinder bores. The device analyzed is similar to the Metco Diamond Jet Rotating Wire (DJRW) torch. The feed gases are injected through an axisymmetric nozzle into the curved aircap. Premixed propylene and oxygen are introduced from an annulus in the nozzle, while cooling air is injected between the nozzle and the interior wall of the aircap. The combustion process is modeled using a single-step finite-rate chemistry model with a total of 9 gas species which includes dissociation of combustion products. A continually-fed steel wire passes through the center of the nozzle and melting occurs at a conical tip near the exit of the aircap. Wire melting is simulated computationally by injecting liquid steel particles into the flow field near the tip of the wire. Experimental particle velocity measurements during wire feed were also taken using a Laser Two-Focus (L2F) velocimeter system. Flow fields inside and outside the aircap are presented and particle velocity predictions are compared with experimental measurements outside of the aircap.

  20. Optical Diagnostics and Modeling Tools Applied to Diesel HCCI | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Optical Diagnostics and Modeling Tools Applied to Diesel HCCI Optical Diagnostics and Modeling Tools Applied to Diesel HCCI 2002 DEER Conference Presentation: Caterpillar Engine Research 2002_deer_choi.pdf (954.08 KB) More Documents & Publications Computational Fluid Dynamics Modeling of Diesel Engine Combustion and Emissions Development of Enabling Technologies for High Efficiency, Low Emissions Homogeneous Charge Compression Ignition (HCCI) Engines 3-D Combustion Simulation

  1. Exact analysis of particle dynamics in combined field of finite duration laser pulse and static axial magnetic field

    SciTech Connect (OSTI)

    Sagar, Vikram; Sengupta, Sudip; Kaw, Predhiman [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2012-11-15

    Dynamics of a charged particle is studied in the field of a relativistically intense linearly polarized finite duration laser pulse in the presence of a static axial magnetic field. For a finite duration laser pulse whose temporal shape is defined by Gaussian profile, exact analytical expressions are derived for the particle trajectory, momentum, and energy as function of laser phase. From the solutions, it is shown that, unlike for the monochromatic plane wave case, resonant phase locking time between the particle and laser pulse is finite. The net energy transferred to the particle does not increase monotonically but tends to saturate. It is further shown that appropriate tuning of cyclotron frequency of the particle with the characteristic frequency in the pulse spectrum can lead to the generation of accelerated particles with variable energies in MeV-TeV range.

  2. Applied Sedimentology | Open Energy Information

    Open Energy Info (EERE)

    Sedimentology Jump to: navigation, search OpenEI Reference LibraryAdd to library Book: Applied Sedimentology Author R.C. Salley Published Academic Press, 2000 DOI Not Provided...

  3. ORISE: Applied health physics projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied health physics projects The Oak Ridge Institute for Science and Education (ORISE) provides applied health physics services to government agencies needing technical support for decommissioning projects. Whether the need is assistance with the development of technical basis documents or advice on how to identify, measure and assess the presence of radiological materials, ORISE can help determine the best course for an environmental cleanup project. Our key areas of expertise include fuel

  4. Information Science, Computing, Applied Math

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Science, Computing, Applied Math Information Science, Computing, Applied Math National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Computer, Computational, and Statistical Sciences (CCS)» High Performance Computing (HPC)» Extreme Scale Computing, Co-design» supercomputing into the future Overview Los Alamos Asteroid Killer

  5. Physical Chemistry and Applied Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PCS Physical Chemistry and Applied Spectroscopy We perform basic and applied research in support of the Laboratory's national security mission and serve a wide range of customers. Contact Us Group Leader Kirk Rector Deputy Group Leader Jeff Pietryga Group Office (505) 667-7121 Postdoctoral researcher Young-Shin Park characterizing emission spectra of LEDs in the Los Alamos National Laboratory optical laboratory. Postdoctoral researcher Young-Shin Park characterizing emission spectra of LEDs in

  6. Automated Voxel-Based Analysis of Volumetric Dynamic Contrast-Enhanced CT Data Improves Measurement of Serial Changes in Tumor Vascular Biomarkers

    SciTech Connect (OSTI)

    Coolens, Catherine; Driscoll, Brandon; Chung, Caroline; Shek, Tina; Gorjizadeh, Alborz; MĂ©nard, Cynthia; Jaffray, David

    2015-01-01

    Objectives: Development of perfusion imaging as a biomarker requires more robust methodologies for quantification of tumor physiology that allow assessment of volumetric tumor heterogeneity over time. This study proposes a parametric method for automatically analyzing perfused tissue from volumetric dynamic contrast-enhanced (DCE) computed tomography (CT) scans and assesses whether this 4-dimensional (4D) DCE approach is more robust and accurate than conventional, region-of-interest (ROI)-based CT methods in quantifying tumor perfusion with preliminary evaluation in metastatic brain cancer. Methods and Materials: Functional parameter reproducibility and analysis of sensitivity to imaging resolution and arterial input function were evaluated in image sets acquired from a 320-slice CT with a controlled flow phantom and patients with brain metastases, whose treatments were planned for stereotactic radiation surgery and who consented to a research ethics board-approved prospective imaging biomarker study. A voxel-based temporal dynamic analysis (TDA) methodology was used at baseline, at day 7, and at day 20 after treatment. The ability to detect changes in kinetic parameter maps in clinical data sets was investigated for both 4D TDA and conventional 2D ROI-based analysis methods. Results: A total of 7 brain metastases in 3 patients were evaluated over the 3 time points. The 4D TDA method showed improved spatial efficacy and accuracy of perfusion parameters compared to ROI-based DCE analysis (P<.005), with a reproducibility error of less than 2% when tested with DCE phantom data. Clinically, changes in transfer constant from the blood plasma into the extracellular extravascular space (K{sub trans}) were seen when using TDA, with substantially smaller errors than the 2D method on both day 7 post radiation surgery (±13%; P<.05) and by day 20 (±12%; P<.04). Standard methods showed a decrease in K{sub trans} but with large uncertainty (111.6 ± 150.5) %. Conclusions

  7. Los Alamos Dynamics Summer School

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos Dynamics Summer School » Los Alamos Dynamics Summer School The Seventeenth Los Alamos Dynamics Summer School Program Information and Application Process Contact Institute Director Charles Farrar (505) 665-0860 Email Executive Administrator Ellie Vigil (505) 667-2718 Email Administrative Assistant Rebecca Duran (505) 665-8899 Email How to Apply Students should email the following documents to LADSSApply@lanl.gov Application Form (pdf) A one-page cover letter describing your interest

  8. Ultrafast harmonic rf kicker design and beam dynamics analysis for an energy recovery linac based electron circulator cooler ring

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huang, Yulu; Wang, Haipeng; Rimmer, Robert A.; Wang, Shaoheng; Guo, Jiquan

    2016-08-01

    An ultrafast kicker system is being developed for the energy recovery linac (ERL) based electron circulator cooler ring (CCR) in the proposed Jefferson Lab Electron Ion Collider (JLEIC, previously named MEIC). In the CCR, the injected electron bunches can be recirculated while performing ion cooling for 10–30 turns before the extraction, thus reducing the recirculation beam current in the ERL to 1/10–1/30 (150mA–50 mA) of the cooling beam current (up to 1.5 A). Assuming a bunch repetition rate of 476.3 MHz and a recirculating factor of 10 in the CCR, the kicker is required to operate at a pulse repetitionmore » rate of 47.63 MHz with pulse width of around 2 ns, so that only every 10th bunch in the CCR will experience a transverse kick while the rest of the bunches will not be disturbed. Such a kicker pulse can be synthesized by ten harmonic modes of the 47.63 MHz kicker pulse repetition frequency, using up to four quarter wavelength resonator (QWR) based deflecting cavities. In this paper, several methods to synthesize such a kicker waveform will be discussed and a comparison of their beam dynamics performance is made using ELEGANT. Four QWR cavities are envisaged with high transverse shunt impedance requiring less than 100 W of total rf power for a Flat-Top kick pulse. Multipole fields due to the asymmetry of this type of cavity are analyzed. The transverse emittance growth due to the sextupole component is simulated in ELEGANT. In conclusion, off-axis injection and extraction issues and beam optics using a multicavity kick-drift scheme will also be discussed.« less

  9. CRC handbook of applied thermodynamics

    SciTech Connect (OSTI)

    Palmer, D.A. . Research and Development Dept.)

    1987-01-01

    The emphasis of this book is on applied thermodynamics, featuring the stage of development of a process rather than the logical development of thermodynamic principles. It is organized according to the types of problems encountered in industry, such as probing research, process assessment, and process development. The applied principles presented can be used in most areas of industry including oil and gas production and processing, chemical processing, power generation, polymer production, food processing, synthetic fuels production, specialty chemicals and pharmaceuticals production, bioengineered processes, etc.

  10. Developing Fully Coupled Dynamical Reactor Core Isolation System Models in RELAP-7 for Extended Station Black-Out Analysis

    SciTech Connect (OSTI)

    Haihua Zhao; Ling Zou; Hongbin Zhang; David Andrs; Richard Martineau

    2014-04-01

    The reactor core isolation cooling (RCIC) system in a boiling water reactor (BWR) provides makeup water to the reactor vessel for core cooling when the main steam lines are isolated and the normal supply of water to the reactor vessel is lost. It was one of the very few safety systems still available during the Fukushima Daiichi accidents after the tsunamis hit the plants and the system successfully delayed the core meltdown for a few days for unit 2 & 3. Therefore, detailed models for RCIC system components are indispensable to understand extended station black-out accidents (SBO) for BWRs. As part of the effort to develop the new generation reactor system safety analysis code RELAP-7, major components to simulate the RCIC system have been developed. This paper describes the models for those components such as turbine, pump, and wet well. Selected individual component test simulations and a simplified SBO simulation up to but before core damage is presented. The successful implementation of the simplified RCIC and wet well models paves the way to further improve the models for safety analysis by including more detailed physical processes in the near future.

  11. Dynamical principles in neuroscience

    SciTech Connect (OSTI)

    Rabinovich, Mikhail I.; Varona, Pablo; Selverston, Allen I.; Abarbanel, Henry D. I.

    2006-10-15

    Dynamical modeling of neural systems and brain functions has a history of success over the last half century. This includes, for example, the explanation and prediction of some features of neural rhythmic behaviors. Many interesting dynamical models of learning and memory based on physiological experiments have been suggested over the last two decades. Dynamical models even of consciousness now exist. Usually these models and results are based on traditional approaches and paradigms of nonlinear dynamics including dynamical chaos. Neural systems are, however, an unusual subject for nonlinear dynamics for several reasons: (i) Even the simplest neural network, with only a few neurons and synaptic connections, has an enormous number of variables and control parameters. These make neural systems adaptive and flexible, and are critical to their biological function. (ii) In contrast to traditional physical systems described by well-known basic principles, first principles governing the dynamics of neural systems are unknown. (iii) Many different neural systems exhibit similar dynamics despite having different architectures and different levels of complexity. (iv) The network architecture and connection strengths are usually not known in detail and therefore the dynamical analysis must, in some sense, be probabilistic. (v) Since nervous systems are able to organize behavior based on sensory inputs, the dynamical modeling of these systems has to explain the transformation of temporal information into combinatorial or combinatorial-temporal codes, and vice versa, for memory and recognition. In this review these problems are discussed in the context of addressing the stimulating questions: What can neuroscience learn from nonlinear dynamics, and what can nonlinear dynamics learn from neuroscience?.

  12. Permeability and kinetic coefficients for mesoscale BCF surface step dynamics: Discrete two-dimensional deposition-diffusion equation analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhao, Renjie; Evans, James W.; Oliveira, Tiago J.

    2016-04-08

    Here, a discrete version of deposition-diffusion equations appropriate for description of step flow on a vicinal surface is analyzed for a two-dimensional grid of adsorption sites representing the stepped surface and explicitly incorporating kinks along the step edges. Model energetics and kinetics appropriately account for binding of adatoms at steps and kinks, distinct terrace and edge diffusion rates, and possible additional barriers for attachment to steps. Analysis of adatom attachment fluxes as well as limiting values of adatom densities at step edges for nonuniform deposition scenarios allows determination of both permeability and kinetic coefficients. Behavior of these quantities is assessedmore » as a function of key system parameters including kink density, step attachment barriers, and the step edge diffusion rate.« less

  13. Proton Beam Therapy Versus Conformal Photon Radiation Therapy for Childhood Craniopharyngioma: Multi-institutional Analysis of Outcomes, Cyst Dynamics, and Toxicity

    SciTech Connect (OSTI)

    Bishop, Andrew J.; Greenfield, Brad; Mahajan, Anita; Paulino, Arnold C.; Okcu, M. Fatih; Allen, Pamela K.; Chintagumpala, Murali; Kahalley, Lisa S.; McAleer, Mary F.; McGovern, Susan L.; Whitehead, William E.; Grosshans, David R.

    2014-10-01

    Purpose: We compared proton beam therapy (PBT) with intensity modulated radiation therapy (IMRT) for pediatric craniopharyngioma in terms of disease control, cyst dynamics, and toxicity. Methods and Materials: We reviewed records from 52 children treated with PBT (n=21) or IMRT (n=31) at 2 institutions from 1996-2012. Endpoints were overall survival (OS), disease control, cyst dynamics, and toxicity. Results: At 59.6 months' median follow-up (PBT 33 mo vs IMRT 106 mo; P<.001), the 3-year outcomes were 96% for OS, 95% for nodular failure-free survival and 76% for cystic failure-free survival. Neither OS nor disease control differed between treatment groups (OS P=.742; nodular failure-free survival P=.546; cystic failure-free survival P=.994). During therapy, 40% of patients had cyst growth (20% requiring intervention); immediately after therapy, 17 patients (33%) had cyst growth (transient in 14), more commonly in the IMRT group (42% vs 19% PBT; P=.082); and 27% experienced late cyst growth (32% IMRT, 19% PBT; P=.353), with intervention required in 40%. Toxicity did not differ between groups. On multivariate analysis, cyst growth was related to visual and hypothalamic toxicity (P=.009 and .04, respectively). Patients given radiation as salvage therapy (for recurrence) rather than adjuvant therapy had higher rates of visual and endocrine (P=.017 and .024, respectively) dysfunction. Conclusions: Survival and disease-control outcomes were equivalent for PBT and IMRT. Cyst growth is common, unpredictable, and should be followed during and after therapy, because it contributes to late toxicity. Delaying radiation therapy until recurrence may result in worse visual and endocrine function.

  14. Summer of Applied Geophysical Experience

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summer of Applied Geophysical Experience (SAGE) 2016 - Our 34 rd Year! SAGE is a 3-4 week research and education program in exploration geophysics for graduate, undergraduate students, and working professionals based in Santa Fe, NM, U.S.A. Application deadline March 27, 2016, 5:00pm MDT SAGE students, faculty, teaching assistants, and visiting scientists acquire, process and interpret reflection/refraction seismic, magnetotelluric (MT)/electromagnetic (EM), ground penetrating radar (GPR),

  15. Dynamic stall on wind turbine blades

    SciTech Connect (OSTI)

    Butterfield, C.P.; Simms, D.; Scott, G. ); Hansen, A.C. )

    1991-12-01

    Dynamic loads must be predicted accurately in order to estimate the fatigue life of wind turbines operating in turbulent environments. Dynamic stall contributes to increased dynamic loads during normal operation of all types of horizontal-axis wind turbine (HAWTs). This report illustrates how dynamic stall varies throughout the blade span of a 10 m HAWT during yawed and unyawed operating conditions. Lift, drag, and pitching moment coefficients during dynamics stall are discussed. Resulting dynamic loads are presented, and the effects of dynamic stall on yaw loads are demonstrated using a yaw loads dynamic analysis (YAWDYN). 12 refs., 22 figs., 1 tab.

  16. Technical Letter Report - Analysis of Ultrasonic Data on Piping Cracks at Ignalina Nuclear Power Plant Before and After Applying a Mechanical Stress Improvement Process, JCN-N6319, Task 2

    SciTech Connect (OSTI)

    Anderson, Michael T.; Cumblidge, Stephen E.; Crawford, Susan L.

    2008-02-26

    Pacific Northwest National Laboratory (PNNL) is assisting the United States Nuclear Regulatory Commission (NRC) in developing a position on the management of primary water stress corrosion cracking (PWSCC) in piping systems previously analyzed for leak-before-break (LBB). Part of this work involves determining whether inspections alone are sufficient or if inspections plus mitigation techniques are needed. The work described in this report addresses the reliability of ultrasonic phased-array (PA) examinations for inspection of cracks that have been subjected to the mitigation method of mechanical stress improvement process (MSIP). It is believed that stresses imparted during MSIP may make ultrasonic crack responses in piping welds more difficult to detect and accurately characterize. To explore this issue, data were acquired, both before and after applying MSIP, and analyzed from cracked areas in piping at the Ignalina Nuclear Power Plant (INPP) in Lithuania. This work was performed under NRC Project JCN-N6319, PWSCC in Leak-Before-Break Systems.

  17. Three-Dimensional Analysis of the Lattice Confinement Effect on Ion Dynamics in Condensed Matter and Lattice Effect on the D-D Nuclear Reaction Channel

    SciTech Connect (OSTI)

    Violante, Vittorio; Torre, Amalia; Selvaggi, Giovanna; Miley, George H.

    2001-03-15

    A three-dimensional analysis of the dynamics of hydrogen isotopes confined within a metal lattice, like palladium or nickel, is presented. It is assumed that the concentration of the hydrogen isotopes, as an atomic fraction, is close to unity and that coherent oscillations of the metal atom electrons near to the Fermi level take place. Coherent oscillations of the Fermi-level electrons in the metal lattice can produce an oscillating electric field within the cell and hence produce a radio-frequency oscillation of ions like protons or deuterons. The trajectories of the ions can be studied by means of the equations of motion. The results show that under proper initial conditions, the closest distance of approach between two ions or between an ion and the nucleus of an atom of the host metal lattice can be reduced below 0.1 Angst. An evaluation of the excess of heat production has been done for the D-D reaction within a Pd lattice by approximating the reaction both to an s-wave and a d-wave process, respectively. Last, the effect of the lattice field, which causes the collisions between ions, on the nuclear reaction channel for the D-D reaction is investigated by evaluating the transition probability for a stimulated decay.

  18. Time lagged ordinal partition networks for capturing dynamics of continuous dynamical systems

    SciTech Connect (OSTI)

    McCullough, Michael; Iu, Herbert Ho-Ching; Small, Michael; Stemler, Thomas

    2015-05-15

    We investigate a generalised version of the recently proposed ordinal partition time series to network transformation algorithm. First, we introduce a fixed time lag for the elements of each partition that is selected using techniques from traditional time delay embedding. The resulting partitions define regions in the embedding phase space that are mapped to nodes in the network space. Edges are allocated between nodes based on temporal succession thus creating a Markov chain representation of the time series. We then apply this new transformation algorithm to time series generated by the Rössler system and find that periodic dynamics translate to ring structures whereas chaotic time series translate to band or tube-like structures—thereby indicating that our algorithm generates networks whose structure is sensitive to system dynamics. Furthermore, we demonstrate that simple network measures including the mean out degree and variance of out degrees can track changes in the dynamical behaviour in a manner comparable to the largest Lyapunov exponent. We also apply the same analysis to experimental time series generated by a diode resonator circuit and show that the network size, mean shortest path length, and network diameter are highly sensitive to the interior crisis captured in this particular data set.

  19. Look-ahead Dynamic Simulation

    Energy Science and Technology Software Center (OSTI)

    2015-10-20

    Look-ahead dynamic simulation software system incorporates the high performance parallel computing technologies, significantly reduces the solution time for each transient simulation case, and brings the dynamic simulation analysis into on-line applications to enable more transparency for better reliability and asset utilization. It takes the snapshot of the current power grid status, functions in parallel computing the system dynamic simulation, and outputs the transient response of the power system in real time.

  20. Apply to the Cyclotron Institute REU Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply Now Applying for the 2016 NSF-REU Nuclear Physics and Nuclear Chemistry Program at the Cyclotron Institute (APPLICATION DEADLINE HAS PASSED. Please check back in Fall 2016 to apply for Summer 2017)

  1. SIAM conference on applications of dynamical systems

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    A conference (Oct.15--19, 1992, Snowbird, Utah; sponsored by SIAM (Society for Industrial and Applied Mathematics) Activity Group on Dynamical Systems) was held that highlighted recent developments in applied dynamical systems. The main lectures and minisymposia covered theory about chaotic motion, applications in high energy physics and heart fibrillations, turbulent motion, Henon map and attractor, integrable problems in classical physics, pattern formation in chemical reactions, etc. The conference fostered an exchange between mathematicians working on theoretical issues of modern dynamical systems and applied scientists. This two-part document contains abstracts, conference program, and an author index.

  2. Applied Intellectual Capital AIC | Open Energy Information

    Open Energy Info (EERE)

    Intellectual Capital AIC Jump to: navigation, search Name: Applied Intellectual Capital (AIC) Place: California Zip: 94501-1010 Product: Applied Intellectual Capital (AIC) was...

  3. Applied Materials Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Wind Turbine Jump to: navigation, search Name Applied Materials Wind Turbine Facility Applied Materials Sector Wind energy Facility Type Community Wind Facility Status In Service...

  4. Building America Expert Meeting: Recommendations for Applying...

    Energy Savers [EERE]

    Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems Building America Expert Meeting: Recommendations for Applying Water Heaters in ...

  5. Applied Ventures LLC | Open Energy Information

    Open Energy Info (EERE)

    Applied Ventures LLC Name: Applied Ventures LLC Address: 3050 Bowers Avenue Place: Santa Clara, California Zip: 95054 Region: Southern CA Area Product: Venture capital. Number...

  6. Inference on accretion flow dynamics using TCAF solution from the analysis of spectral evolution of H 1743-322 during the 2010 outburst

    SciTech Connect (OSTI)

    Mondal, Santanu; Debnath, Dipak; Chakrabarti, Sandip K. E-mail: dipak@csp.res.in

    2014-05-01

    We study accretion flow dynamics of the Galactic transient black hole candidate (BHC) H 1743-322 during its 2010 outburst by analyzing spectral data using the two-component advective flow (TCAF; Keplerian and sub-Keplerian) solution after its inclusion in XSPEC as a local model. We compare our TCAF solution fitted results with combined disk blackbody (DBB) and power-law (PL) model fitted results and find a similar smooth variation of thermal (Keplerian or DBB) and non-thermal (PL or sub-Keplerian) fluxes/rates in two types of model fits. For a spectral analysis, 2.5-25 keV spectral data from the Rossi X-Ray Timing Explorer Proportional Counter Array instrument are used. From the TCAF solution fit, accretion flow parameters, such as Keplerian rate, sub-Keplerian rate, location of centrifugal pressure-supported shock, and strength of the shock, are extracted, providing a deeper understanding of the accretion process and properties of accretion disks around BHC H 1743-322 during its X-ray outburst. Based on the halo to disk accretion rate ratio, shock properties, accretion rates, and the nature of the quasi-periodic oscillations' (if observed) entire outburst is classified into four different spectral states: hard, hard-intermediate, soft-intermediate, and soft. From the time variation of intrinsic flow parameters, it appears that their evolutions in the declining phase do not retrace the path of the rising phase. Since our current model does not include magnetic fields, spectral turnover at energies beyond 500-600 keV cannot be explained.

  7. FY 1990 Applied Sciences Branch annual report

    SciTech Connect (OSTI)

    Keyes, B.M.; Dippo, P.C.

    1991-11-01

    The Applied Sciences Branch actively supports the advancement of DOE/SERI goals for the development and implementation of the solar photovoltaic technology. The primary focus of the laboratories is to provide state-of-the-art analytical capabilities for materials and device characterization and fabrication. The branch houses a comprehensive facility which is capable of providing information on the full range of photovoltaic components. A major objective of the branch is to aggressively pursue collaborative research with other government laboratories, universities, and industrial firms for the advancement of photovoltaic technologies. Members of the branch disseminate research findings to the technical community in publications and presentations. This report contains information on surface and interface analysis, materials characterization, development, electro-optical characterization module testing and performance, surface interactions and FTIR spectroscopy.

  8. 2008 Annual Merit Review Results Summary - 2. Applied Battery Research |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2. Applied Battery Research 2008 Annual Merit Review Results Summary - 2. Applied Battery Research DOE Vehicle Technologies Annual Merit Review 2008_merit_review_2.pdf (1.85 MB) More Documents & Publications 2008 Annual Merit Review Results Summary - 3. Battery Development, Testing, Simulation, Analysis 2008 Annual Merit Review Results Summary - 4. Exploratory Battery Research 2011 Annual Merit Review Results Report - Energy Storage Technologies

  9. Substructured multibody molecular dynamics.

    SciTech Connect (OSTI)

    Grest, Gary Stephen; Stevens, Mark Jackson; Plimpton, Steven James; Woolf, Thomas B. (Johns Hopkins University, Baltimore, MD); Lehoucq, Richard B.; Crozier, Paul Stewart; Ismail, Ahmed E.; Mukherjee, Rudranarayan M. (Rensselaer Polytechnic Institute, Troy, NY); Draganescu, Andrei I.

    2006-11-01

    We have enhanced our parallel molecular dynamics (MD) simulation software LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator, lammps.sandia.gov) to include many new features for accelerated simulation including articulated rigid body dynamics via coupling to the Rensselaer Polytechnic Institute code POEMS (Parallelizable Open-source Efficient Multibody Software). We use new features of the LAMMPS software package to investigate rhodopsin photoisomerization, and water model surface tension and capillary waves at the vapor-liquid interface. Finally, we motivate the recipes of MD for practitioners and researchers in numerical analysis and computational mechanics.

  10. Dimensions of invariant measures for continuous random dynamical systems

    SciTech Connect (OSTI)

    Bielaczyc, Tomasz; Horbacz, Katarzyna

    2015-03-10

    We consider continuous random dynamical systems with jumps. We estimate the dimension of the invariant measures and apply the results to a model of stochastic gene expression.

  11. Final technical report [ACCELERATED MOLECULAR DYNAMICS SIMULATIONS OF REACTIVE HYDROCARBON SYSTEMS

    SciTech Connect (OSTI)

    Stuart, Steven J.

    2014-02-25

    The research activities in this project consisted of four different sub-projects. Three different accelerated dynamics techniques (parallel replica dynamics, hyperdynamics, and temperature-accelerated dynamics) were applied to the modeling of pyrolysis of hydrocarbons. In addition, parallel replica dynamics was applied to modeling of polymerization.

  12. DOE Applied Math Summit | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    systems, mathematics for complex distributed systems, uncertainty quantification, mathematics for analysis of petascale data, and joint applied math computer science institutes. ...

  13. How to Apply for the ENERGY STARÂź

    Broader source: Energy.gov [DOE]

    Join us to learn about applying for ENERGY STAR Certification in Portfolio Manager. Understand the value of the ENERGY STAR certification, see the step-by-step process of applying, and gain tips to...

  14. Apply for Beam Time | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    All About Proposals Users Home Apply for Beam Time Deadlines Proposal Types Concepts, Definitions, and Help My APS Portal My APS Portal Apply for Beam Time Next Proposal Deadline...

  15. Applying for PMCDP/FPD Certification (initial)

    Broader source: Energy.gov [DOE]

    Certification applicants are nominated by their respective Program Secretarial Office (PSO) to apply for FPD certification – candidates may not apply without program sponsorship. Each participating...

  16. Confirmation of standard error analysis techniques applied to...

    Office of Scientific and Technical Information (OSTI)

    reported parameter errors are not reliable in many EXAFS studies in the literature. ... Country of Publication: United States Language: English Subject: 75; ABSORPTION; ACCURACY; ...

  17. International Institute for Applied Systems Analysis | Open Energy...

    Open Energy Info (EERE)

    and social science disciplines. The work is based on original state-of-the-art methodology and analytical approaches. The methods and tools generated are useful to both...

  18. Photodissociation Dynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photodissociation Dynamics - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  19. Patterns and perspectives in applied fracture mechanics

    SciTech Connect (OSTI)

    Merkle, J.G.

    1994-12-31

    This lecture begins with a overview of applied fracture mechanics pertinent to safety of pressure vessels. It then progresses to a chronological panorama of experimental and analytical results. To be useful and dependable in safety analysis of real structures, new analysis developments must be physically realistic, which means that they must accurately describe physical cause and effect. Consequently, before mathematical modeling can begin, cause and effect must be established from experimental data. This can be difficult and time consuming, but worth the effort. Accordingly, the theme of this paper is that the search for patterns is constant and vital. This theme is illustrated by the development of small, single-specimen, fracture toughness testing techniques. It is also illustrated by the development, based on two different published large-strain, elastic-plastic, three-dimensional finite-element analyses, of a hypothesis concerning three-dimensional loss of constraint. When a generalization of Irwin`s thickness-normalized plastic-zone parameter, reaches a value close to 2{pi}, the through-thickness contraction strain at the apex of the near-tip logarithmic-spiral slip-line region becomes the dominant negative strain accommodating crack opening. Because slip lines passing from the midplane to the stress-free side surfaces do not have to curve, once these slip lines are established, stresses near the crack tip are only elevated by strain hardening and constraint becomes significantly relaxed. This hypothesis, based on published three-dimensional elastic-plastic analyses, provides a potentially valuable means for gaining additional insight into constraint effects on fracture toughness by considering the roles played by the plastic strains as well as the stresses that develop near a crack tip.

  20. Global/Local Dynamic Models

    SciTech Connect (OSTI)

    Pfeffer, A; Das, S; Lawless, D; Ng, B

    2006-10-10

    Many dynamic systems involve a number of entities that are largely independent of each other but interact with each other via a subset of state variables. We present global/local dynamic models (GLDMs) to capture these kinds of systems. In a GLDM, the state of an entity is decomposed into a globally influenced state that depends on other entities, and a locally influenced state that depends only on the entity itself. We present an inference algorithm for GLDMs called global/local particle filtering, that introduces the principle of reasoning globally about global dynamics and locally about local dynamics. We have applied GLDMs to an asymmetric urban warfare environment, in which enemy units form teams to attack important targets, and the task is to detect such teams as they form. Experimental results for this application show that global/local particle filtering outperforms ordinary particle filtering and factored particle filtering.

  1. Scattering Dynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scattering Dynamics - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  2. Applied Field Research Initiative Deep Vadose Zone

    Office of Environmental Management (EM)

    Applied Field Research Initiative Deep Vadose Zone Located on the Hanford Site in Richland, Washington, the Deep Vadose Zone Applied Field Research Initiative (DVZ AFRI) was established to protect water resources by addressing the challenge of preventing contamination in the deep vadose zone from reaching groundwater. Led by the Pacific Northwest National Laboratory, the Initiative is a collaborative effort that leverages Department of Energy (DOE) investments in basic science and applied

  3. Applied Quantum Technology AQT | Open Energy Information

    Open Energy Info (EERE)

    Quantum Technology AQT Jump to: navigation, search Name: Applied Quantum Technology (AQT) Place: Santa Clara, California Zip: 95054 Product: California-based manufacturer of CIGS...

  4. Applied Energy Management | Open Energy Information

    Open Energy Info (EERE)

    Energy Management Jump to: navigation, search Name: Applied Energy Management Place: Huntersville, North Carolina Zip: 28078 Sector: Efficiency, Renewable Energy Product: North...

  5. Applied Materials Inc AMAT | Open Energy Information

    Open Energy Info (EERE)

    manufacturer of equipment used in solar (silicon, thin-film, BIPV), semiconductor, and LCD markets. References: Applied Materials Inc (AMAT)1 This article is a stub. You can...

  6. Results of an Analysis of Field Studies of the Intrinsic Dynamic Characteristics Important for the Safety of Nuclear Power Plant Equipment

    SciTech Connect (OSTI)

    Kaznovsky, A. P. Kasiyanov, K. G.; Ryasnyj, S. I.

    2015-01-15

    A classification of the equipment important for the safety of nuclear power plants is proposed in terms of its dynamic behavior under seismic loading. An extended bank of data from dynamic tests over the entire range of thermal and mechanical equipment in generating units with VVER-1000 and RBMK-1000 reactors is analyzed. Results are presented from a study of the statistical behavior of the distribution of vibrational frequencies and damping decrements with the “small perturbation” factor that affects the measured damping decrements taken into account. A need to adjust the regulatory specifications for choosing the values of the damping decrements with specified inertial loads on equipment owing to seismic effects during design calculations is identified. Minimum values of the decrements are determined and proposed for all types of equipment as functions of the directions and natural vibration frequencies of the dynamic interactions to be adopted as conservative standard values in the absence of actual experimental data in the course of design studies of seismic resistance.

  7. Theoretical studies of combustion dynamics

    SciTech Connect (OSTI)

    Bowman, J.M.

    1993-12-01

    The basic objectives of this research program are to develop and apply theoretical techniques to fundamental dynamical processes of importance in gas-phase combustion. There are two major areas currently supported by this grant. One is reactive scattering of diatom-diatom systems, and the other is the dynamics of complex formation and decay based on L{sup 2} methods. In all of these studies, the authors focus on systems that are of interest experimentally, and for which potential energy surfaces based, at least in part, on ab initio calculations are available.

  8. Coherent neutron scattering and collective dynamics on mesoscale

    SciTech Connect (OSTI)

    Novikov, Vladimir; Schweizer, Kenneth S; Sokolov, Alexei P

    2013-01-01

    By combining, and modestly extending, a variety of theoretical concepts for the dynamics of liquids in the supercooled regime, we formulate a simple analytic model for the temperature and wavevector dependent collective density fluctuation relaxation time that is measurable using coherent dynamic neutron scattering. Comparison with experiments on the ionic glass-forming liquid Ca K NO3 in the lightly supercooled regime suggests the model captures the key physics in both the local cage and mesoscopic regimes, including the unusual wavevector dependence of the collective structural relaxation time. The model is consistent with the idea that the decoupling between diffusion and viscosity is reflected in a different temperature dependence of the collective relaxation time at intermediate wavevectors and near the main (cage) peak of the static structure factor. More generally, our analysis provides support for the ideas that decoupling information and growing dynamic length scales can be at least qualitatively deduced by analyzing the collective relaxation time as a function of temperature and wavevector, and that there is a strong link between dynamic heterogeneity phenomena at the single and many particle level. Though very simple, the model can be applied to other systems, such as molecular liquids.

  9. Nuclear Facilities and Applied Technologies at Sandia

    SciTech Connect (OSTI)

    Wheeler, Dave; Kaiser, Krista; Martin, Lonnie; Hanson, Don; Harms, Gary; Quirk, Tom

    2014-11-28

    The Nuclear Facilities and Applied Technologies organization at Sandia National Laboratories’ Technical Area Five (TA-V) is the leader in advancing nuclear technologies through applied radiation science and unique nuclear environments. This video describes the organization’s capabilities, facilities, and culture.

  10. Dynamic imaging with electron microscopy

    ScienceCinema (OSTI)

    Campbell, Geoffrey; McKeown, Joe; Santala, Melissa

    2014-05-30

    Livermore researchers have perfected an electron microscope to study fast-evolving material processes and chemical reactions. By applying engineering, microscopy, and laser expertise to the decades-old technology of electron microscopy, the dynamic transmission electron microscope (DTEM) team has developed a technique that can capture images of phenomena that are both very small and very fast. DTEM uses a precisely timed laser pulse to achieve a short but intense electron beam for imaging. When synchronized with a dynamic event in the microscope's field of view, DTEM allows scientists to record and measure material changes in action. A new movie-mode capability, which earned a 2013 R&D 100 Award from R&D Magazine, uses up to nine laser pulses to sequentially capture fast, irreversible, even one-of-a-kind material changes at the nanometer scale. DTEM projects are advancing basic and applied materials research, including such areas as nanostructure growth, phase transformations, and chemical reactions.

  11. Applied Science Division annual report, Environmental Research Program FY 1983

    SciTech Connect (OSTI)

    Cairns, E.J.; Novakov, T.

    1984-05-01

    The primary concern of the Environmental Research Program is the understanding of pollutant formation, transport, and transformation and the impacts of pollutants on the environment. These impacts include global, regional, and local effects on the atmosphere and hydrosphere, and on certain aspects of human health. This multidisciplinary research program includes fundamental and applied research in physics, chemistry, engineering, and biology, as well as research on the development of advanced methods of measurement and analysis. During FY 1983, research concentrated on atmospheric physics and chemistry, applied physics and laser spectroscopy, combustion theory and phenomena, environmental effects of oil shale processing, freshwater ecology and acid precipitation, trace element analysis for the investigation of present and historical environmental impacts, and a continuing survey of instrumentation for environmental monitoring.

  12. Nuclear data for basic and applied science. Volume 1

    SciTech Connect (OSTI)

    Young, P.G.; Brown, R.E.; Auchampaugh, G.F.; Lisowski, P.W.; Stewart, L.

    1985-01-01

    This book presents the papers given at a conference on nuclear data for basic and applied science. Topics considered included: nuclear data needs for fusion reactors; fast-neutron interaction with niobium; neutronic analysis of fusion-fusion (hybrid) blankets; measurements of 14 MeV neutron activation cross sections; recent experimental data on sub-barrier fission of light actinides; and intermediate structure in the fission cross sections of the even curium isotopes.

  13. Applied Resiliency for More Trustworthy Grid Operation (ARMORE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applied Resiliency for More Trustworthy Grid Operation (ARMORE) Secure communications, inspection, and data analysis platform that enhances the security posture for legacy and modern grid devices Background The electric grid increasingly relies on the secure transfer of real-time data between substations to maintain control of system operations. Traditional cybersecurity practices primarily employ perimeter-level protections, such as firewalls or end-point gateways. Additionally, substation

  14. Pi in Applied Optics | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inside the Applied Optics Lab II Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) The sPI CAM: Inside the Applied Optics Lab II The sPI Cam visits the Applied Optics Lab to see how Mark Meyers, a physicist and optical engineer at GE Global Research, uses Pi. You Might Also Like lightning bolt We One-Upped Ben Franklin,

  15. Overview of the NMSEA applied research program

    SciTech Connect (OSTI)

    Stickney, B.; Wilson, A.

    1980-01-01

    Recently the NMSEA has seen the need to augment its other informational programs with a program of in-house applied research. The reasoning behind this move is presented here along with and accounting of past research activities.

  16. Applied Energy Programs, SPO-AE: LANL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Karl Jonietz 505-663-5539 Program Manager Melissa Fox 505-663-5538 Budget Analyst Fawn Gore 505-665-0224 The Applied Energy Program Office (SPO-AE) manages Los Alamos National...

  17. SAGE, Summer of Applied Geophysical Experience

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply Who Qualifies Special Undergrad Information Contributors Faculty Past Programs Photo Gallery NSEC » CSES » SAGE SAGE, the Summer of Applied Geophysical Experience A National Science Foundation Research Experiences for Undergraduates program Contacts Institute Director Reinhard Friedel-Los Alamos SAGE Co-Director W. Scott Baldridge-Los Alamos SAGE Co-Director Larry Braile-Purdue University Professional Staff Assistant Georgia Sanchez (505) 665-0855 Email SAGE Class of 2016 SAGE 2016

  18. How to Apply | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    How to Apply How to Apply Online Application Available at www.zintellect.com/Posting/Details/1997 Application deadline May 20, 2016. Familiarize yourself with the benefits, obligations, eligibility requirements, and evaluation criteria. Familiarize yourself with the requirements and obligations to determine whether your education and professional goals are well aligned with the EERE Postdoctoral Research Awards. Read the Evaluation Criteria that will be used to evaluate your application. It is

  19. LANSCE | Lujan Center | Apply for Beamtime

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply for Beamtime LANSCE User Resources Tips for a Successful Proposal Step 1: Apply for Beam Time 1. Select an Instrument and a Local Contact 2. Submit Your Proposal Step 2: Before You Arrive 1. Complete the LANSCE User Facility Agreement Questionnaire 2. Arrange for Site Access 3. Prepare for Your Experiment: Contact Lujan Experiment Coordinator to arrange shipping of your samples. Talk to the beamline scientist about any electrical equipment you might bring. 4. Complete your training Step 3:

  20. Three-dimensional medical image analysis using local dynamic algorithm selection on a multiple-instruction, multiple-data architecture. Doctoral thesis

    SciTech Connect (OSTI)

    Stytz, M.R.

    1989-01-01

    The dissertation outlines development of a medical imaging machine which renders 3D images from voxel data within a MIMD multiprocessor architecture at interactive rates. Interactive performance is achieved using local dynamic selection of the optimum adaptive recursive hidden-surface removal algorithm. A survey of the medical imaging, graphics, and medical imaging modality literature is provided. A description of Computerized Technology, Magnetic Resonance Imaging, Positron Emission Tomography, Single Photon Emission Computed Tomography, and Ultrasound imaging modalities is presented Previous work in 3D volume rendering graphics techniques and data models is introduced. Eleven medical imaging machines are examined with emphasis on characterization of the major innovation(s) and performance of each machine. A five stage image processing pipeline is described.

  1. Sierra Structural Dynamics User's Notes

    SciTech Connect (OSTI)

    Reese, Garth M.

    2015-10-19

    Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of weapons systems. This document provides a users guide to the input for Sierra/SD. Details of input specifications for the different solution types, output options, element types and parameters are included. The appendices contain detailed examples, and instructions for running the software on parallel platforms.

  2. Method of applying coatings to substrates

    DOE Patents [OSTI]

    Hendricks, Charles D.

    1991-01-01

    A method for applying novel coatings to substrates is provided. The ends of multiplicity of rods of different materials are melted by focused beams of laser light. Individual electric fields are applied to each of the molten rod ends, thereby ejecting charged particles that include droplets, atomic clusters, molecules, and atoms. The charged particles are separately transported, by the accelerations provided by electric potentials produced by an electrode structure, to substrates where they combine and form the coatings. Layered and thickness graded coatings comprised of hithereto unavailable compositions, are provided.

  3. Loads Analysis of Several Offshore Floating Wind Turbine Concepts

    SciTech Connect (OSTI)

    Robertson, A. N.; Jonkman, J. M.

    2011-10-01

    This paper presents a comprehensive dynamic-response analysis of six offshore floating wind turbine concepts.

  4. How to Apply for Senior Executive positions

    Broader source: Energy.gov [DOE]

    To apply vacancies for SENIOR EXECUTIVE SERVICE (SES) , SENIOR LEVEL (SL), SCIENTIFIC AND PROFESSIONAL (ST) positions within the Department of Energy please visit OPM's website: http://www.usajobs.gov. From this site, you may download announcements for vacancies of interest to you.

  5. (Applied mass spectrometry in the health sciences)

    SciTech Connect (OSTI)

    Glish, G.L.

    1990-05-03

    The traveler attended the 2nd International Symposium on Applied Mass Spectrometry in the Health Sciences and presented and invited paper. Papers presented that were of interest to ORNL mass spectrometry programs involved ionization of large molecules by electrospray and laser desorption. Other papers of interest included applications of MS/MS for structural elucidation and new instrumentation.

  6. Uniform insulation applied-B ion diode

    DOE Patents [OSTI]

    Seidel, David B.; Slutz, Stephen A.

    1988-01-01

    An applied-B field extraction ion diode has uniform insulation over an anode surface for increased efficiency. When the uniform insulation is accomplished with anode coils, and a charge-exchange foil is properly placed, the ions may be focused at a point on the z axis.

  7. Ultrasonic Study of Crack Under a Dynamic Thermal Load

    SciTech Connect (OSTI)

    Pitkaenen, J.; Kemppainen, M.; Virkkunen, I.

    2004-02-26

    In piping the defects play a key role for determining the life of component. Also the risk for pipe failure combined to the defects has to be taken into account. In this study thermal dynamic load has been applied to austenitic material (AISI 304) in order to introduce dynamic behaviour into the crack. The studied crack ({approx}20 mm x 7 mm) has been produced by thermal fatigue in advance. Different ultrasonic techniques were used to reveal information from interaction of ultrasonic waves from dynamic behaviour of a crack face in the sonified volume. The ultrasonic probes in the study are typical probes for defect detection and sizing on site inspections This information helps us to understand some effects in nuclear piping such as detection of cracks with special techniques and difficulties in sizing of the cracks in real situations. In this case the material is loaded to exceed the yield strength. The thermal cycles used caused high variations in the temperature scale from 20 deg. C (68 F) to 600 deg. C (1112 F) in the crack volume especially on the crack surface area. These factors cause large stress variations in the vicinity of the crack. Effects which have been detected during analysis from the measurements explain well difficulties in ultrasonic inspections of those materials on site. Experimental work explains reasons why some defects are missed in the real piping. Ultrasonic techniques used are described in details and conclusion for applicability of those techniques has been drawn.

  8. Development and application of the dynamic system doctor to nuclear reactor probabilistic risk assessments.

    SciTech Connect (OSTI)

    Kunsman, David Marvin; Aldemir, Tunc; Rutt, Benjamin; Metzroth, Kyle; Catalyurek, Umit; Denning, Richard; Hakobyan, Aram; Dunagan, Sean C.

    2008-05-01

    This LDRD project has produced a tool that makes probabilistic risk assessments (PRAs) of nuclear reactors - analyses which are very resource intensive - more efficient. PRAs of nuclear reactors are being increasingly relied on by the United States Nuclear Regulatory Commission (U.S.N.R.C.) for licensing decisions for current and advanced reactors. Yet, PRAs are produced much as they were 20 years ago. The work here applied a modern systems analysis technique to the accident progression analysis portion of the PRA; the technique was a system-independent multi-task computer driver routine. Initially, the objective of the work was to fuse the accident progression event tree (APET) portion of a PRA to the dynamic system doctor (DSD) created by Ohio State University. Instead, during the initial efforts, it was found that the DSD could be linked directly to a detailed accident progression phenomenological simulation code - the type on which APET construction and analysis relies, albeit indirectly - and thereby directly create and analyze the APET. The expanded DSD computational architecture and infrastructure that was created during this effort is called ADAPT (Analysis of Dynamic Accident Progression Trees). ADAPT is a system software infrastructure that supports execution and analysis of multiple dynamic event-tree simulations on distributed environments. A simulator abstraction layer was developed, and a generic driver was implemented for executing simulators on a distributed environment. As a demonstration of the use of the methodological tool, ADAPT was applied to quantify the likelihood of competing accident progression pathways occurring for a particular accident scenario in a particular reactor type using MELCOR, an integrated severe accident analysis code developed at Sandia. (ADAPT was intentionally created with flexibility, however, and is not limited to interacting with only one code. With minor coding changes to input files, ADAPT can be linked to other

  9. NUCLEAR REACTORS; PIPES; SEISMIC EFFECTS; SUPPORTS; DYNAMIC LOADS...

    Office of Scientific and Technical Information (OSTI)

    Limit analysis of pipe clamps Flanders, H.E. Jr. 22 GENERAL STUDIES OF NUCLEAR REACTORS; PIPES; SEISMIC EFFECTS; SUPPORTS; DYNAMIC LOADS; HEAT TRANSFER; HYDRAULICS; REACTOR SAFETY;...

  10. Adjoints and Large Data Sets in Computational Fluid Dynamics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oana Marin Speaker(s) Title: Postdoctoral Appointee, MCS Optimal flow control and stability analysis are some of the fields within Computational Fluid Dynamics (CFD) that...

  11. RAVEN: Dynamic Event Tree Approach Level III Milestone (Technical...

    Office of Scientific and Technical Information (OSTI)

    explicitly accounted for in the analysis. In order to overcome these limitations several techniques, also know as Dynamic Probabilistic Risk Assessment (DPRA), have been developed. ...

  12. Assessment of boreal forest historical C dynamics in Yukon River...

    Office of Scientific and Technical Information (OSTI)

    this study we applied a large-scale ecosystem model that included dynamics of organic soil horizons and soil organic matter characteristics of multiple pools to assess forest C...

  13. Dynamical simulation of energy dissipation in asymmetric heavy-ion induced fission of {sup 200}Pb, {sup 213}Fr, and {sup 251}Es

    SciTech Connect (OSTI)

    Mirfathi, S. M.; Pahlavani, M. R.

    2008-12-15

    The dynamical model based on the asymmetric mass division has been applied to calculate pre-scission neutron multiplicity from heavy-ion induced fusion-fission reactions. Links between the pre-scission neutron multiplicity, excitation energy, and asymmetric mass distribution are clarified based on the Monte Carlo simulation and Langevin dynamics. The pre-scission neutron multiplicity is calculated and compared with the respective experimental data over a wide range of excitation energy and nonconstant viscosity. The analysis indicates a different effect for the application of asymmetric mass division in different energy regions of such processes.

  14. Applied Mathematics Conferences and Workshops | U.S. DOE Office...

    Office of Science (SC) Website

    ASCR Home About Research Applied Mathematics Applied Mathematics Conferences And Workshops Computer Science Next Generation Networking Scientific Discovery through Advanced ...

  15. Applied Cathode Enhancement and Robustness Technologies (ACERT)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerators, Electrodynamics » ACERT Applied Cathode Enhancement and Robustness Technologies (ACERT) World leading experts from fields of accelerator design & testing, chemical synthesis of nanomaterials, and shielding application of nanomaterials. thumbnail of Nathan Moody Nathan Moody Principal Investigator (PI) Email ACERT Logo Team Our project team, a part of Los Alamos National Laboratory (LANL) comprised of world leading experts from fields of accelerator design & testing,

  16. Summer of Applied Geophysical Experience Reading List

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geophysical Experience Reading List Summer of Applied Geophysical Experience Reading List A National Science Foundation Research Experiences for Undergraduates program Contacts Institute Director Reinhard Friedel-Los Alamos SAGE Co-Director W. Scott Baldridge-Los Alamos SAGE Co-Director Larry Braile-Purdue University Professional Staff Assistant Georgia Sanchez (505) 665-0855 Keller, R., Khan, M. A., Morgan, P., et al., 1991, A Comparative Study of the Rio Grande and Kenya rifts, Tectonophys.,

  17. Ab initio molecular orbital-configuration interaction based quantum master equation (MOQME) approach to the dynamic first hyperpolarizabilities of asymmetric π-conjugated systems

    SciTech Connect (OSTI)

    Kishi, Ryohei; Fujii, Hiroaki; Minami, Takuya; Shigeta, Yasuteru; Nakano, Masayoshi

    2015-01-22

    In this study, we apply the ab initio molecular orbital - configuration interaction based quantum master equation (MOQME) approach to the calculation and analysis of the dynamic first hyperpolarizabilities (ÎČ) of asymmetric π-conjugated molecules. In this approach, we construct the excited state models by the ab initio configuration interaction singles method. Then, time evolutions of system reduced density matrix ρ(t) and system polarization p(t) are calculated by the QME approach. Dynamic ÎČ in the second harmonic generation is calculated based on the nonperturbative definition of nonlinear optical susceptibility, using the frequency domain system polarization p(ω). Spatial contributions of electrons to ÎČ are analyzed based on the dynamic hyperpolarizability density map, which visualizes the second-order response of charge density oscillating with a frequency of 2ω. We apply the present method to the calculation of the dynamic ÎČ of a series of donor/acceptor substituted polyene oligomers, and then discuss the applicability of the MOQME method to the calculation and analysis of dynamic NLO properties of molecular systems.

  18. Dynamic Programming Applied to Investigate Energy Management Strategies for a Plug-in HEV

    SciTech Connect (OSTI)

    O'Keefe. M. P.; Markel, T.

    2006-11-01

    This paper explores two basic plug-in hybrid electric vehicle energy management strategies: an electric vehicle centric control strategy and an engine-motor blended control strategy.

  19. Estimating the uncertainty in underresolved nonlinear dynamics

    SciTech Connect (OSTI)

    Chorin, Alelxandre; Hald, Ole

    2013-06-12

    The Mori-Zwanzig formalism of statistical mechanics is used to estimate the uncertainty caused by underresolution in the solution of a nonlinear dynamical system. A general approach is outlined and applied to a simple example. The noise term that describes the uncertainty turns out to be neither Markovian nor Gaussian. It is argued that this is the general situation.

  20. Laser spectroscopy and dynamics of transient species

    SciTech Connect (OSTI)

    Clouthier, D.J.

    1993-12-01

    The goal of this program is to study the vibrational and electronic spectra and excited state dynamics of a number of transient sulfur and oxygen species. A variety of supersonic jet techniques, as well as high resolution FT-IR and intracavity dye laser spectroscopy, have been applied to these studies.

  1. Capturing Dynamics in the Power Grid: Formulation of Dynamic State Estimation through Data Assimilation

    SciTech Connect (OSTI)

    Zhou, Ning; Huang, Zhenyu; Meng, Da; Elbert, Stephen T.; Wang, Shaobu; Diao, Ruisheng

    2014-03-31

    With the increasing complexity resulting from uncertainties and stochastic variations introduced by intermittent renewable energy sources, responsive loads, mobile consumption of plug-in vehicles, and new market designs, more and more dynamic behaviors are observed in everyday power system operation. To operate a power system efficiently and reliably, it is critical to adopt a dynamic paradigm so that effective control actions can be taken in time. The dynamic paradigm needs to include three fundamental components: dynamic state estimation; look-ahead dynamic simulation; and dynamic contingency analysis (Figure 1). These three components answer three basic questions: where the system is; where the system is going; and how secure the system is against accidents. The dynamic state estimation provides a solid cornerstone to support the other 2 components and is the focus of this study.

  2. Dynamic defense workshop : from research to practice.

    SciTech Connect (OSTI)

    Crosby, Sean Michael; Doak, Justin E.; Haas, Jason J.; Helinski, Ryan; Lamb, Christopher C.

    2013-02-01

    On September 5th and 6th, 2012, the Dynamic Defense Workshop: From Research to Practice brought together researchers from academia, industry, and Sandia with the goals of increasing collaboration between Sandia National Laboratories and external organizations, de ning and un- derstanding dynamic, or moving target, defense concepts and directions, and gaining a greater understanding of the state of the art for dynamic defense. Through the workshop, we broadened and re ned our de nition and understanding, identi ed new approaches to inherent challenges, and de ned principles of dynamic defense. Half of the workshop was devoted to presentations of current state-of-the-art work. Presentation topics included areas such as the failure of current defenses, threats, techniques, goals of dynamic defense, theory, foundations of dynamic defense, future directions and open research questions related to dynamic defense. The remainder of the workshop was discussion, which was broken down into sessions on de ning challenges, applications to host or mobile environments, applications to enterprise network environments, exploring research and operational taxonomies, and determining how to apply scienti c rigor to and investigating the eld of dynamic defense.

  3. Dynamic tuning of chemiresistor sensitivity using mechanical strain

    DOE Patents [OSTI]

    Martin, James E; Read, Douglas H

    2014-09-30

    The sensitivity of a chemiresistor sensor can be dynamically tuned using mechanical strain. The increase in sensitivity is a smooth, continuous function of the applied strain, and the effect can be reversible. Sensitivity tuning enables the response curve of the sensor to be dynamically optimized for sensing analytes, such as volatile organic compounds, over a wide concentration range.

  4. Apply for a Job | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FAQs Answers to frequently asked questions about applying for a job at Argonne A Note About Privacy We do not ask you for personally identifiable information such as birthdate, social security number, or driver's license number. To ensure your privacy, please do not include such information in the documents that you upload to the system A Note About File Size Our application system has a file size limit of 820KB. While this is sufficient for the vast majority of documents, we have found that

  5. Thermomechanical analysis of fast-burst reactors

    SciTech Connect (OSTI)

    Miller, J.D.

    1994-08-01

    Fast-burst reactors are designed to provide intense, short-duration pulses of neutrons. The fission reaction also produces extreme time-dependent heating of the nuclear fuel. An existing transient-dynamic finite element code was modified specifically to compute the time-dependent stresses and displacements due to thermal shock loads of reactors. Thermomechanical analysis was then applied to determine structural feasibility of various concepts for an EDNA-type reactor and to optimize the mechanical design of the new SPR III-M reactor.

  6. Dynamical Symmetries Reflected in Realistic Interactions

    SciTech Connect (OSTI)

    Sviratcheva, K.D.; Draayer, J.P.; /Louisiana State U.; Vary, J.P.; /Iowa State U. /LLNL, Livermore /SLAC

    2007-04-06

    Realistic nucleon-nucleon (NN) interactions, derived within the framework of meson theory or more recently in terms of chiral effective field theory, yield new possibilities for achieving a unified microscopic description of atomic nuclei. Based on spectral distribution methods, a comparison of these interactions to a most general Sp(4) dynamically symmetric interaction, which previously we found to reproduce well that part of the interaction that is responsible for shaping pairing-governed isobaric analog 0{sup +} states, can determine the extent to which this significantly simpler model Hamiltonian can be used to obtain an approximate, yet very good description of low-lying nuclear structure. And furthermore, one can apply this model in situations that would otherwise be prohibitive because of the size of the model space. In addition, we introduce a Sp(4) symmetry breaking term by including the quadrupole-quadrupole interaction in the analysis and examining the capacity of this extended model interaction to imitate realistic interactions. This provides a further step towards gaining a better understanding of the underlying foundation of realistic interactions and their ability to reproduce striking features of nuclei such as strong pairing correlations or collective rotational motion.

  7. 2009 Applied and Environmental Microbiology GRC

    SciTech Connect (OSTI)

    Nicole Dubilier

    2009-07-12

    The topic of the 2009 Gordon Conference on Applied and Environmental Microbiology is: From Single Cells to the Environment. The Conference will present and discuss cutting-edge research on applied and environmental microbiology with a focus on understanding interactions between microorganisms and the environment at levels ranging from single cells to complex communities. The Conference will feature a wide range of topics such as single cell techniques (including genomics, imaging, and NanoSIMS), microbial diversity at scales ranging from clonal to global, environmental 'meta-omics', biodegradation and bioremediation, metal - microbe interactions, animal microbiomes and symbioses. The Conference will bring together investigators who are at the forefront of their field, and will provide opportunities for junior scientists and graduate students to present their work in poster format and exchange ideas with leaders in the field. Some poster presenters will be selected for short talks. The collegial atmosphere of this Conference, with extensive discussion sessions as well as opportunities for informal gatherings in the afternoons and evenings, provides an ideal setting for scientists from different disciplines to exchange ideas, brainstorm and discuss cross-disciplinary collaborations.

  8. Method for increasing the dynamic range of mass spectrometers

    DOE Patents [OSTI]

    Belov, Mikhail; Smith, Richard D.; Udseth, Harold R.

    2004-09-07

    A method for enhancing the dynamic range of a mass spectrometer by first passing a sample of ions through the mass spectrometer having a quadrupole ion filter, whereupon the intensities of the mass spectrum of the sample are measured. From the mass spectrum, ions within this sample are then identified for subsequent ejection. As further sampling introduces more ions into the mass spectrometer, the appropriate rf voltages are applied to a quadrupole ion filter, thereby selectively ejecting the undesired ions previously identified. In this manner, the desired ions may be collected for longer periods of time in an ion trap, thus allowing better collection and subsequent analysis of the desired ions. The ion trap used for accumulation may be the same ion trap used for mass analysis, in which case the mass analysis is performed directly, or it may be an intermediate trap. In the case where collection is an intermediate trap, the desired ions are accumulated in the intermediate trap, and then transferred to a separate mass analyzer. The present invention finds particular utility where the mass analysis is performed in an ion trap mass spectrometer or a Fourier transform ion cyclotron resonance mass spectrometer.

  9. Dynamic heterogeneity of DNA methylation and hydroxymethylation in embryonic stem cell populations captured by single-cell 3D high-content analysis

    SciTech Connect (OSTI)

    Tajbakhsh, Jian; Stefanovski, Darko; Tang, George; Wawrowsky, Kolja; Liu, Naiyou; Fair, Jeffrey H.

    2015-03-15

    Cell-surface markers and transcription factors are being used in the assessment of stem cell fate and therapeutic safety, but display significant variability in stem cell cultures. We assessed nuclear patterns of 5-hydroxymethylcytosine (5hmC, associated with pluripotency), a second important epigenetic mark, and its combination with 5-methylcytosine (5mC, associated with differentiation), also in comparison to more established markers of pluripotency (Oct-4) and endodermal differentiation (FoxA2, Sox17) in mouse embryonic stem cells (mESC) over a 10-day differentiation course in vitro: by means of confocal and super-resolution imaging together with 3D high-content analysis, an essential tool in single-cell screening. In summary: 1) We did not measure any significant correlation of putative markers with global 5mC or 5hmC. 2) While average Oct-4 levels stagnated on a cell-population base (0.015 lnIU/day), Sox17 and FoxA2 increased 22-fold and 3-fold faster, respectively (Sox17: 0.343 lnIU/day; FoxA2: 0.046 lnIU/day). In comparison, global DNA methylation levels increased 4-fold faster (0.068 lnIU/day), and global hydroxymethylation declined at 0.046 lnIU/day, both with a better explanation of the temporal profile. 3) This progression was concomitant with the occurrence of distinct nuclear codistribution patterns that represented a heterogeneous spectrum of states in differentiation; converging to three major coexisting 5mC/5hmC phenotypes by day 10: 5hmC{sup +}/5mC{sup −}, 5hmC{sup +}/5mC{sup +}, and 5hmC{sup −}/5mC{sup +} cells. 4) Using optical nanoscopy we could delineate the respective topologies of 5mC/5hmC colocalization in subregions of nuclear DNA: in the majority of 5hmC{sup +}/5mC{sup +} cells 5hmC and 5mC predominantly occupied mutually exclusive territories resembling euchromatic and heterochromatic regions, respectively. Simultaneously, in a smaller subset of cells we observed a tighter colocalization of the two cytosine variants, presumably

  10. Analysis of the stochastic excitability in the flow chemical reactor

    SciTech Connect (OSTI)

    Bashkirtseva, Irina

    2015-11-30

    A dynamic model of the thermochemical process in the flow reactor is considered. We study an influence of the random disturbances on the stationary regime of this model. A phenomenon of noise-induced excitability is demonstrated. For the analysis of this phenomenon, a constructive technique based on the stochastic sensitivity functions and confidence domains is applied. It is shown how elaborated technique can be used for the probabilistic analysis of the generation of mixed-mode stochastic oscillations in the flow chemical reactor.

  11. A methodology for generating dynamic accident progression event trees for level-2 PRA

    SciTech Connect (OSTI)

    Hakobyan, A.; Denning, R.; Aldemir, T. [Ohio State Univ., Nuclear Engineering Program, 650 Ackerman Road, Columbus, OH 43202 (United States); Dunagan, S.; Kunsman, D. [Sandia National Laboratory, Albuquerque, NM 87185 (United States)

    2006-07-01

    Currently, the development and analysis of Accident Progression Event Trees (APETs) are performed in a manner that is computationally time consuming, difficult to reproduce and also can be phenomenologically inconsistent. A software tool (ADAPT) is described for automated APET generation using the concept of dynamic event trees. The tool determines the branching times from a severe accident analysis code based on user specified criteria for branching. It assigns user specified probabilities to every branch, tracks the total branch probability, and truncates branches based on the given pruning/truncation rules to avoid an unmanageable number of scenarios. While the software tool could be applied to any systems analysis code, the MELCOR code is used for this illustration. A case study is presented involving station blackout with the loss of auxiliary feedwater system for a pressurized water reactor. (authors)

  12. Tracking interface and common curve dynamics for two-fluid flow in porous media

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mcclure, James E.; Miller, Cass T.; Gray, W. G.; Berrill, Mark A.

    2016-04-29

    Pore-scale studies of multiphase flow in porous medium systems can be used to understand transport mechanisms and quantitatively determine closure relations that better incorporate microscale physics into macroscale models. Multiphase flow simulators constructed using the lattice Boltzmann method provide a means to conduct such studies, including both the equilibrium and dynamic aspects. Moving, storing, and analyzing the large state space presents a computational challenge when highly-resolved models are applied. We present an approach to simulate multiphase flow processes in which in-situ analysis is applied to track multiphase flow dynamics at high temporal resolution. We compute a comprehensive set of measuresmore » of the phase distributions and the system dynamics, which can be used to aid fundamental understanding and inform closure relations for macroscale models. The measures computed include microscale point representations and macroscale averages of fluid saturations, the pressure and velocity of the fluid phases, interfacial areas, interfacial curvatures, interface and common curve velocities, interfacial orientation tensors, phase velocities and the contact angle between the fluid-fluid interface and the solid surface. Test cases are studied to validate the approach and illustrate how measures of system state can be obtained and used to inform macroscopic theory.« less

  13. Dynamical dipole mode in fusion reactions

    SciTech Connect (OSTI)

    Pierroutsakou, D.; Boiano, A.; Romoli, M.; Martin, B.; Inglima, G.; La Commara, M.; Sandoli, M.; Agodi, C.; Alba, R.; Coniglione, R.; Zoppo, A. Del; Maiolino, C.; Piattelli, P.; Santonocito, D.; Sapienza, P.; Baran, V.; Glodariu, T.; Cardella, G.; De Filippo, E.; Pagano, A.

    2009-05-04

    We investigated the dynamical dipole mode, related with entrance channel charge asymmetry effects, in the {sup 40}Ar+{sup 92}Zr and {sup 36}Ar+{sup 96}Zr fusion reactions at E{sub lab} = 15.1 A and 16 A MeV, respectively. These reactions populate, through entrance channels having different charge asymmetries, a compound nucleus in the A = 126 mass energy region, identical spin distribution at an average excitation energy of about 280 MeV. The compound nucleus average excitation energy and average mass were deduced by the analysis of the light charged particle energy spectra. By studying the {gamma}-ray energy spectra and the {gamma}-ray angular distributions of the considered reactions, the dynamical nature of the prompt radiation related to the dynamical dipole mode was evidenced. The data are compared with calculations based on a collective bremsstrahlung analysis of the reaction dynamics.

  14. Shared and Dynamic Libraries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shared and Dynamic Libraries Shared and Dynamic Libraries The Edison system can support applications that use dynamic shared libraries (DSL) on the compute nodes. Some "out-of-the-box" applications require DSLs and some popular applications like Python use DSLs as well. Using System Shared and Dynamic Libraries "System" DSLs include those that support software packages found in "typical" Linux distributions, e.g. Python and Perl. To build an application that will

  15. Shared and Dynamic Libraries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shared and Dynamic Libraries Shared and Dynamic Libraries The Hopper system can support applications that use dynamic shared libraries (DSL) on the compute nodes. Some "out-of-the-box" applications require DSLs and some popular applications like Python use DSLs as well. Using System Shared and Dynamic Libraries "System" DSLs include those that support software packages found in "typical" Linux distributions, e.g. Python and Perl. To build an application that will

  16. Intramolecular and nonlinear dynamics

    SciTech Connect (OSTI)

    Davis, M.J.

    1993-12-01

    Research in this program focuses on three interconnected areas. The first involves the study of intramolecular dynamics, particularly of highly excited systems. The second area involves the use of nonlinear dynamics as a tool for the study of molecular dynamics and complex kinetics. The third area is the study of the classical/quantum correspondence for highly excited systems, particularly systems exhibiting classical chaos.

  17. Simulation and sequential dynamical systems

    SciTech Connect (OSTI)

    Mortveit, H.S.; Reidys, C.M.

    1999-06-01

    Computer simulations have a generic structure. Motivated by this the authors present a new class of discrete dynamical systems that captures this structure in a mathematically precise way. This class of systems consists of (1) a loopfree graph {Upsilon} with vertex set {l_brace}1,2,{hor_ellipsis},n{r_brace} where each vertex has a binary state, (2) a vertex labeled set of functions (F{sub i,{Upsilon}}:F{sub 2}{sup n} {yields} F{sub 2}{sup n}){sub i} and (3) a permutation {pi} {element_of} S{sub n}. The function F{sub i,{Upsilon}} updates the state of vertex i as a function of the states of vertex i and its {Upsilon}-neighbors and leaves the states of all other vertices fixed. The permutation {pi} represents the update ordering, i.e., the order in which the functions F{sub i,{Upsilon}} are applied. By composing the functions F{sub i,{Upsilon}} in the order given by {pi} one obtains the dynamical system (equation given in paper), which the authors refer to as a sequential dynamical system, or SDS for short. The authors will present bounds for the number of functionally different systems and for the number of nonisomorphic digraphs {Gamma}[F{sub {Upsilon}},{pi}] that can be obtained by varying the update order and applications of these to specific graphs and graph classes.

  18. Dynamic Fracture Simulations of Explosively Loaded Cylinders

    SciTech Connect (OSTI)

    Arthur, Carly W.; Goto, D. M.

    2015-11-30

    This report documents the modeling results of high explosive experiments investigating dynamic fracture of steel (AerMetÂź 100 alloy) cylinders. The experiments were conducted at Lawrence Livermore National Laboratory (LLNL) during 2007 to 2008 [10]. A principal objective of this study was to gain an understanding of dynamic material failure through the analysis of hydrodynamic computer code simulations. Two-dimensional and three-dimensional computational cylinder models were analyzed using the ALE3D multi-physics computer code.

  19. Energy Department Extends Deadline to Apply for START Tribal...

    Energy Savers [EERE]

    Extends Deadline to Apply for START Tribal Renewable Energy Project Development Assistance to May 22, 2015 Energy Department Extends Deadline to Apply for START Tribal Renewable...

  20. An exact general remeshing scheme applied to physically conservative...

    Office of Scientific and Technical Information (OSTI)

    Published Article: An exact general remeshing scheme applied to physically conservative voxelization Title: An exact general remeshing scheme applied to physically conservative ...

  1. Identifying a cooperative control mechanism between an applied...

    Office of Scientific and Technical Information (OSTI)

    Identifying a cooperative control mechanism between an applied field and the environment ... Title: Identifying a cooperative control mechanism between an applied field and the ...

  2. Building America Webinar: Opportunities to Apply Phase Change...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Apply Phase Change Materials to Building Enclosures Building America Webinar: Opportunities to Apply Phase Change Materials to Building Enclosures This webinar, presented by ...

  3. Large Eddy Simulation (LES) Applied to Advanced Engine Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    Large Eddy Simulation (LES) Applied to Advanced Engine Combustion Research Large Eddy Simulation (LES) Applied to Low-Temperature and Diesel Engine Combustion Research Vehicle ...

  4. Applying physics, teamwork to fusion energy science | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Lab Applying physics, teamwork to fusion energy science American Fusion News Category: Massachusetts Institute of Technology (MIT) Link: Applying physics, teamwork to fusion energy science

  5. Statistical and Domain Analytics Applied to PV Module Lifetime...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Statistical and Domain Analytics Applied to PV Module Lifetime and Degradation Science Statistical and Domain Analytics Applied to PV Module Lifetime and Degradation Science ...

  6. James Webb Space Telescope: PM Lessons Applied - Eric Smith,...

    Energy Savers [EERE]

    James Webb Space Telescope: PM Lessons Applied - Eric Smith, Deputy Program Director, NASA James Webb Space Telescope: PM Lessons Applied - Eric Smith, Deputy Program Director,...

  7. ADR LUNCHTIME PROGRAM: "Crisis Negotiation: Apply the Skills...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Apply the Skills Used By Law Enforcement In Resolving Conflict Situations" ADR LUNCHTIME PROGRAM: "Crisis Negotiation: Apply the Skills Used By Law Enforcement In Resolving ...

  8. Image processing applied to laser cladding process

    SciTech Connect (OSTI)

    Meriaudeau, F.; Truchetet, F.

    1996-12-31

    The laser cladding process, which consists of adding a melt powder to a substrate in order to improve or change the behavior of the material against corrosion, fatigue and so on, involves a lot of parameters. In order to perform good tracks some parameters need to be controlled during the process. The authors present here a low cost performance system using two CCD matrix cameras. One camera provides surface temperature measurements while the other gives information relative to the powder distribution or geometric characteristics of the tracks. The surface temperature (thanks to Beer Lambert`s law) enables one to detect variations in the mass feed rate. Using such a system the authors are able to detect fluctuation of 2 to 3g/min in the mass flow rate. The other camera gives them information related to the powder distribution, a simple algorithm applied to the data acquired from the CCD matrix camera allows them to see very weak fluctuations within both gaz flux (carriage or protection gaz). During the process, this camera is also used to perform geometric measurements. The height and the width of the track are obtained in real time and enable the operator to find information related to the process parameters such as the speed processing, the mass flow rate. The authors display the result provided by their system in order to enhance the efficiency of the laser cladding process. The conclusion is dedicated to a summary of the presented works and the expectations for the future.

  9. Hanford Waste Vitrification Plant applied technology plan

    SciTech Connect (OSTI)

    Kruger, O.L.

    1990-09-01

    This Applied Technology Plan describes the process development, verification testing, equipment adaptation, and waste form qualification technical issues and plans for resolution to support the design, permitting, and operation of the Hanford Waste Vitrification Plant. The scope of this Plan includes work to be performed by the research and development contractor, Pacific Northwest Laboratory, other organizations within Westinghouse Hanford Company, universities and companies with glass technology expertise, and other US Department of Energy sites. All work described in this Plan is funded by the Hanford Waste Vitrification Plant Project and the relationship of this Plan to other waste management documents and issues is provided for background information. Work to performed under this Plan is divided into major areas that establish a reference process, develop an acceptable glass composition envelope, and demonstrate feed processing and glass production for the range of Hanford Waste Vitrification Plant feeds. Included in this work is the evaluation and verification testing of equipment and technology obtained from the Defense Waste Processing Facility, the West Valley Demonstration Project, foreign countries, and the Hanford Site. Development and verification of product and process models and other data needed for waste form qualification documentation are also included in this Plan. 21 refs., 4 figs., 33 tabs.

  10. EEG and MEG source localization using recursively applied (RAP) MUSIC

    SciTech Connect (OSTI)

    Mosher, J.C.; Leahy, R.M.

    1996-12-31

    The multiple signal characterization (MUSIC) algorithm locates multiple asynchronous dipolar sources from electroencephalography (EEG) and magnetoencephalography (MEG) data. A signal subspace is estimated from the data, then the algorithm scans a single dipole model through a three-dimensional head volume and computes projections onto this subspace. To locate the sources, the user must search the head volume for local peaks in the projection metric. Here we describe a novel extension of this approach which we refer to as RAP (Recursively APplied) MUSIC. This new procedure automatically extracts the locations of the sources through a recursive use of subspace projections, which uses the metric of principal correlations as a multidimensional form of correlation analysis between the model subspace and the data subspace. The dipolar orientations, a form of `diverse polarization,` are easily extracted using the associated principal vectors.

  11. Drift Degradation Analysis

    SciTech Connect (OSTI)

    D. Kicker

    2004-09-16

    Degradation of underground openings as a function of time is a natural and expected occurrence for any subsurface excavation. Over time, changes occur to both the stress condition and the strength of the rock mass due to several interacting factors. Once the factors contributing to degradation are characterized, the effects of drift degradation can typically be mitigated through appropriate design and maintenance of the ground support system. However, for the emplacement drifts of the geologic repository at Yucca Mountain, it is necessary to characterize drift degradation over a 10,000-year period, which is well beyond the functional period of the ground support system. This document provides an analysis of the amount of drift degradation anticipated in repository emplacement drifts for discrete events and time increments extending throughout the 10,000-year regulatory period for postclosure performance. This revision of the drift degradation analysis was developed to support the license application and fulfill specific agreement items between the U.S. Nuclear Regulatory Commission (NRC) and the U.S. Department of Energy (DOE). The earlier versions of ''Drift Degradation Analysis'' (BSC 2001 [DIRS 156304]) relied primarily on the DRKBA numerical code, which provides for a probabilistic key-block assessment based on realistic fracture patterns determined from field mapping in the Exploratory Studies Facility (ESF) at Yucca Mountain. A key block is defined as a critical block in the surrounding rock mass of an excavation, which is removable and oriented in an unsafe manner such that it is likely to move into an opening unless support is provided. However, the use of the DRKBA code to determine potential rockfall data at the repository horizon during the postclosure period has several limitations: (1) The DRKBA code cannot explicitly apply dynamic loads due to seismic ground motion. (2) The DRKBA code cannot explicitly apply loads due to thermal stress. (3) The DRKBA

  12. AN ADVANCED TOOL FOR APPLIED INTEGRATED SAFETY MANAGEMENT

    SciTech Connect (OSTI)

    Potts, T. Todd; Hylko, James M.; Douglas, Terence A.

    2003-02-27

    WESKEM, LLC's Environmental, Safety and Health (ES&H) Department had previously assessed that a lack of consistency, poor communication and using antiquated communication tools could result in varying operating practices, as well as a failure to capture and disseminate appropriate Integrated Safety Management (ISM) information. To address these issues, the ES&H Department established an Activity Hazard Review (AHR)/Activity Hazard Analysis (AHA) process for systematically identifying, assessing, and controlling hazards associated with project work activities during work planning and execution. Depending on the scope of a project, information from field walkdowns and table-top meetings are collected on an AHR form. The AHA then documents the potential failure and consequence scenarios for a particular hazard. Also, the AHA recommends whether the type of mitigation appears appropriate or whether additional controls should be implemented. Since the application is web based, the information is captured into a single system and organized according to the >200 work activities already recorded in the database. Using the streamlined AHA method improved cycle time from over four hours to an average of one hour, allowing more time to analyze unique hazards and develop appropriate controls. Also, the enhanced configuration control created a readily available AHA library to research and utilize along with standardizing hazard analysis and control selection across four separate work sites located in Kentucky and Tennessee. The AHR/AHA system provides an applied example of how the ISM concept evolved into a standardized field-deployed tool yielding considerable efficiency gains in project planning and resource utilization. Employee safety is preserved through detailed planning that now requires only a portion of the time previously necessary. The available resources can then be applied to implementing appropriate engineering, administrative and personal protective equipment

  13. Alfven soliton and multisoliton dynamics perturbed by nonlinear Landau damping

    SciTech Connect (OSTI)

    Sanchez-Arriaga, G.

    2010-08-15

    The evolution of weakly dispersive nonlinear Alfven waves propagating either parallel or oblique to the ambient magnetic field is investigated through the derivative nonlinear Schroedinger equation (DNLS) perturbed by nonlinear Landau damping. The dynamics is analyzed with the aid of a numeric algorithm based on the inverse scattering transform (IST) and an adiabatic model that takes advantages of the perturbed DNLS invariants. Both techniques are applied to five types of DNLS soliton and multisoliton solutions: (i) the parallel Alfven soliton, (ii) the bright and dark one-parameter oblique, (iii) the breather two-parameter oblique, (iv) two parallel Alfven solitons, and (v) the combination of a dark and a bright oblique solitons. For the parallel solitons, the adiabatic model describes correctly the dynamics and it also recovers the well-known result given by the perturbed IST. Due to the radiation emission and the formation of dark solitons, the behavior of oblique solitons is more complicated and multisoliton solutions are required in the adiabatic model. The analysis shows that parallel solitons develop into the normal regime, whereas the oblique waves leads to the formation of dark solitons and breathers with a wavepacket form.

  14. Analytical SFE applied to polymeric materials

    SciTech Connect (OSTI)

    Taylor, L.T.

    1995-12-31

    Polymeric materials afford unique challenges for analytical supercritical fluid extraction. Oligomeric components, monomers, anti-oxidants, finishes, residual solvents and processing additives are some of the analytes of interest. In addition to their marginal solubility in 100% CO{sub 2}, the extraction analyte is many times diffusion limited rather than enthalpically driven which means that exhaustive extractions from polymer matrices may be slow. The presentation will draw upon our experiences in the (a) fractionation of high density polyethylene with supercritical propane-modified CO{sub 2}, (b) coupling of SFE and Fourier Transform Infrared Spectrometry (FT-IR) for analysis of finishes from polyester, nylon, aramid, and polyurethane, and (c) removal of low molecular weight oligomers and additives from polyamides and polystyrene and their identification by on-line supercritical fluid chromatography/FT-IR.

  15. Hybrid function projective synchronization in complex dynamical networks

    SciTech Connect (OSTI)

    Wei, Qiang; Wang, Xing-yuan, E-mail: wangxy@dlut.edu.cn; Hu, Xiao-peng [Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, 116024 (China)] [Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, 116024 (China)

    2014-02-15

    This paper investigates hybrid function projective synchronization in complex dynamical networks. When the complex dynamical networks could be synchronized up to an equilibrium or periodic orbit, a hybrid feedback controller is designed to realize the different component of vector of node could be synchronized up to different desired scaling function in complex dynamical networks with time delay. Hybrid function projective synchronization (HFPS) in complex dynamical networks with constant delay and HFPS in complex dynamical networks with time-varying coupling delay are researched, respectively. Finally, the numerical simulations show the effectiveness of theoretical analysis.

  16. Dynamic force matching: A method for constructing dynamical coarse-grained models with realistic time dependence

    SciTech Connect (OSTI)

    Davtyan, Aram; Dama, James F.; Voth, Gregory A.; Andersen, Hans C.

    2015-04-21

    Coarse-grained (CG) models of molecular systems, with fewer mechanical degrees of freedom than an all-atom model, are used extensively in chemical physics. It is generally accepted that a coarse-grained model that accurately describes equilibrium structural properties (as a result of having a well constructed CG potential energy function) does not necessarily exhibit appropriate dynamical behavior when simulated using conservative Hamiltonian dynamics for the CG degrees of freedom on the CG potential energy surface. Attempts to develop accurate CG dynamic models usually focus on replacing Hamiltonian motion by stochastic but Markovian dynamics on that surface, such as Langevin or Brownian dynamics. However, depending on the nature of the system and the extent of the coarse-graining, a Markovian dynamics for the CG degrees of freedom may not be appropriate. In this paper, we consider the problem of constructing dynamic CG models within the context of the Multi-Scale Coarse-graining (MS-CG) method of Voth and coworkers. We propose a method of converting a MS-CG model into a dynamic CG model by adding degrees of freedom to it in the form of a small number of fictitious particles that interact with the CG degrees of freedom in simple ways and that are subject to Langevin forces. The dynamic models are members of a class of nonlinear systems interacting with special heat baths that were studied by Zwanzig [J. Stat. Phys. 9, 215 (1973)]. The properties of the fictitious particles can be inferred from analysis of the dynamics of all-atom simulations of the system of interest. This is analogous to the fact that the MS-CG method generates the CG potential from analysis of equilibrium structures observed in all-atom simulation data. The dynamic models generate a non-Markovian dynamics for the CG degrees of freedom, but they can be easily simulated using standard molecular dynamics programs. We present tests of this method on a series of simple examples that demonstrate that

  17. Applied nuclear physics in support of SBSS

    SciTech Connect (OSTI)

    Strottman, D.

    1995-10-01

    Since the advent of the 800-MeV proton linear accelerator over 3 decades ago, the facilities on the Clinton P. Anderson Meson Physics Facility (LAMPF) mesa have pioneered many developments that provide unique capabilities within the Department of Energy (DOE) complex and in the world. New technologies based on the use of the world`s most intense, medium-energy linac, LAMPF, are being developed. They include destruction of long-lived components of nuclear waste, plutonium burning, energy production, production of tritium, and experiments for the science-based stockpile stewardship (SBSS) program. The design, assessment, and safety analysis of potential facilities involve the understanding of complex combinations of nuclear processes, which in turn establish new requirements on nuclear data that transcend the traditional needs of the fission and fusion reactor communities. Other areas of technology such as neutron and proton therapy applications are also placing new requirements on nuclear data. The proposed Los Alamos Neutron Science Center (LANSCE) now under discussion combined with the appropriate instrumentation will have unique features and capabilities of which there were previously only aspirations.

  18. Rotational Brownian Dynamics simulations of clathrin cage formation

    SciTech Connect (OSTI)

    Ilie, Ioana M.; Briels, Wim J.; Otter, Wouter K. den

    2014-08-14

    The self-assembly of nearly rigid proteins into ordered aggregates is well suited for modeling by the patchy particle approach. Patchy particles are traditionally simulated using Monte Carlo methods, to study the phase diagram, while Brownian Dynamics simulations would reveal insights into the assembly dynamics. However, Brownian Dynamics of rotating anisotropic particles gives rise to a number of complications not encountered in translational Brownian Dynamics. We thoroughly test the Rotational Brownian Dynamics scheme proposed by Naess and Elsgaeter [Macromol. Theory Simul. 13, 419 (2004); Naess and Elsgaeter Macromol. Theory Simul. 14, 300 (2005)], confirming its validity. We then apply the algorithm to simulate a patchy particle model of clathrin, a three-legged protein involved in vesicle production from lipid membranes during endocytosis. Using this algorithm we recover time scales for cage assembly comparable to those from experiments. We also briefly discuss the undulatory dynamics of the polyhedral cage.

  19. Computational Fluid Dynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scour-tracc-cfd TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling Computational Fluid Dynamics Overview of CFD: Video Clip with Audio Computational fluid dynamics (CFD) research uses mathematical and computational models of flowing fluids to describe and predict fluid response in problems of interest, such as the flow of air around a moving vehicle or the flow of water and sediment in a river. Coupled with appropriate and prototypical

  20. Protein Dynamics and Biocatalysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protein Dynamics and Biocatalysis Protein Dynamics and Biocatalysis 1998 Annual Report Grand Challenge Projects biocatalysis.gif A model of the Michaelis complex for the TEM-1/penicillin system from molecular dynamics simulations. Investigators: P. A. Bash, Northwestern University Medical School and M. Karplus, Harvard University Research Objectives A guiding principle of molecular biology is that the structure of a biomolecule defines its function. This principle is especially true in the case

  1. Shared and Dynamic Libraries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Some "out-of-the-box" applications require DSLs and some popular applications like Python use DSLs as well. Using System Shared and Dynamic Libraries "System" DSLs include...

  2. Accelerated Molecular Dynamics Methods

    Broader source: Energy.gov [DOE]

    This presentation on Accelerated Molecular Dynamics Methods was given at the DOE Theory Focus Session on Hydrogen Storage Materials on May 18, 2006.

  3. The Challenges to Coupling Dynamic Geospatial Models

    SciTech Connect (OSTI)

    Goldstein, N

    2006-06-23

    Many applications of modeling spatial dynamic systems focus on a single system and a single process, ignoring the geographic and systemic context of the processes being modeled. A solution to this problem is the coupled modeling of spatial dynamic systems. Coupled modeling is challenging for both technical reasons, as well as conceptual reasons. This paper explores the benefits and challenges to coupling or linking spatial dynamic models, from loose coupling, where information transfer between models is done by hand, to tight coupling, where two (or more) models are merged as one. To illustrate the challenges, a coupled model of Urbanization and Wildfire Risk is presented. This model, called Vesta, was applied to the Santa Barbara, California region (using real geospatial data), where Urbanization and Wildfires occur and recur, respectively. The preliminary results of the model coupling illustrate that coupled modeling can lead to insight into the consequences of processes acting on their own.

  4. DYNAMIC MODELING STRATEGY FOR FLOW REGIME TRANSITION IN GAS-LIQUID TWO-PHASE FLOWS

    SciTech Connect (OSTI)

    X. Wang; X. Sun; H. Zhao

    2011-09-01

    In modeling gas-liquid two-phase flows, the concept of flow regime has been used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are often flow regime dependent. Currently, the determination of the flow regimes is primarily based on flow regime maps or transition criteria, which are developed for steady-state, fully-developed flows and widely applied in nuclear reactor system safety analysis codes, such as RELAP5. As two-phase flows are observed to be dynamic in nature (fully-developed two-phase flows generally do not exist in real applications), it is of importance to model the flow regime transition dynamically for more accurate predictions of two-phase flows. The present work aims to develop a dynamic modeling strategy for determining flow regimes in gas-liquid two-phase flows through the introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation and destruction of the interfacial area, such as the fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation; and fluid particle coalescence and condensation, respectively. For the flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shape (which are correlated), namely small bubbles and large bubbles. A preliminary approach to dynamically identifying the flow regimes is provided, in which discriminators are based on the predicted information, such as the void fraction and interfacial area concentration of small bubble and large bubble groups. This method is expected to be applied to computer codes to improve their predictive capabilities of gas-liquid two-phase flows, in particular for the applications in

  5. Couplings between hierarchical conformational dynamics from multi-time correlation functions and two-dimensional lifetime spectra: Application to adenylate kinase

    SciTech Connect (OSTI)

    Ono, Junichi; Takada, Shoji; Saito, Shinji

    2015-06-07

    An analytical method based on a three-time correlation function and the corresponding two-dimensional (2D) lifetime spectrum is developed to elucidate the time-dependent couplings between the multi-timescale (i.e., hierarchical) conformational dynamics in heterogeneous systems such as proteins. In analogy with 2D NMR, IR, electronic, and fluorescence spectroscopies, the waiting-time dependence of the off-diagonal peaks in the 2D lifetime spectra can provide a quantitative description of the dynamical correlations between the conformational motions with different lifetimes. The present method is applied to intrinsic conformational changes of substrate-free adenylate kinase (AKE) using long-time coarse-grained molecular dynamics simulations. It is found that the hierarchical conformational dynamics arise from the intra-domain structural transitions among conformational substates of AKE by analyzing the one-time correlation functions and one-dimensional lifetime spectra for the donor-acceptor distances corresponding to single-molecule Förster resonance energy transfer experiments with the use of the principal component analysis. In addition, the complicated waiting-time dependence of the off-diagonal peaks in the 2D lifetime spectra for the donor-acceptor distances is attributed to the fact that the time evolution of the couplings between the conformational dynamics depends upon both the spatial and temporal characters of the system. The present method is expected to shed light on the biological relationship among the structure, dynamics, and function.

  6. Peak fitting applied to low-resolution enrichment measurements

    SciTech Connect (OSTI)

    Bracken, D.; McKown, T.; Sprinkle, J.K. Jr.; Gunnink, R.; Kartoshov, M.; Kuropatwinski, J.; Raphina, G.; Sokolov, G.

    1998-12-01

    Materials accounting at bulk processing facilities that handle low enriched uranium consists primarily of weight and uranium enrichment measurements. Most low enriched uranium processing facilities draw separate materials balances for each enrichment handled at the facility. The enrichment measurement determines the isotopic abundance of the {sup 235}U, thereby determining the proper strata for the item, while the weight measurement generates the primary accounting value for the item. Enrichment measurements using the passive gamma radiation from uranium were developed for use in US facilities a few decades ago. In the US, the use of low-resolution detectors was favored because they cost less, are lighter and more robust, and don`t require the use of liquid nitrogen. When these techniques were exported to Europe, however, difficulties were encountered. Two of the possible root causes were discovered to be inaccurate knowledge of the container wall thickness and higher levels of minor isotopes of uranium introduced by the use of reactor returns in the enrichment plants. the minor isotopes cause an increase in the Compton continuum under the 185.7 keV assay peak and the observance of interfering 238.6 keV gamma rays. The solution selected to address these problems was to rely on the slower, more costly, high-resolution gamma ray detectors when the low-resolution method failed. Recently, these gamma ray based enrichment measurement techniques have been applied to Russian origin material. The presence of interfering gamma radiation from minor isotopes was confirmed. However, with the advent of fast portable computers, it is now possible to apply more sophisticated analysis techniques to the low-resolution data in the field. Explicit corrections for Compton background, gamma rays from {sup 236}U daughters, and the attenuation caused by thick containers can be part of the least squares fitting routine. Preliminary results from field measurements in Kazakhstan will be

  7. MATHEMATICAL MODELS OF HYSTERESIS (DYNAMIC PROBLEMS IN HYSTERESIS)

    SciTech Connect (OSTI)

    Professor Isaak Mayergoyz

    2006-08-21

    This research has further advanced the current state of the art in the areas of dynamic aspects of hysteresis and nonlinear large scale magnetization dynamics. The results of this research will find important engineering applications in the areas of magnetic data storage technology and the emerging technology of “spintronics”. Our research efforts have been focused on the following tasks: ‱ Study of fast (pulse) precessional switching of magnetization in magnetic materials. ‱ Analysis of critical fields and critical angles for precessional switching of magnetization. ‱ Development of inverse problem approach to the design of magnetic field pulses for precessional switching of magnetization. ‱ Study of magnetization dynamics induced by spin polarized current injection. ‱ Construction of complete stability diagrams for spin polarized current induced magnetization dynamics. ‱ Development of the averaging technique for the analysis of the slow time scale magnetization dynamics. ‱ Study of thermal effects on magnetization dynamics by using the theory of stochastic processes on graphs.

  8. Office of Infrastructure Planning & Analysis | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Gallery Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home Office of Infrastructure Planning & Analysis Office of Infrastructure Planning & Analysis...

  9. International Clean Energy Analysis | Open Energy Information

    Open Energy Info (EERE)

    Analysis (ICEA) gateway promotes increased access to clean energy analysis tools, databases, methods and other technical resources which can be applied in developing countries....

  10. Vehicle Energy Consumption and Performance Analysis | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consumption and Performance Analysis Vehicle Energy Consumption and Performance Analysis Argonne researchers have applied their expertise in modeling, simulation and control to ...

  11. Incompressible Viscous Fluid Dynamics

    Energy Science and Technology Software Center (OSTI)

    1992-02-13

    NACHOS2 is a finite element program designed for the analysis of two-dimensional, incompressible viscous fluid flow problems. The basic flows considered may be isothermal, nonisothermal, or may involve other physical processes, such as mass transport. Both steady and transient flows may be analyzed. The class of problems treated are those described by the two-dimensional (plane or axisymmetric) incompressible form of the Navier-Stokes equations. An energy transport equation is included in the formulation for problems inmore » which heat transfer effects are important. Two auxiliary transport equations can be added to describe other physical processes,e.g. mass transfer, chemical reactions. Among the specific types of flow problems treated are: isothermal flow; forced, free, or mixed convection; conjugate heat transfer; flow in saturated porous media with or without heat transfer; and inelastic, non-Newtonian flows with or without heat transfer. Other problem classes are possible depending on the specific definitions applied to the auxiliary transport equations.« less

  12. Incompressible Viscous Fluid Dynamics

    Energy Science and Technology Software Center (OSTI)

    1992-02-13

    NACHOS2 is a finite element program designed for the analysis of two-dimensional, incompressible viscous fluid flow problems. The basic flows considered may be isothermal, nonisothermal, or may involve other physical processes, such as mass transport. Both steady and transient flows may be analyzed. The class of problems treated are those described by the two-dimensional (plane or axisymmetric) incompressible form of the Navier-Stokes equations. An energy transport equation is included in the formulation for problems inmore »which heat transfer effects are important. Two auxiliary transport equations can be added to describe other physical processes,e.g. mass transfer, chemical reactions. Among the specific types of flow problems treated are: isothermal flow; forced, free, or mixed convection; conjugate heat transfer; flow in saturated porous media with or without heat transfer; and inelastic, non-Newtonian flows with or without heat transfer. Other problem classes are possible depending on the specific definitions applied to the auxiliary transport equations.« less

  13. DOE - Office of Legacy Management -- Case School of Applied Science...

    Office of Legacy Management (LM)

    Case School of Applied Science Ohio State University - OH 0-01 Site ID (CSD Index Number): OH.0-01 Site Name: Case School of Applied Science, Ohio State University Site Summary: Site ...

  14. Kerry Vahala: Jenkins Professor and Professor of Applied Physics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied Physics, California Institute of Technology Nov 6, 2013 | 4:00 PM - 5:00 PM Kerry Vahala Jenkins Professor and Professor of Applied Physics, California Institute of ...

  15. Oregon Learning About and Applying for Water Rights Webpage ...

    Open Energy Info (EERE)

    Learning About and Applying for Water Rights Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Learning About and Applying for Water...

  16. Ultrafast studies of solution dynamics

    SciTech Connect (OSTI)

    Woodruff, W.H.; Dyer, R.B.; Callender, R.H.

    1997-10-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Fast chemical dynamics generally must be initiated photochemically. This limits the applicability of modern laser methods for following the structural changes that occur during chemical and biological reactions to those systems that have an electronic chromophore that has a significant yield of photoproduct when excited. This project has developed a new and entirely general approach to ultrafast initiation of reactions in solution: laser-induced temperature jump (T-jump). The results open entire new fields of study of ultrafast molecular dynamics in solution. The authors have demonstrated the T-jump technique on time scales of 50 ps and longer, and have applied it to study of the fast events in protein folding. They find that a general lifetime of alpha-helix formation is ca 100 ns, and that tertiary folds (in apomyoglobin) form in ca 100 {mu}s.

  17. Attenuation-Based Remedies in the Subsurface Applied Field Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initiative (ABRS AFRI) | Department of Energy Attenuation-Based Remedies in the Subsurface Applied Field Research Initiative (ABRS AFRI) Attenuation-Based Remedies in the Subsurface Applied Field Research Initiative (ABRS AFRI) Attenuation-Based Remedies in the Subsurface Applied Field Research Initiative (ABRS AFRI) Located at the Savannah River Site in Aiken, South Carolina, the Attenuation-Based Remedies in the Subsurface Applied Field Research Initiative (ABRS AFRI) was established to

  18. Vehicle Technologies Office: Applied Battery Research | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Applied Battery Research Vehicle Technologies Office: Applied Battery Research Applied battery research addresses the barriers facing the lithium-ion systems that are closest to meeting the technical energy and power requirements for hybrid electric vehicle (HEV) and electric vehicle (EV) applications. In addition, applied battery research concentrates on technology transfer to ensure that the research results and lessons learned are effectively provided to U.S. automotive and battery

  19. Register to Apply for EERE Funding Opportunities | Department of Energy

    Office of Environmental Management (EM)

    Apply for Funding » Register to Apply for EERE Funding Opportunities Register to Apply for EERE Funding Opportunities Before applying to an EERE financial opportunity, potential applicants must complete specific registration requirements. Of the registrations listed below, the EERE Exchange registration does not have a delay; however, the remaining registration requirements could take several weeks to process and are necessary before a potential applicant can receive an award. To be eligible to

  20. Aachen University of Applied Sciences | Open Energy Information

    Open Energy Info (EERE)

    Aachen University of Applied Sciences Place: Germany Sector: Services Product: General Financial & Legal Services ( Academic Research foundation ) References: Aachen...

  1. Applied Process Engineering Laborotory APEL | Open Energy Information

    Open Energy Info (EERE)

    Engineering Laborotory (APEL) Place: United States Sector: Services Product: General Financial & Legal Services ( Private family-controlled ) References: Applied Process...

  2. PLURAL METALLIC COATINGS ON URANIUM AND METHOD OF APPLYING SAME

    DOE Patents [OSTI]

    Gray, A.G.

    1958-09-16

    A method is described of applying protective coatings to uranlum articles. It consists in applying chromium plating to such uranium articles by electrolysis in a chromic acid bath and subsequently applying, to this minum containing alloy. This aluminum contalning alloy (for example one of aluminum and silicon) may then be used as a bonding alloy between the chromized surface and an aluminum can.

  3. Applied Mathematics | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied Mathematics Advanced Scientific Computing Research (ASCR) ASCR Home About Research Applied Mathematics Applied Mathematics Conferences And Workshops Computer Science Next Generation Networking Scientific Discovery through Advanced Computing (SciDAC) ASCR SBIR-STTR Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) Community Resources Contact Information Advanced Scientific Computing Research U.S. Department of

  4. Sierra Structural Dynamics Theory Manual

    SciTech Connect (OSTI)

    Reese, Garth M.

    2015-10-19

    Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of structural systems. This manual describes the theory behind many of the constructs in Sierra/SD. For a more detailed description of how to use Sierra/SD , we refer the reader to Sierra/SD, User's Notes . Many of the constructs in Sierra/SD are pulled directly from published material. Where possible, these materials are referenced herein. However, certain functions in Sierra/SD are specific to our implementation. We try to be far more complete in those areas. The theory manual was developed from several sources including general notes, a programmer notes manual, the user's notes and of course the material in the open literature. This page intentionally left blank.

  5. SIAM conference on applications of dynamical systems. Abstracts and author index

    SciTech Connect (OSTI)

    Not Available

    1992-12-31

    A conference (Oct.15--19, 1992, Snowbird, Utah; sponsored by SIAM (Society for Industrial and Applied Mathematics) Activity Group on Dynamical Systems) was held that highlighted recent developments in applied dynamical systems. The main lectures and minisymposia covered theory about chaotic motion, applications in high energy physics and heart fibrillations, turbulent motion, Henon map and attractor, integrable problems in classical physics, pattern formation in chemical reactions, etc. The conference fostered an exchange between mathematicians working on theoretical issues of modern dynamical systems and applied scientists. This two-part document contains abstracts, conference program, and an author index.

  6. State analysis of nonlinear systems using local canonical variate analysis

    SciTech Connect (OSTI)

    Hunter, N.F.

    1997-01-01

    There are many instances in which time series measurements are used to derive an empirical model of a dynamical system. State space reconstruction from time series measurement has applications in many scientific and engineering disciplines including structural engineering, biology, chemistry, climatology, control theory, and physics. Prediction of future time series values from empirical models was attempted as early as 1927 by Yule, who applied linear prediction methods to the sunspot values. More recently, efforts in this area have centered on two related aspects of time series analysis, namely prediction and modeling. In prediction future time series values are estimated from past values, in modeling, fundamental characteristics of the state model underlying the measurements are estimated, such as dimension and eigenvalues. In either approach a measured time series, [{bold y}(t{sub i})], i= 1,... N is assumed to derive from the action of a smooth dynamical system, s(t+{bold {tau}})=a(s(t)), where the bold notation indicates the (potentially ) multivariate nature of the time series. The time series is assumed to derive from the state evolution via a measurement function c. {bold y}(t)=c(s(t)) In general the states s(t), the state evolution function a and the measurement function c are In unknown, and must be inferred from the time series measurements. We approach this problem from the standpoint of time series analysis. We review the principles of state space reconstruction. The specific model formulation used in the local canonical variate analysis algorithm and a detailed description of the state space reconstruction algorithm are included. The application of the algorithm to a single-degree-of- freedom Duffing-like Oscillator and the difficulties involved in reconstruction of an unmeasured degree of freedom in a four degree of freedom nonlinear oscillator are presented. The advantages and current limitations of state space reconstruction are summarized.

  7. Applying a Modified Triad Approach to Investigate Wastewater lines

    SciTech Connect (OSTI)

    Pawlowicz, R.; Urizar, L.; Blanchard, S.; Jacobsen, K.; Scholfield, J.

    2006-07-01

    Approximately 20 miles of wastewater lines are below grade at an active military Base. This piping network feeds or fed domestic or industrial wastewater treatment plants on the Base. Past wastewater line investigations indicated potential contaminant releases to soil and groundwater. Further environmental assessment was recommended to characterize the lines because of possible releases. A Remedial Investigation (RI) using random sampling or use of sampling points spaced at predetermined distances along the entire length of the wastewater lines, however, would be inefficient and cost prohibitive. To accomplish RI goals efficiently and within budget, a modified Triad approach was used to design a defensible sampling and analysis plan and perform the investigation. The RI task was successfully executed and resulted in a reduced fieldwork schedule, and sampling and analytical costs. Results indicated that no major releases occurred at the biased sampling points. It was reasonably extrapolated that since releases did not occur at the most likely locations, then the entire length of a particular wastewater line segment was unlikely to have contaminated soil or groundwater and was recommended for no further action. A determination of no further action was recommended for the majority of the waste lines after completing the investigation. The modified Triad approach was successful and a similar approach could be applied to investigate wastewater lines on other United States Department of Defense or Department of Energy facilities. (authors)

  8. Optimization Method to Branch and Bound Large SBO State Spaces Under Dynamic Probabilistic Risk Assessment via use of LENDIT Scales and S2R2 Sets

    SciTech Connect (OSTI)

    Joseph W. Nielsen; Akira Tokurio; Robert Hiromoto; Jivan Khatry

    2014-06-01

    Traditional Probabilistic Risk Assessment (PRA) methods have been developed and are quite effective in evaluating risk associated with complex systems, but lack the capability to evaluate complex dynamic systems. These time and energy scales associated with the transient may vary as a function of transition time to a different physical state. Dynamic PRA (DPRA) methods provide a more rigorous analysis of complex dynamic systems, while complete, results in issues associated with combinatorial explosion. In order to address the combinatorial complexity arising from the number of possible state configurations and discretization of transition times, a characteristic scaling metric (LENDIT – length, energy, number, distribution, information and time) is proposed as a means to describe systems uniformly and thus provide means to describe relational constraints expected in the dynamics of a complex (coupled) systems. Thus when LENDIT is used to characterize four sets – ‘state, system, resource and response’ (S2R2) – describing reactor operations (normal and off-normal), LENDIT and S2R2 in combination have the potential to ‘branch and bound’ the state space investigated by DPRA. In this paper we introduce the concept of LENDIT scales and S2R2 sets applied to a branch-and-bound algorithm and apply the methods to a station black out transient (SBO).

  9. Infrared and Raman Spectroscopy from Ab Initio Molecular Dynamics...

    Office of Scientific and Technical Information (OSTI)

    Infrared and Raman Spectroscopy from Ab Initio Molecular Dynamics and Static Normal Mode Analysis: The C-H Region of DMSO as a Case Study Citation Details In-Document Search Title: ...

  10. Solar Dynamics | Open Energy Information

    Open Energy Info (EERE)

    Dynamics Jump to: navigation, search Name: Solar Dynamics Place: Ottumwa, Iowa Zip: IA 52501 Sector: Solar Product: Solar Dynamics is a US-based solar powered attic roof vents...

  11. A bidirectional coupling procedure applied to multiscale respiratory modeling

    SciTech Connect (OSTI)

    Kuprat, A.P.; Kabilan, S.; Carson, J.P.; Corley, R.A.; Einstein, D.R.

    2013-07-01

    In this study, we present a novel multiscale computational framework for efficiently linking multiple lower-dimensional models describing the distal lung mechanics to imaging-based 3D computational fluid dynamics (CFDs) models of the upper pulmonary airways in order to incorporate physiologically appropriate outlet boundary conditions. The framework is an extension of the modified Newton’s method with nonlinear Krylov accelerator developed by Carlson and Miller [1], Miller [2] and Scott and Fenves [3]. Our extensions include the retention of subspace information over multiple timesteps, and a special correction at the end of a timestep that allows for corrections to be accepted with verified low residual with as little as a single residual evaluation per timestep on average. In the case of a single residual evaluation per timestep, the method has zero additional computational cost compared to uncoupled or unidirectionally coupled simulations. We expect these enhancements to be generally applicable to other multiscale coupling applications where timestepping occurs. In addition we have developed a “pressure-drop” residual which allows for stable coupling of flows between a 3D incompressible CFD application and another (lower-dimensional) fluid system. We expect this residual to also be useful for coupling non-respiratory incompressible fluid applications, such as multiscale simulations involving blood flow. The lower-dimensional models that are considered in this study are sets of simple ordinary differential equations (ODEs) representing the compliant mechanics of symmetric human pulmonary airway trees. To validate the method, we compare the predictions of hybrid CFD–ODE models against an ODE-only model of pulmonary airflow in an idealized geometry. Subsequently, we couple multiple sets of ODEs describing the distal lung to an imaging-based human lung geometry. Boundary conditions in these models consist of atmospheric pressure at the mouth and intrapleural

  12. A Bidirectional Coupling Procedure Applied to Multiscale Respiratory Modeling

    SciTech Connect (OSTI)

    Kuprat, Andrew P.; Kabilan, Senthil; Carson, James P.; Corley, Richard A.; Einstein, Daniel R.

    2013-07-01

    In this study, we present a novel multiscale computational framework for efficiently linking multiple lower-dimensional models describing the distal lung mechanics to imaging-based 3D computational fluid dynamics (CFD) models of the upper pulmonary airways in order to incorporate physiologically appropriate outlet boundary conditions. The framework is an extension of the Modified Newton’s Method with nonlinear Krylov accelerator developed by Carlson and Miller [1, 2, 3]. Our extensions include the retention of subspace information over multiple timesteps, and a special correction at the end of a timestep that allows for corrections to be accepted with verified low residual with as little as a single residual evaluation per timestep on average. In the case of a single residual evaluation per timestep, the method has zero additional computational cost compared to uncoupled or unidirectionally coupled simulations. We expect these enhancements to be generally applicable to other multiscale coupling applications where timestepping occurs. In addition we have developed a “pressure-drop” residual which allows for stable coupling of flows between a 3D incompressible CFD application and another (lower-dimensional) fluid system. We expect this residual to also be useful for coupling non-respiratory incompressible fluid applications, such as multiscale simulations involving blood flow. The lower-dimensional models that are considered in this study are sets of simple ordinary differential equations (ODEs) representing the compliant mechanics of symmetric human pulmonary airway trees. To validate the method, we compare the predictions of hybrid CFD-ODE models against an ODE-only model of pulmonary airflow in an idealized geometry. Subsequently, we couple multiple sets of ODEs describing the distal lung to an imaging-based human lung geometry. Boundary conditions in these models consist of atmospheric pressure at the mouth and intrapleural pressure applied to the multiple

  13. Accelerated Molecular Dynamics Methods

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Los Alamos Parallel Replica Dynamics Procedure Start clock and run thermostatted MD on ... Sum the trajectory times over all M processors. Advance simulation clock by this t sum Los ...

  14. Multipulsed dynamic moire interferometer

    DOE Patents [OSTI]

    Deason, Vance A.

    1991-01-01

    An improved dynamic moire interferometer comprised of a lasing medium providing a plurality of beams of coherent light, a multiple q-switch producing multiple trains of 100,000 or more pulses per second, a combining means collimating multiple trains of pulses into substantially a single train and directing beams to specimen gratings affixed to a test material, and a controller, triggering and sequencing the emission of the pulses with the occurrence and recording of a dynamic loading event.

  15. Photochemical reaction dynamics

    SciTech Connect (OSTI)

    Moore, B.C.

    1993-12-01

    The purpose of the program is to develop a fundamental understanding of unimolecular and bimolecular reaction dynamics with application in combustion and energy systems. The energy dependence in ketene isomerization, ketene dissociation dynamics, and carbonyl substitution on organometallic rhodium complexes in liquid xenon have been studied. Future studies concerning unimolecular processes in ketene as well as energy transfer and kinetic studies of methylene radicals are discussed.

  16. Adaptive Dynamic Event Tree in RAVEN code

    SciTech Connect (OSTI)

    Alfonsi, Andrea; Rabiti, Cristian; Mandelli, Diego; Cogliati, Joshua Joseph; Kinoshita, Robert Arthur

    2014-11-01

    RAVEN is a software tool that is focused on performing statistical analysis of stochastic dynamic systems. RAVEN has been designed in a high modular and pluggable way in order to enable easy integration of different programming languages (i.e., C++, Python) and coupling with other applications (system codes). Among the several capabilities currently present in RAVEN, there are five different sampling strategies: Monte Carlo, Latin Hyper Cube, Grid, Adaptive and Dynamic Event Tree (DET) sampling methodologies. The scope of this paper is to present a new sampling approach, currently under definition and implementation: an evolution of the DET me

  17. Current scaling of axially radiated power in dynamic hohlraums and dynamic hohlraum load design for ZR.

    SciTech Connect (OSTI)

    Mock, Raymond Cecil; Nash, Thomas J.; Sanford, Thomas W. L.

    2007-03-01

    We present designs for dynamic hohlraum z-pinch loads on the 28 MA, 140 ns driver ZR. The scaling of axially radiated power with current in dynamic hohlraums is reviewed. With adequate stability on ZR this scaling indicates that 30 TW of axially radiated power should be possible. The performance of the dynamic hohlraum load on the 20 MA, 100 ns driver Z is extensively reviewed. The baseline z-pinch load on Z is a nested tungsten wire array imploding onto on-axis foam. Data from a variety of x-ray diagnostics fielded on Z are presented. These diagnostics include x-ray diodes, bolometers, fast x-ray imaging cameras, and crystal spectrometers. Analysis of these data indicates that the peak dynamic radiation temperature on Z is between 250 and 300 eV from a diameter less than 1 mm. Radiation from the dynamic hohlraum itself or from a radiatively driven pellet within the dynamic hohlraum has been used to probe a variety of matter associated with the dynamic hohlraum: the tungsten z-pinch itself, tungsten sliding across the end-on apertures, a titanium foil over the end aperture, and a silicon aerogel end cap. Data showing the existence of asymmetry in radiation emanating from the two ends of the dynamic hohlraum is presented, along with data showing load configurations that mitigate this asymmetry. 1D simulations of the dynamic hohlraum implosion are presented and compared to experimental data. The simulations provide insight into the dynamic hohlraum behavior but are not necessarily a reliable design tool because of the inherently 3D behavior of the imploding nested tungsten wire arrays.

  18. Dakota uncertainty quantification methods applied to the NEK-5000 SAHEX model.

    SciTech Connect (OSTI)

    Weirs, V. Gregory

    2014-03-01

    This report summarizes the results of a NEAMS project focused on the use of uncertainty and sensitivity analysis methods within the NEK-5000 and Dakota software framework for assessing failure probabilities as part of probabilistic risk assessment. NEK-5000 is a software tool under development at Argonne National Laboratory to perform computational fluid dynamics calculations for applications such as thermohydraulics of nuclear reactor cores. Dakota is a software tool developed at Sandia National Laboratories containing optimization, sensitivity analysis, and uncertainty quantification algorithms. The goal of this work is to demonstrate the use of uncertainty quantification methods in Dakota with NEK-5000.

  19. History-dependent ion transport through conical nanopipettes and the implications in energy conversion dynamics at nanoscale interfaces

    SciTech Connect (OSTI)

    Li, Yan; Wang, Dengchao; Kvetny, Maksim M.; Brown, Warren; Liu, Juan; Wang, Gangli

    2014-08-20

    The dynamics of ion transport at nanostructured substrate–solution interfaces play vital roles in high-density energy conversion, stochastic chemical sensing and biosensing, membrane separation, nanofluidics and fundamental nanoelectrochemistry. Advancements in these applications require a fundamental understanding of ion transport at nanoscale interfaces. The understanding of the dynamic or transient transport, and the key physical process involved, is limited, which contrasts sharply with widely studied steady-state ion transport features at atomic and nanometer scale interfaces. Here we report striking time-dependent ion transport characteristics at nanoscale interfaces in current–potential (I–V) measurements and theoretical analyses. First, a unique non-zero I–V cross-point and pinched I–V curves are established as signatures to characterize the dynamics of ion transport through individual conical nanopipettes. Moreoever, ion transport against a concentration gradient is regulated by applied and surface electrical fields. The concept of ion pumping or separation is demonstrated via the selective ion transport against concentration gradients through individual nanopipettes. Third, this dynamic ion transport process under a predefined salinity gradient is discussed in the context of nanoscale energy conversion in supercapacitor type charging–discharging, as well as chemical and electrical energy conversion. Our analysis of the emerging current–potential features establishes the urgently needed physical foundation for energy conversion employing ordered nanostructures. The elucidated mechanism and established methodology can be generalized into broadly-defined nanoporous materials and devices for improved energy, separation and sensing applications.

  20. History-dependent ion transport through conical nanopipettes and the implications in energy conversion dynamics at nanoscale interfaces

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Yan; Wang, Dengchao; Kvetny, Maksim M.; Brown, Warren; Liu, Juan; Wang, Gangli

    2014-08-20

    The dynamics of ion transport at nanostructured substrate–solution interfaces play vital roles in high-density energy conversion, stochastic chemical sensing and biosensing, membrane separation, nanofluidics and fundamental nanoelectrochemistry. Advancements in these applications require a fundamental understanding of ion transport at nanoscale interfaces. The understanding of the dynamic or transient transport, and the key physical process involved, is limited, which contrasts sharply with widely studied steady-state ion transport features at atomic and nanometer scale interfaces. Here we report striking time-dependent ion transport characteristics at nanoscale interfaces in current–potential (I–V) measurements and theoretical analyses. First, a unique non-zero I–V cross-point and pinched I–Vmore » curves are established as signatures to characterize the dynamics of ion transport through individual conical nanopipettes. Moreoever, ion transport against a concentration gradient is regulated by applied and surface electrical fields. The concept of ion pumping or separation is demonstrated via the selective ion transport against concentration gradients through individual nanopipettes. Third, this dynamic ion transport process under a predefined salinity gradient is discussed in the context of nanoscale energy conversion in supercapacitor type charging–discharging, as well as chemical and electrical energy conversion. Our analysis of the emerging current–potential features establishes the urgently needed physical foundation for energy conversion employing ordered nanostructures. The elucidated mechanism and established methodology can be generalized into broadly-defined nanoporous materials and devices for improved energy, separation and sensing applications.« less

  1. Opportunities to Apply Phase Change Materials to Building Enclosures

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webinar | Department of Energy Opportunities to Apply Phase Change Materials to Building Enclosures Webinar Opportunities to Apply Phase Change Materials to Building Enclosures Webinar Slides from the Building America webinar on November 11, 2011. webinar_pcm_enclosures_20111111.pdf (2.99 MB) More Documents & Publications Building America Webinar: Opportunities to Apply Phase Change Materials to Building Enclosures Vehicle Technologies Office Merit Review 2016: ePATHS - electrical PCM

  2. 2008 Annual Merit Review Results Summary - 2. Applied Battery Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2-1 2. Applied Battery Research Introduction Applied battery research focuses on addressing the cross-cutting barriers facing the lithium-ion systems that are closest to meeting all of the technical energy and power requirements for hybrid electric vehicle (HEV) and electric vehicle (EV) applications. In addition, the applied battery research activity concentrates on technology transfer to ensure that the research results and lessons learned are effectively provided to U.S. automotive and

  3. Apply for the Parallel Computing Summer Research Internship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How to Apply Apply for the Parallel Computing Summer Research Internship Creating next-generation leaders in HPC research and applications development Program Co-Lead Robert (Bob) Robey Email Program Co-Lead Gabriel Rockefeller Email Program Co-Lead Hai Ah Nam Email Professional Staff Assistant Nicole Aguilar Garcia (505) 665-3048 Email Current application deadline is February 5, 2016 with notification by early March 2016. Who can apply? Upper division undergraduate students and early graduate

  4. Where to Apply for Weatherization Assistance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    You are here Home » Weatherization Assistance Program » Where to Apply for Weatherization Assistance Where to Apply for Weatherization Assistance To apply for weatherization assistance you need to contact your state weatherization agency. The U.S. Department of Energy (DOE) does not provide weatherization services or services of any kind to individuals. DOE also does not process applications-this process is handled by each state. How to Determine if You Are Eligible for Weatherization

  5. Building America Webinar: Opportunities to Apply Phase Change Materials to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Enclosures | Department of Energy to Apply Phase Change Materials to Building Enclosures Building America Webinar: Opportunities to Apply Phase Change Materials to Building Enclosures This webinar, presented by research team Fraunhofer Center for Sustainable Energy Systems (CSE), reviewed basic physical characteristics and thermal properties of phase change materials (PCMs) and provided guidance on how to effectively apply PCMs in buildings in the United States.

  6. Quantum dynamics of fast chemical reactions

    SciTech Connect (OSTI)

    Light, J.C.

    1993-12-01

    The aims of this research are to explore, develop, and apply theoretical methods for the evaluation of the dynamics of gas phase collision processes, primarily chemical reactions. The primary theoretical tools developed for this work have been quantum scattering theory, both in time dependent and time independent forms. Over the past several years, the authors have developed and applied methods for the direct quantum evaluation of thermal rate constants, applying these to the evaluation of the hydrogen isotopic exchange reactions, applied wave packet propagation techniques to the dissociation of Rydberg H{sub 3}, incorporated optical potentials into the evaluation of thermal rate constants, evaluated the use of optical potentials for state-to-state reaction probability evaluations, and, most recently, have developed quantum approaches for electronically non-adiabatic reactions which may be applied to simplify calculations of reactive, but electronically adiabatic systems. Evaluation of the thermal rate constants and the dissociation of H{sub 3} were reported last year, and have now been published.

  7. Apply: Funding Opportunity - Advancing Solutions to Improve Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advancing Solutions to Improve Energy Efficiency of Commercial Buildings Apply: Funding Opportunity - Advancing Solutions to Improve Energy Efficiency of Commercial Buildings ...

  8. ENERGY STAR Webinar: How to Apply for the ENERGY STAR

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency (EPA) is hosting a webinar on how to apply for ENERGY STAR certification in Portfolio Manager.

  9. Identification of multi-modal plasma responses to applied magnetic...

    Office of Scientific and Technical Information (OSTI)

    Title: Identification of multi-modal plasma responses to applied magnetic ... Type: Publisher's Accepted Manuscript Journal Name: Physics of Plasmas Additional Journal ...

  10. Apply: Building Energy Efficiency Frontiers and Incubator Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Energy Efficiency Frontiers and Incubator Technologies (BENEFIT) - 2014 (DE-FOA-0001027) Apply: Building Energy Efficiency Frontiers and Incubator Technologies (BENEFIT) - ...

  11. Attenuation-Based Remedies in the Subsurface Applied Field Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The mission of the Attenuation Based Remedies in the Subsurface Applied Field Research Initiative is to seek holistic solutions to DOE's groundwater contamination problems that ...

  12. BLM Manual 2804: Applying for FLPMA Grants | Open Energy Information

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: BLM Manual 2804: Applying for FLPMA GrantsPermittingRegulatory...

  13. Apply: Small Business Funding Opportunity for Lighting, Integrated...

    Office of Environmental Management (EM)

    Small Business Funding Opportunity for Lighting, Integrated Storage, and Distributed Generation Apply: Small Business Funding Opportunity for Lighting, Integrated Storage, and ...

  14. Crivelli, Silvia; Meza, Juan 60 APPLIED LIFE SCIENCES Ernest...

    Office of Scientific and Technical Information (OSTI)

    folding via divide-and-conquer optimization Oliva, Ricardo; Crivelli, Silvia; Meza, Juan 60 APPLIED LIFE SCIENCES Ernest Orlando Lawrence Berkeley NationalLaboratory, Berkeley, CA...

  15. Modular Applied General Equilibrium Tool (MAGNET) | Open Energy...

    Open Energy Info (EERE)

    Related Tools CRiSTAL Forests MCA4Climate - Guidance for scientifically sound climate change planning Environmental Impact and Sustainability Applied General Equilibrium Model...

  16. Applied Solar LLC formerly Open Energy Corp and Barnabus Energy...

    Open Energy Info (EERE)

    Open Energy Corp and Barnabus Energy Inc Jump to: navigation, search Name: Applied Solar LLC (formerly Open Energy Corp and Barnabus Energy Inc) Place: San Diego, California...

  17. Building America Whole-House Solutions for Existing Homes: Applying...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Whole-House Solutions for Existing Homes: Applying Best Practices to Florida Local Government Retrofit Programs - Central Florida (Fact Sheet) Building America ...

  18. Overview of Applied Battery Research | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    4_henriksen.pdf (802.95 KB) More Documents & Publications Overview of Applied Battery Research Electrochemistry Diagnostics at LBNL ELECTROCHEMISTRY DIAGNOSTICS AT LBNL

  19. Applied Studies and Technology (AS&T) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Applied Studies and Technology (AS&T) DOE established the Environmental Sciences Laboratory (ESL) in Grand Junction, Colorado, in 1991 to support its programs. ESL scientists ...

  20. Applied Materials Switzerland SA Formerly HCT Shaping Systems...

    Open Energy Info (EERE)

    Switzerland SA Formerly HCT Shaping Systems SA Jump to: navigation, search Name: Applied Materials Switzerland SA (Formerly HCT Shaping Systems SA) Place: Chezeaux, Switzerland...

  1. D&D Toolbox Project - Technology Demonstration of Fixatives Applied...

    Broader source: Energy.gov (indexed) [DOE]

    D&D Toolbox Project - Technology Demonstration of Fixatives Applied to Hot Cell Facilities via Remote Sprayer Platforms (215.59 KB) More Documents & Publications Demonstration of ...

  2. Expert Meeting Report: Recommendations for Applying Water Heaters...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems A. Rudd, K. Ueno, D. Bergey, R. Osser Building Science Corporation June 2012 i ...

  3. Building America Whole-House Solutions for Existing Homes: Applying...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Homes: Applying Best Practices to Florida Local Government Retrofit Programs - Central Florida (Fact Sheet) Building America Whole-House Solutions for Existing Homes: ...

  4. Solar Applied Materials Technology Corp | Open Energy Information

    Open Energy Info (EERE)

    Name: Solar Applied Materials Technology Corp Place: Tainan, Taiwan Product: Taiwan's material process specialists with over 20 years experience and in the areas of sputtering...

  5. Energy Department Announces Up to $14 Million for Applying Landscape...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applying landscape design to bioenergy production systems is a promising approach for meeting multiple environmental, social, and economic objectives, such as maintaining or ...

  6. Webinar "Applying High Performance Computing to Engine Design...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Webinar "Applying High Performance Computing to Engine Design Using Supercomputers" Share ... Study Benefits of Bioenergy Crop Integration Video: Biofuel technology at Argonne

  7. D&D Toolbox Project - Technology Demonstration of Fixatives Applied...

    Office of Environmental Management (EM)

    D&D activities, performed by Florida International University's Applied Research Center ... and selected for integration with a commercially available remotely operated platform. ...

  8. Am Shav Technological Applied Development Center | Open Energy...

    Open Energy Info (EERE)

    Technological Applied Development Center Place: Israel Sector: Services Product: General Financial & Legal Services ( Private family-controlled ) References: Am-Shav...

  9. Application of optimal prediction to molecular dynamics

    SciTech Connect (OSTI)

    Barber IV, John Letherman

    2004-12-01

    Optimal prediction is a general system reduction technique for large sets of differential equations. In this method, which was devised by Chorin, Hald, Kast, Kupferman, and Levy, a projection operator formalism is used to construct a smaller system of equations governing the dynamics of a subset of the original degrees of freedom. This reduced system consists of an effective Hamiltonian dynamics, augmented by an integral memory term and a random noise term. Molecular dynamics is a method for simulating large systems of interacting fluid particles. In this thesis, I construct a formalism for applying optimal prediction to molecular dynamics, producing reduced systems from which the properties of the original system can be recovered. These reduced systems require significantly less computational time than the original system. I initially consider first-order optimal prediction, in which the memory and noise terms are neglected. I construct a pair approximation to the renormalized potential, and ignore three-particle and higher interactions. This produces a reduced system that correctly reproduces static properties of the original system, such as energy and pressure, at low-to-moderate densities. However, it fails to capture dynamical quantities, such as autocorrelation functions. I next derive a short-memory approximation, in which the memory term is represented as a linear frictional force with configuration-dependent coefficients. This allows the use of a Fokker-Planck equation to show that, in this regime, the noise is {delta}-correlated in time. This linear friction model reproduces not only the static properties of the original system, but also the autocorrelation functions of dynamical variables.

  10. An exact general remeshing scheme applied to physically conservative voxelization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Powell, Devon; Abel, Tom

    2015-05-21

    We present an exact general remeshing scheme to compute analytic integrals of polynomial functions over the intersections between convex polyhedral cells of old and new meshes. In physics applications this allows one to ensure global mass, momentum, and energy conservation while applying higher-order polynomial interpolation. We elaborate on applications of our algorithm arising in the analysis of cosmological N-body data, computer graphics, and continuum mechanics problems. We focus on the particular case of remeshing tetrahedral cells onto a Cartesian grid such that the volume integral of the polynomial density function given on the input mesh is guaranteed to equal themore »corresponding integral over the output mesh. We refer to this as “physically conservative voxelization.” At the core of our method is an algorithm for intersecting two convex polyhedra by successively clipping one against the faces of the other. This algorithm is an implementation of the ideas presented abstractly by Sugihara [48], who suggests using the planar graph representations of convex polyhedra to ensure topological consistency of the output. This makes our implementation robust to geometric degeneracy in the input. We employ a simplicial decomposition to calculate moment integrals up to quadratic order over the resulting intersection domain. We also address practical issues arising in a software implementation, including numerical stability in geometric calculations, management of cancellation errors, and extension to two dimensions. In a comparison to recent work, we show substantial performance gains. We provide a C implementation intended to be a fast, accurate, and robust tool for geometric calculations on polyhedral mesh elements.« less

  11. Minimization of Impact from Electric Vehicle Supply Equipment to the Electric Grid Using a Dynamically Controlled Battery Bank for Peak Load Shaving

    SciTech Connect (OSTI)

    Castello, Charles C

    2013-01-01

    This research presents a comparison of two control systems for peak load shaving using local solar power generation (i.e., photovoltaic array) and local energy storage (i.e., battery bank). The purpose is to minimize load demand of electric vehicle supply equipment (EVSE) on the electric grid. A static and dynamic control system is compared to decrease demand from EVSE. Static control of the battery bank is based on charging and discharging to the electric grid at fixed times. Dynamic control, with 15-minute resolution, forecasts EVSE load based on data analysis of collected data. In the proposed dynamic control system, the sigmoid function is used to shave peak loads while limiting scenarios that can quickly drain the battery bank. These control systems are applied to Oak Ridge National Laboratory s (ORNL) solar-assisted electric vehicle (EV) charging stations. This installation is composed of three independently grid-tied sub-systems: (1) 25 EVSE; (2) 47 kW photovoltaic (PV) array; and (3) 60 kWh battery bank. The dynamic control system achieved the greatest peak load shaving, up to 34% on a cloudy day and 38% on a sunny day. The static control system was not ideal; peak load shaving was 14.6% on a cloudy day and 12.7% on a sunny day. Simulations based on ORNL data shows solar-assisted EV charging stations combined with the proposed dynamic battery control system can negate up to 89% of EVSE load demand on sunny days.

  12. Can the ring polymer molecular dynamics method be interpreted as real time quantum dynamics?

    SciTech Connect (OSTI)

    Jang, Seogjoo; Sinitskiy, Anton V.; Voth, Gregory A.

    2014-04-21

    The ring polymer molecular dynamics (RPMD) method has gained popularity in recent years as a simple approximation for calculating real time quantum correlation functions in condensed media. However, the extent to which RPMD captures real dynamical quantum effects and why it fails under certain situations have not been clearly understood. Addressing this issue has been difficult in the absence of a genuine justification for the RPMD algorithm starting from the quantum Liouville equation. To this end, a new and exact path integral formalism for the calculation of real time quantum correlation functions is presented in this work, which can serve as a rigorous foundation for the analysis of the RPMD method as well as providing an alternative derivation of the well established centroid molecular dynamics method. The new formalism utilizes the cyclic symmetry of the imaginary time path integral in the most general sense and enables the expression of Kubo-transformed quantum time correlation functions as that of physical observables pre-averaged over the imaginary time path. Upon filtering with a centroid constraint function, the formulation results in the centroid dynamics formalism. Upon filtering with the position representation of the imaginary time path integral, we obtain an exact quantum dynamics formalism involving the same variables as the RPMD method. The analysis of the RPMD approximation based on this approach clarifies that an explicit quantum dynamical justification does not exist for the use of the ring polymer harmonic potential term (imaginary time kinetic energy) as implemented in the RPMD method. It is analyzed why this can cause substantial errors in nonlinear correlation functions of harmonic oscillators. Such errors can be significant for general correlation functions of anharmonic systems. We also demonstrate that the short time accuracy of the exact path integral limit of RPMD is of lower order than those for finite discretization of path. The

  13. Pion optical potential with Δ dynamics

    SciTech Connect (OSTI)

    Karaoglu, B.; Moniz, Ernest J.

    1986-03-01

    A pion optical potential is constructed which incorporates the Δ dynamics found to be important in Δ-hole analyses of pion scattering from light nuclei. These dynamics include Δ propagation, binding and Pauli blocking, and a Δ spreading potential. We employ a local density approximation for the medium-modified Δ propagator, resulting in a computationally flexible tool for the analysis of pion-nucleus data. We reproduce the Δ-hole results for π-16O scattering satisfactorily. Elastic π±-208Pb scattering is described very well with the same strongly damping spreading potential found for light nuclei. The pion wave functions in the medium are substantially modified by the Δ dynamics.

  14. Composition for applying antireflective coating on solar cell

    SciTech Connect (OSTI)

    Whitehouse, D.L.

    1983-10-25

    A method is disclosed, and the composition, for the application of an antireflective coating on solar cells and the subsequent application of metal contacts comprising applying a screen to the surface of a solar cell, applying a paste comprising a metal alkoxide over the screen, heat treating the cell and metal alkoxide paste, and nickel plating the resultant cell.

  15. Method for applying antireflective coating on solar cell

    SciTech Connect (OSTI)

    Whitehouse, D.L.

    1982-05-04

    A method for the application and the composition of an antireflective coating on solar cells and the subsequent application of metal contacts comprises applying a screen to the surface of a solar cell, applying a paste comprising a metal alkoxide over the screen, heat treating the cell and metal alkoxide paste, and nickel plating the resultant cell.

  16. Computational Advances in Applied Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Computational Advances in Applied Energy Computational Advances in Applied Energy Friedmann-LLNL-SEAB.10.11.pdf (19.92 MB) More Documents & Publications Director's Perspective by George Miller Fact Sheet: Collaboration of Oak Ridge, Argonne, and Livermore (CORAL) QER - Comment of Canadian Hydropower Association

  17. ENERGY STAR Webinar: How to Apply for the ENERGY STAR

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency (EPA) is hosting a webinar on how to apply for ENERGY STAR certification in Portfolio Manager. Understand the value of the ENERGY STAR certification, see the step-by-step process of applying, and gain tips to help your property get from application to award.

  18. Applied research in the solar thermal-energy-systems program

    SciTech Connect (OSTI)

    Brown, C. T.; Lefferdo, J. M.

    1981-03-01

    Within the Solar Thermal Research and Advanced Development (RAD) program a coordinated effort in materials research, fuels and chemical research and applied research is being carried out to meet the systems' needs. Each of these three program elements are described with particular attention given to the applied research activity.

  19. Deep Vadose Zone Applied Field Research Initiative (DVZ AFRI) - Overview

    SciTech Connect (OSTI)

    2011-02-01

    The Deep Vadoze Zone Applied Field Research Initiative (DVZ AFRI) was established to protect water resources and to address the challenge of preventing contamination in the deep vadose zone from reaching groundwater. This factsheet provides an overview of the initiative and the approach to integrate basic science and needs-driven applied research activities with cleanup operations.

  20. ENERGY STAR Webinar: How to Apply for ENERGY STAR

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency (EPA) ENERGY STAR is hosting a webinar on how to apply for ENERGY STAR Certification in Portfolio Manager. Understand the value of the ENERGY STAR certification, see the step-by-step process of applying, and gain tips to help your property get from application to award.

  1. Dynamic Testing of Gasifier Refractory

    SciTech Connect (OSTI)

    Michael D. Mann; Devdutt Shukla; Xi Hong; John P. Hurley

    2004-09-27

    The University of North Dakota (UND) Chemical Engineering Department in conjunction with the UND Energy & Environmental Research Center (EERC) have initiated a program to thoroughly examine the combined chemical (reaction and phase change) and physical (erosion) effects experienced by a variety of refractory materials during both normal operation and thermal cycling under slagging coal gasification conditions. The goal of this work is to devise a mechanism of refractory loss under these conditions. The controlled-atmospheric dynamic corrodent application furnace (CADCAF) is being utilized to simulate refractory/slag interactions under dynamic conditions that more realistically simulate the environment in a slagging coal gasifier than any of the static tests used previously by refractory manufacturers and researchers. Shakedown testing of the CADCAF has been completed. Samples of slag and refractory from the Tampa Electric Polk Power Station have been obtained for testing in the CADCAF. The slag has been dried and sieved to the size needed for our flowing slag corrosion tests. Screening tests are in currently in progress. Detailed analysis of corrosion rates from the first tests is in progress.

  2. Simultaneous dynamic electrical and structural measurements of functional materials

    SciTech Connect (OSTI)

    Vecchini, C.; Stewart, M.; Muñiz-Piniella, A.; Wooldridge, J.; Thompson, P.; McMitchell, S. R. C.; Bouchenoire, L.; Brown, S.; Wermeille, D.; Lucas, C. A.; Lepadatu, S.; Bikondoa, O.; Hase, T. P. A.; Lesourd, M.; Dontsov, D.; Cain, M. G.

    2015-10-15

    A new materials characterization system developed at the XMaS beamline, located at the European Synchrotron Radiation Facility in France, is presented. We show that this new capability allows to measure the atomic structural evolution (crystallography) of piezoelectric materials whilst simultaneously measuring the overall strain characteristics and electrical response to dynamically (ac) applied external stimuli.

  3. Dynamic behaviour of a turbocharged diesel engine

    SciTech Connect (OSTI)

    Backhouse, R.; Winterbone, D.E.

    1986-01-01

    The transient behaviour of torque and smoke produced by a turbocharged diesel engine has been measured by frequency response methods, with a sinusoidal peturbation applied to the fuel. A dynamic torque parameter (dmep) has been introduced and the response of this to changes in speed and load can be separated. The dmep also enables the delay associated with torque production to be obtained: this is compared to the widely accepted values. The results have also been analysed to show the relationship between air-fuel ratio and smoke produced during a transient. The conclusion is that the production of smoke under dynamic condition behaves similarly to that under steady running but that it is more dependent on the initial load (air-fuel ratio) level.

  4. Dynamic Line Rating: Research and Policy Evaluation

    SciTech Connect (OSTI)

    Jake P. Gentle; Kurt S. Myers; Michael R. West

    2014-07-01

    Dynamic Line Rating (DLR) is a smart grid technology that allows the rating of electrical conductors to be increased based on local weather conditions. Overhead lines are conventionally given a conservative rating based on worst case scenarios. We demonstrate that observing the conditions in real time leads to additional capacity and safer operation. This paper provides a report of a pioneering scheme in the United States of America in which DLR has been applied. Thereby, we demonstrate that observing the local weather conditions in real time leads to additional capacity and safer operation. Secondly, we discuss limitations involved. In doing so, we arrive at novel insights which will inform and improve future DLR projects. Third, we provide a policy background and discussion to clarify the technology’s potential and identifies barriers to the imminent adoption of dynamic line rating systems. We provide suggestions for regulatory bodies about possible improvements in policy to encourage adoption of this beneficial technology.

  5. Dynamic Transmission Electron Microscopy

    SciTech Connect (OSTI)

    Evans, James E.; Jungjohann, K. L.; Browning, Nigel D.

    2012-10-12

    Dynamic transmission electron microscopy (DTEM) combines the benefits of high spatial resolution electron microscopy with the high temporal resolution of ultrafast lasers. The incorporation of these two components into a single instrument provides a perfect platform for in situ observations of material processes. However, previous DTEM applications have focused on observing structural changes occurring in samples exposed to high vacuum. Therefore, in order to expand the pump-probe experimental regime to more natural environmental conditions, in situ gas and liquid chambers must be coupled with Dynamic TEM. This chapter describes the current and future applications of in situ liquid DTEM to permit time-resolved atomic scale observations in an aqueous environment, Although this chapter focuses mostly on in situ liquid imaging, the same research potential exists for in situ gas experiments and the successful integration of these techniques promises new insights for understanding nanoparticle, catalyst and biological protein dynamics with unprecedented spatiotemporal resolution.

  6. Evaluation of Dynamic Mechanical Loading as an Accelerated Test Method for Ribbon Fatigue: Preprint

    SciTech Connect (OSTI)

    Bosco, N.; Silverman, T. J.; Wohlgemuth, J.; Kurtz, S.; Inoue, M.; Sakurai, K.; Shinoda, T.; Zenkoh, H.; Hirota, K.; Miyashita, M.; Tadanori, T.; Suzuki, S.

    2015-04-07

    Dynamic Mechanical Loading (DML) of photovoltaic modules is explored as a route to quickly fatigue copper interconnect ribbons. Results indicate that most of the interconnect ribbons may be strained through module mechanical loading to a level that will result in failure in a few hundred to thousands of cycles. Considering the speed at which DML may be applied, this translates into a few hours o testing. To evaluate the equivalence of DML to thermal cycling, parallel tests were conducted with thermal cycling. Preliminary analysis suggests that one +/-1 kPa DML cycle is roughly equivalent to one standard accelerated thermal cycle and approximately 175 of these cycles are equivalent to a 25-year exposure in Golden Colorado for the mechanism of module ribbon fatigue.

  7. Dynamic Programming and Error Estimates for Stochastic Control Problems with Maximum Cost

    SciTech Connect (OSTI)

    Bokanowski, Olivier; Picarelli, Athena; Zidani, Hasnaa

    2015-02-15

    This work is concerned with stochastic optimal control for a running maximum cost. A direct approach based on dynamic programming techniques is studied leading to the characterization of the value function as the unique viscosity solution of a second order Hamilton–Jacobi–Bellman (HJB) equation with an oblique derivative boundary condition. A general numerical scheme is proposed and a convergence result is provided. Error estimates are obtained for the semi-Lagrangian scheme. These results can apply to the case of lookback options in finance. Moreover, optimal control problems with maximum cost arise in the characterization of the reachable sets for a system of controlled stochastic differential equations. Some numerical simulations on examples of reachable analysis are included to illustrate our approach.

  8. Bimolecular reaction dynamics from photoelectron spectroscopy of negative ions

    SciTech Connect (OSTI)

    Bradforth, S.E.

    1992-11-01

    The transition state region of a neutral bimolecular reaction may be experimentally investigated by photoelectron spectroscopy of an appropriate negative ion. The photoelectron spectrum provides information on the spectroscopy and dynamics of the short lived transition state and may be used to develop model potential energy surfaces that are semi-quantitative in this important region. The principles of bound {yields} bound negative ion photoelectron spectroscopy are illustrated by way of an example: a full analysis of the photoelectron bands of CN{sup {minus}}, NCO{sup {minus}} and NCS{sup {minus}}. Transition state photoelectron spectra are presented for the following systems Br + HI, Cl + HI, F + HI, F + CH{sub 3}0H,F + C{sub 2}H{sub 5}OH,F + OH and F + H{sub 2}. A time dependent framework for the simulation and interpretation of the bound {yields} free transition state photoelectron spectra is subsequently developed and applied to the hydrogen transfer reactions Br + HI, F + OH {yields} O({sup 3}P, {sup 1}D) + HF and F + H{sub 2}. The theoretical approach for the simulations is a fully quantum-mechanical wave packet propagation on a collinear model reaction potential surface. The connection between the wavepacket time evolution and the photoelectron spectrum is given by the time autocorrelation function. For the benchmark F + H{sub 2} system, comparisons with three-dimensional quantum calculations are made.

  9. Dynamics of helium films

    SciTech Connect (OSTI)

    Clements, B.E.; Epstein, J.L.; Krotscheck, E.; Tymczak, C.J.; Saarela, M.

    1992-11-01

    The authors present quantitative calculations for the static structure and the dynamics of quantum liquid films on a translationally invariant substrate. The excitation spectrum is calculated by solving the equations of motion for time-dependent one- and two-body densities. They find significant corrections to the Feynman spectrum for the phonon-like collective excitations. 8 refs., 2 figs.

  10. Computational fluid dynamics improves liner cementing operation

    SciTech Connect (OSTI)

    Barton, N.A.; Archer, G.L. ); Seymour, D.A. )

    1994-09-26

    The use of computational fluid dynamics (CFD), an analytical tool for studying fluid mechanics, helped plan the successful cementing of a critical liner in a North Sea extended reach well. The results from CFD analysis increased the confidence in the primary cementing of the liner. CFD modeling was used to quantify the effects of increasing the displacement rate and of rotating the liner on the mud flow distribution in the annulus around the liner.

  11. Webinar: Understanding and Applying TM-30-15

    Broader source: Energy.gov [DOE]

    The IES recently approved TM-30-15, a new method for evaluating light source color rendition. This webinar, “Understanding and Applying TM-30-15, the IES Method for Evaluating Light Source Color...

  12. Mission Driven and Applied Science | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrating for Materials Technology, Engineering, Education, and Research (i-MatTER) i-MatTER matches our centers with applied activities in WDTS, EERE, FE, ARPA-E, technology ...

  13. How to Apply for Weatherization Assistance | Department of Energy

    Energy Savers [EERE]

    The funds announced earlier this month allow for people who make up to 200% of the federal poverty level to apply for weatherization-which is about 44,000 for a family of four in ...

  14. ENERGY STAR Webinar: How to Apply for the ENERGY STAR

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency (EPA) is hosting a webinar on how to apply for ENERGY STAR certification in Portfolio Manager. Understand the value of the ENERGY STAR certification, see...

  15. Apply: Increase Residential Energy Code Compliance Rates (DE...

    Office of Environmental Management (EM)

    Increase Residential Energy Code Compliance Rates (DE-FOA-0000953) Apply: Increase Residential Energy Code Compliance Rates (DE-FOA-0000953) April 21, 2014 - 12:32pm Addthis This ...

  16. Sandian Named Fellow of the Society for Industrial and Applied...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Kolda and the other members of the 2015 class of SIAM fellows will be honored in August at the International Congress on Industrial and Applied Mathematics in Beijing. Read the ...

  17. Deep Vadose Zone Applied Field Research Initiative (DVZ-AFRI)

    Broader source: Energy.gov [DOE]

    Located on the Hanford Site in Richland, Washington, the Deep Vadose Zone Applied Field Research Initiative (DVZ AFRI) was established to protect water resources by addressing the challenge of...

  18. Quantum effects in unimolecular reaction dynamics

    SciTech Connect (OSTI)

    Gezelter, J.D.

    1995-12-01

    This work is primarily concerned with the development of models for the quantum dynamics of unimolecular isomerization and photodissociation reactions. We apply the rigorous quantum methodology of a Discrete Variable Representation (DVR) with Absorbing Boundary Conditions (ABC) to these models in an attempt to explain some very surprising results from a series of experiments on vibrationally excited ketene. Within the framework of these models, we are able to identify the experimental signatures of tunneling and dynamical resonances in the energy dependence of the rate of ketene isomerization. Additionally, we investigate the step-like features in the energy dependence of the rate of dissociation of triplet ketene to form {sup 3}B{sub 1} CH{sub 2} + {sup 1}{sigma}{sup +} CO that have been observed experimentally. These calculations provide a link between ab initio calculations of the potential energy surfaces and the experimentally observed dynamics on these surfaces. Additionally, we develop an approximate model for the partitioning of energy in the products of photodissociation reactions of large molecules with appreciable barriers to recombination. In simple bond cleavage reactions like CH{sub 3}COCl {yields} CH{sub 3}CO + Cl, the model does considerably better than other impulsive and statistical models in predicting the energy distribution in the products. We also investigate ways of correcting classical mechanics to include the important quantum mechanical aspects of zero-point energy. The method we investigate is found to introduce a number of undesirable dynamical artifacts including a reduction in the above-threshold rates for simple reactions, and a strong mixing of the chaotic and regular energy domains for some model problems. We conclude by discussing some of the directions for future research in the field of theoretical chemical dynamics.

  19. Rational Catalyst Design Applied to Development of Advanced Oxidation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalysts for Diesel Emission Control | Department of Energy Rational Catalyst Design Applied to Development of Advanced Oxidation Catalysts for Diesel Emission Control Rational Catalyst Design Applied to Development of Advanced Oxidation Catalysts for Diesel Emission Control Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and

  20. Applying for EERE Funding Opportunities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    You are here Home » Applying for EERE Funding Opportunities Applying for EERE Funding Opportunities EERE uses Funding Opportunity Announcements (FOAs) to solicit applications in specific program areas and selects projects based on a merit review process that includes industry and technology experts. What to Expect During the Application Process Illustration showing the funding and approval process. The application process may include multiple phases: letter of intent, concept paper, full

  1. Bridging the Gap between Fundamental Physics and Chemistry and Applied

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Models for HCCI Engines | Department of Energy Bridging the Gap between Fundamental Physics and Chemistry and Applied Models for HCCI Engines Bridging the Gap between Fundamental Physics and Chemistry and Applied Models for HCCI Engines 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_assanis.pdf (1.42 MB) More Documents & Publications Computationally Efficient Modeling of High-Efficiency Clean Combustion Engines Modeling of HCCI and PCCI

  2. Statistical and Domain Analytics Applied to PV Module Lifetime and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Degradation Science | Department of Energy Statistical and Domain Analytics Applied to PV Module Lifetime and Degradation Science Statistical and Domain Analytics Applied to PV Module Lifetime and Degradation Science Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado pvmrw13_ps2_casewestern_bruckman.pdf (6.77 MB) More Documents & Publications Literature Review of the Effects of UV Exposure on PV Modules Failure Rates from Certification Testing to UL

  3. Applying Risk Communication to the Transportation of Radioactive Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Applying Risk Communication to the Transportation of Radioactive Materials Applying Risk Communication to the Transportation of Radioactive Materials Participants should expect to gain the following skills: How to recognize how the stakeholders prefer to receive information How to integrate risk communication principles into individual communication How to recognize the importance of earning trust and credibility How to identify stakeholders How to answer questions

  4. Applying an Experimental Design Loop to Shape Memory Alloys (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Conference: Applying an Experimental Design Loop to Shape Memory Alloys Citation Details In-Document Search Title: Applying an Experimental Design Loop to Shape Memory Alloys Authors: Hogden, John Edward [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2016-06-01 OSTI Identifier: 1257099 Report Number(s): LA-UR-16-23811 DOE Contract Number: AC52-06NA25396 Resource Type: Conference Resource Relation: Conference: Data Science and Optimal Learning

  5. CONTRACTOR LEGAL MANAGEMENT REQUIREMENTS: APPLYING THE FINAL RULE TO

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EXISTING CONTRACTS | Department of Energy CONTRACTOR LEGAL MANAGEMENT REQUIREMENTS: APPLYING THE FINAL RULE TO EXISTING CONTRACTS CONTRACTOR LEGAL MANAGEMENT REQUIREMENTS: APPLYING THE FINAL RULE TO EXISTING CONTRACTS The Department issued a Final Rule revising the regulations covering contractor legal management requirements at 10 C.F.R. 719 (Federal Register May 3, 2013; http://www.gpo.gov/fdsys/pkg/FR-2013-05-03/pdf/2013-10485.pdf). It requires Contracting Officers to attempt to execute

  6. Conference Proceedings Available - The Smart Grid Experience: Applying

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Results, Reaching Beyond | Department of Energy Conference Proceedings Available - The Smart Grid Experience: Applying Results, Reaching Beyond Conference Proceedings Available - The Smart Grid Experience: Applying Results, Reaching Beyond March 23, 2015 - 10:55am Addthis In October 2014, the Electric Power Research Institute (EPRI) and the U.S. Department of Energy's (DOE's) Office of Electricity Delivery and Energy Reliability (OE) held a conference to assess progress, impacts, benefits,

  7. Global Analysis Peak Fitting for Imaging NEXAFS Data. (Conference...

    Office of Scientific and Technical Information (OSTI)

    Applied Surface Analysis held June 2-5, 2014 in Albuquerque, NM.; Related Information: Proposed for presentation at the The 36th Annual Symposium on Applied Surface Analysis held ...

  8. Roaming Molecule Dynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Roaming Molecule Dynamics - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  9. Beam Dynamics for ARIA

    SciTech Connect (OSTI)

    Ekdahl, Carl August Jr.

    2014-10-14

    Beam dynamics issues are assessed for a new linear induction electron accelerator being designed for flash radiography of large explosively driven hydrodynamic experiments. Special attention is paid to equilibrium beam transport, possible emittance growth, and beam stability. It is concluded that a radiographic quality beam will be produced possible if engineering standards and construction details are equivalent to those on the present radiography accelerators at Los Alamos.

  10. Dynamic radioactive particle source

    DOE Patents [OSTI]

    Moore, Murray E.; Gauss, Adam Benjamin; Justus, Alan Lawrence

    2012-06-26

    A method and apparatus for providing a timed, synchronized dynamic alpha or beta particle source for testing the response of continuous air monitors (CAMs) for airborne alpha or beta emitters is provided. The method includes providing a radioactive source; placing the radioactive source inside the detection volume of a CAM; and introducing an alpha or beta-emitting isotope while the CAM is in a normal functioning mode.

  11. Dynamical impurity problems

    SciTech Connect (OSTI)

    Emery, V.J.; Kivelson, S.A.

    1993-12-31

    In the past few years there has been a resurgence of interest in dynamical impurity problems, as a result of developments in the theory of correlated electron systems. The general dynamical impurity problem is a set of conduction electrons interacting with an impurity which has internal degrees of freedom. The simplest and earliest example, the Kondo problem, has attracted interest since the mid-sixties not only because of its physical importance but also as an example of a model displaying logarithmic divergences order by order in perturbation theory. It provided one of the earliest applications of the renormalization group method, which is designed to deal with just such a situation. As we shall see, the antiferromagnetic Kondo model is controlled by a strong-coupling fixed point, and the essence of the renormalization group solution is to carry out the global renormalization numerically starting from the original (weak-coupling) Hamiltonian. In these lectures, we shall describe an alternative route in which we identify an exactly solvable model which renormalizes to the same fixed point as the original dynamical impurity problem. This approach is akin to determining the critical behavior at a second order phase transition point by solving any model in a given universality class.

  12. Excision methods for high resolution shock capturing schemes applied to general relativistic hydrodynamics

    SciTech Connect (OSTI)

    Hawke, Ian; Loeffler, Frank; Nerozzi, Andrea

    2005-05-15

    We present a simple method for applying excision boundary conditions for the relativistic Euler equations. This method depends on the use of reconstruction-evolution methods, a standard class of high-resolution shock-capturing methods. We test three different reconstruction schemes, namely, total variation diminishing, piecewise parabolic method (PPM) and essentially nonoscillatory. The method does not require that the coordinate system is adapted to the excision boundary. We demonstrate the effectiveness of our method using tests containing discontinuities, static test fluid solutions with black holes, and full dynamical collapse of a neutron star to a black hole. A modified PPM scheme is introduced because of problems arisen when matching excision with the original PPM reconstruction scheme.

  13. Final Report for the grant "Applied Geometry" (DOE DE-FG02-04ER25657)

    SciTech Connect (OSTI)

    Prof. Mathieu Desbrun

    2009-05-20

    The primary purpose of this 3-year DOE-funded research effort, now completed, was to develop consistent, theoretical foundations of computations on discrete geometry, to realize the promise of predictive and scalable management of large geometric datasets as handled routinely in applied sciences. Geometry (be it simple 3D shapes or higher dimensional manifolds) is indeed a central and challenging issue from the modeling and computational perspective in several sciences such as mechanics, biology, molecular dynamics, geophysics, as well as engineering. From digital maps of our world, virtual car crash simulation, predictive animation of carbon nano-tubes, to trajectory design of space missions, knowing how to process and animate digital geometry is key in many cross-disciplinary research areas.

  14. Decision Analysis Science Modeling for Application and Fielding Selection Applied to Equipment Dismantlement Technologies

    SciTech Connect (OSTI)

    Ebadian, M.A.; Lagos, L.E.

    1998-01-01

    The dismantlement of radioactively contaminated process equipment is a major concern during the D and D process. As buildings undergo the D and D process, metallic equipment contaminated with radionuclides such as uranium and plutonium must be dismantled before final disposal.The primary objective for equipment dismantlement is to reduce the potential for personnel and environmental exposure to contaminants during the decommissioning of the nuclear facility. The selection of the appropriate technologies to meet the dismantlement objectives for a given site is a difficult process in the absence of comprehensive and comparable data. Choosing the wrong technology could result in increased exposure of personnel to contaminants and an increase in D and D project costs. Innovative technologies are being developed with the goal of providing safer and more cost-effective alternatives that generate less secondary waste, thereby decreasing the operating costs for dismantlement. During the development and implementation process, performance indicators for the success of these technologies must be reviewed to ensure that these aims are being met. This project provides a mechanism for the assessment of innovative and commercially available nuclear and non-nuclear technologies for equipment dismantlement.

  15. Applied Ecosystem Analysis - Background : EDT the Ecosystem Diagnosis and Treatment Method.

    SciTech Connect (OSTI)

    Mobrand, Lars E.

    1996-05-01

    This volume consists of eight separate reports. We present them as background to the Ecosystem Diagnosis and Treatment (EDT) methodology. They are a selection from publications, white papers, and presentations prepared over the past two years. Some of the papers are previously published, others are currently being prepared for publication. In the early to mid 1980`s the concern for failure of both natural and hatchery production of Columbia river salmon populations was widespread. The concept of supplementation was proposed as an alternative solution that would integrate artificial propagation with natural production. In response to the growing expectations placed upon the supplementation tool, a project called Regional Assessment of Supplementation Project (RASP) was initiated in 1990. The charge of RASP was to define supplementation and to develop guidelines for when, where and how it would be the appropriate solution to salmon enhancement in the Columbia basin. The RASP developed a definition of supplementation and a set of guidelines for planning salmon enhancement efforts which required consideration of all factors affecting salmon populations, including environmental, genetic, and ecological variables. The results of RASP led to a conclusion that salmon issues needed to be addressed in a manner that was consistent with an ecosystem approach. If the limitations and potentials of supplementation or any other management tool were to be fully understood it would have to be within the context of a broadly integrated approach - thus the Ecosystem Diagnosis and Treatment (EDT) method was born.

  16. Decision Analysis Science Modeling for Application and Fielding Selection Applied to Concrete Decontamination Technologies

    SciTech Connect (OSTI)

    Ebadian, M.A. Ross, T.L.

    1998-01-01

    Concrete surfaces contaminated with radionuclides present a significant challenge during the decontamination and decommissioning (D and D) process. As structures undergo D and D, coating layers and/or surface layers of the concrete containing the contaminants must be removed for disposal in such a way as to present little to no risk to human health or the environment. The selection of a concrete decontamination technology that is safe, efficient, and cost-effective is critical to the successful D and D of contaminated sites. To support U.S. Department of Energy (DOE) Environmental Management objectives and to assist DOE site managers in the selection of the best-suited concrete floor decontamination technology(s) for a given site, two innovative and three baseline technologies have been assessed under standard, non-nuclear conditions at the Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU). The innovative technologies assessed include the Pegasus Coating Removal System and Textron's Electro-Hydraulic Scabbling System. The three baseline technologies assessed include: the Wheelabrator Blastrac model 1-15D, the NELCO Porta Shot Blast{trademark} model GPx-1O-18 HO Rider, and the NELCO Porta Shot Blast{trademark} model EC-7-2. These decontamination technology assessments provide directly comparable performance data that have previously been available for only a limited number of technologies under restrictive site-specific constraints. Some of the performance data collected during these technology assessments include: removal capability, production rate, removal gap, primary and secondary waste volumes, and operation and maintenance requirements. The performance data generated by this project is intended to assist DOE site managers in the selection of the safest, most efficient, and cost-effective decontamination technologies to accomplish their remediation objectives.

  17. Process for applying control variables having fractal structures

    DOE Patents [OSTI]

    Bullock, IV, Jonathan S.; Lawson, Roger L.

    1996-01-01

    A process and apparatus for the application of a control variable having a fractal structure to a body or process. The process of the present invention comprises the steps of generating a control variable having a fractal structure and applying the control variable to a body or process reacting in accordance with the control variable. The process is applicable to electroforming where first, second and successive pulsed-currents are applied to cause the deposition of material onto a substrate, such that the first pulsed-current, the second pulsed-current, and successive pulsed currents form a fractal pulsed-current waveform.

  18. Process for applying control variables having fractal structures

    DOE Patents [OSTI]

    Bullock, J.S. IV; Lawson, R.L.

    1996-01-23

    A process and apparatus are disclosed for the application of a control variable having a fractal structure to a body or process. The process of the present invention comprises the steps of generating a control variable having a fractal structure and applying the control variable to a body or process reacting in accordance with the control variable. The process is applicable to electroforming where first, second and successive pulsed-currents are applied to cause the deposition of material onto a substrate, such that the first pulsed-current, the second pulsed-current, and successive pulsed currents form a fractal pulsed-current waveform. 3 figs.

  19. Geobotanical Remote Sensing Applied to Targeting New Geothermal Resource

    Office of Scientific and Technical Information (OSTI)

    Locations in the U.S. Basin and Range with a Focus on Dixie Meadows, NV (Journal Article) | SciTech Connect Journal Article: Geobotanical Remote Sensing Applied to Targeting New Geothermal Resource Locations in the U.S. Basin and Range with a Focus on Dixie Meadows, NV Citation Details In-Document Search Title: Geobotanical Remote Sensing Applied to Targeting New Geothermal Resource Locations in the U.S. Basin and Range with a Focus on Dixie Meadows, NV This paper presents an overview of the

  20. Total Quality Management (TQM) concepts applied to instruction

    SciTech Connect (OSTI)

    Nuccio, E.J.

    1992-05-01

    Drawing on DOE Order 5700.6C and other industry standards, this document presents several concepts and tools of Total Quality Management (TQM), a brief history of their use at EG&G Rocky Flats, and how they are being applied to address processes of instruction common to TAP. Concepts presented and applied include: statistical process control (SPC), e.g. using control charts, as an evaluation methodology for learners and instructors; TQM conceptual tools, e.g. brainstorming, affinity diagrams, and interrelationship digraphs, as a methodology for planning programs of instruction such as TAP; and team activities to construct instructional process systems.

  1. Total Quality Management (TQM) concepts applied to instruction

    SciTech Connect (OSTI)

    Nuccio, E.J.

    1992-01-01

    Drawing on DOE Order 5700.6C and other industry standards, this document presents several concepts and tools of Total Quality Management (TQM), a brief history of their use at EG G Rocky Flats, and how they are being applied to address processes of instruction common to TAP. Concepts presented and applied include: statistical process control (SPC), e.g. using control charts, as an evaluation methodology for learners and instructors; TQM conceptual tools, e.g. brainstorming, affinity diagrams, and interrelationship digraphs, as a methodology for planning programs of instruction such as TAP; and team activities to construct instructional process systems.

  2. Beam Dynamics Design and Simulation in Ion Linear Accelerators (

    Energy Science and Technology Software Center (OSTI)

    2006-08-01

    Orginally, the ray tracing code TRACK has been developed to fulfill the many special requirements for the Rare Isotope Accelerator Facility known as RIA. Since no available beam-dynamics code met all the necessary requirements, modifications to the code TRACK were introduced to allow end-to-end (from the ion souce to the production target) simulations of the RIA machine, TRACK is a general beam-dynamics code and can be applied for the design, commissioning and operation of modernmore » ion linear accelerators and beam transport systems.« less

  3. Static and Dynamic Viscosity of a Single Layer Dusty Plasma

    SciTech Connect (OSTI)

    Hartmann, Peter; Sandor, Mate Cs.; Kovacs, Aniko; Donko, Zoltan

    2011-11-29

    We measured the static and dynamic (complex) shear viscosity of a single layer complex plasma by applying, respectively, a stationary and a periodically modulated shear stress induced by the light pressure of manipulating laser beams. Under static conditions the shear viscosity reproduced the numerically predicted shear rate dependence, the so called shear-thinning effect. Under oscillating shear both the magnitude and the ratio of the dissipative and elastic contributions to the complex viscosity show strong frequency dependence. Accompanying molecular dynamics simulations explain and support the experimental observations.

  4. AHS National Specialists' Meeting on Rotorcraft Dynamics, Arlington, TX, Nov. 13, 14, 1989, Proceedings

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    Various papers on rotorcraft dynamics are presented. Individual topics addressed include: aeromechanical stability of helicopters, evolution and test history of the V-22 Aeroelastic Model Series, helicopter individual blade control through optimal output feedback, dynamic characteristics of composite beam structures, dynamic testing of thin-walled composite box beams in a vacuum chamber, fundamental dynamics issues for comprehensive rotorcraft analyses, and development of the second generation Comprehensive Helicopter Analysis System. Also considered are: experiences in NASTRAN airframe vibration predictions, application of CRFD program to total helicopter dynamics, vibration reduction on servoflap controlled rotor using HHC, V-22 MSC/NASTRAN airframe vibration analysis and correlation, responses of helicopter rotors to vibratory airloads, helicopter rotor load calculations, prediction and alleviation of V-22 rotor dynamic loads, free wake analysis of rotor configurations for reduced vibratory airloads.

  5. Interpretation of engine cycle-to-cycle variation by chaotic time series analysis

    SciTech Connect (OSTI)

    Daw, C.S.; Kahl, W.K.

    1990-01-01

    In this paper we summarize preliminary results from applying a new mathematical technique -- chaotic time series analysis (CTSA) -- to cylinder pressure data from a spark-ignition (SI) four-stroke engine fueled with both methanol and iso-octane. Our objective is to look for the presence of deterministic chaos'' dynamics in peak pressure variations and to investigate the potential usefulness of CTSA as a diagnostic tool. Our results suggest that sequential peak cylinder pressures exhibit some characteristic features of deterministic chaos and that CTSA can extract previously unrecognized information from such data. 18 refs., 11 figs., 2 tabs.

  6. Experimental and theoretical research in applied plasma physics

    SciTech Connect (OSTI)

    Porkolab, M.

    1992-01-01

    This report discusses research in the following areas: fusion theory and computations; theory of thermonuclear plasmas; user service center; high poloidal beta studies on PBX-M; fast ECE fluctuation diagnostic for balloning mode studies; x-ray imaging diagnostic; millimeter/submillimeter-wave fusion ion diagnostics; small scale turbulence and nonlinear dynamics in plasmas; plasma turbulence and transport; phase contrast interferometer diagnostic for long wavelength fluctuations in DIII-D; and charged and neutral fusion production for fusio plasmas.

  7. On sequential dynamical systems and simulation

    SciTech Connect (OSTI)

    Barrett, C.L.; Mortveit, H.S.; Reidys, C.M.

    1999-06-01

    The generic structure of computer simulations motivates a new class of discrete dynamical systems that captures this structure in a mathematically precise way. This class of systems consists of (1) a loopfree graph {Upsilon} with vertex set {l_brace}1,2,{hor_ellipsis},n{r_brace} where each vertex has a binary state, (2) a vertex labeled set of functions (F{sub i,{Upsilon}}:F{sub 2}{sup n} {r_arrow} F{sub 2}{sup n}){sub i} and (3) a permutation {pi} {element_of} S{sub n}. The function F{sub i,{Upsilon}} updates the state of vertex i as a function of the states of vertex i and its {Upsilon}-neighbors and leaves the states of all other vertices fixed. The permutation {pi} represents the update ordering, i.e., the order in which the functions F{sub i,{Upsilon}} are applied. By composing the functions F{sub i,{Upsilon}} in the order given by {pi} one obtains the dynamical system (equation given in paper) which the authors refer to as a sequential dynamical system, or SDS for short. The authors will present bounds for the number of functionally different systems and for the number of nonisomorphic digraphs {Gamma}[F{sub {Upsilon}},{pi}] that can be obtained by varying the update order and applications of these to specific graphs and graph classes. This will be done using both combinatorial/algebraic techniques and probabilistic techniques. Finally the authors give results on dynamical system properties for some special systems.

  8. Dynamic Underground Stripping Project

    SciTech Connect (OSTI)

    Aines, R.; Newmark, R.; McConachie, W.; Udell, K.; Rice, D.; Ramirez, A.; Siegel, W.; Buettner, M.; Daily, W.; Krauter, P.; Folsom, E.; Boegel, A.J.; Bishop, D.; Udell, K.

    1992-01-01

    LLNL is collaborating with the UC Berkeley College of Engineering to develop and demonstrate a system of thermal remediation and underground imaging techniques for use in rapid cleanup of localized underground spills. Called ``Dynamic Stripping`` to reflect the rapid and controllable nature of the process, it will combine steam injection, direct electrical heating, and tomographic geophysical imaging in a cleanup of the LLNL gasoline spill. In the first 8 months of the project, a Clean Site engineering test was conducted to prove the field application of the techniques before moving the contaminated site in FY 92.

  9. A Vision for Systems Engineering Applied to Wind Energy (Presentation)

    SciTech Connect (OSTI)

    Felker, F.; Dykes, K.

    2015-01-01

    This presentation was given at the Third Wind Energy Systems Engineering Workshop on January 14, 2015. Topics covered include the importance of systems engineering, a vision for systems engineering as applied to wind energy, and application of systems engineering approaches to wind energy research and development.

  10. Applying the Battery Ownership Model in Pursuit of Optimal Battery...

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Technologies Office: 2013 Energy Storage R&D Progress Report, Sections 4-6 Analysis of Electric Vehicle Battery Performance Targets Building America Whole-House Solutions ...

  11. 2008 Annual Merit Review Results Summary - 2. Applied Battery...

    Broader source: Energy.gov (indexed) [DOE]

    Review Results Summary - 3. Battery Development, Testing, Simulation, Analysis 2008 Annual Merit Review Results Summary - 4. Exploratory Battery Research 2011 Annual Merit ...

  12. Dynamic simulation gives 20-20 foresight

    SciTech Connect (OSTI)

    Womack, J.W.

    1986-04-07

    Dynamic simulation is being increasingly recognized as a viable tool for system analysis and design. Its use by Mobil Research and Development Corp. (MRDC) has grown steadily. Applications fall into three major categories: Support of major capital projects, mostly in the form of high-fidelity models capable of answering many of the ''what-if'' questions which arise during the engineering design, construction, and commissioning phases of a project; Simulators for operator training, which have been acquired for an increasing fraction of both new and existing facilities over the past 10 years; Solution of operational problems, evaluate process changes, and in debottlenecking studies of existing facilities. A number of dynamic simulations have been done by contractors or system vendors. MRDC involvement was limited to review and/or acceptance of the work. MRDC did not write any of the training simulator programs, for example, although its inputs often influenced their development.

  13. Ultrafast carriers dynamics in filled-skutterudites

    SciTech Connect (OSTI)

    Guo, Liang; Xu, Xianfan; Salvador, James R.

    2015-06-08

    Carrier dynamics of filled-skutterudites, an important class of thermoelectric materials, is investigated using ultrafast optical spectroscopy. By tuning the wavelength of the probe laser, charge transfers at different electronic energy levels are interrogated. Analysis based on the Kramers-Kronig relation explains the complex spectroscopy data, which is mainly due to band filling caused by photo-excited carriers and free carrier absorption. The relaxation time of hot carriers is found to be about 0.4–0.6 ps, depending on the electronic energy level, and the characteristic time for carrier-phonon equilibrium is about 0.95 ps. These studies of carrier dynamics, which fundamentally determines the transport properties of thermoelectric material, can provide guidance for the design of materials.

  14. Atomic-scale dynamics of a model glass-forming metallic liquid: Dynamical crossover, dynamical decoupling, and dynamical clustering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jaiswal, Abhishek; Egami, Takeshi; Zhang, Yang

    2015-04-01

    The phase behavior of multi-component metallic liquids is exceedingly complex because of the convoluted many-body and many-elemental interactions. Herein, we present systematic studies of the dynamic aspects of such a model ternary metallic liquid Cu40Zr51Al9 using molecular dynamics simulation with embedded atom method. We observed a dynamical crossover from Arrhenius to super-Arrhenius behavior in the transport properties (diffusion coefficient, relaxation times, and shear viscosity) bordered at Tx ~1300K. Unlike in many molecular and macromolecular liquids, this crossover phenomenon occurs in the equilibrium liquid state well above the melting temperature of the system (Tm ~ 900K), and the crossover temperature ismore » roughly twice of the glass-transition temperature (Tg). Below Tx, we found the elemental dynamics decoupled and the Stokes-Einstein relation broke down, indicating the onset of heterogeneous spatially correlated dynamics in the system mediated by dynamic communications among local configurational excitations. To directly characterize and visualize the correlated dynamics, we employed a non-parametric, unsupervised machine learning technique and identified dynamical clusters of atoms with similar atomic mobility. The revealed average dynamical cluster size shows an accelerated increase below Tx and mimics the trend observed in other ensemble averaged quantities that are commonly used to quantify the spatially heterogeneous dynamics such as the non-Gaussian parameter and the four-point correlation function.« less

  15. Cantera Aerosol Dynamics Simulator

    Energy Science and Technology Software Center (OSTI)

    2004-09-01

    The Cantera Aerosol Dynamics Simulator (CADS) package is a general library for aerosol modeling to address aerosol general dynamics, including formation from gas phase reactions, surface chemistry (growth and oxidation), bulk particle chemistry, transport by Brownian diffusion, thermophoresis, and diffusiophoresis with linkage to DSMC studies, and thermal radiative transport. The library is based upon Cantera, a C++ Cal Tech code that handles gas phase species transport, reaction, and thermodynamics. The method uses a discontinuous galerkinmore » formulation for the condensation and coagulation operator that conserves particles, elements, and enthalpy up to round-off error. Both O-D and 1-D time dependent applications have been developed with the library. Multiple species in the solid phase are handled as well. The O-D application, called Tdcads (Time Dependent CADS) is distributed with the library. Tdcads can address both constant volume and constant pressure adiabatic homogeneous problems. An extensive set of sample problems for Tdcads is also provided.« less

  16. The Soviet applied information sciences in a time of change

    SciTech Connect (OSTI)

    Bengston, J.; Cronin, R.R.; Davidson, R.B.

    1991-07-01

    The Foreign Applied Sciences Assessment Center (FASAC) conducts reviews of selected areas of foreign basic and applied science by US scientists who are technically expert and active in the fields reviewed. Several of the FASAC assessments of Soviet science have involved various aspects of the information sciences, including enabling technologies and applications, as well as the core information sciences. This report draws upon those FASAC assessment reports, the expert judgment of some of the authors of those reports, and other public sources to characterize the current state of the information sciences in the Soviet Union and the effects of information science capabilities upon other areas of Soviet science and technology. This report also provides estimates of the likely effect of the political and social reforms underway in the Soviet Union on future Soviet progress in the information sciences and, at a more general level, in science and technology. 41 refs., 7 tabs.

  17. LEARNING SEMANTICS-ENHANCED LANGUAGE MODELS APPLIED TO UNSUEPRVISED WSD

    SciTech Connect (OSTI)

    VERSPOOR, KARIN; LIN, SHOU-DE

    2007-01-29

    An N-gram language model aims at capturing statistical syntactic word order information from corpora. Although the concept of language models has been applied extensively to handle a variety of NLP problems with reasonable success, the standard model does not incorporate semantic information, and consequently limits its applicability to semantic problems such as word sense disambiguation. We propose a framework that integrates semantic information into the language model schema, allowing a system to exploit both syntactic and semantic information to address NLP problems. Furthermore, acknowledging the limited availability of semantically annotated data, we discuss how the proposed model can be learned without annotated training examples. Finally, we report on a case study showing how the semantics-enhanced language model can be applied to unsupervised word sense disambiguation with promising results.

  18. Los Alamos Dynamics Summer School

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos Dynamics Summer School The Seventeenth Los Alamos Dynamics Summer School School overview and focus. Contact Institute Director Charles Farrar (505) 665-0860 Email Executive Administrator Ellie Vigil (505) 667-2818 Email Administrative Assistant Rebecca Duran (505) 665-8899 Email The Los Alamos Dynamics Summer School is a very selective summer school in which top upper-level US-citizen undergraduate students from universities around the nation attend lectures and work in teams of three

  19. Dynamics, Spectral Geometry and Topology

    SciTech Connect (OSTI)

    Burghelea, Dan

    2011-02-10

    The paper is an informal report on joint work with Stefan Haller on Dynamics in relation with Topology and Spectral Geometry. By dynamics one means a smooth vector field on a closed smooth manifold; the elements of dynamics of concern are the rest points, instantons and closed trajectories. One discusses their counting in the case of a generic vector field which has some additional properties satisfied by a still very large class of vector fields.

  20. Europa Louise Prockter Johns Hopkins University Applied Physics Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and Exploration of Europa Louise Prockter Johns Hopkins University Applied Physics Laboratory February 10, 2016 4:00 p.m. - Wilson Hall, One West Jupiter's moon Europa may be the most promising place in the solar system to search for evidence of extra-terrestrial life, because it has liquid water (in the form of a vast subsurface global ocean), interesting chemistry, and useful energy sources. Together, these are thought to be the three necessary "ingredients" for life.

  1. Researcher, Los Alamos National Laboratory - Applied Physics Division |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | (NNSA) Researcher, Los Alamos National Laboratory - Applied Physics Division Stephen Becker Stephen Becker 2009 Los Alamos National Laboratory Fellow Six Los Alamos scientists have been designated 2009 Los Alamos National Laboratory Fellows in recognition of sustained, outstanding scientific contributions and exceptional promise for continued professional achievement. The title of Fellow is bestowed on only about 2 percent of the Laboratory's

  2. CRF Summer Undergraduate Internship Opportunities - Apply by January 10,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 Summer Undergraduate Internship Opportunities - Apply by January 10, 2014 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing

  3. Tritium Permeation Activity at Safety and Tritium Applied

    Office of Environmental Management (EM)

    Permeation Activity at Safety and Tritium Applied Research (STAR) facility Masashi Shimada and Bob Pawelko Fusion Safety Program Idaho National Laboratory Tritium Focus Group meeting September 23-25, 2014 at Idaho National Laboratory, Idaho Falls, ID Outline: 1. Motivation of low tritium partial pressure permeation 2. Tritium permeation for fission application 3. Tritium permeation for fusion application M.Shimada | Tritium Focus Group meeting | Idaho Falls, ID | September 23-25, 2014 2

  4. Apply by March 31 for nontraditional student scholarship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nontraditional student scholarship Apply by March 31 for nontraditional student scholarship The scholarship will provide funds to employees or students pursuing a certificate, a two-year-degree, or a baccalaureate degree at NNMC. March 16, 2011 Nontraditional student scholarships Nontraditional student scholarships Contact Communications Office (505) 667-7000 LOS ALAMOS, New Mexico, March 16, 2011-Employees of Los Alamos National Laboratory or students working at the Laboratory who have

  5. Apply: Building Energy Efficiency Frontiers and Innovation Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (BENEFIT) - 2015 Funding Opportunity Announcement | Department of Energy Building Energy Efficiency Frontiers and Innovation Technologies (BENEFIT) - 2015 Funding Opportunity Announcement Apply: Building Energy Efficiency Frontiers and Innovation Technologies (BENEFIT) - 2015 Funding Opportunity Announcement October 8, 2014 - 11:14am Addthis This funding opportunity is closed. The Building Technologies Office (BTO)'s Emerging Technologies Program has announced the availability of nearly $8

  6. Apply: Funding Opportunity - Advancing Solutions to Improve Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency of Commercial Buildings | Department of Energy Advancing Solutions to Improve Energy Efficiency of Commercial Buildings Apply: Funding Opportunity - Advancing Solutions to Improve Energy Efficiency of Commercial Buildings October 23, 2014 - 3:51pm Addthis This funding opportunity is closed. Funding Opportunity Announcement (FOA) Number: DE-FOA-0001168 The Building Technologies Office (BTO) Commercial Buildings Integration Program has announced the availability of nearly $9 million

  7. Apply: Funding Opportunity - Building America Industry Partnerships for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Performance Housing Innovation | Department of Energy Building America Industry Partnerships for High Performance Housing Innovation Apply: Funding Opportunity - Building America Industry Partnerships for High Performance Housing Innovation November 12, 2014 - 6:28pm Addthis This funding opportunity is closed. The Building Technologies Office (BTO)'s Residential Buildings Integration Program has announced the availability of up to $4 million in 2015 for the Building America Industry

  8. Apply: Funding Opportunity - Buildings University Innovators and Leaders

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development (BUILD) | Department of Energy Buildings University Innovators and Leaders Development (BUILD) Apply: Funding Opportunity - Buildings University Innovators and Leaders Development (BUILD) November 13, 2014 - 9:42am Addthis This funding opportunity is closed. The Building Technologies Office (BTO)'s Emerging Technologies Program has announced the availability of up to $1 million for the Buildings University Innovators and Leaders Development (BUILD) Funding Opportunity

  9. Apply: Small Business Funding Opportunity for Lighting, Integrated Storage,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Distributed Generation | Department of Energy Small Business Funding Opportunity for Lighting, Integrated Storage, and Distributed Generation Apply: Small Business Funding Opportunity for Lighting, Integrated Storage, and Distributed Generation November 12, 2014 - 6:00pm Addthis This funding opportunity is closed. The Department of Energy released a funding opportunity under its Small Business Innovation Research (SBIR) and Technology Transfer program that will help small businesses

  10. Applying automated data acquisition and management technology to bioremediation

    SciTech Connect (OSTI)

    Widing, M.A.; Leser, C.

    1995-06-01

    Operating a bioremediation process requires timely and accurate analysis of physical and chemical parameters that can affect the system. At a fuel oil spill site, the operation of an in-situ bioremediation system, consisting of fluid and nutrient injection, fluid withdrawal, and aeration cycles, is monitored by means of electronic downhole sensors and on-site chemical analysis. A data acquisition and management system was designed and implemented to rapidly analyze data for operational decision malting. A hardware suite, containing an electronic monitoring system data acquisition computer, and data analysis workstation, was also developed. Through the use of both commercial software products and custom software, suites of data management and analysis tools were provided. The data acquisition suite of software tools assisted in programming dataloggers, automatically recording monitored data, and integrating these data with manually sampled chemical data. The data analysis suite of software tools assisted in downloading data to remote workstations, sampling the database for trend analysis, and automating the interface to commercial analysis packages.

  11. Sodium-Bearing Waste Treatment, Applied Technology Plan

    SciTech Connect (OSTI)

    Lance Lauerhass; Vince C. Maio; S. Kenneth Merrill; Arlin L. Olson; Keith J. Perry

    2003-06-01

    Settlement Agreement between the Department of Energy and the State of Idaho mandates treatment of sodium-bearing waste at the Idaho Nuclear Technology and Engineering Center within the Idaho National Engineering and Environmental Laboratory. One of the requirements of the Settlement Agreement is to complete treatment of sodium-bearing waste by December 31, 2012. Applied technology activities are required to provide the data necessary to complete conceptual design of four identified alternative processes and to select the preferred alternative. To provide a technically defensible path forward for the selection of a treatment process and for the collection of needed data, an applied technology plan is required. This document presents that plan, identifying key elements of the decision process and the steps necessary to obtain the required data in support of both the decision and the conceptual design. The Sodium-Bearing Waste Treatment Applied Technology Plan has been prepared to provide a description/roadmap of the treatment alternative selection process. The plan details the results of risk analyzes and the resulting prioritized uncertainties. It presents a high-level flow diagram governing the technology decision process, as well as detailed roadmaps for each technology. The roadmaps describe the technical steps necessary in obtaining data to quantify and reduce the technical uncertainties associated with each alternative treatment process. This plan also describes the final products that will be delivered to the Department of Energy Idaho Operations Office in support of the office's selection of the final treatment technology.

  12. Los Alamos Dynamics Summer School

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Seventeenth Los Alamos Dynamics Summer School Program Information and Application Process Contact Institute Director Charles Farrar (505) 663-5330 Email Executive...

  13. Computational Particle Dynamic Simulations on Multicore Processors (CPDMu) Final Report â?? Phase I

    SciTech Connect (OSTI)

    Mark S. Schmalz

    2011-07-24

    Statement of Problem - Department of Energy has many legacy codes for simulation of computational particle dynamics and computational fluid dynamics applications that are designed to run on sequential processors and are not easily parallelized. Emerging high-performance computing architectures employ massively parallel multicore architectures (e.g., graphics processing units) to increase throughput. Parallelization of legacy simulation codes is a high priority, to achieve compatibility, efficiency, accuracy, and extensibility. General Statement of Solution - A legacy simulation application designed for implementation on mainly-sequential processors has been represented as a graph G. Mathematical transformations, applied to G, produce a graph representation {und G} for a high-performance architecture. Key computational and data movement kernels of the application were analyzed/optimized for parallel execution using the mapping G {yields} {und G}, which can be performed semi-automatically. This approach is widely applicable to many types of high-performance computing systems, such as graphics processing units or clusters comprised of nodes that contain one or more such units. Phase I Accomplishments - Phase I research decomposed/profiled computational particle dynamics simulation code for rocket fuel combustion into low and high computational cost regions (respectively, mainly sequential and mainly parallel kernels), with analysis of space and time complexity. Using the research team's expertise in algorithm-to-architecture mappings, the high-cost kernels were transformed, parallelized, and implemented on Nvidia Fermi GPUs. Measured speedups (GPU with respect to single-core CPU) were approximately 20-32X for realistic model parameters, without final optimization. Error analysis showed no loss of computational accuracy. Commercial Applications and Other Benefits - The proposed research will constitute a breakthrough in solution of problems related to efficient

  14. Dynamic bed reactor

    DOE Patents [OSTI]

    Stormo, Keith E. (Moscow, ID)

    1996-07-02

    A dynamic bed reactor is disclosed in which a compressible open cell foam matrix is periodically compressed and expanded to move a liquid or fluid through the matrix. In preferred embodiments, the matrix contains an active material such as an enzyme, biological cell, chelating agent, oligonucleotide, adsorbent or other material that acts upon the liquid or fluid passing through the matrix. The active material may be physically immobilized in the matrix, or attached by covalent or ionic bonds. Microbeads, substantially all of which have diameters less than 50 microns, can be used to immobilize the active material in the matrix and further improve reactor efficiency. A particularly preferred matrix is made of open cell polyurethane foam, which adsorbs pollutants such as polychlorophenol or o-nitrophenol. The reactors of the present invention allow unidirectional non-laminar flow through the matrix, and promote intimate exposure of liquid reactants to active agents such as microorganisms immobilized in the matrix.

  15. Dynamic Information Architecture System

    Energy Science and Technology Software Center (OSTI)

    1997-02-12

    The Dynamic Information System (DIAS) is a flexible object-based software framework for concurrent, multidiscplinary modeling of arbitrary (but related) processes. These processes are modeled as interrelated actions caused by and affecting the collection of diverse real-world objects represented in a simulation. The DIAS architecture allows independent process models to work together harmoniously in the same frame of reference and provides a wide range of data ingestion and output capabilities, including Geographic Information System (GIS) typemore » map-based displays and photorealistic visualization of simulations in progress. In the DIAS implementation of the object-based approach, software objects carry within them not only the data which describe their static characteristics, but also the methods, or functions, which describe their dynamic behaviors. There are two categories of objects: (1) Entity objects which have real-world counterparts and are the actors in a simulation, and (2) Software infrastructure objects which make it possible to carry out the simulations. The Entity objects contain lists of Aspect objects, each of which addresses a single aspect of the Entity''s behavior. For example, a DIAS Stream Entity representing a section of a river can have many aspects correspondimg to its behavior in terms of hydrology (as a drainage system component), navigation (as a link in a waterborne transportation system), meteorology (in terms of moisture, heat, and momentum exchange with the atmospheric boundary layer), and visualization (for photorealistic visualization or map type displays), etc. This makes it possible for each real-world object to exhibit any or all of its unique behaviors within the context of a single simulation.« less

  16. A Distributed Flocking Approach for Information Stream Clustering Analysis

    SciTech Connect (OSTI)

    Cui, Xiaohui; Potok, Thomas E

    2006-01-01

    Intelligence analysts are currently overwhelmed with the amount of information streams generated everyday. There is a lack of comprehensive tool that can real-time analyze the information streams. Document clustering analysis plays an important role in improving the accuracy of information retrieval. However, most clustering technologies can only be applied for analyzing the static document collection because they normally require a large amount of computation resource and long time to get accurate result. It is very difficult to cluster a dynamic changed text information streams on an individual computer. Our early research has resulted in a dynamic reactive flock clustering algorithm which can continually refine the clustering result and quickly react to the change of document contents. This character makes the algorithm suitable for cluster analyzing dynamic changed document information, such as text information stream. Because of the decentralized character of this algorithm, a distributed approach is a very natural way to increase the clustering speed of the algorithm. In this paper, we present a distributed multi-agent flocking approach for the text information stream clustering and discuss the decentralized architectures and communication schemes for load balance and status information synchronization in this approach.

  17. Geothermal Reservoir Dynamics - TOUGHREACT

    SciTech Connect (OSTI)

    Pruess, Karsten; Xu, Tianfu; Shan, Chao; Zhang, Yingqi; Wu,Yu-Shu; Sonnenthal, Eric; Spycher, Nicolas; Rutqvist, Jonny; Zhang,Guoxiang; Kennedy, Mack

    2005-03-15

    This project has been active for several years and has focused on developing, enhancing and applying mathematical modeling capabilities for fractured geothermal systems. The emphasis of our work has recently shifted towards enhanced geothermal systems (EGS) and hot dry rock (HDR), and FY05 is the first year that the DOE-AOP actually lists this project under Enhanced Geothermal Systems. Our overall purpose is to develop new engineering tools and a better understanding of the coupling between fluid flow, heat transfer, chemical reactions, and rock-mechanical deformation, to demonstrate new EGS technology through field applications, and to make technical information and computer programs available for field applications. The objectives of this project are to: (1) Improve fundamental understanding and engineering methods for geothermal systems, primarily focusing on EGS and HDR systems and on critical issues in geothermal systems that are difficult to produce. (2) Improve techniques for characterizing reservoir conditions and processes through new modeling and monitoring techniques based on ''active'' tracers and coupled processes. (3) Improve techniques for targeting injection towards specific engineering objectives, including maintaining and controlling injectivity, controlling non-condensable and corrosive gases, avoiding scale formation, and optimizing energy recovery. Seek opportunities for field testing and applying new technologies, and work with industrial partners and other research organizations.

  18. Laser dynamics with excited-state absorption

    SciTech Connect (OSTI)

    Sanchez, F.; Kellou, A.

    1997-01-01

    The dynamics of a laser with excited-state absorption at the lasing wavelength is theoretically studied. The model is based on the rate equations for a four-level system. The stationary state is analytically calculated, permitting both the investigation of the laser characteristics and linear stability analysis. The latter shows that, in some conditions, the steady state is not stable in a particular range of pumping rates. However, a stable solution is restored for sufficiently high pumping rates. Stable self-pulsing solutions are obtained by numerical integration of the coupled equations. Also, the transient regimes are numerically analyzed. {copyright} 1997 Optical Society of America.

  19. Molecular Dynamics and Energy Minimization Based on Embedded Atom Method

    Energy Science and Technology Software Center (OSTI)

    1995-03-01

    This program performs atomic scale computer simulations of the structure and dynamics of metallic system using energetices based on the Embedded Atom Method. The program performs two types of calculations. First, it performs local energy minimization of all atomic positions to determine ground state and saddle point energies and structures. Second, it performs molecular dynamics simulations to determine thermodynamics or miscroscopic dynamics of the system. In both cases, various constraints can be applied to themore » system. The volume of the system can be varied automatically to achieve any desired external pressure. The temperature in molecular dynamics simulations can be controlled by a variety of methods. Further, the temperature control can be applied either to the entire system or just a subset of the atoms that would act as a thermal source/sink. The motion of one or more of the atoms can be constrained to either simulate the effects of bulk boundary conditions or to facilitate the determination of saddle point configurations. The simulations are performed with periodic boundary conditions.« less

  20. Impact of pulse poling on static and dynamic ferroelastic-domain contributions in tetragonal Pb(Ti, Zr)O{sub 3} films determined by in-situ x–ray diffraction analysis

    SciTech Connect (OSTI)

    Nakajima, Mitsumasa; Wada, Ayumi; Ehara, Yoshitaka; Funakubo, Hiroshi; Yamada, Tomoaki; Kobayashi, Takeshi

    2014-11-21

    The effects of bipolar pulse poling on the ferroelastic domain structure and their contribution to the electrical and piezoelectric properties of Pb(Ti{sub 0.7}Zr{sub 0.3})O{sub 3} films are investigated. Micro x-ray diffraction measurements clearly show that the volume fraction of the c-domain increases irreversibly as the poling field is increased, leading to changes in the remanent polarization, dielectric constant, and piezoelectric coefficient. Theoretical estimations well explain the changes of remanent polarization and dielectric constant, but the increase in piezoelectric coefficient is much larger than the theoretical estimation. In-situ x-ray diffraction analysis under an electric field reveals that this disagreement is due to the unexpected activation of the ferroelastic domain wall motion. Our results provide new insight into the poling effect on the electric and piezoelectric properties of ferroelectric films.

  1. Biosafety assessment protocols for new organisms in New Zealand: Can they apply internationally to emerging technologies?

    SciTech Connect (OSTI)

    Barratt, B.I.P. . E-mail: barbara.barratt@agresearch.co.nz; Moeed, A.; Malone, L.A.

    2006-05-15

    An analysis of established biosafety protocols for release into the environment of exotic plants and biological control agents for weeds and arthropod pests has been carried out to determine whether such protocols can be applied to relatively new and emerging technologies intended for the primary production industries, such as transgenic plants. Example case studies are described to indicate the scope of issues considered by regulators who make decisions on new organism releases. No transgenic plants have been released to date in New Zealand, but two field test approvals are described as examples. An analysis of the biosafety protocols has shown that, while many of the risk criteria considered for decision-making by regulators are similar for all new organisms, a case-by-case examination of risks and potential impacts is required in order to fully assess risk. The value of post-release monitoring and validation of decisions made by regulators is emphasised.

  2. Scale-invariant entropy-based theory for dynamic ordering

    SciTech Connect (OSTI)

    Mahulikar, Shripad P. E-mail: spm@aero.iitb.ac.in; Kumari, Priti

    2014-09-01

    Dynamically Ordered self-organized dissipative structure exists in various forms and at different scales. This investigation first introduces the concept of an isolated embedding system, which embeds an open system, e.g., dissipative structure and its mass and/or energy exchange with its surroundings. Thereafter, scale-invariant theoretical analysis is presented using thermodynamic principles for Order creation, existence, and destruction. The sustainability criterion for Order existence based on its structured mass and/or energy interactions with the surroundings is mathematically defined. This criterion forms the basis for the interrelationship of physical parameters during sustained existence of dynamic Order. It is shown that the sufficient condition for dynamic Order existence is approached if its sustainability criterion is met, i.e., its destruction path is blocked. This scale-invariant approach has the potential to unify the physical understanding of universal dynamic ordering based on entropy considerations.

  3. Structure and Dynamics of Dinucleosomes Assessed by Atomic Force Microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Filenko, Nina A.; Palets, Dmytro B.; Lyubchenko, Yuri L.

    2012-01-01

    Dynamics of nucleosomes and their interactions are important for understanding the mechanism of chromatin assembly. Internucleosomal interaction is required for the formation of higher-order chromatin structures. Although H1 histone is critically involved in the process of chromatin assembly, direct internucleosomal interactions contribute to this process as well. To characterize the interactions of nucleosomes within the nucleosome array, we designed a dinucleosome and performed direct AFM imaging. The analysis of the AFM data showed dinucleosomes are very dynamic systems, enabling the nucleosomes to move in a broad range along the DNA template. Di-nucleosomes in close proximity were observed, but their populationmore » was low. The use of the zwitterionic detergent, CHAPS, increased the dynamic range of the di-nucleosome, facilitating the formation of tight di-nucleosomes. The role of CHAPS and similar natural products in chromatin structure and dynamics is also discussed.« less

  4. The application of complex network time series analysis in turbulent heated jets

    SciTech Connect (OSTI)

    Charakopoulos, A. K.; Karakasidis, T. E. Liakopoulos, A.; Papanicolaou, P. N.

    2014-06-15

    In the present study, we applied the methodology of the complex network-based time series analysis to experimental temperature time series from a vertical turbulent heated jet. More specifically, we approach the hydrodynamic problem of discriminating time series corresponding to various regions relative to the jet axis, i.e., time series corresponding to regions that are close to the jet axis from time series originating at regions with a different dynamical regime based on the constructed network properties. Applying the transformation phase space method (k nearest neighbors) and also the visibility algorithm, we transformed time series into networks and evaluated the topological properties of the networks such as degree distribution, average path length, diameter, modularity, and clustering coefficient. The results show that the complex network approach allows distinguishing, identifying, and exploring in detail various dynamical regions of the jet flow, and associate it to the corresponding physical behavior. In addition, in order to reject the hypothesis that the studied networks originate from a stochastic process, we generated random network and we compared their statistical properties with that originating from the experimental data. As far as the efficiency of the two methods for network construction is concerned, we conclude that both methodologies lead to network properties that present almost the same qualitative behavior and allow us to reveal the underlying system dynamics.

  5. MAUI: Modeling, Analysis, and Ultrafast Imaging | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interfaces. Our goal is to integrate ultrafast time-resolved imaging with large-scale molecular dynamics modeling and in situ data analysis and visualization. This will allow...

  6. Accelerated molecular dynamics methods: introduction and recent developments

    SciTech Connect (OSTI)

    Uberuaga, Blas Pedro; Voter, Arthur F; Perez, Danny; Shim, Y; Amar, J G

    2009-01-01

    A long-standing limitation in the use of molecular dynamics (MD) simulation is that it can only be applied directly to processes that take place on very short timescales: nanoseconds if empirical potentials are employed, or picoseconds if we rely on electronic structure methods. Many processes of interest in chemistry, biochemistry, and materials science require study over microseconds and beyond, due either to the natural timescale for the evolution or to the duration of the experiment of interest. Ignoring the case of liquids xxx, the dynamics on these time scales is typically characterized by infrequent-event transitions, from state to state, usually involving an energy barrier. There is a long and venerable tradition in chemistry of using transition state theory (TST) [10, 19, 23] to directly compute rate constants for these kinds of activated processes. If needed dynamical corrections to the TST rate, and even quantum corrections, can be computed to achieve an accuracy suitable for the problem at hand. These rate constants then allow them to understand the system behavior on longer time scales than we can directly reach with MD. For complex systems with many reaction paths, the TST rates can be fed into a stochastic simulation procedure such as kinetic Monte Carlo xxx, and a direct simulation of the advance of the system through its possible states can be obtained in a probabilistically exact way. A problem that has become more evident in recent years, however, is that for many systems of interest there is a complexity that makes it difficult, if not impossible, to determine all the relevant reaction paths to which TST should be applied. This is a serious issue, as omitted transition pathways can have uncontrollable consequences on the simulated long-time kinetics. Over the last decade or so, we have been developing a new class of methods for treating the long-time dynamics in these complex, infrequent-event systems. Rather than trying to guess in advance what

  7. Optimized Uncertainty Quantification Algorithm Within a Dynamic Event Tree Framework

    SciTech Connect (OSTI)

    J. W. Nielsen; Akira Tokuhiro; Robert Hiromoto

    2014-06-01

    Methods for developing Phenomenological Identification and Ranking Tables (PIRT) for nuclear power plants have been a useful tool in providing insight into modelling aspects that are important to safety. These methods have involved expert knowledge with regards to reactor plant transients and thermal-hydraulic codes to identify are of highest importance. Quantified PIRT provides for rigorous method for quantifying the phenomena that can have the greatest impact. The transients that are evaluated and the timing of those events are typically developed in collaboration with the Probabilistic Risk Analysis. Though quite effective in evaluating risk, traditional PRA methods lack the capability to evaluate complex dynamic systems where end states may vary as a function of transition time from physical state to physical state . Dynamic PRA (DPRA) methods provide a more rigorous analysis of complex dynamic systems. A limitation of DPRA is its potential for state or combinatorial explosion that grows as a function of the number of components; as well as, the sampling of transition times from state-to-state of the entire system. This paper presents a method for performing QPIRT within a dynamic event tree framework such that timing events which result in the highest probabilities of failure are captured and a QPIRT is performed simultaneously while performing a discrete dynamic event tree evaluation. The resulting simulation results in a formal QPIRT for each end state. The use of dynamic event trees results in state explosion as the number of possible component states increases. This paper utilizes a branch and bound algorithm to optimize the solution of the dynamic event trees. The paper summarizes the methods used to implement the branch-and-bound algorithm in solving the discrete dynamic event trees.

  8. Handbook on dynamics of jointed structures.

    SciTech Connect (OSTI)

    Ames, Nicoli M.; Lauffer, James P.; Jew, Michael D.; Segalman, Daniel Joseph; Gregory, Danny Lynn; Starr, Michael James; Resor, Brian Ray

    2009-07-01

    The problem of understanding and modeling the complicated physics underlying the action and response of the interfaces in typical structures under dynamic loading conditions has occupied researchers for many decades. This handbook presents an integrated approach to the goal of dynamic modeling of typical jointed structures, beginning with a mathematical assessment of experimental or simulation data, development of constitutive models to account for load histories to deformation, establishment of kinematic models coupling to the continuum models, and application of finite element analysis leading to dynamic structural simulation. In addition, formulations are discussed to mitigate the very short simulation time steps that appear to be required in numerical simulation for problems such as this. This handbook satisfies the commitment to DOE that Sandia will develop the technical content and write a Joints Handbook. The content will include: (1) Methods for characterizing the nonlinear stiffness and energy dissipation for typical joints used in mechanical systems and components. (2) The methodology will include practical guidance on experiments, and reduced order models that can be used to characterize joint behavior. (3) Examples for typical bolted and screw joints will be provided.

  9. Dynamics and structure of stretched flames

    SciTech Connect (OSTI)

    Law, C.K.

    1993-12-01

    This program aims to gain fundamental understanding on the structure, geometry, and dynamics of laminar premixed flames, and relate these understanding to the practical issues of flame extinction and stabilization. The underlying fundamental interest here is the recent recognition that the response of premixed flames can be profoundly affected by flame stretch, as manifested by flow nonuniformity, flame curvature, and flame/flow unsteadiness. As such, many of the existing understanding on the behavior of premixed flames need to be qualitatively revised. The research program consists of three major thrusts: (1) detailed experimental and computational mapping of the structure of aerodynamically-strained planar flames, with emphasis on the effects of heat loss, nonequidiffusion, and finite residence time on the flame thickness, extent of incomplete reaction, and the state of extinction. (2) Analytical study of the geometry and dynamics of stretch-affected wrinkled flame sheets in simple configurations, as exemplified by the Bunsen flame and the spatially-periodic flame, with emphasis on the effects of nonlinear stretch, the phenomena of flame cusping, smoothing, and tip opening, and their implications on the structure and burning rate of turbulent flames. (3) Stabilization and blowoff of two-dimensional inverted premixed and stabilization and determining the criteria governing flame blowoff. The research is synergistically conducted through the use of laser-based diagnostics, computational simulation of the flame structure with detailed chemistry and transport, and mathematical analysis of the flame dynamics.

  10. Forecasting municipal solid waste generation in a fast-growing urban region with system dynamics modeling

    SciTech Connect (OSTI)

    Dyson, Brian; Chang, N.-B. . E-mail: nchang@even.tamuk.edu

    2005-07-01

    Both planning and design of municipal solid waste management systems require accurate prediction of solid waste generation. Yet achieving the anticipated prediction accuracy with regard to the generation trends facing many fast-growing regions is quite challenging. The lack of complete historical records of solid waste quantity and quality due to insufficient budget and unavailable management capacity has resulted in a situation that makes the long-term system planning and/or short-term expansion programs intangible. To effectively handle these problems based on limited data samples, a new analytical approach capable of addressing socioeconomic and environmental situations must be developed and applied for fulfilling the prediction analysis of solid waste generation with reasonable accuracy. This study presents a new approach - system dynamics modeling - for the prediction of solid waste generation in a fast-growing urban area based on a set of limited samples. To address the impact on sustainable development city wide, the practical implementation was assessed by a case study in the city of San Antonio, Texas (USA). This area is becoming one of the fastest-growing regions in North America due to the economic impact of the North American Free Trade Agreement (NAFTA). The analysis presents various trends of solid waste generation associated with five different solid waste generation models using a system dynamics simulation tool - Stella[reg]. Research findings clearly indicate that such a new forecasting approach may cover a variety of possible causative models and track inevitable uncertainties down when traditional statistical least-squares regression methods are unable to handle such issues.

  11. Dynamic granularity of imaging systems

    SciTech Connect (OSTI)

    Geissel, Matthias; Smith, Ian C.; Shores, Jonathon E.; Porter, John L.

    2015-11-04

    Imaging systems that include a specific source, imaging concept, geometry, and detector have unique properties such as signal-to-noise ratio, dynamic range, spatial resolution, distortions, and contrast. Some of these properties are inherently connected, particularly dynamic range and spatial resolution. It must be emphasized that spatial resolution is not a single number but must be seen in the context of dynamic range and consequently is better described by a function or distribution. We introduce the “dynamic granularity” Gdyn as a standardized, objective relation between a detector’s spatial resolution (granularity) and dynamic range for complex imaging systems in a given environment rather than the widely found characterization of detectors such as cameras or films by themselves. We found that this relation can partly be explained through consideration of the signal’s photon statistics, background noise, and detector sensitivity, but a comprehensive description including some unpredictable data such as dust, damages, or an unknown spectral distribution will ultimately have to be based on measurements. Measured dynamic granularities can be objectively used to assess the limits of an imaging system’s performance including all contributing noise sources and to qualify the influence of alternative components within an imaging system. Our article explains the construction criteria to formulate a dynamic granularity and compares measured dynamic granularities for different detectors used in the X-ray backlighting scheme employed at Sandia’s Z-Backlighter facility.

  12. Dynamic granularity of imaging systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Geissel, Matthias; Smith, Ian C.; Shores, Jonathon E.; Porter, John L.

    2015-11-04

    Imaging systems that include a specific source, imaging concept, geometry, and detector have unique properties such as signal-to-noise ratio, dynamic range, spatial resolution, distortions, and contrast. Some of these properties are inherently connected, particularly dynamic range and spatial resolution. It must be emphasized that spatial resolution is not a single number but must be seen in the context of dynamic range and consequently is better described by a function or distribution. We introduce the “dynamic granularity” Gdyn as a standardized, objective relation between a detector’s spatial resolution (granularity) and dynamic range for complex imaging systems in a given environment rathermore » than the widely found characterization of detectors such as cameras or films by themselves. We found that this relation can partly be explained through consideration of the signal’s photon statistics, background noise, and detector sensitivity, but a comprehensive description including some unpredictable data such as dust, damages, or an unknown spectral distribution will ultimately have to be based on measurements. Measured dynamic granularities can be objectively used to assess the limits of an imaging system’s performance including all contributing noise sources and to qualify the influence of alternative components within an imaging system. Our article explains the construction criteria to formulate a dynamic granularity and compares measured dynamic granularities for different detectors used in the X-ray backlighting scheme employed at Sandia’s Z-Backlighter facility.« less

  13. How to Apply the National Register Criteria for Evaluation

    Broader source: Energy.gov [DOE]

    The National Register of Historic Places is the official list of properties recognized to have national, state, or local significance in American history, architecture, archaeology, engineering, and culture. To guide the selection of properties included in the National Register, the National Park Service (NPS) has developed the National Register Criteria for Evaluation. This bulletin explains how the NPS applies these criteria in evaluating the wide range of properties that may be significant in local, state, and national history. It should be used by anyone who must decide if a particular property qualifies for the National Register.

  14. VERDE: Visualizing Energy Resources Dynamically on Earth - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Energy Analysis Energy Analysis Electricity Transmission Electricity Transmission Find More Like This Return to Search VERDE: Visualizing Energy Resources Dynamically on Earth Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryVERDE is a software application utilizing the Google Earth(c) platform to provide real time visualization of the electric power grid.DescriptionVERDE is capable of layering different types of information on

  15. Computational Method for Detecting and Enhancing Protein Dynamics - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Energy Analysis Energy Analysis Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Computational Method for Detecting and Enhancing Protein Dynamics Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryORNL researchers have developed a method that uses simulation and experimental data to detect, analyze, and manipulate protein activity. This approach enables enhancement of the chemical reaction rates of

  16. High-throughput metagenomic technologies for complex microbial community analysis. Open and closed formats

    SciTech Connect (OSTI)

    Zhou, Jizhong; He, Zhili; Yang, Yunfeng; Deng, Ye; Tringe, Susannah G.; Alvarez-Cohen, Lisa

    2015-01-27

    Understanding the structure, functions, activities and dynamics of microbial communities in natural environments is one of the grand challenges of 21st century science. To address this challenge, over the past decade, numerous technologies have been developed for interrogating microbial communities, of which some are amenable to exploratory work (e.g., high-throughput sequencing and phenotypic screening) and others depend on reference genes or genomes (e.g., phylogenetic and functional gene arrays). Here, we provide a critical review and synthesis of the most commonly applied “open-format” and “closed-format” detection technologies. We discuss their characteristics, advantages, and disadvantages within the context of environmental applications and focus on analysis of complex microbial systems, such as those in soils, in which diversity is high and reference genomes are few. In addition, we discuss crucial issues and considerations associated with applying complementary high-throughput molecular technologies to address important ecological questions.

  17. Atomic-scale dynamics of a model glass-forming metallic liquid: Dynamical crossover, dynamical decoupling, and dynamical clustering

    SciTech Connect (OSTI)

    Jaiswal, Abhishek; Egami, Takeshi; Zhang, Yang

    2015-04-01

    The phase behavior of multi-component metallic liquids is exceedingly complex because of the convoluted many-body and many-elemental interactions. Herein, we present systematic studies of the dynamic aspects of such a model ternary metallic liquid Cu40Zr51Al9 using molecular dynamics simulation with embedded atom method. We observed a dynamical crossover from Arrhenius to super-Arrhenius behavior in the transport properties (diffusion coefficient, relaxation times, and shear viscosity) bordered at Tx ~1300K. Unlike in many molecular and macromolecular liquids, this crossover phenomenon occurs in the equilibrium liquid state well above the melting temperature of the system (Tm ~ 900K), and the crossover temperature is roughly twice of the glass-transition temperature (Tg). Below Tx, we found the elemental dynamics decoupled and the Stokes-Einstein relation broke down, indicating the onset of heterogeneous spatially correlated dynamics in the system mediated by dynamic communications among local configurational excitations. To directly characterize and visualize the correlated dynamics, we employed a non-parametric, unsupervised machine learning technique and identified dynamical clusters of atoms with similar atomic mobility. The revealed average dynamical cluster size shows an accelerated increase below Tx and mimics the trend observed in other ensemble averaged quantities that are commonly used to quantify the spatially heterogeneous dynamics such as the non-Gaussian parameter and the four-point correlation function.

  18. Chaos and simple determinism in reversed field pinch plasmas: Nonlinear analysis of numerical simulation and experimental data

    SciTech Connect (OSTI)

    Watts, C.A.

    1993-09-01

    In this dissertation the possibility that chaos and simple determinism are governing the dynamics of reversed field pinch (RFP) plasmas is investigated. To properly assess this possibility, data from both numerical simulations and experiment are analyzed. A large repertoire of nonlinear analysis techniques is used to identify low dimensional chaos in the data. These tools include phase portraits and Poincare sections, correlation dimension, the spectrum of Lyapunov exponents and short term predictability. In addition, nonlinear noise reduction techniques are applied to the experimental data in an attempt to extract any underlying deterministic dynamics. Two model systems are used to simulate the plasma dynamics. These are the DEBS code, which models global RFP dynamics, and the dissipative trapped electron mode (DTEM) model, which models drift wave turbulence. Data from both simulations show strong indications of low dimensional chaos and simple determinism. Experimental date were obtained from the Madison Symmetric Torus RFP and consist of a wide array of both global and local diagnostic signals. None of the signals shows any indication of low dimensional chaos or low simple determinism. Moreover, most of the analysis tools indicate the experimental system is very high dimensional with properties similar to noise. Nonlinear noise reduction is unsuccessful at extracting an underlying deterministic system.

  19. Structural system identification: Structural dynamics model validation

    SciTech Connect (OSTI)

    Red-Horse, J.R.

    1997-04-01

    Structural system identification is concerned with the development of systematic procedures and tools for developing predictive analytical models based on a physical structure`s dynamic response characteristics. It is a multidisciplinary process that involves the ability (1) to define high fidelity physics-based analysis models, (2) to acquire accurate test-derived information for physical specimens using diagnostic experiments, (3) to validate the numerical simulation model by reconciling differences that inevitably exist between the analysis model and the experimental data, and (4) to quantify uncertainties in the final system models and subsequent numerical simulations. The goal of this project was to develop structural system identification techniques and software suitable for both research and production applications in code and model validation.

  20. Dynamic Fault Detection Chassis

    SciTech Connect (OSTI)

    Mize, Jeffery J

    2007-01-01

    Abstract The high frequency switching megawatt-class High Voltage Converter Modulator (HVCM) developed by Los Alamos National Laboratory for the Oak Ridge National Laboratory's Spallation Neutron Source (SNS) is now in operation. One of the major problems with the modulator systems is shoot-thru conditions that can occur in a IGBTs H-bridge topology resulting in large fault currents and device failure in a few microseconds. The Dynamic Fault Detection Chassis (DFDC) is a fault monitoring system; it monitors transformer flux saturation using a window comparator and dV/dt events on the cathode voltage caused by any abnormality such as capacitor breakdown, transformer primary turns shorts, or dielectric breakdown between the transformer primary and secondary. If faults are detected, the DFDC will inhibit the IGBT gate drives and shut the system down, significantly reducing the possibility of a shoot-thru condition or other equipment damaging events. In this paper, we will present system integration considerations, performance characteristics of the DFDC, and discuss its ability to significantly reduce costly down time for the entire facility.