National Library of Energy BETA

Sample records for application tractor fuel

  1. Using LNG as a Fuel in Heavy-Duty Tractors

    SciTech Connect (OSTI)

    Liquid Carbonic, Inc. and Trucking Research Institute

    1999-08-09

    Recognizing the lack of operational data on alternative fuel heavy-truck trucks, NREL contracted with the Trucking Research Institute (TRI) in 1994 to obtain a cooperative agreement with Liquid Carbonic. The purpose of this agreement was to (1) purchase and operate liquid natural gas- (LNG-) powered heavy-duty tractor-trailers with prototype Detroit Diesel Corporation (DDC) Series 60 natural gas (S60G) engines in over-the-road commercial service applications; and (2) collect and provide operational data to DDC to facilitate the on-road prototype development of the engine and to NREL for the Alternative Fuels Data Center. The vehicles operated from August 1994 through April of 1997 and led to a commercially available, emissions-certified S60G in 1998. This report briefly documents the engine development, the operational characteristics of LNG, and the lessons learned during the project.

  2. Fact #705: December 12, 2011 Fuel Consumption Standards for Combination Tractors

    Office of Energy Efficiency and Renewable Energy (EERE)

    The National Highway Traffic Safety Administration published a final rule setting fuel consumption standards for heavy trucks in September 2011. For tractor-trailers, the standards focus on the...

  3. SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies 1 SuperTruck - Development and Demonstration of a Fuel Efficient Class 8 Tractor & Trailer DE-EE0003303 This presentation does not contain any proprietary, confidential, or otherwise restricted information SuperTruck - Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer Vehicle Systems DOE Contract: DE-EE0003303 NETL Project Manager: Ralph Nine Program Investigator : Dennis W. Jadin, Navistar DOE MERIT REVIEW WASHINGTON, D.C. May 17th, 2012 National

  4. Vegetable oils for tractors

    SciTech Connect (OSTI)

    Moroney, M.

    1981-11-14

    Preliminary tests by the Agricultural Institute, show that tractors can be run on a 50:50 rape oil-diesel mixture or on pure rape oil. In fact, engine power actually increased slightly with the 50:50 blend but decreased fractionally with pure rape oil. Research at the North Dakota State University on using sunflower oil as an alternative to diesel fuel is also noted.

  5. Supertruck- Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  6. Reducing Fuel Consumption through Semi-Automated Platooning with Class 8 Tractor Trailer Combinations (Poster)

    SciTech Connect (OSTI)

    Lammert, M.; Gonder, J.

    2014-07-01

    This poster describes the National Renewable Energy Laboratory's evaluation of the fuel savings potential of semi-automated truck platooning. Platooning involves reducing aerodynamic drag by grouping vehicles together and decreasing the distance between them through the use of electronic coupling, which allows multiple vehicles to accelerate or brake simultaneously. The NREL study addressed the need for data on American style line-haul sleeper cabs with modern aerodynamics and over a range of trucking speeds common in the United States.

  7. Fuel cell market applications

    SciTech Connect (OSTI)

    Williams, M.C.

    1995-12-31

    This is a review of the US (and international) fuel cell development for the stationary power generation market. Besides DOE, GRI, and EPRI sponsorship, the US fuel cell program has over 40% cost-sharing from the private sector. Support is provided by user groups with over 75 utility and other end-user members. Objectives are to develop and demonstrate cost-effective fuel cell power generation which can initially be commercialized into various market applications using natural gas fuel by the year 2000. Types of fuel cells being developed include PAFC (phosphoric acid), MCFC (molten carbonate), and SOFC (solid oxide); status of each is reported. Potential international applications are reviewed also. Fuel cells are viewed as a force in dispersed power generation, distributed power, cogeneration, and deregulated industry. Specific fuel cell attributes are discussed: Fuel cells promise to be one of the most reliable power sources; they are now being used in critical uninterruptible power systems. They need hydrogen which can be generated internally from natural gas, coal gas, methanol landfill gas, or other fuels containing hydrocarbons. Finally, fuel cell development and market applications in Japan are reviewed briefly.

  8. Supertruck - Development and Demonstration of a Fuel-Efficient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supertruck - Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer Supertruck - Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer ...

  9. Miniature pipe crawler tractor

    DOE Patents [OSTI]

    McKay, Mark D.; Anderson, Matthew O.; Ferrante, Todd A.; Willis, W. David

    2000-01-01

    A pipe crawler tractor may comprise a half tractor assembly having a first base drive wheel, a second base drive wheel, and a top drive wheel. The drive wheels are mounted in spaced-apart relation so that the top drive wheel is positioned between the first and second base drive wheels. The mounting arrangement is also such that the first and second base drive wheels contact the inside surface of the pipe at respective first and second positions and so that the top drive wheel contacts the inside surface of the pipe at a third position, the third position being substantially diametrically opposed to the first and second positions. A control system connected to the half tractor assembly controls the rotation of the first base wheel, the second base wheel, and the top drive wheel to move the half tractor assembly within the pipe.

  10. Summary of NREL's Recent Class 8 Tractor Trailer Platooning Testing (Presentation)

    SciTech Connect (OSTI)

    Lammert, M.; Kelly, K.; Walkowicz, K.

    2014-08-01

    This presentation summarizes NREL's recent class 8 tractor trailer platooning testing, including analysis of SAE J1321 Type II fuel consumption testing, fuel consumption improvement, fuel economy and platooning position accuracy.

  11. Alternative Fuels Data Center: Foodliner Delivers Goods in Illinois With

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Tractors Foodliner Delivers Goods in Illinois With Natural Gas Tractors to someone by E-mail Share Alternative Fuels Data Center: Foodliner Delivers Goods in Illinois With Natural Gas Tractors on Facebook Tweet about Alternative Fuels Data Center: Foodliner Delivers Goods in Illinois With Natural Gas Tractors on Twitter Bookmark Alternative Fuels Data Center: Foodliner Delivers Goods in Illinois With Natural Gas Tractors on Google Bookmark Alternative Fuels Data Center: Foodliner

  12. Fuel Cell Power Plant Experience Naval Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    clean Fuel Cell Power Plant Experience Naval Applications US Department of Energy/ Office of Naval Research Shipboard Fuel Cell Workshop Washington, DC March 29, 2011 FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc. *FuelCell Energy, Inc. *Renewable and Liquid Fuels Experience *HTPEM Fuel Cell Stack for Shipboard APU *Solid Oxide Experience and Applications DOE-ONR Workshop FuelCell Energy, the FuelCell

  13. Pilot Application to Nuclear Fuel Cycle Options

    Office of Energy Efficiency and Renewable Energy (EERE)

    A Screening Method for Guiding R&D Decisions: Pilot Application to Screen Nuclear Fuel Cycle Options

  14. Vehicle Technologies Office Merit Review 2016: SuperTruck – Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer, Vehicle

    Broader source: Energy.gov [DOE]

    Presentation given by Navistar at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Vehicle Systems

  15. EVALUATION OF THE EFFECTIVENESS OF TRUCK EFFICIENCY TECHNOLOGIES IN CLASS 8 TRACTOR-TRAILERS BASED ON A TRACTIVE ENERGY ANALYSIS USING MEASURED DRIVE CYCLE DATA

    SciTech Connect (OSTI)

    LaClair, Tim J; Gao, Zhiming; Fu, Joshua S.; Calcagno, Jimmy; Yun, Jeongran

    2014-01-01

    Quantifying the fuel savings that can be achieved from different truck fuel efficiency technologies for a fleet s specific usage allows the fleet to select the combination of technologies that will yield the greatest operational efficiency and profitability. This paper presents an analysis of vehicle usage in a commercial vehicle fleet and an assessment of advanced efficiency technologies using an analysis of measured drive cycle data for a class 8 regional commercial shipping fleet. Drive cycle measurements during a period of a full year from six tractor-trailers in normal operations in a less-than-truckload (LTL) carrier were analyzed to develop a characteristic drive cycle that is highly representative of the fleet s usage. The vehicle mass was also estimated to account for the variation of loads that the fleet experienced. The drive cycle and mass data were analyzed using a tractive energy analysis to quantify the fuel efficiency and CO2 emissions benefits that can be achieved on class 8 tractor-trailers when using advanced efficiency technologies, either individually or in combination. Although differences exist among class 8 tractor-trailer fleets, this study provides valuable insight into the energy and emissions reduction potential that various technologies can bring in this important trucking application.

  16. Vehicle Technologies Office Merit Review 2016: SuperTruck – Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer, Engine Systems

    Broader source: Energy.gov [DOE]

    Presentation given by Navistar at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Combustion Engines 

  17. Vehicle Technologies Office Merit Review 2015: SuperTruck – Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer Vehicle

    Broader source: Energy.gov [DOE]

    Presentation given by Navistar at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about SuperTruck – development and...

  18. Vehicle Technologies Office Merit Review 2015: SuperTruck – Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer, Engine Systems

    Broader source: Energy.gov [DOE]

    Presentation given by Navistar International Corp. at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about SuperTruck –...

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Heavy-Duty Vehicle Greenhouse Gas Emissions Regulations Box-type trailers that are at least 53 feet long and the heavy-duty tractors that pull these trailers must be equipped with fuel-efficient tires and aerodynamic trailer devices that improve fuel economy and lower greenhouse gas emissions. Tractors and trailers subject to the regulation must either use U.S. Environmental Protection Agency SmartWay certified tractors and trailers or retrofit existing equipment with SmartWay verified

  20. SuperTruck … Development and Demonstration of a Fuel-Efficient...

    Energy Savers [EERE]

    SuperTruck Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer SuperTruck Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer ...

  1. SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tractor & Trailer | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation vss064_jadin_2011_o.pdf (1020.57 KB) More Documents & Publications SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer Supertruck - Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer Supertruck - Development and Demonstration of a Fuel-Efficient Class 8 Tractor

  2. Solid fuel applications to transportation engines

    SciTech Connect (OSTI)

    Rentz, Richard L.; Renner, Roy A.

    1980-06-01

    The utilization of solid fuels as alternatives to liquid fuels for future transportation engines is reviewed. Alternative liquid fuels will not be addressed nor will petroleum/solid fuel blends except for the case of diesel engines. With respect to diesel engines, coal/oil mixtures will be addressed because of the high interest in this specific application as a result of the large number of diesel engines currently in transportation use. Final assessments refer to solid fuels only for diesel engines. The technical assessments of solid fuels utilization for transportation engines is summarized: solid fuel combustion in transportation engines is in a non-developed state; highway transportation is not amenable to solid fuels utilization due to severe environmental, packaging, control, and disposal problems; diesel and open-cycle gas turbines do not appear worthy of further development, although coal/oil mixtures for slow speed diesels may offer some promise as a transition technology; closed-cycle gas turbines show some promise for solid fuels utilization for limited applications as does the Stirling engine for use of cleaner solid fuels; Rankine cycle engines show good potential for limited applications, such as for locomotives and ships; and any development program will require large resources and sophisticated equipment in order to advance the state-of-the-art.

  3. Fact #705: December 12, 2011 Fuel Consumption Standards for Combinatio...

    Broader source: Energy.gov (indexed) [DOE]

    published a final rule setting fuel consumption standards for heavy trucks in September ... Combination Tractor Fuel Consumption Standards, Model Years (MY) 2014-2017 Graph showing ...

  4. Center for Fuel Cell Research and Applications | Open Energy...

    Open Energy Info (EERE)

    Fuel Cell Research and Applications Jump to: navigation, search Name: Center for Fuel Cell Research and Applications Place: The Woodlands, Texas Zip: TX 77381 Product: A...

  5. Gas Cleaning for Remote Solid Oxide Fuel Cell (SOFC) Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    up for Fuel Cell Applications, Argonne National Lab Fuel (NG, LPG, LFG, ADG, APG, biodiesel) opportunities and impurity issues Gas Cleaning for Remote SOFC Applications Acumentrics ...

  6. Uranium Nitride: Enabling New Applications for TRISO Fuel Particles...

    Office of Scientific and Technical Information (OSTI)

    Uranium Nitride: Enabling New Applications for TRISO Fuel Particles Citation Details In-Document Search Title: Uranium Nitride: Enabling New Applications for TRISO Fuel Particles ...

  7. Development of a Short-Duration Drive Cycle to Represent Long-Term Measured Drive Cycle Data: Evaluation of Truck Efficiency Technologies in Class 8 Tractor Trailers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    LaClair, Tim; Gao, Zhiming; Fu, Joshua; Calcagno, Jimmy; Yun, Jeongran

    2014-12-01

    Quantifying the fuel savings and emissions reductions that can be achieved from truck fuel efficiency technologies for a fleet's specific usage allows the fleet to select a combination of technologies that will yield the greatest operational efficiency and profitability. An accurate characterization of usage for the fleet is critical for such an evaluation; however, short-term measured drive cycle data do not generally reflect overall usage very effectively. This study presents a detailed analysis of vehicle usage in a commercial vehicle fleet and demonstrates the development of a short-duration synthetic drive cycle with measured drive cycle data collected over an extendedmore » period of time. The approach matched statistical measures of the vehicle speed with acceleration history and integrated measured grade data to develop a compressed drive cycle that accurately represents total usage. Drive cycle measurements obtained during a full year from six tractor trailers in normal operations in a less-than-truckload carrier were analyzed to develop a synthetic drive cycle. The vehicle mass was also estimated to account for the variation of loads that the fleet experienced. These drive cycle and mass data were analyzed with a tractive energy analysis to quantify the benefits in terms of fuel efficiency and reduced carbon dioxide emissions that can be achieved on Class 8 tractor trailers by using advanced efficiency technologies, either individually or in combination. Although differences exist between Class 8 tractor trailer fleets, this study provides valuable insight into the energy and emissions reduction potential that various technologies can bring in this important trucking application. Finally, the methodology employed for generating the synthetic drive cycle serves as a rigorous approach to develop an accurate usage characterization that can be used to effectively compress large quantities of drive cycle data.« less

  8. Fuel Cells Today: Early Market Applications and Learning Demonstrations

    SciTech Connect (OSTI)

    2015-09-09

    This MP3 provides an overview of early market fuel cell applications including today's commercially available fuel cells and "learning demonstrations" to validate fuel cell technology in real world conditions.

  9. Coca-Cola Refreshments Class 8 Diesel Electric Hybrid Tractor Evaluation: 13-Month Final Report

    SciTech Connect (OSTI)

    Walkowicz, K.; Lammert, M.; Curran, P.

    2012-08-01

    This 13-month evaluation used five Kenworth T370 hybrid tractors and five Freightliner M2106 standard diesel tractors at a Coca Cola Refreshments facility in Miami, Florida. The primary objective was to evaluate the fuel economy, emissions, and operational field performance of hybrid electric vehicles when compared to similar-use conventional diesel vehicles. A random dispatch system ensures the vehicles are used in a similar manner. GPS logging, fueling, and maintenance records and laboratory dynamometer testing are used to evaluate the performance of these hybrid tractors. Both groups drive similar duty cycles with similar kinetic intensity (0.95 vs. 0.69), average speed (20.6 vs. 24.3 mph), and stops per mile (1.9 vs. 1.5). The study demonstrated the hybrid group had a 13.7% fuel economy improvement over the diesel group. Laboratory fuel economy and field fuel economy study showed similar trends along the range of KI and stops per mile. Hybrid maintenance costs were 51% lower per mile; hybrid fuel costs per mile were 12% less than for the diesels; and hybrid vehicle total cost of operation per mile was 24% less than the cost of operation for the diesel group.

  10. Fuel shortage: Grow your own

    SciTech Connect (OSTI)

    Thompson, E.; Hargrave, R.H.

    1981-05-01

    Wood power offers farmers a clean burning fuel with a tremendous potential for renewable energy. The development of a wood-gas tractor is outlined and fuel consumption estimated.

  11. HD Truck and Engine Fuel Efficiency Opportunities and Challenges...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Supertruck - Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer Comments of Tendril Networks Inc SuperTruck Development ...

  12. Supertruck - Development and Demonstration of a Fuel-Efficient...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Supertruck - Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer Supertruck - Development and Demonstration of a ...

  13. Supertruck - Development and Demonstration of a Fuel-Efficient Class 8

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tractor & Trailer | Department of Energy Supertruck - Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer Supertruck - Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace059_jadin_2012_o.pdf (1.56 MB) More Documents & Publications Supertruck - Development and Demonstration of a Fuel-Efficient Class 8

  14. Early Market Applications for Fuel Cell Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Market Applications for Fuel Cell Technologies Early Market Applications for Fuel Cell Technologies Fuel Cell Technologies Office market transformation efforts focus on several key early market applications: Specialty vehicles Emergency backup power Prime power for critical loads Specialty Vehicles For specialty vehicles such as forklifts, fuel cells can be a cost-competitive alternative to traditional lead-acid batteries because: Photo of a Hydrogenics hydrogen-powered forklift in front of an

  15. DOE Technical Targets for Fuel Cell Systems for Transportation Applications

    Broader source: Energy.gov [DOE]

    These tables list the U.S. Department of Energy (DOE) technical targets for integrated polymer electrolyte membrane (PEM) fuel cell power systems and fuel cell stacks operating on direct hydrogen for transportation applications.

  16. Novel catalysts for hydrogen fuel cell applications:Final report...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Novel catalysts for hydrogen fuel cell applications:Final report (FY03-FY05). Citation Details In-Document Search Title: Novel catalysts for hydrogen fuel cell ...

  17. Fuel Cell Power Plant Experience Naval Applications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plant Experience Naval Applications Fuel Cell Power Plant Experience Naval Applications Presented at the DOE-DOD Shipboard APU Workshop on March 29, 2011. apu2011_8_wolak.pdf (1.51 MB) More Documents & Publications Fuel Cell Power Plants Biofuel Case Study - Tulare, CA Fuel Cell Power Plants Renewable and Waste Fuels Co-production of Hydrogen and Electricity (A Developer's Perspective)

  18. Fact #620: April 26, 2010 Class 8 Truck Tractor Weight by Component...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0: April 26, 2010 Class 8 Truck Tractor Weight by Component Fact 620: April 26, 2010 Class 8 Truck Tractor Weight by Component A typical class 8 truck tractor weighs about 17,000 ...

  19. NREL Shows Heavy Duty Hybrid Trucks Deliver on Fuel Economy - News Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | NREL NREL Shows Heavy Duty Hybrid Trucks Deliver on Fuel Economy September 11, 2012 A performance evaluation of Class 8 hybrid electric tractor trailers compared with similar conventional vehicles by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) shows significant improvements in fuel economy. "During our 13-month study, the hybrid tractors demonstrated 13.7 percent higher fuel economy than the conventional tractors, resulting in a 12 percent

  20. Fuel Flexible, Low Emission Catalytic Combustor for Opportunity Fuel Applications

    SciTech Connect (OSTI)

    Eteman, Shahrokh

    2013-06-30

    Limited fuel resources, increasing energy demand and stringent emission regulations are drivers to evaluate process off-gases or process waste streams as fuels for power generation. Often these process waste streams have low energy content and/or highly reactive components. Operability of low energy content fuels in gas turbines leads to issues such as unstable and incomplete combustion. On the other hand, fuels containing higher-order hydrocarbons lead to flashback and auto-ignition issues. Due to above reasons, these fuels cannot be used directly without modifications or efficiency penalties in gas turbine engines. To enable the use of these wide variety of fuels in gas turbine engines a rich catalytic lean burn (RCL®) combustion system was developed and tested in a subscale high pressure (10 atm.) rig. The RCL® injector provided stability and extended turndown to low Btu fuels due to catalytic pre-reaction. Previous work has shown promise with fuels such as blast furnace gas (BFG) with LHV of 85 Btu/ft3 successfully combusted. This program extends on this work by further modifying the combustor to achieve greater catalytic stability enhancement. Fuels containing low energy content such as weak natural gas with a Lower Heating Value (LHV) of 6.5 MJ/m3 (180 Btu/ft3 to natural gas fuels containing higher hydrocarbon (e.g ethane) with LHV of 37.6 MJ/m3 (1010 Btu/ft3) were demonstrated with improved combustion stability; an extended turndown (defined as the difference between catalytic and non-catalytic lean blow out) of greater than 250oF was achieved with CO and NOx emissions lower than 5 ppm corrected to 15% O2. In addition, for highly reactive fuels the catalytic region preferentially pre-reacted the higher order hydrocarbons with no events of flashback or auto-ignition allowing a stable and safe operation with low NOx and CO emissions.

  1. Selection of a Wear-Resistant Tractor Drivetrain Material: Success...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory (HTML) User Program Selection of a Wear-Resistant Tractor Drivetrain Material: Success stories at the High Temperature Materials Laboratory (HTML) User Program ...

  2. SuperTruck … Development and Demonstration of a Fuel-Efficient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications SuperTruck Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer SuperTruck Development and Demonstration of a ...

  3. SuperTruck … Development and Demonstration of a Fuel-Efficient...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications SuperTruck Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer Supertruck - Development and Demonstration of a ...

  4. Water-retaining Polymer Membranes for Fuel Cell Applications...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water-retaining Polymer Membranes for Fuel Cell Applications Lawrence Berkeley National Laboratory Contact LBL About This Technology Water uptake results from PSS-PMBs as a function ...

  5. Fuel Cell Council Working Group on Aircraft and Aircraft Ground Support Fuel Cell Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Council Working Group on Aircraft and Aircraft Ground Support Fuel Cell Applications Topics * The US Fuel Cell Council Aircraft and Aircraft Support Working Group Establishment Working Group Members Mission Statement Focus moving forward The US Fuel Cell Council US Fuel Cell Council Trade Association for the industry since 1998 Member driven - Market focused Developers, suppliers, customers, nonprofits, government Advocacy Regulations Safety and standardization Education Strategic Alliances Our

  6. Fuel cell system for transportation applications

    DOE Patents [OSTI]

    Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

    1993-09-28

    A propulsion system is described for a vehicle having pairs of front and rear wheels and a fuel tank. An electrically driven motor having an output shaft operatively connected to at least one of said pair of wheels is connected to a fuel cell having a positive electrode and a negative electrode separated by an electrolyte for producing dc power to operate the motor. A partial oxidation reformer is connected both to the fuel tank and to the fuel cell and receives hydrogen-containing fuel from the fuel tank and uses water and air for partially oxidizing and reforming the fuel in the presence of an oxidizing catalyst and a reforming catalyst to produce a hydrogen-containing gas. The hydrogen-containing gas is sent from the partial oxidation reformer to the fuel cell negative electrode while air is transported to the fuel cell positive electrode to produce dc power for operating the electric motor. 3 figures.

  7. Fuel cell system for transportation applications

    DOE Patents [OSTI]

    Kumar, Romesh; Ahmed, Shabbir; Krumpelt, Michael; Myles, Kevin M.

    1993-01-01

    A propulsion system for a vehicle having pairs of front and rear wheels and a fuel tank. An electrically driven motor having an output shaft operatively connected to at least one of said pair of wheels is connected to a fuel cell having a positive electrode and a negative electrode separated by an electrolyte for producing dc power to operate the motor. A partial oxidation reformer is connected both to the fuel tank and to the fuel cell receives hydrogen-containing fuel from the fuel tank and water and air and for partially oxidizing and reforming the fuel with water and air in the presence of an oxidizing catalyst and a reforming catalyst to produce a hydrogen-containing gas. The hydrogen-containing gas is sent from the partial oxidation reformer to the fuel cell negative electrode while air is transported to the fuel cell positive electrode to produce dc power for operating the electric motor.

  8. Gas Clean-Up for Fuel Cell Applications Workshop Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Up for Fuel Cell Applications Workshop March 6-7, 2014 Sponsored by U.S. Department of Energy Fuel Cell Technologies Office (FCTO) Organized and hosted by Argonne National Laboratory (This page intentionally left blank) Section title Unt utaerest in pos eum quo con et iii GAS CLEAN-UP FOR FUEL CELL APPLICATIONS WORKSHOP Gas Clean-Up for Fuel Cell Applications Workhop Workshop held March 6-7, 2014 Argonne National Laboratory 9700 S. Cass Avenue Argonne, IL 60439 Sponsored by U.S. Department of

  9. Removal of sulfur contaminants in methanol for fuel cell applications

    SciTech Connect (OSTI)

    Lee, S.H.D.; Kumar, R.; Sederquist, R.

    1996-12-31

    Fuel cell power plants are being developed for transit bus and passenger car applications that use methanol as the on-board fuel. Commodity methanol by itself contains very little sulfur; however, it may occasionally be contaminated with up to about 1% diesel fuel or gasoline in current liquid-fuel distribution systems, leading to the presence of sulfur in the methanol fuel. This sulfur must be removed because of its deleterious effect on the reforming catalysts. International Fuel Cells has set the allowable sulfur limit in the methanol fuel at less than 1 ppm. The equilibrium adsorption isotherm and breakthrough data were used to assess the feasibility of developing a granular activated carbon adsorber for the removal of sulfur from transportation fuel cell systems.

  10. PEM fuel cell applications and their development at International Fuel Cells

    SciTech Connect (OSTI)

    Fuller, T.F.; Gorman, M.E.; Van Dine, L.L.

    1996-12-31

    International Fuel Cells (IFC) is involved with the full spectrum of fuel cell power plants including the development of Proton Exchange Membrane (PEM) fuel cell systems. The extensive background in systems, design, materials and manufacturing technologies has been brought to bear on the development of highly competitive PEM power plants. IFC is aggressively pursuing these opportunities and is developing low-cost designs for a wide variety of PEM fuel cell applications with special emphasis on portable power and transportation. Experimental PEM power plants for each of these applications have been successfully tested.

  11. Vegetable oil fuel

    SciTech Connect (OSTI)

    Bartholomew, D.

    1981-04-01

    In this article, the future role of renewable agricultural resources in providing fuel is discussed. it was only during this century that U.S. farmers began to use petroleum as a fuel for tractors as opposed to forage crop as fuel for work animals. Now farmers may again turn to crops as fuel for agricultural production - the possible use of sunflower oil, soybean oil and rapeseed oil as substitutes for diesel fuel is discussed.

  12. Material Handling Fuel Cells for Building Electric Peak Shaving Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Material Handling Fuel Cells for Building Electric Peak Shaving Applications U.S. Department of Energy Fuel Cell Technologies Office August 11, 2015 Presenter: Michael Penev of NREL DOE Host: Pete Devlin 2 Question and Answer * Please type your question into the question box hydrogenandfuelcells.energy.gov 3 Acknowledgments Fuel Cell Technologies Office, DOE EERE For providing funding for this project and for supporting sustainable hydrogen technology development through analysis, demonstration,

  13. Application of Synthetic Diesel Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Synthetic Diesel Fuels Application of Synthetic Diesel Fuels 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_schaberg.pdf (462.75 KB) More Documents & Publications Effect of GTL Diesel Fuels on Emissions and Engine Performance The Potential of GTL Diesel to Meet Future Exhaust Emission Limits Performance Characteristics of Coal-to-Liquids (CTL) Diesel in a 50-State Emissions Compliant Passenger Car

  14. Diesel fuel to dc power: Navy & Marine Corps Applications

    SciTech Connect (OSTI)

    Bloomfield, D.P.

    1996-12-31

    During the past year Analytic Power has tested fuel cell stacks and diesel fuel processors for US Navy and Marine Corps applications. The units are 10 kW demonstration power plants. The USN power plant was built to demonstrate the feasibility of diesel fueled PEM fuel cell power plants for 250 kW and 2.5 MW shipboard power systems. We designed and tested a ten cell, 1 kW USMC substack and fuel processor. The complete 10 kW prototype power plant, which has application to both power and hydrogen generation, is now under construction. The USN and USMC fuel cell stacks have been tested on both actual and simulated reformate. Analytic Power has accumulated operating experience with autothermal reforming based fuel processors operating on sulfur bearing diesel fuel, jet fuel, propane and natural gas. We have also completed the design and fabrication of an advanced regenerative ATR for the USMC. One of the significant problems with small fuel processors is heat loss which limits its ability to operate with the high steam to carbon ratios required for coke free high efficiency operation. The new USMC unit specifically addresses these heat transfer issues. The advances in the mill programs have been incorporated into Analytic Power`s commercial units which are now under test.

  15. Advancing Plug In Hybrid Technology and Flex Fuel Application...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting vss063bazzi2012o.pdf More Documents & Publications Advancing Plug In Hybrid Technology and Flex Fuel Application on a Chrysler Mini-Van PHEV DOE Funded Project...

  16. Fuel Cell Systems for Portable, Backup, and UPS Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Federal Agency Purchasing Managers Federal Agency Purchasing Managers Fuel Cell Systems for Portable, Backup and UPS Fuel Cell Systems for Portable, Backup and UPS Applications Applications Eric Simpkins, USFCC President Eric Simpkins, USFCC President Vice President, IdaTech, LLC Vice President, IdaTech, LLC Washington, DC Washington, DC April 26, 2007 April 26, 2007 Definitions Introduction What's Available & How Used Typical Operation & Maintenance Time: Order to Site Installation

  17. Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles...

    Broader source: Energy.gov (indexed) [DOE]

    The following set of reports (part of the medium and heavy-duty truck data) describes data collected from hybrid-electric tractor vehicles in the Coca-Cola fleet. This research was ...

  18. Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Tractor Vehicles Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following set of reports (part of the medium and

  19. H2S removal with ZnO during fuel processing for PEM fuel cell applications

    SciTech Connect (OSTI)

    Li, Liyu; King, David L.

    2006-09-15

    The possibility of using ZnO as a H2S absorbent to protect catalysts in the gasoline and diesel fuel processor for PEM fuel cell applications was studied. It is possible to use commercial ZnO absorbent as a guard bed to protect the PROX catalyst and PEM fuel cell. However, it is not feasible to use ZnO to protect high and low temperature WGS catalysts, most likely due to COS formation via reactions CO + H2S = COS + H2 and CO2 + H2S = COS + H2O.

  20. New Optical Sensor Suite for Ultrahigh Temperature Fossil Fuel Application

    SciTech Connect (OSTI)

    John Coggin; Tom Flynn; Jonas Ivasauskas; Daniel Kominsky; Carrie Kozikowski; Russell May; Michael Miller; Tony Peng; Gary Pickrell; Raymond Rumpf; Kelly Stinson-Bagby; Dan Thorsen; Rena Wilson

    2007-12-31

    Accomplishments of a program to develop and demonstrate photonic sensor technology for the instrumentation of advanced powerplants and solid oxide fuel cells are described. The goal of this project is the research and development of advanced, robust photonic sensors based on improved sapphire optical waveguides, and the identification and demonstration of applications of the new sensors in advanced fossil fuel power plants, where the new technology will contribute to improvements in process control and monitoring.

  1. PEM fuel cells for transportation and stationary power generation applications

    SciTech Connect (OSTI)

    Cleghorn, S.J.; Ren, X.; Springer, T.E.; Wilson, M.S.; Zawodzinski, C.; Zawodzinski, T.A. Jr.; Gottesfeld, S.

    1996-05-01

    We describe recent activities at LANL devoted to polymer electrolyte fuel cells in the contexts of stationary power generation and transportation applications. A low cost/high performance hydrogen or reformate/air stack technology is being developed based on ultralow Pt loadings and on non-machined, inexpensive elements for flow-fields and bipolar plates. On board methanol reforming is compared to the option of direct methanol fuel cells because of recent significant power density increases demonstrated in the latter.

  2. RESCHEDULED: Webinar on Material Handling Fuel Cells for Building Electric Peak Shaving Applications

    Broader source: Energy.gov [DOE]

    The Fuel Cell Technologies Office will present a live webinar entitled "Material Handling Fuel Cells for Building Electric Peak Shaving Applications".

  3. Stationary power applications for polymer electrolyte fuel cells

    SciTech Connect (OSTI)

    Wilson, M.S.; Zawodzinski, C.; Gottesfeld, S.; Landgrebe, A.R.

    1996-02-01

    The benefits provided by Polymer Electrolyte Fuel Cells (PEFC) for power generation (e.g. low operating temperatures, and non-corrosive and stable electrolyte), as well as advances in recent years in lowering their cost and improving anode poisoning tolerance, are stimulating interest in the system for stationary power applications. A significant market potentially exists for PEFCs in certain stationary applications where PEFC technology is a more attractive alternative to other fuel cell technologies. A difficulty with the PEFC is its operation on reformed fuels containing CO, which poisons the anode catalyst. This difficulty can be alleviated in several ways. One possible approach is described whereby the product reformate is purified using a relatively low cost, high-throughput hydrogen permselective separator. Preliminary experiments demonstrate the utility of the concept.

  4. Factors influencing specific fuel use in Nebraska

    SciTech Connect (OSTI)

    Shelton, D.P.; Von Bargen, K.

    1981-01-01

    Fuel use data relating to agricultural field operations were collected and analyzed during the Nebraska fuel use survey. The farms surveyed had a mean size of 598 ha and a mean total tractor power rating of 221 kW. Mean operating depth, field speed, and tractor power rating were determined for the major field operations. Mean field speeds were generally in agreement with commonly accepted values. Total annual fuel energy use increased with increasing farm size. Over 87 percent of this energy was used from April through October. Even though total fuel energy was increased, specific fuel energy use decreased with increasing farm size. Specific fuel use for field operations was influenced by the size of area worked, operation depth, field speed, and tractor power rating.

  5. SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tractor & Trailer | Department of Energy SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss064_jadin_2012_o.pdf (2.16 MB) More Documents & Publications SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8

  6. Use of alcohol in farming applications: alternative fuels utilization program

    SciTech Connect (OSTI)

    Borman, G.L.; Foster, D.E.; Uyehara, O.A.; McCallum, P.W.; Timbario, T.J.

    1980-11-01

    The use of alcohol with diesel fuel has been investigated as a means of extending diesel fuel supplies. The ability to use ethanol in diesel-powered farm equipment could provide the means for increasing the near-term fuels self-sufficiency of the American farmer. In the longer term, the potential availability of methanol (from coal) in large quantities could serve to further decrease the dependency on diesel fuel. This document gives two separate overviews of the use of alcohols in farm equipment. Part I of this document compares alcohol with No. 1 and No. 2 diesel fuels and describes several techniques for using alcohol in farm diesels. Part II of this document discusses the use of aqueous ethanol in diesel engines, spark ignition engines and provides some information on safety and fuel handling of both methanol and ethanol. This document is not intended as a guide for converting equipment to utilize alcohol, but rather to provide information such that the reader can gain insight on the advantages and disadvantages of using alcohol in existing engines currently used in farming applications.

  7. Development of Dual-Fuel Engine for Class 8 Applications | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dual-Fuel Engine for Class 8 Applications Development of Dual-Fuel Engine for Class 8 Applications Highlights roadmap towards 55% brake thermal efficiency and progress to meet ...

  8. PEM fuel cell stack development for automotive applications

    SciTech Connect (OSTI)

    Ernst, W.D.

    1996-12-31

    Presently, the major challenges to the introduction of fuel cell power systems for automotive applications are to maximize the effective system power density and minimize cost. The material cost, especially for Platinum, had been a significant factor until recent advances by Los Alamos National Laboratory and others in low Platinum loading electrode design has brought these costs within control. Since the initiation of its PEM stack development efforts, MTI has focused on applying its system and mechanical engineering heritage on both increasing power density and reducing cost. In May of 1995, MTI was selected (along with four other companies) as a subcontractor by the Ford Motor Company to participate in Phase I of the DOE Office of Transportation Technology sponsored PNGV Program entitled: {open_quotes}Direct-Hydrogen-Fueled Proton-Exchange-Membrane (PEM) Fuel Cell System for Transportation Applications{close_quotes}. This Program was instituted to: (1) Advance the performance and economic viability of a direct-hydrogen-fueled PEM fuel cell system, (2) Identify the critical problems that must be resolved before system scale-up and vehicle integration, and (3) Integrate the fuel cell power system into a sub-scale vehicle propulsion system. The Phase I objective was to develop and demonstrate a nominal 10 kW stack meeting specific criteria. Figure I is a photograph of the stack used for these demonstrations. After completion of Phase I, MTI was one of only two companies selected to continue into Phase II of the Program. This paper summarizes Phase I stack development and results.

  9. SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tractor & Trailer | Department of Energy 3 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss064_oehlerking_2013_o.pdf (2.41 MB) More Documents & Publications SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer Vehicle Technologies Office Merit Review 2015: SuperTruck - Development

  10. Fuel cell power plants in a distributed generator application

    SciTech Connect (OSTI)

    Smith, M.J.

    1996-12-31

    ONSI`s (a subsidiary of International Fuel Cells Corporation) world wide fleet of 200-kW PC25{trademark} phosphoric acid fuel cell power plants which began operation early in 1992 has shown excellent performance and reliability in over 1 million hours of operation. This experience has verified the clean, quiet, reliable operation of the PC25 and confirmed its application as a distributed generator. Continuing product development efforts have resulted in a one third reduction of weight and volume as well as improved installation and operating characteristics for the PC25 C model. Delivery of this unit began in 1995. International Fuel Cells (IFC) continues its efforts to improve product design and manufacturing processes. This progress has been sustained at a compounded rate of 10 percent per year since the late 1980`s. These improvements will permit further reductions in the initial cost of the power plant and place increased emphasis on market development as the pacing item in achieving business benefits from the PC25 fuel cell. Derivative product opportunities are evolving with maturation of the technologies in a commercial environment. The recent announcement of Praxair, Inc., and IFC introducing a non-cryogenic hydrogen supply system utilizing IFC`s steam reformer is an example. 11 figs.

  11. Advanced fuel cells for transportation applications. Final report

    SciTech Connect (OSTI)

    1998-02-10

    This Research and Development (R and D) contract was directed at developing an advanced technology compressor/expander for supplying compressed air to Proton Exchange Membrane (PEM) fuel cells in transportation applications. The objective of this project was to develop a low-cost high-efficiency long-life lubrication-free integrated compressor/expander utilizing scroll technology. The goal of this compressor/expander was to be capable of providing compressed air over the flow and pressure ranges required for the operation of 50 kW PEM fuel cells in transportation applications. The desired ranges of flow, pressure, and other performance parameters were outlined in a set of guidelines provided by DOE. The project consisted of the design, fabrication, and test of a prototype compressor/expander module. The scroll CEM development program summarized in this report has been very successful, demonstrating that scroll technology is a leading candidate for automotive fuel cell compressor/expanders. The objectives of the program are: develop an integrated scroll CEM; demonstrate efficiency and capacity goals; demonstrate manufacturability and cost goals; and evaluate operating envelope. In summary, while the scroll CEM program did not demonstrate a level of performance as high as the DOE guidelines in all cases, it did meet the overriding objectives of the program. A fully-integrated, low-cost CEM was developed that demonstrated high efficiency and reliable operation throughout the test program. 26 figs., 13 tabs.

  12. Electrocatalysts by atomic layer deposition for fuel cell applications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheng, Niancai; Shao, Yuyan; Liu, Jun; Sun, Xueliang

    2016-01-22

    Here, fuel cells are a promising technology solution for reliable and clean energy because they offer high energy conversion efficiency and low emission of pollutants. However, high cost and insufficient durability are considerable challenges for widespread adoption of polymer electrolyte membrane fuel cells (PEMFCs) in practical applications. Current PEMFCs catalysts have been identified as major contributors to both the high cost and limited durability. Atomic layer deposition (ALD) is emerging as a powerful technique for solving these problems due to its exclusive advantages over other methods. In this review, we summarize recent developments of ALD in PEMFCs with a focusmore » on design of materials for improved catalyst activity and durability. New research directions and future trends have also been discussed.« less

  13. DOE Technical Targets for Fuel Cell Systems and Stacks for Transportation Applications

    Broader source: Energy.gov [DOE]

    These tables list the U.S. Department of Energy (DOE) technical targets for integrated polymer electrolyte membrane (PEM) fuel cell power systems and fuel cell stacks operating on direct hydrogen for transportation applications.

  14. Chemical Hydrides for Hydrogen Storage in Fuel Cell Applications

    SciTech Connect (OSTI)

    Devarakonda, Maruthi N.; Brooks, Kriston P.; Ronnebro, Ewa; Rassat, Scot D.; Holladay, Jamelyn D.

    2012-04-16

    Due to its high hydrogen storage capacity (up to 19.6% by weight for the release of 2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions, ammonia borane (AB) is a promising material for chemical hydrogen storage for fuel cell applications in transportation sector. Several systems models for chemical hydride materials such as solid AB, liquid AB and alane were developed and evaluated at PNNL to determine an optimal configuration that would meet the 2010 and future DOE targets for hydrogen storage. This paper presents an overview of those systems models and discusses the simulation results for various transient drive cycle scenarios.

  15. A Universal Dual-Fuel Controller for OEM/Aftermarket Diesel Engineswit...

    Broader source: Energy.gov (indexed) [DOE]

    KB) More Documents & Publications Active DPF for Off-Road Particulate Matter (PM) Control Propane-Diesel Dual Fuel for CO2 and Nox Reduction DPF for a Tractor Auxiliary Power Unit

  16. Hydrodesulfurization and prereforming of logistic fuels for use in fuel cell applications

    SciTech Connect (OSTI)

    Piwetz, M.M.; Larsen, J.S.; Christensen, T.S.

    1996-12-31

    Fuel cell development programs have traditionally emphasized the use of natural gas as the primary fuel. However, to meet strategic requirements for fuel cells in military use, the fuel of choice must be accessible throughout the world, easily transported and stored, and compatible with other military uses. The United States military`s logistic fuels (DF-2 diesel or JP-8 jet fuel) meet these requirements. The objectives of this program were to design and construct a fuel processing system (FPS) and by connecting the FPS with a solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), respectively, to demonstrate that such a system can be used to convert diesel or jet-fuel into a feed stream compatible with the fuel cell.

  17. Direct Methanol Fuel Cell Prototype Demonstration for Consumer Electronics Applications

    SciTech Connect (OSTI)

    Carlstrom, Charles, M., Jr.

    2009-07-07

    This report is the final technical report for DOE Program DE-FC36-04GO14301 titled “Direct Methanol Fuel Cell Prototype Demonstration for Consumer Electronics Applications”. Due to the public nature of this report some of the content reported in confidential reports and meetings to the DOE is not covered in detail in this report and some of the content has been normalized to not show actual values. There is a comparison of the projects accomplishments with the objectives, an overview of some of the key subsystem work, and a review of the three levels of prototypes demonstrated during the program. There is also a description of the eventual commercial product and market this work is leading towards. The work completed under this program has significantly increased the understanding of how Direct Methanol Fuel Cells (DMFC) can be deployed successfully to power consumer electronic devices. The prototype testing has demonstrated the benefits a direct methanol fuel cell system has over batteries typically used for powering consumer electronic devices. Three generations of prototypes have been developed and tested for performance, robustness and life. The technologies researched and utilized in the fuel cell stack and related subsystems for these prototypes are leveraged from advances in other industries such as the hydrogen fueled PEM fuel cell industry. The work under this program advanced the state of the art of direct methanol fuel cells. The system developed by MTI micro fuel cells aided by this program differs significantly from conventional DMFC designs and offers compelling advantages in the areas of performance, life, size, and simplicity. The program has progressed as planned resulting in the completion of the scope of work and available funding in December 2008. All 18 of the final P3 prototypes builds have been tested and the results showed significant improvements over P2 prototypes in build yield, initial performance, and durability. The systems have

  18. Stationary Fuel Cell Application Codes and Standards: Overview and Gap Analysis

    SciTech Connect (OSTI)

    Blake, C. W.; Rivkin, C. H.

    2010-09-01

    This report provides an overview of codes and standards related to stationary fuel cell applications and identifies gaps and resolutions associated with relative codes and standards.

  19. International symposium on fuel rod simulators: development and application

    SciTech Connect (OSTI)

    McCulloch, R.W.

    1981-05-01

    Separate abstracts are included for each of the papers presented concerning fuel rod simulator operation and performance; simulator design and evaluation; clad heated fuel rod simulators and fuel rod simulators for cladding investigations; fuel rod simulator components and inspection; and simulator analytical modeling. Ten papers have previously been input to the Energy Data Base.

  20. Underwater Coatings Testing for INEEL Fuel Basin Applications

    SciTech Connect (OSTI)

    Julia L. Tripp

    2004-01-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) is deactivating several fuel storage basins. Airborne contamination is a concern when the sides of the basins are exposed and allowed to dry during water removal. One way of controlling this airborne contamination is to fix the contamination in place while the pool walls are still submerged. There are many underwater coatings available on the market that are used in marine, naval and other applications. A series of tests were run to determine whether the candidate underwater fixatives are easily applied and adhere well to the substrates (pool wall materials) found in INEEL fuel pools. The four pools considered included (1) Test Area North (TAN-607) with epoxy painted concrete walls; (2) Idaho Nuclear Technology and Engineering Center (INTEC) (CPP-603) with bare concrete walls; (3) Materials Test Reactor (MTR) Canal with stainless steel lined concrete walls; and (4) Power Burst Facility (PBF-620) with stainless steel lined concrete walls on the bottom and epoxy painted carbon steel lined walls on the upper portions. Therefore, the four materials chosen for testing included bare concrete, epoxy painted concrete, epoxy painted carbon steel, and stainless steel. The typical water temperature of the pools varies from 55 F to 80 F dependent on the pool and the season. These tests were done at room temperature.

  1. New Optimal Sensor Suite for Ultrahigh Temperature Fossil Fuel Applications

    SciTech Connect (OSTI)

    John Coggin; Jonas Ivasauskas; Russell G. May; Michael B. Miller; Rena Wilson

    2006-09-30

    Accomplishments during Phase II of a program to develop and demonstrate photonic sensor technology for the instrumentation of advanced powerplants are described. The goal of this project is the research and development of advanced, robust photonic sensors based on improved sapphire optical waveguides, and the identification and demonstration of applications of the new sensors in advanced fossil fuel power plants, where the new technology will contribute to improvements in process control and monitoring. During this program work period, major progress has been experienced in the development of the sensor hardware, and the planning of the system installation and operation. The major focus of the next work period will be the installation of sensors in the Hamilton, Ohio power plant, and demonstration of high-temperature strain gages during mechanical testing of SOFC components.

  2. Application of U10Mo Fuel for Space Fission Power Applications - White Paper

    SciTech Connect (OSTI)

    James Werner

    2014-07-01

    A novel reactor design has been proposed for space applications to provide hundreds of watts to one or two kilowatts of electrical power. The reactor concept proposed uses the alloy U10Mo (uranium with 10 weight percent molybdenum) as the fuel. This fuel was selected for its high uranium density, high thermal conductivity, and excellent neutronic characteristics for this application. The core is surrounded by a BeO reflector. Heat is carried from the reactor by liquid metal heat pipes. A shadow shield of LiH tungsten is also utilized to reduce the neutron and gamma radiation dose to the rest of the spacecraft. This design represents a best effort at minimizing the complexity of the fission system and reducing the mass of the system. The compact nature of the block UMo core and BeO radial reflector allows the reactor diameter to be as small as practical while still meeting the neutronic and thermal power demands. This directly results in a reduced shield mass since the reactor diameter dictates the footprint of the radiation shield. The use of heat pipes offers a straightforward primary heat transport approach using proven liquid-metal heat pipe technology. Further, the elimination of a liquid core coolant system heat transport components, both at the reactor side and radiator side, contributes to reducing the total part-count and lowering system mass. The proposed reactor is using a fuel that is being developed by DOE, but there are significant differences in the fuels enrichment, operating conditions and the physical shape of the fuel itself. This paper attempts to highlight some of the basic consideration and needs that would be expected to be met in developing this fuel and qualifying it for use.

  3. Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications U.S. Department of Energy Fuel Cell Technologies Office Presenters: Jeff Casady and John Palmour of Cree Inc. DOE Hosts: Eric Miller and Anant Agarwal 2 Question and Answer * Please type your question into the question box hydrogenandfuelcells.energy.gov 3 | Fuel Cell Technologies Office eere.energy.gov DOE Fuel Cell Technologies Office covers Research, Development, Demonstration &

  4. Workshop on Gas Clean-Up for Fuel Cell Applications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop on Gas Clean-Up for Fuel Cell Applications Workshop on Gas Clean-Up for Fuel Cell Applications The U.S. Department of Energy's (DOE's) Argonne National Laboratory (ANL) hosted the Workshop on Gas Clean-Up for Fuel Cell Applications on March 6-7, 2014, in Argonne, Illinois. The workshop was sponsored by the DOE Fuel Cell Technologies Office and included participants from industry, academia, national labs, government agencies, and other stakeholders. The objectives of the workshop were to

  5. Fuel Cell Systems for Portable, Backup, and UPS Applications...

    Broader source: Energy.gov (indexed) [DOE]

    This presentation by Eric Simkins of the U.S. Fuel Cell Council was given at the Fuel Cell Meeting in April 2007. fuelcellmtngsimpkins.pdf (968.65 KB) More Documents & ...

  6. Quadrogen Gas Clean-Up Technology for Fuel Cell Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in California 6 The Air Products and FuelCell Energy team selected C 3 P technology ... Manager Hydrogen Programs, FuelCell Energy, Inc. Highly Reliable, No breakthrough yet and ...

  7. Progress on Fuel Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Efficiency and Market Adoption Introduction The Department of Energy (DOE) launched the SuperTruck initiative in 2009 with the goal of developing and demonstrating a 50 percent improvement in overall freight effciency (expressed in a ton-mile per gallon metric) for a heavy-duty Class 8 tractor-trailer. To date, the industry teams participating in the initiative have successfully met or are on track to exceed this goal, leveraging suites of technologies that hold signifcant potential for

  8. Optical fuel pin scanner. [Patent application; for reading identifications

    DOE Patents [OSTI]

    Kirchner, T.L.; Powers, H.G.

    1980-12-09

    This patent relates to an optical identification system developed for post-irradiation disassembly and analysis of fuel bundle assemblies. The apparatus is designed to be lowered onto a stationary fuel pin to read identification numbers or letters imprinted on the circumference of the top fuel pin and cap. (DLC)

  9. On direct and indirect methanol fuel cells for transportation applications

    SciTech Connect (OSTI)

    Ren, Xiaoming; Wilson, M.S.; Gottesfeld, S.

    1995-09-01

    Power densities in electrolyte Direct Methanol Fuel Cells have been achieved which are only three times lower than those achieved with similar reformate/air fuel cells. Remaining issues are: improved anode catalyst activity, demonstrated long-term stable performance, and high fuel efficiencies.

  10. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications: Conceptual vehicle design report pure fuel cell powertrain vehicle

    SciTech Connect (OSTI)

    Oei, D.; Kinnelly, A.; Sims, R.; Sulek, M.; Wernette, D.

    1997-02-01

    In partial fulfillment of the Department of Energy (DOE) Contract No. DE-AC02-94CE50389, {open_quotes}Direct-Hydrogen-Fueled Proton-Exchange-Membrane (PEM) Fuel Cell for Transportation Applications{close_quotes}, this preliminary report addresses the conceptual design and packaging of a fuel cell-only powered vehicle. Three classes of vehicles are considered in this design and packaging exercise, the Aspire representing the small vehicle class, the Taurus or Aluminum Intensive Vehicle (AIV) Sable representing the mid-size vehicle and the E-150 Econoline representing the van-size class. A fuel cell system spreadsheet model and Ford`s Corporate Vehicle Simulation Program (CVSP) were utilized to determine the size and the weight of the fuel cell required to power a particular size vehicle. The fuel cell power system must meet the required performance criteria for each vehicle. In this vehicle design and packaging exercise, the following assumptions were made: fuel cell power system density of 0.33 kW/kg and 0.33 kg/liter, platinum catalyst loading less than or equal to 0.25 mg/cm{sup 2} total and hydrogen tanks containing gaseous hydrogen under 340 atm (5000 psia) pressure. The fuel cell power system includes gas conditioning, thermal management, humidity control, and blowers or compressors, where appropriate. This conceptual design of a fuel cell-only powered vehicle will help in the determination of the propulsion system requirements for a vehicle powered by a PEMFC engine in lieu of the internal combustion (IC) engine. Only basic performance level requirements are considered for the three classes of vehicles in this report. Each vehicle will contain one or more hydrogen storage tanks and hydrogen fuel for 560 km (350 mi) driving range. Under these circumstances, the packaging of a fuel cell-only powered vehicle is increasingly difficult as the vehicle size diminishes.

  11. GREET Development and Applications for Life-Cycle Analysis of Vehicle/Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems | Department of Energy GREET Development and Applications for Life-Cycle Analysis of Vehicle/Fuel Systems GREET Development and Applications for Life-Cycle Analysis of Vehicle/Fuel Systems 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting van002_wang_2013_o.pdf (1.64 MB) More Documents & Publications Fuel-Cycle Energy and Emissions Analysis with the GREET Model Vehicle Technologies Office Merit Review 2015:

  12. SULFUR REMOVAL FROM PIPE LINE NATURAL GAS FUEL: APPLICATION TO FUEL CELL POWER GENERATION SYSTEMS

    SciTech Connect (OSTI)

    King, David L.; Birnbaum, Jerome C.; Singh, Prabhakar

    2003-11-21

    Pipeline natural gas is being considered as the fuel of choice for utilization in fuel cell-based distributed generation systems because of its abundant supply and the existing supply infrastructure (1). For effective utilization in fuel cells, pipeline gas requires efficient removal of sulfur impurities (naturally occurring sulfur compounds or sulfur bearing odorants) to prevent the electrical performance degradation of the fuel cell system. Sulfur odorants such as thiols and sulfides are added to pipeline natural gas and to LPG to ensure safe handling during transportation and utilization. The odorants allow the detection of minute gas line leaks, thereby minimizing the potential for explosions or fires.

  13. APPLICATION OF CERAMICS TO HIGH PRESSURE FUEL SYSTEMS

    SciTech Connect (OSTI)

    Mandler, Jr., William F.

    2000-08-20

    Diesel fuel systems are facing increased demands as engines with reduced emissions are developed. Injection pressures have increased to provide finer atomization of fuel for more efficient combustion, Figure 1. This increases the mechanical loads on the system and requires tighter clearances between plungers and bores to prevent leakage. At the same time, fuel lubricity has decreased as a byproduct of reducing the sulfur levels in fuel. Contamination of fuel by water and debris is an ever-present problem. For oil-lubricated fuel system components, increased soot loading in the oil results in increased wear rates. Additionally, engine manufacturers are lengthening warranty periods for engines and systems. This combination of factors requires the development of new materials to counteract the harsher tribological environment.

  14. Swedish tests on rape-seed oil as an alternative to diesel fuel

    SciTech Connect (OSTI)

    Johansson, E.; Nordstroem, O.

    1982-01-01

    The cheapest version of Swedish rape-seed oil was chosen. First the rape-seed oil was mixed in different proportions with regular diesel fuel. A mixture of 1/3 rape-seed oil and 2/3 regular diesel fuel (R 33) was then selected for a long-term test. A Perkins 4.248 diesel engine was used for laboratory tests. Four regular farm tractors, owned and operated by farmers, and two tractors belonging to the Institute have been running on R 33. Each tractor was calibrated on a dynamometer according to Swedish and ISO-standards before they were operated on R 33. Since then the tractors have been regularly recalibrated. The test tractors have been operated on R 33 for more than 3400 h. An additional 1200 h have been covered by the laboratory test engine. None of the test tractors have hitherto required repairs due to the use of R 33, but some fuel filters have been replaced. Some fuel injectors have been cleaned due to deposits on the nozzles. 4 figures, 1 table.

  15. The Application of CYCLUS to Fuel Cycle Transition Analysis ...

    Office of Scientific and Technical Information (OSTI)

    Resource Relation: Conference: Presented at: GLOBAL 2015, 21st International Conference & Exhibition: "Nuclear Fuel Cycle for a Low-Carbon Future", Paris, France, Sep 20 - Sep 24, ...

  16. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  17. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  18. Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing ... Heavy Duty Fuels DISI Combustion HCCISCCI Fundamentals Spray Combustion Modeling ...

  19. Workshop on Gas Clean-Up for Fuel Cell Applications - Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas Clean-Up for Fuel Cell Applications Sponsored by The Fuel Cell Technologies Office, US Department of Energy Organized by Argonne National Laboratory Argonne, IL March 6, 2014 2 Thursday March 6, 2014 Location: Building 240 TCS Conference Center, Argonne National Laboratory 9:50 AM Registration 10:30 AM Introduction and Logistics ANL Staff 10:35 AM Welcome - Deputy Associate Laboratory Director, Argonne National Laboratory E. Daniels 10:45 AM Background and Workshop Objectives, Fuel Cell

  20. Five Kilowatt Fuel Cell Demonstration for Remote Power Applications

    SciTech Connect (OSTI)

    Dennis Witmer; Tom Johnson; Jack Schmid

    2008-12-31

    While most areas of the US are serviced by inexpensive, dependable grid connected electrical power, many areas of Alaska are not. In these areas, electrical power is provided with Diesel Electric Generators (DEGs), at much higher cost than in grid connected areas. The reasons for the high cost of power are many, including the high relative cost of diesel fuel delivered to the villages, the high operational effort required to maintain DEGs, and the reverse benefits of scale for small utilities. Recent progress in fuel cell technologies have lead to the hope that the DEGs could be replaced with a more efficient, reliable, environmentally friendly source of power in the form of fuel cells. To this end, the University of Alaska Fairbanks has been engaged in testing early fuel cell systems since 1998. Early tests were conducted on PEM fuel cells, but since 2001, the focus has been on Solid Oxide Fuel Cells. In this work, a 5 kW fuel cell was delivered to UAF from Fuel Cell Technologies of Kingston, Ontario. The cell stack is of a tubular design, and was built by Siemens Westinghouse Fuel Cell division. This stack achieved a run of more than 1 year while delivering grid quality electricity from natural gas with virtually no degradation and at an electrical efficiency of nearly 40%. The project was ended after two control system failures resulted in system damage. While this demonstration was successful, considerable additional product development is required before this technology is able to provide electrical energy in remote Alaska. The major issue is cost, and the largest component of system cost currently is the fuel cell stack cost, although the cost of the balance of plant is not insignificant. While several manufactures are working on schemes for significant cost reduction, these systems do not as yet provide the same level of performance and reliability as the larger scale Siemens systems, or levels that would justify commercial deployment.

  1. DOE Issues Request for Information on Gas Clean-Up for Fuel Cell Applications

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's (DOE's) Fuel Cell Technologies Office has issued a request for information (RFI) to obtain feedback and opinions from industry, academia, research laboratories, government agencies, and other stakeholders on the report findings from the Gas Clean-up for Fuel Cell Applications Workshop.

  2. Technology Implementation Plan. Fully Ceramic Microencapsulated Fuel for Commercial Light Water Reactor Application

    SciTech Connect (OSTI)

    Snead, Lance Lewis; Terrani, Kurt A.; Powers, Jeffrey J.; Worrall, Andrew; Robb, Kevin R.; Snead, Mary A.

    2015-04-01

    This report is an overview of the implementation plan for ORNL's fully ceramic microencapsulated (FCM) light water reactor fuel. The fully ceramic microencapsulated fuel consists of tristructural isotropic (TRISO) particles embedded inside a fully dense SiC matrix and is intended for utilization in commercial light water reactor application.

  3. Application of a Diesel Fuel Reformer for Tier 2 Bin 5 Emissions |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_bonadies.pdf (1.07 MB) More Documents & Publications Application of a Diesel Fuel Reformer for Tier 2 Bin 5 Emissions Delphi On-board Ammonia Generation (OAG) On-Board Ammonia Generation Using Delphi Diesel Fuel Reformer

  4. Investigation of Tractor Base Bleeding for Heavy Vehicle Aerodynamic Drag Reduction

    SciTech Connect (OSTI)

    Ortega, J; Salari, K; Storms, B

    2007-10-25

    One of the main contributors to the aerodynamic drag of a heavy vehicle is tractor-trailer gap drag, which arises when the vehicle operates within a crosswind. Under this operating condition, freestream flow is entrained into the tractor-trailer gap, imparting a momentum exchange to the vehicle and subsequently increasing the aerodynamic drag. While a number of add-on devices, including side extenders, splitter plates, vortex stabilizers, and gap sealers, have been previously tested to alleviate this source of drag, side extenders remain the primary add-on device of choice for reducing tractor-trailer gap drag. However, side extenders are not without maintenance and operational issues. When a heavy vehicle pivots sharply with respect to the trailer, as can occur during loading or unloading operations, the side extenders can become crushed against the trailer. Consequently, fleet operators are forced to incur additional costs to cover the repair or replacement of the damaged side extenders. This issue can be overcome by either shortening the side extenders or by devising an alternative drag reduction concept that can perform just as effectively as side extenders. To explore such a concept, we investigate tractor base bleeding as a means of reducing gap drag. Wind tunnel measurements are made on a 1:20 scale heavy vehicle model at a vehicle width-based Reynolds number of 420,000. The tractor bleeding flow, which is delivered through a porous material embedded within the tractor base, is introduced into the tractor-trailer gap at bleeding coefficients ranging from 0.0-0.018. To determine the performance of tractor base bleeding under more realistic operating conditions, computational fluid dynamics simulations are performed on a full-scale heavy vehicle within a crosswind for bleeding coefficients ranging from 0.0-0.13.

  5. Webinar: Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications" on Tuesday, October 21, at 12:00 p...

  6. High power density fuel cell stack development for automotive applications

    SciTech Connect (OSTI)

    Pow, R.; Reindl, M.; Tilmetz, W.

    1996-12-31

    This paper describes the joint development by Daimler-Benz and Ballard Power Systems of a high power-density fuel cell stack and its demonstration in a 6-passenger Minivan.

  7. Advanced Fuels in HDV Applications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities for the Early Production of Fischer-Tropsch (F-T) Fuels in the U.S. -- An Overview Impact of Biodiesel on Modern Diesel Engine Emissions Diesel Health Impacts & ...

  8. Near-term Fuel Cell Applications in Japan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Near-term Fuel Cell Applications in Japan Near-term Fuel Cell Applications in Japan Presented at the U.S. Department of Energy Hydrogen Component and System Qualification Workshop held November 4, 2010 in Livermore, CA. csqw_akiba.pdf (6.38 MB) More Documents & Publications U.S. Department of Energy Building Energy Data Exchange Specification Quadrennial Energy Review: Scope, Goals, Vision, Approach, Outreach Final Report - Sun Rise New England - Open for Buisness

  9. Heavy and Overweight Vehicle Brake Testing: Five-Axle Combination Tractor-Flatbed Final Report

    SciTech Connect (OSTI)

    Lascurain, Mary Beth; Capps, Gary J; Franzese, Oscar

    2013-10-01

    The Federal Motor Carrier Safety Administration, in coordination with the Federal Highway Administration, sponsored the Heavy and Overweight Vehicle Brake Testing (HOVBT) program in order to provide information about the effect of gross vehicle weight (GVW) on braking performance. Because the Federal Motor Carrier Safety Regulations limit the number of braking system defects that may exist for a vehicle to be allowed to operate on the roadways, the examination of the effect of brake defects on brake performance for increased loads is also relevant. The HOVBT program seeks to provide relevant information to policy makers responsible for establishing load limits, beginning with providing test data for a combination tractor/trailer. This testing was conducted on a five-axle combination vehicle with tractor brakes meeting the Reduced Stopping Distance requirement rulemaking. This report provides a summary of the testing activities, the results of various analyses of the data, and recommendations for future research. Following a complete brake rebuild, instrumentation, and brake burnish, stopping tests were performed from 20 and 40 mph with various brake application pressures (15 psi, 25 psi, 35 psi, 45 psi, 55 psi, and full system pressure). These tests were conducted for various brake conditions at the following GVWs: 60,000, 80,000, 91,000, 97,000, 106,000, and 116,000 lb. The 80,000-lb GVWs included both balanced and unbalanced loads. The condition of the braking system was also varied. To introduce these defects, brakes (none, forward drive axle, or rear trailer axle) were made inoperative. In addition to the stopping tests, performance-based brake tests were conducted for the various loading and brake conditions. Analysis of the stopping test data showed the stopping distance to increase with load (as expected) and also showed that more braking force was generated by the drive axle brakes than the trailer axle brakes. The constant-pressure stopping test data

  10. Mechanical Fatigue Testing of High Burnup Fuel for Transportation Applications

    SciTech Connect (OSTI)

    Wang, Jy-An John; Wang, Hong

    2015-05-01

    This report describes testing designed to determine the ability of high burnup (HBU) (>45 GWd/MTU) spent fuel to maintain its integrity under normal conditions of transportation. An innovative system, Cyclic Integrated Reversible-bending Fatigue Tester (CIRFT), has been developed at Oak Ridge National Laboratory (ORNL) to test and evaluate the mechanical behavior of spent nuclear fuel (SNF) under conditions relevant to storage and transportation. The CIRFT system is composed of a U-frame equipped with load cells for imposing the pure bending loads on the SNF rod test specimen and measuring the in-situ curvature of the fuel rod during bending using a set up with three linear variable differential transformers (LVDTs).

  11. Method for reprocessing and separating spent nuclear fuels. [Patent application

    DOE Patents [OSTI]

    Krikorian, O.H.; Grens, J.Z.; Parrish, W.H. Sr.

    1982-01-19

    Spent nuclear fuels, including actinide fuels, volatile and nonvolatile fission products, are reprocessed and separated in a molten metal solvent housed in a separation vessel made of a carbon-containing material. A first catalyst, which promotes the solubility and permeability of carbon in the metal solvent, is included. By increasing the solubility and permeability of the carbon in the solvent, the rate at which actinide oxides are reduced (carbothermic reduction) is greatly increased. A second catalyst, included to increase the affinity for nitrogen in the metal solvent, is added to increase the rate at which actinide nitrides form after carbothermic reduction is complete.

  12. Dual-fueling turbocharged diesels with ethanol

    SciTech Connect (OSTI)

    Cruz, J.M.; Rotz, C.A.; Watson, D.H.

    1982-09-01

    Spray addition and carburetion methods were tested for dual-fueling a turbocharged, 65 kW diesel tractor. Approximately 30 percent of the fuel energy for the tractor was supplied by spraying ethanol into the intake air and about 46 percent by carburetion with little affect on the engine thermal efficiency. Further substitution of diesel fuel with ethanol was limited by knock. As the amount of ethanol fed into the engine was increased, ignition apparently changed from the steady burning process which normally occurs in a diesel engine to a rapid explosion which caused knock. The best fuel for the spray approach was a 50 percent ethanol/water solution and with the carburetor it was an 80 percent ethanol/water solution.

  13. Dual-fueling turbocharged diesels with ethanol

    SciTech Connect (OSTI)

    Cruz, J.M.; Rotz, C.A.; Watson, D.H.

    1982-09-01

    Spray addition and carburetion methods were tested for dual-fueling a turbocharged, 65 kW diesel tractor. Approximately 30 percent of the fuel energy for the tractor was supplied by spraying ethanol into the intake air and about 46 percent by carburetion with little affect on the engine thermal efficiency. Further substitution of diesel fuel with ethanol was limited by knock. As the amount of ethanol fed into the engine was increased, ignition apparently changed from the steady burning process which normally occurs in a diesel engine to a rapid explosion which caused knock. The best fuel for the spray approach was a 50 percent ethanol/water solution and with the carburetor it was an 80 percent ethanol/water solution. (Refs. 6).

  14. APPLICATIONS OF CURRENT TECHNOLOGY FOR CONTINUOUS MONITORING OF SPENT FUEL

    SciTech Connect (OSTI)

    Drayer, R.

    2013-06-09

    Advancements in technology have opened many opportunities to improve upon the current infrastructure surrounding the nuclear fuel cycle. Embedded devices, very small sensors, and wireless technology can be applied to Security, Safety, and Nonproliferation of Spent Nuclear Fuel. Security, separate of current video monitoring systems, can be improved by integrating current wireless technology with a variety of sensors including motion detection, altimeter, accelerometer, and a tagging system. By continually monitoring these sensors, thresholds can be set to sense deviations from nominal values. Then alarms or notifications can be activated as needed. Safety can be improved in several ways. First, human exposure to ionizing radiation can be reduced by using a wireless sensor package on each spent fuel cask to monitor radiation, temperature, humidity, etc. Since the sensor data is monitored remotely operator stay-time is decreased and distance from the spent fuel increased, so the overall radiation exposure is reduced as compared to visual inspections. The second improvement is the ability to monitor continuously rather than periodically. If changes occur to the material, alarm thresholds could be set and notifications made to provide advanced notice of negative data trends. These sensor packages could also record data to be used for scientific evaluation and studies to improve transportation and storage safety. Nonproliferation can be improved for spent fuel transportation and storage by designing an integrated tag that uses current infrastructure for reporting and in an event; tracking can be accomplished using the Iridium satellite system. This technology is similar to GPS but with higher signal strength and penetration power, but lower accuracy. A sensor package can integrate all or some of the above depending on the transportation and storage requirements and regulations. A sensor package can be developed using off the shelf technology and applying it to each

  15. TRU-fueled VHTRs: design, performance, and applications

    SciTech Connect (OSTI)

    Tsvetkov, Pavel V.; Ames, David E. II; Pritchard, Megan L.; Alajo, Ayodeji B.; Lewis, Tom G. III

    2007-07-01

    The Very High Temperature Reactor (VHTR) is the nearest Generation IV concept. This paper presents results of the U.S. DOE NERI Project on utilization of higher actinides (TRUs and partitioned MAs) as a fuel component for extended-life VHTR configurations. The idea is to approach autonomous operation on a single fuel loading that would allow marketing power units with VHTRs as nuclear batteries for worldwide deployment. The research focus is on possible designs and their advantages and limitations. The project is currently within its third year of studies. Although indicating some technical limitations and challenges, studies of VHTRs with TRUs/MAs definitely suggest promising performance and possibility to utilize the core configurations with TRUs/MAs gaining prolonged operation and self-sustainability. (authors)

  16. Improved Membrane Materials for PEM Fuel Cell Application

    SciTech Connect (OSTI)

    Kenneth A. Mauritz; Robert B. Moore

    2008-06-30

    The overall goal of this project is to collect and integrate critical structure/property information in order to develop methods that lead to significant improvements in the durability and performance of polymer electrolyte membrane fuel cell (PEMFC) materials. This project is focused on the fundamental improvement of PEMFC membrane materials with respect to chemical, mechanical and morphological durability as well as the development of new inorganically-modified membranes.

  17. SHAPE SELECTIVE NANOCATALYSTS FOR DIRECT METHANOL FUEL CELL APPLICATIONS

    SciTech Connect (OSTI)

    Murph, S.

    2012-09-12

    While gold and platinum have long been recognized for their beauty and value, researchers at the Savannah River National Laboratory (SRNL) are working on the nano-level to use these elements for creative solutions to our nation's energy and security needs. Multiinterdisciplinary teams consisting of chemists, materials scientists, physicists, computational scientists, and engineers are exploring unchartered territories with shape-selective nanocatalysts for the development of novel, cost effective and environmentally friendly energy solutions to meet global energy needs. This nanotechnology is vital, particularly as it relates to fuel cells.SRNL researchers have taken process, chemical, and materials discoveries and translated them for technological solution and deployment. The group has developed state-of-the art shape-selective core-shell-alloy-type gold-platinum nanostructures with outstanding catalytic capabilities that address many of the shortcomings of the Direct Methanol Fuel Cell (DMFC). The newly developed nanostructures not only busted the performance of the platinum catalyst, but also reduced the material cost and overall weight of the fuel cell.

  18. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Application

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mass Production Cost Estimation for Direct H 2 PEM Fuel Cell Systems for Automotive Applications: 2008 Update March 26, 2009 v.30.2021.052209 Prepared by: Brian D. James & Jeffrey A. Kalinoski One Virginia Square 3601 Wilson Boulevard, Suite 650 Arlington, Virginia 22201 703-243-3383 Prepared for: Contract No. GS-10F-0099J to the U.S. Department of Energy Energy Efficiency and Renewable Energy Office Hydrogen, Fuel Cells & Infrastructure Technologies Program Foreword Energy security is

  19. Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell Systems for Transportation Applications: 2012 Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mass Production Cost Estimation of Direct H 2 PEM Fuel Cell Systems for Transportation Applications: 2012 Update October 18, 2012 Prepared By: Brian D. James Andrew B. Spisak Revision 4 2 Sponsorship and Acknowledgements This research was conducted under Award Number DE-EE0005236 to the US Department of Energy. The authors wish to thank Dr. Dimitrios Papageorgopoulos and Mr. Jason Marcinkoski of DOE's Office of Energy Efficiency and Renewable Energy (EERE) Fuel Cell Technologies (FCT) Program

  20. HIGH EFFICIENCY, LOW EMISSIONS, SOLID OXIDE FUEL CELL SYSTEMS FOR MULTIPLE APPLICATIONS

    SciTech Connect (OSTI)

    Sara Ward; Michael A. Petrik

    2004-07-28

    Technology Management Inc. (TMI), teamed with the Ohio Office of Energy Efficiency and Renewable Energy, has engineered, constructed, and demonstrated a stationary, low power, multi-module solid oxide fuel cell (SOFC) prototype system operating on propane and natural gas. Under Phase I, TMI successfully operated two systems in parallel, in conjunction with a single DC-AC inverter and battery bus, and produced net AC electricity. Phase II testing expanded to include alternative and renewable fuels typically available in rural regions of Ohio. The commercial system is expected to have ultra-low pollution, high efficiency, and low noise. The TMI SOFC uses a solid ceramic electrolyte operating at high temperature (800-1000 C) which electrochemically converts gaseous fuels (hydrogen or mixed gases) and oxygen into electricity. The TMI system design oxidizes fuel primarily via electrochemical reactions and uses no burners (which pollute and consume fuel)--resulting in extremely clean exhaust. The use of proprietary sulfur tolerant materials developed by TMI allows system operation without additional fuel pre-processing or sulfur removal. Further, the combination of high operating temperatures and solid state operation increases the potential for higher reliability and efficiencies compared to other types of fuel cells. Applications for the TMI SOFC system cover a wide range of transportation, building, industrial, and military market sectors. A generic technology, fuel cells have the potential to be embodied into multiple products specific to Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) program areas including: Fuel Cells and Microturbines, School Buildings, Transportation, and Bioenergy. This program focused on low power stationary applications using a multi-module system operating on a range of common fuels. By producing clean electricity more efficiently (thus using less fuel), fuel cells have the triple effect of cleaning up the

  1. Fuel cells -- An increasingly competitive reality now for on-site applications and for mobile applications before the year 2000

    SciTech Connect (OSTI)

    Nurdin, M.A.B.

    1997-07-01

    A fuel cell converts the energy released when hydrogen and oxygen combine to produce water, directly into electricity and heat--without combustion and without moving parts. Fuel cells are inherently clean, highly efficient and reliable. The most attractive near-term application is commercial cogeneration followed by distributed power. A fleet of over 70 ONSI 200 kW cogeneration plants has demonstrated reliability and durability significantly better than mature conventional cogeneration equipment. The cities of Chicago and Vancouver will introduce small fleets of prototype commercial fuel cell buses over the next two years and Daimler-Benz launched a prototype fuel cell powered car in May 1996. The US and Japanese governments are providing commercialization support to accelerate the market introduction of near-term stationary systems and plant will achieve competitive costs by 1998/99. Commercial buses will become available in 1998 and cars are expected within the following decade.

  2. Air-breathing fuel cell stacks for portable power applications

    SciTech Connect (OSTI)

    Wilson, M.S.; DeCaro, D.; Neutzler, J.K.; Zawodzinski, C.; Gottesfeld, S.

    1996-10-01

    Increasing attention is being directed towards polymer electrolyte fuel cells as battery replacements because of their potentially superior energy densities and the possibility of `mechanical` refueling. On the low end of the power requirement scale (ca. 10 W), fuel cells can compete with primary and secondary batteries only if the fuel cell systems are simple, inexpensive, and reliable. Considerations of cost and simplicity (and minimal parasitic power) discourage the use of conventional performance enhancing subsystems (e.g., humidification, cooling, or forced-reactant flow). We are developing a stack design that is inherently self-regulating to allow effective operation without the benefit of such auxiliary components. The air cathode does not use forced flow to replenish the depleted oxygen. Instead, the oxygen in the air must diffuse into the stack from the periphery of the unit cells. For this reason the stack is described as `air-breathing.` This configuration limits the ability of water to escape which prevents the polymer electrolyte membranes from drying out, even at relatively high continuous operation temperatures (+60 degrees C). This results in stacks with reliable and stable performance. This air-breathing configuration assumes a unique stack geometry that utilizes circular flow-field plates with an annular hydrogen feed manifold and the single tie-bolt extending up through the central axis of the stack. With this geometry, the hydrogen supply to the unit cells is radially outward, and the air supply is from the periphery inward. This configuration has several advantages. The entire periphery is free to air access and allows greater heat conduction to enhance cooling. Furthermore, all of the components in the stack (e.g., the flow-fields, seals and membrane/electrode assemblies), are radially symmetrical, so part fabrication is simple and the entire system is potentially low-cost. Lastly, this configuration is compact and lightweight.

  3. Fuel cells for transportation applications. Progress report, January 1-December 31, 1981

    SciTech Connect (OSTI)

    Huff, J.R.

    1982-06-01

    The aims of the program are to use the fuel cell's high efficiency, low pollution (both air and noise), and ability to use nonpetroleum fuels to develop a prototype vehicle power plant with the following characteristics: better than vehicles powered by an internal combustion engine (ICE); purchase cost competitive with ICE vehicles and superior maintenance cost; range, performance, and refueling time equivalent to ICE vehicles; and utilization of methanol or some other nonpetroleum-based fuel that can be easily distributed and stored. The fuel cell technologies currently being assessed for potential vehicle use are: phosphoric acid electrolyte fuel cells (PAFC); solid polymer electrolyte (SPE) fuel cells; and super acid electrolyte fuel cells. From these alternatives, one or two technologies will be selected for further electrochemical research with emphasis directed at the requirements peculiar to vehicles. In addition, a verification effort will be closely coupled with the electrochemical basic research program, which both have the objectives of reducing or eliminating platinum requirements, developing improved and/or less costly electrolytes, and increasing cell performance. The results of the assessments of the PAFC and the SPE fuel cell systems substantiate the technical feasibility of using these two systems in vehicular applications. Initial results indicate substantial energy savings from using fuel cell power plants in heavy-duty freight locomotives and inland waterway push-tow boats. More information is needed on the operational duty cycles of these applications to complete the assessment and suggest what research is required. Adsorption studies on cathodes in various acids confirmed the concept that to improve the oxygen electrode performances, neutral or anionic species must not be allowed to adsorb. Various means of achieving this are being explored. (WHK)

  4. Development of 50 kW Fuel Processor for Stationary Fuel Cell Applications

    SciTech Connect (OSTI)

    James F. Stevens; Balaji Krishnamurthy; Paolina Atanassova; Kerry Spilker

    2007-08-29

    The objective of the project was to develop and test a fuel processor capable of producing high hydrogen concentration (>98%) with less than ppm quantities of carbon dioxide and carbon monoxide at lower capital cost and higher efficiency, compared to conventional natural gas reformers. It was intended that we achieve our objective by developing simple reactor/process design, and high durability CO2 absorbents, to replace pressure swing adsorption (PSA) or membrane separators. Cost analysis indicated that we would not meet DOE cost goals so the project was terminated before construction of the full scale fuel processor. The work on adsorbent development was focused on the development of calcium oxide-based reversible CO2 absorbents with various microstructures and morphologies to determine the optimum microstructure for long-term reversible CO2 absorption. The effect of powder production process variables was systematically studied including: the final target compositions, the reagents from which the final products were derived, the pore forming additives, the processing time and temperature. The sorbent materials were characterized in terms of their performance in the reversible reaction with CO2 and correlation made to their microstructure.

  5. Stationary market applications potential of solid oxide and solid polymer fuel cell systems

    SciTech Connect (OSTI)

    Baker, J.N.; Fletcher, W.H.

    1996-12-31

    The UK DTI`s Advanced Fuel Cells Programme currently focuses on two main fuel cell technologies, namely the solid oxide and solid polymer systems (SOFC and SPFC), respectively. The provision of accurate and timely market data is regarded as an important part of the overall programme objectives, such as to assist both Government and industry in their appraisals of the technologies. The present study was therefore commissioned against this background, with a complementary study addressing transportation and mobile applications. The results reported herein relate to the stationary market applications potential of both SOFC and SPFC systems.

  6. Application of a Diesel Fuel Reformer for Tier 2 Bin 5 Emissions |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006_deer_bonadies.pdf (748.07 KB) More Documents & Publications Application of a Diesel Fuel Reformer for Tier 2 Bin 5 Emissions Performance Evaluation of the Delphi Non-Thermal Plasma System Under Transient and Steady State Conditions LNT + SCR Aftertreatment for Medium-Heavy Duty Applications: A

  7. Fuel cell programs in the United States for stationary power applications

    SciTech Connect (OSTI)

    Singer, M.

    1996-04-01

    The Department of Energy (DOE), Office of Fossil Energy, is participating with the private sector in sponsoring the development of molten carbonate fuel cell (MCFC) and solid oxide fuel cell (SOFC) technologies for application in the utility, commercial and industrial sectors. Phosphoric acid fuel cell (PAFC) development was sponsored by the Office of Fossil Energy in previous years and is now being commercialized by the private sector. Private sector participants with the Department of Energy include the Electric Power Research Institute (EPRI), the Gas Research institute (GRI), electric and gas utilities, universities, manufacturing companies and their suppliers. through continued government and private sector support, fuel cell systems are emerging power generation technologies which are expected to have significant worldwide impacts. An industry with annual sales of over a billion dollars is envisioned early in the 21st century. PAFC power plants have begun to enter the marketplace and MCFC and SOFC power plants are expected to be ready to enter the marketplace in the late 1990s. In support of the efficient and effective use of our natural resources, the fuel cell program seeks to increase energy efficiency and economic effectiveness of power generation. This is to be accomplished through effectiveness of power generation. This is accomplished through the development and commercialization of cost-effective, efficient and environmentally desirable fuel cell systems which will operate on fossil fuels in multiple and end use sectors.

  8. Computational flow modeling of a simplified integrated tractor...

    Office of Scientific and Technical Information (OSTI)

    Department of Energy to improve fuel efficiency of heavy vehicles such as Class 8 ... COMPUTERIZED SIMULATION; ENERGY EFFICIENCY; NAVIER-STOKES EQUATIONS; DRAG; ...

  9. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Book), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    School Bus * Shuttle Bus * Transit Bus * Refuse Truck * Tractor * Van * Vocational Truck Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles 2 Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles 3 Table of Contents About the Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  10. The coupling of the neutron transport application RATTLESNAKE to the nuclear fuels performance application BISON under the MOOSE framework

    SciTech Connect (OSTI)

    Gleicher, Frederick N.; Williamson, Richard L.; Ortensi, Javier; Wang, Yaqi; Spencer, Benjamin W.; Novascone, Stephen R.; Hales, Jason D.; Martineau, Richard C.

    2014-10-01

    The MOOSE neutron transport application RATTLESNAKE was coupled to the fuels performance application BISON to provide a higher fidelity tool for fuel performance simulation. This project is motivated by the desire to couple a high fidelity core analysis program (based on the self-adjoint angular flux equations) to a high fidelity fuel performance program, both of which can simulate on unstructured meshes. RATTLESNAKE solves self-adjoint angular flux transport equation and provides a sub-pin level resolution of the multigroup neutron flux with resonance treatment during burnup or a fast transient. BISON solves the coupled thermomechanical equations for the fuel on a sub-millimeter scale. Both applications are able to solve their respective systems on aligned and unaligned unstructured finite element meshes. The power density and local burnup was transferred from RATTLESNAKE to BISON with the MOOSE Multiapp transfer system. Multiple depletion cases were run with one-way data transfer from RATTLESNAKE to BISON. The eigenvalues are shown to agree well with values obtained from the lattice physics code DRAGON. The one-way data transfer of power density is shown to agree with the power density obtained from an internal Lassman-style model in BISON.

  11. Advanced Composite Materials for Cold and Cryogenic Hydrogen Storage Applications in Fuel Cell Electric Vehicles: Workshop Summary Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Cold and Cryogenic Hydrogen Storage Applications in Fuel Cell Electric Vehicles October 29, 2015 Sponsored by U.S. Department of Energy Fuel Cell Technologies Office (FCTO) and Pacific Northwest National Laboratory (This page intentionally left blank) Section title Unt utaerest in pos eum quo con et iii ADVANCED COMPOSITE MATERIALS FOR COLD AND CRYOGENIC HYDROGEN STORAGE APPLICATIONS IN FUEL CELL ELECTRIC VEHICLES Advanced Composite Materials for Cold and Cryogenic Hydrogen Storage

  12. Advancing Plug In Hybrid Technology and Flex Fuel Application on a Chrysler

    Broader source: Energy.gov (indexed) [DOE]

    Mini-Van PHEV DOE Funded Project | Department of Energy vss063_bazzi_2012_o.pdf (2.37 MB) More Documents & Publications Advancing Plug In Hybrid Technology and Flex Fuel Application on a Chrysler Mini-Van PHEV DOE Funded Project Advancing Transportation Through Vehicle Electrification - PHEV Advancing Transportation Through Vehicle Electrification -

  13. Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel Cell Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel Cell Applications Wensheng He, David Mountz, Tao Zhang, Chris Roger July 17, 2012 2 Outline Background on Arkema's polyvinylidene fluoride (PVDF) blend membrane technology Overview of membrane properties and performance Summary 3 Membrane Technology Polymer Blend * Kynar ® PVDF * Chemical and electrochemical stability * Mechanical strength * Excellent barrier against methanol * Polyelectrolyte * H + conduction and water uptake

  14. Webinar October 21: Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications" on Tuesday, October 21, from 12:00 to 1:00 p.m. Eastern Daylight Time. Representatives of Cree Inc., leading innovators in the WBG electronics industry, will be presenting.

  15. NEW OPTICAL SENSOR SUITE FOR ULTRAHIGH TEMPERATURE FOSSIL FUEL APPLICATIONS

    SciTech Connect (OSTI)

    Russell G. May; Tony Peng; Tom Flynn

    2004-04-01

    Accomplishments during the first six months of a program to develop and demonstrate technology for the instrumentation of advanced powerplants are described. Engineers from Prime Research, LC and Babcock and Wilcox Research Center collaborated to generate a list of potential applications for robust photonic sensors in existing and future boiler plants. From that list, three applications were identified as primary candidates for initial development and demonstration of high-temperature sensors in an ultrasupercritical power plant. In addition, progress was made in the development of materials and methods to apply high-temperature optical claddings to sapphire fibers, in order to improve their optical waveguiding properties so that they can be used in the design and fabrication of high-temperature sensors. Through refinements in the processing steps, the quality of the interface between core and cladding of the fibers was improved, which is expected to reduce scattering and attenuation in the fibers.

  16. Combustion rates of chars from high-volatile fuels for FBC application

    SciTech Connect (OSTI)

    Masi, S.; Salatino, P.; Senneca, O.

    1997-12-31

    The fluidized bed combustion of high volatile fuels is often associated with huge occurrence of comminution phenomena. These result into in-bed generation of substantial amounts of carbon fines which further undergo competitive processes of combustion and elutriation. The small size of carbon fines generated by comminution is such that their further combustion is largely controlled by the intrinsic kinetics of carbon oxidation, alone or in combination with intraparticle diffusion. The competition between fine combustion and elutriation strongly affects the efficiency of fixed carbon conversion and calls for thorough characterization of the combustion kinetics and of residence times of fines in a fluidized bed of coarse solids. In this paper a collection of intrinsic combustion kinetic and porosimetric data for chars from three high-volatile fuels suitable for FBC application is presented. Chars from a Refuse Derived Fuel (RDF), a Tyre Derived Fuel (TDF) and a biomass (Robinia Pseudoacacia) are obtained from devolatilization, in fluidized bed, of fuel samples. Thermogravimetric analysis, mercury porosimetry and helium pycnometry are used to characterize the reactivity and the pore structure of the chars. Combustion rates are characterized over a wide range of temperatures (320--850 C) and oxygen partial pressures, covering the entire range of interest in fluidized bed combustion. Analysis of thermogravimetric and porosimetric data is directed to obtaining the parameters (pre-exponential factors, reaction orders, activation energies, intraparticle diffusivities) of combustion kinetic submodels for application in fluidized bed combustor modeling.

  17. Reactor Fuel Isotopics and Code Validation for Nuclear Applications

    SciTech Connect (OSTI)

    Francis, Matthew W.; Weber, Charles F.; Pigni, Marco T.; Gauld, Ian C.

    2015-02-01

    Experimentally measured isotopic concentrations of well characterized spent nuclear fuel (SNF) samples have been collected and analyzed by previous researchers. These sets of experimental data have been used extensively to validate the accuracy of depletion code predictions for given sets of burnups, initial enrichments, and varying power histories for different reactor types. The purpose of this report is to present the diversity of data in a concise manner and summarize the current accuracy of depletion modeling. All calculations performed for this report were done using the Oak Ridge Isotope GENeration (ORIGEN) code, an internationally used irradiation and decay code solver within the SCALE comprehensive modeling and simulation code. The diversity of data given in this report includes key actinides, stable fission products, and radioactive fission products. In general, when using the current ENDF/B-VII.0 nuclear data libraries in SCALE, the major actinides are predicted to within 5% of the measured values. Large improvements were seen for several of the curium isotopes when using improved cross section data found in evaluated nuclear data file ENDF/B-VII.0 as compared to ENDF/B-V-based results. The impact of the flux spectrum on the plutonium isotope concentrations as a function of burnup was also shown. The general accuracy noted for the actinide samples for reactor types with burnups greater than 5,000 MWd/MTU was not observed for the low-burnup Hanford B samples. More work is needed in understanding these large discrepancies. The stable neodymium and samarium isotopes were predicted to within a few percent of the measured values. Large improvements were seen in prediction for a few of the samarium isotopes when using the ENDF/B-VII.0 libraries compared to results obtained with ENDF/B-V libraries. Very accurate predictions were obtained for 133Cs and 153Eu. However, the predicted values for the stable ruthenium and rhodium isotopes varied

  18. SuperTruck Making Leaps in Fuel Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SuperTruck Making Leaps in Fuel Efficiency SuperTruck Making Leaps in Fuel Efficiency February 19, 2014 - 12:37pm Addthis This Class 8 tractor-trailer by heavy-duty manufacturers Cummins and Peterbilt reaches more than 10 miles per gallon under real world driving conditions. The truck was on display at the Energy Department today. | Photo by <a href="http://www.energy.gov/contributors/sarah-gerrity">Sarah Gerrity</a>, Energy Department This Class 8 tractor-trailer by

  19. EERE Success Story-Heavy Vehicle Fuel Efficiency is no Drag | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Heavy Vehicle Fuel Efficiency is no Drag EERE Success Story-Heavy Vehicle Fuel Efficiency is no Drag March 28, 2016 - 3:17pm Addthis Tractor belly pan helps to improve under-body flow. Tractor belly pan helps to improve under-body flow. History of technology Traveling down any U.S. highway, a driver is bound to see as many big rigs as they do other vehicles. But in 10 years' time, they could see a futuristic sleek, streamlined big rig that looks like something out of a sci-fi

  20. Application for approval for construction of the Fueled Clad Fabrication System, the Radioisotope Power Systems Facility, and the Fuel Assembly Area

    SciTech Connect (OSTI)

    Not Available

    1989-08-01

    The following ''Application for Approval of Construction'' is being submitted by the US Department of Energy-Richland Operations Office, pursuant to 40 CFR 61.07, for three new sources of airborne radionuclide emissions at the Hanford Site in Washington State. The three new sources, the Fueled Clad Fabrication System (FCFS), the Radioisotope Power Systems Facility (RPSF), and the Fuel Assembly Area (FAA), will be located in one facility, the Fuels and Materials Examination Facility (FMEF) of the 400 Area. The FMEF was originally designed to provide for post-irradiation examination and fabrication of breeder reactor fuels. These FMEF missions were canceled before the introduction of any fuel materials or any irradiated material. The current plans are to use the facility to fabricate power supplies to be used in space applications and to produce Fast Flux Test Facility (FFTF) fuel and target assemblies. The FCFS and the RPSF will produce materials and assemblies for application in space. The FAA project will produce FFTF fuel and target assemblies. The FCFS and the RPSF will share the same building and stack and, in certain cases, the same floor space. Given this relationship, these systems will be dealt with separately to the extent possible. The FAA is a comparatively independent operation though it will share the FMEF complex. 2 refs., 16 figs., 12 tabs.

  1. Fuel cell power systems for remote applications. Phase 1 final report and business plan

    SciTech Connect (OSTI)

    1998-02-01

    The goal of the Fuel Cell Power Systems for Remote Applications project is to commercialize a 0.1--5 kW integrated fuel cell power system (FCPS). The project targets high value niche markets, including natural gas and oil pipelines, off-grid homes, yachts, telecommunication stations and recreational vehicles. Phase 1 includes the market research, technical and financial analysis of the fuel cell power system, technical and financial requirements to establish manufacturing capability, the business plan, and teaming arrangements. Phase 1 also includes project planning, scope of work, and budgets for Phases 2--4. The project is a cooperative effort of Teledyne Brown Engineering--Energy Systems, Schatz Energy Research Center, Hydrogen Burner Technology, and the City of Palm Desert. Phases 2 through 4 are designed to utilize the results of Phase 1, to further the commercial potential of the fuel cell power system. Phase 2 focuses on research and development of the reformer and fuel cell and is divided into three related, but potentially separate tasks. Budgets and timelines for Phase 2 can be found in section 4 of this report. Phase 2 includes: Task A--Develop a reformate tolerant fuel cell stack and 5 kW reformer; Task B--Assemble and deliver a fuel cell that operates on pure hydrogen to the University of Alaska or another site in Alaska; Task C--Provide support and training to the University of Alaska in the setting up and operating a fuel cell test lab. The Phase 1 research examined the market for power systems for off-grid homes, yachts, telecommunication stations and recreational vehicles. Also included in this report are summaries of the previously conducted market reports that examined power needs for remote locations along natural gas and oil pipelines. A list of highlights from the research can be found in the executive summary of the business plan.

  2. Analysis of H2 storage needs for early market non-motive fuel cell applications.

    SciTech Connect (OSTI)

    Johnson, Terry Alan; Moreno, Marcina; Arienti, Marco; Pratt, Joseph William; Shaw, Leo; Klebanoff, Leonard E.

    2012-03-01

    Hydrogen fuel cells can potentially reduce greenhouse gas emissions and the United States dependence on foreign oil, but issues with hydrogen storage are impeding their widespread use. To help overcome these challenges, this study analyzes opportunities for their near-term deployment in five categories of non-motive equipment: portable power, construction equipment, airport ground support equipment, telecom backup power, and man-portable power and personal electronics. To this end, researchers engaged end users, equipment manufacturers, and technical experts via workshops, interviews, and electronic means, and then compiled these data into meaningful and realistic requirements for hydrogen storage in specific target applications. In addition to developing these requirements, end-user benefits (e.g., low noise and emissions, high efficiency, potentially lower maintenance costs) and concerns (e.g., capital cost, hydrogen availability) of hydrogen fuel cells in these applications were identified. Market data show potential deployments vary with application from hundreds to hundreds of thousands of units.

  3. Alcohol injection cuts diesel consumption on turbocharged tractors

    SciTech Connect (OSTI)

    Edson, D.V.

    1980-07-21

    M and W Gear Co. of Gibson City, IL, are marketing a new alcohol- injection system that permits turbocharged diesel engines to burn alcohol and claims to cut diesel consumption by 30% and more. The alcohol fuel, a blend of alcohol and water, does not meet the diesel fuel until the alcohol has been atomized and sprayed through the intake manifold into the cylinders. It permits farmers to use home- still-produced ethanol without the added expense of refining to anhydrous composition.

  4. NEW OPTICAL SENSOR SUITE FOR ULTRAHIGH TEMPERATURE FOSSIL FUEL APPLICATIONS

    SciTech Connect (OSTI)

    Russell G. May; Tony Peng; Tom Flynn

    2004-12-01

    Accomplishments during the Phase I of a program to develop and demonstrate technology for the instrumentation of advanced powerplants are described. Engineers from Prime Research, LC and Babcock and Wilcox Research Center collaborated to generate a list of potential applications for robust photonic sensors in existing and future boiler plants. From that list, three applications were identified as primary candidates for initial development and demonstration of high-temperature sensors in an ultrasupercritical power plant. A matrix of potential fiber optic sensor approaches was derived, and a data set of specifications for high-temperature optical fiber was produced. Several fiber optic sensor configurations, including interferometric (extrinsic and intrinsic Fabry-Perot interferometer), gratings (fiber Bragg gratings and long period gratings), and microbend sensors, were evaluated in the laboratory. In addition, progress was made in the development of materials and methods to apply high-temperature optical claddings to sapphire fibers, in order to improve their optical waveguiding properties so that they can be used in the design and fabrication of high-temperature sensors. Through refinements in the processing steps, the quality of the interface between core and cladding of the fibers was improved, which is expected to reduce scattering and attenuation in the fibers. Numerical aperture measurements of both clad and unclad sapphire fibers were obtained and used to estimate the reduction in mode volume afforded by the cladding. High-temperature sensors based on sapphire fibers were also investigated. The fabrication of an intrinsic Fabry-Perot cavity within sapphire fibers was attempted by the bulk diffusion of magnesium oxide into short localized segments of longer sapphire fibers. Fourier analysis of the fringes that resulted when the treated fiber was interrogated by a swept laser spectrometer suggested that an intrinsic cavity had been formed in the fiber. Also

  5. Polymer electrolyte direct methanol fuel cells: an option for transportation applications

    SciTech Connect (OSTI)

    Gottesfeld, S.; Cleghorn, S.J.C.; Ren, X.; Springer, T.E.; Wilson, M.S.; Zawodzinski, T.A.

    1996-10-01

    PEFCs most frequently considered for electric vehicles have been based on either hydrogen carried aboard, or steam-reforming of methanol on board to produce H2 + CO2. Direct methanol fuel cells (DMFCs), which use a liquid methanol fuel feed, completely avoid the complexity and weight penalties of the reformer, but have not been considered a serious option until recently, because of much lower power densities. Recent advances in DMFCs have been dramatic, however, with the DMFC reaching power densities which are significant fractions of those provided by reformate/air fuel cells. Use of established Pt-Ru anode electrocatalysts and Pt cathode electrocatalysts in polymer electrolyte DMFCs has resulted in enhanced DMFC performance, particularly when operated above 100 C and when catalyst layer composition and structure are optimized. The higher DMFC power densities recently achieved provide a new basis for considering DMFCs for transportation applications.

  6. Prevention of significant deterioration permit application for the Fueled Clad Fabrication System, the Radioisotope Power Systems Facility, and the Fuel Assembly Area

    SciTech Connect (OSTI)

    Not Available

    1989-08-01

    This New Source Review'' has been submitted by the US Department of Energy-Richland Operations Office (PO Box 550, Richland, Washington 99352), pursuant to WAC 173-403-050 and in compliance with the Department of Ecology Guide to Processing A Prevention Of Significant Deterioration (PSD) Permit'' for three new sources of radionuclide emissions at the Hanford Site in Washington State. The three new sources, the Fueled Clad Fabrication System (FCFS), the Radioisotope Power Systems Facility (RPSF), and the Fuel Assembly Area (FAA), will be located in one facility, the Fuels and Materials Examination Facility (FMEF) of the 400 Area. The FMEF was originally designed to provide for post-irradiation examination and fabrication of breeder reactor fuels. These FMEF missions were cancelled before the introduction of any fuel materials or any irradiated material. The current plans are to use the facility to fabricate power supplies for use in space applications and to produce Fast Flux Test Facility (FFTF) fuel and target assemblies. The FCFS and the RPSF will produce materials and assemblies for application in space. The FAA project will produce FFTF fuel and target assemblies. The FCFS and the RPSF will share the same building, stack, and, in certain cases, the same floor space. Given this relationship, these systems will be dealt with separately to the extent possible. The FAA is a comparatively independent operation though it will share the FMEF complex.

  7. Coupling the core analysis program DeCART to the fuel performance application BISON

    SciTech Connect (OSTI)

    Gleicher, F. N.; Spencer, B.; Novascone, S.; Williamson, R.; Martineau, R. C. [Idaho National Laboratory, 2525 N. Fremont Avenue, Idaho Falls, ID 83415 (United States); Rose, M.; Downar, T. J.; Collins, B. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Blvd., Ann Arbor, MI 48105 (United States)

    2013-07-01

    The 3D neutron transport and core analysis program DeCART was coupled to the fuels performance application BISON to provide a higher fidelity tool for fuel performance simulation. This project is motivated by the desire to couple a high fidelity core analysis program (based on the method of characteristics) to a high fidelity fuel performance program, both of which can simulate 3D problems. DeCART provides sub-pin level resolution of the multigroup neutron flux, with resonance treatment, during burnup or a fast transient. BISON implicitly solves coupled thermomechanical equations for the fuel on a sub-millimeter level finite element mesh. A method was developed for mapping the fission rate density and fast neutron flux from DeCART to BISON. Multiple depletion cases were run with one-way data transfer from DeCART to BISON. The one-way data transfer of fission rate density is shown to agree with the fission rate density obtained from an internal Lassman-style model in BISON. One-way data transfer was also demonstrated in a 3D case in which azimuthal asymmetry was induced in the fission rate density profile of a fuel rod modeled in DeCART. Two-way data transfer was established by mapping the temperature distribution from BISON to DeCART. A Picard iterative algorithm was developed for the loose coupling with two-way data transfer. (authors)

  8. Vehicle Technologies Office Merit Review 2016: Fuel Design for LTC Applications: Quantifing Fuel Performance in GCI Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory (ANL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Fuel ...

  9. Rape oil methyl ester (RME) and used cooking oil methyl ester (UOME) as alternative fuels

    SciTech Connect (OSTI)

    Hohl, G.H.

    1995-12-31

    The author presents a review about the fleet tests carried out by the Austrian Armed Forces concerning the practical application of a vegetable oil, i.e Rape Oil Methyl Ester (RME) and Used Cooking Oil Methyl Ester (UOME) as alternative fuels for vehicles under military conditions, and reviews other research results carried out in Austria. As a result of over-production in Western European agriculture, the increase in crop yields has led to tremendous surpluses. Alternative agricultural products have been sought. One alternative can be seen in biological fuel production for tractors, whereby the farmer is able to produce his own fuel supply as was the case when he previously provided self-made feed for his horses. For the market introduction different activities were necessary. A considerable number of institutes and organizations including the Austrian Armed Forces have investigated, tested and developed these alternative fuels. The increasing disposal problems of used cooking oil have initiated considerations for its use. The recycling of this otherwise waste product, and its preparation for use as an alternative fuel to diesel oil, seems to be most promising.

  10. Covariance Applications in Criticality Safety, Light Water Reactor Analysis, and Spent Fuel Characterization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Williams, M. L.; Wiarda, D.; Ilas, G.; Marshall, W. J.; Rearden, B. T.

    2014-06-15

    Recently, we processed a new covariance data library based on ENDF/B-VII.1 for the SCALE nuclear analysis code system. The multigroup covariance data are discussed here, along with testing and application results for critical benchmark experiments. Moreover, the cross section covariance library, along with covariances for fission product yields and decay data, is used to compute uncertainties in the decay heat produced by a burned reactor fuel assembly.

  11. Opportunities for Micropower and Fuel Cell/Gas Turbine Hybrid Systems in Industrial Applications - Volume I

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Micropower and Fuel Cell/Gas Turbine Hybrid Systems in Industrial Applications Volume I: Main Text Subcontract No. 85X-TA009V Final Report to Lockheed Martin Energy Research Corporation and the DOE Office of Industrial Technologies January 2000 Notice: This report was prepared by Arthur D. Little for the account of Lockheed Martin Energy Research Corporation and the DOE's Office of Industrial Technologies. This report represents Arthur D. Little's best judgment in light of information made

  12. Center for Fuel Cell Research and Applications development phase. Final report

    SciTech Connect (OSTI)

    1998-12-01

    The deployment and operation of clean power generation is becoming critical as the energy and transportation sectors seek ways to comply with clean air standards and the national deregulation of the utility industry. However, for strategic business decisions, considerable analysis is required over the next few years to evaluate the appropriate application and value added from this emerging technology. To this end the Houston Advanced Research Center (HARC) is proposing a three-year industry-driven project that centers on the creation of ``The Center for Fuel Cell Research and Applications.`` A collaborative laboratory housed at and managed by HARC, the Center will enable a core group of six diverse participating companies--industry participants--to investigate the economic and operational feasibility of proton-exchange-membrane (PEM) fuel cells in a variety of applications (the core project). This document describes the unique benefits of a collaborative approach to PEM applied research, among them a shared laboratory concept leading to cost savings and shared risks as well as access to outstanding research talent and lab facilities. It also describes the benefits provided by implementing the project at HARC, with particular emphasis on HARC`s history of managing successful long-term research projects as well as its experience in dealing with industry consortia projects. The Center is also unique in that it will not duplicate the traditional university role of basic research or that of the fuel cell industry in developing commercial products. Instead, the Center will focus on applications, testing, and demonstration of fuel cell technology.

  13. Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for Transportation Applications: 2013 Update

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report is the seventh annual update of a comprehensive automotive fuel cell cost analysis conducted by Strategic Analysis under contract to the U.S. Department of Energy. The 2013 update covers fuel cell cost analysis of both light duty vehicle (automotive) and transit bus applications for only the current year (i.e., 2013).

  14. Engineering development of advanced physical fine coal cleaning for premium fuel applications

    SciTech Connect (OSTI)

    Smit, F.J.; Jha, M.C.; Phillips, D.I.; Yoon, R.H.

    1997-04-25

    The goal of this project is engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. Its scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by design and construction of a 2 t/h process development unit (PDU). Large lots of clean coal are to be produced in the PDU from three project coals. Investigation of the near-term applicability of the two advanced fine coal cleaning processes in an existing coal preparation plant is another goal of the project and is the subject of this report.

  15. Polymers for hydrogen infrastructure and vehicle fuel systems : applications, properties, and gap analysis.

    SciTech Connect (OSTI)

    Barth, Rachel Reina; Simmons, Kevin L.; San Marchi, Christopher W.

    2013-10-01

    This document addresses polymer materials for use in hydrogen service. Section 1 summarizes the applications of polymers in hydrogen infrastructure and vehicle fuel systems and identifies polymers used in these applications. Section 2 reviews the properties of polymer materials exposed to hydrogen and/or high-pressure environments, using information obtained from published, peer-reviewed literature. The effect of high pressure on physical and mechanical properties of polymers is emphasized in this section along with a summary of hydrogen transport through polymers. Section 3 identifies areas in which fuller characterization is needed in order to assess material suitability for hydrogen service.

  16. Fuel-Flexible Combustion System for Co-production Plant Applications

    SciTech Connect (OSTI)

    Joel Haynes; Justin Brumberg; Venkatraman Iyer; Jonathan Janssen; Ben Lacy; Matt Mosbacher; Craig Russell; Ertan Yilmaz; Williams York; Willy Ziminsky; Tim Lieuwen; Suresh Menon; Jerry Seitzman; Ashok Anand; Patrick May

    2008-12-31

    not have the diluent requirements of Prototype-1 and was demonstrated at targeted gas turbine conditions. The TVC combustor, Prototype-2, premixes the syngas with air for low emission performance. The combustor was designed for operation with syngas and no additional diluents. The combustor was successfully operated at targeted gas turbine conditions. Another goal of the program was to advance the status of development tools for syngas systems. In Task 3 a syngas flame evaluation facility was developed. Fundamental data on syngas flame speeds and flame strain were obtained at pressure for a wide range of syngas fuels with preheated air. Several promising reduced order kinetic mechanisms were compared with the results from the evaluation facility. The mechanism with the best agreement was selected for application to syngas combustor modeling studies in Task 6. Prototype-1 was modeled using an advanced LES combustion code. The tools and combustor technology development culminate in a full-scale demonstration of the most promising technology in Task 8. The combustor was operated at engine conditions and evaluated against the various engine performance requirements.

  17. Application of Phase-field Method in Predicting Gas Bubble Microstructure Evolution in Nuclear Fuels

    SciTech Connect (OSTI)

    Hu, Shenyang Y.; Li, Yulan; Sun, Xin; Gao, Fei; Devanathan, Ramaswami; Henager, Charles H.; Khaleel, Mohammad A.

    2010-04-30

    Fission product accumulation and gas bubble microstructure evolution in nuclear fuels strongly affect thermo-mechanical properties such as thermal conductivity, gas release, volumetric swelling and cracking, and hence the fuel performance. In this paper, a general phase-field model is developed to predict gas bubble formation and evolution. Important materials processes and thermodynamic properties including the generation of gas atoms and vacancies, sinks for vacancies and gas atoms, the elastic interaction among defects, gas re-solution, and inhomogeneity of elasticity and diffusivity are accounted for in the model. The simulations demonstrate the potential application of the phase-field method in investigating 1) heterogeneous nucleation of gas bubbles at defects; 2) effect of elastic interaction, inhomogeneity of material properties, and gas re-solution on gas bubble microstructures; and 3) effective properties from the output of phase-field simulations such as distribution of defects, gas bubbles, and stress fields.

  18. Fabrication of Yttria stabilized zirconia thin films on poroussubstrates for fuel cell applications

    SciTech Connect (OSTI)

    Leming, Andres

    2003-06-16

    A process for the deposition of yttria stabilized zirconia (YSZ) films, on porous substrates, has been developed. These films have possible applications as electrolyte membranes in fuel cells. The films were deposited from colloidal suspensions through the vacuum infiltration technique. Films were deposited on both fully sintered and partially sintered substrates. A critical cracking thickness for the films was identified and strategies are presented to overcome this barrier. Green film density was also examined, and a method for improving green density by changing suspension pH and surfactant was developed. A dependence of film density on film thickness was observed, and materials interactions are suggested as a possible cause. Non-shorted YSZ films were obtained on co-fired substrates, and a cathode supported solid oxide fuel cell was constructed and characterized.

  19. Studies on the new fuels with Santilli magnecular structure and their industrial applications

    SciTech Connect (OSTI)

    Pandhurnekar, Chandrashekhar P.

    2015-03-10

    Professor R. M. Santilli, the Italian-American physicist, for the first time in the history of Science, presented the theoretical and experimental evidence on the existence of the new chemical species of magnecules [1]. This new species mainly consist of individual atoms, radicals and conventional molecules bonded together with stable clusters under the new attractive force primarily originating from torroidal polarization of orbitals of atomic electrons under strong magnetic field. The main contribution in this area was the production of Magnegas{sup TM}, new clean fuels developed by Prof. Santilli, which are produced as byproducts of recycling nonradioactive liquid feedstock such as antifreeze waste, engine oil waste, town sewage, crude oil, etc., and generally vary with the liquid used for their production. A new technology, called Plasma Arc FlowTM, flows the waste through a submerged electric arc between conventional electrodes. The arc decomposes the liquid molecules into their atomic constituents, and forms a plasma in the immediate vicinity of the electrodes at about 10,000{sup 0} F. The technology then moves the plasma away from the electrodes, and controls its recombination into environmentally acceptable fuels. In fact, the exhaust of magnegases shows: absence of carcinogenic or other toxic substances; breathable oxygen up 14 percent; and carbon dioxide down to 0.01 percent. Since, in addition, the new fuels can be produced everywhere, and have environmentally acceptable exhausts, Magnegases offer promising possibilities to satisfy our ever increasing energy needs, as well as to contain the alarming environmental problems caused by fossil fuels. Thus, it was thought worthwhile to present some of the industrial applications of environmentally benign fuel consisting magnecular bonds [2, 3, 4, 5]. Also in the present communications, some of the experimental evidences of Santillis new chemical species i. e. Magnecules which had been published recently

  20. Conceptual design report for a Direct Hydrogen Proton Exchange Membrane Fuel Cell for transportation application

    SciTech Connect (OSTI)

    1995-09-05

    This report presents the conceptual design for a Direct-Hydrogen-Fueled Proton Exchange Membrane (PEM) Fuel Cell System for transportation applications. The design is based on the initial selection of the Chrysler LH sedan as the target vehicle with a 50 kW (gross) PEM Fuel Cell Stack (FCS) as the primary power source, a battery-powered Load Leveling Unit (LLU) for surge power requirements, an on-board hydrogen storage subsystem containing high pressure gaseous storage, a Gas Management Subsystem (GMS) to manage the hydrogen and air supplies for the FCS, and electronic controllers to control the electrical system. The design process has been dedicated to the use of Design-to-Cost (DTC) principles. The Direct Hydrogen-Powered PEM Fuel Cell Stack Hybrid Vehicle (DPHV) system is designed to operate on the Federal Urban Driving Schedule (FUDS) and Hiway Cycles. These cycles have been used to evaluate the vehicle performance with regard to range and hydrogen usage. The major constraints for the DPHV vehicle are vehicle and battery weight, transparency of the power system and drive train to the user, equivalence of fuel and life cycle costs to conventional vehicles, and vehicle range. The energy and power requirements are derived by the capability of the DPHV system to achieve an acceleration from 0 to 60 MPH within 12 seconds, and the capability to achieve and maintain a speed of 55 MPH on a grade of seven percent. The conceptual design for the DPHV vehicle is shown in a figure. A detailed description of the Hydrogen Storage Subsystem is given in section 4. A detailed description of the FCS Subsystem and GMS is given in section 3. A detailed description of the LLU, selection of the LLU energy source, and the power controller designs is given in section 5.

  1. Evaluation of unthrottled combustion system options for light duty applications with future syncrude derived fuels. Alternative Fuels Utilization Program

    SciTech Connect (OSTI)

    Needham, J. R.; Cooper, B. M.; Norris-Jones, S. R.

    1982-12-01

    An experimental program examining the interaction between several fuel and light duty automotive engine combinations is detailed. Combustion systems addressed covered indirect and direct injection diesel and spark ignited stratified charge. Fuels primarily covered D2, naphtha and intermediate broadcut blends. Low ignition quality diesel fuels were also evaluated. The results indicate the baseline fuel tolerance of each combustion system and enable characteristics of the systems to be compared. Performance, gaseous and particulate emissions aspects were assessed. The data obtained assists in the selection of candidate combustion systems for potential future fuels. Performance and environmental penalties as appropriate are highlighted relative to the individual candidates. Areas of further work for increased understanding are also reviewed.

  2. Novel Approach for Biomass Synthesis Gas Cleaning for Liquid Fuel Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Novel Approach for Biomass Synthesis Gas Cleaning for Liquid Fuel Applications WBS 3.2.5.9 May 22, 2013 Thermo-chemical Platform Review Presented by: Ben Phillips, Emery Energy Lyman Frost, Ceramatec 2 Project Overview * Start Date - 9/30/2008 * Completion Date - Dec 2012 * Construction - 100% complete * Project - 100% complete 1. Tt-C - Gasification of Wood, Biorefinery Residue Streams and Low Sugar Biomass 2. Tt-F - Syngas Cleanup & Conditioning 3. Tt-H - Validation of Syngas Quality Total

  3. Research and development of proton-exchange membrane (PEM) fuel cell system for transportation applications. Phase I final report

    SciTech Connect (OSTI)

    1996-01-01

    Objective during Phase I was to develop a methanol-fueled 10-kW fuel cell power source and evaluate its feasibility for transportation applications. This report documents research on component (fuel cell stack, fuel processor, power source ancillaries and system sensors) development and the 10-kW power source system integration and test. The conceptual design study for a PEM fuel cell powered vehicle was documented in an earlier report (DOE/CH/10435-01) and is summarized herein. Major achievements in the program include development of advanced membrane and thin-film low Pt-loaded electrode assemblies that in reference cell testing with reformate-air reactants yielded performance exceeding the program target (0.7 V at 1000 amps/ft{sup 2}); identification of oxidation catalysts and operating conditions that routinely result in very low CO levels ({le} 10 ppm) in the fuel processor reformate, thus avoiding degradation of the fuel cell stack performance; and successful integrated operation of a 10-kW fuel cell stack on reformate from the fuel processor.

  4. Results of studies on application of CCMHD to advanced fossil fuel power plant cycles

    SciTech Connect (OSTI)

    Foote, J.P.; Wu, Y.C.L.S.; Lineberry, J.T.

    1998-07-01

    A study was conducted to assess the potential for application of a Closed Cycle MHD disk generator (CCMHD) in advanced fossil fuel power generation systems. Cycle analyses were conducted for a variety of candidate power cycles, including simple cycle CCMHD (MHD); a cycle combining CCMHD and gas turbines (MHD/GT); and a triple combined cycle including CCMHD, gas turbines, and steam turbines (MHD/GT/ST). The above cycles were previously considered in cycle studies reported by Japanese researchers. Also considered was a CCMHD cycle incorporating thermochemical heat recovery through reforming of the fuel stream (MHD/REF), which is the first consideration of this approach. A gas turbine/steam turbine combined cycle (GT/ST) was also analyzed for baseline comparison. The only fuel considered in the study was CH4. Component heat and pressure losses were neglected, and the potential for NOx emission due to high combustion temperatures was not considered. Likewise, engineering limitations for cycle components, particularly the high temperature argon heater, were not considered. This approach was adopted to simplify the analysis for preliminary screening of candidate cycles. Cycle calculations were performed using in-house code. Ideal gas thermodynamic properties were calculated using the NASA SP- 273 data base, and thermodynamic properties for steam were calculated using the computerized ASME Steam Tables. High temperature equilibrium compositions for combustion gas were calculated using tabulated values of the equilibrium constants for the important reactions.

  5. TVA application of integrated onfarm fuel alcohol production system. Annual report

    SciTech Connect (OSTI)

    Badger, P C; Pile, R S

    1980-01-01

    This contract has provided for the documentation of the feasibility of fuel alcohol production with small onfarm facilities, and for the design and construction of an efficient and easily constructed production facility. A feasibility study and a preliminary design report have been prepared. A prototype facility has been designed and constructed with a design production rate of 10 gallons per hour of 190-proof ethanol. The components of the facility are readily available through normal equipment supply channels or can be primarily owner-constructed. Energy efficiency was also of prime consideration in the design, and heat recovery equipment is included where practical. A renewable fuel boiler is used for process heat. Applicable safety standards and environmental requirements were also incorporated into the design. Other project activities included modification of a pickup truck to use the hydrous alcohol produced, evaluation of vacuum distillation for onfarm units, and development of a computer program to allow detailed economic analyses of fuel alcohol production. Efforts were also initiated to evaluate nongrain feedstocks, develop a preliminary design for a low-cost wood-fired boiler, and evaluate packed distillation columns constructed of plastic pipe.

  6. Progress report Idaho on-road test with vegetable oil as a diesel fuel

    SciTech Connect (OSTI)

    Reece, D.; Peterson, C.L.

    1993-12-31

    Biodiesel is among many biofuels being considered in the US for alternative fueled vehicles. The use of this fuel can reduce US dependence on imported oil and help improve air quality by reducing gaseous and particulate emissions. Researchers at the Department of Agricultural Engineering at the University of Idaho have pioneered rapeseed oil as a diesel fuel substitute. Although UI has conducted many laboratory and tractor tests using raw rapeseed oil and rape methyl ester (RME), these fuels have not been proven viable for on-road applications. A biodiesel demonstration project has been launched to show the use of biodiesel in on-road vehicles. Two diesel powered pickups are being tested on 20 percent biodiesel and 80 percent diesel. One is a Dodge 3/4-ton pickup powered by a Cummins 5.9 liter turbocharged and intercooled engine. This engine is direct injected and is being run on 20 percent RME and 80 percent diesel. The other pickup is a Ford, powered by a Navistar 7.3 liter, naturally aspirated engine. This engine has a precombustion chamber and is being operated on 20 percent raw rapeseed oil and 80 percent diesel. The engines themselves are unmodified, but modifications have been made to the vehicles for the convenience of the test. In order to give maximum vehicle range, fuel mixing is done on-board. Two tanks are provided, one for the diesel and one for the biodiesel. Electric fuel pumps supply fuel to a combining chamber for correct proportioning. The biodiesel fuel tanks are heated with a heat exchanger which utilizes engine coolant circulation.

  7. Economics of ethanol fuel for crop production

    SciTech Connect (OSTI)

    Fontana, C.; Rotz, C.A.

    1982-07-01

    A computer model was developed to simulate conventional and ethanol fuel consumption for crop production. The model was validated by obtaining a close comparison between simulated and actual diesel requirements for farms in Michigan. Parameters for ethanol consumption were obtained from laboratory tests using total fueling of spark-ignition engines and dual-fueling of diesel engines with ethanol. Ethanol fuel will always be more economically used in spark-ignition engines than in dual-fueled diesel engines. The price of gasoline must inflate at least 14 percent/year greater than that of ethanol and diesel must inflate at least 23 percent/year more than ethanol to allow economic use of ethanol as tractor fuel within the next 5 years. (Refs. 13).

  8. A Multicomponent Blend as a Diesel Fuel Surrogate for Compression Ignition Engine Applications

    SciTech Connect (OSTI)

    Pei, Yuanjiang; Mehl, Marco; Liu, Wei; Lu, Tianfeng; Pitz, William J.; Som, Sibendu

    2015-05-12

    A mixture of n-dodecane and m-xylene is investigated as a diesel fuel surrogate for compression ignition engine applications. Compared to neat n-dodecane, this binary mixture is more representative of diesel fuel because it contains an alkyl-benzene which represents an important chemical class present in diesel fuels. A detailed multi-component mechanism for n-dodecane and m-xylene was developed by combining a previously developed n-dodecane mechanism with a recently developed mechanism for xylenes. The xylene mechanism is shown to reproduce experimental ignition data from a rapid compression machine and shock tube, speciation data from the jet stirred reactor and flame speed data. This combined mechanism was validated by comparing predictions from the model with experimental data for ignition in shock tubes and for reactivity in a flow reactor. The combined mechanism, consisting of 2885 species and 11754 reactions, was reduced to a skeletal mechanism consisting 163 species and 887 reactions for 3D diesel engine simulations. The mechanism reduction was performed using directed relation graph (DRG) with expert knowledge (DRG-X) and DRG-aided sensitivity analysis (DRGASA) at a fixed fuel composition of 77% of n-dodecane and 23% m-xylene by volume. The sample space for the reduction covered pressure of 1 – 80 bar, equivalence ratio of 0.5 – 2.0, and initial temperature of 700 – 1600 K for ignition. The skeletal mechanism was compared with the detailed mechanism for ignition and flow reactor predictions. Finally, the skeletal mechanism was validated against a spray flame dataset under diesel engine conditions documented on the Engine Combustion Network (ECN) website. These multi-dimensional simulations were performed using a Representative Interactive Flame (RIF) turbulent combustion model. Encouraging results were obtained compared to the experiments with regards to the predictions of ignition delay and lift-off length at different ambient temperatures.

  9. Test, Evaluation, and Demonstration of Practical Devices/Systems to Reduce Aerodynamic Drag of Tractor/Semitrailer Combination Unit Trucks

    SciTech Connect (OSTI)

    Scott Smith; Karla Younessi; Matt Markstaller; Dan Schlesinger; Bhaskar Bhatnagar; Donald Smith; Bruno Banceu; Ron Schoon; V.K. Sharma; Mark Kachmarsky; Srikant Ghantae; Michael Sorrels; Conal Deedy; Justin Clark; Skip Yeakel; Michael D. Laughlin; Charlotte Seigler; Sidney Diamond

    2007-04-30

    Class 8 heavy-duty trucks account for over three-quarters of the total diesel fuel used by commercial trucks (trucks with GVWRs more than 10,000 pounds) in the United States each year. At the highway speeds at which these trucks travel (i.e., 60 mph or greater), aerodynamic drag is a major part of total horsepower needed to move the truck down the highway, Reductions in aerodynamic drag can yield measurable benefits in fuel economy through the use of relatively inexpensive and simple devices. The goal of this project was to examine a number of aerodynamic drag reduction devices and systems and determine their effectiveness in reducing aerodynamic drag of Class 8 tractor/semitrailer combination-units, thus contributing to DOE's goal of reducing transportation petroleum use. The project team included major heavy truck manufacturers in the United States, along with the management and industry expertise of the Truck Manufacturers Association as the lead investigative organization. The Truck Manufacturers Association (TMA) is the national trade association representing the major North American manufacturers of Class 6-8 trucks (GVWRs over 19,500 lbs). Four major truck manufacturers participated in this project with TMA: Freightliner LLC; International Truck and Engine Corporation; Mack Trucks Inc.; and Volvo Trucks North America, Inc. Together, these manufacturers represent over three-quarters of total Class 8 truck sales in the United States. These four manufacturers pursued complementary research efforts as part of this project. The project work was separated into two phases conducted over a two-year period. In Phase I, candidate aerodynamic devices and systems were screened to focus research and development attention on devices that offered the most potential. This was accomplished using full-size vehicle tests, scale model tests, and computational fluid dynamics analyses. In Phase II, the most promising devices were installed on full-size trucks and their effect on

  10. Advancing Plug In Hybrid Technology and Flex Fuel Application on a Chrysler

    Broader source: Energy.gov (indexed) [DOE]

    Presentation by Reuben Sarkar at the Fuel Cell Seminar and Energy Exposition plenary session on November 10, 2014. Advancements and Opportunities for Fuel Cells (3.11 MB) More Documents & Publications DOE Activities and Progress in Fuel Cells and Hydrogen: 2016 Senate Fuel Cell and Hydrogen Energy Caucus Briefing Vehicle Technologies Office Merit Review 2015: Hydrogen and Fuel Cells Program Overview Hydrogen and Fuel Cells Program Overview: 2015 Annual Merit Review and Peer Evaluation

  11. Laboratory Directed Research and Development (LDRD) on Mono-uranium Nitride Fuel Development for SSTAR and Space Applications

    SciTech Connect (OSTI)

    Choi, J; Ebbinghaus, B; Meiers, T; Ahn, J

    2006-02-09

    The US National Energy Policy of 2001 advocated the development of advanced fuel and fuel cycle technologies that are cleaner, more efficient, less waste-intensive, and more proliferation resistant. The need for advanced fuel development is emphasized in on-going DOE-supported programs, e.g., Global Nuclear Energy Initiative (GNEI), Advanced Fuel Cycle Initiative (AFCI), and GEN-IV Technology Development. The Directorates of Energy & Environment (E&E) and Chemistry & Material Sciences (C&MS) at Lawrence Livermore National Laboratory (LLNL) are interested in advanced fuel research and manufacturing using its multi-disciplinary capability and facilities to support a design concept of a small, secure, transportable, and autonomous reactor (SSTAR). The E&E and C&MS Directorates co-sponsored this Laboratory Directed Research & Development (LDRD) Project on Mono-Uranium Nitride Fuel Development for SSTAR and Space Applications. In fact, three out of the six GEN-IV reactor concepts consider using the nitride-based fuel, as shown in Table 1. SSTAR is a liquid-metal cooled, fast reactor. It uses nitride fuel in a sealed reactor vessel that could be shipped to the user and returned to the supplier having never been opened in its long operating lifetime. This sealed reactor concept envisions no fuel refueling nor on-site storage of spent fuel, and as a result, can greatly enhance proliferation resistance. However, the requirement for a sealed, long-life core imposes great challenges to research and development of the nitride fuel and its cladding. Cladding is an important interface between the fuel and coolant and a barrier to prevent fission gas release during normal and accidental conditions. In fabricating the nitride fuel rods and assemblies, the cladding material should be selected based on its the coolant-side corrosion properties, the chemical/physical interaction with the nitride fuel, as well as their thermal and neutronic properties. The US NASA space reactor, the

  12. TRISO Fuel Performance: Modeling, Integration into Mainstream Design Studies, and Application to a Thorium-fueled Fusion-Fission Hybrid Blanket

    SciTech Connect (OSTI)

    Powers, Jeffrey James

    2011-11-30

    This study focused on creating a new tristructural isotropic (TRISO) coated particle fuel performance model and demonstrating the integration of this model into an existing system of neutronics and heat transfer codes, creating a user-friendly option for including fuel performance analysis within system design optimization and system-level trade-off studies. The end product enables both a deeper understanding and better overall system performance of nuclear energy systems limited or greatly impacted by TRISO fuel performance. A thorium-fueled hybrid fusion-fission Laser Inertial Fusion Energy (LIFE) blanket design was used for illustrating the application of this new capability and demonstrated both the importance of integrating fuel performance calculations into mainstream design studies and the impact that this new integrated analysis had on system-level design decisions. A new TRISO fuel performance model named TRIUNE was developed and verified and validated during this work with a novel methodology established for simulating the actual lifetime of a TRISO particle during repeated passes through a pebble bed. In addition, integrated self-consistent calculations were performed for neutronics depletion analysis, heat transfer calculations, and then fuel performance modeling for a full parametric study that encompassed over 80 different design options that went through all three phases of analysis. Lastly, side studies were performed that included a comparison of thorium and depleted uranium (DU) LIFE blankets as well as some uncertainty quantification work to help guide future experimental work by assessing what material properties in TRISO fuel performance modeling are most in need of improvement. A recommended thorium-fueled hybrid LIFE engine design was identified with an initial fuel load of 20MT of thorium, 15% TRISO packing within the graphite fuel pebbles, and a 20cm neutron multiplier layer with beryllium pebbles in flibe molten salt coolant. It operated

  13. Coca-Cola Refreshments Class 8 Diesel Electric Hybrid Tractor Evaluation: 13-Month Final Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coca-Cola Refreshments Class 8 Diesel Electric Hybrid Tractor Evaluation: 13-Month Final Report K. Walkowicz, M. Lammert, and P. Curran Technical Report NREL/TP-5400-53502 August 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308

  14. Coca-Cola Refreshments Class 8 Diesel Electric Hybrid Tractor Evaluation: 13-Month Final Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coca-Cola Refreshments Class 8 Diesel Electric Hybrid Tractor Evaluation: 13-Month Final Report K. Walkowicz, M. Lammert, and P. Curran Technical Report NREL/TP-5400-53502 August 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308

  15. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications. Hydrogen vehicle safety report

    SciTech Connect (OSTI)

    Thomas, C.E.

    1997-05-01

    This report reviews the safety characteristics of hydrogen as an energy carrier for a fuel cell vehicle (FCV), with emphasis on high pressure gaseous hydrogen onboard storage. The authors consider normal operation of the vehicle in addition to refueling, collisions, operation in tunnels, and storage in garages. They identify the most likely risks and failure modes leading to hazardous conditions, and provide potential countermeasures in the vehicle design to prevent or substantially reduce the consequences of each plausible failure mode. They then compare the risks of hydrogen with those of more common motor vehicle fuels including gasoline, propane, and natural gas.

  16. Plasmatron Fuel Reformer Development and Internal Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plasmatron Fuel Reformer Development and Internal Combustion Engine Vehicle Applications Plasmatron Fuel Reformer Development and Internal Combustion Engine Vehicle Applications ...

  17. A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat and Power and Backup Power Applications

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report prepared by the Lawrence Berkeley National Laboratory describes a total cost of ownership model for emerging applications in stationary fuel cell systems.

  18. Range of Applicability and Bias Determination for Postclosure Criticality of Commercial Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Radulescu, Georgeta; Mueller, Don; Goluoglu, Sedat; Hollenbach, Daniel F; Fox, Patricia B

    2007-10-01

    The purpose of this calculation report, Range of Applicability and Bias Determination for Postclosure Criticality of Commercial Spent Nuclear Fuel, is to validate the computational method used to perform postclosure criticality calculations. The validation process applies the criticality analysis methodology approach documented in Section 3.5 of the Disposal Criticality Analysis Methodology Topical Report. The application systems for this validation consist of waste packages containing transport, aging, and disposal canisters (TAD) loaded with commercial spent nuclear fuel (CSNF) of varying assembly types, initial enrichments, and burnup values that are expected from the waste stream and of varying degree of internal component degradation that may occur over the 10,000-year regulatory time period. The criticality computational tool being evaluated is the general-purpose Monte Carlo N-Particle (MCNP) transport code. The nuclear cross-section data distributed with MCNP 5.1.40 and used to model the various physical processes are based primarily on the Evaluated Nuclear Data File/B Version VI (ENDF/B-VI) library. Criticality calculation bias and bias uncertainty and lower bound tolerance limit (LBTL) functions for CSNF waste packages are determined based on the guidance in ANSI/ANS 8.1-1998 (Ref. 4) and ANSI/ANS 8.17-2004 (Ref. 5), as described in Section 3.5.3 of Ref. 1. The development of this report is consistent with Test Plan for: Range of Applicability and Bias Determination for Postclosure Criticality. This calculation report has been developed in support of licensing activities for the proposed repository at Yucca Mountain, Nevada, and the results of the calculation may be used in the criticality evaluation for CSNF waste packages based on a conceptual TAD canister.

  19. Sunflower power: grow your fuel to produce your food

    SciTech Connect (OSTI)

    Bruwer, J.J.

    1980-10-01

    The use of sunflower seed oil as a substitute for or extender of tractor diesel fuel is being considered by South Africa. South Afric already grows 500,000 hectares of sunflowers and even on marginal soil unsuitable for cereal grains such as maize and wheat, the crop yields well. Preliminary tests showed that most diesel engines started and operated almost normally on 100% sunflower seed oil.

  20. Engineering development of advanced physical fine coal cleaning for premium fuel applications

    SciTech Connect (OSTI)

    Shields, G.L.; Smit, F.J.; Jha, M.C.

    1997-08-28

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope included laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction and operation of 2 t/hr process development unit (PDU). This report represents the findings of the PDU Advanced Column Flotation Testing and Evaluation phase of the program and includes a discussion of the design and construction of the PDU. Three compliance steam coals, Taggart, Indiana VII and Hiawatha, were processed in the PDU to determine performance and design parameters for commercial production of premium fuel by advanced flotation. Consistent, reliable performance of the PDU was demonstrated by 72-hr production runs on each of the test coals. Its capacity generally was limited by the dewatering capacity of the clean coal filters during the production runs rather than by the flotation capacity of the Microcel column. The residual concentrations of As, Pb, and Cl were reduced by at least 25% on a heating value basis from their concentrations in the test coals. The reduction in the concentrations of Be, Cd, Cr, Co, Mn, Hg, Ni and Se varied from coal to coal but the concentrations of most were greatly reduced from the concentrations in the ROM parent coals. The ash fusion temperatures of the Taggart and Indiana VII coals, and to a much lesser extent the Hiawatha coal, were decreased by the cleaning.

  1. Making the grid the backup: Utility applications for fuel cell power

    SciTech Connect (OSTI)

    Eklof, S.L.

    1996-12-31

    Fuel cells are recognized as a versatile power generation option and accepted component of SMUD`s ART Program. SMUD has received wide support and recognition for promoting and implementing fuel cell power plants, as well as other innovative generation, based primarily on technological factors. Current economic and technical realities in the electric generation market highlight other important factors, such as the cost involved to develop a slate of such resources. The goal now is to develop only those select quality resources most likely to become commercially viable in the near future. The challenge becomes the identification of candidate technologies with the greatest potential, and then matching the technologies with the applications that will help to make them successful. Utility participation in this development is critical so as to provide the industry with case examples of advanced technologies that can be applied in a way beneficial to both the utility and its customers. The ART resource acquisitions provide the experience base upon which to guide this selection process, and should bring about the cost reductions and reliability improvements sought.

  2. SHAPE SELECTIVE NANO-CATALYSTS: TOWARD DIRECT METHANOL FUEL CELLS APPLICATIONS

    SciTech Connect (OSTI)

    Murph, S.

    2010-06-16

    A series of bimetallic core-shell-alloy type Au-Pt nanomaterials with various morphologies, aspect ratios and compositions, were produced in a heterogenous epitaxial fashion. Gold nanoparticles with well-controlled particle size and shape, e.g. spheres, rods and cubes, were used as 'seeds' for platinum growth in the presence of a mild reducing agent, ascorbic acid and a cationic surfactant cethyltrimethyl ammonium bromide (CTAB). The reactions take place in air and water, and are quick, economical and amenable for scaling up. The synthesized nanocatalysts were characterized by electron microscopy techniques and energy dispersive X-ray analysis. Nafion membranes were embedded with the Au-Pt nanomaterials and analyzed by atomic force microscopy (AFM) and scanning electron microscopy (SEM) for their potential in direct methanol fuel cells applications.

  3. Development of a Hybrid Compressor/Expander Module for Automotive Fuel Cell Applications

    SciTech Connect (OSTI)

    McTaggart, Paul

    2004-12-31

    In this program TIAX LLC conducted the development of an advanced technology compressor/expander for supplying compressed air to Proton Exchange Membrane (PEM) fuel cells in transportation applications. The overall objective of this program was to develop a hybrid compressor/expander module, based on both scroll and high-speed turbomachinery technologies, which will combine the strengths of each technology to create a concept with superior performance at minimal size and cost. The resulting system was expected to have efficiency and pressure delivery capability comparable to that of a scroll-only machine, at significantly reduced system size and weight when compared to scroll-only designs. Based on the results of detailed designs and analyses of the critical system elements, the Hybrid Compressor/Expander Module concept was projected to deliver significant improvements in weight, volume and manufacturing cost relative to previous generation systems.

  4. An Investigation to Resolve the Interaction Between Fuel Cell, Power Conditioning System and Application Loads

    SciTech Connect (OSTI)

    Sudip K. Mazumder

    2005-12-31

    Development of high-performance and durable solidoxide fuel cells (SOFCs) and a SOFC power-generating system requires knowledge of the feedback effects from the power-conditioning electronics and from application-electrical-power circuits that may pass through or excite the power-electronics subsystem (PES). Therefore, it is important to develop analytical models and methodologies, which can be used to investigate and mitigate the effects of the electrical feedbacks from the PES and the application loads (ALs) on the reliability and performance of SOFC systems for stationary and non-stationary applications. However, any such attempt to resolve the electrical impacts of the PES on the SOFC would be incomplete unless one utilizes a comprehensive analysis, which takes into account the interactions of SOFC, PES, balance-of-plant system (BOPS), and ALs as a whole. SOFCs respond quickly to changes in load and exhibit high part- and full-load efficiencies due to its rapid electrochemistry, which is not true for the thermal and mechanical time constants of the BOPS, where load-following time constants are, typically, several orders of magnitude higher. This dichotomy can affect the lifetime and durability of the SOFCSs and limit the applicability of SOFC systems for load-varying stationary and transportation applications. Furthermore, without validated analytical models and investigative design and optimization methodologies, realizations of cost-effective, reliable, and optimal PESs (and power-management controls), in particular, and SOFC systems, in general, are difficult. On the whole, the research effort can lead to (a) cost-constrained optimal PES design for high-performance SOFCS and high energy efficiency and power density, (b) effective SOFC power-system design, analyses, and optimization, and (c) controllers and modulation schemes for mitigation of electrical impacts and wider-stability margin and enhanced system efficiency.

  5. Development of Modified Pag (Polyalkylene Glycol) High VI High Fuel Efficient Lubricant for LDV Applications

    SciTech Connect (OSTI)

    Gangopadhyay, Arup; McWatt, D. G.; Zdrodowski, R. J.; Liu, Zak; Elie, Larry; Simko, S. J.; Erdemir, Ali; Ramirez, Giovanni; Cuthbert, J.; Hock, E. D.

    2015-09-30

    Engine oils play a critical role in friction reduction. Improvements in engine oil technology steadily improved fuel economy as the industry moved through ILSAC GF-1 to GF-5 specifications. These improvements were influenced by changes in base oil chemistry, development of new friction modifiers and their treat levels, and the total additive package consisting of various other components. However, the improvements are incremental and further fuel consumption reduction opportunities are becoming more challenging. Polyalkylene glycol (PAG) based engine oils are being explored as a step forward for significant fuel consumption reduction. Although PAG fluids are used in many industrial applications, its application as an engine oil has been explored in a limited way. The objective of this project is to deep dive in exploring the applicability of PAG technology in engine oil, understanding the benefits, and limitations, elucidating the mechanism(s) for friction benefits, if any, and finally recommending how to address any limitations. The project was designed in four steps, starting with selection of lubricant technology, followed by friction and wear evaluations in laboratory bench tests which are relatively simple and inexpensive and also served as a screener for further evaluation. Selected formulations were chosen for more complex engine component level tests i.e., motored valvetrain friction and wear, piston ring friction using a motored single cylinder, and motored engine tests. A couple of formulations were further selected based on component level tests for engine dyno tests i.e., Sequence VID (ASTM D6709) for fuel economy, Sequence IVA (ASTM D6891) for valvetrain wear, and Sequence VG (ASTM D6593) for sludge and varnish protection. These are some of the industry standard tests required for qualifying engine oils. Out of these tests, a single PAG oil was selected for chassis roll dynamometer tests for fuel economy and emission measurements using FTP (Federal

  6. Advancement in Fuel Spray and Combustion Modeling for Compression Ignition Engine Applications

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  7. Advancement in Fuel Spray and Combustion Modeling for Compression Ignition Engine Applications

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  8. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Application

    Broader source: Energy.gov [DOE]

    This presentation reports on the status of mass production cost estimation for direct hydrogen PEM fuel cell systems.

  9. Business Case for a Micro-Combined Heat and Power Fuel Cell System in Commercial Applications

    SciTech Connect (OSTI)

    Brooks, Kriston P.; Makhmalbaf, Atefe; Anderson, David M.; Amaya, Jodi P.; Pilli, Siva Prasad; Srivastava, Viraj; Upton, Jaki F.

    2013-10-30

    Combined heat and power fuel cell systems (CHP-FCSs) provide consistent electrical power and hot water with greater efficiency and lower emissions than alternative sources. These systems can be used either as baseload, grid-connected, or as off-the-grid power sources. This report presents a business case for CHP-FCSs in the range of 5 to 50 kWe. Systems in this power range are considered micro-CHP-FCS. For this particular business case, commercial applications rather than residential or industrial are targeted. To understand the benefits of implementing a micro-CHP-FCS, the characteristics that determine their competitive advantage must first be identified. Locations with high electricity prices and low natural gas prices are ideal locations for micro-CHP-FCSs. Fortunately, these high spark spread locations are generally in the northeastern area of the United States and California where government incentives are already in place to offset the current high cost of the micro-CHP-FCSs. As a result of the inherently high efficiency of a fuel cell and their ability to use the waste heat that is generated as a CHP, they have higher efficiency. This results in lower fuel costs than comparable alternative small-scale power systems (e.g., microturbines and reciprocating engines). A variety of markets should consider micro-CHP-FCSs including those that require both heat and baseload electricity throughout the year. In addition, the reliable power of micro-CHP-FCSs could be beneficial to markets where electrical outages are especially frequent or costly. Greenhouse gas emission levels from micro-CHP-FCSs are 69 percent lower, and the human health costs are 99.9 percent lower, than those attributed to conventional coal-fired power plants. As a result, FCSs can allow a company to advertise as environmentally conscious and provide a bottom-line sales advantage. As a new technology in the early stages of adoption, micro-CHP-FCSs are currently more expensive than alternative

  10. Advanced Composite Materials for Cold and Cryogenic Hydrogen Storage Applications in Fuel Cell Electric Vehicles Workshop Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Cold and Cryogenic Hydrogen Storage Applications in Fuel Cell Electric Vehicles Greenville Avenue Room Omni Dallas Hotel 555 S Lamar St, Dallas, TX 75202 Thursday, October 29, 2015 8:00 AM - 12:30 PM http://www.thecamx.org/other-meetings-events/ (under "Co-Located Meetings" tab) Organized by U.S. Department of Energy - Office of Energy Efficiency & Renewable Energy - Fuel Cell Technologies Office and Pacific Northwest National Laboratory Workshop Agenda: 8:00 The DOE H 2

  11. Research and Development of Proton-Exchange Membrane (PEM) Fuel Cell System for Transportation Applications: Initial Conceptual Design Report

    SciTech Connect (OSTI)

    Not Available

    1993-11-30

    This report addresses Task 1.1, model development and application, and Task 1.2, vehicle mission definition. Overall intent is to produce a methanol-fueled 10-kW power source, and to evaluate electrochemical engine (ECE) use in transportation. Major achievements include development of an ECE power source model and its integration into a comprehensive power source/electric vehicle propulsion model, establishment of candidate FCV (fuel cell powered electric vehicle) mission requirements, initial FCV studies, and a candidate FCV recommendation for further study.

  12. Demonstration of Decision Support Tools for Sustainable Development - An Application on Alternative Fuels in the Greater Yellowstone-Teton Region

    SciTech Connect (OSTI)

    Shropshire, D.E.; Cobb, D.A.; Worhach, P.; Jacobson, J.J.; Berrett, S.

    2000-12-30

    The Demonstration of Decision Support Tools for Sustainable Development project integrated the Bechtel/Nexant Industrial Materials Exchange Planner and the Idaho National Engineering and Environmental Laboratory System Dynamic models, demonstrating their capabilities on alternative fuel applications in the Greater Yellowstone-Teton Park system. The combined model, called the Dynamic Industrial Material Exchange, was used on selected test cases in the Greater Yellow Teton Parks region to evaluate economic, environmental, and social implications of alternative fuel applications, and identifying primary and secondary industries. The test cases included looking at compressed natural gas applications in Teton National Park and Jackson, Wyoming, and studying ethanol use in Yellowstone National Park and gateway cities in Montana. With further development, the system could be used to assist decision-makers (local government, planners, vehicle purchasers, and fuel suppliers) in selecting alternative fuels, vehicles, and developing AF infrastructures. The system could become a regional AF market assessment tool that could help decision-makers understand the behavior of the AF market and conditions in which the market would grow. Based on this high level market assessment, investors and decision-makers would become more knowledgeable of the AF market opportunity before developing detailed plans and preparing financial analysis.

  13. AN INVESTIGATION TO RESOLVE THE INTERACTION BETWEEN FUEL CELL, POWER CONDITIONING SYSTEM AND APPLICATION LOADS

    SciTech Connect (OSTI)

    Sudip K. Mazumder; Chuck McKintyre; Dan Herbison; Doug Nelson; Comas Haynes; Michael von Spakovsky; Joseph Hartvigsen; S. Elangovan

    2003-11-03

    Solid-Oxide Fuel Cell (SOFC) stacks respond quickly to changes in load and exhibit high part- and full-load efficiencies due to its rapid electrochemistry. However, this is not true for the thermal, mechanical, and chemical balance-of-plant subsystem (BOPS), where load-following time constants are, typically, several orders of magnitude higher. This dichotomy diminishes the reliability and performance of the electrode with increasing demand of load. Because these unwanted phenomena are not well understood, the manufacturers of SOFC use conservative schemes (such as, delayed load-following to compensate for slow BOPS response or expensive inductor filtering) to control stack responses to load variations. This limits the applicability of SOFC systems for load-varying stationary and transportation applications from a cost standpoint. Thus, a need exists for the synthesis of component- and system-level models of SOFC power-conditioning systems and the development of methodologies for investigating the system-interaction issues (which reduce the lifetime and efficiency of a SOFC) and optimizing the responses of each subsystem, leading to optimal designs of power-conditioning electronics and optimal control strategies, which mitigate the electrical-feedback effects. Equally important are ''multiresolution'' finite-element modeling and simulation studies, which can predict the impact of changes in system-level variables (e.g., current ripple and load-transients) on the local current densities, voltages, and temperature (these parameters are very difficult or cumbersome, if not impossible to obtain) within a SOFC cell. Towards that end, for phase I of this project, sponsored by the U.S. DOE (NETL), we investigate the interactions among fuel cell, power-conditioning system, and application loads and their effects on SOFC reliability (durability) and performance. A number of methodologies have been used in Phase I to develop the steady-state and transient nonlinear models of

  14. A statistical description of the types and severities of accidents involving tractor semi-trailers

    SciTech Connect (OSTI)

    Clauss, D.B.; Wilson, R.K.; Blower, D.F.; Campbell, K.L.

    1994-06-01

    This report provides a statistical description of the types and severities of tractor semi-trailer accidents involving at least one fatality. The data were developed for use in risk assessments of hazardous materials transportation. Several accident databases were reviewed to determine their suitability to the task. The TIFA (Trucks Involved in Fatal Accidents) database created at the University of Michigan Transportation Research Institute was extensively utilized. Supplementary data on collision and fire severity, which was not available in the TIFA database, were obtained by reviewing police reports for selected TIFA accidents. The results are described in terms of frequencies of different accident types and cumulative distribution functions for the peak contact velocity, rollover skid distance, fire temperature, fire size, fire separation, and fire duration.

  15. Aerodynamic drag reduction apparatus for gap-divided bluff bodies such as tractor-trailers

    DOE Patents [OSTI]

    Ortega, Jason M.; Salari, Kambiz

    2006-07-11

    An apparatus for reducing the aerodynamic drag of a bluff-bodied vehicle such as a tractor-trailer in a flowstream, the bluff-bodied vehicle of a type having a leading portion, a trailing portion connected to the leading portion, and a gap between the leading and trailing portions defining a recirculation zone. The apparatus is preferably a baffle assembly, such as a vertical panel, adapted to span a width of the gap between the leading and trailing portions so as to impede cross-flow through the gap, with the span of the baffle assembly automatically adjusting for variations in the gap width when the leading and trailing portions pivot relative to each other.

  16. ENGINEERING DEVELOPMENT OF ADVANCED PHYSICAL FINE COAL CLEANING FOR PREMIUM FUEL APPLICATIONS

    SciTech Connect (OSTI)

    none,

    1997-06-01

    Bechtel, together with Amax Research and Development Center (Amax R&D), has prepared this study which provides conceptual cost estimates for the production of premium quality coal-water slurry fuel (CWF) in a commercial plant. Two scenarios are presented, one using column flotation technology and the other the selective agglomeration to clean the coal to the required quality specifications. This study forms part of US Department of Energy program "Engineering Development of Advanced Physical Fine Coal Cleaning for Premium Fuel Applications," (Contract No. DE-AC22- 92PC92208), under Task 11, Project Final Report. The primary objective of the Department of Energy program is to develop the design base for prototype commercial advanced fine coal cleaning facilities capable of producing ultra-clean coals suitable for conversion to stable and highly loaded CWF. The fuels should contain less than 2 lb ash/MBtu (860 grams ash/GJ) of HHV and preferably less than 1 lb ash/MBtu (430 grams ash/GJ). The advanced fine coal cleaning technologies to be employed are advanced column froth flotation and selective agglomeration. It is further stipulated that operating conditions during the advanced cleaning process should recover not less than 80 percent of the carbon content (heating value) in the run-of-mine source coal. These goals for ultra-clean coal quality are to be met under the constraint that annualized coal production costs does not exceed $2.5 /MBtu ($ 2.37/GJ), including the mine mouth cost of the raw coal. A further objective of the program is to determine the distribution of a selected suite of eleven toxic trace elements between product CWF and the refuse stream of the cleaning processes. Laboratory, bench-scale and Process Development Unit (PDU) tests to evaluate advanced column flotation and selective agglomeration were completed earlier under this program with selected coal samples. A PDU with a capacity of 2 st/h was designed by Bechtel and installed at Amax R

  17. Applications of high-temperature solar heat to the production of selected fuels and chemicals

    SciTech Connect (OSTI)

    Beall, S.E. Jr.; Bamberger, C.E.; Goeller, H.A.

    1981-07-01

    An attempt is made to judge whether solar heat in the 500 K to 2500 K temperature range might be economical for some important fuel- and chemical-production processes. Previous work in related areas is reviewed and the chemicals aluminum oxide (and bauxite), calcium sulfate (and gypsum), and calcium oxide (lime) chosen for detailed study. In addition to reviewing the energy needs of the more common bulk chemicals, several innovative processes requiring heat in the 1500 to 2500 K range were investigated. Hydrogen production by several thermochemical means, carbon monoxide production by thermochemical and direct thermal dissociation, and nitrogen fixation by direct thermal reaction of nitrogen and oxygen in air were considered. The engineering feasibility of the processes is discussed. The problem of matching the conventional and innovative processes to a high-temperature solar supply is studied. Some solar-thermal power plants of current designs are examined and several advanced concepts of highly concentrating systems are considered for very high-temperature applications. Conclusions and recommendations are presented.

  18. Diamond and Hydrogenated Carbons for Advanced Batteries and Fuel Cells: Fundamental Studies and Applications.

    SciTech Connect (OSTI)

    Swain; Greg M.

    2009-04-13

    The original funding under this project number was awarded for a period 12/1999 until 12/2002 under the project title Diamond and Hydrogenated Carbons for Advanced Batteries and Fuel Cells: Fundamental Studies and Applications. The project was extended until 06/2003 at which time a renewal proposal was awarded for a period 06/2003 until 06/2008 under the project title Metal/Diamond Composite Thin-Film Electrodes: New Carbon Supported Catalytic Electrodes. The work under DE-FG02-01ER15120 was initiated about the time the PI moved his research group from the Department of Chemistry at Utah State University to the Department of Chemistry at Michigan State University. This DOE-funded research was focused on (i) understanding structure-function relationships at boron-doped diamond thin-film electrodes, (ii) understanding metal phase formation on diamond thin films and developing electrochemical approaches for producing highly dispersed electrocatalyst particles (e.g., Pt) of small nominal particle size, (iii) studying the electrochemical activity of the electrocatalytic electrodes for hydrogen oxidation and oxygen reduction and (iv) conducting the initial synthesis of high surface area diamond powders and evaluating their electrical and electrochemical properties when mixed with a Teflon binder.

  19. Systems Modeling of Chemical Hydride Hydrogen Storage Materials for Fuel Cell Applications

    SciTech Connect (OSTI)

    Brooks, Kriston P.; Devarakonda, Maruthi N.; Rassat, Scot D.; Holladay, Jamelyn D.

    2011-10-05

    A fixed bed reactor was designed, modeled and simulated for hydrogen storage on-board the vehicle for PEM fuel cell applications. Ammonia Borane (AB) was selected by DOE's Hydrogen Storage Engineering Center of Excellence (HSECoE) as the initial chemical hydride of study because of its high hydrogen storage capacity (up to {approx}16% by weight for the release of {approx}2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions. The design evaluated consisted of a tank with 8 thermally isolated sections in which H2 flows freely between sections to provide ballast. Heating elements are used to initiate reactions in each section when pressure drops below a specified level in the tank. Reactor models in Excel and COMSOL were developed to demonstrate the proof-of-concept, which was then used to develop systems models in Matlab/Simulink. Experiments and drive cycle simulations showed that the storage system meets thirteen 2010 DOE targets in entirety and the remaining four at greater than 60% of the target.

  20. Development and Validation of a Slurry Model for Chemical Hydrogen Storage in Fuel Cell Applications

    SciTech Connect (OSTI)

    Brooks, Kriston P.; Pires, Richard P.; Simmons, Kevin L.

    2014-07-25

    The US Department of Energy's (DOE) Hydrogen Storage Engineering Center of Excellence (HSECoE) is developing models for hydrogen storage systems for fuel cell-based light duty vehicle applications for a variety of promising materials. These transient models simulate the performance of the storage system for comparison to the DOE’s Technical Targets and a set of four drive cycles. The purpose of this research is to describe the models developed for slurry-based chemical hydrogen storage materials. The storage systems of both a representative exothermic system based on ammonia borane and endothermic system based on alane were developed and modeled in Simulink®. Once complete the reactor and radiator components of the model were validated with experimental data. The model was then run using a highway cycle, an aggressive cycle, cold-start cycle and hot drive cycle. The system design was adjusted to meet these drive cycles. A sensitivity analysis was then performed to identify the range of material properties where these DOE targets and drive cycles could be met. Materials with a heat of reaction greater than 11 kJ/mol H2 generated and a slurry hydrogen capacity of greater than 11.4% will meet the on-board efficiency and gravimetric capacity targets, respectively.

  1. MA3T Model Application at ORNL Assesses the Future of Fuel Cell...

    Energy Savers [EERE]

    Office (FCTO) conducts comprehensive efforts to overcome the technological, economic, and institutional barriers to the widespread commercialization of hydrogen and fuel cells. ...

  2. Computerized simulation of fuel consumption in the agriculture industry

    SciTech Connect (OSTI)

    Fontana, C.; Rotz, C.A.

    1982-07-01

    A computer model was developed to simulate conventional and ethanol fuel consumption for crop production. The model was validated by obtaining a close comparison between simulated and actual diesel requirements for farms in Michigan. Parameters for ethanol consumption were obtained from laboratory tests using total fueling of spark-ignition engines and dual-fueling of diesel engines with ethanol. Ethanol fuel will always be more economically used in spark-ignition engines than in dual-fueled diesel engines. The price of gasoline must inflate at least 14 percent/yr greater than that of ethanol and diesel must inflate at least 23 percent/yr more than ethanol to allow economic use of ethanol as tractor fuel within the next 5 years.

  3. A novel concept of QUADRISO particles Part III : applications to the plutonium-thorium fuel cycle.

    SciTech Connect (OSTI)

    Talamo, A.

    2009-03-01

    In the present study, a plutonium-thorium fuel cycle is investigated including the {sup 233}U production and utilization. A prismatic thermal High Temperature Gas Reactor (HTGR) and the novel concept of quadruple isotropic (QUADRISO) coated particles, designed at the Argonne National Laboratory, have been used for the study. In absorbing QUADRISO particles, a burnable poison layer surrounds the central fuel kernel to flatten the reactivity curve as a function of time. At the beginning of life, the fuel in the QUADRISO particles is hidden from neutrons, since they get absorbed in the burnable poison before they reach the fuel kernel. Only when the burnable poison depletes, neutrons start streaming into the fuel kernel inducing fission reactions and compensating the fuel depletion of ordinary TRISO particles. In fertile QUADRISO particles, the absorber layer is replaced by natural thorium with the purpose of flattening the excess of reactivity by the thorium resonances and producing {sup 233}U. The above configuration has been compared with a configuration where fissile (neptunium-plutonium oxide from Light Water Reactors irradiated fuel) and fertile (natural thorium oxide) fuels are homogeneously mixed in the kernel of ordinary TRISO particles. For the {sup 233}U utilization, the core has been equipped with europium oxide absorbing QUADRISO particles.

  4. Modeling and Analysis of UN TRISO Fuel for LWR Application Using the PARFUME Code

    SciTech Connect (OSTI)

    Blaise Collin

    2014-08-01

    The Idaho National Laboraroty (INL) PARFUME (particle fuel model) code was used to assess the overall fuel performance of uranium nitride (UN) tristructural isotropic (TRISO) ceramic fuel under irradiation conditions typical of a Light Water Reactor (LWR). The dimensional changes of the fuel particle layers and kernel were calculated, including the formation of an internal gap. The survivability of the UN TRISO particle was estimated depending on the strain behavior of the constituent materials at high fast fluence and burn up. For nominal cases, internal gas pressure and representative thermal profiles across the kernel and layers were determined along with stress levels in the inner and outer pyrolytic carbon (IPyC/OPyC) and silicon carbide (SiC) layers. These parameters were then used to evaluate fuel particle failure probabilities. Results of the study show that the survivability of UN TRISO fuel under LWR irradiation conditions might only be guaranteed if the kernel and PyC swelling rates are limited at high fast fluence and burn up. These material properties have large uncertainties at the irradiation levels expected to be reached by UN TRISO fuel in LWRs. Therefore, a large experimental effort would be needed to establish material properties, including kernel and PyC swelling rates, under these conditions before definitive conclusions can be drawn on the behavior of UN TRISO fuel in LWRs.

  5. FRAPCON-3: Modifications to fuel rod material properties and performance models for high-burnup application

    SciTech Connect (OSTI)

    Lanning, D.D.; Beyer, C.E.; Painter, C.L.

    1997-12-01

    This volume describes the fuel rod material and performance models that were updated for the FRAPCON-3 steady-state fuel rod performance code. The property and performance models were changed to account for behavior at extended burnup levels up to 65 Gwd/MTU. The property and performance models updated were the fission gas release, fuel thermal conductivity, fuel swelling, fuel relocation, radial power distribution, solid-solid contact gap conductance, cladding corrosion and hydriding, cladding mechanical properties, and cladding axial growth. Each updated property and model was compared to well characterized data up to high burnup levels. The installation of these properties and models in the FRAPCON-3 code along with input instructions are provided in Volume 2 of this report and Volume 3 provides a code assessment based on comparison to integral performance data. The updated FRAPCON-3 code is intended to replace the earlier codes FRAPCON-2 and GAPCON-THERMAL-2. 94 refs., 61 figs., 9 tabs.

  6. Assessment of the Current Level of Automation in the Manufacture of Fuel Cell Systems for Combined Heat and Power Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assessment of the Current Level of Automation in the Manufacture of Fuel Cell Systems for Combined Heat and Power Applications Michael Ulsh National Renewable Energy Laboratory Douglas Wheeler DJW Technology Peter Protopappas Sentech Technical Report NREL/TP-5600-52125 August 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole

  7. "Dedicated To The Continued Education, Training and Demonstration of PEM Fuel Cell Powered Lift Trucks In Real-World Applications."

    SciTech Connect (OSTI)

    Dever, Thomas J.

    2011-11-29

    The project objective was to further assist in the commercialization of fuel cell and H2 technology by building further upon the successful fuel cell lift truck deployments that were executed by LiftOne in 2007, with longer deployments of this technology in real-world applications. We involved facilities management, operators, maintenance personnel, safety groups, and Authorities Having Jurisdiction. LiftOne strived to educate a broad group from many areas of industry and the community as to the benefits of this technology. Included were First Responders from the local areas. We conducted month long deployments with end-users to validate the value proposition and the market requirements for fuel cell powered lift trucks. Management, lift truck operators, Authorities Having Jurisdiction and the general public experienced 'hands on' fuel cell experience in the material handling applications. We partnered with Hydrogenics in the execution of the deployment segment of the program. Air Products supplied the compressed H2 gas and the mobile fueler. Data from the Fuel Cell Power Packs and the mobile fueler was sent to the DOE and NREL as required. Also, LiftOne conducted the H2 Education Seminars on a rotating basis at their locations for lift trucks users and for other selected segments of the community over the project's 36 month duration. Executive Summary The technology employed during the deployments program was not new, as the equipment had been used in several previous demos and early adoptions within the material handling industry. This was the case with the new HyPx Series PEM - Fuel Cell Power Packs used, which had been demo'd before during the 2007 Greater Columbia Fuel Cell Challenge. The Air Products HF-150 Fueler was used outdoors during the deployments and had similarly been used for many previous demo programs. The methods used centered on providing this technology as the power for electric sit-down lift trucks at high profile companies operating large

  8. Breakthrough Vehicle Development - Fuel Cells

    Fuel Cell Technologies Publication and Product Library (EERE)

    Document describing research and development program for fuel cell power systems for transportation applications.

  9. Direct Carbon Conversion: Application to the Efficient Conversion of Fossil Fuels to Electricity

    SciTech Connect (OSTI)

    Cooper, J F; Cherepy, N; Berry, G; Pasternak, A; Surles, T; Steinberg, M

    2001-03-07

    We introduce a concept for efficient conversion of fossil fuels to electricity that entails the decomposition of fossil-derived hydrocarbons into carbon and hydrogen, and electrochemical conversion of these fuels in separate fuel cells. Carbon/air fuel cells have the advantages of near zero entropy change and associated heat production (allowing 100% theoretical conversion efficiency). The activities of the C fuel and CO{sub 2} product are invariant, allowing constant EMF and full utilization of fuel in single pass mode of operation. System efficiency estimates were conducted for several routes involving sequential extraction of a hydrocarbon from the fossil resource by (hydro) pyrolysis followed by thermal decomposition. The total energy conversion efficiencies of the processes were estimated to be (1) 80% for direct conversion of petroleum coke; (2) 67% HHV for CH{sub 4}; (3) 72% HHV for heavy oil (modeled using properties of decane); (4) 75.5% HHV (83% LHV) for natural gas conversion with a Rankine bottoming cycle for the H{sub 2} portion; and (5) 69% HHV for conversion of low rank coals and lignite through hydrogenation and pyrolysis of the CH{sub 4} intermediate. The cost of carbon fuel is roughly $7/GJ, based on the cost of the pyrolysis step in the industrial furnace black process. Cell hardware costs are estimated to be less than $500/kW.

  10. Application of Diagnostic/Prognostic Methods to Critical Equipment for the Spent Nuclear Fuel Cleanup Program

    SciTech Connect (OSTI)

    Casazza, Lawrence O.; Jarrell, Donald B.; Koehler, Theresa M.; Meador, Richard J.; Wallace, Dale E.

    2002-02-28

    The management of the Spent Nuclear Fuel (SNF) project at the Hanford K-Basin in the 100 N Area has successfully restructured the preventive maintenance, spare parts inventory requirements, and the operator rounds data requirements. In this investigation, they continue to examine the different facets of the operations and maintenance (O&M) of the K-Basin cleanup project in search of additional reliability and cost savings. This report focuses on the initial findings of a team of PNNL engineers engaged to identify potential opportunities for reducing the cost of O&M through the application of advanced diagnostics (fault determination) and prognostics (residual life/reliability determination). The objective is to introduce predictive technologies to eliminate or reduce high impact equipment failures. The PNNL team in conjunction with the SNF engineers found the following major opportunities for cost reduction and/or enhancing reliability: (1) Provide data routing and automated analysis from existing detection systems to a display center that will engage the operations and engineering team. This display will be operator intuitive with system alarms and integrated diagnostic capability. (2) Change operating methods to reduce major transients induced in critical equipment. This would reduce stress levels on critical equipment. (3) Install a limited sensor set on failure prone critical equipment to allow degradation or stressor levels to be monitored and alarmed. This would provide operators and engineers with advance guidance and warning of failure events. Specific methods for implementation of the above improvement opportunities are provided in the recommendations. They include an Integrated Water Treatment System (IWTS) decision support system, introduction of variable frequency drives on certain pump motors, and the addition of limited diagnostic instrumentation on specified critical equipment.

  11. Exploration of alloy 441 chemistry for solid oxide fuel cell interconnect application

    SciTech Connect (OSTI)

    Paul D. Jablonski; Christopher J. Cowen; John S. Sears

    2010-02-01

    Alloy 441 stainless steel (UNS S 44100) is being considered for application as an SOFC interconnect material. There are several advantages to the selection of this alloy over other iron-based or nickel-based alloys: first and foremost alloy 441ss is a production alloy which is both low in cost and readily available. Second, the coefficient of thermal expansion (CTE) more closely matches the CTE of the adjoining ceramic components of the fuel cell. Third, this alloy forms the Laves phase at typical SOFC operating temperatures of 600800 C. It is thought that the Laves phase preferentially consumes the Si present in the alloy microstructure. As a result it has been postulated that the long-term area specific resistance (ASR) performance degradation often seen with other ferritic stainless steels, which is associated with the formation of electrically resistive Si-rich oxide subscales, may be avoidable with alloy 441ss. In this paper we explore the physical metallurgy of alloy 441, combining computational thermodynamics with experimental verification, and discuss the results with regards to Laves phase formation under SOFC operating conditions. We show that the incorporation of the Laves phase into the microstructure cannot in itself remove sufficient Si from the ferritic matrix in order to completely avoid the formation of Si-rich oxide subscales. However, the thickness, morphology, and continuity of the Si-rich subscale that forms in this alloy is modified in comparison to non-Laves forming ferritic stainless steel alloys and therefore may not be as detrimental to long-term SOFC performance.

  12. Exploration of alloy 441 chemistry for solid oxide fuel cell interconnect application

    SciTech Connect (OSTI)

    Jablonski PD, Cowen CJ, Sears JS

    2010-02-01

    Alloy 441 stainless steel (UNS S 44100) is being considered for application as an SOFC interconnect material. There are several advantages to the selection of this alloy over other iron-based or nickel-based alloys: first and foremost alloy 441ss is a production alloy which is both low in cost and readily available. Second, the coefficient of thermal expansion (CTE) more closely matches the CTE of the adjoining ceramic components of the fuel cell. Third, this alloy forms the Laves phase at typical SOFC operating temperatures of 600800 ?C. It is thought that the Laves phase preferentially consumes the Si present in the alloy microstructure. As a result it has been postulated that the long-term area specific resistance (ASR) performance degradation often seen with other ferritic stainless steels, which is associated with the formation of electrically resistive Si-rich oxide subscales, may be avoidable with alloy 441ss. In this paper we explore the physical metallurgy of alloy 441, combining computational thermodynamics with experimental verification, and discuss the results with regards to Laves phase formation under SOFC operating conditions. We show that the incorporation of the Laves phase into the microstructure cannot in itself remove sufficient Si from the ferritic matrix in order to completely avoid the formation of Si-rich oxide subscales. However, the thickness, morphology, and continuity of the Si-rich subscale that forms in this alloy is modified in comparison to non-Laves forming ferritic stainless steel alloys and therefore may not be as detrimental to long-term SOFC performance

  13. Apparatus and method for reprocessing and separating spent nuclear fuels. [Patent application

    DOE Patents [OSTI]

    Krikorian, O.H.; Grens, J.Z.; Parrish, W.H. Sr.

    1982-01-19

    Spent nuclear fuels, including actinide fuels, volatile and non-volatile fission products, are reprocessed and separated in a molten metal solvent housed in the reaction region of a separation vessel which includes a reflux region positioned above the molten tin solvent. The reflux region minimizes loss of evaporated solvent during the separation of the actinide fuels from the volatile fission products. Additionally, inclusion of the reflux region permits the separation of the more volatile fission products (noncondensable) from the less volatile ones (condensable).

  14. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Task 6 -- Selective agglomeration laboratory research and engineering development for premium fuels

    SciTech Connect (OSTI)

    Moro, N.; Jha, M.C.

    1997-06-27

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope included laboratory research and benchscale testing on six coals to optimize these processes, followed by the design, construction, and operation of a 2 t/hr process development unit (PDU). The project began in October, 1992, and is scheduled for completion by September 1997. This report represents the findings of Subtask 6.5 Selective Agglomeration Bench-Scale Testing and Process Scale-up. During this work, six project coals, namely Winifrede, Elkhorn No. 3, Sunnyside, Taggart, Indiana VII, and Hiawatha were processed in a 25 lb/hr continuous selective agglomeration bench-scale test unit.

  15. NREL: Energy Systems Integration Facility - Fuel Distribution...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Distribution Buses The Energy Systems Integration Facility's integrated fuel distribution buses provide natural gas, hydrogen, and diesel for fueling applications. Standard, ...

  16. AMO Issues Request for Information on Clean Energy Manufacturing Topics, Including Fuel Cell and Hydrogen Applications

    Broader source: Energy.gov [DOE]

    The AMO seeks information on mid-Technology Readiness Level R&D needs, market challenges, supply chain challenges, and shared facility needs addressing clean energy manufacturing topics, including the fuel cell and hydrogen sectors.

  17. Application of the DART Code for the Assessment of Advanced Fuel Behavior

    SciTech Connect (OSTI)

    Rest, J.; Totev, T.

    2007-07-01

    The Dispersion Analysis Research Tool (DART) code is a dispersion fuel analysis code that contains mechanistically-based fuel and reaction-product swelling models, a one dimensional heat transfer analysis, and mechanical deformation models. DART has been used to simulate the irradiation behavior of uranium oxide, uranium silicide, and uranium molybdenum aluminum dispersion fuels, as well as their monolithic counterparts. The thermal-mechanical DART code has been validated against RERTR tests performed in the ATR for irradiation data on interaction thickness, fuel, matrix, and reaction product volume fractions, and plate thickness changes. The DART fission gas behavior model has been validated against UO{sub 2} fission gas release data as well as measured fission gas-bubble size distributions. Here DART is utilized to analyze various aspects of the observed bubble growth in U-Mo/Al interaction product. (authors)

  18. Development of a 10 kW PEM fuel cell for stationary applications

    SciTech Connect (OSTI)

    Barthels, H.; Mergel, J.; Oetjen, H.F.

    1996-12-31

    A 10 kW Proton Exchange Membrane Fuel Cell (PEMFC) is being developed as part of a long-term energy storage path for electricity in the photovoltaic demonstration plant called PHOEBUS at the Forschungszentrum Julich.

  19. The application of electrorefining for recovery and purification of fuel discharged from the Integral Fast Reactor

    SciTech Connect (OSTI)

    Burris, L.; Steunenberg, R.K.; Miller, W.E.

    1986-01-01

    An electrorefining process employing a molten salt electrolyte and a molten cadmium anode is proposed for the separation of uranium and plutonium from fission products and cladding material in discharged IFR driver fuel. The use of a liquid cadmium anode, which is the unique feature of the process, permits selective dissolution of the fuel from the cladding and prevents electrolytic corrosion of the steel container and contamination of the product by noble metal fission products.

  20. Literature on fabrication of tungsten for application in pyrochemical processing of spent nuclear fuels

    SciTech Connect (OSTI)

    Edstrom, C.M.; Phillips, A.G.; Johnson, L.D.; Corle, R.R.

    1980-10-11

    The pyrochemical processing of nuclear fuels requires crucibles, stirrers, and transfer tubing that will withstand the temperature and the chemical attack from molten salts and metals used in the process. This report summarizes the literature that pertains to fabrication (joining, chemical vapor deposition, plasma spraying, forming, and spinning) is the main theme. This report also summarizes a sampling of literature on molbdenum and the work previously performed at Argonne National Laboratory on other container materials used for pyrochemical processing of spent nuclear fuels.

  1. Evaluation of the hydrogen-fueled rotary engine for hybrid vehicle applications

    SciTech Connect (OSTI)

    Salanki, P.A.; Wallace, J.S.

    1996-09-01

    The hydrogen-fueled engine has been identified as a viable power unit for ultra-low emission series-hybrid vehicles. The Wankel engine is particularly well suited to the use of hydrogen fuel, since its design minimizes most of the combustion difficulties. In order to evaluate the possibilities offered by the hydrogen fueled rotary engine, dynamometer tests were conducted with a small (2.2 kW) Wankel engine fueled with hydrogen. Preliminary results show an absence of the combustion difficulties present with hydrogen-fueled homogeneous charge piston engines. The engine was operated unthrottled and power output was controlled by quality governing, i.e. by varying the fuel-air equivalence ratio on the lean side of stoichiometric. The ability to operate with quality governing is made possible by the wide flammability limits of hydrogen-air mixtures. NO{sub x} emissions are on the order of 5 ppm for power outputs up to 70% of the maximum attainable on hydrogen fuel. Thus, by operating with very lean mixtures, which effectively derates the engine, very low NO{sub x} emissions can be achieved. Since the rotary engine has a characteristically high power to weight ratio and a small volume per unit power compared to the piston engine, operating a rotary engine on hydrogen and derating the power output could yield an engine with extremely low emissions which still has weight and volume characteristics comparable to a gasoline-fueled piston engine. Finally, since engine weight and volume affect vehicle design, and consequently in-use vehicle power requirements, those factors, as well as engine efficiency, must be taken into account in evaluating overall hybrid vehicle efficiency.

  2. Application of the BISON Fuel Performance Code to the FUMEX-III Coordinated Research Project

    SciTech Connect (OSTI)

    R. L. Williamson; S. R. Novascone

    2012-04-01

    INL recently participated in FUMEX-III, an International Atomic Energy Agency sponsored fuel modeling Coordinated Research Project. A main purpose of FUMEX-III is to compare code predictions to reliable experimental data. During the same time period, the INL initiated development of a new multidimensional (2D and 3D) multiphysics nuclear fuel performance code called BISON. Interactions with international fuel modeling researchers via FUMEX-III played a significant and important role in the BISON evolution, particularly influencing the selection of material and behavioral models which are now included in the code. BISON's ability to model integral fuel rod behavior did not mature until 2011, thus the only FUMEX-III case considered was the Riso3-GE7 experiment, which includes measurements of rod outer diameter following pellet clad mechanical interaction (PCMI) resulting from a power ramp late in fuel life. BISON comparisons to the Riso3-GE7 final rod diameter measurements are quite reasonable. The INL is very interested in participation in the next Fuel Modeling Coordinated Research Project and would like to see the project initiated as soon as possible.

  3. Detailed Chemical Kinetic Modeling of Surrogate Fuels for Gasoline and Application to an HCCI Engine

    SciTech Connect (OSTI)

    Naik, C V; Pitz, W J; Sj?berg, M; Dec, J E; Orme, J; Curran, H J; Simmie, J M; Westbrook, C K

    2005-01-07

    Gasoline consists of many different classes of hydrocarbons, such as paraffins, olefins, aromatics, and cycloalkanes. In this study, a surrogate gasoline reaction mechanism is developed, and it has one representative fuel constituent from each of these classes. These selected constituents are iso-octane, n-heptane, 1-pentene, toluene, and methyl-cyclohexane. The mechanism was developed in a step-wise fashion, adding submechanisms to treat each fuel component. Reactions important for low temperature oxidation (<1000K) and cross-reactions among different fuels are incorporated into the mechanism. The mechanism consists of 1214 species and 5401 reactions. A single-zone engine model is used to evaluate how well the mechanism captures autoignition behavior for conditions corresponding to homogeneous charge compression ignition (HCCI) engine operation. Experimental data are available for both how the combustion phasing changes with fueling at a constant intake temperature, and also how the intake temperature has to be changed with pressure in order to maintain combustion phasing for a fixed equivalence ratio. Three different surrogate fuel mixtures are used for the modeling. Predictions are in reasonably good agreement with the engine data. In addition, the heat release rate is calculated and compared to the data from experiments. The model predicts less low-temperature heat release than that measured. It is found that the low temperature heat-release rate depends strongly on engine speed, reactions of RO{sub 2}+HO{sub 2}, fuel composition, and pressure boost.

  4. Summary of Off-Normal Events in US Fuel Cycle Facilities for AFCI Applications

    SciTech Connect (OSTI)

    L. C. Cadwallader; S. J. Piet; S. O. Sheetz; D. H. McGuire; W. B. Boore

    2005-09-01

    This report is a collection and review of system operation and failure experiences for facilities comprising the fission reactor fuel cycle, with the exception of reactor operations. This report includes mines, mills, conversion plants, enrichment plants, fuel fabrication plants, transportation of fuel materials between these centers, and waste storage facilities. Some of the facilities discussed are no longer operating; others continue to produce fuel for the commercial fission power plant industry. Some of the facilities discussed have been part of the military’s nuclear effort; these are included when the processes used are similar to those used for commercial nuclear power. When reading compilations of incidents and accidents, after repeated entries it is natural to form an opinion that there exists nothing but accidents. For this reason, production or throughput values are described when available. These adverse operating experiences are compiled to support the design and decisions needed for the Advanced Fuel Cycle Initiative (AFCI). The AFCI is to weigh options for a new fission reactor fuel cycle that is efficient, safe, and productive for US energy security.

  5. Development of Sensors and Sensing Technology for Hydrogen Fuel Cell Vehicle Applications

    SciTech Connect (OSTI)

    Brosha, E L; Sekhar, P K; Mukundan, R; Williamson, T; Garzon, F H; Woo, L Y; Glass, R R

    2010-01-06

    One related area of hydrogen fuel cell vehicle (FCV) development that cannot be overlooked is the anticipated requirement for new sensors for both the monitoring and control of the fuel cell's systems and for those devices that will be required for safety. Present day automobiles have dozens of sensors on-board including those for IC engine management/control, sensors for state-of-health monitoring/control of emissions systems, sensors for control of active safety systems, sensors for triggering passive safety systems, and sensors for more mundane tasks such as fluids level monitoring to name the more obvious. The number of sensors continues to grow every few years as a result of safety mandates but also in response to consumer demands for new conveniences and safety features. Some of these devices (e.g. yaw sensors for dynamic stability control systems or tire presure warning RF-based devices) may be used on fuel cell vehicles without any modification. However the use of hydrogen as a fuel will dictate the development of completely new technologies for such requirements as the detection of hydrogen leaks, sensors and systems to continuously monitor hydrogen fuel purity and protect the fuel cell stack from poisoning, and for the important, yet often taken for granted, tasks such as determining the state of charge of the hydrogen fuel storage and delivery system. Two such sensors that rely on different transduction mechanisms will be highlighted in this presentation. The first is an electrochemical device for monitoring hydrogen levels in air. The other technology covered in this work, is an acoustic-based approach to determine the state of charge of a hydride storage system.

  6. Wear of Spheroidal Graphite Cast Irons for Tractor Drive Train Components

    SciTech Connect (OSTI)

    Beltowski, Mark F; Blau, Peter Julian; Qu, Jun

    2009-01-01

    The study was prompted by a desire to improve the wear resistance of power transmission components in rear axle drives on commercial farm tractors. Reciprocating wear tests were conducted under lubricated and non-lubricated conditions on three spheroidal cast irons which varied in strength and hardness (designated GGG450, GGG600, and GGG700). Hemispherically-tipped steel pins (designed 42CrMoS4/ 41CrS4) were used as the sliders. Except for the test duration, test procedures were similar to those described in ASTM Standard Test Method G133 for linearly-reciprocating sliding. Among the three cast irons tested, the harder and stronger the alloy, the lower was its wear rate. Wear factors were approximately four orders of magnitude lower for experiments lubricated in fresh, fully-formulated lubricating oil. There was a linear relationship between Brinell hardness of the alloys and the negative logarithm of the wear factors that were expressed in (mm3/N-m). Wear of lubricated test pins was not measurable due to the presence of deposits; however under non-lubricated sliding, the ratio of the wear of the flat specimen to that of the pin decreased as the hardness of the flat specimens approached that of the pin specimen.

  7. High efficiency direct fuel cell hybrid power cycle for near term application

    SciTech Connect (OSTI)

    Steinfeld, G.; Maru, H.C.; Sanderson, R.A.

    1996-12-31

    Direct carbonate fuel cells being developed by Energy Research Corporation can generate power at an efficiency approaching 60% LHV. This unique fuel cell technology can consume natural gas and other hydrocarbon based fuels directly without requiring an external reformer, thus providing a simpler and inherently efficient power generation system. A 2 MW power plant demonstration of this technology has been initiated at an installation in the city of Santa Clara in California. A 2.85 MW commercial configuration shown in Figure 1 is presently being developed. The complete plant includes the carbonate fuel cell modules, an inverter, transformer and switchgear, a heat recovery unit and supporting instrument air and water treatment systems. The emission levels for this 2.85 MW plant are projected to be orders of magnitude below existing or proposed standards. The 30 year levelized cost of electricity, without inflation, is projected to be approximately 5{cents}/kW-h assuming capital cost for the carbonate fuel cell system of $1000/kW.

  8. Fuel flexible fuel injector

    DOE Patents [OSTI]

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  9. Hydrogen and Fuel Cell Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Activities Mr. Pete Devlin U.S. Department of Energy Fuel Cell Technologies Program Market Transformation Manager Stationary Fuel Cell Applications First National Bank of Omaha...

  10. Apparatus and method for reprocessing and separating spent nuclear fuels. [Patent application

    DOE Patents [OSTI]

    Krikorian, O.H.; Grens, J.Z.; Parrish, W.H. Sr.; Coops, M.S.

    1982-01-19

    A method and apparatus for separating and reprocessing spent nuclear fuels includes a separation vessel housing a molten metal solvent in a reaction region, a reflux region positioned above and adjacent to the reaction region, and a porous filter member defining the bottom of the separation vessel in a supporting relationship with the metal solvent. Spent fuels are added to the metal solvent. A nonoxidizing nitrogen-containing gas is introduced into the separation vessel, forming solid actinide nitrides in the metal solvent from actinide fuels, while leaving other fission products in solution. A pressure of about 1.1 to 1.2 atm is applied in the reflux region, forcing the molten metal solvent and soluble fission products out of the vessel, while leaving the solid actinide nitrides in the separation vessel.

  11. Trial operation of a phosphoric acid fuel cell (PC25) for CHP applications in Europe

    SciTech Connect (OSTI)

    Uhrig, M.; Droste, W.; Wolf, D.

    1996-12-31

    In Europe, ten 200 kW phosphoric acid fuel cells (PAFCs) produced by ONSI (PC25) are currently in operation. Their operators collaborate closely in the European Fuel Cell Users Group (EFCUG). The experience gained from trial operation by the four German operators - HEAG, HGW/HEW, Thyssengas and Ruhrgas - coincides with that of the other European operators. This experience can generally be regarded as favourable. With a view to using fuel cells in combined heat and power generation (CHP), the project described in this report, which was carried out in cooperation with the municipal utility of Bochum and Gasunie of the Netherlands, aimed at gaining experience with the PC 25 in field operation under the specific operating conditions prevailing in Europe. The work packages included heat-controlled operation, examination of plant behavior with varying gas properties and measurement of emissions under dynamic load conditions. The project received EU funding under the JOULE programme.

  12. Applications of the thermogravimetric analysis in the study of fossil fuels

    SciTech Connect (OSTI)

    Huang, He; Wang, Keyu; Wang, Shaojie

    1996-12-31

    Development and applications of thermogravimetric analysis techniques are reported. Applications include: coal structure, coal liquefaction reactions, hydroprocessing of coal-derived resids, and determination of boiling points.

  13. Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive Applications: Fuel Cell Tech Team Review

    Broader source: Energy.gov [DOE]

    This presentation reports on direct hydrogen PEMFC manufacturing cost estimation for automotive applications.

  14. Novel Application of Carbonate Fuel Cell for Capturing Carbon Dioxide from Flue Gas Streams

    SciTech Connect (OSTI)

    Jolly, Stephen; Ghezel-Ayagh, Hossein; Willman, Carl; Patel, Dilip; DiNitto, M.; Marina, Olga A.; Pederson, Larry R.; Steen, William A.

    2015-09-30

    To address concerns about climate change resulting from emission of CO2 by coal-fueled power plants, FuelCell Energy, Inc. has developed the Combined Electric Power and Carbon-dioxide Separation (CEPACS) system concept. The CEPACS system utilizes Electrochemical Membrane (ECM) technology derived from the Company’s Direct FuelCell® products. The system separates the CO2 from the flue gas of other plants and produces electric power using a supplementary fuel. FCE is currently evaluating the use of ECM to cost effectively separate CO2 from the flue gas of Pulverized Coal (PC) power plants under a U.S. Department of Energy contract. The overarching objective of the project is to verify that the ECM can achieve at least 90% CO2 capture from the flue gas with no more than 35% increase in the cost of electricity. The project activities include: 1) laboratory scale operational and performance tests of a membrane assembly, 2) performance tests of the membrane to evaluate the effects of impurities present in the coal plant flue gas, in collaboration with Pacific Northwest National Laboratory, 3) techno-economic analysis for an ECM-based CO2 capture system applied to a 550 MW existing PC plant, in partnership with URS Corporation, and 4) bench scale (11.7 m2 area) testing of an ECM-based CO2 separation and purification system.

  15. Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell Systems for Transportation Applications: 2012 Update

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report is the sixth annual update of a comprehensive automotive fuel cell cost analysis conducted by Strategic Analysis under contract to the U.S. Department of Energy. This 2012 update will cover current status technology updates since the 2011 report, as well as introduce a 2012 bus system analysis considered alongside the automotive system.

  16. Fuel Cell Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cells » Fuel Cell Systems Fuel Cell Systems The design of fuel cell systems is complex, and can vary significantly depending upon fuel cell type and application. However, several basic components are found in many fuel cell systems: Fuel cell stack Fuel processor Power conditioners Air compressors Humidifiers Fuel Cell Stack The fuel cell stack is the heart of a fuel cell power system. It generates electricity in the form of direct current (DC) from electro-chemical reactions that take place in

  17. Application of wavelet scaling function expansion continuous-energy resonance calculation method to MOX fuel problem

    SciTech Connect (OSTI)

    Yang, W.; Wu, H.; Cao, L.

    2012-07-01

    More and more MOX fuels are used in all over the world in the past several decades. Compared with UO{sub 2} fuel, it contains some new features. For example, the neutron spectrum is harder and more resonance interference effects within the resonance energy range are introduced because of more resonant nuclides contained in the MOX fuel. In this paper, the wavelets scaling function expansion method is applied to study the resonance behavior of plutonium isotopes within MOX fuel. Wavelets scaling function expansion continuous-energy self-shielding method is developed recently. It has been validated and verified by comparison to Monte Carlo calculations. In this method, the continuous-energy cross-sections are utilized within resonance energy, which means that it's capable to solve problems with serious resonance interference effects without iteration calculations. Therefore, this method adapts to treat the MOX fuel resonance calculation problem natively. Furthermore, plutonium isotopes have fierce oscillations of total cross-section within thermal energy range, especially for {sup 240}Pu and {sup 242}Pu. To take thermal resonance effect of plutonium isotopes into consideration the wavelet scaling function expansion continuous-energy resonance calculation code WAVERESON is enhanced by applying the free gas scattering kernel to obtain the continuous-energy scattering source within thermal energy range (2.1 eV to 4.0 eV) contrasting against the resonance energy range in which the elastic scattering kernel is utilized. Finally, all of the calculation results of WAVERESON are compared with MCNP calculation. (authors)

  18. A review of Title V operating permit application requirements caused by the use of waste-derived fuel at cement plants

    SciTech Connect (OSTI)

    Yarmac, R.F.

    1994-12-31

    The Clean Air Act Amendments of 1990 required the USEPA to establish a comprehensive operating permit program which is being administered by the states. Most major air pollution sources will be required to submit operating permit applications by November 15, 1995 or earlier. Portland cement plants that burn waste-derived fuel face some special permitting problems that need to be addressed during the permit application process. This paper presents a brief summary of the Title V application with special emphasis on the permitting requirements incurred by the utilization of waste fuel at cement plants.

  19. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly report, April 1--June 30, 1997

    SciTech Connect (OSTI)

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1997-12-31

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction, and operation of a 2 t/hr process development unit (PDU). Accomplishments during the quarter are described on the following tasks and subtasks: Development of near-term applications (engineering development and dewatering studies); Engineering development of selective agglomeration (bench-scale testing and process scale-up); PDU and advanced column flotation module (coal selection and procurement and advanced flotation topical report); Selective agglomeration module (module operation and clean coal production with Hiawatha, Taggart, and Indiana 7 coals); Disposition of the PDU; and Project final report. Plans for next quarter are discussed and agglomeration results of the three tested coals are presented.

  20. PERCOLATION ON GRAIN BOUNDARY NETWORKS: APPLICATION TO FISSION GAS RELEASE IN NUCLEAR FUELS

    SciTech Connect (OSTI)

    Paul C. Millett

    2012-02-01

    The percolation behavior of grain boundary networks is characterized in two- and three-dimensional lattices with circular macroscale cross-sections that correspond to nuclear fuel elements. The percolation of gas bubbles on grain boundaries, and the subsequent percolation of grain boundary networks is the primary mechanism of fission gas release from nuclear fuels. Both radial cracks and radial gradients in grain boundary property distributions are correlated with the fraction of grain boundaries vented to the free surfaces. Our results show that cracks surprisingly do not significantly increase the percolation of uniform grain boundary networks. However, for networks with radial gradients in boundary properties, the cracks can considerably raise the vented grain boundary content.

  1. Molten tin reprocessing of spent nuclear fuel elements. [Patent application; continuous process

    DOE Patents [OSTI]

    Heckman, R.A.

    1980-12-19

    A method and apparatus for reprocessing spent nuclear fuel is described. Within a containment vessel, a solid plug of tin and nitride precipitates supports a circulating bath of liquid tin therein. Spent nuclear fuel is immersed in the liquid tin under an atmosphere of nitrogen, resulting in the formation of nitride precipitates. The layer of liquid tin and nitride precipitates which interfaces the plug is solidified and integrated with the plug. Part of the plug is melted, removing nitride precipitates from the containment vessel, while a portion of the plug remains solidified to support te liquid tin and nitride precipitates remaining in the containment vessel. The process is practiced numerous times until substantially all of the precipitated nitrides are removed from the containment vessel.

  2. Development of sensors and sensing technology for hydrogen fuel cell vehicle applications

    SciTech Connect (OSTI)

    Brosha, Eric L; Sekhar, Praveen K; Mukundan, Rangchary; Williamson, Todd L; Barzon, Fernando H; Woo, Leta Y; Glass, Robert S

    2010-01-01

    One related area of hydrogen fuel cell vehicle (FCV) development that cannot be overlooked is the anticipated requirement for new sensors for both the monitoring and control of the fuel cell's systems and for those devices that will be required for safety. Present day automobiles have dozens of sensors on-board including those for IC engine management/control, sensors for state-of-health monitoring/control of emissions systems, sensors for control of active safety systems, sensors for triggering passive safety systems, and sensors for more mundane tasks such as fluids level monitoring to name the more obvious. The number of sensors continues to grow every few years as a result of safety mandates but also in response to consumer demands for new conveniences and safety features.

  3. Compliant alkali silicate sealing glass for solid oxide fuel cell applications: thermal cycle stability and chemical compatibility

    SciTech Connect (OSTI)

    Chou, Y. S.; Thomsen, Edwin C.; Williams, Riley T.; Choi, Jung-Pyung; Canfield, Nathan L.; Bonnett, Jeff F.; Stevenson, Jeffry W.; Shyam, Amit; Lara-Curzio, E.

    2011-03-01

    An alkali silicate glass (SCN-1) is currently being evaluated as a candidate sealing glass for solid oxide fuel (SOFC) applications. The glass containing ~17 mole% alkalis (K2O and Na2O) remains vitreous and compliant during SOFC operation, unlike conventional SOFC sealing glasses, which experience substantial devitrification after the sealing process. The non-crystallizing compliant sealing glass has lower glass transition and softening temperatures since the microstructure remains glassy without significant crystallite formation, and hence can relieve or reduce residual stresses and also has the potential for crack healing. Sealing approaches based on compliant glass will also need to satisfy all the mechanical, thermal, chemical, physical, and electrical requirements for SOFC applications, not only in bulk properties but also at sealing interfaces. In this first of a series of papers we will report the thermal cycle stability of the glass when sealed between two SOFC components, i.e., a NiO/YSZ anode supported YSZ bilayer and a coated ferritic stainless steel interconnect material. High temperature leak rates were monitored versus thermal cycles between 700-850oC using back pressures ranging from 0.2 psi to 1.0 psi. Isothermal stability was also evaluated in a dual environment consisting of flowing dilute H2 fuel versus ambient air. In addition, chemical compatibility at the alumina and YSZ interfaces was examined with scanning electron microscopy and energy dispersive spectroscopy. The results shed new light on the topic of SOFC glass seal development.

  4. Solid Oxide Fuel Cell Development for Auxiliary Power in Heavy Duty Vehicle Applications

    SciTech Connect (OSTI)

    Daniel T. Hennessy

    2010-06-15

    Changing economic and environmental needs of the trucking industry is driving the use of auxiliary power unit (APU) technology for over the road haul trucks. The trucking industry in the United States remains the key to the economy of the nation and one of the major changes affecting the trucking industry is the reduction of engine idling. Delphi Automotive Systems, LLC (Delphi) teamed with heavy-duty truck Original Equipment Manufacturers (OEMs) PACCAR Incorporated (PACCAR), and Volvo Trucks North America (VTNA) to define system level requirements and develop an SOFC based APU. The project defines system level requirements, and subsequently designs and implements an optimized system architecture using an SOFC APU to demonstrate and validate that the APU will meet system level goals. The primary focus is on APUs in the range of 3-5 kW for truck idling reduction. Fuels utilized were derived from low-sulfur diesel fuel. Key areas of study and development included sulfur remediation with reformer operation; stack sensitivity testing; testing of catalyst carbon plugging and combustion start plugging; system pre-combustion; and overall system and electrical integration. This development, once fully implemented and commercialized, has the potential to significantly reduce the fuel idling Class 7/8 trucks consume. In addition, the significant amounts of NOx, CO2 and PM that are produced under these engine idling conditions will be virtually eliminated, inclusive of the noise pollution. The environmental impact will be significant with the added benefit of fuel savings and payback for the vehicle operators / owners.

  5. Engineering Development of Advanced Physical Fine Coal Cleaning for Premium Fuel Applications

    SciTech Connect (OSTI)

    Smit, Frank J; Schields, Gene L; Jha, Mehesh C; Moro, Nick

    1997-09-26

    The ash in six common bituminous coals, Taggart, Winifrede, Elkhorn No. 3, Indiana VII, Sunnyside and Hiawatha, could be liberated by fine grinding to allow preparation of clean coal meeting premium fuel specifications (< 1- 2 lb/ MBtu ash and <0.6 lb/ MBtu sulfur) by laboratory and bench- scale column flotation or selective agglomeration. Over 2,100 tons of coal were cleaned in the PDU at feed rates between 2,500 and 6,000 lb/ h by Microcel™ column flotation and by selective agglomeration using recycled heptane as the bridging liquid. Parametric testing of each process and 72- hr productions runs were completed on each of the three test coals. The following results were achieved after optimization of the operating parameters: The primary objective was to develop the design base for commercial fine coal cleaning facilities for producing ultra- clean coals which can be converted into coal-water slurry premium fuel. The coal cleaning technologies to be developed were advanced column flotation and selective agglomeration, and the goal was to produce fuel meeting the following specifications.

  6. Submersion criticality safety of tungsten-rhenium urania cermet fuel for space propulsion and power applications

    SciTech Connect (OSTI)

    A.E. Craft; R. C. O'Brien; S. D. Howe; J. C. King

    2014-07-01

    Nuclear thermal rockets are the preferred propulsion technology for a manned mission to Mars, and tungsten–uranium oxide cermet fuels could provide significant performance and cost advantages for nuclear thermal rockets. A nuclear reactor intended for use in space must remain subcritical before and during launch, and must remain subcritical in launch abort scenarios where the reactor falls back to Earth and becomes submerged in terrestrial materials (including seawater, wet sand, or dry sand). Submersion increases reflection of neutrons and also thermalizes the neutron spectrum, which typically increases the reactivity of the core. This effect is typically very significant for compact, fast-spectrum reactors. This paper provides a submersion criticality safety analysis for a representative tungsten/uranium oxide fueled reactor with a range of fuel compositions. Each submersion case considers both the rhenium content in the matrix alloy and the uranium oxide volume fraction in the cermet. The inclusion of rhenium significantly improves the submersion criticality safety of the reactor. While increased uranium oxide content increases the reactivity of the core, it does not significantly affect the submersion behavior of the reactor. There is no significant difference in submersion behavior between reactors with rhenium distributed within the cermet matrix and reactors with a rhenium clad in the coolant channels. The combination of the flooding of the coolant channels in submersion scenarios and the presence of a significant amount of spectral shift absorbers (i.e. high rhenium concentration) further decreases reactivity for short reactor cores compared to longer cores.

  7. Effect Of Platooning on Fuel Consumption of Class 8 Vehicles Over a Range of Speeds, Following Distances, and Mass

    SciTech Connect (OSTI)

    Lammert, M. P.; Duran, A.; Diez, J.; Burton, K.; Nicholson, A.

    2014-10-01

    This research project evaluates fuel consumption results of two Class 8 tractor-trailer combinations platooned together compared to their standalone fuel consumption. A series of ten modified SAE Type II J1321 fuel consumption track tests were performed to document fuel consumption of two platooned vehicles and a control vehicle at varying steady-state speeds, following distances, and gross vehicle weights (GVWs). The steady-state speeds ranged from 55 mph to 70 mph, the following distances ranged from a 20-ft following distance to a 75-ft following distance, and the GVWs were 65K lbs and 80K lbs. All tractors involved had U.S. Environmental Protection Agency (EPA) SmartWay-compliant aerodynamics packages installed, and the trailers were equipped with side skirts. Effects of vehicle speed, following distance, and GVW on fuel consumption were observed and analyzed. The platooning demonstration system used in this study consisted of radar systems, Dedicated Short-Range Communication (DSRC) vehicle-to-vehicle (V2V) communications, vehicle braking and torque control interface, cameras and driver displays. The lead tractor consistently demonstrated an improvement in average fuel consumption reduction as following distance decreased, with results showing 2.7% to 5.3% fuel savings at a GVW of 65k. The trailing vehicle achieved fuel consumption savings ranging from 2.8% to 9.7%; tests during which the engine cooling fan did not operate achieved savings of 8.4% to 9.7%. 'Team' fuel savings, considering the platooned vehicles as one, ranged from 3.7% to 6.4%, with the best combined result being for 55 mph, 30-ft following distance, and 65k GVW.

  8. Coal fueled diesel system for stationary power applications-technology development

    SciTech Connect (OSTI)

    1995-08-01

    The use of coal as a fuel for diesel engines dates back to the early days of the development of the engine. Dr. Diesel envisioned his concept as a multi-fuel engine, with coal a prime candidate due to the fact that it was Germany`s primary domestic energy resource. It is interesting that the focus on coal burning diesel engines appears to peak about every twenty years as shortages of other energy resources increase the economic attractiveness of using coal. This periodic interest in coal started in Germany with the work of Diesel in the timeframe 1898-1906. Pawlikowski carried on the work from 1916 to 1928. Two German companies commercialized the technology prior to and during World War II. The next flurry of activity occurred in the United States in the period from 1957-69, with work done at Southwest Research Institute, Virginia Polytechnical University, and Howard University. The current period of activity started in 1978 with work sponsored by the Conservation and Renewable Energy Branch of the US Department of Energy. This work was done at Southwest Research Institute and by ThermoElectron at Sulzer Engine in Switzerland. In 1982, the Fossil Energy Branch of the US Department of Energy, through the Morgantown Energy Technology Center (METC) initiated a concentrated effort to develop coal burning diesel and gas turbine engines. The diesel engine work in the METC sponsored program was performed at Arthur D. Little (Cooper-Bessemer as subcontractor), Bartlesville Energy Technology Center (now NIPER), Caterpillar, Detroit Diesel Corporation, General Motor Corporation (Electromotive Division), General Electric, Southwest Research Institute, and various universities and other research and development organizations. This DOE-METC coal engine RD & D initiative which spanned the 1982-1993 timeframe is the topic of this review document. The combustion of a coal-water fuel slurry in a diesel engine is described. The engine modifications necessary are discussed.

  9. A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat and Power and Backup Power Applications

    SciTech Connect (OSTI)

    University of California, Berkeley; Wei, Max; Lipman, Timothy; Mayyas, Ahmad; Chien, Joshua; Chan, Shuk Han; Gosselin, David; Breunig, Hanna; Stadler, Michael; McKone, Thomas; Beattie, Paul; Chong, Patricia; Colella, Whitney; James, Brian

    2014-06-23

    A total cost of ownership model is described for low temperature proton exchange membrane stationary fuel cell systems for combined heat and power (CHP) applications from 1-250kW and backup power applications from 1-50kW. System designs and functional specifications for these two applications were developed across the range of system power levels. Bottom-up cost estimates were made for balance of plant costs, and detailed direct cost estimates for key fuel cell stack components were derived using design-for-manufacturing-and-assembly techniques. The development of high throughput, automated processes achieving high yield are projected to reduce the cost for fuel cell stacks to the $300/kW level at an annual production volume of 100 MW. Several promising combinations of building types and geographical location in the U.S. were identified for installation of fuel cell CHP systems based on the LBNL modelling tool DER CAM. Life-cycle modelling and externality assessment were done for hotels and hospitals. Reduced electricity demand charges, heating credits and carbon credits can reduce the effective cost of electricity ($/kWhe) by 26-44percent in locations such as Minneapolis, where high carbon intensity electricity from the grid is displaces by a fuel cell system operating on reformate fuel. This project extends the scope of existing cost studies to include externalities and ancillary financial benefits and thus provides a more comprehensive picture of fuel cell system benefits, consistent with a policy and incentive environment that increasingly values these ancillary benefits. The project provides a critical, new modelling capacity and should aid a broad range of policy makers in assessing the integrated costs and benefits of fuel cell systems versus other distributed generation technologies.

  10. Partial Oxidation Gas Turbine for Power and Hydrogen Co-Production from Coal-Derived Fuel in Industrial Applications

    SciTech Connect (OSTI)

    Joseph Rabovitser

    2009-06-30

    The report presents a feasibility study of a new type of gas turbine. A partial oxidation gas turbine (POGT) shows potential for really high efficiency power generation and ultra low emissions. There are two main features that distinguish a POGT from a conventional gas turbine. These are associated with the design arrangement and the thermodynamic processes used in operation. A primary design difference of the POGT is utilization of a non?catalytic partial oxidation reactor (POR) in place of a conventional combustor. Another important distinction is that a much smaller compressor is required, one that typically supplies less than half of the air flow required in a conventional gas turbine. From an operational and thermodynamic point of view a key distinguishing feature is that the working fluid, fuel gas provided by the OR, has a much higher specific heat than lean combustion products and more energy per unit mass of fluid can be extracted by the POGT expander than in the conventional systems. The POGT exhaust stream contains unreacted fuel that can be combusted in different bottoming ycle or used as syngas for hydrogen or other chemicals production. POGT studies include feasibility design for conversion a conventional turbine to POGT duty, and system analyses of POGT based units for production of power solely, and combined production of power and yngas/hydrogen for different applications. Retrofit design study was completed for three engines, SGT 800, SGT 400, and SGT 100, and includes: replacing the combustor with the POR, compressor downsizing for about 50% design flow rate, generator replacement with 60 90% ower output increase, and overall unit integration, and extensive testing. POGT performances for four turbines with power output up to 350 MW in POGT mode were calculated. With a POGT as the topping cycle for power generation systems, the power output from the POGT ould be increased up to 90% compared to conventional engine keeping hot section temperatures

  11. Electrochemical separation of aluminum from uranium for research reactor spent nuclear fuel applications.

    SciTech Connect (OSTI)

    Slater, S. A.; Willit, J. L.; Gay, E. C.; Chemical Engineering

    1999-01-01

    Researchers at Argonne National Laboratory (ANL) are developing an electrorefining process to treat aluminum-based spent nuclear fuel by electrochemically separating aluminum from uranium. The aluminum electrorefiner is modeled after the high-throughput electrorefiner developed at ANL. Aluminum is electrorefined, using a fluoride salt electrolyte, in a potential range of -0.1 V to -0.2 V, while uranium is electrorefined in a potential range of -0.3 V to -0.4 V; therefore, aluminum can be selectively separated electrochemically from uranium. A series of laboratory-scale experiments was performed to demonstrate the aluminum electrorefining concept. These experiments involved selecting an electrolyte (determining a suitable fluoride salt composition); selecting a crucible material for the electrochemical cell; optimizing the operating conditions; determining the effect of adding alkaline and rare earth elements to the electrolyte; and demonstrating the electrochemical separation of aluminum from uranium, using a U-Al-Si alloy as a simulant for aluminum-based spent nuclear fuel. Results of the laboratory-scale experiments indicate that aluminum can be selectively electrotransported from the anode to the cathode, while uranium remains in the anode basket.

  12. Recycled Water Reuse Permit Renewal Application for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    SciTech Connect (OSTI)

    No Name

    2014-10-01

    ABSTRACT This renewal application for the Industrial Wastewater Reuse Permit (IWRP) WRU-I-0160-01 at Idaho National Laboratory (INL), Materials and Fuels Complex (MFC) Industrial Waste Ditch (IWD) and Industrial Waste Pond (IWP) is being submitted to the State of Idaho, Department of Environmental Quality (DEQ). This application has been prepared in compliance with the requirements in IDAPA 58.01.17, Recycled Water Rules. Information in this application is consistent with the IDAPA 58.01.17 rules, pre-application meeting, and the Guidance for Reclamation and Reuse of Municipal and Industrial Wastewater (September 2007). This application is being submitted using much of the same information contained in the initial permit application, submitted in 2007, and modification, in 2012. There have been no significant changes to the information and operations covered in the existing IWRP. Summary of the monitoring results and operation activity that has occurred since the issuance of the WRP has been included. MFC has operated the IWP and IWD as regulated wastewater land treatment facilities in compliance with the IDAPA 58.01.17 regulations and the IWRP. Industrial wastewater, consisting primarily of continuous discharges of nonhazardous, nonradioactive, routinely discharged noncontact cooling water and steam condensate, periodic discharges of industrial wastewater from the MFC facility process holdup tanks, and precipitation runoff, are discharged to the IWP and IWD system from various MFC facilities. Wastewater goes to the IWP and IWD with a permitted annual flow of up to 17 million gallons/year. All requirements of the IWRP are being met. The Operations and Maintenance Manual for the Industrial Wastewater System will be updated to include any new requirements.

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Loans The Oregon Department of Energy administers the State Energy Loan Program (SELP) which offers low-interest loans for qualified projects. Eligible alternative fuel projects include fuel production facilities, dedicated feedstock production, fueling infrastructure, and fleet vehicles. Loan recipients must complete a loan application and pay a loan application fee. For more information, including application forms and interest rate and fee information, see the SELP website. (Reference Oregon

  14. SuperTruck Making Leaps in Fuel Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SuperTruck Making Leaps in Fuel Efficiency SuperTruck Making Leaps in Fuel Efficiency February 26, 2014 - 12:00am Addthis Pedestrians passing by the Energy Department headquarters in Washington, D.C., on February 19 saw quite a strange sight - an ultra-modern 18-wheeler, Class 8 tractor-trailer parked outside the headquarters building. This is no ordinary truck - €it' s called a SuperTruck, a demonstration vehicle that is part of the Energy Department's SuperTruck initiative. This program's

  15. A Novel Non-Platinum Group Electrocatalyst for PEM Fuel Cell Application

    SciTech Connect (OSTI)

    Kim, Jin Yong; Oh, Takkeun; Shin, Yongsoon; Bonnett, Jeff F.; Weil, K. Scott

    2011-04-01

    Precious-metal catalysts (predominantly Pt or Pt-based alloys supported on carbon) have traditionally been used to catalyze the electrode reactions in polymer electrolyte membrane (PEM) fuel cells. However as PEM fuel systems begin to approach commercial reality, there is an impending need to replace Pt with a lower cost alternative. The present study investigates the performance of a carbon-supported tantalum oxide material as a potential oxygen reduction reaction (ORR) catalyst for use on the cathode side of the PEM fuel cell membrane electrode assembly. Although bulk tantalum oxide tends to exhibit poor electrochemical performance due to limited electrical conductivity, it displays a high oxygen reduction potential; one that is comparable to Pt. Analysis of the Pourbaix electrochemical equilibrium database also indicates that tantalum oxide (Ta2O5) is chemically stable under the pH and applied potential conditions to which the cathode catalyst is typically exposed during stack operation. Nanoscale tantalum oxide catalysts were fabricated using two approaches, by reactive oxidation sputtering and by direct chemical synthesis, each carried out on a carbon support material. Nanoscale tantalum oxide particles measuring approximately 6nm in size that were sputtered onto carbon paper exhibited a mass-specific current density as high as one-third that of Pt when measured at 0.6V vs. NHE. However because of the two-dimensional nature of this particle-on-paper structure, which limits the overall length of the triple phase boundary junctions where the oxide, carbon paper, and aqueous electrolyte meet, the corresponding area-specific current density was quite low. The second synthesis approach yielded a more extended, three-dimensional structure via chemical deposition of nanoscale tantalum oxide particles on carbon powder. These catalysts exhibited a high ORR onset potential, comparable to that of Pt, and displayed a significant improvement in the area-specific current

  16. Fuel Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells Fuel Cells A fuel cell uses the chemical energy of hydrogen or another fuel to cleanly and efficiently produce electricity. If hydrogen is the fuel, electricity, water, and heat are the only products. Fuel cells are unique in terms of the variety of their potential applications; they can provide power for systems as large as a utility power station and as small as a laptop computer. Why Study Fuel Cells Fuel cells can be used in a wide range of applications, including transportation,

  17. Research and development of Proton-Exchange-Membrane (PEM) fuel cell system for transportation applications. Fuel cell infrastructure and commercialization study

    SciTech Connect (OSTI)

    1996-11-01

    This paper has been prepared in partial fulfillment of a subcontract from the Allison Division of General Motors under the terms of Allison`s contract with the U.S. Department of Energy (DE-AC02-90CH10435). The objective of this task (The Fuel Cell Infrastructure and Commercialization Study) is to describe and prepare preliminary evaluations of the processes which will be required to develop fuel cell engines for commercial and private vehicles. This report summarizes the work undertaken on this study. It addresses the availability of the infrastructure (services, energy supplies) and the benefits of creating public/private alliances to accelerate their commercialization. The Allison prime contract includes other tasks related to the research and development of advanced solid polymer fuel cell engines and preparation of a demonstration automotive vehicle. The commercialization process starts when there is sufficient understanding of a fuel cell engine`s technology and markets to initiate preparation of a business plan. The business plan will identify each major step in the design of fuel cell (or electrochemical) engines, evaluation of the markets, acquisition of manufacturing facilities, and the technical and financial resources which will be required. The process will end when one or more companies have successfully developed and produced fuel cell engines at a profit. This study addressed the status of the information which will be required to prepare business plans, develop the economic and market acceptance data, and to identify the mobility, energy and environment benefits of electrochemical or fuel cell engines. It provides the reader with information on the status of fuel cell or electrochemical engine development and their relative advantages over competitive propulsion systems. Recommendations and descriptions of additional technical and business evaluations that are to be developed in more detail in Phase II, are included.

  18. Electrical Stability of a Novel Refractory Sealing Glass in a Dual Environment for Solid Oxide Fuel Cell Applications

    SciTech Connect (OSTI)

    Chou, Y. S.; Stevenson, Jeffry W.; Meinhardt, Kerry D.

    2010-03-01

    A novel refractory alkaline-earth silicate (Sr-Ca-Y-B-Si) sealing glass was developed for solid oxide fuel cell (SOFC) applications. The glass was sealed between two metallic interconnect plates and tested for electrical stability at elevated temperatures and duel environments under DC loading. The isothermal aging results showed very stable electrical resistivity with values 5-9 orders of magnititudes higher than typical SOFC function materials at 850 degrees C for ~700 hr. For comparison, the state-of-the-art sealing glass (G18, Ba-Ca-Al-B-Si) was also evaluated in a similar condition and showed less stable in accelerated tests at 830 degrees C for ~100 hr. Interfacial microstruicture was characterized and possible reactions were discussed.

  19. Catalyst inks and method of application for direct methanol fuel cells

    DOE Patents [OSTI]

    Zelenay, Piotr; Davey, John; Ren, Xiaoming; Gottesfeld, Shimshon; Thomas, Sharon C.

    2004-02-24

    Inks are formulated for forming anode and cathode catalyst layers and applied to anode and cathode sides of a membrane for a direct methanol fuel cell. The inks comprise a Pt catalyst for the cathode and a Pt--Ru catalyst for the anode, purified water in an amount 4 to 20 times that of the catalyst by weight, and a perfluorosulfonic acid ionomer in an amount effective to provide an ionomer content in the anode and cathode surfaces of 20% to 80% by volume. The inks are prepared in a two-step process while cooling and agitating the solutions. The final solution is placed in a cooler and continuously agitated while spraying the solution over the anode or cathode surface of the membrane as determined by the catalyst content.

  20. Transient fission-gas behavior in uranium nitride fuel under proposed space applications. Doctoral thesis

    SciTech Connect (OSTI)

    Deforest, D.L.

    1991-12-01

    In order to investigate whether fission gas swelling and release would be significant factors in a space based nuclear reactor operating under the Strategic Defense Initiative (SDI) program, the finite element program REDSTONE (Routine For Evaluating Dynamic Swelling in Transient Operational Nuclear Environments) was developed to model the 1-D, spherical geometry diffusion equations describing transient fission gas behavior in a single uranium nitride fuel grain. The equations characterized individual bubbles, rather than bubble groupings. This limits calculations to those scenarios where low temperatures, low burnups, or both were present. Instabilities in the bubble radii calculations forced the implementation of additional constraints limiting the bubble sizes to minimum and maximum (equilibrium) radii. The validity of REDSTONE calculations were checked against analytical solutions for internal consistency and against experimental studies for agreement with swelling and release results.

  1. Slurry-Based Chemical Hydrogen Storage Systems for Automotive Fuel Cell Applications

    SciTech Connect (OSTI)

    Brooks, Kriston P.; Semelsberger, Troy; Simmons, Kevin L.; Van Hassel, Bart A.

    2014-05-30

    In this paper, the system designs for hydrogen storage using chemical hydrogen materials in an 80 kWe fuel cell, light-duty vehicle are described. Ammonia borane and alane are used for these designs to represent the general classes of exothermic and endothermic materials. The designs are then compared to the USDRIVE/DOE developed set of system level targets for on-board storage. While most of the DOE targets are predicted to be achieved based on the modeling, the system gravimetric and volumetric densities were more challenging and became the focus of this work. The resulting system evaluation determined that the slurry is majority of the system mass. Only modest reductions in the system mass can be expected with improvements in the balance of plant components. Most of the gravimetric improvements will require developing materials with higher inherent storage capacity or by increasing the solids loading of the chemical hydrogen storage material in the slurry.

  2. Opportunities with Fuel Cells

    Reports and Publications (EIA)

    1994-01-01

    The concept for fuel cells was discovered in the nineteenth century. Today, units incorporating this technology are becoming commercially available for cogeneration applications.

  3. Poly(cyclohexadiene)-Based Polymer Electrolyte Membranes for Fuel Cell Applications

    SciTech Connect (OSTI)

    Mays, Jimmy W.

    2011-03-07

    The goal of this research project was to create and develop fuel cell membranes having high proton conductivity at high temperatures and high chemical and mechanical durability. Poly(1,3-cyclohexadiene) (PCHD) is of interest as an alternative polymer electrolyte membrane (PEM) material due to its ring-like structure which is expected to impart superior mechanical and thermal properties, and due to the fact that PCHD can readily be incorporated into a range of homopolymer and copolymer structures. PCHD can be aromatized, sulfonated, or fluorinated, allowing for tuning of key performance structure and properties. These factors include good proton transport, hydrophilicity, permeability (including fuel gas impermeability), good mechanical properties, morphology, thermal stability, crystallinity, and cost. The basic building block, 1,3-cyclohexadiene, is a hydrocarbon monomer that could be inexpensively produced on a commercial scale (pricing typical of other hydrocarbon monomers). Optimal material properties will result in novel low cost PEM membranes engineered for high conductivity at elevated temperatures and low relative humidities, as well as good performance and durability. The primary objectives of this project were: (1) To design, synthesize and characterize new non-Nafion PEM materials that conduct protons at low (25-50%) RH and at temperatures ranging from room temperature to 120 C; and (2) To achieve these objectives, a range of homopolymer and copolymer materials incorporating poly(cyclohexadiene) (PCHD) will be synthesized, derivatized, and characterized. These two objectives have been achieved. Sulfonated and crosslinked PCHD homopolymer membranes exhibit proton conductivities similar to Nafion in the mid-RH range, are superior to Nafion at higher RH, but are poorer than Nafion at RH < 50%. Thus to further improve proton conductivity, particularly at low RH, poly(ethylene glycol) (PEG) was incorporated into the membrane by blending and by

  4. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2008 Update

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report estimates fuel cell system cost for systems produced in the years 2006, 2010, and 2015, and is the second annual update of a comprehensive automotive fuel cell cost analysis.

  5. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2007 Update

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report estimates fuel cell system cost for systems produced in the years 2007, 2010, and 2015, and is the first annual update of a comprehensive automotive fuel cell cost analysis.

  6. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications. 2008 Update

    SciTech Connect (OSTI)

    James, Brian D.; Kalinoski, Jeffrey A.

    2009-03-26

    This report estimates fuel cell system cost for systems produced in the years 2006, 2010, and 2015, and is the second annual update of a comprehensive automotive fuel cell cost analysis.

  7. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2008 Update

    Broader source: Energy.gov [DOE]

    Report estimates fuel cell system cost for systems produced in the years 2006, 2010, and 2015, and is the second annual update of a comprehensive automotive fuel cell cost analysis.

  8. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2007 Update

    SciTech Connect (OSTI)

    James, Brian D.; Kalinoski, Jeffrey A.

    2008-02-29

    This report estimates fuel cell system cost for systems produced in the years 2007, 2010, and 2015, and is the first annual update of a comprehensive automotive fuel cell cost analysis.

  9. The Application of High Energy Ignition and Boosting/Mixing Technology to Increase Fuel Economy in Spark Ignition Gasoline Engines by Increasing EGR Dilution Capability

    SciTech Connect (OSTI)

    Keating, Edward; Gough, Charles

    2015-07-07

    This report summarizes activities conducted in support of the project “The Application of High Energy Ignition and Boosting/Mixing Technology to Increase Fuel Economy in Spark Ignition Gasoline Engines by Increasing EGR Dilution Capability” under COOPERATIVE AGREEMENT NUMBER DE-EE0005654, as outlined in the STATEMENT OF PROJECT OBJECTIVES (SOPO) dated May 2012.

  10. Careers in Fuel Cell Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Careers In Fuel Cell Technologies Existing and emerging fuel cell applications hold large job growth potential. Fuel cells are among the promising technologies that are expected to transform our energy sector. They represent highly efficient and fuel- flexible technologies that offer diverse benefits. For example, fuel cells can be used in a wide range of applications- from portable electronics, to combined heat and power (CHP) units used for distributed electricity generation, to passenger

  11. Fuel Cells Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cells Fuel cells are the most energy efficient devices for extracting power from fuels. Capable of running on a variety of fuels, including hydrogen, natural gas, and biogas, fuel cells can provide clean power for applications ranging from less than a watt to multiple megawatts. Our transportation-including personal vehicles, trucks, buses, marine vessels, and other specialty vehicles such as lift trucks and ground support equipment, as well as auxiliary power units for traditional

  12. Coal-Based Oxy-Fuel System Evaluation and Combustor Development; Oxy-Fuel Turbomachinery Development for Energy Intensive Industrial Applications

    SciTech Connect (OSTI)

    Hollis, Rebecca

    2013-03-31

    Clean Energy Systems, Inc. (CES) partnered with the U.S. Department of Energy’s National Energy Technology Laboratory in 2005 to study and develop a competing technology for use in future fossil-fueled power generation facilities that could operate with near zero emissions. CES’s background in oxy-fuel (O-F) rocket technology lead to the award of Cooperative Agreement DE-FC26-05NT42645, “Coal-Based Oxy-Fuel System Evaluation and Combustor Development,” where CES was to first evaluate the potential of these O-F power cycles, then develop the detailed design of a commercial-scale O-F combustor for use in these clean burning fossil-fueled plants. Throughout the studies, CES found that in order to operate at competitive cycle efficiencies a high-temperature intermediate pressure turbine was required. This led to an extension of the Agreement for, “Oxy-Fuel Turbomachinery Development for Energy Intensive Industrial Applications” where CES was to also develop an intermediate-pressure O-F turbine (OFT) that could be deployed in O-F industrial plants that capture and sequester >99% of produced CO2, at competitive cycle efficiencies using diverse fuels. The following report details CES’ activities from October 2005 through March 2013, to evaluate O-F power cycles, develop and validate detailed designs of O-F combustors (main and reheat), and to design, manufacture, and test a commercial-scale OFT, under the three-phase Cooperative Agreement.

  13. Fuel Processors for PEM Fuel Cells

    SciTech Connect (OSTI)

    Levi T. Thompson

    2008-08-08

    Fuel cells are being developed to power cleaner, more fuel efficient automobiles. The fuel cell technology favored by many automobile manufacturers is PEM fuel cells operating with H2 from liquid fuels like gasoline and diesel. A key challenge to the commercialization of PEM fuel cell based powertrains is the lack of sufficiently small and inexpensive fuel processors. Improving the performance and cost of the fuel processor will require the development of better performing catalysts, new reactor designs and better integration of the various fuel processing components. These components and systems could also find use in natural gas fuel processing for stationary, distributed generation applications. Prototype fuel processors were produced, and evaluated against the Department of Energy technical targets. Significant advances were made by integrating low-cost microreactor systems, high activity catalysts, π-complexation adsorbents, and high efficiency microcombustor/microvaporizers developed at the University of Michigan. The microreactor system allowed (1) more efficient thermal coupling of the fuel processor operations thereby minimizing heat exchanger requirements, (2) improved catalyst performance due to optimal reactor temperature profiles and increased heat and mass transport rates, and (3) better cold-start and transient responses.

  14. Application of Hydrogen Assisted Lean Operation to Natural Gas-Fueled Reciprocating Engines (HALO)

    SciTech Connect (OSTI)

    Chad Smutzer

    2006-01-01

    Two key challenges facing Natural Gas Engines used for cogeneration purposes are spark plug life and high NOx emissions. Using Hydrogen Assisted Lean Operation (HALO), these two keys issues are simultaneously addressed. HALO operation, as demonstrated in this project, allows stable engine operation to be achieved at ultra-lean (relative air/fuel ratios of 2) conditions, which virtually eliminates NOx production. NOx values of 10 ppm (0.07 g/bhp-hr NO) for 8% (LHV H2/LHV CH4) supplementation at an exhaust O2 level of 10% were demonstrated, which is a 98% NOx emissions reduction compared to the leanest unsupplemented operating condition. Spark ignition energy reduction (which will increase ignition system life) was carried out at an oxygen level of 9%, leading to a NOx emission level of 28 ppm (0.13 g/bhp-hr NO). The spark ignition energy reduction testing found that spark energy could be reduced 22% (from 151 mJ supplied to the coil) with 13% (LHV H2/LHV CH4) hydrogen supplementation, and even further reduced 27% with 17% hydrogen supplementation, with no reportable effect on NOx emissions for these conditions and with stable engine torque output. Another important result is that the combustion duration was shown to be only a function of hydrogen supplementation, not a function of ignition energy (until the ignitability limit was reached). The next logical step leading from these promising results is to see how much the spark energy reduction translates into increase in spark plug life, which may be accomplished by durability testing.

  15. Coal-fueled diesel system for stationary power applications -- Technology development. Final report, March 1988--June 1994

    SciTech Connect (OSTI)

    1995-10-01

    Morgantown Energy Technology Center, Cooper-Bessemer and Arthur D. Little have developed the technology to enable coal-water slurry to be utilized in large-bore, medium-speed diesel engines. The target application is modular power generation in the 10 to 100 MW size, with each plant using between two and eight engines. Such systems are expected to be economically attractive in the non-utility generation market after 2000, when oil and natural gas prices are expected to escalate rapidly compared to the price of coal. During this development program, over 1,000 hours of prototype engine operation have been achieved on coal-water slurry (CWS), including over 100 hours operation of a six-cylinder, 1.8 MW engine with an integrated emissions control system. Arthur D. Little, Inc., managed the coal-fueled diesel development, with Cooper-Bessemer as the principal subcontractor responsible for the engine design and testing. Several key technical advances which enable the viability of the coal-fueled diesel engine were made under this program. Principal among them are the development and demonstration of (1) durable injection nozzles; (2) an integrated emissions control system; ad (3) low-cost clean coal slurry formulations optimized for the engine. Significant advances in all subsystem designs were made to develop the full-scale Cooper-Bessemer coal engine components in preparation for a 100-hour proof-of-concept test of an integrated system, including emissions controls. The Clean Coal Diesel power plant of the future will provide a cost-competitive, low-emissions, modular, coal-based power generation option to the non-utility generation, small utility, independent power producer, and cogeneration markets. Combined cycle efficiencies will be approximately 48% (lower heating value basis) and installed cost will be approximately $1,300/kW (1992 dollars).

  16. Advancing Inverse Sensitivity/Uncertainty Methods for Nuclear Fuel Cycle Applications

    SciTech Connect (OSTI)

    Arbanas, Goran; Williams, Mark L; Leal, Luiz C; Dunn, Michael E; Khuwaileh, Bassam A.; Wang, C; Abdel-Khalik, Hany

    2015-01-01

    The inverse sensitivity/uncertainty quantification (IS/UQ) method has recently been implemented in the Inverse Sensitivity/UnceRtainty Estimiator (INSURE) module of the AMPX system [1]. The IS/UQ method aims to quantify and prioritize the cross section measurements along with uncer- tainties needed to yield a given nuclear application(s) target response uncertainty, and doing this at a minimum cost. Since in some cases the extant uncertainties of the differential cross section data are already near the limits of the present-day state-of-the-art measurements, requiring significantly smaller uncertainties may be unrealistic. Therefore we have incorporated integral benchmark exper- iments (IBEs) data into the IS/UQ method using the generalized linear least-squares method, and have implemented it in the INSURE module. We show how the IS/UQ method could be applied to systematic and statistical uncertainties in a self-consistent way. We show how the IS/UQ method could be used to optimize uncertainties of IBE s and differential cross section data simultaneously.

  17. Seventh Edition Fuel Cell Handbook

    SciTech Connect (OSTI)

    NETL

    2004-11-01

    Provides an overview of fuel cell technology and research projects. Discusses the basic workings of fuel cells and their system components, main fuel cell types, their characteristics, and their development status, as well as a discussion of potential fuel cell applications.

  18. Application of Neutron-Absorbing Structural-Amorphous Metal (SAM) Coatings for Spent Nuclear Fuel (SNF) Container to Enhance Criticality Safety Controls

    SciTech Connect (OSTI)

    Choi, Jor-Shan; Lee, Chuck; Farmer, Joseph; Day, Dan; Wall, Mark; Saw, Cheng; Boussoufi, Moe; Liu, Ben; Egbert, Harold; Branagan, Dan; D'Amato, Andy

    2007-07-01

    Spent nuclear fuel contains fissionable materials ({sup 235}U, {sup 239}Pu, {sup 241}Pu, etc.). To prevent nuclear criticality in spent fuel storage, transportation, and during disposal, neutron-absorbing materials (or neutron poisons, such as borated stainless steel, Boral{sup TM}, Metamic{sup TM}, Ni-Gd, and others) would have to be applied. The success in demonstrating that the High-Performance Corrosion- Resistant Material (HPCRM){sup [1]} can be thermally applied as coating onto base metal to provide for corrosion resistance for many naval applications raises the interest in applying the HPCRM to USDOE/OCRWM spent fuel management program. The fact that the HPCRM relies on the high content of boron to make the material amorphous - an essential property for corrosion resistance - and that the boron has to be homogeneously distributed in the HPCRM qualify the material to be a neutron poison. (authors)

  19. Application

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Application Searchable Application Supplemental Information

  20. Laminated exfoliated graphite composite-metal compositions for fuel cell flow field plate or bipolar plate applications

    DOE Patents [OSTI]

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z

    2014-05-20

    An electrically conductive laminate composition for fuel cell flow field plate or bipolar plate applications. The laminate composition comprises at least a thin metal sheet having two opposed exterior surfaces and a first exfoliated graphite composite sheet bonded to the first of the two exterior surfaces of the metal sheet wherein the exfoliated graphite composite sheet comprises: (a) expanded or exfoliated graphite and (b) a binder or matrix material to bond the expanded graphite for forming a cohered sheet, wherein the binder or matrix material is between 3% and 60% by weight based on the total weight of the first exfoliated graphite composite sheet. Preferably, the first exfoliated graphite composite sheet further comprises particles of non-expandable graphite or carbon in the amount of between 3% and 60% by weight based on the total weight of the non-expandable particles and the expanded graphite. Further preferably, the laminate comprises a second exfoliated graphite composite sheet bonded to the second surface of the metal sheet to form a three-layer laminate. Surface flow channels and other desired geometric features can be built onto the exterior surfaces of the laminate to form a flow field plate or bipolar plate. The resulting laminate has an exceptionally high thickness-direction conductivity and excellent resistance to gas permeation.

  1. Interoperability of Materials Database Systems in Support of Nuclear Energy Development and Potential Applications for Fuel Cell Material Selection

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lin, Lianshan; Austin, Timothy; Ren, Weiju

    2015-01-01

    Materials database interoperability has been of great interest in recent years for information exchange in support of research and development (R&D). In response to data and knowledge sharing needs of the GenIV International Forum (GIF) for global collaboration in nuclear energy R&D, the European Commission JRC Institute for Energy and Transport (JRC-IET) and the Oak Ridge National Laboratory (ORNL) have established a materials database interoperability project that develops techniques for automated materials data exchange between systems hosted at the two institutes MatDB Online at JRC IET and the Gen IV Materials Handbook at ORNL, respectively. The work to enable automatedmore » exchange of data between the two systems leverages the XML data import and export functionalities of both systems in combination with recently developed standards for engineering materials data. The preliminary results of data communication between the two systems have demonstrated the feasibility and efficiency of materials database interoperability, which constructs an interoperation framework that can be seamlessly integrated into the high-throughput First Principles material databases and thus advance the discovery of novel materials in fuel cell applications.« less

  2. Assessment of the Current Level of Automation in the Manufacture of Fuel Cell Systems for Combined Heat and Power Applications

    SciTech Connect (OSTI)

    Ulsh, M.; Wheeler, D.; Protopappas, P.

    2011-08-01

    The U.S. Department of Energy (DOE) is interested in supporting manufacturing research and development (R&D) for fuel cell systems in the 10-1,000 kilowatt (kW) power range relevant to stationary and distributed combined heat and power applications, with the intent to reduce manufacturing costs and increase production throughput. To assist in future decision-making, DOE requested that the National Renewable Energy Laboratory (NREL) provide a baseline understanding of the current levels of adoption of automation in manufacturing processes and flow, as well as of continuous processes. NREL identified and visited or interviewed key manufacturers, universities, and laboratories relevant to the study using a standard questionnaire. The questionnaire covered the current level of vertical integration, the importance of quality control developments for automation, the current level of automation and source of automation design, critical balance of plant issues, potential for continuous cell manufacturing, key manufacturing steps or processes that would benefit from DOE support for manufacturing R&D, the potential for cell or stack design changes to support automation, and the relationship between production volume and decisions on automation.

  3. Interoperability of Materials Database Systems in Support of Nuclear Energy Development and Potential Applications for Fuel Cell Material Selection

    SciTech Connect (OSTI)

    Lin, Lianshan; Austin, Timothy; Ren, Weiju

    2015-01-01

    Materials database interoperability has been of great interest in recent years for information exchange in support of research and development (R&D). In response to data and knowledge sharing needs of the GenIV International Forum (GIF) for global collaboration in nuclear energy R&D, the European Commission JRC Institute for Energy and Transport (JRC-IET) and the Oak Ridge National Laboratory (ORNL) have established a materials database interoperability project that develops techniques for automated materials data exchange between systems hosted at the two institutes MatDB Online at JRC IET and the Gen IV Materials Handbook at ORNL, respectively. The work to enable automated exchange of data between the two systems leverages the XML data import and export functionalities of both systems in combination with recently developed standards for engineering materials data. The preliminary results of data communication between the two systems have demonstrated the feasibility and efficiency of materials database interoperability, which constructs an interoperation framework that can be seamlessly integrated into the high-throughput First Principles material databases and thus advance the discovery of novel materials in fuel cell applications.

  4. Vehicle Technologies Office Merit Review 2014: Advancement in Fuel Spray and Combustion Modeling for Compression Ignition Engine Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advancement in...

  5. A comparison of geospatially modeled fire behavior and potential application to fire and fuels management for the Savannah River Site.

    SciTech Connect (OSTI)

    Kurth, Laurie; Hollingsworth, LaWen; Shea, Dan

    2011-12-20

    This study evaluates modeled fire behavior for the Savannah River Site in the Atlantic Coastal Plain of the southeastern U.S. using three data sources: FCCS, LANDFIRE, and SWRA. The Fuel Characteristic Classification System (FCCS) was used to build fuelbeds from intensive field sampling of 629 plots. Custom fire behavior fuel models were derived from these fuelbeds. LANDFIRE developed surface fire behavior fuel models and canopy attributes for the U.S. using satellite imagery informed by field data. The Southern Wildfire Risk Assessment (SWRA) developed surface fire behavior fuel models and canopy cover for the southeastern U.S. using satellite imagery.

  6. Fuel Options

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Production Market Transformation Fuel Cells Predictive Simulation of Engines ... Twitter Google + Vimeo Newsletter Signup SlideShare Fuel Options HomeCapabilitiesFuel ...

  7. Fuel cell report to congress

    SciTech Connect (OSTI)

    None, None

    2003-02-28

    This report describes the status of fuel cells for Congressional committees. It focuses on the technical and economic barriers to the use of fuel cells in transportation, portable power, stationary, and distributed power generation applications, and describes the need for public-private cooperative programs to demonstrate the use of fuel cells in commercial-scale applications by 2012. (Department of Energy, February 2003).

  8. Requirements for status for volume fuel cell manufacturing |...

    Broader source: Energy.gov (indexed) [DOE]

    Backup Power Applications Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive Applications: Fuel Cell Tech Team Review Fuel Cell Manufacturing: American Energy and ...

  9. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications. 2009 Update

    SciTech Connect (OSTI)

    James, Brian D.; Kalinoski, Jeffrey A.; Baum, Kevin N.

    2010-01-01

    This report is the third annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing cost of complete 80 kWnet direct hydrogen proton exchange membrane fuel cell systems suitable for powering light duty automobiles.

  10. Mass Production Cost Estimation For Direct H2 PEM Fuel Cell Systesm for Automotive Applications. 2010 Update

    SciTech Connect (OSTI)

    James, Brian D.; Kalinoski, Jeffrey A.; Baum, Kevin N.

    2010-09-30

    This report is the fourth annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing costs of complete 80 kWnet direct-hydrogen proton exchange membrane fuel cell systems suitable for powering light-duty automobiles.

  11. Microstructural Characterization of Burnable Absorber Materials Being Evaluated for Application in LEU U-Mo Fuel Plates

    SciTech Connect (OSTI)

    J. F. Jue; B. Miller; B. Yao; E. Perez; Y. H. Sohn

    2011-03-01

    The starting microstructure of a fuel plate will impact how it performs during irradiation. As a result, microstructural characterization has been performed on as-fabricated monolithic fuel plates to determine the changes in fuel plate microstructure that may result from changes in fabrication parameters. Particular focus has been given to the fuel plate U-10Mo/Zr and Zr/AA6061 cladding interfaces, since the integrity of these interfaces will play a big role in determining the overall performance of the fuel plate during irradiation. In addition, burnable absorber materials for potential incorporation into monolithic fuel plates have been characterized to identify their as-fabricated microstructures. This information will be important when trying to understand the PIE data from fuel plates with burnable absorbers that are irradiated in future irradiation experiments. This paper will focus on the microstructures observed using optical metallography, X-ray diffraction, and scanning and transmission electron microscopy for monolithic fuel plates exposed to different fabrication parameters and for as-fabricated burnable absorber materials.

  12. Fuel Cell Europe | Open Energy Information

    Open Energy Info (EERE)

    Name: Fuel Cell Europe Place: FrankfurtM, Germany Zip: D-60313 Product: Fuel Cell Europe was set up to promote the commercial application of fuel cell across Europe. Coordinates:...

  13. Fossil fuels -- future fuels

    SciTech Connect (OSTI)

    1998-03-01

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  14. U.S. Fuel Cell Council: The Voice of the Fuel Cell Industry | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Fuel Cell Council: The Voice of the Fuel Cell Industry U.S. Fuel Cell Council: The Voice of the Fuel Cell Industry Presentation to the Fall 2009 High Temperature Membrane Working Group about_usfcc.pdf (152.13 KB) More Documents & Publications Fuel Cell Council Working Group on Aircraft and Aircraft Ground Support Fuel Cell Applications Legislative Update: State and Regional Hydrogen and Fuel Cell Initiatives Conference Call Micro and Man-Portable Fuel Cells

  15. Deep desulfurization of hydrocarbon fuels

    DOE Patents [OSTI]

    Song, Chunshan; Ma, Xiaoliang; Sprague, Michael J.; Subramani, Velu

    2012-04-17

    The invention relates to processes for reducing the sulfur content in hydrocarbon fuels such as gasoline, diesel fuel and jet fuel. The invention provides a method and materials for producing ultra low sulfur content transportation fuels for motor vehicles as well as for applications such as fuel cells. The materials and method of the invention may be used at ambient or elevated temperatures and at ambient or elevated pressures without the need for hydrogen.

  16. Manufacturing Cost Analysis of 10 kW and 25 kW Direct Hydrogen Polymer Electrolyte Membrane (PEM) Fuel Cell for Material Handling Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MANUFACTURING COST ANALYSIS OF 10 KW AND 25 KW DIRECT HYDROGEN POLYMER ELECTROLYTE MEMBRANE (PEM) FUEL CELL FOR MATERIAL HANDLING APPLICATIONS Prepared by: BATTELLE Battelle Memorial Institute 505 King Avenue Columbus, OH 43201 Prepared for: U.S. Department of Energy Golden Field Office Golden, CO DOE Contract No. DE-EE0005250 March 25, 2013 This report is a work prepared for the United States Government by Battelle. In no event shall either the United States Government or Battelle have any

  17. Opportunity fuels

    SciTech Connect (OSTI)

    Lutwen, R.C.

    1994-12-31

    Opportunity fuels - fuels that can be converted to other forms of energy at lower cost than standard fossil fuels - are discussed in outline form. The type and source of fuels, types of fuels, combustability, methods of combustion, refinery wastes, petroleum coke, garbage fuels, wood wastes, tires, and economics are discussed.

  18. 1986 fuel cell seminar: Program and abstracts

    SciTech Connect (OSTI)

    1986-10-01

    Ninety nine brief papers are arranged under the following session headings: gas industry's 40 kw program, solid oxide fuel cell technology, phosphoric acid fuel cell technology, molten carbonate fuel cell technology, phosphoric acid fuel cell systems, power plants technology, fuel cell power plant designs, unconventional fuels, fuel cell application and economic assessments, and plans for commerical development. The papers are processed separately for the data base. (DLC)

  19. Application of Neutron-Absorbing Structural-Amorphous Metal (SAM) Coatings for Spent Nuclear Fuel (SNF) Container to Enhance Criticality Safety Control

    SciTech Connect (OSTI)

    Choi, J

    2007-01-12

    This report describes the analysis and modeling approaches used in the evaluation for criticality-control applications of the neutron-absorbing structural-amorphous metal (SAM) coatings. The applications of boron-containing high-performance corrosion-resistant material (HPCRM)--amorphous metal as the neutron-absorbing coatings to the metallic support structure can enhance criticality safety controls for spent nuclear fuel in baskets inside storage containers, transportation casks, and disposal containers. The use of these advanced iron-based, corrosion-resistant materials to prevent nuclear criticality in transportation, aging, and disposal containers would be extremely beneficial to the nuclear waste management programs.

  20. DOE Hydrogen & Fuel Cell Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    t t 1 | Fuel Cell Technologies Program eere.energy.gov Fuel Cell Technologies Program DOE Hydrogen & Fuel Cell Overview Dr. Sunita Satyapal Program Manager U S D f E Overview U.S. Department of Energy Fuel Cell Technologies Program January 13, 2011 Fuel Cells for Diverse Applications 2 | Fuel Cell Technologies Program eere.energy.gov Fuel Cells - Where are we today? F l C ll f Fuel Cells for Stationary Power, Fuel Cells for Transportation In the U.S., there are currently: > 200 fuel cell

  1. Gaseous-fuel engine technology

    SciTech Connect (OSTI)

    1995-12-31

    This publication contains three distinct groups of papers covering gaseous-fuel injection and control, gaseous-fuel engine projects, and gaseous-fuel engine/vehicle applications. Contents include: ultra rapid natural gas port injection; a CNG specific fuel injector using latching solenoid technology; development of an electronically-controlled natural gas-fueled John Deere PowerTech 8.1L engine; adapting a Geo Metro to run on natural gas using fuel-injection technology; behavior of a closed loop controlled air valve type mixer on a natural gas fueled engine under transient operation; and a turbocharged lean-burn 4.3 liter natural gas engine.

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Feasibility Study Grants The Wyoming State Energy Office (SEO) offers grants of up to $5,000 to municipalities in the state to conduct feasibility studies related to acquiring alternative fuel vehicles or developing fueling infrastructure. Awardees must submit final feasibility studies to the SEO within 180 days of the grant execution date. Eligible applicants are required to provide at least a 10% cash match. Other terms and conditions may apply. Funding is not currently

  3. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels Road Tax Alternative fuels including, but not limited to, natural gas or propane sold by a licensed alternative fuel dealer and used in on-road vehicles is subject to a $0.222 per gallon equivalent road tax. The New Hampshire Department of Safety will define rules for the applicable conversion rates for natural gas and propane based on nationally recognized standards for weights and measures. Certain exemptions apply, including sales to government entities, between duly licensed

  4. 1990 fuel cell seminar: Program and abstracts

    SciTech Connect (OSTI)

    Not Available

    1990-12-31

    This volume contains author prepared short resumes of the presentations at the 1990 Fuel Cell Seminar held November 25-28, 1990 in Phoenix, Arizona. Contained herein are 134 short descriptions organized into topic areas entitled An Environmental Overview, Transportation Applications, Technology Advancements for Molten Carbonate Fuel Cells, Technology Advancements for Solid Fuel Cells, Component Technologies and Systems Analysis, Stationary Power Applications, Marine and Space Applications, Technology Advancements for Acid Type Fuel Cells, and Technology Advancement for Solid Oxide Fuel Cells.

  5. Vehicle Technologies Office Merit Review 2014: The Application of High Energy Ignition and Boosting/Mixing Technology to Increase Fuel Economy in Spark Ignition Gasoline Engines by Increasing EGR Dilution Capability

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the application of high...

  6. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2009 Update

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report is the third annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing cost of complete 80 kWnet direct hydrogen proton exch

  7. Mass Production Cost Estimation For Direct H2 PEM Fuel Cell Systesm for Automotive Applications: 2010 Update

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report is the fourth annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing costs of complete 80 kWnet direct‐hydrogen proton ex

  8. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Application: 2009 Update

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report is the third annual update of a comprehensive automotive fuel cell cost analysis conducted by Directed Technologies (DTI), under contract to the US Department of Energy (DOE).

  9. Advanced Composite Materials for Cold and Cryogenic Hydrogen Storage Applications in Fuel Cell Electric Vehicles Workshop Attendee List

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FIRST NAME LAST NAME ORGANIZATION Jesse Adams U.S. DOE Fuel Cell Technologies Office Kyle Alvine Pacific Northwest National Laboratory Gene Berry Lawrence Livermore National Laboratory Ravi Deo U.S. DOE Advanced Manufacturing Office John Gangloff U.S. DOE Fuel Cell Technologies Office Allan Goldberg That Video Guy David Gotthold Pacific Northwest National Laboratory Patrick Hipp Composite Technology Development, Inc. Thanh Hua Argonne National Laboratory Justin Jackson National Aeronautics and

  10. Predicted irradiation behavior of U sub 3 O sub 8 -Al dispersion fuels for production reactor applications

    SciTech Connect (OSTI)

    Cronenberg, A.W. ); Rest, J. ); Hyder, M.L.; Morin, J.P.; Peacock, H.B. )

    1990-01-01

    Candidate fuels for the new heavy-water production reactor include uranium/aluminum alloy and U{sub 3}O{sub 8}--Al dispersion fuels. The U{sub 3}O{sub 8}--Al dispersion fuel would make possible higher uranium loadings and would facilitate uranium recycle. Research efforts on U{sub 3}O{sub 8}--Al fuel include in-pile irradiation studies and development of analytical tools to characterize the behavior of dispersion fuels at high-burnup. In this paper the irradiation performance of U{sub 3}O{sub 8}--Al is assessed using the mechanistic Dispersion Analysis Research Tool (DART) code. Predictions of fuel swelling and alteration of thermal conductivity are presented and compared with experimental data. Calculational results indicate good agreement with available data where the effects of as-fabricated porosity and U{sub 3}O{sub 8}--Al oxygen exchange reactions are shown to exert a controlling influence on irradiation behavior. The DART code is judged to be a useful tool for assessing U{sub 3}O{sub 8}--Al performance over a wide range of irradiation conditions. 8 refs., 8 figs., 1 tab.

  11. Engineering Development of Advanced Physical Fine Coal Cleaning for Premium Fuel Applications: Task 9 - Selective agglomeration Module Testing and Evaluation.

    SciTech Connect (OSTI)

    Moro, N.` Jha, M.C.

    1997-09-29

    The primary goal of this project was the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope included laboratory research and bench-scale testing of both processes on six coals to optimize the processes, followed by the design, construction, and operation of a 2 t/hr process development unit (PDU). The project began in October, 1992, and is scheduled for completion by September 1997. This report summarizes the findings of all the selective agglomeration (SA) test work performed with emphasis on the results of the PDU SA Module testing. Two light hydrocarbons, heptane and pentane, were tested as agglomerants in the laboratory research program which investigated two reactor design concepts: a conventional two-stage agglomeration circuit and a unitized reactor that combined the high- and low-shear operations in one vessel. The results were used to design and build a 25 lb/hr bench-scale unit with two-stage agglomeration. The unit also included a steam stripping and condensation circuit for recovery and recycle of heptane. It was tested on six coals to determine the optimum grind and other process conditions that resulted in the recovery of about 99% of the energy while producing low ash (1-2 lb/MBtu) products. The fineness of the grind was the most important variable with the D80 (80% passing size) varying in the 12 to 68 micron range. All the clean coals could be formulated into coal-water-slurry-fuels with acceptable properties. The bench-scale results were used for the conceptual and detailed design of the PDU SA Module which was integrated with the existing grinding and dewatering circuits. The PDU was operated for about 9 months. During the first three months, the shakedown testing was performed to fine tune the operation and control of various equipment. This was followed by parametric testing, optimization/confirmatory testing, and finally a

  12. NREL: Hydrogen and Fuel Cells Research - Fuel Cell Electric Bus...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Electric Bus Reliability Surpasses 2016 and Ultimate Technical Targets Project ... Applicable DOE Technical Target DOE and FTA have established performance, cost, and ...

  13. Automotive Fuel Processor Development and Demonstration with Fuel Cell Systems

    SciTech Connect (OSTI)

    Nuvera Fuel Cells

    2005-04-15

    The potential for fuel cell systems to improve energy efficiency and reduce emissions over conventional power systems has generated significant interest in fuel cell technologies. While fuel cells are being investigated for use in many applications such as stationary power generation and small portable devices, transportation applications present some unique challenges for fuel cell technology. Due to their lower operating temperature and non-brittle materials, most transportation work is focusing on fuel cells using proton exchange membrane (PEM) technology. Since PEM fuel cells are fueled by hydrogen, major obstacles to their widespread use are the lack of an available hydrogen fueling infrastructure and hydrogen's relatively low energy storage density, which leads to a much lower driving range than conventional vehicles. One potential solution to the hydrogen infrastructure and storage density issues is to convert a conventional fuel such as gasoline into hydrogen onboard the vehicle using a fuel processor. Figure 2 shows that gasoline stores roughly 7 times more energy per volume than pressurized hydrogen gas at 700 bar and 4 times more than liquid hydrogen. If integrated properly, the fuel processor/fuel cell system would also be more efficient than traditional engines and would give a fuel economy benefit while hydrogen storage and distribution issues are being investigated. Widespread implementation of fuel processor/fuel cell systems requires improvements in several aspects of the technology, including size, startup time, transient response time, and cost. In addition, the ability to operate on a number of hydrocarbon fuels that are available through the existing infrastructure is a key enabler for commercializing these systems. In this program, Nuvera Fuel Cells collaborated with the Department of Energy (DOE) to develop efficient, low-emission, multi-fuel processors for transportation applications. Nuvera's focus was on (1) developing fuel processor

  14. NETL - Fuel Reforming Facilities

    SciTech Connect (OSTI)

    2013-06-12

    Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

  15. NETL - Fuel Reforming Facilities

    ScienceCinema (OSTI)

    None

    2014-06-27

    Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

  16. Early Markets: Fuel Cells for Backup Power

    Office of Energy Efficiency and Renewable Energy (EERE)

    This fact sheet describes the advantages of using fuel cell technology for application in emergency backup power.

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Infrastructure Grants The Maryland Energy Administration administers the Maryland Alternative Fuel Infrastructure Program (AFIP), which provides grants to develop public access alternative fueling and charging infrastructure. Only Maryland-based private businesses are eligible, and projects must take place in the state. Grant awards will range from $35,000 to $500,000 and applicant cost share must be at least 50%. Applications will be accepted on a competitive basis through February 10, 2017.

  18. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Grants The Maryland Energy Administration administers the Maryland Alternative Fuel Infrastructure Program (AFIP), which provides grants to develop public access alternative fueling and charging infrastructure. Only Maryland-based private businesses are eligible, and projects must take place in the state. Grant awards will range from $35,000 to $500,000 and applicant cost share must be at least 50%. Applications will be accepted on a competitive basis through February 10, 2017.

  19. Report on the workshop "Decay spectroscopy at CARIBU: advanced fuel cycle applications, nuclear structure and astrophysics". 14-16 April 2011, Argonne National Laboratory, USA.

    SciTech Connect (OSTI)

    Kondev, F.; Carpenter, M.P.; Chowdhury, P.; Clark, J.A.; Lister, C.J.; Nichols, A.L.; Swewryniak, D.

    2011-10-06

    A workshop on 'Decay Spectroscopy at CARIBU: Advanced Fuel Cycle Applications, Nuclear Structure and Astrophysics' will be held at Argonne National Laboratory on April 14-16, 2011. The aim of the workshop is to discuss opportunities for decay studies at the Californium Rare Isotope Breeder Upgrade (CARIBU) of the ATLAS facility with emphasis on advanced fuel cycle (AFC) applications, nuclear structure and astrophysics research. The workshop will consist of review and contributed talks. Presentations by members of the local groups, outlining the status of relevant in-house projects and availabile equipment, will also be organized. time will also be set aside to discuss and develop working collaborations for future decay studies at CARIBU. Topics of interest include: (1) Decay data of relevance to AFC applications with emphasis on reactor decay heat; (2) Discrete high-resolution gamma-ray spectroscopy following radioactive decya and related topics; (3) Calorimetric studies of neutron-rich fission framgents using Total ABsorption Gamma-Ray Spectrometry (TAGS) technique; (4) Beta-delayed neutron emissions and related topics; and (5) Decay data needs for nuclear astrophysics.

  20. Fuel pin

    DOE Patents [OSTI]

    Christiansen, David W.; Karnesky, Richard A.; Leggett, Robert D.; Baker, Ronald B.

    1989-10-03

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  1. Fuel pin

    DOE Patents [OSTI]

    Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

    1987-11-24

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  2. Fuel pin

    DOE Patents [OSTI]

    Christiansen, David W. (Kennewick, WA); Karnesky, Richard A. (Richland, WA); Leggett, Robert D. (Richland, WA); Baker, Ronald B. (Richland, WA)

    1989-01-01

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  3. NREL: Hydrogen and Fuel Cells Research - Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cells Photo of scientific equipment in a laboratory setting. NREL scientist applies catalyst layer to a fuel cell through a spray process that delivers a more even distribution of material, improving performance. Photo by Dennis Schroeder, NREL What is a fuel cell? A single fuel cell consists of an electrolyte sandwiched between two electrodes. Bipolar plates on either side of the cell help distribute gases and serve as current collectors. Depending on the application, a fuel cell stack may

  4. Manufacturing Cost Analysis of 1 kW and 5 kW Solid Oxide Fuel Cell (SOFC) for Auxiliary Power Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MANUFACTURING COST ANALYSIS OF 1 KW AND 5 KW SOLID OXIDE FUEL CELL (SOFC) FOR AUXILLIARY POWER APPLICATIONS Prepared by: BATTELLE Battelle Memorial Institute 505 King Avenue Columbus, OH 43201 Prepared for: U.S. Department of Energy Golden Field Office Golden, CO DOE Contract No. DE-EE0005250 February 7, 2014 This report is a work prepared for the United States Government by Battelle. In no event shall either the United States Government or Battelle have any responsibility or liability for any

  5. Alternative Fuels Data Center: Fuel Prices

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles Printable Version Share this resource Send a link to Alternative Fuels Data Center: Fuel Prices to someone by E-mail Share Alternative Fuels Data Center: Fuel Prices on Facebook Tweet about Alternative Fuels Data Center: Fuel Prices on Twitter Bookmark Alternative Fuels Data Center: Fuel Prices on Google Bookmark Alternative Fuels Data Center: Fuel Prices on Delicious Rank Alternative Fuels Data Center: Fuel Prices on Digg Find More places to share Alternative Fuels Data Center: Fuel

  6. Fuel Cells & Renewable Portfolio Standards

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells & Renewable Portfolio Standards Webinar - Jun 9 th , 2011 Ohio Fuel Cell Coalition Ohio Fuel Cell Coalition * Mission - The Ohio Fuel Cell Coalition is a united group of industry, academic, and government leaders working collectively to strengthen Ohio's fuel cell industry and to accelerate the transformation of industry to global leadership in fuel cell technology and applications * Activities - Networking and Collaboration - Education - Marketing and Communications - Advocacy

  7. Hydrogen Fuel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Hydrogen & Fuel Cells » Hydrogen Fuel Basics Hydrogen Fuel Basics August 14, 2013 - 2:06pm Addthis Hydrogen is a clean fuel that, when consumed in a fuel cell, produces only water. Hydrogen can be produced from a variety of domestic resources, such as natural gas, nuclear power, biomass, and renewable power like solar and wind. These qualities make it an attractive fuel option for transportation and electricity generation applications. It can be used in cars, in houses,

  8. Types of Fuel Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells » Types of Fuel Cells Types of Fuel Cells Fuel cells are classified primarily by the kind of electrolyte they employ. This classification determines the kind of electro-chemical reactions that take place in the cell, the kind of catalysts required, the temperature range in which the cell operates, the fuel required, and other factors. These characteristics, in turn, affect the applications for which these cells are most suitable. There are several types of fuel cells currently under

  9. Safety Criticality Standards Using the French CRISTAL Code Package: Application to the AREVA NP UO{sub 2} Fuel Fabrication Plant

    SciTech Connect (OSTI)

    Doucet, M.; Durant Terrasson, L.; Mouton, J.

    2006-07-01

    Criticality safety evaluations implement requirements to proof of sufficient sub critical margins outside of the reactor environment for example in fuel fabrication plants. Basic criticality data (i.e., criticality standards) are used in the determination of sub critical margins for all processes involving plutonium or enriched uranium. There are several criticality international standards, e.g., ARH-600, which is one the US nuclear industry relies on. The French Nuclear Safety Authority (DGSNR and its advising body IRSN) has requested AREVA NP to review the criticality standards used for the evaluation of its Low Enriched Uranium fuel fabrication plants with CRISTAL V0, the recently updated French criticality evaluation package. Criticality safety is a concern for every phase of the fabrication process including UF{sub 6} cylinder storage, UF{sub 6}-UO{sub 2} conversion, powder storage, pelletizing, rod loading, assembly fabrication, and assembly transportation. Until 2003, the accepted criticality standards were based on the French CEA work performed in the late seventies with the APOLLO1 cell/assembly computer code. APOLLO1 is a spectral code, used for evaluating the basic characteristics of fuel assemblies for reactor physics applications, which has been enhanced to perform criticality safety calculations. Throughout the years, CRISTAL, starting with APOLLO1 and MORET 3 (a 3D Monte Carlo code), has been improved to account for the growth of its qualification database and for increasing user requirements. Today, CRISTAL V0 is an up-to-date computational tool incorporating a modern basic microscopic cross section set based on JEF2.2 and the comprehensive APOLLO2 and MORET 4 codes. APOLLO2 is well suited for criticality standards calculations as it includes a sophisticated self shielding approach, a P{sub ij} flux determination, and a 1D transport (S{sub n}) process. CRISTAL V0 is the result of more than five years of development work focusing on theoretical

  10. High Temperature BOP and Fuel Processing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BOP and Fuel Processing High Temperature BOP and Fuel Processing Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. High Temperature BOP and Fuel Processing (4.07 MB) More Documents & Publications Biogas Impurities and Cleanup for Fuel Cells Workshop on Gas Clean-Up for Fuel Cell Applications Fuel Quality Issues in Stationary Fuel Cell Systems

  11. Alternative Fuels Data Center: Emerging Fuels

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Emerging Fuels Printable Version Share this resource Send a link to Alternative Fuels Data Center: Emerging Fuels to someone by E-mail Share Alternative Fuels Data Center: Emerging Fuels on Facebook Tweet about Alternative Fuels Data Center: Emerging Fuels on Twitter Bookmark Alternative Fuels Data Center: Emerging Fuels on Google Bookmark Alternative Fuels Data Center: Emerging Fuels on Delicious Rank Alternative Fuels Data Center: Emerging Fuels on Digg Find More places to share Alternative

  12. Alternative Fuels Data Center: Biodiesel Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Basics on AddThis.com... More in

  13. Alternative Fuels Data Center: Electricity Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electricity Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Electricity Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Electricity Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Google Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Delicious Rank Alternative Fuels Data Center: Electricity Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Electricity Fuel Basics on

  14. Alternative Fuels Data Center: Ethanol Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Basics on AddThis.com... More in this

  15. Alternative Fuels Data Center: Ethanol Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Stations on

  16. Alternative Fuels Data Center: Hydrogen Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Stations

  17. Alternative Fuels Data Center: Propane Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Stations on

  18. Application of X-ray microcomputed tomography in the characterization of irradiated nuclear fuel and material specimens

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Silva, Chinthaka M.; Snead, Lance Lewis; Hunn, John D.; Specht, Eliot D.; Terrani, Kurt A.; Katoh, Yutai

    2015-08-03

    X-ray microcomputed tomography (µCT) was applied in characterizing the internal structures of a number of irradiated materials, including carbon-carbon fibre composites, nuclear-grade graphite and tristructural isotropic-coated fuel particles. Local cracks in carbon-carbon fibre composites associated with their synthesis process were observed with µCT without any destructive sample preparation. Pore analysis of graphite samples was performed quantitatively, and qualitative analysis of pore distribution was accomplished. It was also shown that high-resolution µCT can be used to probe internal layer defects of tristructural isotropic-coated fuel particles to elucidate the resulting high release of radioisotopes. Layer defects of sizes ranging from 1 tomore » 5 µm and up could be isolated by to-mography. As an added advantage, µCT could also be used to identify regions with high densities of radioisotopes to deter-mine the proper plane and orientation of particle mounting for further analytical characterization, such as materialographic sectioning followed by optical and electron microscopy. Lastly, in fully ceramic matrix fuel forms, despite the highly absorbing matrix, characterization of tristructural isotropic-coated particles embedded in a silicon carbide matrix was accomplished usingµCT and related advanced image analysis techniques.« less

  19. Application of X-ray microcomputed tomography in the characterization of irradiated nuclear fuel and material specimens

    SciTech Connect (OSTI)

    Silva, Chinthaka M.; Snead, Lance Lewis; Hunn, John D.; Specht, Eliot D.; Terrani, Kurt A.; Katoh, Yutai

    2015-08-03

    X-ray microcomputed tomography (µCT) was applied in characterizing the internal structures of a number of irradiated materials, including carbon-carbon fibre composites, nuclear-grade graphite and tristructural isotropic-coated fuel particles. Local cracks in carbon-carbon fibre composites associated with their synthesis process were observed with µCT without any destructive sample preparation. Pore analysis of graphite samples was performed quantitatively, and qualitative analysis of pore distribution was accomplished. It was also shown that high-resolution µCT can be used to probe internal layer defects of tristructural isotropic-coated fuel particles to elucidate the resulting high release of radioisotopes. Layer defects of sizes ranging from 1 to 5 µm and up could be isolated by to-mography. As an added advantage, µCT could also be used to identify regions with high densities of radioisotopes to deter-mine the proper plane and orientation of particle mounting for further analytical characterization, such as materialographic sectioning followed by optical and electron microscopy. Lastly, in fully ceramic matrix fuel forms, despite the highly absorbing matrix, characterization of tristructural isotropic-coated particles embedded in a silicon carbide matrix was accomplished usingµCT and related advanced image analysis techniques.

  20. Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Total Fuel Oil Consumption and Expenditures, 1999" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings (thousand)","Floorspac...

  1. Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Reformer Development Putting the 'Fuel' in Fuel Cells Subir Roychoudhury Precision Combustion, Inc. (PCI), North Haven, CT Shipboard Fuel Cell Workshop March 29, 2011 ...

  2. Transportation Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels DOE would invest $52 million to fund a major fleet transformation at Idaho National Laboratory, along with the installation of nine fuel management systems, purchase of additional flex fuel cars and one E85 ethanol fueling station. Transportation projects, such as the acquisition of highly efficient and alternative-fuel vehicles, are not authorized by ESPC legislation. DOE has twice proportion of medium vehicles and three times as many heavy vehicles as compared to the Federal agency

  3. DOE Announces Webinars on Geography of Alternative Fuels, Wind...

    Office of Environmental Management (EM)

    February 17: Live Webinar on Material Handling Fuel Cells for Building Electric Peak Shaving Applications Webinar Sponsor: Fuel Cell Technologies Office The Energy Department will ...

  4. Durable Low Cost Improved Fuel Cell Membranes | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel Cell Applications Durable, Low Cost, Improved Fuel Cell Membranes Novel Materials for High Efficiency Direct ...

  5. Opportunities for Micropower and Fuel Cell/Gas Turbine Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities for Micropower and Fuel CellGas Turbine Hybrid Systems in Industrial Applications - Volume I, January 2000 Opportunities for Micropower and Fuel CellGas Turbine ...

  6. Opportunities for Micropower and Fuel Cell/Gas Turbine Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Micropower and Fuel CellGas Turbine Hybrid Systems in Industrial Applications - Volume II (Appendices), January 2000 Opportunities for Micropower and Fuel CellGas Turbine Hybrid ...

  7. Heliocentris Energiesysteme GmbH aka Heliocentris Fuel Cells...

    Open Energy Info (EERE)

    Germany Zip: 12489 Product: Specialised in fuel cell demonstration applications for education and outreach. References: Heliocentris Energiesysteme GmbH (aka Heliocentris Fuel...

  8. New Fuel Cell Design Powered by Graphene-Wrapped Nanoparticles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Design Powered by Graphene-Wrapped Nanoparticles Print Interest in hydrogen fuel for automotive applications ... a simple, scalable, and cost-effective "one-pan" ...

  9. Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Direct Hydrogen PEM Fuel Cell Systems for Transportation Applications: 2012 Update Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell Systems for Transportation ...

  10. A Multicomponent Blend as a Diesel Fuel Surrogate for Compression...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Multicomponent Blend as a Diesel Fuel Surrogate for Compression Ignition Engine Applications Title A Multicomponent Blend as a Diesel Fuel Surrogate for Compression Ignition...

  11. DOE Technical Targets for Fuel Cell Systems for Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    which includes automotive and energy companies, specifically the Fuel Cell Technical Team. ... Technical Targets for Automotive Applications: 80-kWe (net) Integrated Transportation Fuel ...

  12. Fuel Cell Seminar, 1992: Program and abstracts

    SciTech Connect (OSTI)

    Not Available

    1992-12-31

    This year`s theme, ``Fuel Cells: Realizing the Potential,`` focuses on progress being made toward commercial manufacture and use of fuel cell products. Fuel cell power plants are competing for market share in some applications and demonstrations of market entry power plants are proceeding for additional applications. Development activity on fuel cells for transportation is also increasing; fuel cell products have potential in energy and transportation industries, with very favorable environmental impacts. This Seminar has the purpose of fostering communication by providing a forum for the international community interested in development, application, and business opportunities related fuel cells. Over 190 technical papers are included, the majority being processed for the data base.

  13. Biomass fuel use in agriculture under alternative fuel prices

    SciTech Connect (OSTI)

    Bjornstad, D.J.; Hillsman, E.L.; Tepel, R.C.

    1984-11-01

    A linear programming model is used to analyze cost-competitiveness of biomass fuels in agricultural applications for the projected year 1990. With all else held constant, the prices of conventional fuels are increased and analytically compared to prices for biomass fuel products across a variety of end uses. Potential penetration of biomass fuels is measured as the share of each conventional fuel for which cost savings could be realized by substituting biomass fuels. This study examines the cost competitiveness of biomass fuels produced on farms, relative to conventional fuels (diesel, gasoline, natural gas, LPG, fuel oil, and electricity), as the prices of conventional fuels change. The study is targeted at the year 1990 and considers only fuel use in the agricultural sector. The method of analysis is to project fuel demands for ten farm operations in the year 1990 and to match these with biomass fuel substitutes from ten feedstock and nine process alternatives. In all, 61 feedstock/process combinations are possible. The matching of fuel demands and biomass fuels occurs in a linear programming model that seeks to meet fuel demands at minimum cost. Two types of biomass fuel facilities are considered, assuming a decentralized fuel distribution system. The first includes on-farm production units such as oil presses, low-Btu gasifiers, biogas digestors and direct combustion units. The second type of facility would be run by a farm co-operative. The primary data describing the biomass technologies are cost per unit output, where costs are calculated as first-year capital charges, plus al l allocable operating expenses, less any by-products of value. All costs assume commercial purchase of equipment. Homemade or makeshift installations are not considered. 1 reference.

  14. Alternative Fuels Data Center: Flexible Fuel Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Flexible Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicles on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicles on Digg

  15. Note: Application of CR-39 plastic nuclear track detectors for quality assurance of mixed oxide fuel pellets

    SciTech Connect (OSTI)

    Kodaira, S. Kurano, M.; Hosogane, T.; Ishikawa, F.; Kageyama, T.; Sato, M.; Kayano, M.; Yasuda, N.

    2015-05-15

    A CR-39 plastic nuclear track detector was used for quality assurance of mixed oxide fuel pellets for next-generation nuclear power plants. Plutonium (Pu) spot sizes and concentrations in the pellets are significant parameters for safe use in the plants. We developed an automatic Pu detection system based on dense α-radiation tracks in the CR-39 detectors. This system would greatly improve image processing time and measurement accuracy, and will be a powerful tool for rapid pellet quality assurance screening.

  16. Development of a Low-Cost, Durable Membrane and Membrane Electrode Assemby for Stationary and Mobile Fuel Cell Applications

    SciTech Connect (OSTI)

    Michel Foure; Gaboury, Scott; Goldbach, Jim; Mountz, David; Yi, Jung

    2008-01-31

    The development of low cost, durable membranes and membranes electrode assemblies (MEAs) remain a critical challenge for the successful introduction of fuel cells into mass markets. It was the goal of the team lead by Arkema, Inc. (formerly Atofina, Inc.) to address these shortages. Thus, this project addresses the following technical barriers from the Fuel Cells section of the Hydrogen Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan: (A) Durability (B) Cost Arkema’s approach consisted in using blends of polyvinylidenefluoride (PVDF) and proprietary sulfonated polyelectrolytes. The strength and originality of Arkema’s approach lies in the decoupling of ion conductivity from the other requirements. Kynar® (Arkema trade name for PVDF) provides an exceptional combination of properties that make it ideally suited for a membrane matrix. In a first phase, Arkema demonstrated the feasibility of the concept with the M31 membrane generation. After MEA optimization, it was shown that the beginning-of-life (BOL) performance of M31 MEAs was essentially on a par with that of PFSA MEAs at 60ºC under fully humidified conditions. On the other hand, long-term durability studies showed a high decay rate of 45µV/h over a 2100 hr. test. Arkema then designed several families of polyelectrolyte candidates, which, in principle, could not undergo the same failure mechanisms. A new membrane candidate was developed: M41. It offered the same generally good mechanical, ex-situ conductivity and gas barrier properties as M31. In addition, ex-situ accelerated testing suggested a several orders of magnitude improvement in chemical stability. M41 based MEAs showed comparable BOL performance with that of PFSA (80ºC, 100% RH). M41 MEAs were further shown to be able to withstand several hours temperature excursions at 120ºC without apparent damage. Accelerated studies were carried out using the DOE and/or US Fuel Cell Council

  17. Coal Technology '80. Volume 5. Synthetic fuels from coal. Volume 6. Industrial/utility applications for coal

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    The 3rd international coal utilization exhibition and conference Coal Technology '80 was held at the Astrohall, Houston, Texas, November 18-20, 1980. Volume 5 deals with coal gasification and coal liquefaction. Volume 6 deals with fluidized-bed combustion of coal, cogeneration and combined-cycle power plants, coal-fuel oil mixtures (COM), chemical feedstocks via coal gasification and Fischer-Tropsch synthesis. Thirty-six papers have been entered individually into EDB and seven also into ERA; three had been entered previously from other sources. (LTN)

  18. Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel Cell

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications | Department of Energy Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel Cell Applications Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel Cell Applications Download the presentation slides from Arkema at the July 17, 2012, Fuel Cell Technologies Program webinar, "Fuel Cells for Portable Power." Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel Cell Applications Webinar Slides (790.15 KB) More Documents & Publications

  19. Fuel Cell Demonstration Program

    SciTech Connect (OSTI)

    Gerald Brun

    2006-09-15

    In an effort to promote clean energy projects and aid in the commercialization of new fuel cell technologies the Long Island Power Authority (LIPA) initiated a Fuel Cell Demonstration Program in 1999 with six month deployments of Proton Exchange Membrane (PEM) non-commercial Beta model systems at partnering sites throughout Long Island. These projects facilitated significant developments in the technology, providing operating experience that allowed the manufacturer to produce fuel cells that were half the size of the Beta units and suitable for outdoor installations. In 2001, LIPA embarked on a large-scale effort to identify and develop measures that could improve the reliability and performance of future fuel cell technologies for electric utility applications and the concept to establish a fuel cell farm (Farm) of 75 units was developed. By the end of October of 2001, 75 Lorax 2.0 fuel cells had been installed at the West Babylon substation on Long Island, making it the first fuel cell demonstration of its kind and size anywhere in the world at the time. Designed to help LIPA study the feasibility of using fuel cells to operate in parallel with LIPA's electric grid system, the Farm operated 120 fuel cells over its lifetime of over 3 years including 3 generations of Plug Power fuel cells (Lorax 2.0, Lorax 3.0, Lorax 4.5). Of these 120 fuel cells, 20 Lorax 3.0 units operated under this Award from June 2002 to September 2004. In parallel with the operation of the Farm, LIPA recruited government and commercial/industrial customers to demonstrate fuel cells as on-site distributed generation. From December 2002 to February 2005, 17 fuel cells were tested and monitored at various customer sites throughout Long Island. The 37 fuel cells operated under this Award produced a total of 712,635 kWh. As fuel cell technology became more mature, performance improvements included a 1% increase in system efficiency. Including equipment, design, fuel, maintenance, installation

  20. Opportunity fuels

    SciTech Connect (OSTI)

    Lutwen, R.C.

    1996-12-31

    The paper consists of viewgraphs from a conference presentation. A comparison is made of opportunity fuels, defined as fuels that can be converted to other forms of energy at lower cost than standard fossil fuels. Types of fuels for which some limited technical data is provided include petroleum coke, garbage, wood waste, and tires. Power plant economics and pollution concerns are listed for each fuel, and compared to coal and natural gas power plant costs. A detailed cost breakdown for different plant types is provided for use in base fuel pricing.

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel Education Grants Competitive grants are available through the Biodiesel Fuel Education Program (Section 9006) to educate governmental and private entities that operate vehicle fleets, the public, and other interested entities about the benefits of biodiesel use. Eligible applicants are non-profit organizations or institutes of higher education that have demonstrated knowledge of biodiesel fuel production, use, or distribution; and have demonstrated the ability to conduct educational

  2. Automotive Fuel Cell Corporation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Corporation n SNL researcher Cy Fujimoto demonstrates his new flexible hydrocarbon polymer electrolyte mem- brane, which could be a key factor in realizing a hydrogen car. The close partnership between Sandia and AFCC has resulted in a very unique and promising technology for future automotive applications. Dr. Rajeev Vohra Manager R&D AFCC Hydrocarbon Membrane Fuels the Suc- cess of Future Generation Vehicles While every car manufacturer, such as GM and Ford, has developed their

  3. Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Direct H2 PEM Fuel Cell Systems for Transportation Applications: 2013 Update Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for Transportation Applications: ...

  4. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications: 2007 Update Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2007 Update This report estimates fuel cell system cost ...

  5. Synthetic Fuel

    ScienceCinema (OSTI)

    Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots

    2010-01-08

    Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous

  6. Fuel Economy

    Broader source: Energy.gov [DOE]

    The Energy Department is investing in groundbreaking research that will make cars weigh less, drive further and consume less fuel.

  7. On the applicability of probabilistic analyses to assess the structural reliability of materials and components for solid-oxide fuel cells

    SciTech Connect (OSTI)

    Lara-Curzio, Edgar; Radovic, Miladin; Luttrell, Claire R

    2016-01-01

    The applicability of probabilistic analyses to assess the structural reliability of materials and components for solid-oxide fuel cells (SOFC) is investigated by measuring the failure rate of Ni-YSZ when subjected to a temperature gradient and comparing it with that predicted using the Ceramics Analysis and Reliability Evaluation of Structures (CARES) code. The use of a temperature gradient to induce stresses was chosen because temperature gradients resulting from gas flow patterns generate stresses during SOFC operation that are the likely to control the structural reliability of cell components The magnitude of the predicted failure rate was found to be comparable to that determined experimentally, which suggests that such probabilistic analyses are appropriate for predicting the structural reliability of materials and components for SOFCs. Considerations for performing more comprehensive studies are discussed.

  8. Fuel Cells for Critical Communications Backup Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Critical Communications Backup Power Greg Moreland SENTECH, Inc. Supporting the U.S. Department of Energy August 6, 2008 APCO Annual Conference and Expo 2 2 Fuel cells use hydrogen to create electricity, with only water and heat as byproducts Fuel Cell Overview * An individual fuel cell produces about 1 volt * Hundreds of individual cells can comprise a fuel cell stack * Fuel cells can be used to power a variety of applications -Bibliographic Database * Laptop computers (50-100 W) *

  9. Pyrochem Catalysts for Diesel Fuel Reforming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pyrochem Catalysts for Diesel Fuel Reforming Success Story Converting heavy hydrocarbons, such as diesel and coal-based fuels, into hydrogen-rich synthesis gas is a necessary step for fuel cells and other applications. The high sulfur and aromatic content of these fuels poses a major technical challenge since these components can deactivate reforming catalysts. Taking on this challenge, NETL researchers invented a novel fuel-reforming catalyst that overcomes limitations of current catalysts by

  10. Combination of Diesel fuel system architectures and Ceria-based fuel-borne

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    catalysts for improvement and simplification of the Diesel Particulate Filter System in serial applications | Department of Energy of Diesel fuel system architectures and Ceria-based fuel-borne catalysts for improvement and simplification of the Diesel Particulate Filter System in serial applications Combination of Diesel fuel system architectures and Ceria-based fuel-borne catalysts for improvement and simplification of the Diesel Particulate Filter System in serial applications 2003 DEER

  11. 2013 Fuel Cell Technologies Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Technologies Market Report 2013 Fuel Cell Technologies Market Report This report describes data compiled in 2014 on trends in the fuel cell industry for 2013 with some comparison to previous years. 2013 Fuel Cell Technologies Market Report (2.31 MB) More Documents & Publications State of the States: Fuel Cells in America 2015 State of the States: Fuel Cells in America 2014 Workshop on Gas Clean-Up for Fuel Cell Applications

  12. Multidimensional Fuel Performance Code: BISON

    Energy Science and Technology Software Center (OSTI)

    2014-09-03

    BISON is a finite element based nuclear fuel performance code applicable to a variety of fuel forms including light water reactor fuel rods, TRISO fuel particles, and metallic rod and plate fuel (Refs. [a, b, c]). It solves the fully-coupled equations of thermomechanics and species diffusion and includes important fuel physics such as fission gas release and material property degradation with burnup. BISON is based on the MOOSE framework (Ref. [d]) and can therefore efficientlymore » solve problems on 1-, 2- or 3-D meshes using standard workstations or large high performance computers. BISON is also coupled to a MOOSE-based mesoscale phase field material property simulation capability (Refs. [e, f]). As described here, BISON includes the code library named FOX, which was developed concurrent with BISON. FOX contains material and behavioral models that are specific to oxide fuels.« less

  13. Multidimensional Fuel Performance Code: BISON

    SciTech Connect (OSTI)

    2014-09-03

    BISON is a finite element based nuclear fuel performance code applicable to a variety of fuel forms including light water reactor fuel rods, TRISO fuel particles, and metallic rod and plate fuel (Refs. [a, b, c]). It solves the fully-coupled equations of thermomechanics and species diffusion and includes important fuel physics such as fission gas release and material property degradation with burnup. BISON is based on the MOOSE framework (Ref. [d]) and can therefore efficiently solve problems on 1-, 2- or 3-D meshes using standard workstations or large high performance computers. BISON is also coupled to a MOOSE-based mesoscale phase field material property simulation capability (Refs. [e, f]). As described here, BISON includes the code library named FOX, which was developed concurrent with BISON. FOX contains material and behavioral models that are specific to oxide fuels.

  14. Vehicle Technologies Office Merit Review 2016: Dual-Fuel Technology Development for Heavy-Duty Long Haul Applications in 2014 and Beyond

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Clean Air Power at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Fuel & Lubricants

  15. Comparison of Fuel Cell Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Technologies Fuel Cell Type Common Electrolyte Operating Temperature Typical Stack Size Electrical Efficiency (LHV) Applications Advantages Challenges Polymer Electrolyte Membrane (PEM) Perfluorosulfonic acid <120°C <1 kW - 100 kW 60% direct H 2 ; i 40% reformed fuel ii * Backup power * Portable power * Distributed generation * Transportation * Specialty vehicles * Solid electrolyte reduces corrosion & electrolyte management problems * Low temperature * Quick start-up and

  16. Deformation Behavior of Laser Welds in High Temperature Oxidation Resistant Fe-Cr-Al Alloys for Fuel Cladding Applications

    SciTech Connect (OSTI)

    Field, Kevin G; Gussev, Maxim N; Yamamoto, Yukinori; Snead, Lance Lewis

    2014-11-01

    Ferritic-structured Fe-Cr-Al alloys are being developed and show promise as oxidation resistant accident tolerant light water reactor fuel cladding. This study focuses on investigating the weldability of three model alloys in a range of Fe-(13-17.5)Cr-(3-4.4)Al in weight percent with a minor addition of yttrium using laser-welding techniques. A detailed study on the mechanical performance of bead-on-plate welds has been carried out to determine the performance of welds as a function of alloy composition. Laser welding resulted in a defect free weld devoid of cracking or inclusions for all alloys studied. Results indicated a reduction in the yield strength within the fusion zone compared to the base metal. Yield strength reduction was found to be primarily constrained to the fusion zone due to grain coarsening with a less severe reduction in the heat affected zone. No significant correlation was found between the deformation behavior/mechanical performance of welds and the level of Cr or Al in the alloy ranges studied.

  17. Basic mechanisms of photosynthesis and applications to improved production and conversion of biomass to fuels and chemical products

    SciTech Connect (OSTI)

    El-Sayed, M.; Greenbaum, E.; Wasielewski, M.

    1996-09-01

    Natural photosynthesis, the result of 3.5 billion years of evolutionary experimentation, is the best proven, functional solar energy conversion technology. It is responsible for filling the vast majority of humanity`s energy, nutritional, and materials needs. Understanding the basic physical chemical principles underlying photosynthesis as a working model system is vital to further exploitation of this natural technology. These principles can be used to improve or modify natural photosynthesis so that it is more efficient or so that it can produce unusual products such as hydrogen, methane, methanol, ethanol, diesel fuel substitutes, biodegradable materials, or other high value chemical products. Principles garnered from the natural process can also be used to design artificial photosynthetic devices that employ analogs of natural antenna and reaction center function, self-assembly and repair concepts, photoinduced charge transfer processes, photoprotection, and dark reactions that facilitate catalytic action to convert light into, useful chemical or electrical energy. The present broad understanding of many structural and functional aspects of photosynthesis has resulted from rapid recent research progress. X-ray structures of several key photosynthetic reaction centers and antenna systems are available, and the overall principles controlling photoinduced energy and electron transfer are being established.

  18. Soft X-Ray Spectroscopic Study of Dense Strontium-Doped Lanthanum Manganite Cathodes for Solid Oxide Fuel Cell Applications

    SciTech Connect (OSTI)

    L Piper; A Preston; S Cho; A DeMasi; J Laverock; K Smith; L Miara; J Davis; S Basu; et al.

    2011-12-31

    The evolution of the Mn charge state, chemical composition, and electronic structure of La{sub 0.8}Sr{sub 0.2}MnO{sub 3} (LSMO) cathodes during the catalytic activation of solid oxide fuel cell (SOFC) has been studies using X-ray spectroscopy of as-processed, exposed, and activated dense thin LSMO films. Comparison of O K-edge and Mn L{sub 3,2}-edge X-ray absorption spectra from the different stages of LSMO cathodes revealed that the largest change after the activation occurred in the Mn charge state with little change in the oxygen environment. Core-level X-ray photoemission spectroscopy and Mn L{sub 3} resonant photoemission spectroscopy studies of exposed and as-processed LSMO determined that the SOFC environment (800 C ambient pressure of O{sub 2}) alone results in La deficiency (severest near the surface with Sr doping >0.55) and a stronger Mn{sup 4+} contribution, leading to the increased insulating character of the cathode prior to activation. Meanwhile, O K-edge X-ray absorption measurements support Sr/La enrichment nearer the surface, along with the formation of mixed Sr{sub x}Mn{sub y}O{sub z} and/or passive MnO{sub x} and SrO species.

  19. Application of Argonne's Glass Furnace Model to longhorn glass corporation oxy-fuel furnace for the production of amber glass.

    SciTech Connect (OSTI)

    Golchert, B.; Shell, J.; Jones, S.; Energy Systems; Shell Glass Consulting; Anheuser-Busch Packaging Group

    2006-09-06

    The objective of this project is to apply the Argonne National Laboratory's Glass Furnace Model (GFM) to the Longhorn oxy-fuel furnace to improve energy efficiency and to investigate the transport of gases released from the batch/melt into the exhaust. The model will make preliminary estimates of the local concentrations of water, carbon dioxide, elemental oxygen, and other subspecies in the entire combustion space as well as the concentration of these species in the furnace exhaust gas. This information, along with the computed temperature distribution in the combustion space may give indications on possible locations of crown corrosion. An investigation into the optimization of the furnace will be performed by varying several key parameters such as the burner firing pattern, exhaust number/size, and the boost usage (amount and distribution). Results from these parametric studies will be analyzed to determine more efficient methods of operating the furnace that reduce crown corrosion. Finally, computed results from the GFM will be qualitatively correlated to measured values, thus augmenting the validation of the GFM.

  20. The Application of High Energy Ignition and Boosting/Mixing Technology to Increase Fuel Economy in Spark Ignition Gasoline Engines by Increasing EGR Dilution Capability

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  1. Energy-efficient alcohol-fuel production. Technical final report

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    The proposed utilization schedule for the alcohol fuel plant and methane generator is to produce 180 proof ethanol during the spring, summer, and fall (April to October). The ethanol will be used in the farm tractors and trucks during the planting, growing, and harvesting seasons. Some alcohol can be stored for use during the winter. The still will not be operated during the winter (November to March) when the methane from the digester will be used to replace fuel oil for heating a swine farrowing building. There are tentative plans to develop a larger methane generator, which will utilize all of the manure (dairy, beef, horses, and swine) produced on the ISU farm. If this project is completed, there will be enough methane to produce all of the alcohol fuel needed to operate all of the farm equipment, heat the buildings, and possibly generate electricity for the farm. The methane generating system developed is working so well that there is a great deal of interest in expanding the project to where it could utilize all of the livestock waste on the farm for methane production.

  2. Alcohol as a fuel for farm and construction equipment

    SciTech Connect (OSTI)

    Borman, G L; Foster, D E; Meyers, P S; Uyehara, O A

    1982-06-01

    Work in three areas dealing with the utilization of ethanol as fuel for farm and construction diesels is summarized. The first part is a review of what is known about the retrofitting of diesels for use of ethanol and the combustion problems involved. The second part is a discussion of the work that has been done under the contract on the performance of a single-cylinder, open-chamber diesel using solutions and emulsions of diesel fuel with ethanol. Data taken include performance, emissions and cylinder pressure-time for diesel fuel with zero to forty percent ethanol by volume. Analysis of the data includes calculation of heat release rates using a single zone model. The third part is a discussion of work done retrofitting a multicylinder turbocharged farm tractor diesel to use ethanol by fumigation. Three methods of ethanol introduction are discussed; spraying ethanol upstream and downstream of the compressor and prevaporization of the ethanol. Data on performance and emissions are given for the last two methods. A three zone heat release model is described and results from the model are given. A correlation of the ignition delay using prevaporized ethanol fumigation data is also given. Comparisons are made between fumigation in DI and IDI engines.

  3. Fuel Cell Council Working Group on Aircraft and Aircraft Ground Support

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Applications | Department of Energy Council Working Group on Aircraft and Aircraft Ground Support Fuel Cell Applications Fuel Cell Council Working Group on Aircraft and Aircraft Ground Support Fuel Cell Applications Presentation by Robert Wichert, US Fuel Cell Council, at the DOD-DOE Aircraft Petroleum Use Reduction Workshop, September 30, 2010, in Washington, DC. aircraft_6_wichert.pdf (628.48 KB) More Documents & Publications U.S. Fuel Cell Council: The Voice of the Fuel Cell

  4. Methodology for Determining the Radiological Status of a Process: Application to Decommissioning of a Fuel Reprocessing Plant

    SciTech Connect (OSTI)

    Girones, Ph.; Ducros, C.; Legoaller, C.; Lamadie, F.; Fulconis, J.M.; Thiebaut, V.; Mahe, C.

    2006-07-01

    Decommissioning a nuclear facility is subject to various constraints including regulatory safety requirements, but also the obligation to limit the waste volume and toxicity. To meet these requirements the activity level in each component must be known at each stage of decommissioning, from the preliminary studies to the final release of the premises. This document describes a set of methods used to determine the radiological state of a spent fuel reprocessing plant. This approach begins with a bibliographical survey covering the nature of the chemical processes, the operational phases, and the radiological assessments during the plant operating period. In this phase it is also very important to analyze incidents and waste management practices. All available media should be examined, including photos and videos which can provide valuable data and must not be disregarded. At the end of this phase, any items requiring verification or additional data are reviewed to define further investigations. Although it is not unusual at this point to carry out an additional bibliographical survey, the essential task is to carry out in situ measurements. The second phase thus consists in performing in situ measurement campaigns involving essentially components containing significant activity levels. The most routinely used methods combine the results of elementary measurements such as the dose rate or more sophisticated measurements such as gamma spectrometry using CdZnTe detectors and gamma imaging to estimate and localize the radioactivity. Each instrument provides part of the answer (location of a contamination hot spot, standard spectrum, activity). The results are combined and verified through the use of calculation codes: Mercure, Visiplan and Microshield. (authors)

  5. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 12, July--September 1995

    SciTech Connect (OSTI)

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1995-10-31

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by design, and construction and operation of a 2-t/hr process development unit. The project began in October, 1992, and is scheduled for completion by June, 1997. During Quarter 12 (July--September 1995), work continued on the Subtask 3.2 in-plant testing of the Microcel{trademark} flotation column at Lady Dunn. Under Subtask 4.4, additional toxic trace element analysis of column flotation samples finalized the data set. Data analysis indicates that reasonably good mass balances were achieved for most elements. The final Subtask 6.3 Selective Agglomeration Process Optimization topical report was issued this quarter. Preliminary Subtask 6.4 work investigating coal-water-fuel slurry formulation indicated that selective agglomeration products formulate slurries with lower viscosities than advanced flotation products. Work continued on Subtask 6.5 agglomeration bench-scale testing. Results indicate that a 2 lb ash/MBtu product could be produced at a 100-mesh topsize with the Elkhorn No. 3 coal. The detailed design of the 2 t/hr selective agglomeration module neared completion this quarter with the completion of additional revisions of both the process flow, and the process piping and instrument diagrams. Construction of the 2 t/hr PDU and advanced flotation module was completed this quarter and startup and shakedown testing began.

  6. Hydrogen vehicle fueling station

    SciTech Connect (OSTI)

    Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A.

    1995-09-01

    Hydrogen fueling stations are an essential element in the practical application of hydrogen as a vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology which is the link between the local storage facility and the vehicle. Because most merchant hydrogen delivered in the US today (and in the near future) is in liquid form due to the overall economics of production and delivery, we believe a practical refueling station should be designed to receive liquid. Systems studies confirm this assumption for stations fueling up to about 300 vehicles. Our fueling station, aimed at refueling fleet vehicles, will receive hydrogen as a liquid and dispense it as either liquid, high pressure gas, or low pressure gas. Thus, it can refuel any of the three types of tanks proposed for hydrogen-powered vehicles -- liquid, gaseous, or hydride. The paper discusses the fueling station design. Results of a numerical model of liquid hydrogen vehicle tank filling, with emphasis on no vent filling, are presented to illustrate the usefulness of the model as a design tool. Results of our vehicle performance model illustrate our thesis that it is too early to judge what the preferred method of on-board vehicle fuel storage will be in practice -- thus our decision to accommodate all three methods.

  7. Pipe crawlers: Versatile adaptations for real applications

    SciTech Connect (OSTI)

    Hapstack, M.; Talarek, T.R.

    1990-01-01

    A problem at the Savannah River Site requires the unique application of a pipe crawler. A number of stainless steel pipes buried in concrete require ultrasonic inspection of the heat affected zones of the welds for detection of flaws or cracks. The paper describes the utilization of an inch-worm motion pipe crawler which negotiates a 90 degree reducing elbow with significant changes in diameter and vertical sections before entering the area of concern. After a discussion of general considerations and problem description, special requirements to meet the objectives and the design approach regarding the tractor, control system, instrument carriage, and radiation protection are discussed. 2 refs., 11 figs. (MB)

  8. Fuel Cell Handbook, Fifth Edition

    SciTech Connect (OSTI)

    Energy and Environmental Solutions

    2000-10-31

    Progress continues in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in November 1998. Uppermost, polymer electrolyte fuel cells, molten carbonate fuel cells, and solid oxide fuel cells have been demonstrated at commercial size in power plants. The previously demonstrated phosphoric acid fuel cells have entered the marketplace with more than 220 power plants delivered. Highlighting this commercial entry, the phosphoric acid power plant fleet has demonstrated 95+% availability and several units have passed 40,000 hours of operation. One unit has operated over 49,000 hours. Early expectations of very low emissions and relatively high efficiencies have been met in power plants with each type of fuel cell. Fuel flexibility has been demonstrated using natural gas, propane, landfill gas, anaerobic digester gas, military logistic fuels, and coal gas, greatly expanding market opportunities. Transportation markets worldwide have shown remarkable interest in fuel cells; nearly every major vehicle manufacturer in the U.S., Europe, and the Far East is supporting development. This Handbook provides a foundation in fuel cells for persons wanting a better understanding of the technology, its benefits, and the systems issues that influence its application. Trends in technology are discussed, including next-generation concepts that promise ultrahigh efficiency and low cost, while providing exceptionally clean power plant systems. Section 1 summarizes fuel cell progress since the last edition and includes existing power plant nameplate data. Section 2 addresses the thermodynamics of fuel cells to provide an understanding of fuel cell operation at two levels (basic and advanced). Sections 3 through 8 describe the six major fuel cell types and their performance based on cell operating conditions. Alkaline and intermediate solid state fuel cells were added to this edition of the Handbook. New information indicates that manufacturers have stayed

  9. Fuels Technologies

    Office of Environmental Management (EM)

    Displacement of petroleum n Approach n Example Project Accomplishments n Research Directions Fuels Technologies R&D Budget by Activities Major Activities FY 2007 ...

  10. Combined Heat and Power Market Potential for Opportunity Fuels

    SciTech Connect (OSTI)

    Jones, David; Lemar, Paul

    2015-12-01

    This report estimates the potential for opportunity fuel combined heat and power (CHP) applications in the United States, and provides estimates for the technical and economic market potential compared to those included in an earlier report. An opportunity fuel is any type of fuel that is not widely used when compared to traditional fossil fuels. Opportunity fuels primarily consist of biomass fuels, industrial waste products and fossil fuel derivatives. These fuels have the potential to be an economically viable source of power generation in various CHP applications.

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Aftermarket Alternative Fuel Vehicle (AFV) Conversion Requirements Conventional original equipment manufacturer vehicles altered to operate on propane, natural gas, methane, ethanol, or electricity are classified as aftermarket AFV conversions. All vehicle conversions must meet current applicable U.S. Environmental Protection Agency or California Air Resources Board standards for aftermarket conversions. (Reference Pennsylvania Department of Environmental Protection Policy on Clean Alternative

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use CNG and electricity that local agencies or public transit operators use as motor vehicle fuel to operate public transit services is exempt from applicable user taxes a county imposes. (Reference California Revenue and Taxation Code 7284.3

  13. Fuel additives: Excluding aviation fuels. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1995-12-01

    The bibliography contains citations concerning compositions, applications and performance of additives in fuels. Evaluations and environmental testing of additives in automotive, diesel, and boiler fuels are discussed. Additive effects on air pollution control, combustion stability, fuel economy and fuel storage are presented. Aviation fuel additives are covered in a separate bibliography. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  14. Fuel additives: Excluding aviation fuels. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1995-02-01

    The bibliography contains citations concerning compositions, applications and performance of additives in fuels. Evaluations and environmental testing of additives in automotive, diesel, and boiler fuels are discussed. Additive effects on air pollution control, combustion stability, fuel economy and fuel storage are presented. Aviation fuel additives are covered in a separate bibliography. (Contains a minimum of 231 citations and includes a subject term index and title list.)

  15. Additive Manufacturing for Fuel Cells

    Broader source: Energy.gov [DOE]

    Blake Marshall, AMO's lead for Additive Manufacturing Technologies, will provide an overview of current R&D activities in additive manufacturing and its application to fuel cell prototyping and...

  16. Fuel Model | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels Model This model informs analyses of the availability of transportation fuel in the event the fuel supply chain is disrupted. The portion of the fuel supply system...

  17. Laser ablation based fuel ignition

    DOE Patents [OSTI]

    Early, James W.; Lester, Charles S.

    1998-01-01

    There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition.

  18. Laser ablation based fuel ignition

    DOE Patents [OSTI]

    Early, J.W.; Lester, C.S.

    1998-06-23

    There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition. 3 figs.

  19. Market Transformation: Fuel Cell Early Adoption (Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Pre-Solicitation Workshop January 23, 2008 Pete Devlin Manager, Market ... Early markets in stationary, portable, and niche applications will lower cost and ...

  20. Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells Presented at the DOE-DOD Shipboard APU Workshop on March 29, 2011. apu2011_6_roychoudhury.pdf (4.83 MB) More Documents & Publications System Design - Lessons Learned, Generic Concepts, Characteristics & Impacts Fuel Cells For Transportation - 1999 Annual Progress Report Energy Conversion Team Fuel Cell Systems Annual Progress Report

  1. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Consumption and Expenditure Intensities for Non-Mall Buildings, 2003" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot...

  2. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Fuel Oil Consumption and Expenditure Intensities, 1999" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot (gallons)","per Worker...

  3. Technology and Manufacturing Readiness of Early Market Motive and Non-Motive Hydrogen Storage Technologies for Fuel Cell Applications

    SciTech Connect (OSTI)

    Ronnebro, Ewa

    2012-06-16

    PNNL’s objective in this report is to provide DOE with a technology and manufacturing readiness assessment to identify hydrogen storage technologies’ maturity levels for early market motive and non-motive applications and to provide a path forward toward commercialization. PNNL’s Technology Readiness Assessment (TRA) is based on a combination of Technology Readiness Level (TRL) and Manufacturing Readiness Level (MRL) designations that enable evaluation of hydrogen storage technologies in varying levels of development. This approach provides a logical methodology and roadmap to enable the identification of hydrogen storage technologies, their advantages/disadvantages, gaps and R&D needs on an unbiased and transparent scale that is easily communicated to interagency partners. The TRA report documents the process used to conduct the TRA, reports the TRL and MRL for each assessed technology and provides recommendations based on the findings.

  4. Cermet fuel reactors

    SciTech Connect (OSTI)

    Cowan, C.L.; Palmer, R.S.; Van Hoomissen, J.E.; Bhattacharyya, S.K.; Barner, J.O.

    1987-09-01

    Cermet fueled nuclear reactors are attractive candidates for high performance space power systems. The cermet fuel consists of tungsten-urania hexagonal fuel blocks characterized by high strength at elevated temperatures, a high thermal conductivity and resultant high thermal shock resistance. Key features of the cermet fueled reactor design are (1) the ability to achieve very high coolant exit temperatures, and (2) thermal shock resistance during rapid power changes, and (3) two barriers to fission product release - the cermet matrix and the fuel element cladding. Additionally, thre is a potential for achieving a long operating life because of (1) the neutronic insensitivity of the fast-spectrum core to the buildup of fission products and (2) the utilization of a high strength refractory metal matrix and structural materials. These materials also provide resistance against compression forces that potentially might compact and/or reconfigure the core. In addition, the neutronic properties of the refractory materials assure that the reactor remains substantially subcritical under conditions of water immersion. It is concluded that cermet fueled reactors can be utilized to meet the power requirements for a broad range of advanced space applications. 4 refs., 4 figs., 3 tabs.

  5. Fuel injector

    DOE Patents [OSTI]

    Lambeth, Malcolm David Dick

    2001-02-27

    A fuel injector comprises first and second housing parts, the first housing part being located within a bore or recess formed in the second housing part, the housing parts defining therebetween an inlet chamber, a delivery chamber axially spaced from the inlet chamber, and a filtration flow path interconnecting the inlet and delivery chambers to remove particulate contaminants from the flow of fuel therebetween.

  6. Long-term oxidation behavior of spinel-coated ferritic stainless steel for solid oxide fuel cell interconnect applications

    SciTech Connect (OSTI)

    Stevenson, Jeffry W.; Yang, Zhenguo; Xia, Guanguang; Nie, Zimin; Templeton, Joshua D.

    2013-06-01

    Long-term tests (>8,000 hours) indicate that AISI 441 ferritic stainless steel coated with a Mn-Co spinel protection layer is a promising candidate material system for IT-SOFC interconnect applications. While uncoated AISI 441 showed a substantial increase in area-specific electrical resistance (ASR), spinel-coated AISI 441 exhibited much lower ASR values (11-13 mOhm-cm2). Formation of an insulating silica sublayer beneath the native chromia-based scale was not observed, and the spinel coatings reduced the oxide scale growth rate and blocked outward diffusion of Cr from the alloy substrate. The structure of the scale formed under the spinel coatings during the long term tests differed from that typically observed on ferritic stainless steels after short term oxidation tests. While short term tests typically indicate a dual layer scale structure consisting of a chromia layer covered by a layer of Mn-Cr spinel, the scale grown during the long term tests consisted of a chromia matrix with discrete regions of Mn-Cr spinel distributed throughout the matrix. The presence of Ti in the chromia scale matrix and/or the presence of regions of Mn-Cr spinel within the scale may have increased the scale electrical conductivity, which would explain the fact that the observed ASR in the tests was lower than would be expected if the scale consisted of pure chromia.

  7. Compliant alkali silicate sealing glass for solid oxide fuel cell applications: the effect of protective YSZ coating on electrical stability in dual environment

    SciTech Connect (OSTI)

    Chou, Y. S.; Thomsen, Edwin C.; Choi, Jung-Pyung; Stevenson, Jeffry W.

    2012-03-15

    Recently, compliant sealing glass has been proposed as a potential candidate sealant for solid oxide fuel cell (SOFC) applications. In a previous paper, the thermal stability and chemical compatibility were reported for a compliant alkali-containing silicate glass sealed between anode supported YSZ bi-layer and YSZ-coated stainless steel interconnect. In this paper, we will report the electrical stability of the compliant glass under a DC load and dual environment at 700-800 degrees C. Apparent electrical resistivity was measured with a 4-point method for the glass sealed between two plain SS441 metal coupons or YSZ-coated aluminized substrates. The results showed instability with plain SS441 at 800 degrees C, but stable behavior of increasing resistivity with time was observed with the YSZ coated SS441. In addition, results of interfacial microstructure analysis with scanning electron microscopy will be correlated with the measured resistivity results. Overall, the YSZ coating demonstrated chemically stability with the alkali-containing compliant silicate sealing glass under electrical field and dual environments.

  8. Compliant alkali silicate sealing glass for solid oxide fuel cell applications: Combined stability in isothermal ageing and thermal cycling with YSZ coated ferritic stainless steels

    SciTech Connect (OSTI)

    Chou, Y. S.; Thomsen, Edwin C.; Choi, Jung-Pyung; Stevenson, Jeffry W.

    2012-01-01

    An alkali-containing silicate glass (SCN-1) is currently being evaluated as a candidate sealing glass for solid oxide fuel cell (SOFC) applications. The glass contains about 17 mole% alkalis (K+Na) and has low glass transition and softening temperatures. It remains vitreous and compliant around 750-800oC after sealing without substantial crystallization, as contrary to conventional glass-ceramic sealants, which experience rapid crystallization after the sealing process. The glassy nature and low characteristic temperatures can reduce residual stresses and result in the potential for crack healing. In a previous study, the glass was found to have good thermal cycle stability and was chemically compatible with YSZ coating during short term testing. In the current study, the compliant glass was further evaluated in a more realistic way in that the sealed glass couples were first isothermally aged for 1000h followed by thermal cycling. High temperature leakage was measured. The chemical compatibility was also investigated with powder mixtures at 700 and 800oC to enhance potential interfacial reaction. In addition, interfacial microstructure was examined with scanning electron microscopy and evaluated with regard to the leakage and chemical compatibility results.

  9. Overcoming phase instability of RBaCo2O5+ (R = Y and Ho) by Sr substitution for application as cathodes in solid oxide fuel cells

    SciTech Connect (OSTI)

    Kim, Jung-Hyun; Young Nam, Kim; Bi, Zhonghe; Manthiram, Arumugam; Paranthaman, Mariappan Parans; Huq, Ashfia

    2013-01-01

    Phase instabilities of the RBaCo2O5+ (R = Y and Ho) layered-perovskites and their decompositions into RCoO3 and BaCoO3-z at 800 oC in air were investigated. This will restrict their high temperature applications such as cathodes in solid oxide fuel cell (SOFC). However, appropriate amount of Sr substitution ( 60 % for R = Y and 70 % for R = Ho) for Ba successfully stabilized the R(Ba1-xSrx)Co2O5+ phase at elevated temperatures. This can be explained by decreasing oxygen vacancies at R-O layer, decreasing R-O bonding length, and consequent improvement of structural integrity. In addition, the Sr substitution (x = 0.6 - 1.0) for Ba provided added benefit with respect to the chemical stability against Ce0.8Gd0.2O1.9 (GDC) electrolyte, which is a critical requirement for the cathodes in SOFC. Among the various compositions investigated, the Y(Ba0.3Sr0.7)Co2O5+ + GDC composite cathode delivered the optimum electrochemical performances with a stable phase demonstrating the potential as a cathode in SOFC.

  10. Life-cycle cost comparisons of advanced storage batteries and fuel cells for utility, stand-alone, and electric vehicle applications

    SciTech Connect (OSTI)

    Humphreys, K.K.; Brown, D.R.

    1990-01-01

    This report presents a comparison of battery and fuel cell economics for ten different technologies. To develop an equitable economic comparison, the technologies were evaluated on a life-cycle cost (LCC) basis. The LCC comparison involved normalizing source estimates to a standard set of assumptions and preparing a lifetime cost scenario for each technology, including the initial capital cost, replacement costs, operating and maintenance (O M) costs, auxiliary energy costs, costs due to system inefficiencies, the cost of energy stored, and salvage costs or credits. By considering all the costs associated with each technology over its respective lifetime, the technology that is most economical to operate over any given period of time can be determined. An analysis of this type indicates whether paying a high initial capital cost for a technology with low O M costs is more or less economical on a lifetime basis than purchasing a technology with a low initial capital cost and high O M costs. It is important to realize that while minimizing cost is important, the customer will not always purchase the least expensive technology. The customer may identify benefits associated with a more expensive option that make it the more attractive over all (e.g., reduced construction lead times, modularity, environmental benefits, spinning reserve, etc.). The LCC estimates presented in this report represent three end-use applications: utility load-leveling, stand-alone power systems, and electric vehicles.

  11. Overview of Hydrogen Fuel Cell Budget

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Budget FUEL CELL TECHNOLOGIES PROGRAM Stakeholders Webinar - Budget Briefing Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager February 24, 2011 2 | Fuel Cell Technologies Program Source: US DOE 3/19/2013 eere.energy.gov Fuel Cells: For Diverse Applications 3 | Fuel Cell Technologies Program Source: US DOE 3/19/2013 eere.energy.gov INTRODUCTION: FY 2012 Budget in Brief Continues New Sub-programs for: * Fuel Cell Systems R&D - Consolidates four

  12. Vehicle Technologies Office Merit Review 2014: CFD Simulations and Experiments to Determine the Feasibility of Various Alternate Fuels for Compression Ignition Engine Applications

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about CFD simulations...

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    (NGV) and Infrastructure Rebate - Oklahoma Natural Gas Oklahoma Natural Gas (ONG) offers rebates for NGVs purchased or converted after June 20, 2016, in the amount of $2,000 for a dedicated NGV and $2,000 for a bi-fuel vehicle. ONG also offers $3,000 toward the cost of a compressed natural gas home fueling station or appliance. Rebates are available on a first come, first served basis and are limited to three rebates per applicant, per calendar year. For more information, including rebate fund

  14. Fuel cell-fuel cell hybrid system

    DOE Patents [OSTI]

    Geisbrecht, Rodney A.; Williams, Mark C.

    2003-09-23

    A device for converting chemical energy to electricity is provided, the device comprising a high temperature fuel cell with the ability for partially oxidizing and completely reforming fuel, and a low temperature fuel cell juxtaposed to said high temperature fuel cell so as to utilize remaining reformed fuel from the high temperature fuel cell. Also provided is a method for producing electricity comprising directing fuel to a first fuel cell, completely oxidizing a first portion of the fuel and partially oxidizing a second portion of the fuel, directing the second fuel portion to a second fuel cell, allowing the first fuel cell to utilize the first portion of the fuel to produce electricity; and allowing the second fuel cell to utilize the second portion of the fuel to produce electricity.

  15. Fuel Cells and Renewable Gaseous Fuels

    Broader source: Energy.gov [DOE]

    Breakout Session 3-C: Renewable Gaseous FuelsFuel Cells and Renewable Gaseous FuelsSarah Studer, ORISE Fellow—Fuel Cell Technologies Office, U.S. Department of Energy

  16. Durable, Low Cost, Improved Fuel Cell Membranes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Durable, Low Cost, Improved Fuel Cell Membranes Durable, Low Cost, Improved Fuel Cell Membranes This presentation, which focuses on fuel cell membranes, was given by Michel Foure of Arkema at a meeting on new fuel cell projects in February 2007. new_fc_foure_arkema.pdf (168.93 KB) More Documents & Publications Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel Cell Applications Novel Materials for High Efficiency Direct Methanol Fuel Cells High Temperature Membrane Working

  17. 10 Questions Regarding SAE Hydrogen Fueling Standards | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 10 Questions Regarding SAE Hydrogen Fueling Standards 10 Questions Regarding SAE Hydrogen Fueling Standards November 7, 2014 - 4:03pm Addthis The Department of Energy's (DOE's) Fuel Cell Technologies Office has made significant investment in hydrogen and fuel cell research and development (R&D) over the last decade, helping to cut fuel cell cost in half and enabling the commercialization of fuel cells for several early market applications. Working closely with industry has been

  18. Hydrogen and Fuel Cell Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cell Activities Hydrogen and Fuel Cell Activities Presentation-given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting-covers the U.S. Department of Energy's hydrogen and fuel activities and technology applications. fupwg_fall11_devlin.pdf (3.34 MB) More Documents & Publications Expanding the Use of Biogas with Fuel Cell Technologies Overview of Hydrogen and Fuel Cell Activities: 2011 IPHE Stationary Fuel Cell Workshop Demonstration of Next

  19. Careers in Fuel Cell Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Careers in Fuel Cell Technologies Careers in Fuel Cell Technologies Fact sheet produced by the Fuel Cell Technologies Office describing job growth potential in existing and emerging fuel cell applications. Careers in Fuel Cell Technologies (872.3 KB) More Documents & Publications Education and Outreach Fact Sheet Effects Of a Transition to a Hydrogen Economy on Employment in the United States: Report to Congress Hydrogen and Fuel Cell Technologies Overview

  20. Assessment of fuel cell propulsion systems

    SciTech Connect (OSTI)

    Altseimer, J.H.; Frank, J.A.; Nochumson, D.H.; Thayer, G.R.; Rahm, A.M.; Williamson, K.D. Jr.; Hardie, R.W.; Jackson, S.V.

    1983-11-01

    This report assesses the applicability of fuel cells to a wide variety of transportation vehicles and compares them with competing propulsion systems. The assessments include economic evaluations (initial capital cost and levelized-life-cycle costs) and noneconomic evaluations (vehicle performance, power plant size, environmental effects, safety, convenience and reliability). The report also recommends research and development areas to support the development of fuel cell systems. The study indicates that fork-lift trucks are an excellent application for fuel cells. Fuel cell use in urban delivery vans and city buses is promising because it would reduce air pollution. Fuel-cell-powered automobiles, pickup trucks, and intercity buses only look promising over the long term. Based on economic criteria, the use of fuel cells for small marine craft does not appear feasible. Because of economic uncertainties, further study is needed to assess the application of fuel cell systems to freight locomotives and large marine craft.

  1. Alternative Aviation Fuel Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alternative Aviation Fuel Workshop Alternative Aviation Fuel Workshop September 14, 2016 8:00AM EDT to September 15, 2016 1:00PM EDT Macon Marriott City Center 240 Coliseum Drive, Macon, GA 31217801 The aviation industry faces significant challenges to maintain growth while enhancing environmental sustainability. Alternative energy systems such as batteries, fuel cells, and natural gas are options for on-road, off-road, and marine engine applications, but these alternative fuels are not yet

  2. FUEL ELEMENT

    DOE Patents [OSTI]

    Bean, R.W.

    1963-11-19

    A ceramic fuel element for a nuclear reactor that has improved structural stability as well as improved cooling and fission product retention characteristics is presented. The fuel element includes a plurality of stacked hollow ceramic moderator blocks arranged along a tubular raetallic shroud that encloses a series of axially apertured moderator cylinders spaced inwardly of the shroud. A plurality of ceramic nuclear fuel rods are arranged in the annular space between the shroud and cylinders of moderator and appropriate support means and means for directing gas coolant through the annular space are also provided. (AEC)

  3. Fuel quality issues in stationary fuel cell systems.

    SciTech Connect (OSTI)

    Papadias, D.; Ahmed, S.; Kumar, R.

    2012-02-07

    Fuel cell systems are being deployed in stationary applications for the generation of electricity, heat, and hydrogen. These systems use a variety of fuel cell types, ranging from the low temperature polymer electrolyte fuel cell (PEFC) to the high temperature solid oxide fuel cell (SOFC). Depending on the application and location, these systems are being designed to operate on reformate or syngas produced from various fuels that include natural gas, biogas, coal gas, etc. All of these fuels contain species that can potentially damage the fuel cell anode or other unit operations and processes that precede the fuel cell stack. These detrimental effects include loss in performance or durability, and attenuating these effects requires additional components to reduce the impurity concentrations to tolerable levels, if not eliminate the impurity entirely. These impurity management components increase the complexity of the fuel cell system, and they add to the system's capital and operating costs (such as regeneration, replacement and disposal of spent material and maintenance). This project reviewed the public domain information available on the impurities encountered in stationary fuel cell systems, and the effects of the impurities on the fuel cells. A database has been set up that classifies the impurities, especially in renewable fuels, such as landfill gas and anaerobic digester gas. It documents the known deleterious effects on fuel cells, and the maximum allowable concentrations of select impurities suggested by manufacturers and researchers. The literature review helped to identify the impurity removal strategies that are available, and their effectiveness, capacity, and cost. A generic model of a stationary fuel-cell based power plant operating on digester and landfill gas has been developed; it includes a gas processing unit, followed by a fuel cell system. The model includes the key impurity removal steps to enable predictions of impurity breakthrough

  4. Fuel economy and range estimates for fuel cell powered automobiles

    SciTech Connect (OSTI)

    Steinbugler, M.; Ogden, J.

    1996-12-31

    While a number of automotive fuel cell applications have been demonstrated, including a golf cart, buses, and a van, these systems and others that have been proposed have utilized differing configurations ranging from direct hydrogen fuel cell-only power plants to fuel cell/battery hybrids operating on reformed methanol. To date there is no clear consensus on which configuration, from among the possible combinations of fuel cell, peaking device, and fuel type, is the most likely to be successfully commercialized. System simplicity favors direct hydrogen fuel cell vehicles, but infrastructure is lacking. Infrastructure favors a system using a liquid fuel with a fuel processor, but system integration and performance issues remain. A number of studies have analyzed particular configurations on either a system or vehicle scale. The objective of this work is to estimate, within a consistent framework, fuel economies and ranges for a variety of configurations using flexible models with the goal of identifying the most promising configurations and the most important areas for further research and development.

  5. 2007 Fuel Cell Technologies Market Report

    SciTech Connect (OSTI)

    McMurphy, K.

    2009-07-01

    The fuel cell industry, which has experienced continued increases in sales, is an emerging clean energy industry with the potential for significant growth in the stationary, portable, and transportation sectors. Fuel cells produce electricity in a highly efficient electrochemical process from a variety of fuels with low to zero emissions. This report describes data compiled in 2008 on trends in the fuel cell industry for 2007 with some comparison to two previous years. The report begins with a discussion of worldwide trends in units shipped and financing for the fuel cell industry for 2007. It continues by focusing on the North American and U.S. markets. After providing this industry-wide overview, the report identifies trends for each of the major fuel cell applications -- stationary power, portable power, and transportation -- including data on the range of fuel cell technologies -- polymer electrolyte membrane fuel cell (PEMFC), solid oxide fuel cell (SOFC), alkaline fuel cell (AFC), molten carbonate fuel cell (MCFC), phosphoric acid fuel cell (PAFC), and direct-methanol fuel cell (DMFC) -- used for these applications.

  6. Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and robust solid oxide fuel cell (SOFC) system. Specific objectives include achieving an efficiency of greater than 60 percent, meeting a stack cost target of 175 per kW, and ...

  7. Fuel economizer

    SciTech Connect (OSTI)

    Zwierzelewski, V.F.

    1984-06-26

    A fuel economizer device for use with an internal combustion engine fitted with a carburetor is disclosed. The fuel economizer includes a plate member which is mounted between the carburetor and the intake portion of the intake manifold. The plate member further has at least one aperture formed therein. One tube is inserted through the at least one aperture in the plate member. The one tube extends longitudinally in the passage of the intake manifold from the intake portion toward the exit portion thereof. The one tube concentrates the mixture of fuel and air from the carburetor and conveys the mixture of fuel and air to a point adjacent but spaced away from the inlet port of the internal combustion engine.

  8. Multi-fuel reformers for fuel cells used in transportation. Multi-fuel reformers: Phase 1 -- Final report

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    DOE has established the goal, through the Fuel Cells in Transportation Program, of fostering the rapid development and commercialization of fuel cells as economic competitors for the internal combustion engine. Central to this goal is a safe feasible means of supplying hydrogen of the required purity to the vehicular fuel cell system. Two basic strategies are being considered: (1) on-board fuel processing whereby alternative fuels such as methanol, ethanol or natural gas stored on the vehicle undergo reformation and subsequent processing to produce hydrogen, and (2) on-board storage of pure hydrogen provided by stationary fuel processing plants. This report analyzes fuel processor technologies, types of fuel and fuel cell options for on-board reformation. As the Phase 1 of a multi-phased program to develop a prototype multi-fuel reformer system for a fuel cell powered vehicle, the objective of this program was to evaluate the feasibility of a multi-fuel reformer concept and to select a reforming technology for further development in the Phase 2 program, with the ultimate goal of integration with a DOE-designated fuel cell and vehicle configuration. The basic reformer processes examined in this study included catalytic steam reforming (SR), non-catalytic partial oxidation (POX) and catalytic partial oxidation (also known as Autothermal Reforming, or ATR). Fuels under consideration in this study included methanol, ethanol, and natural gas. A systematic evaluation of reforming technologies, fuels, and transportation fuel cell applications was conducted for the purpose of selecting a suitable multi-fuel processor for further development and demonstration in a transportation application.

  9. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 13, October--December, 1995

    SciTech Connect (OSTI)

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1996-01-31

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction, and operation of a 2-t/hr process development unit. During Quarter 13 (October--December 1995), testing of the GranuFlow dewatering process indicated a 3--4% reduction in cake moisture for screen-bowl and solid-bowl centrifuge products. The Orimulsion additions were also found to reduce the potential dustiness of the fine coal, as well as improve solids recovery in the screen-bowl centrifuge. Based on these results, Lady Dunn management now plans to use a screen bowl centrifuge to dewater their Microcel{trademark} column froth product. Subtask 3.3 testing, investigating a novel Hydrophobic Dewatering process (HD), continued this quarter. Continuing Subtask 6.4 work, investigating coal-water-slurry formulation, indicated that selective agglomeration products can be formulated into slurries with lower viscosities than advanced flotation products. Subtask 6.5 agglomeration bench-scale testing results indicate that a very fine grind is required to meet the 2 lb ash/MBtu product specification for the Winifrede coal, while the Hiawatha coal requires a grind in the 100- to 150-mesh topsize range. Detailed design work remaining involves the preparation and issuing of the final task report. Utilizing this detailed design, a construction bid package was prepared and submitted to three Colorado based contractors for quotes as part of Task 9.

  10. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 11, April--June, 1995

    SciTech Connect (OSTI)

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1995-07-31

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by design, and construction of a 2-t/hr process development unit (PDU). The PDU will then be operated to generate 200 tons of each of three project coals, by each process. During Quarter 11 (April--June, 1995), work continued on the Subtask 3.2 in-plant testing of the Microcel{trademark} flotation column at the Lady Dunn Preparation Plant with the installation and calibration of a refurbished 30-inch diameter column. The evaluation of toxic trace element data for column flotation samples continued, with preliminary analysis indicating that reasonably good mass balances were achieved for most elements, and that significant reductions in the concentration of many elements were observed from raw coal, to flotation feed, to flotation product samples. Significant progress was made on Subtask 6.5 selective agglomeration bench-scale testing. Data from this work indicates that project ash specifications can be met for all coals evaluated, and that the bulk of the bridging liquid (heptane) can be removed from the product for recycle to the process. The detailed design of the 2 t/hr selective agglomeration module progressed this quarter with the completion of several revisions of both the process flow, and the process piping and instrument diagrams. Procurement of coal for PDU operation began with the purchase of 800 tons of Taggart coal. Construction of the 2 t/hr PDU continued through this reporting quarter and is currently approximately 60% complete.

  11. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 9, October 1, 1994--December 31, 1994

    SciTech Connect (OSTI)

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1995-01-25

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by design, and construction of a 2-t/hr process development unit (PDU). The PDU will then be operated to generate 200 ton lots of each of three project coals, by each process. The project began in October, 1992 and is scheduled for completion by March, 1997. During Quarter 9 (October--December, 1995), parametric and optimization testing was completed for the Taggart, Sunnyside, and Indiana VII coal using a 12-inch Microcel{trademark} flotation column. The detailed design of the 2-t/hr PDU grinding, flotation, and dewatering circuits neared completion with the specification of the major pieces of capital equipment to be purchased for these areas. Selective agglomeration test work investigated the properties of various industrial grades of heptane for use during bench- and PDU-scale testing. It was decided to use a hydrotreated grade of commercial heptane due to its low cost and low concentration of aromatic compounds. The final Subtask 6.4 CWF Formulation Studies Test Plan was issued. A draft version of the Subtask 6.5 Preliminary Design and Test Plan Report was also issued, discussing the progress made in the design of the bench-scale selective agglomeration unit. PDU construction work moved forward through the issuing of 26 request for quotations and 21 award packages for capital equipment.

  12. Parts of a Fuel Cell | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells » Parts of a Fuel Cell Parts of a Fuel Cell Polymer electrolyte membrane (PEM) fuel cells are the current focus of research for fuel cell vehicle applications. PEM fuel cells are made from several layers of different materials. The main parts of a PEM fuel cell are described below. The heart of a PEM fuel cell is the membrane electrode assembly (MEA), which includes the membrane, the catalyst layers, and gas diffusion layers (GDLs). Hardware components used to incorporate an MEA into

  13. Webinar August 11: Analysis Using Fuel Cell MHE for Shaving Peak...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on Material Handling Fuel Cells for Building Electric Peak Shaving Applications DOE Announces Webinars on Geography of Alternative Fuels, Wind Siting Considerations, and More...

  14. DOE Technical Targets for Fuel Cell Systems and Stacks for Transportat...

    Broader source: Energy.gov (indexed) [DOE]

    integrated polymer electrolyte membrane (PEM) fuel cell power systems and fuel cell stacks operating on direct hydrogen for transportation applications. These targets have been ...

  15. Navy fuel cell demonstration project.

    SciTech Connect (OSTI)

    Black, Billy D.; Akhil, Abbas Ali

    2008-08-01

    This is the final report on a field evaluation by the Department of the Navy of twenty 5-kW PEM fuel cells carried out during 2004 and 2005 at five Navy sites located in New York, California, and Hawaii. The key objective of the effort was to obtain an engineering assessment of their military applications. Particular issues of interest were fuel cell cost, performance, reliability, and the readiness of commercial fuel cells for use as a standalone (grid-independent) power option. Two corollary objectives of the demonstration were to promote technological advances and to improve fuel performance and reliability. From a cost perspective, the capital cost of PEM fuel cells at this stage of their development is high compared to other power generation technologies. Sandia National Laboratories technical recommendation to the Navy is to remain involved in evaluating successive generations of this technology, particularly in locations with greater environmental extremes, and it encourages their increased use by the Navy.

  16. Vehicle Technologies Office Merit Review 2014: Development of Modified PAG (polyalkylene glycol) High VI High Fuel Efficient Lubricant for LDV Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Ford Motor Company at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of modified...

  17. Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Fact sheet produced by the Fuel Cell ...

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    School Bus USA Clean School Bus USA is a public-private partnership that focuses on reducing children's exposure to harmful diesel exhaust by limiting school bus idling, implementing pollution reduction technologies, improving route logistics, and switching to clean fuels. Clean School Bus USA is part of the U.S. Environmental Protection Agency's National Clean Diesel Campaign and provides funding for projects designed to retrofit and/or replace older diesel school buses. Eligible applicants are

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Aftermarket Alternative Fuel Vehicle (AFV) Conversions Conventional original equipment manufacturer vehicles altered to operate on propane, natural gas, methane gas, ethanol, or electricity are classified as aftermarket AFV conversions. All vehicle conversions, except those that are completed for a vehicle to run on electricity, must meet current applicable U.S. Environmental Protection Agency (EPA) standards. For more information about vehicle conversion certification requirements, see the

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Grants and Loan Guarantees The Biorefinery Assistance Program (Section 9003) provides loan guarantees for the development, construction, and retrofitting of commercial-scale biorefineries that produce advanced biofuels. Grants for demonstration scale biorefineries are also available. Advanced biofuel is defined as fuel derived from renewable biomass other than corn kernel starch. Eligible applicants include, but are not limited to, individuals, state or local governments, farm cooperatives,

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Vehicles Safety Regulations Vehicles converted to operate on compressed natural gas (CNG), liquefied natural gas (LNG), or a bi-fuel system must be inspected for compliance with applicable Federal Motor Vehicle Safety Standards (FMVSS). The inspection must occur proximate to the conversion; every three years or 36,000 miles after the conversion, whichever comes first; and following any collision in which the vehicle was traveling at five miles per hour or greater. Vehicles originally

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Incentive - Propane Education Foundation of Florida Incentives for the purchase or conversion of propane commercial mowers are available to public and private entities that have not previously used propane as a fuel. New and converted propane commercial mowers are eligible for $1,000. Multi-state marketers are limited to ten incentives per company annually, and independent dealers are limited to five incentives annually. Applicants must submit a pre- and post-purchase survey and additional

  3. Development of fuel processors for transportation and stationary fuel cell systems

    SciTech Connect (OSTI)

    Mitchell, W.L.; Bentley, J.M.; Thijssen, J.H.J.

    1996-12-31

    Five years of development effort at Arthur D. Little have resulted in a family of low-cost, small-scale fuel processor designs which have been optimized for multiple fuels, applications, and fuel cell technologies. The development activities discussed in this paper involve Arthur D. Little`s proprietary catalytic partial oxidation fuel processor technology. This technology is inherently compact and fuel-flexible, and has been shown to have system efficiencies comparable to steam reformers when integrated properly with a wide range of fuel cell types.

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Fuel Properties Search Fuel Properties Comparison Create a custom chart

  5. DOE Technical Targets for Fuel Cell Systems for Stationary (Combined Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Power) Applications | Department of Energy Stationary (Combined Heat and Power) Applications DOE Technical Targets for Fuel Cell Systems for Stationary (Combined Heat and Power) Applications These tables list the U.S. Department of Energy (DOE) technical targets for stationary fuel cell applications. These targets have been developed with input from developers of stationary fuel cell power systems. More information about targets can be found in the Fuel Cells section of the Fuel Cell

  6. Reforming of fuel inside fuel cell generator

    DOE Patents [OSTI]

    Grimble, Ralph E.

    1988-01-01

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

  7. Reforming of fuel inside fuel cell generator

    DOE Patents [OSTI]

    Grimble, R.E.

    1988-03-08

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream 1 and spent fuel stream 2. Spent fuel stream 1 is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream 1 and exhaust stream 2, and exhaust stream 1 is vented. Exhaust stream 2 is mixed with spent fuel stream 2 to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells. 1 fig.

  8. Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling

  9. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  10. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  11. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  12. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  13. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Clean Transportation Fuel Standards The Oregon Department of Environmental Quality (DEQ) administers the Oregon Clean Fuels Program (Program), which requires fuel producers and ...

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle and Fueling Infrastructure Grants and Loans The Utah Clean Fuels and Vehicle Technology Grant and Loan Program, funded through the Clean Fuels and Vehicle Technology Fund, ...

  16. Fuel Temperature Coefficient of Reactivity

    SciTech Connect (OSTI)

    Loewe, W.E.

    2001-07-31

    A method for measuring the fuel temperature coefficient of reactivity in a heterogeneous nuclear reactor is presented. The method, which is used during normal operation, requires that calibrated control rods be oscillated in a special way at a high reactor power level. The value of the fuel temperature coefficient of reactivity is found from the measured flux responses to these oscillations. Application of the method in a Savannah River reactor charged with natural uranium is discussed.

  17. NREL: Hydrogen and Fuel Cells Research - Hydrogen Fuel Cell Bus Evaluations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Fuel Cell Bus Evaluations Transit buses are one of the best early transportation applications for fuel cell technology. Buses operate in congested areas where pollution is already a problem. These buses are centrally located and fueled, highly visible, and subsidized by government. By evaluating the experiences of these early adopters, NREL can determine the status of bus fuel cell systems and establish lessons learned to aid other fleets in implementing the next generation of these

  18. Fuel Cells & Alternative Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cells & Alternative Fuels Fuel Cells & Alternative Fuels Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and ...

  19. Gas-to-liquids synthetic fuels for use in fuel cells : reformability, energy density, and infrastructure compatibility.

    SciTech Connect (OSTI)

    Ahmed, S.; Kopasz, J. P.; Russell, B. J.; Tomlinson, H. L.

    1999-09-08

    The fuel cell has many potential applications, from power sources for electric hybrid vehicles to small power plants for commercial buildings. The choice of fuel will be critical to the pace of its commercialization. This paper reviews the various liquid fuels being considered as an alternative to direct hydrogen gas for the fuel cell application, presents calculations of the hydrogen and carbon dioxide yields from autothermal reforming of candidate liquid fuels, and reports the product gas composition measured from the autothermal reforming of a synthetic fuel in a micro-reactor. The hydrogen yield for a synthetic paraffin fuel produced by a cobalt-based Fischer-Tropsch process was found to be similar to that of retail gasoline. The advantages of the synthetic fuel are that it contains no contaminants that would poison the fuel cell catalyst, is relatively benign to the environment, and could be transported in the existing fuel distribution system.

  20. Residential fuel quality

    SciTech Connect (OSTI)

    Santa, T.

    1997-09-01

    This report details progress made in improving the performance of No. 2 heating oil in residential applications. Previous research in this area is documented in papers published in the Brookhaven Oil Heat Technology Conference Proceedings in 1993, 1994 and 1996. By way of review we have investigated a number of variables in the search for improved fuel system performance. These include the effect of various additives designed to address stability, dispersion, biotics, corrosion and reaction with metals. We have also investigated delivery methods, filtration, piping arrangements and the influence of storage tank size and location. As a result of this work Santa Fuel Inc. in conjunction with Mobile Oil Corporation have identified an additive package which shows strong evidence of dramatically reducing the occurrence of fuel system failures in residential oil burners. In a broad market roll-out of the additized product we have experienced a 29% reduction in fuel related service calls when comparing the 5 months ending January 1997 to the same period ending January 1996.

  1. Novel Materials for High Efficiency Direct Methanol Fuel Cells | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Materials for High Efficiency Direct Methanol Fuel Cells Novel Materials for High Efficiency Direct Methanol Fuel Cells Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 - October 1, 2009 roger_arkema_kickoff.pdf (394.12 KB) More Documents & Publications Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel Cell Applications Advance Patent Waiver W(A)2010-028 Durable, Low Cost, Improved Fuel Cell Membranes

  2. US DRIVE Fuel Cell Technical Team Roadmap | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Technical Team Roadmap US DRIVE Fuel Cell Technical Team Roadmap The Fuel Cell Technical Team (FCTT) conducts the following activities: (1) Reviews and evaluates materials and systems research regarding fuel cells for light-duty vehicles and provides feedback to the U.S. Department of Energy (DOE) and Partnership stakeholders, (2) Generates goals and performance targets for fuel cells for automotive applications, (3) Collaborates with other technical teams and assists the Partnership

  3. NREL: Hydrogen and Fuel Cells Research Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cells Research Photo of a fuel cell electric vehicle refueling at a hydrogen dispensing station. NREL hydrogen and fuel cell research focuses on developing, integrating, and demonstrating hydrogen production and delivery, hydrogen storage, and fuel cell technologies for transportation, stationary, and portable applications. Projects range from fundamental research to overcome technical barriers, manufacturing process improvement to enable high-volume fuel cell production,

  4. Explore Careers in Hydrogen and Fuel Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cells Explore Careers in Hydrogen and Fuel Cells National energy security, environmental pollution, and climate change are driving the development of cleaner domestic energy alternatives. Fuel cells are among the promising technologies that are expected to transform our energy sector. They represent highly efficient and fuel-flexible technologies that offer diverse benefits. For example, fuel cells can be used in a wide range of applications&mdash;from portable electronics,

  5. Biogas and Fuel Cells Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biogas and Fuel Cells Workshop Biogas and Fuel Cells Workshop The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) held a Biogas and Fuel Cells Workshop June 11-13, 2012, in Golden, Colorado, to discuss biogas and waste-to-energy technologies for fuel cell applications. Workshop objectives were to discuss the state-of-the-art of the technologies; identify challenges preventing or delaying widespread deployment of biogas fuel cell projects and opportunities to

  6. Comparison of Fuel Cell Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Comparison of Fuel Cell Technologies Comparison of Fuel Cell Technologies Each fuel cell technology has advantages and challenges. See how fuel cell technologies compare with one another. This comparison chart is also available as a fact sheet. Fuel Cell Type Common Electrolyte Operating Temperature Typical Stack Size Electrical Efficiency (LHV) Applications Advantages Challenges Polymer Electrolyte Membrane (PEM) Perfluorosulfonic acid <120°C <1 kW-100 kW 60% direct H2;a 40% reformed

  7. California Fuel Cell Partnership: Alternative Fuels Research...

    Broader source: Energy.gov (indexed) [DOE]

    This presentation by Chris White of the California Fuel Cell Partnership provides information about alternative fuels research. cafcpinitiativescall.pdf (133.97 KB) More ...

  8. Fuel Cells and Renewable Gaseous Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Technologies Office | 1 7/14/2015 Fuel Cells and Renewable Gaseous Fuels Bioenergy 2015: Renewable Gaseous Fuels Breakout Session Sarah Studer, PhD ORISE Fellow Fuel Cell Technologies Office Office of Energy Efficiency and Renewable Energy U.S. Department of Energy June 24, 2015 Washington, DC Fuel Cell Technologies Office | 2 7/14/2015 7/14/2015 DOE Hydrogen and Fuel Cells Program Integrated approach to widespread commercialization of H 2 and fuel cells Fuel Cell Cost Durability H 2 Cost

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Renewable Fuel Distributor and Vehicle Manufacturer Liability Protection Renewable fuel refiners, suppliers, terminals, wholesalers, distributors, retailers, and motor vehicle manufacturers and dealers are not liable for property damages related to a customer's purchase of renewable fuel, including blends, if the consumer selected the fuel for use. Motor fuel blended with any amount of renewable fuel will not be considered a defective product provided the fuel compiles with motor fuel quality

  10. NREL Developed Mobile App for Alternative Fueling Station Locations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Released - News Releases | NREL NREL Developed Mobile App for Alternative Fueling Station Locations Released New application for iPhone helps users find stations offering electricity, biodiesel, natural gas, and other alternative fuels. November 7, 2013 iPhone users now have access to a free application that locates fueling stations offering alternative fuels, including electricity, natural gas, biodiesel, e85 Ethanol, propane and hydrogen. The Energy Department's (DOE) National Renewable

  11. Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Infrastructure

  12. Alternative Fuels Data Center: Propane Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Propane Fueling Infrastructure

  13. Alternative Fuels Data Center: Filling CNG Fuel Tanks

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Filling CNG Fuel Tanks to someone by E-mail Share Alternative Fuels Data Center: Filling CNG Fuel Tanks on Facebook Tweet about Alternative Fuels Data Center: Filling CNG Fuel Tanks on Twitter Bookmark Alternative Fuels Data Center: Filling CNG Fuel Tanks on Google Bookmark Alternative Fuels Data Center: Filling CNG Fuel Tanks on Delicious Rank Alternative Fuels Data Center: Filling CNG Fuel Tanks on Digg Find More places to share Alternative Fuels Data Center: Filling CNG Fuel Tanks on

  14. Alternative Fuels Data Center: Natural Gas Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fuel Basics on Google Bookmark Alternative Fuels Data Center: Natural Gas Fuel Basics on Delicious Rank Alternative Fuels Data Center: Natural Gas Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fuel Basics on

  15. Alternative Fuels Data Center: Natural Gas Fuel Safety

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Safety to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fuel Safety on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fuel Safety on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fuel Safety on Google Bookmark Alternative Fuels Data Center: Natural Gas Fuel Safety on Delicious Rank Alternative Fuels Data Center: Natural Gas Fuel Safety on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fuel Safety on

  16. Fuel cell systems program plan, Fiscal year 1994

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    Goal of the fuel cell program is to increase energy efficiency and economic effectiveness through development and commercialization of fuel cell systems which operate on fossil fuels in multiple end use sectors. DOE is participating with the private sector in sponsoring development of molten carbonate fuel cells and solid oxide fuel cells for application in the utility, commercial, and industrial sectors. Commercialization of phosphoric acid fuel cells is well underway. Besides the introduction, this document is divided into: goal/objectives, program strategy, technology description, technical status, program description/implementation, coordinated fuel cell activities, and international activities.

  17. Synthetic fuels

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    In January 1982, the Department of Energy guaranteed a loan for the construction and startup of the Great Plains project. On August 1, 1985, the partnership defaulted on the $1.54 billion loan, and DOE acquired control of, and then title to, the project. DOE continued to operate the plant, through the ANG Coal Gasification Company, and sell synthetic fuel. The DOE's ownership and divestiture of the plant is discussed.

  18. Combustor technology for broadened-properties fuels

    SciTech Connect (OSTI)

    Dodds, W.J.

    1984-01-01

    In order to increase the availability and reduce the cost of future fuels for aircraft gas turbine engines, it may be necessary to broaden fuel specifications. Anticipated changes in fuel properties, and the effects of these changes on combustion system performance, operating characteristics, durability, and emissions are briefly reviewed, and results to date of a program being conducted to develop and demonstrate combustor technology required to utilize broadened-properties fuels in current and next-generation engines are described. Combustion system design considerations and tradeoffs for burning broadened-properties fuels are discussed, and test experience with several applicable combustor design modifications to the G.E. CF6-80A combustion system is reviewed. Modifications have been demonstrated to improve liner cooling and reduce smoke in the conventional annular combustor, thereby reducing effects of variations in fuel hydrogen content. Advanced staged and variable geometry combustor concepts for burning broadened-properties fuels have also been demonstrated.

  19. Research and development of a proton-exchange-membrane (PEM) fuel cell system for transportation applications. Progress report for Quarter 4 of the Phase II report

    SciTech Connect (OSTI)

    1995-10-20

    This 4th quarter report summarizes activity from July 1, 1995 through October 1, 1995; the report is organized as usual into sections describing background information and work performed under the main WBS categories: The Fuel Processor (WBS 1.0) team activity during this quarter focused on the continued design/development of the full scale fuel processing hardware. The combustor test stand has been completed allowing more detailed testing of the various parts of the combustor subsystem; this subsystem is currently being evaluated using the dual fuel (methanol/hydrogen) option to gain a better understanding of the control issues. The Fuel Cell Stack (WBS 2.0) team activity focused on material analysis and testing to determine the appropriate approach for the first GM stack. Five hundred hours of durability was achieved on a single cell fixture using coated titanium plates (anode and cathode) with no appreciable voltage degradation of the SEL (Stack Engineering Lab) produced MEA. Additionally, the voltage level drop across each of the plates remained low (<5mv) over the full test period; The system integration and control team focused on the initial layout and configuration of the system; and the Reference powertrain and commercialization studies are currently under review.

  20. NREL: Hydrogen and Fuel Cells Research - Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects Photo of person at work in laboratory setting. NREL scientist tests a photoelectrochemical water-splitting system used for renewable hydrogen production. Photo by Dennis Schroeder, NREL NREL hydrogen and fuel cell research projects support the development and adoption of cost-effective, high-performance fuel cell systems and sustainable hydrogen technologies for transportation, stationary, and portable applications. Learn about our projects: Fuel cells Hydrogen production and delivery

  1. Using Fuel Cell Membranes to Improve Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Membranes to Improve Power As part of its Sustainable Energy Program, Sandia National Laboratories works to find new ways to use fuel cell membranes to improve energy generation and storage. Work in this area explores elements of fuel cell membrane composition and behavior including synthesis of block copolymers for improved separation, cross-linked membranes for greater stability and resonance- stabilized ionic groups that are used in a number of other applications. While Sandia

  2. Hydrogen and Fuel Cells Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cells Program U.S. Department of Energy Hydrogen + Fuel Cells 2011 International Conference and Exhibition Vancouver, Canada May 17, 2011 Enable widespread commercialization of hydrogen and fuel cell technologies: * Early markets such as stationary power, lift trucks, and portable power * Mid-term markets such as residential CHP systems, auxiliary power units, fleets and buses * Long-term markets including mainstream transportation applications/light duty vehicles Updated

  3. Description of the Canadian particulate-fill waste-package (WP) system for spent-nuclear fuel (SNF) and its applicability to light-water reactor SNF WPs with depleted uranium-dioxide fill

    SciTech Connect (OSTI)

    Forsberg, C.W.

    1997-10-20

    The US is beginning work on an advanced, light-water reactor (LWR), spent nuclear fuel (SNF), waste package (WP) that uses depleted uranium dioxide (UO{sub 2}) fill. The Canadian nuclear fuel waste management program has completed a 15-year development program of its repository concept for CANadian Deuterium Uranium (CANDU) reactor SNF. As one option, Canada has developed a WP that uses a glass-bead or silica-sand fill. The Canadian development work on fill materials inside WPs can provide a guide for the development of LWR SNF WPs using depleted uranium (DU) fill materials. This report summarizes the Canadian work, identifies similarities and differences between the Canadian design and the design being investigated in the US to use DU fill, and identifies what information is applicable to the development of a DU fill for LWR SNF WPs. In both concepts, empty WPs are loaded with SNF, the void space between the fuel pins and the outer void space between SNF assemblies and the inner WP wall would be filled with small particles, the WPs are then sealed, and the WPs are placed into the repository.

  4. Engineered fuel: Renewable fuel of the future?

    SciTech Connect (OSTI)

    Tomczyk, L.

    1997-01-01

    The power generation and municipal solid waste management industries share an interest in the use of process engineered fuel (PEF) comprised mainly of paper and plastics as a supplement to conventional fuels. PEF is often burned in existing boilers, making PEF an alternative to traditional refuse derived fuels (RDF). This paper describes PEF facilities and makes a comparison of PEF and RDF fuels.

  5. CLIMATE CHANGE FUEL CELL PROGRAM

    SciTech Connect (OSTI)

    Mike Walneuski

    2004-09-16

    ChevronTexaco has successfully operated a 200 kW PC25C phosphoric acid fuel cell power plant at the corporate data center in San Ramon, California for the past two years and seven months following installation in December 2001. This site was chosen based on the ability to utilize the combined heat (hot water) and power generation capability of this modular fuel cell power plant in an office park setting . In addition, this project also represents one of the first commercial applications of a stationary fuel cell for a mission critical data center to assess power reliability benefits. This fuel cell power plant system has demonstrated outstanding reliability and performance relative to other comparably sized cogeneration systems.

  6. Alcohol fuels program technical review

    SciTech Connect (OSTI)

    1981-07-01

    The last issue of the Alcohol Fuels Process R/D Newsletter contained a work breakdown structure (WBS) of the SERI Alcohol Fuels Program that stressed the subcontracted portion of the program and discussed the SERI biotechnology in-house program. This issue shows the WBS for the in-house programs and contains highlights for the remaining in-house tasks, that is, methanol production research, alcohol utilization research, and membrane research. The methanol production research activity consists of two elements: development of a pressurized oxygen gasifier and synthesis of catalytic materials to more efficiently convert synthesis gas to methanol and higher alcohols. A report is included (Finegold et al. 1981) that details the experimental apparatus and recent results obtained from the gasifier. The catalysis research is principally directed toward producing novel organometallic compounds for use as a homogeneous catalyst. The utilization research is directed toward the development of novel engine systems that use pure alcohol for fuel. Reforming methanol and ethanol catalytically to produce H/sub 2/ and CO gas for use as a fuel offers performance and efficiency advantages over burning alcohol directly as fuel in an engine. An application of this approach is also detailed at the end of this section. Another area of utilization is the use of fuel cells in transportation. In-house researchers investigating alternate electrolyte systems are exploring the direct and indirect use of alcohols in fuel cells. A workshop is being organized to explore potential applications of fuel cells in the transportation sector. The membrane research group is equipping to evaluate alcohol/water separation membranes and is also establishing cost estimation and energy utilization figures for use in alcohol plant design.

  7. Alternative Fuels Data Center: Fuel Cell Electric Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Fuel Cell Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Fuel

  8. Alternative Fuels Data Center: Strategies to Conserve Fuel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Strategies to Conserve Fuel to someone by E-mail Share Alternative Fuels Data Center: Strategies to Conserve Fuel on Facebook Tweet about Alternative Fuels Data Center: Strategies to Conserve Fuel on Twitter Bookmark Alternative Fuels Data Center: Strategies to Conserve Fuel on Google Bookmark Alternative Fuels Data Center: Strategies to Conserve Fuel on Delicious Rank Alternative Fuels Data Center: Strategies to Conserve Fuel on Digg Find More places to share Alternative Fuels Data Center:

  9. Alternative Fuels Data Center: Natural Gas Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fueling Stations on Google Bookmark Alternative Fuels Data Center: Natural Gas Fueling Stations on Delicious Rank Alternative Fuels Data Center: Natural Gas Fueling Stations on Digg Find More places to share Alternative Fuels Data

  10. Alternative Fuels Data Center: Test Your Alternative Fuel IQ

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Test Your Alternative Fuel IQ to someone by E-mail Share Alternative Fuels Data Center: Test Your Alternative Fuel IQ on Facebook Tweet about Alternative Fuels Data Center: Test Your Alternative Fuel IQ on Twitter Bookmark Alternative Fuels Data Center: Test Your Alternative Fuel IQ on Google Bookmark Alternative Fuels Data Center: Test Your Alternative Fuel IQ on Delicious Rank Alternative Fuels Data Center: Test Your Alternative Fuel IQ on Digg Find More places to share Alternative Fuels Data

  11. DOE Hydrogen and Fuel Cells Program Record #13007: Industry Deployed Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Backup Power (BuP) | Department of Energy Record #13007: Industry Deployed Fuel Cell Backup Power (BuP) DOE Hydrogen and Fuel Cells Program Record #13007: Industry Deployed Fuel Cell Backup Power (BuP) This record from the DOE Hydrogen and Fuel Cells Program describes the number of current and planned fuel cell deployments for backup power applications. 13007_industry_bup_deployments.pdf (307.65 KB) More Documents & Publications Early Stage Market Change and Effects of the Recovery

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Local Examples Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Search Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Definition The following fuels are defined as alternative fuels by the Energy Policy Act (EPAct) of 1992: pure methanol, ethanol, and other alcohols; blends of 85% or more of alcohol with gasoline; natural gas and liquid fuels domestically produced from natural gas; liquefied petroleum gas (propane); coal-derived liquid fuels; hydrogen; electricity; pure biodiesel (B100); fuels, other than alcohol, derived from biological materials; and P-Series fuels. In addition, the U.S.

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Labeling Requirements Alternative fuel dispensers must be labeled with information to help consumers make informed decisions about fueling a vehicle, including the name of the fuel and the minimum percentage of the main component of the fuel. Labels may also list the percentage of other fuel components. This requirement applies to, but is not limited to, the following fuel types: methanol, denatured ethanol, and/or other alcohols; mixtures containing 85% or more by volume of

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    About the Data Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    State Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Summary Tables Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Federal Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary