Powered by Deep Web Technologies
Note: This page contains sample records for the topic "application suite high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

NEW OPTICAL SENSOR SUITE FOR ULTRAHIGH TEMPERATURE FOSSIL FUEL APPLICATIONS  

SciTech Connect (OSTI)

Accomplishments during the first six months of a program to develop and demonstrate technology for the instrumentation of advanced powerplants are described. Engineers from Prime Research, LC and Babcock and Wilcox Research Center collaborated to generate a list of potential applications for robust photonic sensors in existing and future boiler plants. From that list, three applications were identified as primary candidates for initial development and demonstration of high-temperature sensors in an ultrasupercritical power plant. In addition, progress was made in the development of materials and methods to apply high-temperature optical claddings to sapphire fibers, in order to improve their optical waveguiding properties so that they can be used in the design and fabrication of high-temperature sensors. Through refinements in the processing steps, the quality of the interface between core and cladding of the fibers was improved, which is expected to reduce scattering and attenuation in the fibers.

Russell G. May; Tony Peng; Tom Flynn

2004-04-01T23:59:59.000Z

2

A Tool Suite to Prototype Pervasive Computing Applications  

E-Print Network [OSTI]

covering the development life- cycle of a pervasive computing system. This tool suite comprises a domain to deployment and test. Our approach We propose an approach that covers the development life- cycleSpecapplication 3 546 7 1 ArchitectureTaxonomy 2 Figure 1. Development life-cycle A. A design language for pervasive

Paris-Sud XI, Université de

3

Enabling Process Support for Advanced Applications with the AristaFlow BPM Suite  

E-Print Network [OSTI]

Enabling Process Support for Advanced Applications with the AristaFlow BPM Suite Andreas Lanz1. In this software demonstration we show how the AristaFlow BPM Suite ­ an adaptive process management system) as offered by AristaFlow. 1 Introduction In many domains IT support can benefit from BPM technologies

Pfeifer, Holger

4

From Hydrogen Fuel Cells to High-Altitude-Pilot Protection Suits...  

Energy Savers [EERE]

From Hydrogen Fuel Cells to High-Altitude-Pilot Protection Suits- Mound Science and Energy Museum Programs Cover a Wide Range of Topics From Hydrogen Fuel Cells to...

5

NEW OPTICAL SENSOR SUITE FOR ULTRAHIGH TEMPERATURE FOSSIL FUEL APPLICATIONS  

SciTech Connect (OSTI)

Accomplishments during the Phase I of a program to develop and demonstrate technology for the instrumentation of advanced powerplants are described. Engineers from Prime Research, LC and Babcock and Wilcox Research Center collaborated to generate a list of potential applications for robust photonic sensors in existing and future boiler plants. From that list, three applications were identified as primary candidates for initial development and demonstration of high-temperature sensors in an ultrasupercritical power plant. A matrix of potential fiber optic sensor approaches was derived, and a data set of specifications for high-temperature optical fiber was produced. Several fiber optic sensor configurations, including interferometric (extrinsic and intrinsic Fabry-Perot interferometer), gratings (fiber Bragg gratings and long period gratings), and microbend sensors, were evaluated in the laboratory. In addition, progress was made in the development of materials and methods to apply high-temperature optical claddings to sapphire fibers, in order to improve their optical waveguiding properties so that they can be used in the design and fabrication of high-temperature sensors. Through refinements in the processing steps, the quality of the interface between core and cladding of the fibers was improved, which is expected to reduce scattering and attenuation in the fibers. Numerical aperture measurements of both clad and unclad sapphire fibers were obtained and used to estimate the reduction in mode volume afforded by the cladding. High-temperature sensors based on sapphire fibers were also investigated. The fabrication of an intrinsic Fabry-Perot cavity within sapphire fibers was attempted by the bulk diffusion of magnesium oxide into short localized segments of longer sapphire fibers. Fourier analysis of the fringes that resulted when the treated fiber was interrogated by a swept laser spectrometer suggested that an intrinsic cavity had been formed in the fiber. Also, an unclad sapphire fiber was tested as a temperature sensor at moderate temperatures (up to 775 C).

Russell G. May; Tony Peng; Tom Flynn

2004-12-01T23:59:59.000Z

6

New Optical Sensor Suite for Ultrahigh Temperature Fossil Fuel Application  

SciTech Connect (OSTI)

Accomplishments of a program to develop and demonstrate photonic sensor technology for the instrumentation of advanced powerplants and solid oxide fuel cells are described. The goal of this project is the research and development of advanced, robust photonic sensors based on improved sapphire optical waveguides, and the identification and demonstration of applications of the new sensors in advanced fossil fuel power plants, where the new technology will contribute to improvements in process control and monitoring.

John Coggin; Tom Flynn; Jonas Ivasauskas; Daniel Kominsky; Carrie Kozikowski; Russell May; Michael Miller; Tony Peng; Gary Pickrell; Raymond Rumpf; Kelly Stinson-Bagby; Dan Thorsen; Rena Wilson

2007-12-31T23:59:59.000Z

7

A Late Neoproterozoic (V630 Ma) high-magnesium andesite suite from southern Israel: implications for the consolidation  

E-Print Network [OSTI]

A Late Neoproterozoic (V630 Ma) high-magnesium andesite suite from southern Israel: implications and depleted in heavy rare earth elements. They are high-magnesium andesites and are similar to low-Ca type 2; Neoproterozoic; high-magnesium andesite 1. Introduction The Arabian^Nubian Shield (ANS) comprises 0012-821X / 03

Basu, Asish R.

8

An investigation of space suit mobility with applications to EVA operations  

E-Print Network [OSTI]

The primary aim of this thesis is to advance the current understanding of astronauts' capabilities and limitations in space-suited extravehicular activity (EVA) by compiling a detailed database of the torques needed to ...

Schmidt, Patricia Barrett, 1974-

2001-01-01T23:59:59.000Z

9

The Application of the PEBBED Code Suite to the PBMR-400 Coupled Code Benchmark - FY 2006 Annual Report  

SciTech Connect (OSTI)

This document describes the recent developments of the PEBBED code suite and its application to the PBMR-400 Coupled Code Benchmark. This report addresses an FY2006 Level 2 milestone under the NGNP Design and Evaluation Methods Work Package. The milestone states "Complete a report describing the results of the application of the integrated PEBBED code package to the PBMR-400 coupled code benchmark". The report describes the current state of the PEBBED code suite, provides an overview of the Benchmark problems to which it was applied, discusses the code developments achieved in the past year, and states some of the results attained. Results of the steady state problems generated by the PEBBED fuel management code compare favorably to the preliminary results generated by codes from other participating institutions and to similar non-Benchmark analyses. Partial transient analysis capability has been achieved through the acquisition of the NEM-THERMIX code from Penn State University. Phase I of the task has been achieved through the development of a self-consistent set of tools for generating cross sections for design and transient analysis and in the successful execution of the steady state benchmark exercises.

Not Available

2006-09-01T23:59:59.000Z

10

ELIMINATING CONSERVATISM IN THE PIPING SYSTEM ANALYSIS PROCESS THROUGH APPLICATION OF A SUITE OF LOCALLY APPROPRIATE SEISMIC INPUT MOTIONS  

SciTech Connect (OSTI)

Seismic analysis is of great importance in the evaluation of nuclear systems due to the heavy influence such loading has on their designs. Current Department of Energy seismic analysis techniques for a nuclear safety-related piping system typically involve application of a single conservative seismic input applied to the entire system [1]. A significant portion of this conservatism comes from the need to address the overlapping uncertainties in the seismic input and in the building response that transmits that input motion to the piping system. The approach presented in this paper addresses these two sources of uncertainty through the application of a suite of 32 input motions whose collective performance addresses the total uncertainty while each individual motion represents a single variation of it. It represents an extension of the soil-structure interaction analysis methodology of SEI/ASCE 43-05 [2] from the structure to individual piping components. Because this approach is computationally intensive, automation and other measures have been developed to make such an analysis efficient. These measures are detailed in this paper.

Anthony L. Crawford; Robert E. Spears, Ph.D.; Mark J. Russell

2009-07-01T23:59:59.000Z

11

Modular, High-Volume Fuel Cell Leak-Test Suite and Process  

SciTech Connect (OSTI)

Fuel cell stacks are typically hand-assembled and tested. As a result the manufacturing process is labor-intensive and time-consuming. The fluid leakage in fuel cell stacks may reduce fuel cell performance, damage fuel cell stack, or even cause fire and become a safety hazard. Leak check is a critical step in the fuel cell stack manufacturing. The fuel cell industry is in need of fuel cell leak-test processes and equipment that is automatic, robust, and high throughput. The equipment should reduce fuel cell manufacturing cost.

Ru Chen; Ian Kaye

2012-03-12T23:59:59.000Z

12

The application of formal software engineering methods to the unattended and remote monitoring software suite at Los Alamos National Laboratory  

SciTech Connect (OSTI)

The Unattended and Remote Monitoring (UNARM) system is a collection of specialized hardware and software used by the International Atomic Energy Agency (IAEA) to institute nuclear safeguards at many nuclear facilities around the world. The hardware consists of detectors, instruments, and networked computers for acquiring various forms of data, including but not limited to radiation data, global position coordinates, camera images, isotopic data, and operator declarations. The software provides two primary functions: the secure and reliable collection of this data from the instruments and the ability to perform an integrated review and analysis of the disparate data sources. Several years ago the team responsible for maintaining the software portion of the UNARM system began the process of formalizing its operations. These formal operations include a configuration management system, a change control board, an issue tracking system, and extensive formal testing, for both functionality and reliability. Functionality is tested with formal test cases chosen to fully represent the data types and methods of analysis that will be commonly encountered. Reliability is tested with iterative, concurrent testing where up to five analyses are executed simultaneously for thousands of cycles. Iterative concurrent testing helps ensure that there are no resource conflicts or leaks when multiple system components are in use simultaneously. The goal of this work is to provide a high quality, reliable product, commensurate with the criticality of the application. Testing results will be presented that demonstrate that this goal has been achieved and the impact of the introduction of a formal software engineering framework to the UNARM product will be presented.

Determan, John Clifford [Los Alamos National Laboratory; Longo, Joseph F [Los Alamos National Laboratory; Michel, Kelly D [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

13

STAYS PNNL SUITE  

Energy Science and Technology Software Center (OSTI)

002851IBMPC00 STAYSL PNNL Suite  http://radiochemscieng.pnnl.gov/research_areas/research_area_description.asp?id=283 

14

Directed Test Suite Augmentation.  

E-Print Network [OSTI]

??Test suite augmentation techniques are used in regression testing to identify code elements affected by changes and to generate test cases to cover those elements.… (more)

Xu, Zhihong

2013-01-01T23:59:59.000Z

15

Photonic crystals for high temperature applications  

E-Print Network [OSTI]

This thesis focuses on the design, optimization, fabrication, and experimental realization of metallic photonic crystals (MPhCs) for high temperature applications, for instance thermophotovoltaic (TPV) energy conversion ...

Yeng, Yi Xiang

2014-01-01T23:59:59.000Z

16

The application of soft X-ray microscopy to the in-situ analysis of sporopollenin/sporinite in a rank variable suite of organic rich sediments  

SciTech Connect (OSTI)

Soft X-ray imaging and carbon near edge absorption fine structure spectroscopy (C-NEXAFS) has been used for the in-situ analysis of sporinite in a rank variable suite of organic rich sediments extending from recent up to high volatile A bituminous coal. The acquisition of chemically based images (contrast based on the 1s - 1{pi}* transition of unsaturated carbon), revealed a homogeneous chemical structure in the spore exine. C-NEXAFS microanalysis indicates chemical structural evolution in sporopollenin/sporinite with increases in maturation. The most significant change in the C-NEXAFS spectrum is an increase in unsaturated carbon, presumably aromatic, with rank. The rate of aromatization in sporinite exceeds that of the surrounding vitrinite. Increases in the concentration of unsaturated carbon are compensated by losses of aliphatic and hydroxylated aliphatic carbon components. Carboxyl groups are present in low and variable concentrations. Absorption due to carboxyl persists in the most mature specimen in this series, a high volatile A rank coal. The reactions which drive sporopollenin chemical structural evolution during diagenesis presumably involve dehydration, Diels-Alder cyclo-addition, and dehydrogenation reactions which ultimately lead to a progressively aromatized bio/geopolymer.

Cody, G.D.; Botto, R.E. [Argonne National Lab., IL (United States). Chemistry Div.; Ade, H. [North Carolina State Univ., Raleigh, NC (United States). Dept. of Physics; Wirick, S. [State Univ. of New York, Stony Brook, NY (United States). Dept. of Physics

1997-07-01T23:59:59.000Z

17

APPLICATION FOR CREDIT EARNED IN HIGH SCHOOL High School Form  

E-Print Network [OSTI]

APPLICATION FOR CREDIT EARNED IN HIGH SCHOOL High School Form Student Instructions: Submit one high school and college form for each college course you have completed. Complete Part I of each form. Forward this form to your high school official to have Part II completed. Forward the college form

Keinan, Alon

18

Electronic Applications of High Temperature Superconductors  

E-Print Network [OSTI]

ELECfRONIC APPLICAnONS OF HIGH TEMPERATURE SUPERCONDUCTORS HARRY KROGER and ROBERT F. MIRACKY Superconductivity Program MCC Austin, Texas ABSTRACT The possible uses of high temperature superconductors in electronics applications... attempts a sober appraisal of the potential ap plications of high temperature superconductors to electronics. Al though we believe that these applications are very promising, and in some sense unlimited, we offer here an opinion which runs contrary...

Kroger, H.; Miracky, R. F.

19

Potential applications of high temperature helium  

SciTech Connect (OSTI)

This paper discusses the DOE MHTGR-SC program`s recent activity to improve the economics of the MHTGR without sacrificing safety performance and two potential applications of high temperature helium, the MHTGR gas turbine plant and a process heat application for methanol production from coal.

Schleicher, R.W. Jr.; Kennedy, A.J.

1992-09-01T23:59:59.000Z

20

Potential applications of high temperature helium  

SciTech Connect (OSTI)

This paper discusses the DOE MHTGR-SC program's recent activity to improve the economics of the MHTGR without sacrificing safety performance and two potential applications of high temperature helium, the MHTGR gas turbine plant and a process heat application for methanol production from coal.

Schleicher, R.W. Jr.; Kennedy, A.J.

1992-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "application suite high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Service Oriented Architecture for High Level Applications  

SciTech Connect (OSTI)

Standalone high level applications often suffer from poor performance and reliability due to lengthy initialization, heavy computation and rapid graphical update. Service-oriented architecture (SOA) is trying to separate the initialization and computation from applications and to distribute such work to various service providers. Heavy computation such as beam tracking will be done periodically on a dedicated server and data will be available to client applications at all time. Industrial standard service architecture can help to improve the performance, reliability and maintainability of the service. Robustness will also be improved by reducing the complexity of individual client applications.

Chu, Chungming; Chevtsov, Sergei; Wu, Juhao; /SLAC; Shen, Guobao; /Brookhaven

2012-06-28T23:59:59.000Z

22

High-performance computing for airborne applications  

SciTech Connect (OSTI)

Recently, there has been attempts to move common satellite tasks to unmanned aerial vehicles (UAVs). UAVs are significantly cheaper to buy than satellites and easier to deploy on an as-needed basis. The more benign radiation environment also allows for an aggressive adoption of state-of-the-art commercial computational devices, which increases the amount of data that can be collected. There are a number of commercial computing devices currently available that are well-suited to high-performance computing. These devices range from specialized computational devices, such as field-programmable gate arrays (FPGAs) and digital signal processors (DSPs), to traditional computing platforms, such as microprocessors. Even though the radiation environment is relatively benign, these devices could be susceptible to single-event effects. In this paper, we will present radiation data for high-performance computing devices in a accelerated neutron environment. These devices include a multi-core digital signal processor, two field-programmable gate arrays, and a microprocessor. From these results, we found that all of these devices are suitable for many airplane environments without reliability problems.

Quinn, Heather M [Los Alamos National Laboratory; Manuzatto, Andrea [Los Alamos National Laboratory; Fairbanks, Tom [Los Alamos National Laboratory; Dallmann, Nicholas [Los Alamos National Laboratory; Desgeorges, Rose [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

23

High Brightness Beam Applications: Energy Recovered Linacs  

SciTech Connect (OSTI)

In the first part of the paper some general statements are made regarding applications suitable for utilizing energy recovered linacs (ERLs) by contrasting their potential performance to that of single pass linacs and storage rings. As a result of their potential for extremely good beam quality in combination with high average beam current, ERLs have been used and considered as drivers of both free electron laser and partially coherent photon sources, from THz through X-rays; as a suitable technology for high energy electron cooling; and as a continuous or semi-continuous electron beam source for high energy colliders. At present, beam requirements tend to be highly matched to end use requirements. By reviewing some of the many examples which have either been reduced to practice, or are being explored presently, one can develop an appreciation for the wide range of parameters being considered in ERL applications.

Geoffrey A. Krafft

2005-09-01T23:59:59.000Z

24

High-stability time-domain balanced homodyne detector for ultrafast optical pulse applications  

E-Print Network [OSTI]

Low-noise, efficient, phase-sensitive time-domain optical detection is essential for foundational tests of quantum physics based on optical quantum states and the realization of numerous applications ranging from quantum key distribution to coherent classical telecommunications. Stability, bandwidth, efficiency, and signal-to-noise ratio are crucial performance parameters for effective detector operation. Here we present a high-bandwidth, low-noise, ultra-stable time-domain coherent measurement scheme based on balanced homodyne detection ideally suited to characterization of quantum and classical light fields in well-defined ultrashort optical pulse modes.

Merlin Cooper; Christoph Söller; Brian J. Smith

2013-03-25T23:59:59.000Z

25

High Temperature Materials for Aerospace Applications  

E-Print Network [OSTI]

below 430 ?C for exposure times up to 20 minutes. Transition-metal carbides were initially synthesized by carbothermal reduction of transition-metal halides and polymer precursor mixtures, at temperatures that range from 900 to 1500 ?C in an argon... ........................................ 20 2.3 Present/Future Aerospace Applications ......................................... 24 2.4 Ultra-High Temperature Materials ................................................. 27 2.4.1 Transition-Metal Carbides...

Adamczak, Andrea Diane

2011-08-08T23:59:59.000Z

26

Corrosion Resistant Coatings for High Temperature Applications  

SciTech Connect (OSTI)

Efforts to increase efficiency of energy conversion devices have required their operation at ever higher temperatures. This will force the substitution of higher-temperature structural ceramics for lower temperature materials, largely metals. Yet, many of these ceramics will require protection from high temperature corrosion caused by combustion gases, atmospheric contaminants, or the operating medium. This paper discusses examples of the initial development of such coatings and materials for potential application in combustion, aluminum smelting, and other harsh environments.

Besman, T.M.; Cooley, K.M.; Haynes, J.A.; Lee, W.Y.; Vaubert, V.M.

1998-12-01T23:59:59.000Z

27

Assessment of microelectronics packaging for high temperature, high reliability applications  

SciTech Connect (OSTI)

This report details characterization and development activities in electronic packaging for high temperature applications. This project was conducted through a Department of Energy sponsored Cooperative Research and Development Agreement between Sandia National Laboratories and General Motors. Even though the target application of this collaborative effort is an automotive electronic throttle control system which would be located in the engine compartment, results of this work are directly applicable to Sandia`s national security mission. The component count associated with the throttle control dictates the use of high density packaging not offered by conventional surface mount. An enabling packaging technology was selected and thermal models defined which characterized the thermal and mechanical response of the throttle control module. These models were used to optimize thick film multichip module design, characterize the thermal signatures of the electronic components inside the module, and to determine the temperature field and resulting thermal stresses under conditions that may be encountered during the operational life of the throttle control module. Because the need to use unpackaged devices limits the level of testing that can be performed either at the wafer level or as individual dice, an approach to assure a high level of reliability of the unpackaged components was formulated. Component assembly and interconnect technologies were also evaluated and characterized for high temperature applications. Electrical, mechanical and chemical characterizations of enabling die and component attach technologies were performed. Additionally, studies were conducted to assess the performance and reliability of gold and aluminum wire bonding to thick film conductor inks. Kinetic models were developed and validated to estimate wire bond reliability.

Uribe, F.

1997-04-01T23:59:59.000Z

28

Deployment of a Suite of High-Performance Computational Tools for Multi-scale Multi-physics Simulation of Generation IV Reactors  

SciTech Connect (OSTI)

The overall objective of this project has been to deploy advanced simulation capabilities for next generation reactor systems utilizing newly available, high-performance computing facilities. The approach includes the following major components: The development of new simulation capabilities using state-of-the-art computer codes of different scales: molecular dynamics (MD) level, DNS (FronTier and PHASTA) and CFD (NPHASE-CMFD); The development of advanced numerical solvers for large-size computational problems; The deployment of a multiple-code computational platform for multiscale simulations of gas/liquid two-phase flow during reactor transients and accidents; and Application of the new computational methodology to study the progression of loss-of-flow accident in sodium fast reactor (SFR).

Michael Z. Podowski

2013-01-03T23:59:59.000Z

29

Applications of High-Resolution Electrospray Ionization Mass...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High-Resolution Electrospray Ionization Mass Spectrometry to Measurements of Average Oxygen to Carbon Ratios in Applications of High-Resolution Electrospray Ionization Mass...

30

Application of Synergistic Technologies to Achieve High Levels...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Synergistic Technologies to Achieve High Levels of Gasoline Engine Downsizing Application of Synergistic Technologies to Achieve High Levels of Gasoline Engine Downsizing Discussed...

31

Design, modeling, fabrication and testing of a piezoelectric microvalve for high pressure, high frequency hydraulic applications  

E-Print Network [OSTI]

A piezoelectrically-driven hydraulic amplification microvalve for use in high specific power hydraulic pumping applications was designed, fabricated, and experimentally characterized. High frequency, high force actuation ...

Roberts, David C. (David Christopher)

2002-01-01T23:59:59.000Z

32

High-Performance Energy Applications and Systems  

SciTech Connect (OSTI)

The Paradyn project has a history of developing algorithms, techniques, and software that push the cutting edge of tool technology for high-end computing systems. Under this funding, we are working on a three-year agenda to make substantial new advances in support of new and emerging Petascale systems. The overall goal for this work is to address the steady increase in complexity of these petascale systems. Our work covers two key areas: (1) The analysis, instrumentation and control of binary programs. Work in this area falls under the general framework of the Dyninst API tool kits. (2) Infrastructure for building tools and applications at extreme scale. Work in this area falls under the general framework of the MRNet scalability framework. Note that work done under this funding is closely related to work done under a contemporaneous grant, “Foundational Tools for Petascale Computing”, SC0003922/FG02-10ER25940, UW PRJ27NU.

Miller, Barton

2014-05-19T23:59:59.000Z

33

Space suit simulator for partial gravity extravehicular activity experimentation and training  

E-Print Network [OSTI]

During human space exploration, mobility is extremely limited when working inside a pressurized space suit. Astronauts perform extensive training on Earth to become accustomed to space suit-imposed high joint torques and ...

Gilkey, Andrea L. (Andrea Lynn)

2012-01-01T23:59:59.000Z

34

Future scientific applications for high-energy lasers  

SciTech Connect (OSTI)

This report discusses future applications for high-energy lasers in the areas of astrophysics and space physics; hydrodynamics; material properties; plasma physics; radiation sources; and radiative properties.

Lee, R.W. [comp.

1994-08-01T23:59:59.000Z

35

In Outer Space without a Space Suit?  

E-Print Network [OSTI]

The author proposes and investigates his old idea - a living human in space without the encumbrance of a complex space suit. Only in this condition can biological humanity seriously attempt to colonize space because all planets of Solar system (except the Earth) do not have suitable atmospheres. Aside from the issue of temperature, a suitable partial pressure of oxygen is lacking. In this case the main problem is how to satiate human blood with oxygen and delete carbonic acid gas (carbon dioxide). The proposed system would enable a person to function in outer space without a space suit and, for a long time, without food. That is useful also in the Earth for sustaining working men in an otherwise deadly atmosphere laden with lethal particulates (in case of nuclear, chemical or biological war), in underground confined spaces without fresh air, under water or a top high mountains above a height that can sustain respiration.

Alexander Bolonkin

2008-06-24T23:59:59.000Z

36

High density Ru nanocrystal deposition for nonvolatile memory applications  

E-Print Network [OSTI]

High density Ru nanocrystal deposition for nonvolatile memory applications Damon B. Farmer School density optimizes the charge storing capability of the floating layer, while a high degree of size

37

Microfluidic Technologies for High-Throughput Screening Applications  

E-Print Network [OSTI]

Microfluidic Technologies for High-Throughput Screening Applications Thesis by Todd Thorsen, patiently giving me advice on a large variety of subjects, ranging from microfluidics to optics of microfluidic devices for high-throughput screening applications, such as mutant enzyme libraries expressed

Quake, Stephen R.

38

Development of CSS-42L{trademark}, a high performance carburizing stainless steel for high temperature aerospace applications  

SciTech Connect (OSTI)

Today`s aerospace engineering challenges demand materials which can operate under conditions of temperature extremes, high loads and harsh, corrosive environments. This paper presents a technical overview of the on-going development of CSS-42L (US Patent No. 5,424,028). This alloy is a case-carburizable, stainless steel alloy suitable for use in applications up to 427 C, particularly suited to high performance rolling element bearings, gears, shafts and fasteners. The nominal chemistry of CSS-42L includes: (by weight) 0.12% carbon, 14.0% chromium, 0.60% vanadium, 2.0% nickel, 4.75% molybdenum and 12.5% cobalt. Careful balancing of these components combined with VIM-VAR melting produces an alloy that can be carburized and heat treated to achieve a high surface hardness (>58 HRC at 1mm (0.040 in) depth) with excellent corrosion resistance. The hot hardness of the carburized case is equal to or better than all competitive grades, exceeding 60 HRC at 427 C. The fracture toughness and impact resistance of the heat treated core material have likewise been evaluated in detail and found to be better than M50-NiL steel. The corrosion resistance has been shown to be equivalent to that of 440C steel in tests performed to date.

Burrier, H.I.; Milam, L. [Timken Co., Canton, OH (United States); Tomasello, C.M.; Balliett, S.A.; Maloney, J.L. [Latrobe Steel Co., Latrobe, PA (United States); Ogden, W.P. [MPB Corp., Lebanon, NH (United States)

1998-12-31T23:59:59.000Z

39

High energy heavy ions: techniques and applications  

SciTech Connect (OSTI)

Pioneering work at the Bevalac has given significant insight into the field of relativistic heavy ions, both in the development of techniques for acceleration and delivery of these beams as well as in many novel areas of applications. This paper will outline our experiences at the Bevalac; ion sources, low velocity acceleration, matching to the synchrotron booster, and beam delivery. Applications discussed will include the observation of new effects in central nuclear collisions, production of beams of exotic short-lived (down to 1 ..mu..sec) isotopes through peripheral nuclear collisions, atomic physics with hydrogen-like uranium ions, effects of heavy ''cosmic rays'' on satellite equipment, and an ongoing cancer radiotherapy program with heavy ions. 39 refs., 6 figs., 1 tab.

Alonso, J.R.

1985-04-01T23:59:59.000Z

40

High performance phenolic piping for oilfield applications  

SciTech Connect (OSTI)

The performance advantages of phenolic resins have been enticing for composites manufacturers and users for many years. The use of these materials has been limited, however, by the process, handling and assembly difficulties they present. This paper introduces an innovative modification which has allowed the development of a filament wound piping system for oilfield applications which previously had been beyond the performance envelope of fiberglass pipe. Improvement in temperature resistance and response to steam exposure, as compared to conventional epoxy products, are of particular benefit. Fabrication innovations are also included which can be used where impact resistance or fire performance are needed.

Folkers, J.L. [Ameron International, Burkburnett, TX (United States); Friedrich, R.S.; Fortune, M. [Ameron International, South Gate, CA (United States)

1997-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "application suite high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Spectral and High-Order Methods with Applications  

E-Print Network [OSTI]

A.1 MATLABDifferentiation Matrix Suite . . . . . . . . . . . . . . 300 ...... (a): Graphs of the first six Laguerre polynomials Ln(x) with 0 ? n ? 5 and x ? [0, 6]; (b): Graphs of.

2006-08-28T23:59:59.000Z

42

Case Studies of High Efficiency Electric Motor Applicability  

E-Print Network [OSTI]

Much has been written about the advantages and disadvantages of high efficiency electric motors. For a given motor application it is possible to find literature that enables a plant engineer to make an informed choice between a standard efficiency...

Wagner, J. R.

43

Silicon carbide mirrors for high power applications  

SciTech Connect (OSTI)

The advent of synchrotron radiation (SR) sources and high energy lasers (HEL) in recent years has brought about the need for optical materials that can withstand the harsh operating conditions in such devices. SR mirrors must be ultra-high vacuum compatible, must withstand intense x-ray irradiation without surface damage, must maintain surface figure under thermal loading and must be capable of being polished to an extremely smooth surface finish. Chemical vapor deposited (CVD) silicon carbide in combination with sintered substrate material meets these requirements and offers additional benefits as well. It is an extremely hard material and offers the possibility of being cleaned and recoated many times without degradation of the surface finish, thereby prolonging the lifetime of expensive optical components. It is an extremely strong material and offers the possibility of weight reduction over conventional mirror materials.

Takacs, P.Z.

1981-11-01T23:59:59.000Z

44

Design of a biomechanically synergistic exotendon suit  

E-Print Network [OSTI]

The focus of this thesis is on the design, development, and evaluation of a lightweight, exotendon suit for load carriage. The suit is intended to be worn underneath the wearer's own clothes for use in a military setting, ...

Graves, Carmen Marten-Ellis

2013-01-01T23:59:59.000Z

45

COMPARATIVE STUDIES OF PROTON ACCELERATORS FOR HIGH POWER APPLICATIONS.  

SciTech Connect (OSTI)

There are many applications requiring high power proton accelerators of various kinds. However, each type of proton accelerator can only provide beam with certain characteristics, hence the match of accelerators and their applications need careful evaluation. In this talk, the beam parameters and performance limitations of linac, cyclotron, synchrotron, and FFAG accelerators are studied and their relative merits for application in neutron, muon, neutrino, and ADS will be assessed in terms of beam energy, intensity, bunch length, repetition rate, and beam power requirements. A possible match between the applications and the accelerator of choice is presented in a matrix form. The accelerator physics and technology issues and challenges involved will also be discussed.

WENG, W.T.

2006-05-29T23:59:59.000Z

46

High Explosives Application Facility | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas in the Madison SymmetricHigh Carbon

47

423A HIGH-PERFORMANCE COMPUTING/NUMERICAL The International Journal of High Performance Computing Applications,  

E-Print Network [OSTI]

423A HIGH-PERFORMANCE COMPUTING/NUMERICAL The International Journal of High Performance Computing and barriers in the development of high-performance computing (HPC) algorithms and software. The activity has computing, numerical analy- sis, roadmap, applications and algorithms, software 1 The High-performance

Higham, Nicholas J.

48

Advanced High Energy and High Power Battery Systems for Automotive Applications Khalil Amine  

E-Print Network [OSTI]

-dependent Industry 41% Oil-dependent 17% Oil-dependent 72% 22% 1% 5% U.S. Oil Consumption by End-use Sector 199.30am Advanced High Energy and High Power Battery Systems for Automotive Applications Khalil Amine Argonne National Laboratory Abstract To meet the high-energy requirem ent that can enab le the 40-miles

Levi, Anthony F. J.

49

Superconducting spoke cavities for high-velocity applications  

SciTech Connect (OSTI)

To date, superconducting spoke cavities have been designed, developed, and tested for particle velocities up to {beta}{sub 0}~0.6, but there is a growing interest in possible applications of multispoke cavities for high-velocity applications. We have explored the design parameter space for low-frequency, high-velocity, double-spoke superconducting cavities in order to determine how each design parameter affects the electromagnetic properties, in particular the surface electromagnetic fields and the shunt impedance. We present detailed design for cavities operating at 325 and 352 MHz and optimized for {beta}{sub 0}~=0.82 and 1.

Hopper, Christopher S. [Old Dominion U.; Delayen, Jean R. [Old Dominion U., JLAB

2013-10-01T23:59:59.000Z

50

The Variable Vector Countermeasure Suit for space habitation and exploration  

E-Print Network [OSTI]

The Variable Vector Countermeasure Suit (V2Suit) is a countermeasure suit for sensorimotor adaptation and musculoskeletal deconditioning in microgravity. The V2suit will consist of modules containing arrays of control ...

Vasquez, Rebecca (Rebecca Ann)

2014-01-01T23:59:59.000Z

51

Silicide-matrix materials for high-temperature applications  

SciTech Connect (OSTI)

Intermetallic-matrix composites are attractive alternatives to carbon/carbon and ceramic/ceramic composities for applications up to 1,600 C. Recent work on the intermetallic compounds MoSi2 and Ti5Si3 has included determination of their mechanical properties and deformation behavior, selection of thermodynamically compatible high-strength and ductile reinforcements, and strengthening and toughening mechanisms in silicide-matrix composites for high-temperature service. 11 refs.

Meschter, P.J.; Schwartz, D.S. (McDonnell Douglas Research Laboratories, Saint Louis, MO (USA))

1989-11-01T23:59:59.000Z

52

Steam System Tool Suite Introduction Guide  

E-Print Network [OSTI]

Steam System Tool Suite Introduction Guide Alternate Text Narratives and Graphic.............................................................................................................................6 Modules Steam System Scoping Tool (SSST)........................................................................................8 Steam System Assessment Tool (SSAT

Oak Ridge National Laboratory

53

High-strength porous carbon and its multifunctional applications  

DOE Patents [OSTI]

High-strength porous carbon and a method of its manufacture are described for multifunctional applications, such as ballistic protection, structural components, ultracapacitor electrodes, gas storage, and radiation shielding. The carbon is produced from a polymer precursor via carbonization, and optionally by surface activation and post-treatment.

Wojtowicz, Marek A; Rubenstein, Eric P; Serio, Michael A; Cosgrove, Joseph E

2013-12-31T23:59:59.000Z

54

High-flux solar photon processes: Opportunities for applications  

SciTech Connect (OSTI)

The overall goal of this study was to identify new high-flux solar photon (HFSP) processes that show promise of being feasible and in the national interest. Electric power generation and hazardous waste destruction were excluded from this study at sponsor request. Our overall conclusion is that there is promise for new applications of concentrated solar photons, especially in certain aspects of materials processing and premium materials synthesis. Evaluation of the full potential of these and other possible applications, including opportunities for commercialization, requires further research and testing. 100 refs.

Steinfeld, J.I.; Coy, S.L.; Herzog, H.; Shorter, J.A.; Schlamp, M.; Tester, J.W.; Peters, W.A. (Massachusetts Inst. of Tech., Cambridge, MA (United States))

1992-06-01T23:59:59.000Z

55

Parametric Study of Emerging High Power Accelerator Applications Using Accelerator Systems Model (ASM)  

E-Print Network [OSTI]

Parametric Study of Emerging High Power Accelerator Applications Using Accelerator Systems Model (ASM)

Berwald, D H; Myers, T J; Paulson, C C; Peacock, M A; Piaszczyk, C M; Rathke, J W; Piechowiak, E M

1996-01-01T23:59:59.000Z

56

Universal Benchmark Suites Jozo J. Dujmovic  

E-Print Network [OSTI]

the same universal benchmark suite. This approach substantially reduces the cost of benchmarking. Keywords global increase of the cost of benchmarking. The first step in the development of a method for benchmark1 Universal Benchmark Suites Jozo J. Dujmovic Department of Computer Science San Francisco State

Dujmovic, Jozo J.

57

Diffraction Gratings for High-Intensity Laser Applications  

SciTech Connect (OSTI)

The scattering of light into wavelength-dependent discrete directions (orders) by a device exhibiting a periodic modulation of a physical attribute on a spatial scale similar to the wavelength of light has been the subject of study for over 200 years. Such a device is called a diffraction grating. Practical applications of diffraction gratings, mainly for spectroscopy, have been around for over 100 years. The importance of diffraction gratings in spectroscopy for the measurement of myriad properties of matter can hardly be overestimated. Since the advent of coherent light sources (lasers) in the 1960's, applications of diffraction gratings in spectroscopy have further exploded. Lasers have opened a vast application space for gratings, and apace, gratings have enabled entirely new classes of laser systems. Excellent reviews of the history, fundamental properties, applications and manufacturing techniques of diffraction gratings up to the time of their publication can be found in the books by Hutley (1) and more recently Loewen and Popov (2). The limited scope of this chapter can hardly do justice to such a comprehensive subject, so the focus here will be narrowly limited to characteristics required for gratings suitable for high-power laser applications, and methods to fabricate them. A particular area of emphasis will be on maximally-efficient large-aperture gratings for short-pulse laser generation.

Britten, J

2008-01-23T23:59:59.000Z

58

High Performance Computing: Needs and Application for Thailand  

E-Print Network [OSTI]

This paper presents the overview of High Performance Computing, the required components, and its applications. Current state of the HPC researches and facilities in Thailand has also been reviewed along with the HPC related research conducted in Kasetsart University. In summary, HPC is a technology that has an impact on Thailand competitiveness. Yet, much more qualifed man-power and broader recognition of the field are desparately needed.

Yuen Poovarawan Putchong; Putchong Uthayopas

1997-01-01T23:59:59.000Z

59

High temperature gas-cooled reactor: gas turbine application study  

SciTech Connect (OSTI)

The high-temperature capability of the High-Temperature Gas-Cooled Reactor (HTGR) is a distinguishing characteristic which has long been recognized as significant both within the US and within foreign nuclear energy programs. This high-temperature capability of the HTGR concept leads to increased efficiency in conventional applications and, in addition, makes possible a number of unique applications in both electrical generation and industrial process heat. In particular, coupling the HTGR nuclear heat source to the Brayton (gas turbine) Cycle offers significant potential benefits to operating utilities. This HTGR-GT Application Study documents the effort to evaluate the appropriateness of the HTGR-GT as an HTGR Lead Project. The scope of this effort included evaluation of the HTGR-GT technology, evaluation of potential HTGR-GT markets, assessment of the economics of commercial HTGR-GT plants, and evaluation of the program and expenditures necessary to establish HTGR-GT technology through the completion of the Lead Project.

Not Available

1980-12-01T23:59:59.000Z

60

Designing for the Future: The New Open Suite of Programs and Peer Review Process  

E-Print Network [OSTI]

Designing for the Future: The New Open Suite of Programs and Peer Review Process Questions and Answers 1 Rationale 1. If the changes to the Open Suite of Programs and peer review process are successful processes is to develop a high quality, flexible and sustainable system capable of identifying

Charette, André

Note: This page contains sample records for the topic "application suite high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Design, Implementation and Performance of Exponential Integrators for High Performance Computing Applications  

E-Print Network [OSTI]

interest in high performance computing would help popularizeIntegrators for High Performance Computing Applications Aapplied mathematics, high performance computing and computer

Loffeld, John

2013-01-01T23:59:59.000Z

62

1MAKING WORKFLOW APPLICATIONS WORK The International Journal of High Performance Computing Applications,  

E-Print Network [OSTI]

1MAKING WORKFLOW APPLICATIONS WORK The International Journal of High Performance Computing. Reprints and permissions: http://www.sagepub.co.uk/journalsPermissions.nav Figures 1­5 appear in color. Scien- tific workflows are being used to bring together these var- ious resources and answer complex

Deelman, Ewa

63

Large motion high cycle high speed optical fibers for space based applications.  

SciTech Connect (OSTI)

Future remote sensing applications will require higher resolution and therefore higher data rates (up to perhaps 100 gigabits per second) while achieving lower mass and cost. A current limitation to the design space is high speed high bandwidth data does not cross movable gimbals because of cabling issues. This requires the detectors to be off gimbal. The ability to get data across the gimbal would open up efficiencies in designs where the detectors and the electronics can be placed anywhere on the system. Fiber optic cables provide light weight high speed high bandwidth connections. Current options are limited to 20,000 cycles as opposed to the 1,000,000 cycles needed for future space based applications. To extend this to the million+ regime, requires a thorough understanding of the failure mechanisms and the materials, proper selection of materials (e.g., glass and jacket material) allowable geometry changes to the cable, radiation hardness, etc.

Stromberg, Peter G.; Tandon, Rajan; Gibson, Cory S; Reedlunn, Benjamin; Rasberry, Roger David; Rohr, Garth David

2014-10-01T23:59:59.000Z

64

High mobility ZnO nanowires for terahertz detection applications  

SciTech Connect (OSTI)

An oxide nanowire material was utilized for terahertz detection purpose. High quality ZnO nanowires were synthesized and field-effect transistors were fabricated. Electrical transport measurements demonstrated the nanowire with good transfer characteristics and fairly high electron mobility. It is shown that ZnO nanowires can be used as building blocks for the realization of terahertz detectors based on a one-dimensional plasmon detection configuration. Clear terahertz wave (?0.3?THz) induced photovoltages were obtained at room temperature with varying incidence intensities. Further analysis showed that the terahertz photoresponse is closely related to the high electron mobility of the ZnO nanowire sample, which suggests that oxide nanoelectronics may find useful terahertz applications.

Liu, Huiqiang [State Key Laboratory of Optoelectronic Materials and Technology, Sun Yat-Sen University, Guangdong, Guangzhou 510275 (China); State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Sichuan, Mianyang 621010 (China); Peng, Rufang, E-mail: pengrufang@swust.edu.cn, E-mail: chusheng@mail.sysu.edu.cn; Chu, Shijin [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Sichuan, Mianyang 621010 (China); Chu, Sheng, E-mail: pengrufang@swust.edu.cn, E-mail: chusheng@mail.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technology, Sun Yat-Sen University, Guangdong, Guangzhou 510275 (China)

2014-07-28T23:59:59.000Z

65

Black Literary Suite: Kansas Authors Edition  

E-Print Network [OSTI]

authors were born or lived in the Sunflower State, and their work often reflects their time in Kansas. This Black Literary Suite exhibit highlights four important black writers—Langston Hughes, Gwendolyn Brooks, Frank Marshall Davis, and Kevin Young...

Wiggins, Meredith Joan

2015-03-04T23:59:59.000Z

66

Dust accelerators and their applications in high-temperature plasmas  

SciTech Connect (OSTI)

The perennial presence of dust in high-temperature plasma and fusion devices has been firmly established. Dust inventory must be controlled, in particular in the next-generation steady-state fusion machines like ITER, as it can pose significant safety hazards and potentially interfere with fusion energy production. Much effort has been devoted to gening rid of the dust nuisance. We have recognized a number of dust-accelerators applications in magnetic fusion, including in plasma diagnostics, in studying dust-plasma interactions, and more recently in edge localized mode (ELM)'s pacing. With the applications in mind, we will compare various acceleration methods, including electrostatic, gas-drag, and plasma-drag acceleration. We will also describe laboratory experiments and results on dust acceleration.

Wang, Zhehui [Los Alamos National Laboratory; Ticos, Catakin M [NILPRP, ROMANIA

2010-01-01T23:59:59.000Z

67

NYU Electronic Suite for eBilling + ePayment For additional information, visit the Electronic Suite section on the  

E-Print Network [OSTI]

NYU Electronic Suite for eBilling + ePayment For additional information, visit the Electronic Suite of options. This will link you to the secure eSuite website. If parents want to make an electronic check-check payment, parents must be invited by the student, to create an eSuite account. NYU's Electronic Suite

Mohri, Mehryar

68

Non-graphite crucible for high temperature applications  

DOE Patents [OSTI]

A multi-piece crucible for high temperature applications comprises a tubular side wall member having a lip on the inside surface and a bottom member or members forming a container for containing a melt of a material during a high temperature melt-casting operations. The multi-piece design prevents cracking of the crucible or leakage of the melt from the crucible during the melt-casting operation. The lip of the tubular member supports the bottom member. The contacting surfaces where the lip of the tubular side wall member contacts the bottom member of the multi-piece crucible contains a ceramic sealing material. The ceramic sealing material forms a seal sufficient to prevent the melt of the material from leaking out of the multi-piece crucible during the melt-casting process. The multi-piece crucible is made of a material which is chemically inert to the melt and has structural integrity at the melting point temperature of the melt, or of a material coated with such a material. The multi-piece crucible is contained in a thermal can assembly of a high temperature induction furnace during a high temperature melt-casting operation. One embodiment of the multi-piece crucible comprises a tubular member having a vertical slot filled with a ceramic sealing material to provide expansion of the tubular member without cracking during the high temperature melt-casting operation.

Holcombe, Cressie E. (Knoxville, TN); Pfeiler, William A. (Norris, TN)

1996-01-01T23:59:59.000Z

69

Non-graphite crucible for high temperature applications  

DOE Patents [OSTI]

A multi-piece crucible for high temperature applications comprises a tubular side wall member having a lip on the inside surface and a bottom member or members forming a container for containing a melt of a material during a high temperature melt-casting operations. The multi-piece design prevents cracking of the crucible or leakage of the melt from the crucible during the melt-casting operation. The lip of the tubular member supports the bottom member. The contacting surfaces where the lip of the tubular side wall member contacts the bottom member of the multi-piece crucible contains a ceramic sealing material. The ceramic sealing material forms a seal sufficient to prevent the melt of the material from leaking out of the multi-piece crucible during the melt-casting process. The multi-piece crucible is made of a material which is chemically inert to the melt and has structural integrity at the melting point temperature of the melt, or of a material coated with such a material. The multi-piece crucible is contained in a thermal can assembly of a high temperature induction furnace during a high temperature melt-casting operation. One embodiment of the multi-piece crucible comprises a tubular member having a vertical slot filled with a ceramic sealing material to provide expansion of the tubular member without cracking during the high temperature melt-casting operation. 9 figs.

Holcombe, C.E.; Pfeiler, W.A.

1996-01-09T23:59:59.000Z

70

Magnetospheric application of high-altitude long-duration balloon technology: Daylight auroral observations  

E-Print Network [OSTI]

Magnetospheric application of high-altitude long-duration balloon technology: Daylight auroral; accepted 12 February 2007 Abstract Daylight auroral imaging is a proposed application of the NASA high

Lummerzheim, Dirk

71

High Temperature Gas Reactors: Assessment of Applicable Codes and Standards  

SciTech Connect (OSTI)

Current interest expressed by industry in HTGR plants, particularly modular plants with power up to about 600 MW(e) per unit, has prompted NRC to task PNNL with assessing the currently available literature related to codes and standards applicable to HTGR plants, the operating history of past and present HTGR plants, and with evaluating the proposed designs of RPV and associated piping for future plants. Considering these topics in the order they are arranged in the text, first the operational histories of five shut-down and two currently operating HTGR plants are reviewed, leading the authors to conclude that while small, simple prototype HTGR plants operated reliably, some of the larger plants, particularly Fort St. Vrain, had poor availability. Safety and radiological performance of these plants has been considerably better than LWR plants. Petroleum processing plants provide some applicable experience with materials similar to those proposed for HTGR piping and vessels. At least one currently operating plant - HTR-10 - has performed and documented a leak before break analysis that appears to be applicable to proposed future US HTGR designs. Current codes and standards cover some HTGR materials, but not all materials are covered to the high temperatures envisioned for HTGR use. Codes and standards, particularly ASME Codes, are under development for proposed future US HTGR designs. A 'roadmap' document has been prepared for ASME Code development; a new subsection to section III of the ASME Code, ASME BPVC III-5, is scheduled to be published in October 2011. The question of terminology for the cross-duct structure between the RPV and power conversion vessel is discussed, considering the differences in regulatory requirements that apply depending on whether this structure is designated as a 'vessel' or as a 'pipe'. We conclude that designing this component as a 'pipe' is the more appropriate choice, but that the ASME BPVC allows the owner of the facility to select the preferred designation, and that either designation can be acceptable.

McDowell, Bruce K.; Nickolaus, James R.; Mitchell, Mark R.; Swearingen, Gary L.; Pugh, Ray

2011-10-31T23:59:59.000Z

72

Scrap tire recycling: Promising high value applications. Final report  

SciTech Connect (OSTI)

Surface modification of scrap tire rubber (rubber particles treated with chlorine gas) show promise for ameliorating the scrap tire problem (the treated rubber can be used as a component in high- performance, expensive polymer systems). The process has been proven in Phase I. Phase II covers market/applications, process development (Forberg-design mixer reactor was chosen), plant design, capital cost estimate, economics environmental/safety/health, and energy impact. Almost of the small amount of chlorine is consumed. The capital costs for a rubber particle treatment facility are attractive, being at least two orders of magnitude less than that of facilities for making new polymer materials. Large volume markets using treated rubber are needed. The amount of scrap rubber available is small compared to the polymers available for replacement. 7 tabs, 16 figs.

Bauman, B.D.; Leskovyansky, P.J.; Drela, H.

1993-11-01T23:59:59.000Z

73

High Performance Computing - Power Application Programming Interface Specification.  

SciTech Connect (OSTI)

Measuring and controlling the power and energy consumption of high performance computing systems by various components in the software stack is an active research area [13, 3, 5, 10, 4, 21, 19, 16, 7, 17, 20, 18, 11, 1, 6, 14, 12]. Implementations in lower level software layers are beginning to emerge in some production systems, which is very welcome. To be most effective, a portable interface to measurement and control features would significantly facilitate participation by all levels of the software stack. We present a proposal for a standard power Application Programming Interface (API) that endeavors to cover the entire software space, from generic hardware interfaces to the input from the computer facility manager.

Laros, James H.,; Kelly, Suzanne M.; Pedretti, Kevin; Grant, Ryan; Olivier, Stephen Lecler; Levenhagen, Michael J.; DeBonis, David

2014-08-01T23:59:59.000Z

74

Copper coated carbon fiber reinforced plastics for high and ultra high vacuum applications  

E-Print Network [OSTI]

We have used copper-coated carbon fiber reinforced plastic (CuCFRP) for the construction of high and ultra-high vacuum recipients. The vacuum performance is found to be comparable to typical stainless steel used for this purpose. In test recipients we have reached pressures of 2E-8 mbar and measured a desorption rate of 1E-11 mbar*liter/s/cm^2; no degradation over time (2 years) has been found. Suitability for baking has been found to depend on the CFRP production process, presumably on the temperature of the autoclave curing. Together with other unique properties of CuCFRP such as low weight and being nearly non-magnetic, this makes it an ideal material for many high-end vacuum applications.

Burri, F; Feusi, P; Henneck, R; Kirch, K; Lauss, B; Ruettimann, P; Schmidt-Wellenburg, P; Schnabel, A; Voigt, J; Zenner, J; Zsigmond, G

2013-01-01T23:59:59.000Z

75

Prioritisation of test suites containing precedence constraints  

E-Print Network [OSTI]

1 Prioritisation of test suites containing precedence constraints Tim Miller Department@unimelb.edu.au Abstract--Test case prioritisation is the process of ordering the exe- cution of test cases to achieve a certain goal, such as increasing the rate of fault detection. Many existing test case prioritisation

Miller, Tim

76

BDP: BrainSuite Diffusion Pipeline  

E-Print Network [OSTI]

BDP: BrainSuite Diffusion Pipeline Chitresh Bhushan #12; Quantify microstructural tissue ROI Connectivity ROI Statistics MPRAGE Diffusion #12;Diffusion Pipeline Dicom to NIfTI Co ROIs Custom ROIs #12;Diffusion Pipeline Dicom to NIfTI Co-registration Diffusion Modeling Tractography

Leahy, Richard M.

77

Application of Plasma Waveguides to High Energy Accelerators  

SciTech Connect (OSTI)

The eventual success of laser-plasma based acceleration schemes for high-energy particle physics will require the focusing and stable guiding of short intense laser pulses in reproducible plasma channels. For this goal to be realized, many scientific issues need to be addressed. These issues include an understanding of the basic physics of, and an exploration of various schemes for, plasma channel formation. In addition, the coupling of intense laser pulses to these channels and the stable propagation of pulses in the channels require study. Finally, new theoretical and computational tools need to be developed to aid in the design and analysis of experiments and future accelerators. Here we propose a 3-year renewal of our combined theoretical and experimental program on the applications of plasma waveguides to high-energy accelerators. During the past grant period we have made a number of significant advances in the science of laser-plasma based acceleration. We pioneered the development of clustered gases as a new highly efficient medium for plasma channel formation. Our contributions here include theoretical and experimental studies of the physics of cluster ionization, heating, explosion, and channel formation. We have demonstrated for the first time the generation of and guiding in a corrugated plasma waveguide. The fine structure demonstrated in these guides is only possible with cluster jet heating by lasers. The corrugated guide is a slow wave structure operable at arbitrarily high laser intensities, allowing direct laser acceleration, a process we have explored in detail with simulations. The development of these guides opens the possibility of direct laser acceleration, a true miniature analogue of the SLAC RF-based accelerator. Our theoretical studies during this period have also contributed to the further development of the simulation codes, Wake and QuickPIC, which can be used for both laser driven and beam driven plasma based acceleration schemes. We will continue our development of advanced simulation tools by modifying the QuickPIC algorithm to allow for the simulation of plasma particle pick-up by the wake fields. We have also performed extensive simulations of plasma slow wave structures for efficient THz generation by guided laser beams or accelerated electron beams. We will pursue experimental studies of direct laser acceleration, and THz generation by two methods, ponderomotive-induced THz polarization, and THz radiation by laser accelerated electron beams. We also plan to study both conventional and corrugated plasma channels using our new 30 TW in our new lab facilities. We will investigate production of very long hydrogen plasma waveguides (5 cm). We will study guiding at increasing power levels through the onset of laser-induced cavitation (bubble regime) to assess the role played by the preformed channel. Experiments in direct acceleration will be performed, using laser plasma wakefields as the electron injector. Finally, we will use 2-colour ionization of gases as a high frequency THz source (<60 THz) in order for femtosecond measurements of low plasma densities in waveguides and beams.

Milchberg, Howard M

2013-03-30T23:59:59.000Z

78

The SECO suite of codes for site Performance Assessment  

SciTech Connect (OSTI)

Modeling for Performance Assessment of the Waste Isolation Pilot Plant (WIPP ) has led to development of the SECO suite of codes for groundwater flow, particle tracking, and transport. Algorithm and code developments include the following areas: facilitation of grid convergence tests in multiple domains; correct treatment of transmissivity factors for unconfined aquifers; efficient multigrid algorithms; a formulation of brine Darcy flow equations that uses freshwater head as the dependent able; boundary-fitted coordinates; temporal high order particle tracking; an efficient and accurate implicit Finite Volume TVD algorithm for radionuclide transport in (possibly) fractured porous media; accurate calculation of advection via a flux-based modified method of characteristics; and Quality Assurance procedures.

Roache, P.J. [Ecodynamics Research Associates, Inc., Albuquerque, NM (United States)

1993-03-01T23:59:59.000Z

79

Calibration and application of the `clumped isotope' thermometer to foraminifera for high-resolution climate  

E-Print Network [OSTI]

Calibration and application of the `clumped isotope' thermometer to foraminifera for high proxies. Here, we present a new calibration of the `clumped isotope' thermometer to foraminifera based

Gilli, Adrian

80

Integration of APECS and VE-Suite for Data Overlay  

SciTech Connect (OSTI)

In the design of advanced power generation facilities, process simulation tools are being utilized to model plant behavior and quickly analyze results. While such tools enable investigation of crucial aspects of plant design, typical commercial process simulators still do not explore some plant design information, including high-fidelity data from computational fluid dynamics (CFD) models of complex thermal and fluid flow phenomena, economics data used for policy decisions, operational data after the plant is constructed, and as-built information for use in as-designed models. Software tools must be created that allow disparate sources of information to be integrated for facilitating accurate and effective plant design. At the Department of Energy’s (DOE) National Energy Technology Laboratory (NETL), the Advanced Process Engineering Co-Simulator (APECS) has been developed as an integrated software suite that combines process simulation (e.g., Aspen Plus®) and high-fidelity equipment simulation (e.g., FLUENT®). In this paper, the integration of the high-fidelity CFD data with overall process data in a virtual power simulation environment will be described. More specifically, we will highlight VE-Suite, an open-source virtual engineering (VE) software toolkit, and its support of Aspen Plus® Hierarchy blocks via the VE-AspenUnit.

McCorkel, Doug (Iowa State University, Ames, IA); Bivins, Gerrick (Iowa State University, Ames, IA); Jordan, Terry; Bryden, Mark (Iowa State University, Ames, IA); Zitney, S.E.; Widmann, John (ANSYS, Lebanon, NH); Osawe, Maxwell

2008-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "application suite high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Integration of APECS and VE-Suite for data overlay  

SciTech Connect (OSTI)

In the design of advanced power generation facilities, process simulation tools are being utilized to model plant behavior and quickly analyze results. While such tools enable investigation of crucial aspects of plant design, typical commercial process simulators still do not explore some plant design information, including high-fidelity data from computational fluid dynamics (CFD) models of complex thermal and fluid flow phenomena, economics data used for policy decisions, operational data after the plant is constructed, and as-built information for use in as-designed models. Software tools must be created that allow disparate sources of information to be integrated for facilitating accurate and effective plant design. At the Department of Energy’s (DOE) National Energy Technology Laboratory (NETL), the Advanced Process Engineering Co-Simulator (APECS) has been developed as an integrated software suite that combines process simulation (e.g., Aspen Plus®) and high-fidelity equipment simulation (e.g., FLUENT®). In this paper, the integration of the high-fidelity CFD data with overall process data in a virtual power simulation environment will be described. More specifically, we will highlight VE-Suite, an open-source virtual engineering (VE) software toolkit, and its support of Aspen Plus® Hierarchy blocks via the VE-AspenUnit.

McCorkel, D.; Bivins, G.; Jordan, T.; Bryden, M.; Zitney, S.; Widmann, J.; Osawe, M.

2008-01-01T23:59:59.000Z

82

Global Energy Partners, LLC 500 Ygnacio Valley Road, Suite 450  

E-Print Network [OSTI]

Global Energy Partners, LLC 500 Ygnacio Valley Road, Suite 450 Walnut Creek, CA 94596 P: 925. This report was prepared by Global Energy Partners, LLC 500 Ygnacio Valley Blvd., Suite 450 Walnut Creek, CA

83

Advanced Boost System Developing for High EGR Applications  

SciTech Connect (OSTI)

To support industry efforts of clean and efficient internal combustion engine development for passenger and commercial applications • This program focuses on turbocharger improvement for medium and light duty diesel applications, from complete system optimization percepective to enable commercialization of advanced diesel combustion technologies, such as HCCI/LTC. • Improve combined turbocharger efficiency up to 10% or fuel economy by 3% on FTP cycle at Tier II Bin 5 emission level.

Sun, Harold

2012-09-30T23:59:59.000Z

84

A Deeply Pipelined CABAC Decoder for HEVC Supporting Level 6.2 High-tier Applications  

E-Print Network [OSTI]

High Efficiency Video Coding (HEVC) is the latest video coding standard that specifies video resolutions up to 8K Ultra-HD (UHD) at 120 fps to support the next decade of video applications. This results in high-throughput ...

Chen, Yu-Hsin

85

High-Temperature High-Power Packaging Techniques for HEV Traction Applications  

SciTech Connect (OSTI)

A key issue associated with the wider adoption of hybrid-electric vehicles (HEV) and plug in hybrid-electric vehicles (PHEV) is the implementation of the power electronic systems that are required in these products [1]. To date, many consumers find the adoption of these technologies problematic based on a financial analysis of the initial cost versus the savings available from reduced fuel consumption. Therefore, one of the primary industry goals is the reduction in the price of these vehicles relative to the cost of traditional gasoline powered vehicles. Part of this cost reduction must come through optimization of the power electronics required by these vehicles. In addition, the efficiency of the systems must be optimized in order to provide the greatest range possible. For some drivers, any reduction in the range associated with a potential HEV or PHEV solution in comparison to a gasoline powered vehicle represents a significant barrier to adoption and the efficiency of the power electronics plays an important role in this range. Likewise, high efficiencies are also important since lost power further complicates the thermal management of these systems. Reliability is also an important concern since most drivers have a high level of comfort with gasoline powered vehicles and are somewhat reluctant to switch to a less proven technology. Reliability problems in the power electronics or associated components could not only cause a high warranty cost to the manufacturer, but may also taint these technologies in the consumer's eyes. A larger vehicle offering in HEVs is another important consideration from a power electronics point of view. A larger vehicle will need more horsepower, or a larger rated drive. In some ways this will be more difficult to implement from a cost and size point of view. Both the packaging of these modules and the thermal management of these systems at competitive price points create significant challenges. One way in which significant cost reduction of these systems could be achieved is through the use of a single coolant loop for both the power electronics as well as the internal combustion engine (ICE) [2]. This change would reduce the complexity of the cooling system which currently relies on two loops to a single loop [3]. However, the current nominal coolant temperature entering these inverters is 65 C [3], whereas a normal ICE coolant temperature would be much higher at approximately 100 C. This change in coolant temperature significantly increases the junction temperatures of the devices and creates a number of challenges for both device fabrication and the assembly of these devices into inverters and converters for HEV and PHEV applications. With this change in mind, significant progress has been made on the use of SiC devices for inverters that can withstand much higher junction temperatures than traditional Si based inverters [4,5,6]. However, a key problem which the single coolant loop and high temperature devices is the effective packaging of these devices and related components into a high temperature inverter. The elevated junction temperatures that exist in these modules are not compatible with reliable inverters based on existing packaging technology. This report seeks to provide a literature survey of high temperature packaging and to highlight the issues related to the implementation of high temperature power electronic modules for HEV and PHEV applications. For purposes of discussion, it will be assumed in this report that 200 C is the targeted maximum junction temperature.

Barlow, F.D.; Elshabini, A.

2006-11-30T23:59:59.000Z

86

UC DAVIS FORENSIC SCIENCE CENTER 1909 Galileo Court, Suite B  

E-Print Network [OSTI]

UC DAVIS FORENSIC SCIENCE CENTER 1909 Galileo Court, Suite B Davis, CA 95618 Directions to the UC Davis Forensic Science Center: Exit I80 south on Richards Blvd. Richards Blvd. changes its name at the end of the court. Our office is on the right, Suite B. FORENSIC SCIENCE CENTER SUITE B Key Contact

Peisert, Sean

87

Berkeley Lab's SPOT Suite Transforms Beamline Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien, I. Ben-Zvi,Benefits PlanabPerformanceSPOT Suite

88

Simulation Model of Common-Mode Chokes for High-Power Applications  

E-Print Network [OSTI]

Simulation Model of Common-Mode Chokes for High-Power Applications A. Muetze C. R. Sullivan Found;Simulation Model of Common-Mode Chokes for High-Power Applications Charles R. Sullivan Annette Muetze Thayer simulation models for nanocrystalline cores, and compare the results to experimental measurements. We also

89

High Power, Linear CMOS Power Amplifier for WLAN Applications /  

E-Print Network [OSTI]

components in silicon, achieving a high power enhancement ratio from a single stage LC matching network or single transformer

Afsahi, Ali

2013-01-01T23:59:59.000Z

90

High Power, Linear CMOS Power Amplifier for WLAN Applications /  

E-Print Network [OSTI]

S. Tian, “A Highly Linear Direct-Conversion Transmit MixerIntegrated MIMO Multiband Direct Conversion CMOS Transceiver

Afsahi, Ali

2013-01-01T23:59:59.000Z

91

Title of dissertation: NOVEL APPLICATIONS OF HIGH INTENSITY FEMTOSECOND LASERS  

E-Print Network [OSTI]

-cycle seed pulse of terahertz radiation: a short, intense optical pulse (or sequence of pulses) aligns for amplification of few-cycle, high energy pulses of terahertz radiation. We report the development of corrugated the limitations of diffraction, phase matching, and material damage thresholds and promise to allow high

Anlage, Steven

92

Applications of High-Resolution Electrospray Ionization Mass Spectrometry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmesApplication Acceleration onto Measurements of Average

93

A high-speed hysteresis motor spindle for machining applications  

E-Print Network [OSTI]

An analysis of suitable drive technologies for use in a new high-speed machining spindle was performed to determine critical research areas. The focus is on a hysteresis motor topology using a solid, inherently-balanced ...

Bayless, Jacob D. (Jacob Daniel)

2014-01-01T23:59:59.000Z

94

Molecular Chemistry of Organic Aerosols Through the Application of High  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification and Application ofof a Coflow

95

Application of Synergistic Technologies to Achieve High Levels of Gasoline  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope Change #1 | Department ofApplication of Spray FoamEngine

96

Sintering and properties of Ultra High Temperature Ceramics for aerospace applications J.F. Justin  

E-Print Network [OSTI]

thermal shock resistance and makes them ideal for many high-temperature thermal applications : France (2013)" #12;for example, a high thermal conductivity reduces thermal stress within the material-francois.justin@onera.fr ABSTRACT The Ultra High Temperature Ceramics (UHTCs) represent a very interesting family of materials

97

Applications of highly spin-polarized xenon in NMR  

SciTech Connect (OSTI)

The main goal of the work presented in this thesis is produce highly spin-polarized xenon to create much greater signal intensities (up to 54,000 times greater) so as to allow studies to be made on systems with low surface area and long spin-lattice relaxation times. The spin-exchange optical pumping technique used to create high nuclear spin polarization is described in detail in chapter two. This technique is initially applied to some multiple-pulse optically detected NMR experiments in low magnetic field (50G) that allow the study of quadrupoler interactions with a surface of only a few square centimeters. In chapter three the apparatus used to allow high field {sup 129}Xe NMR studies to be performed with extremely high sensitivity is described and applied to experiments on diamagnetic susceptibility effects in thin ({approximately}2000 layers) films of frozen xenon. Preliminary surface investigations of laser polarized {sup 129}Xe adsorbed an a variety of materials (salts, molecular crystals, amorphous carbon, graphite) are then discussed. A full detailed study of the surface of a particular polymer, poly(acrylic acid), is presented in chapter four which shows the kind of detailed information that can be obtained from this technique. Along with preliminary results for several similar polymers, a summary is given of xenon studies of a novel ultra-high surface area polymer, poly(triarylcarbinol). Finally in chapter five the exciting possibility of transferring the high spin order of the laser polarized xenon has been used to transfer nuclear spin order to {sup 13}CO{sub 2} in a xenon matrix and to protons on poly(triarylcarbinol).

Long, H.W. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; [Lawrence Berkeley Lab., CA (United States)

1993-09-01T23:59:59.000Z

98

High Performance Circuits for Power Management and Millimeter Wave Applications  

E-Print Network [OSTI]

to achieve the required goals in terms of small silicon area and power consumption while at the same time achieve high performance. Four key building blocks in power management and a switchable harmonic mixer with pre-amplifier and poly-phase generator as a...

Amer, Ahmed 1979-

2012-01-23T23:59:59.000Z

99

Resilient Workflows for Cooperative Design Application of Distributed High-Performance Scientific Computing  

E-Print Network [OSTI]

Resilient Workflows for Cooperative Design Application of Distributed High-Performance Scientific-Antoine.Desideri@sophia.inria.fr Abstract--This paper describes an approach to extend process modeling for engineering design applications the traditional fault-tolerance management features provided by the existing hardware and distributed systems

Paris-Sud XI, Université de

100

Bayesian Models for Spatial Extremes Application to inferring high values of  

E-Print Network [OSTI]

Bayesian Models for Spatial Extremes Application to inferring high values of ground-level ozone by the National Science Foundation (NSF) #12;Outline · Background to Ozone Application · Background to Extreme Value Analysis ­ Two approaches: 1. Model all of the data, and look at extremes. 2. Only model

Gilleland, Eric

Note: This page contains sample records for the topic "application suite high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Improved Heat Transfer and Performance of High Intensity Combustion Systems for Reformer Furnace Applications  

E-Print Network [OSTI]

and should enable substantial capital cost savings in new furnace applications. Recent performance improvements established from tests of high intensity combustion systems are described along with advances made in the analytical prediction of design...

Williams, F. D. M.; Kondratas, H. M.

1983-01-01T23:59:59.000Z

102

High Speed Pumps Are No Longer Limited to Low Flow Applications  

E-Print Network [OSTI]

Historically, the high-speed centrifugal pump was developed prior to World War II for rocket engine fuel pump applications for its advantages of light weight, compactness and dry running capability. Industrial derivatives were introduced in the 60’s...

Burke, P. Y.

103

Iron aluminide alloys with improved properties for high temperature applications  

DOE Patents [OSTI]

An improved iron aluminide alloy of the DO.sub.3 type that has increased room temperature ductility and improved high elevated temperature strength. The alloy system further is resistant to corrosive attack in the environments of advanced energy corrosion systems such as those using fossil fuels. The resultant alloy is relatively inexpensive as contrasted to nickel based and high nickel steels currently utilized for structural components. The alloy system consists essentially of 26-30 at. % aluminum, 0.5-10 at. % chromium, 0.02-0.3 at. % boron plus carbon, up to 2 at. % molybdenum, up to 1 at. % niobium, up to 0.5 at. % zirconium, up to 0.1 at. % yttrium, up to 0.5 at. % vanadium and the balance iron.

McKamey, Claudette G. (Knoxville, TN); Liu, Chain T. (Oak Ridge, TN)

1990-01-01T23:59:59.000Z

104

Iron aluminide alloys with improved properties for high temperature applications  

DOE Patents [OSTI]

An improved iron aluminide alloy of the DO[sub 3] type is described that has increased room temperature ductility and improved high elevated temperature strength. The alloy system further is resistant to corrosive attack in the environments of advanced energy conversion systems such as those using fossil fuels. The resultant alloy is relatively inexpensive as contrasted to nickel based and high nickel steels currently utilized for structural components. The alloy system consists essentially of 26--30 at. % aluminum, 0.5--10 at. % chromium, 0.02--0.3 at. % boron plus carbon, up to 2 at. % molybdenum, up to 1 at. % niobium, up to 0.5 at. % zirconium, up to 0.1 at. % yttrium, up to 0.5 at. % vanadium and the balance iron. 3 figs.

McKamey, C.G.; Liu, C.T.

1990-10-09T23:59:59.000Z

105

High Efficiency Full Expansion (FEx) Engine for Automotive Applications |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeatinHigh Efficiency| Department

106

High temperature membranes for DMFC (and PEFC) applications | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii HIGH PERFORMANCEDOE Biomass

107

Ultra high temperature ceramics for hypersonic vehicle applications.  

SciTech Connect (OSTI)

HfB{sub 2} and ZrB{sub 2} are of interest for thermal protection materials because of favorable thermal stability, mechanical properties, and oxidation resistance. We have made dense diboride ceramics with 2 to 20 % SiC by hot pressing at 2000 C and 5000 psi. High-resolution transmission electron microscopy (TEM) shows very thin grain boundary phases that suggest liquid phase sintering. Fracture toughness measurements give RT values of 4 to 6 MPam{sup 1/2}. Four-pt flexure strengths measured in air up to 1450 C were as high as 450-500 MPa. Thermal diffusivities were measured to 2000 C for ZrB{sub 2} and HfB{sub 2} ceramics with SiC contents from 2 to 20%. Thermal conductivities were calculated from thermal diffusivities and measured heat capacities. Thermal diffusivities were modeled using different two-phase composite models. These materials exhibit excellent high temperature properties and are attractive for further development for thermal protection systems.

Tandon, Rajan; Dumm, Hans Peter; Corral, Erica L.; Loehman, Ronald E.; Kotula, Paul Gabriel

2006-01-01T23:59:59.000Z

108

High-Performance Computing for Advanced Smart Grid Applications  

SciTech Connect (OSTI)

The power grid is becoming far more complex as a result of the grid evolution meeting an information revolution. Due to the penetration of smart grid technologies, the grid is evolving as an unprecedented speed and the information infrastructure is fundamentally improved with a large number of smart meters and sensors that produce several orders of magnitude larger amounts of data. How to pull data in, perform analysis, and put information out in a real-time manner is a fundamental challenge in smart grid operation and planning. The future power grid requires high performance computing to be one of the foundational technologies in developing the algorithms and tools for the significantly increased complexity. New techniques and computational capabilities are required to meet the demands for higher reliability and better asset utilization, including advanced algorithms and computing hardware for large-scale modeling, simulation, and analysis. This chapter summarizes the computational challenges in smart grid and the need for high performance computing, and present examples of how high performance computing might be used for future smart grid operation and planning.

Huang, Zhenyu; Chen, Yousu

2012-07-06T23:59:59.000Z

109

Rooftop Unit Suite: RTU Challenge, RTU Advanced Controls and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

- 2013 BTO Peer Review Rooftop Unit Suite: RTU Challenge, RTU Advanced Controls and RTU Smart Monitoring and Diagnostic System - 2013 BTO Peer Review Commercial Buildings...

110

The Global Health Group 50 Beale Street, Suite 1200  

E-Print Network [OSTI]

The Global Health Group 50 Beale Street, Suite 1200 San Francisco, CA 94105, USA tel: 415 Global Health Group Offices, 50 Beale Street, San Francisco, CA. Contact

Klein, Ophir

111

Evaluation of high strength, high conductivity CuNiBe alloys for fusion energy applications  

SciTech Connect (OSTI)

The unirradiated tensile properties for several different heats and thermomechanical treatment conditions of precipitation strengthened Hycon 3HPTM CuNiBe (Cu-2%Ni-0.35%Be in wt.%) have been measured over the temperature range of 20-500 C for longitudinal and long transverse orientations. The room temperature electrical conductivity has also been measured for several heats, and the precipitate microstructure was characterized using transmission electron microscopy. The CuNiBe alloys exhibit very good combination of strength and conductivity at room temperature, with yield strengths of 630-725 MPa and electrical conductivities of 65-72% International Annealed Copper Standard (IACS). The strength remained relatively high at all test temperatures, with yield strengths of 420-520 MPa at 500 C. However, low levels of ductility (<5% uniform elongation) were observed at test temperatures above 200-250 C, due to flow localization near grain boundaries (exacerbated by having only 10-20 grains across the gage thickness of the miniaturized sheet tensile specimens). Scanning electron microscopy observation of the fracture surfaces found a transition from ductile transgranular to ductile intergranular fracture with increasing test temperature. Fission neutron irradiation to a dose of ~0.7 displacements per atom (dpa) at temperatures between 100 and 240 C produced a slight increase in strength and a significant decrease in ductility. The measured tensile elongation increased with increasing irradiation temperature, with a uniform elongation of ~3.3% observed at 240 C. The electrical conductivity decreased slightly following irradiation, due to the presence of defect clusters and Ni, Zn, Co transmutation products. Considering also previously published fracture toughness data, this indicates that CuNiBe alloys have irradiated tensile and electrical properties comparable or superior to CuCrZr and oxide dispersion strengthened copper at temperatures <250 C, and may be an attractive candidate for certain fusion energy structural applications. Conversely, CuNiBe may not be preferred at intermediate temperatures of 250-500 C due to the poor ductility and fracture toughness of CuNiBe alloys at temperatures >250 C. The potential deformation mechanisms responsible for the transition from transgranular to intergranular fracture are discussed. The possible implications for other precipitation hardened alloys such as nickel based superalloys are briefly discussed.

Zinkle, Steven J [ORNL] [ORNL

2014-01-01T23:59:59.000Z

112

Natural Refrigerant High-Performance Heat Pump for Commercial Applications  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32Department U.S.NationalNatural GasHighEnergy1-93 July

113

Two Distinctive Granite Suites in the Southwestern Bohemian Massif: Reply to  

E-Print Network [OSTI]

Two Distinctive Granite Suites in the Southwestern Bohemian Massif: Reply to F. Finger and M. Rene geochemical and geochronological analyses of mainly crustal-derived late Variscan granites (328^321 Ma) from the Bavarian Forest, Moldanubian unit, Bohemian Massif. As an important observation, a high Ca^Sr^Y granite

Siebel, Wolfgang

114

High power linear pulsed beam annealer. [Patent application  

DOE Patents [OSTI]

A high power pulsed electron beam system for annealing semiconductors is comprised of an electron gun having a heated cathode, control grid and focus ring for confining the pulsed beam of electrons to a predetermined area, and a curved drift tube. The drift tube and an annular Faraday shield between the focus ring and the drift tube are maintained at a high positive voltage with respect to the cathode to accelerate electrons passing through the focus ring, thereby eliminating space charge limitations on the emission of electrons from said gun. A coil surrounding the curved drift tube provides a magnetic field which maintains the electron beam focused about the axis of the tube. The magnetic field produced by the coil around the curved tube imparts motion to electrons in a spiral path for shallow penetration of the electrons into a target. It also produces a scalloped profile of the electron beam. A second drift tube spaced a predetermined distance from the curved tube is positioned with its axis aligned with the axis of the first drift tube. The second drift tube and the target holder are maintained at a reference voltage between the cathode voltage and the curved tube voltage to decelerate the electrons. A second coil surrounding the second drift tube, maintains the electron beam focused about the axis of the second drift tube. The magnetic field of the second coil comprises the electron beam to the area of the semiconductor on the target holder.

Strathman, M.D.; Sadana, D.K.; True, R.B.

1980-11-26T23:59:59.000Z

115

Material Selection and Characterization for High Gradient RF Applications  

E-Print Network [OSTI]

The selection of candidate materials for the accelerating cavities of the Compact Linear Collider (CLIC) is carried out in parallel with high power RF testing. The maximum DC breakdown field of copper, copper alloys, refractory metals, aluminium and titanium have been measured with a dedicated setup. Higher maximum fields are obtained for refractory metals and for titanium, which exhibits, however, important damages after conditioning. Fatigue behaviour of copper alloys has been studied for surface and bulk by pulsed laser irradiation and ultrasonic excitation, respectively. The selected copper alloys show consistently higher fatigue resistance than copper in both experiments. In order to obtain the best local properties in the device a possible solution is a bi-metallic assembly. Junctions of molybdenum and copper-zirconium UNS C15000 alloy, achieved by HIP (Hot Isostatic Pressing) diffusion bonding or explosion bonding were evaluated for their mechanical strength. The reliability of the results obtained wit...

Arnau-Izquierdo, G; Heikkinen, S; Ramsvik, T; Sgobba, Stefano; Taborelli, M; Wuensch, W

2007-01-01T23:59:59.000Z

116

High efficiency rare-earth emitter for thermophotovoltaic applications  

SciTech Connect (OSTI)

In this work, we propose a rare-earth-based ceramic thermal emitter design that can boost thermophotovoltaic (TPV) efficiencies significantly without cold-side filters at a temperature of 1573?K (1300?°C). The proposed emitter enhances a naturally occurring rare earth transition using quality-factor matching, with a quarter-wave stack as a highly reflective back mirror, while suppressing parasitic losses via exponential chirping of a multilayer reflector transmitting only at short wavelengths. This allows the emissivity to approach the blackbody limit for wavelengths overlapping with the absorption peak of the rare-earth material, while effectively reducing the losses associated with undesirable long-wavelength emission. We obtain TPV efficiencies of 34% using this layered design, which only requires modest index contrast, making it particularly amenable to fabrication via a wide variety of techniques, including sputtering, spin-coating, and plasma-enhanced chemical vapor deposition.

Sakr, E. S.; Zhou, Z.; Bermel, P., E-mail: pbermel@purdue.edu [Birck Nanotechnology Center, School of Electrical and Computer Engineering, Purdue University, 1205 W. State St., West Lafayette, Indiana 47907 (United States)

2014-09-15T23:59:59.000Z

117

9 Cr-- 1 Mo steel material for high temperature application  

DOE Patents [OSTI]

One or more embodiments relates to a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to 650.degree. C. The 9 Cr-1 Mo steel has a tempered martensite microstructure and is comprised of both large (0.5-3 .mu.m) primary titanium carbides and small (5-50 nm) secondary titanium carbides in a ratio of. from about 1:1.5 to about 1.5:1. The 9 Cr-1 Mo steel may be fabricated using exemplary austenizing, rapid cooling, and tempering steps without subsequent hot working requirements. The 9 Cr-1 Mo steel exhibits improvements in total mass gain, yield strength, and time-to-rupture over ASTM P91 and ASTM P92 at the temperature and time conditions examined.

Jablonski, Paul D; Alman, David; Dogan, Omer; Holcomb, Gordon; Cowen, Christopher

2012-11-27T23:59:59.000Z

118

Soft Magnetic Materials in High-Frequency, High-Power Conversion Applications  

E-Print Network [OSTI]

Voltage DC (HVDC) technologies aim to improve the effi- ciency of power networks and benefit from high

McHenry, Michael E.

119

High-Temperature High-Power Packaging Techniques for HEV Traction Applications  

SciTech Connect (OSTI)

A key issue associated with the wider adoption of hybrid-electric vehicles (HEV) and plug in hybrid-electric vehicles (PHEV) is the implementation of the power electronic systems that are required in these products. One of the primary industry goals is the reduction in the price of these vehicles relative to the cost of traditional gasoline powered vehicles. Today these systems, such as the Prius, utilize one coolant loop for the engine at approximately 100 C coolant temperatures, and a second coolant loop for the inverter at 65 C. One way in which significant cost reduction of these systems could be achieved is through the use of a single coolant loop for both the power electronics as well as the internal combustion engine (ICE). This change in coolant temperature significantly increases the junction temperatures of the devices and creates a number of challenges for both device fabrication and the assembly of these devices into inverters and converters for HEV and PHEV applications. Traditional power modules and the state-of-the-art inverters in the current HEV products, are based on chip and wire assembly and direct bond copper (DBC) on ceramic substrates. While a shift to silicon carbide (SiC) devices from silicon (Si) devices would allow the higher operating temperatures required for a single coolant loop, it also creates a number of challenges for the assembly of these devices into power inverters. While this traditional packaging technology can be extended to higher temperatures, the key issues are the substrate material and conductor stability, die bonding material, wire bonds, and bond metallurgy reliability as well as encapsulation materials that are stable at high operating temperatures. The larger temperature differential during power cycling, which would be created by higher coolant temperatures, places tremendous stress on traditional aluminum wire bonds that are used to interconnect power devices. Selection of the bond metallurgy and wire bond geometry can play a key role in mitigating this stress. An alternative solution would be to eliminate the wire bonds completely through a fundamentally different method of forming a reliable top side interconnect. Similarly, the solders used in most power modules exhibit too low of a liquidus to be viable solutions for maximum junction temperatures of 200 C. Commonly used encapsulation materials, such as silicone gels, also suffer from an inability to operate at 200 C for extended periods of time. Possible solutions to these problems exist in most cases but require changes to the traditional manufacturing process used in these modules. In addition, a number of emerging technologies such as Si nitride, flip-chip assembly methods, and the elimination of base-plates would allow reliable module development for operation of HEV and PHEV inverters at elevated junction temperatures.

Elshabini, Aicha [University of Idaho; Barlow, Fred D. [University of Idaho

2006-11-01T23:59:59.000Z

120

PowerPack: Energy Profiling and Analysis of High-Performance Systems and Applications  

E-Print Network [OSTI]

-based nodes, and then provide in-depth analyses of the energy consumption of parallel applications on clusters and energy are primary concerns in modern high- performance computing system design. Operational costs power and energy consumption in high-performance systems, including each component's electrical

Note: This page contains sample records for the topic "application suite high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Micro Catalytic Combustor with Pd/Nano-porous Alumina for High-Temperature Application  

E-Print Network [OSTI]

Micro Catalytic Combustor with Pd/Nano-porous Alumina for High-Temperature Application Takashi: A micro-scale catalytic combustor using high-precision ceramic tape-casting technology has been developed surface reaction of butane. In combustion experiments with a prototype combustor, the wall temperature

Kasagi, Nobuhide

122

Development of a Beowulf-Class High Performance Computing System for Computational Science Applications  

E-Print Network [OSTI]

Using Beowulf cluster computing technology, the Ateneo High Performance Computing Group has developed a high performance computing system consisting of eight compute nodes. Called the AGILA HPCS this Beowulf cluster computer is designed for computational science applications. In this paper, we present the motivation for the AGILA HPCS and some results on its performance evaluation.

Rafael Saldaña; Jerrold Garcia; Felix Muga Ii; William Yu

2001-01-01T23:59:59.000Z

123

INNOVATIVE DESIGN AND MATERIAL SOLUTIONS OF THERMAL CONTACT LAYERS FOR HIGH HEAT FLUX APPLICATIONS IN FUSION  

E-Print Network [OSTI]

INNOVATIVE DESIGN AND MATERIAL SOLUTIONS OF THERMAL CONTACT LAYERS FOR HIGH HEAT FLUX APPLICATIONS of sacrificial plasma facing components that have to handle the high heat and particle fluxes in ITER armour thermal and electrical contact with the cooled sub-structure while promoting remote, in

Tillack, Mark

124

Test Suite Prioritization by Interaction Coverage Renee C. Bryce  

E-Print Network [OSTI]

Test Suite Prioritization by Interaction Coverage Ren´ee C. Bryce Computer Science University event sequences. Managing the size of tests suites for EDS is diffi- cult as the number of event combinations and sequences grow ex- ponentially with the number of events. We propose a new test- ing technique

Bryce, Renee

125

Test Suite Prioritization by Interaction Coverage Renee C. Bryce  

E-Print Network [OSTI]

Test Suite Prioritization by Interaction Coverage Ren´ee C. Bryce Computer Science University event sequences. Managing the size of tests suites for EDS is dif- ficult as the number of possible event combinations and sequences grow exponentially with the number of events. We propose a new testing

Memon, Atif M.

126

Design of a continuous fiber ceramic composite heat exchanger for high-temperature, high-pressure applications  

SciTech Connect (OSTI)

A conceptual design of a continuous fiber ceramic composite (CFCC) heat exchanger for high-temperature, high-pressure applications is presented. The CFCC materials under consideration are SiC reinforced with SiC fibers manufactured using the continuous vapor infiltration process and alumina reinforced with SiC or alumina fibers manufactured using the directed metal oxidation process. These composite materials are highly resistant to high-temperature corrosive environment and possess a greater creep strength than metallic materials. Heat exchangers constructed of CFCC material may be utilized for high-temperature, high-pressure applications such as air/gas heaters in advanced energy systems and high-temperature energy recovery systems. This paper presents a design of a gas-to-air CFCC heat exchanger for the high temperature advanced furnace (HITAF) in the high-performance power system (HIPPS). The 1.38 MPa (200 psia) air is heated from 760 C (1,400 F) to 982 C (1,800 F) using the combustion products at 1,650 C (3,000 F). The heat exchanger is of a cross-parallel/counter flow type in which the tube-side air flow makes a combined parallel and counter flow arrangement with a cross-flowing combustion gas in such a way that the maximum CFCC tube temperature will not exceed a 1,260 C (2,300 F) design limit. The main heat transfer mechanism from the external hot gas to the tube-side air is that of gaseous radiation for the first few rows of the tubes, followed by convective heat transfer across the remainder of the tube bundle. The design characteristics of this high-temperature, high-pressure CFCC heat exchanger with supporting thermal, flow, structural, and vibrational analyses are presented in detail in the paper.

Cho, S.M.; Seltzer, A.H.; Narayanan, T.V. [Foster Wheeler Development Corp., Livingston, NJ (United States); Shah, A.C.; Weddell, J.K. [DuPont Lanxide Composites Inc., Newark, DE (United States)

1996-12-31T23:59:59.000Z

127

High energy density capacitors for power electronic applications using nano-structure multilayer technology  

SciTech Connect (OSTI)

Power electronics applications are currently limited by capacitor size and performance. Only incremental improvements are anticipated in existing capacitor technologies, while significant performance advances are required in energy density and overall performance to meet the technical needs of the applications which are important for U.S. economic competitiveness. One application, the Power Electronic Building Block (PEBB), promises a second electronics revolution in power electronic design. High energy density capacitors with excellent electrical thermal and mechanical performance represent an enabling technology in the PEBB concept. We propose a continuing program to research and develop LLNL`s nano-structure multilayer technologies for making high voltage, high energy density capacitors. Our controlled deposition techniques are capable of synthesizing extraordinarily smooth sub-micron thick layers of dielectric and conductor materials. We have demonstrated that, with this technology, high voltage capacitors with an order of magnitude improvement in energy density are achievable.

Barbee, T.W. Jr.; Johnson, G.W.

1995-09-01T23:59:59.000Z

128

High Power, High Voltage FETs in Linear Applications: A User's Perspective  

SciTech Connect (OSTI)

The specifications of the current crop of highpower, high-voltage field-effect transistors (FETs) can lure a designer into employing them in high-voltage DC equipment. Devices with extremely low on-resistance and very high power ratings are available from several manufacturers. However, our experience shows that high-voltage, linear operation of these devices at near-continuous duty can present difficult reliability challenges at stress levels well-below their published specifications. This paper chronicles the design evolution of a 600 volt, 8 ampere shunt regulator for use with megawatt-class radio transmitters, and presents a final design that has met its reliability criteria.

N. Greenough, E. Fredd, S. DePasquale

2009-09-21T23:59:59.000Z

129

High-Efficiency and High-Power CMOS Power Amplifiers for Millimeter-Wave Applications /  

E-Print Network [OSTI]

K. Han, “W-band, 5W Solid-State Power Amplifier/Combiner,”materials have made high-power solid-state power amplifiersCMOS RF power amplifier for GSM-EDGE,” IEEE J. Solid-State

Agah, Amir

2013-01-01T23:59:59.000Z

130

Application of LBB to high energy piping systems in operating PWR  

SciTech Connect (OSTI)

The amendment to General Design Criterion 4 allows exclusion, from the design basis, of dynamic effects associated with high energy pipe rupture by application of leak-before-break (LBB) technology. This new approach has resulted in substantial financial savings to utilities when applied to the Pressurized Water Reactor (PWR) primary loop piping and auxiliary piping systems made of stainless steel material. To date majority of applications pertain to piping systems in operating plants. Various steps of evaluation associated with the LBB application to an operating plant are described in this paper.

Swamy, S.A.; Bhowmick, D.C. [Westinghouse Nuclear Technology Division, Pittsburgh, PA (United States)

1997-04-01T23:59:59.000Z

131

Recent advances in phosphate laser glasses for high power applications. Revision 1  

SciTech Connect (OSTI)

Recent advances in Nd-doped phosphate laser glasses for high-peak-power and high-average-power applications are reviewed. Compositional studies have progressed to the point that glasses can be tailored to have specific properties for specific applications. Non-radiative relaxation effects can be accurately modeled and empirical expressions have been developed to evaluate both intrinsic (structural) and extrinsic (contamination induced) relaxation effects. Losses due to surface scattering and bulk glass absorption have been carefully measured and can be accurately predicted. Improvements in processing have lead to high damage threshold (e.g. Pt inclusion free) and high thermal shock resistant glasses with improved edge claddings. High optical quality pieces up to 79 x 45 x 4 cm{sup 3} have been made and methods for continuous melting laser glass are under development.

Campbell, J.H.

1996-05-01T23:59:59.000Z

132

A High-Performance Embedded Hybrid Methodology for Uncertainty Quantification With Applications  

SciTech Connect (OSTI)

Multiphysics processes modeled by a system of unsteady di#11;erential equations are natu- rally suited for partitioned (modular) solution strategies. We consider such a model where probabilistic uncertainties are present in each module of the system and represented as a set of random input parameters. A straightforward approach in quantifying uncertainties in the predicted solution would be to sample all the input parameters into a single set, and treat the full system as a black-box. Although this method is easily parallelizable and requires minimal modi#12;cations to deterministic solver, it is blind to the modular structure of the underlying multiphysical model. On the other hand, using spectral representations polynomial chaos expansions (PCE) can provide richer structural information regarding the dynamics of these uncertainties as they propagate from the inputs to the predicted output, but can be prohibitively expensive to implement in the high-dimensional global space of un- certain parameters. Therefore, we investigated hybrid methodologies wherein each module has the exibility of using sampling or PCE based methods of capturing local uncertainties while maintaining accuracy in the global uncertainty analysis. For the latter case, we use a conditional PCE model which mitigates the curse of dimension associated with intru- sive Galerkin or semi-intrusive Pseudospectral methods. After formalizing the theoretical framework, we demonstrate our proposed method using a numerical viscous ow simulation and benchmark the performance against a solely Monte-Carlo method and solely spectral method.

Iaccarino, Gianluca

2014-04-01T23:59:59.000Z

133

High-current-density, high brightness cathodes for free electron laser applications  

SciTech Connect (OSTI)

This report discusses the following topics: brightness and emittance of electron beams and cathodes; general requirements for cathodes in high brightness electron guns; candidate cathode types; plasma and field emission cathodes; true field emission cathodes; oxide cathodes; lanthanum hexaborides cathodes; laser driven thermionic cathodes; laser driven photocathodes; impregnated porous tungsten dispenser cathodes; and choice of best performing cathode types.

Green, M.C. (Varian Associates, Palo Alto, CA (USA). Palo Alto Microwave Tube Div.)

1987-06-01T23:59:59.000Z

134

High-Pressure Phase Equilibria of Ionic Liquids and Compressed Gases for Applications in Reactions and Absorption Refrigeration  

E-Print Network [OSTI]

of high-melting solids not liquids at processing conditions. Coupling ionic liquids with compressed gases systems may overcome most of these difficulties for their applications in separations, reactions, materials processing and engineering applications...

Ren, Wei

2009-12-29T23:59:59.000Z

135

Tokamaks with high-performance resistive magnets: advanced test reactors and prospects for commercial applications  

SciTech Connect (OSTI)

Scoping studies have been made of tokamak reactors with high performance resistive magnets which maximize advantages gained from high field operation and reduced shielding requirements, and minimize resistive power requirements. High field operation can provide very high values of fusion power density and n tau/sub e/ while the resistive power losses can be kept relatively small. Relatively high values of Q' = Fusion Power/Magnet Resistive Power can be obtained. The use of high field also facilitates operation in the DD-DT advanced fuel mode. The general engineering and operational features of machines with high performance magnets are discussed. Illustrative parameters are given for advanced test reactors and for possible commercial reactors. Commercial applications that are discussed are the production of fissile fuel, electricity generation with and without fissioning blankets and synthetic fuel production.

Bromberg, L.; Cohn, D.R.; Williams, J.E.C.; Becker, H.; Leclaire, R.; Yang, T.

1981-10-01T23:59:59.000Z

136

A Family of L-band SRF Cavities for High Power Proton Driver Applications  

SciTech Connect (OSTI)

Recent global interest in high duty factor or CW superconducting linacs with high average beam power highlights the need for robust and reliable SRF structures capable of delivering high average RF power to the beam with moderate HOM damping, low interception of halo and good efficiency. Potential applications include proton or H- drivers for spallation neutron sources, neutrino physics, waste transmutation, subcritical reactors, and high-intensity high-energy physics experiments. We describe a family of SRF cavities with a range of Betas capable of transporting beam currents in excess of 10 mA CW with large irises for minimal interception of halo and HOM and power couplers capable of supporting high average power operation. Goals include an efficient cell shape, high packing factor for efficient real-estate gradient and strong HOM damping to ensure stable beam operation,

Robert Rimmer, Frank Marhauser

2009-05-01T23:59:59.000Z

137

A wide bandgap silicon carbide (SiC) gate driver for high-temperature and high-voltage applications  

SciTech Connect (OSTI)

Limitations of silicon (Si) based power electronic devices can be overcome with Silicon Carbide (SiC) because of its remarkable material properties. SiC is a wide bandgap semiconductor material with larger bandgap, lower leakage currents, higher breakdown electric field, and higher thermal conductivity, which promotes higher switching frequencies for high power applications, higher temperature operation, and results in higher power density devices relative to Si [1]. The proposed work is focused on design of a SiC gate driver to drive a SiC power MOSFET, on a Cree SiC process, with rise/fall times (less than 100 ns) suitable for 500 kHz to 1 MHz switching frequency applications. A process optimized gate driver topology design which is significantly different from generic Si circuit design is proposed. The ultimate goal of the project is to integrate this gate driver into a Toyota Prius plug-in hybrid electric vehicle (PHEV) charger module. The application of this high frequency charger will result in lighter, smaller, cheaper, and a more efficient power electronics system.

Lamichhane, Ranjan [University of Arkansas; Ericson, Milton Nance [ORNL; Frank, Steven Shane [ORNL; BRITTONJr., CHARLES L. [Oak Ridge National Laboratory (ORNL); Marlino, Laura D [ORNL; Mantooth, Alan [University of Arkansas; Francis, Matt [APEI, Inc.; Shepherd, Dr. Paul [University of Arkansas; Glover, Dr. Michael [University of Arkansas; Podar, Mircea [ORNL; Perez, M [University of Arkansas; Mcnutt, Tyler [APEI, Inc.; Whitaker, Mr. Bret [APEI, Inc.; Cole, Mr. Zach [APEI, Inc.

2014-01-01T23:59:59.000Z

138

Engineering a robotic exoskeleton for space suit simulation  

E-Print Network [OSTI]

Novel methods for assessing space suit designs and human performance capabilities are needed as NASA prepares for manned missions beyond low Earth orbit. Current human performance tests and training are conducted in space ...

Meyen, Forrest Edward

2013-01-01T23:59:59.000Z

139

PREVENTIVE CONSERVATION: A CONCEPT SUITED TO THE CONSERVATION OF EARTHEN  

E-Print Network [OSTI]

PREVENTIVE CONSERVATION: A CONCEPT SUITED TO THE CONSERVATION OF EARTHEN ARCHITECTURAL HERITAGE and Construction Key words: Preventive conservation, traditional conservation practices, risk reduction, heritage management Abstract The concept of "preventive conservation" is relatively old as it has already been

Paris-Sud XI, Université de

140

Mechanical counter-pressure space suit design using active materials  

E-Print Network [OSTI]

Mechanical counter-pressure (MCP) space suits have the potential to greatly improve the mobility of astronauts as they conduct planetary exploration activities; however, the underlying technologies required to provide ...

Holschuh, Bradley Thomas

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "application suite high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The Global Health Group 50 Beale Street, Suite 1200  

E-Print Network [OSTI]

The Global Health Group 50 Beale Street, Suite 1200 San Francisco, CA 94105, USA tel: 415 ­ May 2014, with the possibility of extension. Location: UCSF Global Health Group Offices, 50 Beale

Derisi, Joseph

142

Licence 1 -Parcours Bio Formulaire sur les suites  

E-Print Network [OSTI]

: " (+) - (+) ", " 1 0 ", " 0 � ", " ", " 0 0 ", " 0 ", " 0 ", " 00 ", " 0 ". 5 Limites et in´egalit´es Th´eor l . Th´eor`eme 5.2 Soient (un) et (vn) deux suites. Si lim un = + et si il existe N N tel que (n N vn un) alors lim vn = + Th´eor`eme 5.3 Soient (un), (vn) et (wn) trois suites et l un r´eel. Si lim

Frénod, Emmanuel

143

Ambulatory infusion suite: pre- and post-occupancy evaluation  

E-Print Network [OSTI]

, London W1T 3JH, UK Building Research & Information Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/rbri20 Ambulatory infusion suite: pre- and post-occupancy evaluation Mardelle Mc... published: 08 Aug 2012. To cite this article: Mardelle McCuskey Shepley , Zofia Rybkowski , Jennifer Aliber & Cathleen Lange (2012): Ambulatory infusion suite: pre- and post-occupancy evaluation, Building Research & Information, 40:6, 700-712 To link...

Shepley, Mardelle McCuskey; Rybkowski, Zofia; Aliber, Jennifer; Lange, Cathleen

2015-02-08T23:59:59.000Z

144

High tunability barium strontium titanate thin films for rf circuit applications  

E-Print Network [OSTI]

High tunability barium strontium titanate thin films for rf circuit applications N. K. Pervez,a) P) Large variations in the permittivity of rf magnetron sputtered thin-film barium strontium titanate have/cm. © 2004 American Institute of Physics. [DOI: 10.1063/1.1818724] Barium strontium titanate (BST) is a solid

York, Robert A.

145

Battery-Supercapacitor Hybrid System for High-Rate Pulsed Load Applications  

E-Print Network [OSTI]

Battery-Supercapacitor Hybrid System for High-Rate Pulsed Load Applications Donghwa Shin, Younghyun layer capacitors, or simply supercapacitors, have extremely low internal resistance, and a battery-supercapacitor architecture comprising a simple parallel connection does not perform well when the supercapacitor capacity

Pedram, Massoud

146

MERLOT: a model for flow and heat transfer through porous media for high heat flux applications  

E-Print Network [OSTI]

MERLOT: a model for flow and heat transfer through porous media for high heat flux applications A Abstract Fusion power plant studies have found helium to be an attractive coolant based on its safety tend to provide modest heat transfer performance due to their inherently low heat capacity and heat

Raffray, A. René

147

(INVITED PAPER) SiGe/Si-Based Optoelectronic Devices for High-Speed Communication Applications  

E-Print Network [OSTI]

(INVITED PAPER) SiGe/Si-Based Optoelectronic Devices for High-Speed Communication ApplicationsGe/Si-based optoelectronic devices are described. These include photodiodes, photoreceivers and modulators. In There is immense interest in the realization of Si-based optoelectronic devices, optoelectronic integrated circuits

Rieh, Jae-Sung

148

High-Speed and Low-Power PID Structures for Embedded Applications  

E-Print Network [OSTI]

High-Speed and Low-Power PID Structures for Embedded Applications Abdelkrim K. Oudjida1 , Nicolas-power finite-word-length PID controllers based on a new recursive multiplication algorithm. Compared scalable PID structures that can be tailored to the desired performance and power budget. All PIDs

Boyer, Edmond

149

Analyzing the Energy-Time Trade-Off in High-Performance Computing Applications  

E-Print Network [OSTI]

Analyzing the Energy-Time Trade-Off in High-Performance Computing Applications Vincent W. Freeh that the energy-time trade-off can be dynamically adjusted. This paper analyzes the energy-time trade either the memory subsystem or another node. This paper investigates the trade-off between energy

Lowenthal, David

150

Design of an ambient aerosol sampling system for high and medium speed applications  

E-Print Network [OSTI]

Two ambient sampling systems were designed and tested for high speed sampling application for a wind speed range of 4.47 m/s to 26.82 m/s. These systems will be used as inlets for sampling of bioaerosol from air. These systems consist of shrouded...

Irshad, Hammad

2012-06-07T23:59:59.000Z

151

Process for selecting NEAMS applications for access to Idaho National Laboratory high performance computing resources  

SciTech Connect (OSTI)

INL has agreed to provide participants in the Nuclear Energy Advanced Mod- eling and Simulation (NEAMS) program with access to its high performance computing (HPC) resources under sponsorship of the Enabling Computational Technologies (ECT) program element. This report documents the process used to select applications and the software stack in place at INL.

Michael Pernice

2010-09-01T23:59:59.000Z

152

This application is for students who have earned grades at KU after high school.  

E-Print Network [OSTI]

, KS 66045, 785-864-6414, 711 TTY. #12;6. enROLLMent inFORMAtiOn When did you last attend KU? Semester an official transcript to Office of Admissions, KU Visitor Center, 1502 Iowa St., Lawrence, KS 66045. NameThis application is for students who have earned grades at KU after high school. Type or use black

153

Application of High-performance Visual Analysis Methods to Laser Wakefield Particle Acceleration Data  

E-Print Network [OSTI]

Application of High-performance Visual Analysis Methods to Laser Wakefield Particle Acceleration, time- varying laser wakefield particle accelerator simulation data. We ex- tend histogramBit, a state-of-the-art index/query technology, to acceler- ate data mining and multi-dimensional histogram

154

Cyclic transgressive and regressive sequences, Paleocene Suite, Sirte basin, Libya  

SciTech Connect (OSTI)

The Farrud lithofacies represent the main reservoir rock of the Ghani oil field and Western Concession Eleven of the Sirte basin, Libya. Eight microfacies are recognized in the Farrud lithofacies in the Ghani field area: (1) bryozoan-bioclastic (shallow, warm, normal marine shelf deposits); (2) micrite (suggesting quiet, low-energy conditions such as may have existed in a well-protected lagoon); (3) dasycladacean (very shallow, normal marine environment); (4) bioclastic (very shallow, normal marine environment with moderate to vigorous energy); (5) mgal (very shallow, normal marine environment in a shelf lagoon); (6) pelletal-skeletal (deposition within slightly agitated waters of a sheltered lagoon with restricted circulation); (7) dolomicrite (fenestrate structures indicating a high intertidal environment of deposition); and (8) anhydrite (supratidal environment). The Paleocene suite of the Farrud lithofacies generally shows a prograding, regressive sequence of three facies: (1) supratidal facies, characterized by nonfossiliferous anhydrite, dolomite, and dolomitic pelletal carbonate mudstone; (2) intertidal to very shallow subtidal facies, characterized by fossiliferous, pelletal, carbonate mudstone and skeletal calcarenite; and (3) subtidal facies, characterized by a skeletal, pelletal, carbonate mudstone. Source rocks were primarily organic-rich shales overlying the Farrud reservoir rock. Porosity and permeability were developed in part by such processes as dolomitization, leaching, and fracturing in the two progradational, regressive carbonate facies. Hydrocarbons were trapped by a supratidal, anhydrite cap rock.

Abushagur, S.A.

1986-05-01T23:59:59.000Z

155

Materials and Textile Architecture Analyses for Mechanical Counter-Pressure Space Suits using Active Materials  

E-Print Network [OSTI]

Mechanical counter-pressure (MCP) space suits have the potential to improve the mobility of astronauts as they conduct planetary exploration activities. MCP suits differ from traditional gas-pressurized space suits by ...

Buechley, Leah

156

THE PLASMA WINDOW: A WINDOWLESS HIGH PRESSURE VACUUM INTERFACE FOR VARIOUS ACCELERATOR APPLICATIONS.  

SciTech Connect (OSTI)

The Plasma Window is a stabilized plasma arc used as an interface between accelerator vacuum and pressurized targets. There is no solid material introduced into the beam and thus it is also capable of transmitting particle beams and electromagnetic radiation with low loss and of sustaining high beam currents without damage. Measurements on a prototype system with a 3 mm diameter opening have shown that pressure differences of more than 2.5 atmospheres can be sustained with an input pressure of {approx} 10{sup -6} Torr. The system is capable of scaling to higher-pressure differences and larger apertures. Various plasma window applications for synchrotron light sources, high power lasers, internal targets, high current accelerators such as the HAWK, ATW, APT, DARHT, spallation sources, as well as for a number of commercial applications, will be discussed.

HERSHCOVITCH,A.I.; JOHNSON,E.D.; LANZA,R.C.

1999-03-29T23:59:59.000Z

157

Toward resilient high performance applications through real time reliability metric generaion and autonomous failure correction  

SciTech Connect (OSTI)

One predominant barrier encountered in furthering research and development efforts aimed at facilitating resilient HPC applications is a substantial lack of existing reliability and performance data originating from extreme-scale computing distributions. In order to develop an understanding of how and why highly scaled HPC applications are encountering increasingly frequent performance interruptions, one must conduct extensive trending and analysis on contemporary machines and their associated programs. However, existing HPC application log files are labyrinthine documents that, even with the assistance of intelligent data mining algorithms, translate poorly to human discern. In addition, conventional log filtering, processes are limited to execution within a post-mortem, reactive time period, as the enormous size of these documents prevents efficient real time interaction. Thus, there exists a strong need within the HPC field for the provision of accurate-yet-concise real time application information. Moreover, the means of reporting this data must be sufficiently lightweight and non-intrusive, as to successfully-yet-discretely attach itself to the multiple processes running on multiple cores within tens (or in some cases, hundreds) of thousands of compute nodes. Furthermore, this information should in turn be used to facilitate the autonomous correction of application-threatening faults, suspensions, and interruptions. This paper describes a dynamic application instrumentation module (utilizing a combination of Open/SpeedShop software and custom scripting) aimed at successfully achieving these goals.

Debardeleben, Nathan [Los Alamos National Laboratory; Chandler, Clayton [Los Alamos National Laboratory; Leangsuksun, Chokchai [LOUISIANA TECH UNIV

2009-01-01T23:59:59.000Z

158

IMiniature Integrated Payload Suites 2010 Phase II  

E-Print Network [OSTI]

Exchange Membrane (PEM) water-electrolysis fuel cell supplies gH2/gO2 to a simple pressure-fed thruster pointing to enable the low-cost CubeSat platform to be used to conduct high-performance missions. The Power-Isp fuel. Second, a deployable solar array that stows along the long sides of the CubeSat and deploys

159

Assessing the operational life of flexible printed boards intended for continuous flexing applications : a case study.  

SciTech Connect (OSTI)

Through the vehicle of a case study, this paper describes in detail how the guidance found in the suite of IPC (Association Connecting Electronics Industries) publications can be applied to develop a high level of design assurance that flexible printed boards intended for continuous flexing applications will satisfy specified lifetime requirements.

Beck, David Franklin

2011-01-01T23:59:59.000Z

160

E-Print Network 3.0 - arithmtiques des suites Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

arithmtiques des suites Search Powered by Explorit Topic List Advanced Search Sample search results for: arithmtiques des suites Page: << < 1 2 3 4 5 > >> 1 TORSEURS ARITHMTIQUES...

Note: This page contains sample records for the topic "application suite high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

HIGH-CURRENT COLD CATHODE FIELD EMISSION ARRAY FOR ELECTRON LENS APPLICATION  

SciTech Connect (OSTI)

During Phase I, the following goals were achieved: (1) design and fabrication of a novel, nano-dimensional CNT field emitter assembly for high current density application, with high durability; (2) fabrication of a ceramic based micro channel plate (MCP) and characterization of its secondary electron emission; and (3) characterizing the CNT/MCP cathode for high field emission and durability. As a result of these achievements, a relatively high current density of ~ 1.2 A/cm2 from a CNT cathode and single channel MCP were measured. The emission current was also extremely stable with a peak-to-peak variation of only 1.8%. The emission current could be further enhanced to meet requirements for electron lens applications by increasing the number of MCP channels. A calculation for maximum possible current density with a 1200 channel/cm2 MCP, placed over a cathode with 1200 uniformly functioning CNTs, would be ~1.46 kA/cm2, neglecting space charge limitations. Clearly this level of emission is far greater than what is needed for the electron lens application, but it does offer a highly comforting margin to account for sub-standard emitters and/or to allow the lesser challenge of building a cathode with fewer channels/cm2. A satisfactory goal for the electron lens application would be a controllable emission of 2-4 mA per channel in an ensemble of 800-1200 uniformly-functioning channels/cm2, and a cathode with overall area of about 1 cm2.

Hirshfield, Jay L

2012-12-28T23:59:59.000Z

162

A compact transport and charge model for GaN-based high electron mobility transistors for RF applications  

E-Print Network [OSTI]

Gallium Nitride (GaN)-based high electron mobility transistors (HEMTs) are rapidly emerging as front-runners in high-power mm-wave circuit applications. For circuit design with current devices and to allow sensible future ...

Radhakrishna, Ujwal

2013-01-01T23:59:59.000Z

163

Ge doped GaN with controllable high carrier concentration for plasmonic applications  

SciTech Connect (OSTI)

Controllable Ge doping in GaN is demonstrated for carrier concentrations of up to 2.4?×?10{sup 20} cm{sup ?3}. Low temperature luminescence spectra from the highly doped samples reveal band gap renormalization and band filling (Burstein-Moss shift) in addition to a sharp transition. Infrared ellipsometry spectra demonstrate the existence of electron plasma with an energy around 3500?cm{sup ?1} and a surface plasma with an energy around 2000?cm{sup ?1}. These findings open possibilities for the application of highly doped GaN for plasmonic devices.

Kirste, Ronny; Hoffmann, Marc P.; Sachet, Edward; Bobea, Milena; Bryan, Zachary; Bryan, Isaac; Maria, Jon-Paul; Collazo, Ramón; Sitar, Zlatko [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7919 (United States)] [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7919 (United States); Nenstiel, Christian; Hoffmann, Axel [Institut f?r Festkörperphsyik, TU-Berlin, Hardenbergstrasse 36, 10623 Berlin (Germany)] [Institut f?r Festkörperphsyik, TU-Berlin, Hardenbergstrasse 36, 10623 Berlin (Germany)

2013-12-09T23:59:59.000Z

164

Application of Gamma code coupled with turbomachinery models for high temperature gas-cooled reactors  

SciTech Connect (OSTI)

The very high-temperature gas-cooled reactor (VHTR) is envisioned as a single- or dual-purpose reactor for electricity and hydrogen generation. The concept has average coolant temperatures above 9000C and operational fuel temperatures above 12500C. The concept provides the potential for increased energy conversion efficiency and for high-temperature process heat application in addition to power generation. While all the High Temperature Gas Cooled Reactor (HTGR) concepts have sufficiently high temperature to support process heat applications, such as coal gasification, desalination or cogenerative processes, the VHTR’s higher temperatures allow broader applications, including thermochemical hydrogen production. However, the very high temperatures of this reactor concept can be detrimental to safety if a loss-ofcoolant accident (LOCA) occurs. Following the loss of coolant through the break and coolant depressurization, air will enter the core through the break by molecular diffusion and ultimately by natural convection, leading to oxidation of the in-core graphite structure and fuel. The oxidation will accelerate heatup of the reactor core and the release of a toxic gas, CO, and fission products. Thus, without any effective countermeasures, a pipe break may lead to significant fuel damage and fission product release. Prior to the start of this Korean/United States collaboration, no computer codes were available that had been sufficiently developed and validated to reliably simulate a LOCA in the VHTR. Therefore, we have worked for the past three years on developing and validating advanced computational methods for simulating LOCAs in a VHTR. GAMMA code is being developed to implement turbomachinery models in the power conversion unit (PCU) and ultimately models associated with the hydrogen plant. Some preliminary results will be described in this paper.

Chang Oh

2008-02-01T23:59:59.000Z

165

Synthetic Chemistry PhD Studentship We are looking for a highly motivated and talented PhD Candidate to complement our team in  

E-Print Network [OSTI]

with Applications in Dye-Sensitized Solar Cells. This project is related to the Research Program "Advanced Materials for Highly Efficient Dye-Sensitized Solar Cells ­ AdMatDSC" financed by the Greek Ministry of Education will be ideally suited for incorporation in high-performance dye-sensitized solar cells. The successful candidate

166

PBMR as an Ideal Heat Source for High-Temperature Process Heat Applications  

SciTech Connect (OSTI)

The Pebble Bed Modular Reactor (PBMR) is an advanced helium-cooled, graphite-moderated High Temperature Gas-cooled Reactor (HTGR). A 400 MWt PBMR Demonstration Power Plant (DPP) for the production of electricity is being developed in South Africa. This PBMR technology is also an ideal heat source for process heat applications, including Steam Methane Reforming, steam for Oil Sands bitumen recovery, Hydrogen Production and co-generation (process heat and/or electricity and/or process steam) for petrochemical industries. The cycle configuration used to transport the heat of the reactor to the process plant or to convert the reactor's heat into electricity or steam directly influences the cycle efficiency and plant economics. The choice of cycle configuration depends on the process requirements and is influenced by practical considerations, component and material limitations, maintenance, controllability, safety, performance, risk and cost. This paper provides an overview of the use of a PBMR reactor for process applications and possible cycle configurations are presented for applications which require high temperature process heat and/or electricity. (authors)

Correia, Michael; Greyvenstein, Renee [PBMR - Pty Ltd., 1279 Mike Crawford Avenue, Centurion, 0046 (South Africa); Silady, Fred; Penfield, Scott [Technology Insights, 6540 Lusk Blvd, Suite C-102, San Diego, California 92121 (United States)

2006-07-01T23:59:59.000Z

167

Kelly Services 1600 Valley River Drive, Suite 170  

E-Print Network [OSTI]

Kelly Services® 1600 Valley River Drive, Suite 170 Eugene, OR 97401 Phone: 541.687.9558 Fax: 541 put them on our payroll Experience 1946 ­ Present Kelly Services, Troy, MI We are a global, single to achieve results. We transform workforce challenges into opportunities. 1957 ­ Present Kelly Services

Oregon, University of

168

College of Communication & Information 1345 Circle Park Drive | Suite 302  

E-Print Network [OSTI]

College of Communication & Information 1345 Circle Park Drive | Suite 302 Knoxville, TN 37996 & Communication Studies (CICS) - Awarded grants total $7 million +, NSF, IMLS, Sloan Foundation and more - 2.5+ million in science information and communication contract work at Oak Ridge National Labs. · Hands

Grissino-Mayer, Henri D.

169

Using Dependency Structures for Prioritisation of Functional Test Suites  

E-Print Network [OSTI]

1 Using Dependency Structures for Prioritisation of Functional Test Suites Shifa-e-Zehra Haidry, Australia. 3 Abstract--Test case prioritisation is the process of ordering the exe- cution of test cases software delivery. Many existing test case prioritisation techniques consider that tests can be run in any

Miller, Tim

170

PARENTE SUITE USER'S GUIDE (c) 1994-97  

E-Print Network [OSTI]

and Marriage Networks 5/97 (c) 1991-97 Douglas R. White. Shareware Registration: $10US, 15DM or 50FF You-Calc, and various other utility programs for an evaluation period of up to 45 days. If you wish to continue using Parente Suite after 45 days, you must register by sending $10 to Douglas R. White, Social Science Plaza

White, Douglas R.

171

Predicting the Operational Effectiveness of Aircraft Survivability Equipment Suite  

E-Print Network [OSTI]

, and experiment with their autonomous decision-making against threats in various electronic warfare settings. We: Autonomous Decision-Making, Electronic Warfare Settings, Aircraft Survivability Equipment Suite, Operational Effectiveness 1. Introduction In order to counter threats in electronic warfare environments, a command

Noh, Sanguk

172

Office of International Education Savant Building, Suite 211  

E-Print Network [OSTI]

Office of International Education Savant Building, Suite 211 Atlanta, Georgia 30332-0284 PHONE: 404 Participant FROM: Stephanie Bullard Education Abroad Assistant, Office of International Education RE that GT programs do not currently sponsor. If you intend to transfer credit back to GT for courses your

Li, Mo

173

Engineering High Performance Service-Oriented Pipeline Applications with MeDICi  

SciTech Connect (OSTI)

The pipeline software architecture pattern is commonly used in many application domains to structure a software system. A pipeline comprises a sequence of processing steps that progressively transform data to some desired outputs. As pipeline-based systems are required to handle increasingly large volumes of data and provide high throughput services, simple scripting-based technologies that have traditionally been used for constructing pipelines do not scale. In this paper we describe the MeDICI Integration Framework (MIF), which is specifically designed for building flexible, efficient and scalable pipelines that exploit distributed services as elements of the pipeline. We explain the core runtime and development infrastructures that MIF provides, and demonstrate how MIF has been used in two complex applications to improve performance and modifiability.

Gorton, Ian; Wynne, Adam S.; Liu, Yan

2011-01-07T23:59:59.000Z

174

Towards the Integration of APECS and VE-Suite for Virtual Power Plant Co-Simulation  

SciTech Connect (OSTI)

Process modeling and simulation tools are widely used for the design and operation of advanced power generation systems. These tools enable engineers to solve the critical process systems engineering problems that arise throughout the lifecycle of a power plant, such as designing a new process, troubleshooting a process unit or optimizing operations of the full process. To analyze the impact of complex thermal and fluid flow phenomena on overall power plant performance, the Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has developed the Advanced Process Engineering Co-Simulator (APECS). The APECS system is an integrated software suite that combines process simulation (e.g., Aspen Plus) and high-fidelity equipment simulations such as those based on computational fluid dynamics (CFD), together with advanced analysis capabilities including case studies, sensitivity analysis, stochastic simulation for risk/uncertainty analysis, and multi-objective optimization. In this paper we discuss the initial phases of the integration of the APECS system with the immersive and interactive virtual engineering software, VE-Suite, developed at Iowa State University and Ames Laboratory. VE-Suite uses the ActiveX (OLE Automation) controls in the Aspen Plus process simulator wrapped by the CASI library developed by Reaction Engineering International to run process/CFD co-simulations and query for results. This integration represents a necessary step in the development of virtual power plant co-simulations that will ultimately reduce the time, cost, and technical risk of developing advanced power generation systems.

Zitney, S.E.; McCorkle, D. (Iowa State University, Ames, IA); Yang, C. (Reaction Engineering International, Salt Lake City, UT); Jordan, T.; Swensen, D. (Reaction Engineering International, Salt Lake City, UT); Bryden, M. (Iowa State University, Ames, IA)

2007-05-01T23:59:59.000Z

175

NSLS-II HIGH LEVEL APPLICATION INFRASTRUCTURE AND CLIENT API DESIGN  

SciTech Connect (OSTI)

The beam commissioning software framework of NSLS-II project adopts a client/server based architecture to replace the more traditional monolithic high level application approach. It is an open structure platform, and we try to provide a narrow API set for client application. With this narrow API, existing applications developed in different language under different architecture could be ported to our platform with small modification. This paper describes system infrastructure design, client API and system integration, and latest progress. As a new 3rd generation synchrotron light source with ultra low emittance, there are new requirements and challenges to control and manipulate the beam. A use case study and a theoretical analysis have been performed to clarify requirements and challenges to the high level applications (HLA) software environment. To satisfy those requirements and challenges, adequate system architecture of the software framework is critical for beam commissioning, study and operation. The existing traditional approaches are self-consistent, and monolithic. Some of them have adopted a concept of middle layer to separate low level hardware processing from numerical algorithm computing, physics modelling, data manipulating, plotting, and error handling. However, none of the existing approaches can satisfy the requirement. A new design has been proposed by introducing service oriented architecture technology. The HLA is combination of tools for accelerator physicists and operators, which is same as traditional approach. In NSLS-II, they include monitoring applications and control routines. Scripting environment is very important for the later part of HLA and both parts are designed based on a common set of APIs. Physicists and operators are users of these APIs, while control system engineers and a few accelerator physicists are the developers of these APIs. With our Client/Server mode based approach, we leave how to retrieve information to the developers of APIs and how to use them to form a physics application to the users. For example, how the channels are related to magnet and what the current real-time setting of a magnet is in physics unit are the internals of APIs. Measuring chromaticities are the users of APIs. All the users of APIs are working with magnet and instrument names in a physics unit. The low level communications in current or voltage unit are minimized. In this paper, we discussed our recent progress of our infrastructure development, and client API.

Shen, G.; Yang; L.; Shroff; K.

2011-03-28T23:59:59.000Z

176

Experiences with High-Level Programming Directives for Porting Applications to GPUs  

SciTech Connect (OSTI)

HPC systems now exploit GPUs within their compute nodes to accelerate program performance. As a result, high-end application development has become extremely complex at the node level. In addition to restructuring the node code to exploit the cores and specialized devices, the programmer may need to choose a programming model such as OpenMP or CPU threads in conjunction with an accelerator programming model to share and manage the difference node resources. This comes at a time when programmer productivity and the ability to produce portable code has been recognized as a major concern. In order to offset the high development cost of creating CUDA or OpenCL kernels, directives have been proposed for programming accelerator devices, but their implications are not well known. In this paper, we evaluate the state of the art accelerator directives to program several applications kernels, explore transformations to achieve good performance, and examine the expressiveness and performance penalty of using high-level directives versus CUDA. We also compare our results to OpenMP implementations to understand the benefits of running the kernels in the accelerator versus CPU cores.

Hernandez, Oscar R [ORNL; Ding, Wei [University of Houston, Houston; Chapman, Barbara [University of Houston, Houston; Kartsaklis, Christos [ORNL; Sankaran, Ramanan [ORNL; Graham, Richard L [ORNL

2012-01-01T23:59:59.000Z

177

Pressure Relief Devices for High-Pressure Gaseous Storage Systems: Applicability to Hydrogen Technology  

SciTech Connect (OSTI)

Pressure relief devices (PRDs) are viewed as essential safety measures for high-pressure gas storage and distribution systems. These devices are used to prevent the over-pressurization of gas storage vessels and distribution equipment, except in the application of certain toxic gases. PRDs play a critical role in the implementation of most high-pressure gas storage systems and anyone working with these devices should understand their function so they can be designed, installed, and maintained properly to prevent any potentially dangerous or fatal incidents. As such, the intention of this report is to introduce the reader to the function of the common types of PRDs currently used in industry. Since high-pressure hydrogen gas storage systems are being developed to support the growing hydrogen energy infrastructure, several recent failure incidents, specifically involving hydrogen, will be examined to demonstrate the results and possible mechanisms of a device failure. The applicable codes and standards, developed to minimize the risk of failure for PRDs, will also be reviewed. Finally, because PRDs are a critical component for the development of a successful hydrogen energy infrastructure, important considerations for pressure relief devices applied in a hydrogen gas environment will be explored.

Kostival, A.; Rivkin, C.; Buttner, W.; Burgess, R.

2013-11-01T23:59:59.000Z

178

Behavior of a hollow core photonic crystal fiber under high radial pressure for downhole application  

SciTech Connect (OSTI)

Pressure fiber sensors play an important role in downhole high pressure measurements to withstand long term operation. The purpose of this paper is to present an application of hollow core photonic crystal fiber (HC-PCF) as a high pressure sensor head for downhole application based on dispersion variation. We used a high pressure stainless steel unit to exert pressure on the sensor. The experimental results show that different wavelengths based on sagnac loop interferometer have additive sensitivities from 5?×?10{sup ?5}?nm/psi at 1480?nm to 1.3?×?10{sup ?3}?nm/psi at 1680?nm. We developed a simulation to understand the reason for difference in sensitivity of wavelengths and also the relationship between deformation of HC-PCF and dispersion variation under pressure. For this purpose, by using the finite element method, we investigated the effect of structural variation of HC-PCF on spectral transformation of two linear polarizations under 1000?psi pressure. The simulation and experimental results show exponential decay behavior of dispersion variation from ?3.4?×?10{sup ?6} 1/psi to ?1.3?×?10{sup ?6} 1/psi and from ?5?×?10{sup ?6} 1/psi to ?1.8?×?10{sup ?6} 1/psi, respectively, which were in a good accordance with each other.

Sadeghi, J., E-mail: j-sadeghi@sbu.ac.ir; Chenari, Z.; Ziaee, F. [Laser and Plasma Research Institute, Shahid Beheshti University, 1983963113 Tehran (Iran, Islamic Republic of); Latifi, H., E-mail: latifi@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, 1983963113 Tehran (Iran, Islamic Republic of); Department of Physics, Shahid Beheshti University, Evin, 1983963113 Tehran (Iran, Islamic Republic of); Santos, J. L., E-mail: josantos@fc.up.pt [INESC Porto—Instituto de Engenharia de Sistemas e Computadores do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Departamento de Física, da Faculdade de Ciências, da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal)

2014-02-17T23:59:59.000Z

179

Characteristics of trap-filled gallium arsenide photoconductive switches used in high gain pulsed power applications  

SciTech Connect (OSTI)

The electrical properties of semi-insulating (SI) Gallium Arsenide (GaAs) have been investigated for some time, particularly for its application as a substrate in microelectronics. Of late this material has found a variety of applications other than as an isolation region between devices, or the substrate of an active device. High resistivity SI GaAs is increasingly being used in charged particle detectors and photoconductive semiconductor switches (PCSS). PCSS made from these materials operating in both the linear and non-linear modes have applications such as firing sets, as drivers for lasers, and in high impedance, low current Q-switches or Pockels cells. In the non-linear mode, it has also been used in a system to generate Ultra-Wideband (UWB) High Power Microwaves (HPM). The choice of GaAs over silicon offers the advantage that its material properties allow for fast, repetitive switching action. Furthermore photoconductive switches have advantages over conventional switches such as improved jitter, better impedance matching, compact size, and in some cases, lower laser energy requirement for switching action. The rise time of the PCSS is an important parameter that affects the maximum energy transferred to the load and it depends, in addition to other parameters, on the bias or the average field across the switch. High field operation has been an important goal in PCSS research. Due to surface flashover or premature material breakdown at higher voltages, most PCSS, especially those used in high power operation, need to operate well below the inherent breakdown voltage of the material. The lifetime or the total number of switching operations before breakdown, is another important switch parameter that needs to be considered for operation at high bias conditions. A lifetime of {approximately} 10{sup 4} shots has been reported for PCSS's used in UWB-HPM generation [5], while it has exceeded 10{sup 8} shots for electro-optic drivers. Much effort is currently being channeled in the study related to improvements of these two parameters high bias operation and lifetime improvement for switches used in pulsed power applications. The contact material and profiles are another important area of study. Although these problems are being pursued through the incorporation of different contact materials and introducing doping near contacts, it is important that the switch properties and the conduction mechanism in these switches be well understood such that the basic nature of the problems can be properly addressed. In this paper the authors report on these two basic issues related to the device operation, i.e., mechanisms for increasing the hold-off characteristics through neutron irradiation, and the analysis of transport processes at varying field conditions in trap dominated SI GaAs in order to identify the breakdown mechanism during device operation. It is expected that this study would result in a better understanding of photoconductive switches, specifically those used in high power operation.

ISLAM,N.E.; SCHAMILOGLU,E.; MAR,ALAN; LOUBRIEL,GUILLERMO M.; ZUTAVERN,FRED J.; JOSHI,R.P.

2000-05-30T23:59:59.000Z

180

Ultra-High Gradient Compact S-Band Linac for Laboratory and Industrial Applications  

SciTech Connect (OSTI)

There is growing demand from the industrial and research communities for high gradient, compact RF accelerating structures. The commonly used S-band SLAC-type structure has an operating gradient of only about 20 MV/m; while much higher operating gradients (up to 70 MV/m) have been recently achieved in X-band, as a consequence of the substantial efforts by the Next Linear Collider (NLC) collaboration to push the performance envelope of RF structures towards higher accelerating gradients. Currently however, high power X-band RF sources are not readily available for industrial applications. Therefore, RadiaBeam Technologies is developing a short, standing wave S-band structure which uses frequency scaled NLC design concepts to achieve up to a 50 MV/m operating gradient at 2856 MHz. The design and prototype commissioning plans are presented.

Faillace, Luigi; /RadiaBeam Tech.; Agustsson, Ronald; /RadiaBeam Tech.; Frigola, Pedro; /RadiaBeam Tech.; Murokh, Alex; /RadiaBeam Tech.; Dolgashev, Valery; /SLAC; Rosenzweig, James; /UCLA

2012-07-03T23:59:59.000Z

Note: This page contains sample records for the topic "application suite high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Applications of Robust, Radiation Hard AlGaN Optoelectronic Devices in Space Exploration and High Energy Density Physics  

SciTech Connect (OSTI)

This slide show presents: space exploration applications; high energy density physics applications; UV LED and photodiode radiation hardness; UV LED and photodiode space qualification; UV LED AC charge management; and UV LED satellite payload instruments. A UV LED satellite will be launched 2nd half 2012.

Sun, K.

2011-05-04T23:59:59.000Z

182

High-pressure X-ray absorption fine structure in the diamond anvil cell and its applications in geological materials  

E-Print Network [OSTI]

nano- polycrystalline diamond instead of single crystal anvils, the influence of diamond diffractionHigh-pressure X-ray absorption fine structure in the diamond anvil cell and its applications fine structure in the diamond anvil cell and its applications in geological materials Xinguo Hong1

Duffy, Thomas S.

183

546 APPLICATION OF CHIMERAS IN CELL PHYSIOLOGY WI subcellular distributions, with high selectivity for synaptic vesicles22 or the  

E-Print Network [OSTI]

546 APPLICATION OF CHIMERAS IN CELL PHYSIOLOGY WI subcellular distributions, with high selectivity-biotin derivative is targeted to specific organelles expressing avidin chimera proteins. Until recently, the major

Machen, Terry E.

184

The emergence of Clostridium thermocellum as a high utility candidate for consolidated bioprocessing applications  

SciTech Connect (OSTI)

First isolated in 1926, Clostridium thermocellum has recently received increased attention as a high utility candidate for use in consolidated bioprocessing (CBP) applications. These applications, which seek to process lignocellulosic biomass directly into useful products such as ethanol, are gaining traction as economically feasible routes toward the production of fuel and other high value chemical compounds as the shortcomings of fossil fuels become evident. This review evaluates C. thermocellum's role in this transitory process by highlighting recent discoveries relating to its genomic, transcriptomic, proteomic, and metabolomic responses to varying biomass sources, with a special emphasis placed on providing an overview of its unique, multivariate enzyme cellulosome complex and the role that this structure performs during biomass degradation. Both naturally evolved and genetically engineered strains are examined in light of their unique attributes and responses to various biomass treatment conditions, and the genetic tools that have been employed for their creation are presented. Several future routes for potential industrial usage are presented, and it is concluded that, although there have been many advances to significantly improve C. thermocellum's amenability to industrial use, several hurdles still remain to be overcome as this unique organism enjoys increased attention within the scientific community.

Akinsho, Hannah [Georgia Institute of Technology, Atlanta; Yee, Kelsey L [ORNL; Close, Daniel M [ORNL; Ragauskas, Arthur [University of Tennessee, Knoxville

2014-01-01T23:59:59.000Z

185

Application of high temperature air heaters to advanced power generation cycles  

SciTech Connect (OSTI)

Recent developments in ceramic composite materials open up the possibility of recuperative air heaters heating air to temperatures well above the feasible with metal tubes. A high temperature air heater (HTAH) has long been recognized as a requirement for the most efficient MHD plants in order to reach high combustor flame temperatures. The application of gas turbines in coal-fired plants of all types has been impeded because of the problems in cleaning exhaust gas sufficiently to avoid damage to the turbine. With a possibility of a HTAH, such plants may become feasible on the basis of air turbine cycles, in which air is compressed and heated in the HTAH before being applied to turbine. The heat exchanger eliminates the need for the hot gas cleanup system. The performance improvement potential of advanced cycles with HTAH application including the air turbine cycle in several variations such as the DOE program on ``Coal-Fired Air Furnace Combined Cycle...,`` variations originated by the authors, and the MHD combined cycle are presented. The status of development of ceramic air heater technology is included.

Thompson, T R [Tennessee Valley Authority, Chattanooga, TN (United States)] [Tennessee Valley Authority, Chattanooga, TN (United States); Boss, W H; Chapman, J N [Tennessee Univ., Tullahoma, TN (United States). Space Inst.] [Tennessee Univ., Tullahoma, TN (United States). Space Inst.

1992-03-01T23:59:59.000Z

186

MYRRHA a multi-purpose hybrid research reactor for high-tech applications  

SciTech Connect (OSTI)

MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is the flexible experimental accelerator driven system (ADS) in development at SCK-CEN. MYRRHA is able to work both in subcritical (ADS) as in critical mode. In this way, MYRRHA will allow fuel developments for innovative reactor systems, material developments for generation IV (GEN IV) systems, material developments for fusion reactors, radioisotope production and industrial applications, such as Si-doping. MYRRHA will also demonstrate the ADS full concept by coupling the three components (accelerator, spallation target and subcritical reactor) at reasonable power level to allow operation feedback, scalable to an industrial demonstrator and allow the study of efficient transmutation of high-level nuclear waste. MYRRHA is based on the heavy liquid metal technology and so it will contribute to the development of lead fast reactor (LFR) technology and in critical mode, MYRRHA will play the role of European technology pilot plant in the roadmap for LFR. In this paper the historical evolution of MYRRHA and the rationale behind the design choices is presented and the latest configuration of the reactor core and primary system is described. (authors)

Abderrahim, H. A.; Baeten, P. [SCK CEN, Boeretang 200, 2400 Mol (Belgium)

2012-07-01T23:59:59.000Z

187

Applications of high resolution ICP-AES in the nuclear industry  

SciTech Connect (OSTI)

Application of high resolution ICP-AES to selected problems of importance in the nuclear industry is a growing field. The advantages in sample preparation time, waste minimization and equipment cost are considerable. Two examples of these advantages are presented in this paper, burnup analysis of spent fuel and analysis of major uranium isotopes. The determination of burnup, an indicator of fuel cycle efficiency, has been accomplished by the determination of {sup 139}La by high resolution inductively coupled plasma atomic emission spectroscopy (HR-ICP-AES). Solutions of digested samples of reactor fuel rods were introduced into a shielded glovebox housing an inductively coupled plasma (ICP) and the resulting atomic emission transmitted to a high resolution spectrometer by a 31 meter fiber optic bundle. Total and isotopic U determination by thermal ionization mass spectrometry (TIMS) is presented to allow for the calculation of burnup for the samples. This method of burnup determination reduces the time, material, sample handling and waste generated associated with typical burnup determinations which require separation of lanthanum from the other fission products with high specific activities. Work concerning an alternative burnup indicator, {sup 236}U, is also presented for comparison. The determination of {sup 235}U:{sup 238}U isotope ratios in U-Zr fuel alloys is also presented to demonstrate the versatility of HR-ICP-AES.

Johnson, S.G.; Giglio, J.J.; Goodall, P.S.; Cummings, D.G.

1998-07-01T23:59:59.000Z

188

Enhanced verification test suite for physics simulation codes  

SciTech Connect (OSTI)

This document discusses problems with which to augment, in quantity and in quality, the existing tri-laboratory suite of verification problems used by Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and Sandia National Laboratories (SNL). The purpose of verification analysis is demonstrate whether the numerical results of the discretization algorithms in physics and engineering simulation codes provide correct solutions of the corresponding continuum equations.

Kamm, James R.; Brock, Jerry S.; Brandon, Scott T.; Cotrell, David L.; Johnson, Bryan; Knupp, Patrick; Rider, William J.; Trucano, Timothy G.; Weirs, V. Gregory

2008-09-01T23:59:59.000Z

189

Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications  

E-Print Network [OSTI]

3 Fig. 1.2. Solar power plant operation [Materials for Concentrating Solar Power Plant Applications AMaterials for Concentrating Solar Power Plant Applications

Roshandell, Melina

2013-01-01T23:59:59.000Z

190

Linking Automated Data Analysis and Visualization with Applications in Developmental Biology and High-Energy Physics  

SciTech Connect (OSTI)

Knowledge discovery from large and complex collections of today's scientific datasets is a challenging task. With the ability to measure and simulate more processes at increasingly finer spatial and temporal scales, the increasing number of data dimensions and data objects is presenting tremendous challenges for data analysis and effective data exploration methods and tools. Researchers are overwhelmed with data and standard tools are often insufficient to enable effective data analysis and knowledge discovery. The main objective of this thesis is to provide important new capabilities to accelerate scientific knowledge discovery form large, complex, and multivariate scientific data. The research covered in this thesis addresses these scientific challenges using a combination of scientific visualization, information visualization, automated data analysis, and other enabling technologies, such as efficient data management. The effectiveness of the proposed analysis methods is demonstrated via applications in two distinct scientific research fields, namely developmental biology and high-energy physics.Advances in microscopy, image analysis, and embryo registration enable for the first time measurement of gene expression at cellular resolution for entire organisms. Analysis of high-dimensional spatial gene expression datasets is a challenging task. By integrating data clustering and visualization, analysis of complex, time-varying, spatial gene expression patterns and their formation becomes possible. The analysis framework MATLAB and the visualization have been integrated, making advanced analysis tools accessible to biologist and enabling bioinformatic researchers to directly integrate their analysis with the visualization. Laser wakefield particle accelerators (LWFAs) promise to be a new compact source of high-energy particles and radiation, with wide applications ranging from medicine to physics. To gain insight into the complex physical processes of particle acceleration, physicists model LWFAs computationally. The datasets produced by LWFA simulations are (i) extremely large, (ii) of varying spatial and temporal resolution, (iii) heterogeneous, and (iv) high-dimensional, making analysis and knowledge discovery from complex LWFA simulation data a challenging task. To address these challenges this thesis describes the integration of the visualization system VisIt and the state-of-the-art index/query system FastBit, enabling interactive visual exploration of extremely large three-dimensional particle datasets. Researchers are especially interested in beams of high-energy particles formed during the course of a simulation. This thesis describes novel methods for automatic detection and analysis of particle beams enabling a more accurate and efficient data analysis process. By integrating these automated analysis methods with visualization, this research enables more accurate, efficient, and effective analysis of LWFA simulation data than previously possible.

Ruebel, Oliver

2009-12-01T23:59:59.000Z

191

Reliability of Sn-3.5Ag Solder Joints in High Temperature Packaging Applications  

SciTech Connect (OSTI)

There is a significant need for next generation, high performance power electronic packages and systems with wide band gap devices to operate at high temperatures in automotive and electricity transmission applications. Sn-3.5Ag solder is a candidate for use in such packages with potential operating temperatures up to 200oC. However, there is a need to understand thermal cycling reliability of Sn-3.5Ag solders subject to such operating conditions. The results of a study on the damage evolution occurring in large area Sn-3.5Ag solders joints between silicon dies and DBC substrates subject to thermal cycling between 200oC and 5oC is presented in this paper. Damage accumulation was followed using high resolution X-ray radiography techniques while nonlinear finite element models were developed based on the mechanical property data available in literature to understand the relationship between the stress state within the solder joint and the damage evolution occurring under thermal cycling conditions. It was observed that regions of damage observed in the experiments do not correspond to the finite element predictions of the location of regions of maximum plastic work.

Muralidharan, Govindarajan [ORNL; Kurumaddali, Nalini Kanth [ORNL; Kercher, Andrew K [ORNL; Leslie, Dr Scott [Powerex Inc

2010-01-01T23:59:59.000Z

192

Improved high temperature solar absorbers for use in Concentrating Solar Power central receiver applications.  

SciTech Connect (OSTI)

Concentrating solar power (CSP) systems use solar absorbers to convert the heat from sunlight to electric power. Increased operating temperatures are necessary to lower the cost of solar-generated electricity by improving efficiencies and reducing thermal energy storage costs. Durable new materials are needed to cope with operating temperatures >600 C. The current coating technology (Pyromark High Temperature paint) has a solar absorptance in excess of 0.95 but a thermal emittance greater than 0.8, which results in large thermal losses at high temperatures. In addition, because solar receivers operate in air, these coatings have long term stability issues that add to the operating costs of CSP facilities. Ideal absorbers must have high solar absorptance (>0.95) and low thermal emittance (<0.05) in the IR region, be stable in air, and be low-cost and readily manufacturable. We propose to utilize solution-based synthesis techniques to prepare intrinsic absorbers for use in central receiver applications.

Stechel, Ellen Beth; Ambrosini, Andrea; Hall, Aaron Christopher; Lambert, Timothy L.; Staiger, Chad Lynn; Bencomo, Marlene

2010-09-01T23:59:59.000Z

193

On RELAP5-simulated High Flux Isotope Reactor reactivity transients: Code change and application  

SciTech Connect (OSTI)

This paper presents a new and innovative application for the RELAP5 code (hereafter referred to as the code''). The code has been used to simulate several transients associated with the (presently) draft version of the High-Flux Isotope Reactor (HFIR) updated safety analysis report (SAR). This paper investigates those thermal-hydraulic transients induced by nuclear reactivity changes. A major goal of the work was to use an existing RELAP5 HFIR model for consistency with other thermal-hydraulic transient analyses of the SAR. To achieve this goal, it was necessary to incorporate a new self-contained point kinetics solver into the code because of a deficiency in the point-kinetics reactivity model of the Mod 2.5 version of the code. The model was benchmarked against previously analyzed (known) transients. Given this new code, four event categories defined by the HFIR probabilistic risk assessment (PRA) were analyzed: (in ascending order of severity) a cold-loop pump start; run-away shim-regulating control cylinder and safety plate withdrawal; control cylinder ejection; and generation of an optimum void in the target region. All transients are discussed. Results of the bounding incredible event transient, the target region optimum void, are shown. Future plans for RELAP5 HFIR applications and recommendations for code improvements are also discussed.

Freels, J.D.

1993-01-01T23:59:59.000Z

194

On RELAP5-simulated High Flux Isotope Reactor reactivity transients: Code change and application  

SciTech Connect (OSTI)

This paper presents a new and innovative application for the RELAP5 code (hereafter referred to as ``the code``). The code has been used to simulate several transients associated with the (presently) draft version of the High-Flux Isotope Reactor (HFIR) updated safety analysis report (SAR). This paper investigates those thermal-hydraulic transients induced by nuclear reactivity changes. A major goal of the work was to use an existing RELAP5 HFIR model for consistency with other thermal-hydraulic transient analyses of the SAR. To achieve this goal, it was necessary to incorporate a new self-contained point kinetics solver into the code because of a deficiency in the point-kinetics reactivity model of the Mod 2.5 version of the code. The model was benchmarked against previously analyzed (known) transients. Given this new code, four event categories defined by the HFIR probabilistic risk assessment (PRA) were analyzed: (in ascending order of severity) a cold-loop pump start; run-away shim-regulating control cylinder and safety plate withdrawal; control cylinder ejection; and generation of an optimum void in the target region. All transients are discussed. Results of the bounding incredible event transient, the target region optimum void, are shown. Future plans for RELAP5 HFIR applications and recommendations for code improvements are also discussed.

Freels, J.D.

1993-07-01T23:59:59.000Z

195

Interfacial electron and phonon scattering processes in high-powered nanoscale applications.  

SciTech Connect (OSTI)

The overarching goal of this Truman LDRD project was to explore mechanisms of thermal transport at interfaces of nanomaterials, specifically linking the thermal conductivity and thermal boundary conductance to the structures and geometries of interfaces and boundaries. Deposition, fabrication, and post possessing procedures of nanocomposites and devices can give rise to interatomic mixing around interfaces of materials leading to stresses and imperfections that could affect heat transfer. An understanding of the physics of energy carrier scattering processes and their response to interfacial disorder will elucidate the potentials of applying these novel materials to next-generation high powered nanodevices and energy conversion applications. An additional goal of this project was to use the knowledge gained from linking interfacial structure to thermal transport in order to develop avenues to control, or 'tune' the thermal transport in nanosystems.

Hopkins, Patrick E.

2011-10-01T23:59:59.000Z

196

High Strain-Rate Mechanical Behaviour of a Copper Matrix Composite for Nuclear Applications  

E-Print Network [OSTI]

Aim of this work is the investigation of mechanical behaviour of an alumina dispersion strengthened copper, known by the trade name GLIDCOP®, subjected to dynamic loads: it is a composite material with a copper matrix strengthened with aluminium oxide ceramic particles. Since the particle content is quite small the material keeps the OFE copper physical properties, such as thermal and electrical conductivity, but with a higher yield strength, like a mild-carbon steel. Besides, with the addition of aluminium oxide, the good mechanical properties are retained also at high temperatures and the resistance to thermal softening is increased: the second phase blocks the dislocation movement preventing the grain growth. Thanks to these properties GLIDCOP® finds several applications in particle accelerator technologies, where problems of thermal management, combined with structural requirements, play a key role. Currently, it is used for the construction of structural and functional parts of the particle beam collim...

Peroni, L

2012-01-01T23:59:59.000Z

197

Hybrid magnet devices for molecule manipulation and small scale high gradient-field applications  

DOE Patents [OSTI]

The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetizable molecular structures and targets. Also disclosed are hybrid magnetic tweezers able to exert approximately 1 nN of force to 4.5 .mu.m magnetic bead. The maximum force was experimentally measured to be .about.900 pN which is in good agreement with theoretical estimations and other measurements. In addition, a new analysis scheme that permits fast real-time position measurement in typical geometry of magnetic tweezers has been developed and described in detail.

Humphries, David E. (El Cerrito, CA); Hong, Seok-Cheol (Seoul, KR); Cozzarelli, legal representative, Linda A. (Berkeley, CA); Pollard, Martin J. (El Cerrito, CA); Cozzarelli, Nicholas R. (Berkeley, CA)

2009-01-06T23:59:59.000Z

198

High-Efficiency Harmonically-Terminated Rectifier for Wireless Powering Applications Michael Roberg, Erez Falkenstein and Zoya Popovic  

E-Print Network [OSTI]

, Erez Falkenstein and Zoya Popovic Department of Electrical, Computer and Energy Engineering, University effect on overall system efficiency. This paper presents an approach to high-efficiency microwave high-power directive wireless beaming, e.g. [I], and low-power harvesting, e.g. [2]. Other applications

Popovic, Zoya

199

Development of A Self Biased High Efficiency Solid-State Neutron Detector for MPACT Applications  

SciTech Connect (OSTI)

Neutron detection is an important aspect of materials protection, accounting, and control for transmutation (MPACT). Currently He-3 filled thermal neutron detectors are utilized in many applications; these detectors require high-voltage bias for operation, which complicates the system when multiple detectors are used. In addition, due to recent increase in homeland security activity and the nuclear renaissance, there is a shortage of He-3, and these detectors become more expensive. Instead, cheap solid-state detectors that can be mass produced like any other computer chips will be developed. The new detector does not require a bias for operation, has low gamma sensitivity, and a fast response. The detection system is based on a honeycomb-like silicon device, which is filled with B-10 as the neutron converter; while a silicon p-n diode (i.e., solar cell type device) formed on the thin silicon wall of the honeycomb structure detects the energetic charged particles emitted from the B-10 conversion layer. Such a detector has ~40% calculated thermal neutron detection efficiency with an overall detector thickness of about 200 ?m. Stacking of these devices allows over 90% thermal neutron detection efficiency. The goal of the proposed research is to develop a high-efficiency, low-noise, self-powered solid-state neutron detector system based on the promising results of the existing research program. A prototype of this solid-state neutron detector system with sufficient detector size (up to 8-inch diam., but still portable and inexpensive) and integrated with interface electronics (e.g., preamplifier) will be designed, fabricated, and tested as a coincidence counter for MPACT applications. All fabrications proposed are based on silicon-compatible processing; thus, an extremely cheap detector system could be massively produced like any other silicon chips. Such detectors will revolutionize current neutron detection systems by providing a solid-state alternative to traditional gas-based neutron detectors.

Danon, Yaron; Bhat, Ishwara; Jian-Qiang Lu, James

2013-09-03T23:59:59.000Z

200

High Throughput Software for Powder Diffraction and its Application to Heterogeneous Catalysis  

E-Print Network [OSTI]

In this thesis we investigate high throughput computational methods for processing large quantities of data collected from synchrotrons and their application to spectral analysis of powder diffraction data. We also present the main product of this PhD programme, specifically a software called 'EasyDD' developed by the author. This software was created to meet the increasing demand on data processing and analysis capabilities as required by modern detectors which produce huge quantities of data. Modern detectors coupled with the high intensity X-ray sources available at synchrotrons have led to the situation where datasets can be collected in ever shorter time scales and in ever larger numbers. Such large volumes of datasets pose a data processing bottleneck which augments with current and future instrument development. EasyDD has achieved its objectives and made significant contributions to scientific research. It can also be used as a model for more mature attempts in the future. EasyDD is currently in use by a number of researchers in a number of academic and research institutions to process high-energy diffraction data. These include data collected by different techniques such as Energy Dispersive Diffraction, Angle Dispersive Diffraction and Computer Aided Tomography. EasyDD has already been used in a number of published studies, and is currently in use by the High Energy X-Ray Imaging Technology project. The software was also used by the author to process and analyse datasets collected from synchrotron radiation facilities. In this regard, the thesis presents novel scientific research involving the use of EasyDD to handle large diffraction datasets in the study of alumina-supported metal oxide catalyst bodies. These data were collected using Tomographic Energy Dispersive Diffraction Imaging and Computer Aided Tomography techniques.

Taha Sochi

2010-12-20T23:59:59.000Z

Note: This page contains sample records for the topic "application suite high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Conformance Test Architecture and Test Suite for ANSI/NIST-ITL 1-2007  

E-Print Network [OSTI]

Conformance Test Architecture and Test Suite for ANSI/NIST-ITL 1-2007 Fernando L. Podio Dylan Yaga Christofer J. McGinnis NISTIR 7791 #12;NISTIR 7791 Conformance Test Architecture and Test Suite for ANSI of these standards and the associated conformance test architectures and test suites. The ANSI/NIST-ITL standard

202

Using Hybrid Algorithm For Pareto Efficient Multi-Objective Test Suite Minimisation  

E-Print Network [OSTI]

Using Hybrid Algorithm For Pareto Efficient Multi-Objective Test Suite Minimisation Shin Yoo & Mark Harman King's College London, Strand, London, WC2R 2LS, UK Abstract Test suite minimisation techniques seek to reduce the effort required for regression testing by selecting a subset of test suites

Singer, Jeremy

203

Measuring and Improving Latency to Avoid Test Suite Wear Out Shin Yoo & Mark Harman  

E-Print Network [OSTI]

Measuring and Improving Latency to Avoid Test Suite Wear Out Shin Yoo & Mark Harman King's College London Centre for Research on Evolution, Search & Testing (CREST) London, UK {shin.yoo, mark introduces the concept of test suite latency. The more latent a test suite, the more it is possible

Singer, Jeremy

204

High-voltage air-core pulse transformers  

SciTech Connect (OSTI)

General types of air core pulse transformers designed for high voltage pulse generation and energy transfer applications are discussed with special emphasis on pulse charging systems which operate up to the multi-megavolt range. The design, operation, dielectric materials, and performance are described. It is concluded that high voltage air core pulse transformers are best suited to applications outside the normal ranges of conventional magnetic core transformers. In general these include charge transfer at high power levels and fast pulse generation with comparatively low energy. When properly designed and constructed, they are capable of delivering high energy transfer efficiency and have demonstrated superior high voltage endurance. The principal disadvantage of high voltage air core transformers is that they are not generally available from commercial sources. Consequently, the potential user must become thoroughly familiar with all aspects of design, fabrication and system application before he can produce a high performance transformer system. (LCL)

Rohwein, G. J.

1981-01-01T23:59:59.000Z

205

High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrator Application  

SciTech Connect (OSTI)

The High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrators project seeks to provide new photovoltaic cells for Concentrator Photovoltaics (CPV) Systems with higher cell efficiency, more favorable temperature coefficients and less sensitivity to changes in spectral distribution. The main objective of this project is to provide high efficiency III-V solar cells that will reduce the overall cost per Watt for power generation using CPV systems.This work is focused both on a potential near term application, namely the use of indium arsenide (InAs) QDs to spectrally "tune" the middle (GaAs) cell of a SOA triple junction device to a more favorable effective bandgap, as well as the long term goal of demonstrating intermediate band solar cell effects. The QDs are confined within a high electric field i-region of a standard GaAs solar cell. The extended absorption spectrum (and thus enhanced short circuit current) of the QD solar cell results from the increase in the sub GaAs bandgap spectral response that is achievable as quantum dot layers are introduced into the i-region. We have grown InAs quantum dots by OMVPE technique and optimized the QD growth conditions. Arrays of up to 40 layers of strain balanced quantum dots have been experimentally demonstrated with good material quality, low residual stain and high PL intensity. Quantum dot enhanced solar cells were grown and tested under simulated one sun AM1.5 conditions. Concentrator solar cells have been grown and fabricated with 5-40 layers of QDs. Testing of these devices show the QD cells have improved efficiency compared to baseline devices without QDs. Device modeling and measurement of thermal properties were performed using Crosslight APSYS. Improvements in a triple junction solar cell with the insertion of QDs into the middle current limiting junction was shown to be as high as 29% under one sun illumination for a 10 layer stack QD enhanced triple junction solar cell. QD devices have strong potential for net gains in efficiency at high concentration.

Hubbard, Seth

2012-09-12T23:59:59.000Z

206

Low-rank separated representation surrogates of high-dimensional stochastic functions: Application in Bayesian inference  

SciTech Connect (OSTI)

This study introduces a non-intrusive approach in the context of low-rank separated representation to construct a surrogate of high-dimensional stochastic functions, e.g., PDEs/ODEs, in order to decrease the computational cost of Markov Chain Monte Carlo simulations in Bayesian inference. The surrogate model is constructed via a regularized alternative least-square regression with Tikhonov regularization using a roughening matrix computing the gradient of the solution, in conjunction with a perturbation-based error indicator to detect optimal model complexities. The model approximates a vector of a continuous solution at discrete values of a physical variable. The required number of random realizations to achieve a successful approximation linearly depends on the function dimensionality. The computational cost of the model construction is quadratic in the number of random inputs, which potentially tackles the curse of dimensionality in high-dimensional stochastic functions. Furthermore, this vector-valued separated representation-based model, in comparison to the available scalar-valued case, leads to a significant reduction in the cost of approximation by an order of magnitude equal to the vector size. The performance of the method is studied through its application to three numerical examples including a 41-dimensional elliptic PDE and a 21-dimensional cavity flow.

Validi, AbdoulAhad, E-mail: validiab@msu.edu

2014-03-01T23:59:59.000Z

207

Software Aspects of IEEE Floating-Point Computations for Numerical Applications in High Energy Physics  

ScienceCinema (OSTI)

Floating-point computations are at the heart of much of the computing done in high energy physics. The correctness, speed and accuracy of these computations are of paramount importance. The lack of any of these characteristics can mean the difference between new, exciting physics and an embarrassing correction. This talk will examine practical aspects of IEEE 754-2008 floating-point arithmetic as encountered in HEP applications. After describing the basic features of IEEE floating-point arithmetic, the presentation will cover: common hardware implementations (SSE, x87) techniques for improving the accuracy of summation, multiplication and data interchange compiler options for gcc and icc affecting floating-point operations hazards to be avoided About the speaker Jeffrey M Arnold is a Senior Software Engineer in the Intel Compiler and Languages group at Intel Corporation. He has been part of the Digital->Compaq->Intel compiler organization for nearly 20 years; part of that time, he worked on both low- and high-level math libraries. Prior to that, he was in the VMS Engineering organization at Digital Equipment Corporation. In the late 1980s, Jeff spent 2½ years at CERN as part of the CERN/Digital Joint Project. In 2008, he returned to CERN to spent 10 weeks working with CERN/openlab. Since that time, he has returned to CERN multiple times to teach at openlab workshops and consult with various LHC experiments. Jeff received his Ph.D. in physics from Case Western Reserve University.

None

2011-10-06T23:59:59.000Z

208

HIGH EFFICIENCY, LOW EMISSIONS, SOLID OXIDE FUEL CELL SYSTEMS FOR MULTIPLE APPLICATIONS  

SciTech Connect (OSTI)

Technology Management Inc. (TMI), teamed with the Ohio Office of Energy Efficiency and Renewable Energy, has engineered, constructed, and demonstrated a stationary, low power, multi-module solid oxide fuel cell (SOFC) prototype system operating on propane and natural gas. Under Phase I, TMI successfully operated two systems in parallel, in conjunction with a single DC-AC inverter and battery bus, and produced net AC electricity. Phase II testing expanded to include alternative and renewable fuels typically available in rural regions of Ohio. The commercial system is expected to have ultra-low pollution, high efficiency, and low noise. The TMI SOFC uses a solid ceramic electrolyte operating at high temperature (800-1000 C) which electrochemically converts gaseous fuels (hydrogen or mixed gases) and oxygen into electricity. The TMI system design oxidizes fuel primarily via electrochemical reactions and uses no burners (which pollute and consume fuel)--resulting in extremely clean exhaust. The use of proprietary sulfur tolerant materials developed by TMI allows system operation without additional fuel pre-processing or sulfur removal. Further, the combination of high operating temperatures and solid state operation increases the potential for higher reliability and efficiencies compared to other types of fuel cells. Applications for the TMI SOFC system cover a wide range of transportation, building, industrial, and military market sectors. A generic technology, fuel cells have the potential to be embodied into multiple products specific to Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) program areas including: Fuel Cells and Microturbines, School Buildings, Transportation, and Bioenergy. This program focused on low power stationary applications using a multi-module system operating on a range of common fuels. By producing clean electricity more efficiently (thus using less fuel), fuel cells have the triple effect of cleaning up the environment, reducing the amount of fuel consumed and, for energy intensive manufacturers, boosting their profits (by reducing energy expenses). Compared to conventional power generation technologies such as internal combustion engines, gas turbines, and coal plants, fuel cells are extremely clean and more efficient, particularly at smaller scales.

Sara Ward; Michael A. Petrik

2004-07-28T23:59:59.000Z

209

Feasibility study of Nb3Al Rutherford cable for high field accelerator magnet application  

SciTech Connect (OSTI)

Feasibility study of Cu stabilized Nb{sub 3}Al strand and Rutherford cable for the application to high field accelerator magnets are being done at Fermilab in collaboration with NIMS. The Nb{sub 3}Al strand, which was developed and manufactured at NIMS in Japan, has a non-copper Jc of about 844 A/mm{sup 2} at 15 Tesla at 4.2 K, a copper content of 50%, and filament size of about 50 microns. Rutherford cables with 27 Nb{sub 3}Al strands of 1.03 mm diameter were fabricated and tested. Quench tests on a short cable were done to study its stability with only its self field, utilizing a high current transformer. A pair of 2 meter long Nb{sub 3}Al cables was tested extensively at CERN at 4.3 and 1.9 K up to 11 Tesla including its self field with a high transport current of 20.2 kA. In the low field test we observed instability near splices and in the central region. This is related to the flux-jump like behavior, because of excessive amount of Nb in the Nb{sub 3}Al strand. There is possibility that the Nb in Nb{sub 3}Al can cause instability below 2 Tesla field regions. We need further investigation on this problem. Above 8 Tesla, we observed quenches near the critical surface at fast ramp rate from 1000 to 3000 A/sec, with quench velocity over 100 m/sec. A small racetrack magnet was made using a 14 m of Rutherford cable and successfully tested up to 21.8 kA, corresponding to 8.7 T.

Yamada, R.; /Fermilab; Kikuchi, A.; /Tsukuba Magnet Lab.; Ambrosio, G.; Andreev, N.; Barzi, E.; Cooper, C.; Feher, S.; Kashikhin, V.V.; Lamm, M.; Novitski, I.; /Fermilab; Takeuchi, T.; /Tsukuba Magnet Lab.; Tartaglia, M.; Turrioni, D.; /Fermilab; Verweij, A.P.; /CERN; Wake, M.; Willering, G; /Tsukuba Magnet Lab.; Zlobin, A.V.; /Fermilab

2006-08-01T23:59:59.000Z

210

Is the Weibull distribution really suited for wind statistics modeling and wind power evaluation?  

E-Print Network [OSTI]

Wind speed statistics is generally modeled using the Weibull distribution. This distribution is convenient since it fully characterizes analytically with only two parameters (the shape and scale parameters) the shape of distribution and the different moments of the wind speed (mean, standard deviation, skewness and kurtosis). This distribution is broadly used in the wind energy sector to produce maps of wind energy potential. However, the Weibull distribution is based on empirical rather than physical justification and might display strong limitations for its applications. The philosophy of this article is based on the modeling of the wind components instead of the wind speed itself. This provides more physical insights on the validity domain of the Weibull distribution as a possible relevant model for wind statistics and the quantification of the error made by using such a distribution. We thereby propose alternative expressions of more suited wind speed distribution.

Drobinski, Philippe

2012-01-01T23:59:59.000Z

211

Potential Application Of Radionuclide Scaling Factors To High Level Waste Characterization  

SciTech Connect (OSTI)

Production sources, radiological properties, relative solubilities in waste, and laboratory analysis techniques for the forty-five radionuclides identified in Hanford?s Waste Treatment and Immobilization Plant (WTP) Feed Acceptance Data Quality Objectives (DQO) document are addressed in this report. Based on Savannah River Site (SRS) experience and waste characteristics, thirteen of the radionuclides are judged to be candidates for potential scaling in High Level Waste (HLW) based on the concentrations of other radionuclides as determined through laboratory measurements. The thirteen radionuclides conducive to potential scaling are: Ni-59, Zr-93, Nb-93m, Cd-113m, Sn-121m, Sn-126, Cs-135, Sm-151, Ra-226, Ra-228, Ac-227, Pa-231, and Th-229. The ability to scale radionuclides is useful from two primary perspectives: 1) it provides a means of checking the radionuclide concentrations that have been determined by laboratory analysis; and 2) it provides a means of estimating radionuclide concentrations in the absence of a laboratory analysis technique or when a complex laboratory analysis technique fails. Along with the rationale for identifying and applying the potential scaling factors, this report also provides examples of using the scaling factors to estimate concentrations of radionuclides in current SRS waste and into the future. Also included in the report are examples of independent laboratory analysis techniques that can be used to check results of key radionuclide analyses. Effective utilization of radionuclide scaling factors requires understanding of the applicable production sources and the chemistry of the waste. As such, the potential scaling approaches identified in this report should be assessed from the perspective of the Hanford waste before reaching a decision regarding WTP applicability.

Reboul, S. H.

2013-09-30T23:59:59.000Z

212

RFNC-VNIIEF Capabilities to Production High Pure Isotopes for Scientific and Medical Applications  

SciTech Connect (OSTI)

In the technical paper there is presented the information on the basic equipment and more than thirty-year experience of RFNC-VNIIEF activities in the sphere of producing highly enriched isotopes of actinide elements--thorium, uranium, neptunium, plutonium, americium and curium--for scientific researches and practical applications. Electromagnetic separator and radiochemical methods provide obtaining of superpure isotope samples for nuclear-physical radiometric and mass-spectrometric equipment, and also as tracers when analyzing environmental contamination. There are presented the structure of the laboratory occupied with these isotopes electromagnetic separation as well as the nomenclature and characteristics of the specimens supplied. There are stated science and engineering elaborations of technologies aimed at producing alpha-ray radiating radionuclides--thorium-229, thorium-228, actinium-225, radium-224--for the purpose of anti-cancer therapy using bismuth-212 and bismuth-213 produced by the specially developed generators. There are presented the basic directions of cooperation with other Russian Institutes in developing this promising line of conversion.

Vesnovskii, S. P.

2002-02-26T23:59:59.000Z

213

Application of Spatially Resolved High Resolution Crystal Spectrometry to ICF Plasmas  

SciTech Connect (OSTI)

High resolution (?/?#3;? ~ 10 000) 1D imaging x-ray spectroscopy using a spherically bent crystal and a 2D hybrid pixel array detector is used world wide for Doppler measurements of ion-temperature and plasma flow-velocity profiles in magnetic confinement fusion plasmas. Meter sized plasmas are diagnosed with cm spatial resolution and 10 ms time resolution. This concept can also be used as a diagnostic of small sources, such as inertial confinement fusion plasmas and targets on x-ray light source beam lines, with spatial resolution of micrometers, as demonstrated by laboratory experiments using a 250-?m 55 Fe source, and by ray-tracing calculations. Throughput calculations agree with measurements, and predict detector counts in the range 10-8 -10-6 times source x-rays, depending on crystal reflectivity and spectrometer geometry. Results of the lab demonstrations, application of the technique to the National Ignition Facility (NIF), and predictions of performance on NIF will be presented.

Kenneth W. Hill, et. al.

2012-09-15T23:59:59.000Z

214

High-Temperature Phase Change Materials (PCM) Candidates for Thermal Energy Storage (TES) Applications  

SciTech Connect (OSTI)

It is clearly understood that lower overall costs are a key factor to make renewable energy technologies competitive with traditional energy sources. Energy storage technology is one path to increase the value and reduce the cost of all renewable energy supplies. Concentrating solar power (CSP) technologies have the ability to dispatch electrical output to match peak demand periods by employing thermal energy storage (TES). Energy storage technologies require efficient materials with high energy density. Latent heat TES systems using phase change material (PCM) are useful because of their ability to charge and discharge a large amount of heat from a small mass at constant temperature during a phase transformation like melting-solidification. PCM technology relies on the energy absorption/liberation of the latent heat during a physical transformation. The main objective of this report is to provide an assessment of molten salts and metallic alloys proposed as candidate PCMs for TES applications, particularly in solar parabolic trough electrical power plants at a temperature range from 300..deg..C to 500..deg.. C. The physical properties most relevant for PCMs service were reviewed from the candidate selection list. Some of the PCM candidates were characterized for: chemical stability with some container materials; phase change transformation temperatures; and latent heats.

Gomez, J. C.

2011-09-01T23:59:59.000Z

215

Low-Afterglow, High-Refractive-Index Liquid Scintillators for Fast-Neutron Spectrometry and Imaging Applications  

E-Print Network [OSTI]

For ion and neutron spectrometry and imaging applications at a high intensity pulsed laser facility, fast liquid scintillators with very low afterglow are required. Furthermore, neutron imaging with fiber (or liquid-core) capillary arrays calls for scintillation materials with high refractive index. To this end, we have examined various combinations of established mixtures of fluors and solvents, that were enriched alternatively with nitrogen or oxygen. Dissolved molecular oxygen is known to be a highly effective quenching agent, that efficiently suppresses the population of the triplet states in the fluor, which are primarily responsible for the afterglow. For measuring the glow curves of scintillators, we have employed the time-correlated single photon counting (TCSPC) technique, characterized by high dynamic range of several orders of magnitude in light intensity. In this paper we outline the application for the fast scintillators, briefly present the scintillation mechanism in liquids, describe our specif...

Lauck, Ronald; Bromberger, Benjamin; Dangendorf, Volker; Goldberg, Mark B; Mor, Ilan; Tittelmeier, Kai; Vartsky, David

2009-01-01T23:59:59.000Z

216

Low-Afterglow, High-Refractive-Index Liquid Scintillators for Fast-Neutron Spectrometry and Imaging Applications  

E-Print Network [OSTI]

For ion and neutron spectrometry and imaging applications at a high intensity pulsed laser facility, fast liquid scintillators with very low afterglow are required. Furthermore, neutron imaging with fiber (or liquid-core) capillary arrays calls for scintillation materials with high refractive index. To this end, we have examined various combinations of established mixtures of fluors and solvents, that were enriched alternatively with nitrogen or oxygen. Dissolved molecular oxygen is known to be a highly effective quenching agent, that efficiently suppresses the population of the triplet states in the fluor, which are primarily responsible for the afterglow. For measuring the glow curves of scintillators, we have employed the time-correlated single photon counting (TCSPC) technique, characterized by high dynamic range of several orders of magnitude in light intensity. In this paper we outline the application for the fast scintillators, briefly present the scintillation mechanism in liquids, describe our specific TCSPC method and discuss the results.

Ronald Lauck; Michal Brandis; Benjamin Bromberger; Volker Dangendorf; Mark B. Goldberg; Ilan Mor; Kai Tittelmeier; David Vartsky

2009-05-25T23:59:59.000Z

217

Optimal Design of a High-Speed On/Off Valve for a Hydraulic Hybrid Vehicle Application  

E-Print Network [OSTI]

Coefficient 0.6 same none eq Fluid Bulk Modulus 3.7 x 108 1.2 x 109 Pa Pc Check Valve Cracking Pressure 3.2 NOptimal Design of a High-Speed On/Off Valve for a Hydraulic Hybrid Vehicle Application Michael of Minnesota, Minneapolis, MN, USA ABSTRACT Control of hydraulic systems using high-speed on/off valves has

Li, Perry Y.

218

User Guide for the STAYSL PNNL Suite of Software Tools  

SciTech Connect (OSTI)

The STAYSL PNNL software suite provides a set of tools for working with neutron activation rates measured in a nuclear fission reactor, an accelerator-based neutron source, or any neutron field to determine the neutron flux spectrum through a generalized least-squares approach. This process is referred to as neutron spectral adjustment since the preferred approach is to use measured data to adjust neutron spectra provided by neutron physics calculations. The input data consist of the reaction rates based on measured activities, an initial estimate of the neutron flux spectrum, neutron activation cross sections and their associated uncertainties (covariances), and relevant correction factors. The output consists of the adjusted neutron flux spectrum and associated covariance matrix, which is useful for neutron dosimetry and radiation damage calculations.

Greenwood, Lawrence R.; Johnson, Christian D.

2013-02-27T23:59:59.000Z

219

High Performance Computing for Stability Problems - Applications to Hydrodynamic Stability and Neutron Transport Criticality.  

E-Print Network [OSTI]

??In this work we examine two kinds of applications in terms of stability and perform numerical evaluations and benchmarks on parallel platforms. We consider the… (more)

Subramanian, Chandramowli

2011-01-01T23:59:59.000Z

220

Barriers to the Application of High-Temperature Coolants in Hybrid Electric Vehicles  

SciTech Connect (OSTI)

This study was performed by the Oak Ridge National Laboratory (ORNL) to identify practical approaches, technical barriers, and cost impacts to achieving high-temperature coolant operation for certain traction drive subassemblies and components of hybrid electric vehicles (HEV). HEVs are unique in their need for the cooling of certain dedicated-traction drive subassemblies/components that include the electric motor(s), generators(s), inverter, dc converter (where applicable), and dc-link capacitors. The new coolant system under study would abandon the dedicated 65 C coolant loop, such as used in the Prius, and instead rely on the 105 C engine cooling loop. This assessment is important because automotive manufacturers are interested in utilizing the existing water/glycol engine cooling loop to cool the HEV subassemblies in order to eliminate an additional coolant loop with its associated reliability, space, and cost requirements. In addition, the cooling of power electronic devices, traction motors, and generators is critical in meeting the U.S. Department of Energy (DOE) FreedomCAR and Vehicle Technology (FCVT) goals for power rating, volume, weight, efficiency, reliability, and cost. All of these have been addressed in this study. Because there is high interest by the original equipment manufacturers (OEMs) in reducing manufacturing cost to enhance their competitive standing, the approach taken in this analysis was designed to be a positive 'can-do' approach that would be most successful in demonstrating the potential or opportunity of relying entirely on a high-temperature coolant system. Nevertheless, it proved to be clearly evident that a few formidable technical and cost barriers exist and no effective approach for mitigating the barriers was evident in the near term. Based on comprehensive thermal tests of the Prius reported by ORNL in 2005 [1], the continuous ratings at base speed (1200 rpm) with different coolant temperatures were projected from test data at 900 rpm. They are approximately 15 kW with 103 C coolant and 20 kW with 50 C coolant. To avoid this 25% drop1 in continuous power, design changes for improved heat dissipation and carefully managed changes in allowable thermal limits would be required in the hybrid subsystems. This study is designed to identify the technical barriers that potentially exist in moving to a high-temperature cooling loop prior to addressing the actual detailed design. For operation at a significantly higher coolant temperature, there were component-level issues that had to be addressed in this study. These issues generally pertained to the cost and reliability of existing or near term components that would be suitable for use with the 105 C coolant. The assessed components include power electronic devices/modules such as diodes and insulated-gate bipolar transistors (IGBTs), inverter-grade high-temperature capacitors, permanent magnets (PM), and motor-grade wire insulation. The need for potentially modifying/resizing subassemblies such as inverters, motors, and heat exchangers was also addressed in the study. In order to obtain pertinent information to assist ORNL researchers address the thermal issues at the component, module, subassembly, and system levels, pre-existing laboratory test data conducted at varying temperatures was analyzed in conjunction with information obtained from technical literature searches and industry sources.

Hsu, J.S.; Staunton, M.R.; Starke, M.R.

2006-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "application suite high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Barriers to the Application of High-Temperature Coolants in Hybrid Electric Vehicles  

SciTech Connect (OSTI)

This study was performed by the Oak Ridge National Laboratory (ORNL) to identify practical approaches, technical barriers, and cost impacts to achieving high-temperature coolant operation for certain traction drive subassemblies and components of hybrid electric vehicles (HEV). HEVs are unique in their need for the cooling of certain dedicated-traction drive subassemblies/components that include the electric motor(s), generators(s), inverter, dc converter (where applicable), and dc-link capacitors. The new coolant system under study would abandon the dedicated 65 C coolant loop, such as used in the Prius, and instead rely on the 105 C engine cooling loop. This assessment is important because automotive manufacturers are interested in utilizing the existing water/glycol engine cooling loop to cool the HEV subassemblies in order to eliminate an additional coolant loop with its associated reliability, space, and cost requirements. In addition, the cooling of power electronic devices, traction motors, and generators is critical in meeting the U.S. Department of Energy (DOE) FreedomCAR and Vehicle Technology (FCVT) goals for power rating, volume, weight, efficiency, reliability, and cost. All of these have been addressed in this study. Because there is high interest by the original equipment manufacturers (OEMs) in reducing manufacturing cost to enhance their competitive standing, the approach taken in this analysis was designed to be a positive 'can-do' approach that would be most successful in demonstrating the potential or opportunity of relying entirely on a high-temperature coolant system. Nevertheless, it proved to be clearly evident that a few formidable technical and cost barriers exist and no effective approach for mitigating the barriers was evident in the near term. Based on comprehensive thermal tests of the Prius reported by ORNL in 2005 [1], the continuous ratings at base speed (1200 rpm) with different coolant temperatures were projected from test data at 900 rpm. They are approximately 15 kW with 103 C coolant and 20 kW with 50 C coolant. To avoid this 25% drop1 in continuous power, design changes for improved heat dissipation and carefully managed changes in allowable thermal limits would be required in the hybrid subsystems. This study is designed to identify the technical barriers that potentially exist in moving to a high-temperature cooling loop prior to addressing the actual detailed design. For operation at a significantly higher coolant temperature, there were component-level issues that had to be addressed in this study. These issues generally pertained to the cost and reliability of existing or near-term components that would be suitable for use with the 105 C coolant. The assessed components include power electronic devices/modules such as diodes and insulated-gate bipolar transistors (IGBTs), inverter-grade high-temperature capacitors, permanent magnets (PM), and motor-grade wire insulation. The need for potentially modifying/resizing subassemblies such as inverters, motors, and heat exchangers was also addressed in the study. In order to obtain pertinent information to assist ORNL researchers address the thermal issues at the component, module, subassembly, and system levels, pre-existing laboratory test data conducted at varying temperatures was analyzed in conjunction with information obtained from technical literature searches and industry sources.

Staunton, Robert H [ORNL; Hsu, John S [ORNL; Starke, Michael R [ORNL

2006-09-01T23:59:59.000Z

222

Post-compression of high energy terawatt-level femtosecond pulses and application to high order harmonic generation  

E-Print Network [OSTI]

We perform a post-compression of high energy pulses by using optical-field ionization of low pressure helium gas in a guided geometry. We apply this approach to a TW chirped-pulse-amplification based Ti:Sapphire laser chain and show that spectral broadening can be controlled both with the input pulse energy and gas pressure. Under optimized conditions, we generate 10 fs pulses at TW level directly under vacuum and demonstrate a high stability of the post compressed pulse duration. These high energy post-compressed pulses are thereafter used to perform high harmonic generation in a loose focusing geometry. The XUV beam is characterized both spatially and spectrally on a single shot basis and structured continuous XUV spectra are observed.

Hort, Ond?ej; Cabasse, Amélie; Petit, Stéphane; Mével, Eric; Descamps, Dominique; Constant, Eric

2015-01-01T23:59:59.000Z

223

Dosimetric evaluation of two treatment planning systems for high dose rate brachytherapy applications  

SciTech Connect (OSTI)

Various treatment planning systems are used to design plans for the treatment of cervical cancer using high-dose-rate brachytherapy. The purpose of this study was to make a dosimetric comparison of the 2 treatment planning systems from Varian medical systems, namely ABACUS and BrachyVision. The dose distribution of Ir-192 source generated with a single dwell position was compared using ABACUS (version 3.1) and BrachyVision (version 6.5) planning systems. Ten patients with intracavitary applications were planned on both systems using orthogonal radiographs. Doses were calculated at the prescription points (point A, right and left) and reference points RU, LU, RM, LM, bladder, and rectum. For single dwell position, little difference was observed in the doses to points along the perpendicular bisector. The mean difference between ABACUS and BrachyVision for these points was 1.88%. The mean difference in the dose calculated toward the distal end of the cable by ABACUS and BrachyVision was 3.78%, whereas along the proximal end the difference was 19.82%. For the patient case there was approximately 2% difference between ABACUS and BrachyVision planning for dose to the prescription points. The dose difference for the reference points ranged from 0.4-1.5%. For bladder and rectum, the differences were 5.2% and 13.5%, respectively. The dose difference between the rectum points was statistically significant. There is considerable difference between the dose calculations performed by the 2 treatment planning systems. It is seen that these discrepancies are caused by the differences in the calculation methodology adopted by the 2 systems.

Shwetha, Bondel [Department of Radiation Physics, Kidwai, Memorial Institute of Oncology, Bangalore (India); Ravikumar, Manickam, E-mail: drravikumarm@gmail.com [Department of Radiation Physics, Kidwai, Memorial Institute of Oncology, Bangalore (India); Supe, Sanjay S.; Sathiyan, Saminathan [Department of Radiation Physics, Kidwai, Memorial Institute of Oncology, Bangalore (India); Lokesh, Vishwanath [Department of Radiotherapy, Kidwai, Memorial Institute of Oncology, Bangalore (India); Keshava, Subbarao L. [Department of Radiation Physics, Kidwai, Memorial Institute of Oncology, Bangalore (India)

2012-04-01T23:59:59.000Z

224

Hastelloy-X for high-temperature gas-cooled reactor applications  

SciTech Connect (OSTI)

Hastelloy-X is a potential structural material for use in gas-cooled reactor systems. In this application, data are necessary on the mechanical properties of base metal and weldments under realistic service conditions. The test environment studied was helium that contained small amounts of H/sub 2/, CH/sub 4/, and CO. This environment was found to be carburizing, with the kinetics of this process becoming rapid above 800/sup 0/C. Suitable weldments of Hastelloy-X were prepared by several processes; those weldments generally had the same properties as base metal except for lower fracture strains under some conditions. Some samples were aged for up to 20 000 h in the test gas and tested, and some creep tests on as-received material exceeded 40 000 h. The predominant effects of aging were the significant reduction in the fracture strains at ambient temperature and the lower strains for samples aged in high-temperature gas-cooled reactor (HTGR) helium than for those aged in inert gas. Under some conditions, aging also resulted in increased yield and ultimate tensile strength. Creep tests failed to show the effects of environment, aging, or welding on the creep strength of Hastelloy-X; however, the fracture strains for weldments were generally lower than they were for base metal. Prior aging in inert gas for 20 000 h at 538 and 871/sup 0/C reduced the fatigue life slightly, but no difference was observed in the fatigue properties of samples aged in air and HTGR helium environments.

McCoy, H.E.; King, J.F.; Strizak, J.P.

1984-07-01T23:59:59.000Z

225

Hastelloy-X for high-temperature gas-cooled reactor applications  

SciTech Connect (OSTI)

Hastelloy-X is a potential structural material for use in gas-cooled reactor systems. In this application, data are necessary on the mechanical properties of base metal and weldments under realistic service conditions. The test environment studied was helium that contained small amounts of H/sub 2/, CH/sub 4/, and CO. This environment was found to be carburizing, with the kinetics of this process becoming rapid above 800/sup 0/C. Suitable weldments of Hastelloy-X were prepared by several processes; those weldments generally had the same properties as base metal except for lower fracture strains under some conditions. Some samples were aged for up to 20000 h in the test gas and tested, and some creep tests on as-received material exceeded 40000 h. The predominant effects of aging were the significant reduction in the fracture strains at ambient temperature and the lower strains for samples aged in high-temperature gas-cooled reactor (HTGR) helium than for those aged in inert gas. Under some conditions, aging also resulted in increased yield and ultimate tensile strength. Creep tests failed to show the effects of environment, aging, or welding on the creep strength of Hastelloy-X; however, the fracture strains for weldments were generally lower than they were for base metal. Prior aging in inert gas for 20000 h at 538 and 871/sup 0/C reduced the fatigue life slightly, but no difference was observed in the fatigue properties of samples aged in air and HTGR helium environments.

McCoy, H.E.; King, J.F.; Strizak, J.P.

1984-07-01T23:59:59.000Z

226

Deeply-scaled GaN high electron mobility transistors for RF applications  

E-Print Network [OSTI]

Due to the unique combination of large critical breakdown field and high electron velocity, GaN-based high electron mobility transistors (HEMTs) have great potential for next generation high power RF amplifiers. The ...

Lee, Dong Seup

2014-01-01T23:59:59.000Z

227

Integration of High Efficiency Solar Cells on Carriers for Concentrating System Applications .  

E-Print Network [OSTI]

??High efficiency multi-junction (MJ) solar cells were packaged onto receiver systems. The efficiency change of concentrator cells under continuous high intensity illumination was done. Also,… (more)

Chow, Simon Ka Ming

2011-01-01T23:59:59.000Z

228

Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications  

E-Print Network [OSTI]

that can operate with Stirling engines at 42% efficiency andfor high temperature Stirling engines which operates at 42%turbines such as Stirling engines, while high-temperature (>

Roshandell, Melina

2013-01-01T23:59:59.000Z

229

Designing a Suit to Protect Migrant Farm Workers in California from Pesticide Exposure  

E-Print Network [OSTI]

.........................................................................................................19 4.1 PESTICIDE RESISTANCE PROPERTIES OF MATERIALS...................................................................................................................................30 4.2 THERMAL COMFORT OF SUIT...........................................................................................................................................31 4.2.2 Thermal Comfort Testing Methods

Agogino, Alice M.

230

Encoding, application and association of radio frequency identification tags on high speed manufacturing lines  

E-Print Network [OSTI]

One of the entry points of radio frequency identification technology in supply chain applications is at the manufacturing line, after production, as packaged goods leave for the next link of the network of suppliers, ...

Fonseca, Herbert Moreti, 1973-

2004-01-01T23:59:59.000Z

231

Development of high gradient laser wakefield accelerators towards nuclear detection applications at LBNL  

E-Print Network [OSTI]

detection applications at LBNL Cameron G.R. Geddes 1 , DavidLeemans 1,4 LOASIS Program, LBNL, 1 Cyclotron Rd MS 71-259,accelerator experiments at LBNL demonstrated narrow energy

Geddes, Cameron GR

2010-01-01T23:59:59.000Z

232

Integration of pentacene-based thin film transistors via photolithography for low and high voltage applications  

E-Print Network [OSTI]

An organic thin film transistor (OTFT) technology platform has been developed for flexible integrated circuits applications. OTFT performance is tuned by engineering the dielectric constant of the gate insulator and the ...

Smith, Melissa Alyson

2012-01-01T23:59:59.000Z

233

High-rate deformation behavior and applications of fluid filled reticulated foams  

E-Print Network [OSTI]

The need for smarter and adaptive, energy absorption materials especially for human protection applications has fueled the interest in new and alternative energy absorbing composites. In this thesis a 'novel' energy absorbing ...

Bettin, Giorgia

2007-01-01T23:59:59.000Z

234

Development of cell-laden hydrogels with high mechanical strength for tissue engineering applications  

E-Print Network [OSTI]

The development of materials with biomimetic mechanical and biological properties is of great interest for regenerative medicine applications. Hydrogels are a promising class of biomaterials due to several advantages, ...

Shin, Hyeongho

2014-01-01T23:59:59.000Z

235

Dosimetric characterization and output verification for conical brachytherapy surface applicators. Part II. High dose rate {sup 192}Ir sources  

SciTech Connect (OSTI)

Purpose: Historically, treatment of malignant surface lesions has been achieved with linear accelerator based electron beams or superficial x-ray beams. Recent developments in the field of brachytherapy now allow for the treatment of surface lesions with specialized conical applicators placed directly on the lesion. Applicators are available for use with high dose rate (HDR){sup 192}Ir sources, as well as electronic brachytherapy sources. Part I of this paper discussed the applicators used with electronic brachytherapy sources. Part II will discuss those used with HDR {sup 192}Ir sources. Although the use of these applicators has gained in popularity, the dosimetric characteristics have not been independently verified. Additionally, there is no recognized method of output verification for quality assurance procedures with applicators like these. Methods: This work aims to create a cohesive method of output verification that can be used to determine the dose at the treatment surface as part of a quality assurance/commissioning process for surface applicators used with HDR electronic brachytherapy sources (Part I) and{sup 192}Ir sources (Part II). Air-kerma rate measurements for the {sup 192}Ir sources were completed with several models of small-volume ionization chambers to obtain an air-kerma rate at the treatment surface for each applicator. Correction factors were calculated using MCNP5 and EGSnrc Monte Carlo codes in order to determine an applicator-specific absorbed dose to water at the treatment surface from the measured air-kerma rate. Additionally, relative dose measurements of the surface dose distributions and characteristic depth dose curves were completed in-phantom. Results: Theoretical dose distributions and depth dose curves were generated for each applicator and agreed well with the measured values. A method of output verification was created that allows users to determine the applicator-specific dose to water at the treatment surface based on a measured air-kerma rate. Conclusions: The novel output verification methods described in this work will reduce uncertainties in dose delivery for treatments with these kinds of surface applicators, ultimately improving patient care.

Fulkerson, Regina K., E-mail: rmkenned@gmail.com; Micka, John A.; DeWerd, Larry A. [Department of Medical Physics, University of Wisconsin–Madison, Madison, Wisconsin 53705 (United States)] [Department of Medical Physics, University of Wisconsin–Madison, Madison, Wisconsin 53705 (United States)

2014-02-15T23:59:59.000Z

236

Fabrication of Tungsten-Rhenium Cladding materials via Spark Plasma Sintering for Ultra High Temperature Reactor Applications  

SciTech Connect (OSTI)

This research will develop an optimized, cost-effective method for producing high-purity tungsten-rhenium alloyed fuel clad forms that are crucial for the development of a very high-temperature nuclear reactor. The study will provide critical insight into the fundamental behavior (processing-microstructure- property correlations) of W-Re alloys made using this new fabrication process comprising high-energy ball milling (HEBM) and spark plasma sintering (SPS). A broader goal is to re-establish the U.S. lead in the research field of refractory alloys, such as W-Re systems, with potential applications in very high-temperature nuclear reactors. An essential long-term goal for nuclear power is to develop the capability of operating nuclear reactors at temperatures in excess of 1,000K. This capability has applications in space exploration and some special terrestrial uses where high temperatures are needed in certain chemical or reforming processes. Refractory alloys have been identified as being capable of withstanding temperatures in excess of 1,000K and are considered critical for the development of ultra hightemperature reactors. Tungsten alloys are known to possess extraordinary properties, such as excellent high-temperature capability, including the ability to resist leakage of fissile materials when used as a fuel clad. However, there are difficulties with the development of refractory alloys: 1) lack of basic experimental data on thermodynamics and mechanical and physical properties, and 2) challenges associated with processing these alloys.

Charit, Indrajit; Butt, Darryl; Frary, Megan; Carroll, Mark

2012-11-05T23:59:59.000Z

237

Highly Selective H2 Separation Zeolite Membranes for Coal Gasification Membrane Reactor Applications  

SciTech Connect (OSTI)

Zeolite membranes are thermally, chemically, and mechanically stable. They also have tunable molecular sieving and catalytic ability. These unique properties make zeolite membrane an excellent candidate for use in catalytic membrane reactor applications related to coal conversion and gasification, which need high temperature and high pressure range separation in chemically challenging environment where existing technologies are inefficient or unable to operate. Small pore, good quality, and thin zeolite membranes are needed for highly selective H{sub 2} separation from other light gases (CO{sub 2}, CH{sub 4}, CO). However, zeolite membranes have not been successful for H{sub 2} separation from light gases because the zeolite pores are either too big or the membranes have a large number of defects. The objective of this study is to develop zeolite membranes that are more suitable for H{sub 2} separation. In an effort to tune the size of zeolite pores and/or to decrease the number of defects, medium-pore zeolite B-ZSM-5 (MFI) membranes were synthesized and silylated. Silylation on B-ZSM-5 crystals reduced MFI-zeolite pore volume, but had little effect on CO{sub 2} and CH{sub 4} adsorption. Silylation on B-ZSM-5 membranes increased H{sub 2} selectivity both in single component and in mixtures with CO{sub 2}CO{sub 2}, CH{sub 4}, or N2. Single gas and binary mixtures of H{sub 2}/CO{sub 2} and H{sub 2}/CH{sub 4} were separated through silylated B-ZSM-5 membranes at feed pressures up to 1.7 MPa and temperatures up to 773 K. For one BZSM-5 membrane after silylation, the H2/CO{sub 2} separation selectivity at 473 K increased from 1.4 to 37, whereas the H{sub 2}/CH{sub 4} separation selectivity increased from 1.6 to 33. Hydrogen permeance through a silylated B-ZSM-5 membrane was activated, but the CO{sub 2} and CH4 permeances decreased slightly with temperature in both single gas and in mixtures. Therefore, the H{sub 2} permeance and H{sub 2}/CO{sub 2} and H{sup 2} /CH{sub 4} separation selectivities increased with temperature. At 673 K, the H2 permeance was 1.0x10-7 molxm-2xs-1xPa-1, and the H{sub 2}/CO{sub 2} separation selectivity was 47. Above 673 K, the silylated membrane catalyzed reverse water gas shift reaction and still separated H{sub 2} with high selectivity; and it was thermally stable. However, silylation decreased H{sub 2} permeance more than one order of magnitude. The H{sub 2} separation performance of the silylated B-ZSM-5 membranes depended on the initial membrane quality and acidity, as well as the silane precursors. Increasing the membrane feed pressure also increased the H{sub 2} flux and the H{sub 2} mole fraction in the permeate stream for both mixtures. Another approach used in this study is optimizing the synthesis of small-pore SAPO-34 (CHA) membranes and/or modifying SAPO-34 membranes by silylation or ion exchange. For SAPO-34 membranes, strong CO{sub 2} adsorption inhibited H{sub 2} adsorption and decreased H2 permeances, especially at low temperatures. At 253 K, CO{sub 2}/H{sub 2} separation selectivities of a SAPO-34 membrane were greater than 100 with CO{sub 2} permeances of about 3 x 10-8 mol m-2 s-1 Pa-1. The high reverse-selectivity of the SAPO-34 membranes can minimize H{sub 2} recompression because H{sub 2} remained in the retentate stream at a higher pressure. The CO{sub 2}/H{sub 2} separation selectivity exhibited a maximum with CO{sub 2} feed concentration possibly caused by a maximum in the CO{sub 2}/H{sub 2} sorption selectivity with increased CO{sub 2} partial pressure. The SAPO-34 membrane separated H{sub 2} from CH{sub 4} because CH{sub 4} is close to the SAPO-34 pore size so its diffusivity is much lower than the H{sup 2} diffusivity. The H{sub 2}/CH{sub 4} separation selectivity was almost independent of temperature, pressure, and feed composition. Silylation on SAPO-34 membranes increased H{sup 2}/CH{sub 4} and CO{sub 2}/CH{sub 4} selectivities but did not increase H{sub 2}/CO{sub 2} and H{sub 2}/N{sub 2} selectivities because silylation only blocked defects in SAPO-34 membranes. Hydr

Mei Hong; Richard D. Noble; John L. Falconer

2006-09-24T23:59:59.000Z

238

Highly Selective H2 Separation Zeolite Membranes for Coal Gasification Membrane Reactor Applications  

SciTech Connect (OSTI)

Zeolite membranes are thermally, chemically, and mechanically stable. They also have tunable molecular sieving and catalytic ability. These unique properties make zeolite membrane an excellent candidate for use in catalytic membrane reactor applications related to coal conversion and gasification, which need high temperature and high pressure range separation in chemically challenging environment where existing technologies are inefficient or unable to operate. Small pore, good quality, and thin zeolite membranes are needed for highly selective H2 separation from other light gases (CO2, CH4, CO). However, current zeolite membranes have either too big zeolite pores or a large number of defects and have not been successful for H2 separation from light gases. The objective of this study is to develop zeolite membranes that are more suitable for H2 separation. In an effort to tune the size of zeolite pores and/or to decrease the number of defects, medium-pore zeolite B-ZSM-5 (MFI) membranes were synthesized and silylated. Silylation on B-ZSM-5 crystals reduced MFI-zeolite pore volume, but had little effect on CO2 and CH4 adsorption. Silylation on B-ZSM-5 membranes increased H2 selectivity both in single component and in mixtures with CO2, CH4, or N2. Single gas and binary mixtures of H2/CO2 and H2/CH4 were permeated through silylated B-ZSM-5 membranes at feed pressures up to 1.7 MPa and temperatures up to 773 K. For one B-ZSM-5 membrane after silylation, the H2/CO2 separation selectivity at 473 K increased from 1.4 to 37, whereas the H2/CH4 separation selectivity increased from 1.6 to 33. Hydrogen permeance through a silylated BZSM-5 membrane was activated with activation energy of {approx}10 kJ/mol, but the CO2 and CH4 permeances decreased slightly with temperature in both single gas and in mixtures. Therefore, the H2 permeance and H2/CO2 and H2/CH4 separation selectivities increased with temperature. At 673 K, the H2 permeance was 1.0x10-7 mol{center_dot}m-2{center_dot}s-1{center_dot}Pa-1, and the H2/CO2 separation selectivity was 47. Above 673 K, the silylated membrane catalyzed reverse water gas shift reaction and still separated H2 with high selectivity; and it was thermally stable. However, silylation decreased H2 permeance more than one order of magnitude. Increasing the membrane feed pressure increased the H2 flux and the H2 mole fraction in the permeate stream for both H2/CO2 and H2/CH4 mixtures. The H2 separation performance of the silylated B-ZSM-5 membranes depended on the initial membrane quality and acidity, as well as the silane precursors. Another approach used in this study is optimizing the synthesis of small-pore SAPO-34 (CHA) membranes and/or modifying SAPO-34 membranes by silylation or ion exchange. For SAPO-34 membranes, strong CO2 adsorption inhibited H2 adsorption and decreased H2 permeances, especially at low temperatures. At 253 K, CO2/H2 separation selectivities of a SAPO-34 membrane were greater than 100 with CO2 permeances of about 3 x 10-8 mol{center_dot}m-2{center_dot}s-1{center_dot}Pa-1. The high reverse-selectivity of the SAPO-34 membranes can minimize H2 recompression because H2 remained in the retentate stream at a higher pressure. The CO2/H2 separation selectivity exhibited a maximum with CO2 feed concentration possibly caused by a maximum in the CO2/H2 sorption selectivity with increased CO2 partial pressure. The SAPO-34 membrane separated H2 from CH4 because CH4 is close to the SAPO-34 pore size so its diffusivity (ABSTRACT TRUNCATED)

Mei Hong; Richard Noble; John Falconer

2007-09-24T23:59:59.000Z

239

Application of a Barrier Filter at a High Purity Synthetic Graphite Plant, CRADA 99-F035, Final Report  

SciTech Connect (OSTI)

Superior Graphite Company and the US Department of Energy have entered into a Cooperative Research and Development Agreement (CRADA) to study the application of ceramic barrier filters at its Hopkinsville, Kentucky graphite plant. Superior Graphite Company is a worldwide leader in the application of advanced thermal processing technology to produce high purity graphite and carbons. The objective of the CRADA is to determine the technical and economic feasibility of incorporating the use of high-temperature filters to improve the performance of the offgas treatment system. A conceptual design was developed incorporating the ceramic filters into the offgas treatment system to be used for the development of a capital cost estimate and economic feasibility assessment of this technology for improving particulate removal. This CRADA is a joint effort of Superior Graphite Company, Parsons Infrastructure and Technology Group, and the National Energy Technology Laboratory (NETL) of the US Department of Energy (DOE).

National Energy Technology Laboratory

2000-08-31T23:59:59.000Z

240

Integrating Customized Test Requirements with Traditional Requirements in Web Application Testing  

E-Print Network [OSTI]

Integrating Customized Test Requirements with Traditional Requirements in Web Application Testing Existing test suite reduction techniques employed for test- ing web applications have either used-based requirements in relation to test suite reduction for web applications. We investigate the use of usage

Sampath, Sreedevi

Note: This page contains sample records for the topic "application suite high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

High-Temperature Circuit Boards for Use in Geothermal Well Monitoring Applications  

Broader source: Energy.gov [DOE]

Project objective: Develop and demonstrate high-temperature; multilayer electronic circuits capable of sustained operation at 300? C.

242

Third International Workshop on Software Engineering for High Performance Computing (HPC) Applications  

E-Print Network [OSTI]

Third International Workshop on Software Engineering for High Performance Computing (HPC, and financial modeling. The TOP500 website (http://www.top500.org) lists the top 500 high performance computing to define new ways of measuring high performance computing systems that take into account not only the low

Carver, Jeffrey C.

243

Specification and Analysis of the AER/NCA Active Network Protocol Suite in  

E-Print Network [OSTI]

Specification and Analysis of the AER/NCA Active Network Protocol Suite in Real­Time Maude Peter and the Maude formal methodology to the specification and analy­ sis of the AER/NCA suite of active network and the composability of its components, AER/NCA poses challenging new problems for its formal specification

Ã?lveczky, Peter Csaba

244

Specification and Analysis of the AER/NCA Active Network Protocol Suite in  

E-Print Network [OSTI]

Specification and Analysis of the AER/NCA Active Network Protocol Suite to the specification and analy- sis of the AER/NCA suite of active network multicast protocol compo- nents, AER/NCA poses challenging new problems for its formal specification and analysis. Real-Time Maude

Ã?lveczky, Peter Csaba

245

High-Flux Stress Testing of Encapsulants for Medium-Concentration CPV Applications  

SciTech Connect (OSTI)

This study involved developing methods to expose transparent encapsulant materials to high (40 to 45 UV suns) optical fluxes of UV radiation to enable rapid evaluation of materials.

Kempe, M. D.; Kilkenny, M.; Moricone, T. J.; Zhang, J. Z.

2009-09-01T23:59:59.000Z

246

High efficiency resonant dc/dc converter for solar power applications .  

E-Print Network [OSTI]

??This thesis presents a new topology for a high efficiency dc/dc resonant power converter that utilizes a resistance compression network to provide simultaneous zero voltage… (more)

Inam, Wardah

2013-01-01T23:59:59.000Z

247

Fundamental Studies and Development of III-N Visible LEDs for High-Power Solid-State Lighting Applications  

SciTech Connect (OSTI)

The goal of this program is to understand in a fundamental way the impact of strain, defects, polarization, and Stokes loss in relation to unique device structures upon the internal quantum efficiency (IQE) and efficiency droop (ED) of III-nitride (III-N) light-emitting diodes (LEDs) and to employ this understanding in the design and growth of high-efficiency LEDs capable of highly-reliable, high-current, high-power operation. This knowledge will be the basis for our advanced device epitaxial designs that lead to improved device performance. The primary approach we will employ is to exploit new scientific and engineering knowledge generated through the application of a set of unique advanced growth and characterization tools to develop new concepts in strain-, polarization-, and carrier dynamics-engineered and low-defect materials and device designs having reduced dislocations and improved carrier collection followed by efficient photon generation. We studied the effects of crystalline defect, polarizations, hole transport, electron-spillover, electron blocking layer, underlying layer below the multiplequantum- well active region, and developed high-efficiency and efficiency-droop-mitigated blue LEDs with a new LED epitaxial structures. We believe new LEDs developed in this program will make a breakthrough in the development of high-efficiency high-power visible III-N LEDs from violet to green spectral region.

Dupuis, Russell

2012-02-29T23:59:59.000Z

248

SAMP, the Simple Application Messaging Protocol: Letting applications talk to each other  

E-Print Network [OSTI]

SAMP, the Simple Application Messaging Protocol, is a hub-based communication standard for the exchange of data and control between participating client applications. It has been developed within the context of the Virtual Observatory with the aim of enabling specialised data analysis tools to cooperate as a loosely integrated suite, and is now in use by many and varied desktop and web-based applications dealing with astronomical data. This paper reviews the requirements and design principles that led to SAMP's specification, provides a high-level description of the protocol, and discusses some of its common and possible future usage patterns, with particular attention to those factors that have aided its success in practice.

Taylor, M B; Taylor, J

2015-01-01T23:59:59.000Z

249

Portsmouth/Paducah Project Office, 1017 Majestic Drive, Suite...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

February 21, 2012 Robert.Smith@lex.doe.gov Lone Oak High School Wins DOE Regional Science Bowl; Middle School Competition Feb. 24 PADUCAH, KY - Lone Oak High School is the U.S....

250

Materials Properties Database for Selection of High-Temperature Alloys and Concepts of Alloy Design for SOFC Applications  

SciTech Connect (OSTI)

To serve as an interconnect / gas separator in an SOFC stack, an alloy should demonstrate the ability to provide (i) bulk and surface stability against oxidation and corrosion during prolonged exposure to the fuel cell environment, (ii) thermal expansion compatibility with the other stack components, (iii) chemical compatibility with adjacent stack components, (iv) high electrical conductivity of the surface reaction products, (v) mechanical reliability and durability at cell exposure conditions, (vii) good manufacturability, processability and fabricability, and (viii) cost effectiveness. As the first step of this approach, a composition and property database was compiled for high temperature alloys in order to assist in determining which alloys offer the most promise for SOFC interconnect applications in terms of oxidation and corrosion resistance. The high temperature alloys of interest included Ni-, Fe-, Co-base superal

Yang, Z Gary; Paxton, Dean M.; Weil, K. Scott; Stevenson, Jeffry W.; Singh, Prabhakar

2002-11-24T23:59:59.000Z

251

Technical Note: DIRART- A software suite for deformable image registration and adaptive radiotherapy research  

SciTech Connect (OSTI)

Purpose: Recent years have witnessed tremendous progress in image guide radiotherapy technology and a growing interest in the possibilities for adapting treatment planning and delivery over the course of treatment. One obstacle faced by the research community has been the lack of a comprehensive open-source software toolkit dedicated for adaptive radiotherapy (ART). To address this need, the authors have developed a software suite called the Deformable Image Registration and Adaptive Radiotherapy Toolkit (DIRART). Methods: DIRART is an open-source toolkit developed in MATLAB. It is designed in an object-oriented style with focus on user-friendliness, features, and flexibility. It contains four classes of DIR algorithms, including the newer inverse consistency algorithms to provide consistent displacement vector field in both directions. It also contains common ART functions, an integrated graphical user interface, a variety of visualization and image-processing features, dose metric analysis functions, and interface routines. These interface routines make DIRART a powerful complement to the Computational Environment for Radiotherapy Research (CERR) and popular image-processing toolkits such as ITK. Results: DIRART provides a set of image processing/registration algorithms and postprocessing functions to facilitate the development and testing of DIR algorithms. It also offers a good amount of options for DIR results visualization, evaluation, and validation. Conclusions: By exchanging data with treatment planning systems via DICOM-RT files and CERR, and by bringing image registration algorithms closer to radiotherapy applications, DIRART is potentially a convenient and flexible platform that may facilitate ART and DIR research.

Yang Deshan; Brame, Scott; El Naqa, Issam; Aditya, Apte; Wu Yu; Murty Goddu, S.; Mutic, Sasa; Deasy, Joseph O.; Low, Daniel A. [Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, Missouri 63110 (United States)

2011-01-15T23:59:59.000Z

252

Optimization of Polymer-based Nanocomposites for High Energy Density Applications  

E-Print Network [OSTI]

polymers are of interest owing to their high inherent electrical resistance, low dielectric loss, flexibility, light weight, and low cost; however, capacitors produced with dielectric polymers are limited to an energy density of ~1-2 J/cc. Polymer...

Barhoumi Ep Meddeb, Amira

2012-07-16T23:59:59.000Z

253

Design of a miniature high-speed carbon-nanotube-enhanced ultracapacitor for electronics applications  

E-Print Network [OSTI]

Electrolytic capacitors, the current standard for high-value capacitors, are one of the most challenging components to miniaturize, accounting for up to 1/3 of the volume in some power devices, and are the weak link with ...

D'Asaro, Matthew E. (Matthew Eric)

2012-01-01T23:59:59.000Z

254

Vehicle Technologies Office Merit Review 2014: High Energy Lithium Batteries for PHEV Applications  

Broader source: Energy.gov [DOE]

Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy lithium batteries...

255

Vehicle Technologies Office Merit Review 2014: New High-Energy Electrochemical Couple for Automotive Applications  

Broader source: Energy.gov [DOE]

Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about a new high-energy...

256

Improved performance of ultra-high molecular weight polyethylene for orthopedic applications  

E-Print Network [OSTI]

A considerable number of total-joint replacement devices used in orthopedic medicine involve articulation between a metallic alloy and ultra-high molecular weight polyethylene (UHMWPE). Though this polymer has excellent wear resistance, the wear...

Plumlee, Kevin Grant

2009-05-15T23:59:59.000Z

257

Benzannulation via the Reaction of Ynamides and Vinylketenes. Application to the Synthesis of Highly Substituted Indoles  

E-Print Network [OSTI]

A two-stage “tandem strategy” for the synthesis of indoles with a high level of substitution on the six-membered ring is described. Benzannulation based on the reaction of cyclobutenones with ynamides proceeds via a cascade ...

Lam, Tin Yiu

258

Current mode integrators and their applications in low-voltage high frequency CMOS signal processing  

E-Print Network [OSTI]

Low voltage CMOS fully differential integrators for high frequency continuous-time filters using current-mode techniques are presented.. Current mode techniques are employed to avoid the use of the floating differential pair, in order to achieve...

Smith, Sterling Lane

1993-01-01T23:59:59.000Z

259

Application of High Throughput Pretreatment and Co-Hydrolysis System to Thermochemical  

E-Print Network [OSTI]

and enzymatic hydrolysis conditions. Although hydrothermal pretreatment is currently being employed in most high were compared to results from hydrothermal pretreatments, providing new insights in understanding their recalcitrance and consolidating processing of enzymes and microorganisms to overcome biomass recalci- trance

California at Riverside, University of

260

Heavy ion fusion science research for high energy density physics and fusion applications  

E-Print Network [OSTI]

cost direct plasma MHD direct conversion [38], as well as toT-lean targets and direct conversion for heavy ion fusion. [conversion loss of beam energy into x-rays. High ablation velocities with heavy ion direct

Logan, B.G.

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "application suite high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Electrical characterization and modelling of round spiral supercapacitors for high power applications  

E-Print Network [OSTI]

Electrical characterization and modelling of round spiral supercapacitors for high power of supercapacitors under railway and electrical traction constraints. Electrical model parameters according techniques and instrumentations. Nowadays several electrical characterization methods exist. We have chosen

Paris-Sud XI, Université de

262

The generation of high field terahertz radiation and its application in terahertz nonlinear spectroscopy  

E-Print Network [OSTI]

In this thesis research, I implemented a terahertz generation scheme that enables high-field near-single-cycle terahertz (THz) pulse generation via optical rectification in a LiNbO3 (LN) crystal. I also developed a method ...

Yeh, Ka-Lo

2009-01-01T23:59:59.000Z

263

Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications  

E-Print Network [OSTI]

537°C) steam for the steam turbine to generate electricity.as heat sources for steam turbines. Mainly three approachesto Stirling or Brayton steam turbine, moderate to high heat

Roshandell, Melina

2013-01-01T23:59:59.000Z

264

High efficiency resonant dc/dc converter for solar power applications  

E-Print Network [OSTI]

This thesis presents a new topology for a high efficiency dc/dc resonant power converter that utilizes a resistance compression network to provide simultaneous zero voltage switching and near zero current switching across ...

Inam, Wardah

2013-01-01T23:59:59.000Z

265

Development of a High-Speed Static Switch for Distributed Energy and Microgrid Applications  

SciTech Connect (OSTI)

Distributed energy resources can provide power to local loads in the electric distribution system and benefits such as improved reliability. Microgrids are intentional islands formed at a facility or in an electrical distribution system that contains at least one distributed resource and associated loads. Microgrids that operate both electrical generation and loads in a coordinated manner can offer additional benefits to the customer and local utility. The loads and energy sources can be disconnected from and reconnected to the area or local utility with minimal disruption to the local loads, thereby improving reliability. This paper details the development and testing of a highspeed static switch for distributed energy and microgrid applications.

Kroposki, B.; Pink, C.; Lynch, J.; John, V.; Meor Daniel, S.; Benedict, E.; Vihinen, I.

2007-01-01T23:59:59.000Z

266

Characterization of the Radiation Shielding Properties of US andRussian EVA Suits  

SciTech Connect (OSTI)

Reported herein are results from the Eril Research, Inc.(ERI) participationin the NASA Johnson Space Center sponsored studycharacterizing the radiation shielding properties of the two types ofspace suit that astronauts are wearing during the EVA on-orbit assemblyof the International Space Station (ISS). Measurements using passivedetectors were carried out to assess the shielding properties of the USEMU Suit and the Russian Orlan-M suit during irradiations of the suitsand a tissue equivalent phantom to monoenergetic proton and electronbeams at the Loma Linda University Medical Center (LLUMC). Duringirradiations of 6 MeV electrons and 60 MeV protons, absorbed dose as afunction of depth was measured using TLDs exposed behind swatches of thetwo suit materials and inside the two EVA helmets. Considerable reductionin electron dosewas measured behind all suit materials in exposures to 6MeV electrons. Slowing of the proton beam in the suit materials led to anincrease in dose measured in exposures to 60 MeV protons. During 232 MeVproton irradiations, measurements were made with TLDs and CR-39 PNTDs atfive organ locations inside a tissue equivalent phantom, exposed bothwith and without the two EVA suits. The EVA helmets produce a 13 to 27percent reduction in total dose and a 0 to 25 percent reduction in doseequivalent when compared to measurements made in the phantom head alone.Differences in dose and dose equivalent between the suit and non-suitirradiations forthe lower portions of the two EVA suits tended to besmaller. Proton-induced target fragmentation was found to be asignificant source of increased dose equivalent, especially within thetwo EVA helmets, and average quality factor inside the EMU and Orlan-Mhelmets was 2 to 14 percent greater than that measured in the barephantom head.

Benton, E.R.; Benton, E.V.; Frank, A.L.

2001-10-26T23:59:59.000Z

267

Fabrication of highly transparent diamond-like carbon anti-reflecting coating for Si solar cell application  

SciTech Connect (OSTI)

ARC grade highly transparent unhydrogenated diamond-like carbon (DLC) films were produced, directly from a-C target, using RF magnetron sputtering deposition technique, for optoelectronic applications. Optical band gap, transmittance, reflectance, sp{sup 3} fraction, I{sub D}/I{sub G}, density, and refractive index of the films have been estimated with the help of optical tools like Uv-vis spectrophotometer, ellipsometer and micro-Raman. Optimum ARC-qualities have been identified in low-temperature grown DLC films at an Ar pressure of 4 mTorr in the reactor, accomplishing its key requirements for use in silicon solar cells.

Banerjee, Amit, E-mail: erdd@iacs.res.in; Das, Debajyoti, E-mail: erdd@iacs.res.in [Nano-Science Group, Energy Research Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032 (India)

2014-04-24T23:59:59.000Z

268

Space reactor/Stirling cycle systems for high power Lunar applications  

SciTech Connect (OSTI)

NASA`s Space Exploration Initiative (SEI) has proposed the use of high power nuclear power systems on the lunar surface as a necessary alternative to solar power. Because of the long lunar night ({approximately} 14 earth days) solar powered systems with the requisite energy storage in the form of regenerative fuel cells or batteries becomes prohibitively heavy at high power levels ({approximately} 100 kWe). At these high power levels nuclear power systems become an enabling technology for variety of missions. One way of producing power on the lunar surface is with an SP-100 class reactor coupled with Stirling power converters. In this study, analysis and characterization of the SP-100 class reactor coupled with Free Piston Stirling Power Conversion (FPSPC) system will be performed. Comparison of results with previous studies of other systems, particularly Brayton and Thermionic, are made.

Schmitz, P.D. [Sverdrup Technology, Inc., Brook Park, OH (United States). Lewis Research Center Group; Mason, L.S. [National Aeronautics and Space Administration, Cleveland, OH (United States). Lewis Research Center

1994-09-01T23:59:59.000Z

269

Highly conducting SrMoO{sub 3} thin films for microwave applications  

SciTech Connect (OSTI)

We have measured the microwave resistance of highly conducting perovskite oxide SrMoO{sub 3} thin film coplanar waveguides. The epitaxial SrMoO{sub 3} thin films were grown by pulsed laser deposition and showed low mosaicity and smooth surfaces with a root mean square roughness below 0.3?nm. Layer-by-layer growth could be achieved for film thicknesses up to 400?nm as monitored by reflection high-energy electron diffraction and confirmed by X-ray diffraction. We obtained a constant microwave resistivity of 29???·cm between 0.1 and 20?GHz by refining the frequency dependence of the transmission coefficients. Our result shows that SrMoO{sub 3} is a viable candidate as a highly conducting electrode material for all-oxide microwave electronic devices.

Radetinac, Aldin, E-mail: aldin@oxide.tu-darmstadt.de; Mani, Arzhang; Ziegler, Jürgen; Alff, Lambert; Komissinskiy, Philipp, E-mail: komissinskiy@oxide.tu-darmstadt.de [Institute of Materials Science, TU Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt (Germany); Melnyk, Sergiy; Nikfalazar, Mohammad; Zheng, Yuliang; Jakoby, Rolf [Institute for Microwave Engineering and Photonics, TU Darmstadt, Merckstraße 25, 64283 Darmstadt (Germany)

2014-09-15T23:59:59.000Z

270

Application platform suite software vendors' strategies in standards driven industry networks  

E-Print Network [OSTI]

The emergence of industry standards often has disruptive impacts on the behavior of markets. It can drive commoditization, substitution and convergence. It also changes the industry structure creating new business models ...

Phua, Boon Chung, 1969-

2004-01-01T23:59:59.000Z

271

Vacuum insulation of the high energy negative ion source for fusion application  

SciTech Connect (OSTI)

Vacuum insulation on a large size negative ion accelerator with multiple extraction apertures and acceleration grids for fusion application was experimentally examined and designed. In the experiment, vacuum insulation characteristics were investigated in the JT-60 negative ion source with >1000 apertures on the grid with the surface area of {approx}2 m{sup 2}. The sustainable voltages varied with a square root of the gap lengths between the grids, and decreased with number of the apertures and with the surface area of the grids. Based on the obtained results, the JT-60SA (super advanced) negative ion source is designed to produce 22 A, 500 keV D{sup -} ion beams for 100 s.

Kojima, A.; Hanada, M.; Inoue, T.; Watanabe, K.; Taniguchi, M.; Kashiwagi, M.; Umeda, N.; Tobari, H. [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan); Hilmi, A.; Kobayashi, S.; Yamano, Y. [Saitama University, Saitama, Saitama-ken, 338-8570 (Japan); Grisham, L. R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

2012-02-15T23:59:59.000Z

272

Performance Analysis of a Hybrid Asymmetric Multilevel Inverter for High Voltage Active Power Filter Applications  

E-Print Network [OSTI]

Performance Analysis of a Hybrid Asymmetric Multilevel Inverter for High Voltage Active Power voltage-source inverters connected in series (known as cascaded hybrid asymmetric multilevel inverter scheme is developed to allow the operation of the inverter modules at different voltages and switching

Catholic University of Chile (Universidad Católica de Chile)

273

Variable selection for high-dimensional Bayesian density estimation: Application to human exposure simulation  

E-Print Network [OSTI]

Laboratory April 15, 2011 Abstract Numerous studies have linked ambient air pollution and adverse health with the eventual goal of implementing a national study of the health effects of air pollution exposure. Our: Air pollution; Bayesian nonparametrics; high dimensional data; kernel stick- breaking prior

Reich, Brian J.

274

HIGH PURITY FERROELECTRIC MATERIALS BY SOL-GEL PROCESS FOR MICROWAVE APPLICATIONS  

E-Print Network [OSTI]

is dissolved in methanol at a concentration of 0.1 M. Titanium isopropoxide, Ti(C3H7O4), is then added is produced at room temperature and in dry nitrogen atmosphere. BTO powders can be obtained by calcining approach of producing BTO and BST ferroelectric materials presents several advantages, such as high purity

De Flaviis, Franco

275

Integration of High-Temperature Gas-Cooled Reactors into Industrial Process Applications  

SciTech Connect (OSTI)

This report is a summary of analyses performed by the NGNP project to determine whether it is technically and economically feasible to integrate high temperature gas cooled reactor (HTGR) technology into industrial processes. To avoid an overly optimistic environmental and economic baseline for comparing nuclear integrated and conventional processes, a conservative approach was used for the assumptions and calculations.

Lee Nelson

2011-09-01T23:59:59.000Z

276

HIGH PERFORMANCE TEMPERATURE CONTROLLER: APPLICATION TO THE EXCESS NOISE MEASUREMENTS OF YBCO THERMOMETERS IN  

E-Print Network [OSTI]

THERMOMETERS IN THE TRANSITION REGION B. GUILLET, L. MÃ?CHIN AND D. ROBBES GREYC -CNRS UMR 6072, ENSICAEN et read-out electronics was developed for low impedance resistive thermometers. Using this high transition for different current bias conditions. 2. Characteristics of the thin film HTS thermometers

Paris-Sud XI, Université de

277

Synthesis and electrical analysis of nano-crystalline barium titanate nanocomposites for use in high-energy density applications.  

SciTech Connect (OSTI)

Ceramic based nanocomposites have recently demonstrated the ability to provide enhanced permittivity, increased dielectric breakdown strength, and reduced electromechanical strain making them potential materials systems for high energy density applications. A systematic characterization and optimization of barium titanate and PLZT based nanoparticle composites employing a glass or polymer matrix to yield a high energy density component will be presented. This work will present the systematic characterization and optimization of barium titanate and lead lanthanum zirconate titanate nanoparticle based ceramics. The nanoparticles have been synthesized using solution and pH-based synthesis processing routes and employed to fabricate polycrystalline ceramic and nanocomposite based components. The dielectric/ferroelectric properties of these various components have been gauged by impedance analysis and electromechanical response and will be discussed.

DiAntonio, Christopher Brian; Yang, Pin; Chavez, Tom P.; Huber, Dale L.; Winter, Michael R.; Monson, Todd C.; Roesler, Alexander William

2010-10-01T23:59:59.000Z

278

AlGaN UV LED and Photodiodes Radiation Hardness and Space Qualifications and Their Applications in Space Science and High Energy Density Physics  

SciTech Connect (OSTI)

This presentation provides an overview of robust, radiation hard AlGaN optoelectronic devices and their applications in space exploration & high energy density physics. Particularly, deep UV LED and deep UV photodiodes are discussed with regard to their applications, radiation hardness and space qualification. AC charge management of UV LED satellite payload instruments, which were to be launched in late 2012, is covered.

Sun, K. X.

2011-05-31T23:59:59.000Z

279

S. Wasterlain, D. Candusso, F. Harel, X. Franois, D. Hissel. Development of test instruments and protocols for the diagnostic of fuel cell stacks. Accept dans Journal of Power Sources suite 12th  

E-Print Network [OSTI]

for the integration of fuel cell systems into real applications such as vehicles or stationary gensets and protocols for the diagnostic of fuel cell stacks. Accepté dans Journal of Power Sources suite à 12th Ulm for the diagnostic of fuel cell stacks Sébastien Wasterlain 1,2 , Denis Candusso 1,3,* , Fabien Harel 1,3 , Daniel

Boyer, Edmond

280

HDRMC, an accelerated Monte Carlo dose calculator for high dose rate brachytherapy with CT-compatible applicators  

SciTech Connect (OSTI)

Purpose: To present a new accelerated Monte Carlo code for CT-based dose calculations in high dose rate (HDR) brachytherapy. The new code (HDRMC) accounts for both tissue and nontissue heterogeneities (applicator and contrast medium). Methods: HDRMC uses a fast ray-tracing technique and detailed physics algorithms to transport photons through a 3D mesh of voxels representing the patient anatomy with applicator and contrast medium included. A precalculated phase space file for the{sup 192}Ir source is used as source term. HDRM is calibrated to calculated absolute dose for real plans. A postprocessing technique is used to include the exact density and composition of nontissue heterogeneities in the 3D phantom. Dwell positions and angular orientations of the source are reconstructed using data from the treatment planning system (TPS). Structure contours are also imported from the TPS to recalculate dose-volume histograms. Results: HDRMC was first benchmarked against the MCNP5 code for a single source in homogenous water and for a loaded gynecologic applicator in water. The accuracy of the voxel-based applicator model used in HDRMC was also verified by comparing 3D dose distributions and dose-volume parameters obtained using 1-mm{sup 3} versus 2-mm{sup 3} phantom resolutions. HDRMC can calculate the 3D dose distribution for a typical HDR cervix case with 2-mm resolution in 5 min on a single CPU. Examples of heterogeneity effects for two clinical cases (cervix and esophagus) were demonstrated using HDRMC. The neglect of tissue heterogeneity for the esophageal case leads to the overestimate of CTV D90, CTV D100, and spinal cord maximum dose by 3.2%, 3.9%, and 3.6%, respectively. Conclusions: A fast Monte Carlo code for CT-based dose calculations which does not require a prebuilt applicator model is developed for those HDR brachytherapy treatments that use CT-compatible applicators. Tissue and nontissue heterogeneities should be taken into account in modern HDR brachytherapy planning.

Chibani, Omar, E-mail: omar.chibani@fccc.edu; C-M Ma, Charlie [Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111 (United States)] [Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111 (United States)

2014-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "application suite high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Understanding human-space suit interaction to prevent injury during extravehicular activity  

E-Print Network [OSTI]

Extravehicular Activity (EVA) is a critical component of human spaceflight. Working in gas-pressurized space suits, however, causes fatigue, unnecessary energy expenditure, and injury. The problem of injury is particularly ...

Anderson, Allison P. (Allison Paige)

2014-01-01T23:59:59.000Z

282

Development of a mechanical counter pressure Bio-Suit System for planetary exploration  

E-Print Network [OSTI]

Extra-vehicular activity (EVA) is critical for human spaceflight and particularly for human planetary exploration. The MIT Man Vehicle Laboratory is developing a Bio-Suit EVA System, based on mechanical counterpressure ...

Sim, Zhe Liang

2006-01-01T23:59:59.000Z

283

Assessment and preliminary model development of shape memory polymers mechanical counter pressure space suits  

E-Print Network [OSTI]

This thesis seeks to assess the viability of a space qualified shape memory polymer (SMP) mechanical counter pressure (MCP) suit. A key development objective identified by the International Space Exploration Coordination ...

Wee, Brian (Brian J.)

2013-01-01T23:59:59.000Z

284

Allvivo Vascular, Inc. 20914 Bake Parkway, Suite 100  

E-Print Network [OSTI]

and updating standard operating procedures, and maintaining a Biosafety Level II laboratory. The candidate and stability with high pressure liquid chromatography (HPLC). · Support lab operations including preparing buffers, ordering supplies, autoclaving materials, cleaning, and equipment maintenance. · Maintain clean

Dyer, Bill

285

Enhanced heat transfer using wire-coil inserts for high-heat-load applications.  

SciTech Connect (OSTI)

Enhanced heat-transfer techniques, used to significantly reduce temperatures and thermally induced stresses on beam-strike surfaces, are routinely used at the APS in all critical high-heat-load components. A new heat-transfer enhancement technique being evaluated at the APS involving the use of wire-coil inserts proves to be superior to previously employed techniques. Wire coils, similar in appearance to a common spring, are fabricated from solid wire to precise tolerances to mechanically fit inside standard 0.375-in-diameter cooling channels. In this study, a matrix of wire coils, fabricated with a series of different pitches from several different wire diameters, has been tested for heat-transfer performance and resulting pressure loss. This paper reviews the experimental data and the analytical calculations, compares the data with existing correlations, and interprets the results for APS front-end high-heat-load components.

Collins, J. T.; Conley, C. M.; Attig, J. N.; Baehl, M. M.

2002-09-20T23:59:59.000Z

286

Application of High-performance Visual Analysis Methods to Laser Wakefield Particle Acceleration Data  

SciTech Connect (OSTI)

Our work combines and extends techniques from high-performance scientific data management and visualization to enable scientific researchers to gain insight from extremely large, complex, time-varying laser wakefield particle accelerator simulation data. We extend histogram-based parallel coordinates for use in visual information display as well as an interface for guiding and performing data mining operations, which are based upon multi-dimensional and temporal thresholding and data subsetting operations. To achieve very high performance on parallel computing platforms, we leverage FastBit, a state-of-the-art index/query technology, to accelerate data mining and multi-dimensional histogram computation. We show how these techniques are used in practice by scientific researchers to identify, visualize and analyze a particle beam in a large, time-varying dataset.

Rubel, Oliver; Prabhat, Mr.; Wu, Kesheng; Childs, Hank; Meredith, Jeremy; Geddes, Cameron G.R.; Cormier-Michel, Estelle; Ahern, Sean; Weber, Gunther H.; Messmer, Peter; Hagen, Hans; Hamann, Bernd; Bethel, E. Wes

2008-08-28T23:59:59.000Z

287

Heat treated 9 Cr-1 Mo steel material for high temperature application  

DOE Patents [OSTI]

The invention relates to a composition and heat treatment for a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to 650.degree. C. The novel combination of composition and heat treatment produces a heat treated material containing both large primary titanium carbides and small secondary titanium carbides. The primary titanium carbides contribute to creep strength while the secondary titanium carbides act to maintain a higher level of chromium in the finished steel for increased oxidation resistance, and strengthen the steel by impeding the movement of dislocations through the crystal structure. The heat treated material provides improved performance at comparable cost to commonly used high-temperature steels such as ASTM P91 and ASTM P92, and requires heat treatment consisting solely of austenization, rapid cooling, tempering, and final cooling, avoiding the need for any hot-working in the austenite temperature range.

Jablonski, Paul D.; Alman, David; Dogan, Omer; Holcomb, Gordon; Cowen, Christopher

2012-08-21T23:59:59.000Z

288

Synthetic process for preparation of high surface area electroactive compounds for battery applications  

SciTech Connect (OSTI)

A process is disclosed for the preparation of electroactive cathode compounds useful in lithium-ion batteries, comprising exothermic mixing of low-cost precursors and calcination under appropriate conditions. The exothermic step may be a spontaneous flameless combustion reaction. The disclosed process can be used to prepare any lithium metal phosphate or lithium mixed metal phosphate as a high surface area single phase compound.

Evenson, Carl; Mackay, Richard

2013-07-23T23:59:59.000Z

289

Advanced Corrosion-Resistant Zr Alloys for High Burnup and Generation IV Applications  

SciTech Connect (OSTI)

The objective of this collaboration between four institutions in the US and Korea is to demonstrate a technical basis for the improvement of the corrosion resistance of zirconium-based alloys in more extreme operating environments (such as those present in severe fuel duty,cycles (high burnup, boiling, aggressive chemistry) andto investigate the feasibility (from the point of view of corrosion rate) of using advanced zirconium-based alloys in a supercritical water environment.

Arthur Motta; Yong Hwan Jeong; R.J. Comstock; G.S. Was; Y.S. Kim

2006-10-31T23:59:59.000Z

290

Considerations of Alloy N for Fluoride Salt-Cooled High-Temperature Reactor Applications  

SciTech Connect (OSTI)

Fluoride Salt-Cooled High-Temperature Reactors (FHRs) are a promising new class of thermal-spectrum nuclear reactors. The reactor structural materials must possess high-temperature strength and chemical compatibility with the liquid fluoride salt as well as with a power cycle fluid such as supercritical water while remaining resistant to residual air within the containment. Alloy N was developed for use with liquid fluoride salts and it possesses adequate strength and chemical compatibility up to about 700 C. A distinctive property of FHRs is that their maximum allowable coolant temperature is restricted by their structural alloy maximum service temperature. As the reactor thermal efficiency directly increases with the maximum coolant temperature, higher temperature resistant alloys are strongly desired. This paper reviews the current status of Alloy N and its relevance to FHRs including its design principles, development history, high temperature strength, environmental resistance, metallurgical stability, component manufacturability, ASME codification status, and reactor service requirements. The review will identify issues and provide guidance for improving the alloy properties or implementing engineering solutions.

Ren, Weiju [ORNL; Muralidharan, Govindarajan [ORNL; Wilson, Dane F [ORNL; Holcomb, David Eugene [ORNL

2011-01-01T23:59:59.000Z

291

The Department of Energy Respiratory Acceptance Program for Supplied-Air Suits  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The supplied-air suits that protect DOE contractor and federal employees from exposure to harmful atmospheres and radioactive contaminants are not included in the National Institute for Occupational Safety and Health (NIOSH) certification process for respiratory protective devices. Therefore, with the awareness and acknowledgement of NIOSH and the Occupational Safety and Health Administration (OSHA), the Department established a system for acceptance testing of supplied-air suits.

2004-02-04T23:59:59.000Z

292

DC BUFFERING AND FLOATING CURRENT FOR A HIGH VOLTAGE IMB APPLICATION  

SciTech Connect (OSTI)

An interface technique for the latest generation of the Impedance Measurement Box (IMB) has been conceived to enable measurement of impedance spectra for battery modules up to 300V. A 300V capable or higher IMB is an enabling technology for in-situ diagnostics within electric vehicle charging stations or battery back-ups within power distribution sub-stations. It is possible that the existing IMB can be adapted via a 300V interface module to a test battery with voltage significantly greater than 50V. Recently a new concept was conceived for the calibration, algorithm and electronics of the IMB. That algorithm and calibration for that concept have been physically validated. The principal feature of the new electronics is the floating current source excitation of the battery under test. The single ended current excitation of the battery under test, used in the 50V IMB, requires that the negative terminal of the test battery must be the analog ground for the IMB. The new floating current technique allows the test battery to be fully high impedance isolated for a measurement. That isolation will improve IMB noise immunity and enable interrogation of cells internal to a battery module. All these techniques still use the same rapid concept for impedance measurement with the IMB. The purpose of this disclosure is to provide an overview of the analytical validation for three concepts to interface the floating current excitation to a high voltage battery. Recursive simulation models were used in different test scenarios to validate the various new concepts. The analysis will show that it is possible to interface the floating signal current to obtain an impedance measurement on a high voltage test battery. Additionally, the analysis will investigate stress seen by electronics while testing a 300V battery.

J.L. Morrison

2014-08-01T23:59:59.000Z

293

APPLICATION OF HIGH TECHNOLOGY POLYMERS FOR THE IMMOBILIZATION AND SOLIDIFICATION OF COMPLEX LIQUID RADWASTE TYPES  

SciTech Connect (OSTI)

The Cold War era created a massive build-up of nuclear weapon stockpiles in the former Soviet Union and the United States. The primary objective during this period was the development of nuclear technologies for weapons, space and power with lack of attention to the impact of radioactive and hazardous waste products on the environment. Effective technologies for radioactive and hazardous waste treatment and disposal were not well investigated or promoted during the arms build-up; and consequently, environmental contamination has become a major problem. These problems in Russia and the United States are well documented. Significant amounts of liquid radwaste have existed since the 1950's. The current government of the Russian Federation is addressing the issues of land remediation and permanent storage of radwaste resulting from internal and external pressures for safe cleanup and storage. The Russian government seeks new technologies from internal sources and from the West that will provide high performance, long term stability, safe for transport and for long-term storage of liquid radwaste at a reasonable economic cost. With the great diversity of liquid chemical compositions and activity levels, it is important to note that these waste products cannot be processed with commonly used methods. Different techniques and materials can be used for this problem resolution including the use of polymer materials that are capable of forming chemically stable, solidified waste products. In 2001, the V.G. Khlopin Radium Institute (St. Petersburg, Russia) and Pacific World Trade (Indianapolis, Indiana) began an extensive research and test program to determine the effectiveness and performance of high technology polymers for the immobilization and solidification of complex liquid radwaste types generated by the Ministry of Atomic Energy (Minatom), Russia, organization. The high tech polymers used in the tests were provided by Nochar, Inc. (Indianapolis, Indiana).

Kelley, Dennis; Brunkow, Ward; Pokhitonov, Yuri; Starchenko, Vadim

2003-02-27T23:59:59.000Z

294

Economical Route to Produce High Seebeck Coefficient Calcium Cobaltate for Bulk Thermoelectric Applications  

SciTech Connect (OSTI)

Phase pure calcium cobaltate (Ca1.24Co1.62O3.86) was prepared by Self-propagating High-temperature Synthesis (SHS) followed by a short post heat treatment. Prepared powders were characterized by XRD for phase purity, and SEM for particle size and distribution. Temperature histories at the center and on the surface of reaction pellet during the SHS process were monitored and recorded. Particles size of synthesized powders was reduced using a planetary mill to increase its specific surface area. Electrical conductivity, thermal conductivity and Seebeck coefficient of the prepared power were measured and figure of merit was reported.

Selig, Jiri [Lamar University; Lin, Sidney [Lamar University; Lin, Hua-Tay [ORNL; Johnson, D Ray [ORNL; Wang, Hsin [ORNL

2011-01-01T23:59:59.000Z

295

Device for detecting imminent failure of high-dielectric stress capacitors. [Patent application  

DOE Patents [OSTI]

A device is described for detecting imminent failure of a high-dielectric stress capacitor utilizing circuitry for detecting pulse width variations and pulse magnitude variations. Inexpensive microprocessor circuitry is utilized to make numerical calculations of digital data supplied by detection circuitry for comparison of pulse width data and magnitude data to determine if preselected ranges have been exceeded, thereby indicating imminent failure of a capacitor. Detection circuitry may be incorporated in transmission lines, pulse power circuitry, including laser pulse circuitry or any circuitry where capacitors or capacitor banks are utilized.

McDuff, G.G.

1980-11-05T23:59:59.000Z

296

"Stokes' Second Problem in High Frequency Limit. Application to Micro (Nano)- Resonators  

E-Print Network [OSTI]

Using kinetic equation in the relaxation approximation (RTA), we investigate a flow generated by an infinite plate oscillating with frequency $\\omega$. Geometrical simplicity of the problem allows a solution in the entire range of dimensionless frequency variation $0\\leq \\omega \\tau\\leq \\infty$, where $\\tau$ is a properly defined relaxation time. A transition from viscoelastic behavior of Newtonian fluid ($\\omega\\tau\\to 0$) to purely elastic dynamics in the limit $\\omega\\tau\\to \\infty$ is discovered. The relation of the derived solutions to microfluidics (high-frequency micro-resonators) is demonstrated on an example of a "plane oscillator .

V. Yakhot; C. Colosqui

2007-03-26T23:59:59.000Z

297

A High Resolution, Light-Weight, Synthetic Aperture Radar for UAV Application  

SciTech Connect (OSTI)

(U) Sandia National Laboratories in collaboration with General Atomics (GA) has designed and built a high resolution, light-weight, Ku-band Synthetic Aperture Radar (SAR) known as "Lynx". Although Lynx can be operated on a wide variety of manned and unmanned platforms, its design is optimized for use on medium altitude Unmanned Aerial Vehicles (UAVS). In particular, it can be operated on the Predator, I-GNAT, and Prowler II platforms manufactured by GA. (U) The radar production weight is less than 120 lb and operates within a 3 GHz band from 15.2 GHz to 18.2 GHz with a peak output power of 320 W. Operating range is resolution and mode dependent but can exceed 45 km in adverse weather (4 mm/hr rain). Lynx has operator selectable resolution and is capable of 0.1 m resolution in spotlight mode and 0.3 m resolution in stripmap mode, over substantial depression angles (5 to 60 deg) and squint angles (broadside ±45 deg). Real-time Motion Compensation is implemented to allow high-quality image formation even during vehicle turns and other maneuvers.

Doerry, A.W.; Hensley, W.H.; Stence, J.; Tsunoda, S.I. Pace, F.; Walker, B,C.; Woodring, M.

1999-05-27T23:59:59.000Z

298

Application of soft X-ray lasers for probing high density plasmas  

SciTech Connect (OSTI)

The reliability and characteristics of collisionally pumped soft x-ray lasers make them ideal for a wide variety of plasma diagnostics. These systems now operate over a wavelength range extending from 35 to 400 {Angstrom} and have output energies as high as 10 mJ in 150 ps pulses. The beam divergence of these lasers is less than 15 mrad and they have a typical linewidth of {Delta}{lambda}/{lambda} {approximately} 10{sup -4} making them the brightest xuv sources available. In this paper we will describe the use of x-ray lasers to probe high density plasmas using a variety of diagnostic techniques. Using an x-ray laser and a multilayer mirror imaging system we have studied hydrodynamic imprinting of laser speckle pattern on directly driven thin foils with 1-2 {mu}m spatial resolution. Taking advantage of recently developed multilayer beamsplitters we have constructed and used a Mach-Zehnder interferometer operating at 155 {Angstrom} to probe 1-3 mm size laser produced plasmas with peak electron densities of 4 x 10{sup 21} cm{sup -3}. A comparison of our results with computer simulations will be presented.

Da Silva, L.B.; Barbee, T.W. Jr.; Cauble, R. [and others

1996-08-01T23:59:59.000Z

299

WRF Test on IBM BG/L:Toward High Performance Application to Regional Climate Research  

SciTech Connect (OSTI)

The effects of climate change will mostly be felt on local to regional scales (Solomon et al., 2007). To develop better forecast skill in regional climate change, an integrated multi-scale modeling capability (i.e., a pair of global and regional climate models) becomes crucially important in understanding and preparing for the impacts of climate change on the temporal and spatial scales that are critical to California's and nation's future environmental quality and economical prosperity. Accurate knowledge of detailed local impact on the water management system from climate change requires a resolution of 1km or so. To this end, a high performance computing platform at the petascale appears to be an essential tool in providing such local scale information to formulate high quality adaptation strategies for local and regional climate change. As a key component of this modeling system at LLNL, the Weather Research and Forecast (WRF) model is implemented and tested on the IBM BG/L machine. The objective of this study is to examine the scaling feature of WRF on BG/L for the optimal performance, and to assess the numerical accuracy of WRF solution on BG/L.

Chin, H S

2008-09-25T23:59:59.000Z

300

THE INTEGRATION OF PROCESS HEAT APPLICATIONS TO HIGH TEMPERATURE GAS REACTORS  

SciTech Connect (OSTI)

A high temperature gas reactor, HTGR, can produce industrial process steam, high-temperature heat-transfer gases, and/or electricity. In conventional industrial processes, these products are generated by the combustion of fossil fuels such as coal and natural gas, resulting in significant emissions of greenhouse gases such as carbon dioxide. Heat or electricity produced in an HTGR could be used to supply process heat or electricity to conventional processes without generating any greenhouse gases. Process heat from a reactor needs to be transported by a gas to the industrial process. Two such gases were considered in this study: helium and steam. For this analysis, it was assumed that steam was delivered at 17 MPa and 540 C and helium was delivered at 7 MPa and at a variety of temperatures. The temperature of the gas returning from the industrial process and going to the HTGR must be within certain temperature ranges to maintain the correct reactor inlet temperature for a particular reactor outlet temperature. The returning gas may be below the reactor inlet temperature, ROT, but not above. The optimal return temperature produces the maximum process heat gas flow rate. For steam, the delivered pressure sets an optimal reactor outlet temperature based on the condensation temperature of the steam. ROTs greater than 769.7 C produce no additional advantage for the production of steam.

Michael G. McKellar

2011-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "application suite high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Corrosion of Ferritic Steels in High Temperature Molten Salt Coolants for Nuclear Applications  

SciTech Connect (OSTI)

Corrosion of ferritic steels in high temperature molten fluoride salts may limit the life of advanced reactors, including some hybrid systems that are now under consideration. In some cases, the steel may be protected through galvanic coupling with other less noble materials with special neutronic properties such a beryllium. This paper reports the development of a model for predicting corrosion rates for various ferritic steels, with and without oxide dispersion strengthening, in FLiBe (Li{sub 2}BeF{sub 4}) and FLiNaK (Li-Na-K-F) coolants at temperatures up to 800 C. Mixed potential theory is used to account for the protection of steel by beryllium, Tafel kinetics are used to predict rates of dissolution as a function of temperature and potential, and the thinning of the mass-transfer boundary layer with increasing Reynolds number is accounted for with dimensionless correlations. The model also accounts for the deceleration of corrosion as the coolants become saturated with dissolved chromium and iron. This paper also reports electrochemical impedance spectroscopy of steels at their corrosion potentials in high-temperature molten salt environments, with the complex impedance spectra interpreted in terms of the interfacial charge transfer resistance and capacitance, as well as the electrolyte conductivity. Such in situ measurement techniques provide valuable insight into the degradation of materials under realistic conditions.

Farmer, J; El-Dasher, B; de Caro, M S; Ferreira, J

2008-11-25T23:59:59.000Z

302

Ultra-High Temperature Steam Corrosion of Complex Silicates for Nuclear Applications: A Computational Study  

SciTech Connect (OSTI)

Stability of materials under extreme conditions is an important issue for safety of nuclear reactors. Presently, silicon carbide (SiC) is being studied as a cladding material candidate for fuel rods in boiling-water and pressurized water-cooled reactors (BWRs and PWRs) that would substitute or modify traditional zircaloy materials. The rate of corrosion of the SiC ceramics in hot vapor environment (up to 2200 degrees C) simulating emergency conditions of light water reactor (LWR) depends on many environmental factors such as pressure, temperature, viscosity, and surface quality. Using the paralinear oxidation theory developed for ceramics in the combustion reactor environment, we estimated the corrosion rate of SiC ceramics under the conditions representing a significant power excursion in a LWR. It was established that a significant time – at least 100 h – is required for a typical SiC braiding to significantly degrade even in the most aggressive vapor environment (with temperatures up to 2200 °C) which is possible in a LWR at emergency condition. This provides evidence in favor of using the SiC coatings/braidings for additional protection of nuclear reactor rods against off-normal material degradation during power excursions or LOCA incidents. Additionally, we discuss possibilities of using other silica based ceramics in order to find materials with even higher corrosion resistance than SiC. In particular, we found that zircon (ZrSiO4) is also a very promising material for nuclear applications. Thermodynamic and first-principles atomic-scale calculations provide evidence of zircon thermodynamic stability in aggressive environments at least up to 1535 degrees C.

Sergey N. Rashkeev [Idaho National Laboratory (INL), Idaho Falls, ID (United States). Center for Advanced Modeling and Simulation; Michael V. Glazoff [Idaho National Laboratory (INL), Idaho Falls, ID (United States). Advanced Process and Decision Systems; Akira Tokuhiro [Univ. of Idaho, Idaho Falls, ID (United States). Dept. of Nuclear Engineering

2014-01-01T23:59:59.000Z

303

University Health Services 910 Madison Ave, Suite 922  

E-Print Network [OSTI]

of the following cardiovascular or heart problems? a. Heart attack b. Stroke c. Angina d. Heart failure e. Swelling in your legs or feet (not caused by walking) f. Heart arrhythmia (heart beating irregularly) g. High blood pressure h. Any other heart problem that you've been told about 6. Have you ever had any of the following

Cui, Yan

304

MAINTAINING HIGH RESOLUTION MASS SPECTROMETRY CAPABILITIES FOR NATIONAL NUCLEAR SECURITY ADMINISTRATION APPLICATIONS  

SciTech Connect (OSTI)

The Department of Energy (DOE) National Nuclear Security Administration (NNSA) has a specialized need for analyzing low mass gas species at very high resolutions. The currently preferred analytical method is electromagnetic sector mass spectrometry. This method allows the NNSA Nuclear Security Enterprise (NSE) to resolve species of similar masses down to acceptable minimum detection limits (MDLs). Some examples of these similar masses are helium-4/deuterium and carbon monoxide/nitrogen. Through the 1980s and 1990s, there were two vendors who supplied and supported these instruments. However, with declining procurements and down turns in the economy, the supply of instruments, service and spare parts from these vendors has become less available, and in some cases, nonexistent. The largest NSE user of this capability is the Savannah River Site (SRS), located near Aiken, South Carolina. The Research and Development Engineering (R&DE) Group in the Savannah River National Laboratory (SRNL) investigated the areas of instrument support that were needed to extend the life cycle of these aging instruments. Their conclusions, as to the focus areas of electromagnetic sector mass spectrometers to address, in order of priority, were electronics, software and hardware. Over the past 3-5 years, the R&DE Group has designed state of the art electronics and software that will allow high resolution legacy mass spectrometers, critical to the NNSA mission, to be operated for the foreseeable future. The funding support for this effort has been from several sources, including the SRS Defense Programs, NNSA Readiness Campaign, Pantex Plant and Sandia National Laboratory. To date, electronics systems have been upgraded on one development system at SRNL, two production systems at Pantex and one production system at Sandia National Laboratory. An NSE working group meets periodically to review strategies going forward. The R&DE Group has also applied their work to the electronics for a Thermal Ionization Mass Spectrometer (TIMS) instrument, which applies a similar mass spectrometric technology for resolving high mass isotopes, such as plutonium and uranium. Due to non-compete clauses for DOE, all work has been performed and applied to instruments which are obsolete and are no longer supported by the original vendor.

Wyrick, S.; Cordaro, J.; Reeves, G.; Mcintosh, J.; Mauldin, C.; Tietze, K.; Varble, D.

2011-06-06T23:59:59.000Z

305

From Hydrogen Fuel Cells to High-Altitude-Pilot Protection Suits- Mound  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S.Financialof EnergyFranklinRenewableScience

306

Applications of Emerging Parallel Optical Link Technology to High Energy Physics Experiments  

SciTech Connect (OSTI)

Modern particle detectors depend upon optical fiber links to deliver event data to upstream trigger and data processing systems. Future detector systems can benefit from the development of dense arrangements of high speed optical links emerging from the telecommunications and storage area network market segments. These links support data transfers in each direction at rates up to 120 Gbps in packages that minimize or even eliminate edge connector requirements. Emerging products include a class of devices known as optical engines which permit assembly of the optical transceivers in close proximity to the electrical interfaces of ASICs and FPGAs which handle the data in parallel electrical format. Such assemblies will reduce required printed circuit board area and minimize electromagnetic interference and susceptibility. We will present test results of some of these parallel components and report on the development of pluggable FPGA Mezzanine Cards equipped with optical engines to provide to collaborators on the Versatile Link Common Project for the HI-LHC at CERN.

Chramowicz, J.; Kwan, S.; Prosser, A.; Winchell, M.; /Fermilab

2011-09-01T23:59:59.000Z

307

Ultra-high-resolution alpha spectrometry for nuclear forensics and safeguards applications  

SciTech Connect (OSTI)

We will present our work on the development of ultra-high-resolution detectors for alpha particle spectrometry. These detectors, based on superconducting transition-edge sensors, offer energy resolution that is five to ten times better than conventional silicon detectors. Using these microcalorimeter detectors, the isotopic composition of mixed-actinide samples can be determined rapidly without the need for actinide separation chemistry to isolate each element, or mass spectrometry to separate isotopic signatures that can not be resolved using traditional alpha spectrometry (e.g. Pu-239/Pu-240, or Pu-238/Am-241). This paper will cover the detector and measurement system, actinide source preparation, and the quantitative isotopic analysis of a number of forensics- and safeguards-relevant radioactive sources.

Bacrania, Minesh K [Los Alamos National Laboratory; Croce, Mark [Los Alamos National Laboratory; Bond, Evelyn [Los Alamos National Laboratory; Dry, Donald [Los Alamos National Laboratory; Moody, W. Allen [Los Alamos National Laboratory; Lamont, Stephen [Los Alamos National Laboratory; Rabin, Michael [Los Alamos National Laboratory; Rim, Jung [Los Alamos National Laboratory; Smith, Audrey [Los Alamos National Laboratory; Beall, James [NIST-BOULDER; Bennett, Douglas [NIST-BOULDER; Kotsubo, Vincent [NIST-BOULDER; Horansky, Robert [NIST-BOULDER; Hilton, Gene [NIST-BOULDER; Schmidt, Daniel [NIST-BOULDER; Ullom, Joel [NIST-BOULDER; Cantor, Robin [STAR CRYOELECTRONICS

2010-01-01T23:59:59.000Z

308

New developments in high resolution borehole seismology and their applications to reservoir development and management  

SciTech Connect (OSTI)

Single-well seismology, Reverse Vertical Seismic Profiles (VSP`s) and Crosswell seismology are three new seismic techniques that we jointly refer to as borehole seismology. Borehole seismic techniques are of great interest because they can obtain much higher resolution images of oil and gas reservoirs than what is obtainable with currently used seismic techniques. The quality of oil and gas reservoir management decisions depend on the knowledge of both the large and the fine scale features in the reservoirs. Borehole seismology is capable of mapping reservoirs with an order of magnitude improvement in resolution compared with currently used technology. In borehole seismology we use a high frequency seismic source in an oil or gas well and record the signal in the same well, in other wells, or on the surface of the earth.

Paulsson, B.N.P. [Chevron Petroleum Technology Company, La Habra, CA (United States)

1997-08-01T23:59:59.000Z

309

Application of neutron diffraction to measure residual strains in high temperature composites  

SciTech Connect (OSTI)

An experimental neutron diffraction technique was used to measure residual thermal strains developed in high temperature composites during postfabrication cooling. Silicon carbide fiber-reinforced titanium aluminide (over the temperature range 20--950{degree}C) and tungsten and saphikon fiber-reinforced nickel aluminide composites (at room temperature) were investigated. As a result of thermal expansion mismatch, compressive residual strains and stresses were generated in the silicon carbide fibers during cooldown. The axial residual strains were tensile in the matrix and were lower in nickel aluminide matrix as compared to those in titanium aluminide matrix. The average transverse residual strains in the matrix were compressive. Liquid-nitrogen dipping and thermal-cycling tend to reduce the fabrication-induced residual strains in silicon carbide fiber-reinforced titanium aluminide matrix composite. However, matrix cracking can occur as a result of these processes. 10 refs., 5 figs., 2 tabs.

Saigal, A. (Tufts Univ., Medford, MA (USA). Dept. of Mechanical Engineering); Kupperman, D.S. (Argonne National Lab., IL (USA))

1991-01-01T23:59:59.000Z

310

High temperature applications of structural ceramics. Quarterly progress report, July-September 1980  

SciTech Connect (OSTI)

Further studies of Tien's Si/sub 3/N/sub 4/ materials were conducted to obtain critical stress intensity factors and to clarify some inconsistencies in earlier results. Sialon specimens received from Kobayashi were annealed at 1430/sup 0/C for 60 hours with little degradation of the specimen. Billets of SiC materials were ordered from Norton and Carborundum. A literature survey of available data on fracture toughness, crack growth behavior, and creep of SiC, Si/sub 3/N/sub 4/, and sialon was completed. A preliminary crack growth mechanism map for commercial, hot pressed SiC materials was constructed from published information. X-ray analysis has been completed on 17 ..beta..-Si/sub 3/N/sub 4/ plus garnet samples before and after high temperature fracture testing.

Schneider, Samuel J.

1980-01-01T23:59:59.000Z

311

Application of High-Performance Aerogel Insulating Materials (Analysis & Test Results)  

SciTech Connect (OSTI)

The NCSX stellarator core design is built around a 3-period, highly shaped plasma with an assembly of four magnet systems, the TF coils (TF), the Modular Coils (MC), the PF Coils (PF), and the Trim Coils, that surrounds an all welded Vacuum Vessel (VV). The VV features approximately 100 ports for heating, pumping, diagnostics, and maintenance access. The entire system is surrounded by a cryostat to permit operation of the coils at liquid nitrogen temperature. The VV and coils are assembled in 120 segments. The VV segments must be placed inside the MC by sliding the coils over each end of the vessel subassembly. Installation of the port extensions is done after this operation. They are slipped through access holes in the MC onto port stubs and welded on from inside. Figures 1 & 2 illustrate the assembly of the MC over a VV section and installation of TF and port extensions to complete a sector of the VV.

Goranson, Paul L [ORNL; Freudenberg, Kevin D [ORNL; McGinnis, William Dean [ORNL; Dudek, L. [Princeton Plasma Physics Laboratory (PPPL); Zarnstorff, M. C. [Princeton Plasma Physics Laboratory (PPPL)

2009-01-01T23:59:59.000Z

312

Novel, fiber optic, hybrid pressure and temperature sensor designed for high-temperature gen-IV reactor applications  

SciTech Connect (OSTI)

A novel, fiber optic, hybrid pressure-temperature sensor is presented. The sensor is designed for reliable operation up to 1050 C, and is based on the high-temperature fiber optic sensors already demonstrated during previous work. The novelty of the sensors presented here lies in the fact that pressure and temperature are measured simultaneously with a single fiber and a single transducer. This hybrid approach will enable highly accurate active temperature compensation and sensor self-diagnostics not possible with other platforms. Hybrid pressure and temperature sensors were calibrated by varying both pressure and temperature. Implementing active temperature compensation resulted in a ten-fold reduction in the temperature-dependence of the pressure measurement. Sensors were also tested for operability in a relatively high neutron radiation environment up to 6.9x10{sup 17} n/cm{sup 2}. In addition to harsh environment survivability, fiber optic sensors offer a number of intrinsic advantages for nuclear power applications including small size, immunity to electromagnetic interference, self diagnostics / prognostics, and smart sensor capability. Deploying fiber optic sensors on future nuclear power plant designs would provide a substantial improvement in system health monitoring and safety instrumentation. Additional development is needed, however, before these advantages can be realized. This paper will highlight recent demonstrations of fiber optic sensors in environments relevant to emerging nuclear power plants. Successes and lessons learned will be highlighted. (authors)

Palmer, M. E.; Fielder, R. S.; Davis, M. A. [Luna Innovations, Incorporated, 2851 Commerce St., Blacksburg, VA 24060 (United States)

2006-07-01T23:59:59.000Z

313

B-spline algebraic diagrammatic construction: Application to photoionization cross-sections and high-order harmonic generation  

SciTech Connect (OSTI)

We present the first implementation of the ab initio many-body Green's function method, algebraic diagrammatic construction (ADC), in the B-spline single-electron basis. B-spline versions of the first order [ADC(1)] and second order [ADC(2)] schemes for the polarization propagator are developed and applied to the ab initio calculation of static (photoionization cross-sections) and dynamic (high-order harmonic generation spectra) quantities. We show that the cross-section features that pose a challenge for the Gaussian basis calculations, such as Cooper minima and high-energy tails, are found to be reproduced by the B-spline ADC in a very good agreement with the experiment. We also present the first dynamic B-spline ADC results, showing that the effect of the Cooper minimum on the high-order harmonic generation spectrum of Ar is correctly predicted by the time-dependent ADC calculation in the B-spline basis. The present development paves the way for the application of the B-spline ADC to both energy- and time-resolved theoretical studies of many-electron phenomena in atoms, molecules, and clusters.

Ruberti, M.; Averbukh, V. [Department of Physics, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom); Decleva, P. [Dipartimento di Scienze Chimiche, Universita’ di Trieste, Via Giorgieri 1, I-34127 Trieste (Italy)

2014-10-28T23:59:59.000Z

314

Application of a highly variable gauge stabilizer at Wytch Farm to extend the ERD envelope  

SciTech Connect (OSTI)

Wytch Farm operations have demonstrated that downhole adjustable, highly variable gauge stabilizers (HVGSs) can cost-effectively extend the reach of extended-reach-drilling (ERD) wells. This paper will describe the operation and benefits of using an HVGS at the Wytch Farm ERD project to control hole inclination while minimizing time consuming oriented drilling. The first Wytch Farm well drilled with an HVGS had a Reach/TVD ratio of 4.22 at a true vertical depth (TVD) of 1603 m. The total depth was 7522 m with a reach of 6732 m, which set a new world record for reach at the subject reservoir depth. The second well drilled with an HVGS had a Reach/TVD ratio of 4.28 at a TVD of 1592 m. The HVGS was used in conjunction with an instrumented steerable motor with near-bit inclination sensor. The HVGS is controlled from the surface through a series of mud pump flow sequences, and communicates the blades` commanded and measured positions to the surface with mud pulse telemetry. Wytch Farm operations required that the HVGS telemetry be modified to Cow compatibility with previously contracted measurement-while-drilling/logging-while-drilling (MWD/LWD) systems. This paper will describe the new telemetry scheme and will document the success of the HVGS in receiving commands and in actuating to desired positions at measured depths in excess of 7300 m and departures beyond 6100 m.

Odell, A.C. II; Payne, M.L.; Cocking, D.A.

1995-12-31T23:59:59.000Z

315

"Flexible aerogel as a superior thermal insulation for high temperature superconductor cable applications"  

SciTech Connect (OSTI)

High temperature superconducting (HTS) cables are an advanced technology that can both strengthen and improve the national electrical distribution infrastructure. HTS cables require sufficient cooling to overcome inherent low temperature heat loading. Heat loads are minimized by the use of cryogenic envelopes or cryostats. Cryostats require improvement in efficiency, reliability, and cost reduction to meet the demanding needs of HTS conductors (1G and 2G wires). Aspen Aerogels has developed a compression resistant aerogel thermal insulation package to replace compression sensitive multi-layer insulation (MLI), the incumbent thermal insulation, in flexible cryostats for HTS cables. Oak Ridge National Laboratory tested a prototype aerogel package in a lab-scale pipe apparatus to measure the rate of heat invasion. The lab-scale pipe test results of the aerogel solution will be presented and directly compared to MLI. A compatibility assessment of the aerogel material with HTS system components will also be presented. The aerogel thermal insulation solution presented will meet the demanding needs of HTS cables.

White, Shannon O. [Aspen Aerogel, Inc.; Demko, Jonathan A [ORNL; Tomich, A. [Aspen Aerogel, Inc.

2010-01-01T23:59:59.000Z

316

The US market for high-temperature superconducting wire in transmission cable applications  

SciTech Connect (OSTI)

Telephone interviews were conducted with 23 utility engineers concerning the future prospects for high-temperature superconducting (HTS) transmission cables. All have direct responsibility for transmission in their utility, most of them in a management capacity. The engineers represented their utilities as members of the Electric Power Research Institute`s Underground Transmission Task Force (which has since been disbanded). In that capacity, they followed the superconducting transmission cable program and are aware of the cryogenic implications. Nineteen of the 23 engineers stated the market for underground transmission would grow during the next decade. Twelve of those specified an annual growth rate; the average of these responses was 5.6%. Adjusting that figure downward to incorporate the remaining responses, this study assumes an average growth rate of 3.4%. Factors driving the growth rate include the difficulty in securing rights-of-way for overhead lines, new construction techniques that reduce the costs of underground transmission, deregulation, and the possibility that public utility commissions will allow utilities to include overhead costs in their rate base. Utilities have few plans to replace existing cable as preventive maintenance, even though much of the existing cable has exceeded its 40-year lifetime. Ten of the respondents said the availability of a superconducting cable with the same life-cycle costs as a conventional cable and twice the ampacity would induce them to consider retrofits. The respondents said a cable with those characteristics would capture 73% of their cable retrofits.

Forbes, D.

1996-04-01T23:59:59.000Z

317

Power Modulation Investigation for High Temperature (175-200 degrees Celcius) Automotive Application  

SciTech Connect (OSTI)

Hybrid electric vehicles were re-introduced in the late 1990s after a century dominated by purely internal combustion powered engines[1]. Automotive players, such as GM, Ford, DaimlerChrysler, Honda, and Toyota, together with major energy producers, such as BPAmoco, were the major force in the development of hybrid electric vehicles. Most notable was the development by Toyota of its Prius, which was launched in Japan in 1997 and worldwide in 2001. The shift to hybrids was driven by the fact that the sheer volume of vehicles on the road had begun to tax the ability of the environment to withstand the pollution of the internal combustion engine and the ability of the fossil fuel industry to produce a sufficient amount of refined gasoline. In addition, the number of vehicles was anticipated to rise exponentially with the increasing affluence of China and India. Over the last fifteen years, major advances have been made in all the technologies essential to hybrid vehicle success, including batteries, motors, power control and conditioning electronics, regenerative braking, and power sources, including fuel cells. Current hybrid electric vehicles are gasoline internal combustion--electric motor hybrids. These hybrid electric vehicles range from micro-hybrids, where a stop/start system cuts the engine while the vehicle is stopped, and mild hybrids where the stop/start system is supplemented by regenerative braking and power assist, to full hybrids where the combustion motor is optimized for electric power production, and there is full electric drive and full regenerative braking. PSA Peugeot Citroen estimates the increased energy efficiency will range from 3-6% for the micro-hybrids to 15-25% for the full hybrids.[2] Gasoline-electric hybrids are preferred in US because they permit long distance travel with low emissions and high gasoline mileage, while still using the existing refueling infrastructure. One of the most critical areas in which technology has been advancing has been the development of electronics that can operate in the high temperature environments present in hybrid vehicles. The temperatures under the hood for a gasoline-electric hybrid vehicle are comparable to those for traditional internal combustion engines. This is known to be a difficult environment with respect to commercial-grade electronics, as there are surface and ambient temperatures ranging from 125 C to 175 C. In addition, some hybrid drive electronics are placed in even harsher environments, such as on or near the brakes, where temperatures can reach 250 C. Furthermore, number of temperature cycles experienced by electronics in a hybrid vehicle is different from that experienced in a traditional vehicle. A traditional internal combustion vehicle will have the engine running for longer periods, whereas a mild or micro-hybrid engine will experience many more starts and stops.[3] This means that hybrid automotive electronics will undergo more cycles of a potential wider temperature cycle than standard automotive electronics, which in turn see temperature cycles of 2 to 3 times the magnitude of the {Delta}T = 50 C-75 C experienced by commercial-grade electronics. This study will discuss the effects of these harsh environments on the failure mechanisms and ultimate reliability of electronic systems developed for gasoline-electric hybrid vehicles. In addition, it will suggest technologies and components that can reasonably be expected to perform well in these environments. Finally, it will suggest areas where further research is needed or desirable. Areas for further research will be highlighted in bold, italic type. It should be noted that the first area where further research is desirable is in developing a clearer understanding of the actual hybrid automotive electronics environment and how to simulate it through accelerated testing, thus: Developing specific mission profiles and accelerated testing protocols for the underhood environment for hybrid cars, as has previously been done for gasoline-powered vehicles, is an important area for further st

McCluskey, F. P.

2007-04-30T23:59:59.000Z

318

Accurate glass forming for high-temperature solar applications. Final report  

SciTech Connect (OSTI)

Development work was undertaken to thermally form glass for solar concentrators. Sagging and pressing glass to parabolic shapes was investigated with goal of achieving slope errors less than 2.0 mr RMS and costs of $1.25/ft/sup 2/. In addition, a laminating process was investigated to overcome the problem of silvering of a curved surface and to reduce corrosion of the silver. Thermal sagging is a process in which glass is shaped by heating the glass until it is sufficiently soft to deform under its own weight and conform to a mold. For cylindrical parabolic shapes, a method for producing low cost high accuracy molds was developed using castable ceramics and a grinder. Thermal conditions were established for a commercial glass bending furnace to obtain good replication of the mold. The accuracy and cost goals were met for glass size up to 30 x 30 x 0.125 inches and for low iron and regular iron float and sheet glasses. Lamination of two curved pieces of glass using automotive technology was investigated. A silver film was placed between two layers of polyvinyl and butyral (PVB) and this was used to bond two sheets of glass. Economically, and technically, the process appears feasible. However, the non-uniform thickness of PBV cause distortion in the reflected image. More work is needed to assess accuracy of curved laminated composites. Thermal pressing of glass is accomplished by heating the glass until it is soft and mechanically stamping the shape. Equipment was built and operated to determine important parameters in pressing. Control of thermal stresses in the glass is critical to preventing cracks. No glass pieces were produced without cracks.

none,

1980-10-01T23:59:59.000Z

319

Application of Quantitative NDE Techniques to High Level Waste Storage Tanks  

SciTech Connect (OSTI)

As various issues make the continued usage of high-level waste storage tanks attractive, there is an increasing need to sharpen the assessment of their structural integrity. One aspect of a structural integrity program, nondestructive evaluation, is the focus of this paper. In September 2000, a program to support the sites was initiated jointly by Tanks Focus Area and Characterization, Monitoring, and Sensor Technologies Crosscutting Program of the Office of Environmental Management, Department of Energy (DOE). The vehicle was the Center for Nondestructive Evaluation, one of the National Science Foundation's Industry/University Cooperative Research Centers that is operated in close collaboration with the Ames Laboratory, USDOE. The support activities that have been provided by the center will be reviewed. Included are the organization of a series of annual workshops to allow the sites to share experiences and develop coordinated approaches to common problems, the development of an electronic source of relevant information, and assistance of the sites on particular technical problems. Directions and early results on some of these technical assistance projects are emphasized. Included are the discussion of theoretical analysis of ultrasonic wave propagation in curved plates to support the interpretation of tandem synthetic aperture focusing data to detect flaws in the knuckle region of double shell tanks; the evaluation of guided ultrasonic waves, excited by couplant free, electromagnetic acoustic transducers, to rapidly screen for inner wall corrosion in tanks; the use of spread spectrum techniques to gain information about the structural integrity of concrete domes; and the use of magnetic techniques to identify the alloys used in the construction of tanks.

Thompson, R. B.; Rehbein, D. K.; Bastiaans, G.; Terry, M.; Alers, R.

2002-02-25T23:59:59.000Z

320

Radiation from Ag high energy density Z-pinch plasmas and applications to lasing  

SciTech Connect (OSTI)

Silver (Ag) wire arrays were recently introduced as efficient x-ray radiators and have been shown to create L-shell plasmas that have the highest electron temperature (>1.8?keV) observed on the Zebra generator so far and upwards of 30?kJ of energy output. In this paper, results of single planar wire arrays and double planar wire arrays of Ag and mixed Ag and Al that were tested on the UNR Zebra generator are presented and compared. To further understand how L-shell Ag plasma evolves in time, a time-gated x-ray spectrometer was designed and fielded, which has a spectral range of approximately 3.5–5.0?Å. With this, L-shell Ag as well as cold L{sub ?} and L{sub ?} Ag lines was captured and analyzed along with photoconducting diode (PCD) signals (>0.8?keV). Along with PCD signals, other signals, such as filtered XRD (>0.2?keV) and Si-diodes (SiD) (>9?keV), are analyzed covering a broad range of energies from a few eV to greater than 53?keV. The observation and analysis of cold L{sub ?} and L{sub ?} lines show possible correlations with electron beams and SiD signals. Recently, an interesting issue regarding these Ag plasmas is whether lasing occurs in the Ne-like soft x-ray range, and if so, at what gains? To help answer this question, a non-local thermodynamic equilibrium (LTE) kinetic model was utilized to calculate theoretical lasing gains. It is shown that the Ag L-shell plasma conditions produced on the Zebra generator at 1.7 maximum current may be adequate to produce gains as high as 6?cm{sup ?1} for various 3p???3s transitions. Other potential lasing transitions, including higher Rydberg states, are also included in detail. The overall importance of Ag wire arrays and plasmas is discussed.

Weller, M. E., E-mail: mweller@unr.edu; Safronova, A. S.; Kantsyrev, V. L.; Esaulov, A. A.; Shrestha, I.; Stafford, A.; Keim, S. F.; Shlyaptseva, V. V.; Osborne, G. C.; Petkov, E. E. [Physics Department, University of Nevada, Reno, Nevada 89557 (United States)] [Physics Department, University of Nevada, Reno, Nevada 89557 (United States); Apruzese, J. P.; Giuliani, J. L. [Naval Research Laboratory, Washington, District of Columbia 20375 (United States)] [Naval Research Laboratory, Washington, District of Columbia 20375 (United States); Chuvatin, A. S. [Ecole Polytechnique, 91128 Palaiseau (France)] [Ecole Polytechnique, 91128 Palaiseau (France)

2014-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "application suite high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Heat strain and heat stress for workers wearing protective suits at a hazardous waste site  

SciTech Connect (OSTI)

In order to evaluate the effects of heat stress when full body protective suits are worn, heart rates, oral temperatures and environmental parameters were measured for five unacclimatized male workers (25-33 years of age) who performed sampling activities during hazardous waste clean-up operations. The protective ensembles included laminated PVC-Tyvec chemical resistant hood suits with rubber boots, gloves, full facepiece dual cartridge respirators and hard hats. For comparison, measurements also were performed when the men worked at a similar level of activity while they wore ordinary work clothes. A comparison of the heart rates for the men working with and without suits indicated that wearing the suits imposed a heat stress equivalent to adding 6/sup 0/ to 11/sup 0/C (11/sup 0/ to 20/sup 0/F) to the ambient WBGT index. A similar result was obtained by calculating the WBGT in the microclimate inside the suits and comparing it to the ambient WBGT. These results indicate the following: 1) there exists a significant risk of heat injury during hazardous waste work when full body protective clothing is worn, and 2) threshold limit values for heat stress established by the ACGIH must be lowered substantially before extending them to cover workers under these conditions.

Paull, J.M.; Rosenthal, F.S.

1987-05-01T23:59:59.000Z

322

Development of high-spatial and high-mass resolution mass spectrometric imaging (MSI) and its application to the study of small metabolites and endogenous molecules of plants  

SciTech Connect (OSTI)

High-spatial and high-mass resolution laser desorption ionization (LDI) mass spectrometric (MS) imaging technology was developed for the attainment of MS images of higher quality containing more information on the relevant cellular and molecular biology in unprecedented depth. The distribution of plant metabolites is asymmetric throughout the cells and tissues, and therefore the increase in the spatial resolution was pursued to reveal the localization of plant metabolites at the cellular level by MS imaging. For achieving high-spatial resolution, the laser beam size was reduced by utilizing an optical fiber with small core diameter (25 ?m) in a vacuum matrix-assisted laser desorption ionization-linear ion trap (vMALDI-LTQ) mass spectrometer. Matrix application was greatly improved using oscillating capillary nebulizer. As a result, single cell level spatial resolution of ~ 12 ?m was achieved. MS imaging at this high spatial resolution was directly applied to a whole Arabidopsis flower and the substructures of an anther and single pollen grains at the stigma and anther were successfully visualized. MS imaging of high spatial resolution was also demonstrated to the secondary roots of Arabidopsis thaliana and a high degree of localization of detected metabolites was successfully unveiled. This was the first MS imaging on the root for molecular species. MS imaging with high mass resolution was also achieved by utilizing the LTQ-Orbitrap mass spectrometer for the direct identification of the surface metabolites on the Arabidopsis stem and root and differentiation of isobaric ions having the same nominal mass with no need of tandem mass spectrometry (MS/MS). MS imaging at high-spatial and high-mass resolution was also applied to cer1 mutant of the model system Arabidopsis thaliana to demonstrate its usefulness in biological studies and reveal associated metabolite changes in terms of spatial distribution and/or abundances compared to those of wild-type. The spatial distribution of targeted metabolites, mainly waxes and flavonoids, was systematically explored on various organs, including flowers, leaves, stems, and roots at high spatial resolution of ~ 12-50 ?m and the changes in the abundance level of these metabolites were monitored on the cer1 mutant with respect to the wild-type. This study revealed the metabolic biology of CER1 gene on each individual organ level with very detailed high spatial resolution. The separate MS images of isobaric metabolites, i.e. C29 alkane vs. C28 aldehyde could be constructed on both genotypes from MS imaging at high mass resolution. This allows tracking of abundance changes for those compounds along with the genetic mutation, which is not achievable with low mass resolution mass spectrometry. This study supported previous hypothesis of molecular function of CER1 gene as aldehyde decarbonylase, especially by displaying hyper accumulation of aldehydes and C30 fatty acid and decrease in abundance of alkanes and ketones in several plant organs of cer1 mutant. The scope of analytes was further directed toward internal cell metabolites from the surface metabolites of the plant. MS profiling and imaging of internal cell metabolites were performed on the vibratome section of Arabidopsis leaf. Vibratome sectioning of the leaf was first conducted to remove the surface cuticle layer and it was followed by enzymatic treatment of the section to induce the digestion of primary cell walls, middle lamella, and expose the internal cells underneath to the surface for detection with the laser by LDI-MS. The subsequent MS imaging onto the enzymatically treated vibratome section allowed us to map the distribution of the metabolites in the internal cell layers, linolenic acid (C18:3 FA) and linoleic acid (C18:2 FA). The development of an assay for relative quantification of analytes at the single subcellular/organelle level by LDI-MS imaging was attempted and both plausibility and significant obstacles were seen. As a test system, native plant organelle, chloroplasts isolated from the spinach leaves were used

Jun, Ji Hyun

2011-11-30T23:59:59.000Z

323

Carbon nanotube processing and chemistry for electronic interconnect applications  

E-Print Network [OSTI]

Carbon nanotubes possess many properties that are ideally suited for electronic applications, such as metallic/semiconducting behavior and ballistic transport. Specifically, in light of mounting concerns over the increasing ...

Wu, Tan Mau, 1979-

2008-01-01T23:59:59.000Z

324

Application of electrolytic in-process dressing for high-efficiency grinding of ceramic parts. Research activities 1995--96  

SciTech Connect (OSTI)

The application of Electrolytic In-Process Dressing (ELID) for highly efficient and stable grinding of ceramic parts is discussed. This research was performed at the Institute of Physical and Chemical Research (RIKEN), Tokyo, Japan, June 1995 through August 1995. Experiments were conducted using a vertical machining center. The silicon nitride work material, of Japanese manufacture and supplied in the form of a rectangular block, was clamped to a vice which was firmly fixed on the base of a strain gage dynamometer. The dynamometer was clamped on the machining center table. Reciprocating grinding was performed with a flat-faced diamond grinding wheel. The output from the dynamometer was recorded with a data acquisition system and the normal component of the force was monitored. Experiments were carried out under various cutting conditions, different ELID conditions, and various grinding wheel bonds types. Rough grinding wheels of grit sizes {number_sign}170 and {number_sign}140 were used in the experiments. Compared to conventional grinding, there was a significant reduction in grinding force with ELID grinding. Therefore, ELID grinding can be recommended for high material removal rate grinding, low rigidity machines, and low rigidity workpieces. Compared to normal grinding, a reduction in grinding ratio was observed when ELID grinding was performed. A negative aspect of the process, this reduced G-ratio derives from bond erosion and can be improved somewhat by adjustments in the ELID current. The results of this investigation are discussed in detail in this report.

Bandyopadhyay, B.P. [Univ. of North Dakota, Grand Forks, ND (United States). Dept. of Mechanical Engineering

1997-02-01T23:59:59.000Z

325

High Spectral Resolution Infrared and Raman Lidar Observations for the ARM Program: Clear and Cloudy Sky Applications  

SciTech Connect (OSTI)

This grant began with the development of the Atmospheric Emitted Radiance Interferometer (AERI) for ARM. The AERI has provided highly accurate and reliable observations of downwelling spectral radiance (Knuteson et al. 2004a, 2004b) for application to radiative transfer, remote sensing of boundary layer temperature and water vapor, and cloud characterization. One of the major contributions of the ARM program has been its success in improving radiation calculation capabilities for models and remote sensing that evolved from the multi-year, clear-sky spectral radiance comparisons between AERI radiances and line-by-line calculations (Turner et al. 2004). This effort also spurred us to play a central role in improving the accuracy of water vapor measurements, again helping ARM lead the way in the community (Turner et al. 2003a, Revercomb et al. 2003). In order to add high-altitude downlooking AERI-like observations over the ARM sites, we began the development of an airborne AERI instrument that has become known as the Scanning High-resolution Interferometer Sounder (Scanning-HIS). This instrument has become an integral part of the ARM Unmanned Aerospace Vehicle (ARM-UAV) program. It provides both a cross-track mapping view of the earth and an uplooking view from the 12-15 km altitude of the Scaled Composites Proteus aircraft when flown over the ARM sites for IOPs. It has successfully participated in the first two legs of the “grand tour” of the ARM sites (SGP and NSA), resulting in a very good comparison with AIRS observations in 2002 and in an especially interesting data set from the arctic during the Mixed-Phase Cloud Experiment (M-PACE) in 2004. More specifically, our major achievements for ARM include 1. Development of the Atmospheric Emitted Radiance Interferometer (AERI) to function like a satellite on the ground for ARM, providing a steady stream of accurately calibrated spectral radiances for Science Team clear sky and cloud applications (Knuteson et al. 2004a), 2. Detailed radiometric calibration and characterization of AERI radiances, with uncertainty estimates established from complete error analyses and proven by inter-comparison tests (Knuteson et al. 2004b), 3. AERI data quality assessment and maintenance over the extended time frames needed to support ARM (Dedecker et al., 2005) 4. Key role in the radiative transfer model improvements from the AERI/LBLRTM QME (Turner et al. 2004) and AERI-ER especially from the SHEBA experiment (Tobin et al. 1999), 5. Contributed scientific and programmatic leadership leading to significant water vapor accuracy improvements and uncertainty assessments for the low to mid troposphere (Turner et al. 2003a, Revercomb et al. 2003), 6. Leadership of the ARM assessment of the accuracy of water vapor observations from radiosondes, Raman Lidar and in situ aircraft observations in the upper troposphere and lower stratosphere (Tobin et al. 2002, Ferrare et al. 2004), 7. New techniques for characterizing clouds from AERI (DeSlover et al. 1999, Turner 2003b, Turner et al. 2003b), 8. Initial design and development of the Scanning-HIS aircraft instrument and application to ARM UAV Program missions (Revercomb et al. 2005), and 9. Coordinated efforts leading to the use of ARM observations as a key validation tool for the high resolution Atmospheric IR Sounder on the NASA Aqua platform (Tobin et al. 2005a) 10. Performed ARM site and global clear sky radiative closure studies that shows closure of top-of-atmosphere flux at the level of ~1 W/m2 (Moy et al 2008 and Section 3 of this appendix) 11. Performed studies to characterize SGP site cirrus cloud property retrievals and assess impacts on computed fluxes and heating rate profiles (Borg et al. 2008 and Section 2 of this appendix).

Henry Revercomb, David Tobin, Robert Knuteson, Lori Borg, Leslie Moy

2009-06-17T23:59:59.000Z

326

Reviving Abandoned Reservoirs with High-Pressure Air Injection: Application in a Fractured and Karsted Dolomite Reservoir  

SciTech Connect (OSTI)

Despite declining production rates, existing reservoirs in the United States contain vast volumes of remaining oil that is not being effectively recovered. This oil resource constitutes a huge target for the development and application of modern, cost-effective technologies for producing oil. Chief among the barriers to the recovery of this oil are the high costs of designing and implementing conventional advanced recovery technologies in these mature, in many cases pressure-depleted, reservoirs. An additional, increasingly significant barrier is the lack of vital technical expertise necessary for the application of these technologies. This lack of expertise is especially notable among the small operators and independents that operate many of these mature, yet oil-rich, reservoirs. We addressed these barriers to more effective oil recovery by developing, testing, applying, and documenting an innovative technology that can be used by even the smallest operator to significantly increase the flow of oil from mature U.S. reservoirs. The Bureau of Economic Geology and Goldrus Producing Company assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The Permian Basin, the largest oil-bearing basin in North America, contains more than 70 billion barrels of remaining oil in place and is an ideal venue to validate this technology. We have demonstrated the potential of HPAI for oil-recovery improvement in preliminary laboratory tests and a reservoir pilot project. To more completely test the technology, this project emphasized detailed characterization of reservoir properties, which were integrated to access the effectiveness and economics of HPAI. The characterization phase of the project utilized geoscientists and petroleum engineers from the Bureau of Economic Geology and the Department of Petroleum Engineering (both at The University of Texas at Austin) to define the controls on fluid flow in the reservoir as a basis for developing a reservoir model. The successful development of HPAI technology has tremendous potential for increasing the flow of oil from deep carbonate reservoirs in the Permian Basin, a target resource that can be conservatively estimated at more than 1.5 billion barrels. Successful implementation in the field chosen for demonstration, for example, could result in the recovery of more than 34 million barrels of oil that will not otherwise be produced. Geological and petrophysical analysis of available data at Barnhart field reveals the following important observations: (1) the Barnhart Ellenburger reservoir is similar to most other Ellenburger reservoirs in terms of depositional facies, diagenesis, and petrophysical attributes; (2) the reservoir is characterized by low to moderate matrix porosity much like most other Ellenburger reservoirs in the Permian Basin; (3) karst processes (cave formation, infill, and collapse) have substantially altered stratigraphic architecture and reservoir properties; (4) porosity and permeability increase with depth and may be associated with the degree of karst-related diagenesis; (5) tectonic fractures overprint the reservoir, improving overall connectivity; (6) oil-saturation profiles show that the oil-water contact (OWC) is as much as 125 ft lower than previous estimations; (7) production history and trends suggest that this reservoir is very similar to other solution-gas-drive reservoirs in the Permian Basin; and (8) reservoir simulation study showed that the Barnhart reservoir is a good candidate for HPAI and that application of horizontal-well technology can improve ultimate resource recovery from the reservoir.

Robert Loucks; Stephen C. Ruppel; Dembla Dhiraj; Julia Gale; Jon Holder; Jeff Kane; Jon Olson; John A. Jackson; Katherine G. Jackson

2006-09-30T23:59:59.000Z

327

High-altitude, long-endurance UAVs vs. satellites : potential benefits for U.S. Army applications  

E-Print Network [OSTI]

Satellites have become a critical component of nearly every aspect of modern life. In addition to well-known civilian applications, military applications of space-based platforms include supporting mission operations through ...

Symolon, William Everette, Major

2009-01-01T23:59:59.000Z

328

High quality Y-type hexaferrite thick films for microwave applications by an economical and environmentally benign crystal growth technique  

SciTech Connect (OSTI)

Thick barium hexaferrite Ba{sub 2}Zn{sub 2}Fe{sub 12}O{sub 22} (i.e., Zn{sub 2}Y) films having thicknesses of ?100??m were epitaxially grown on MgO (111) substrates using an environmentally benign ferrite-salt mixture by vaporizing the salt. X-ray diffraction pole figure analyses showed (00l) crystallographic alignment with little in plane dispersion confirming epitaxial growth. Saturation magnetization, 4?M{sub s}, was measured for as-grown films to be 2.51?±?0.1?kG with an out of plane magnetic anisotropy field H{sub A} of 8.9?±?0.1?kOe. Ferromagnetic resonance linewidth, as the peak-to-peak power absorption derivative at 9.6?GHz, was measured to be 62?Oe. These properties demonstrate a rapid, convenient, cost-effective, and nontoxic method of growing high quality thick crystalline ferrite films which could be used widely for microwave device applications.

Hu, Bolin; Chen, Yajie, E-mail: y.chen@neu.edu; Gillette, Scott; Su, Zhijuan; Harris, Vincent G. [Center for Microwave Magnetic Materials and Integrated Circuits and Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115 (United States); Wolf, Jason; McHenry, Michael E. [Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States)

2014-02-17T23:59:59.000Z

329

Power applications of high-temperature superconductivity: Variable speed motors, current switches, and energy storage for end use  

SciTech Connect (OSTI)

The objective of this project is to conduct joint research and development activities related to certain electric power applications of high-temperature superconductivity (HTS). The new superconductors may allow development of an energy-efficient switch to control current to variable speed motors, superconducting magnetic energy storage (SMES) systems, and other power conversion equipment. Motor types that were considered include induction, permanent magnet, and superconducting ac motors. Because it is impractical to experimentally alter certain key design elements in radial-gap motors, experiments were conducted on an axial field superconducting motor prototype using 4 NbTi magnets. Superconducting magnetic energy storage technology with 0.25--5 kWh stored energy was studied as a viable solution to short duration voltage sag problems on the customer side of the electric meter. The technical performance characteristics of the device wee assembled, along with competing technologies such as active power line conditioners with storage, battery-based uninterruptible power supplies, and supercapacitors, and the market potential for SMES was defined. Four reports were prepared summarizing the results of the project.

Hawsey, R.A. [Oak Ridge National Lab., TN (United States); Banerjee, B.B.; Grant, P.M. [Electric Power Research Inst., Palo Alto, CA (United States)

1996-08-01T23:59:59.000Z

330

The Application of High-Resolution Gamma-Ray Spectrometry (HRGS) to Nuclear Safeguards, Nonproliferation, and Arms Control Activities  

SciTech Connect (OSTI)

While well-developed methodologies exist for the employment of high- resolution gamma ray spectrometry (HRGS) in determining the isotopic composition of plutonium samples, the potential capabilities of such measurements in determining the properties of nuclear materials otherwise remain largely unexploited. These measurements contain information sufficiently detailed such that not only can the isotopic composition of uranium and plutonium materials be determined, but the details of the spectrum obtained will depend reproducibly upon other factors including the total mass, density, chemical composition, and geometrical configuration of the material, and for certain materials, the elapsed time since chemical processing. The potential thus exists to obtain a `gamma-ray fingerprint` for typical containers or assemblies of nuclear material which will then serve to identify that class of item in a later confirmatory measurement. These measurements have the additional advantage that, by comparison with active interrogation techniques which usually require the introduction of some extraneous form of radiation or other intrusive activity, they are totally passive, and thus impose only minimal additional safety or regulatory burdens on the operators. In the application of these measurements to the verification of treaty-limited items, where the information acquired may be sensitive in nature, the use of the CIVET (Controlled Intrusiveness Verification Technique) approach, where a computer-based interface is employed to limit access to the information obtained, may be followed.

Kane, Walter R.; Lemley, James R.; Forman, Leon

1997-12-31T23:59:59.000Z

331

A benchmark suite with virtualized reality models for supporting tracking evaluation and data set generation  

E-Print Network [OSTI]

) Benchmark resources Sharing of benchmarking results A : Datasets GenerateA benchmark suite with virtualized reality models for supporting tracking evaluation and data set laurence.nigay@imag.fr Takeshi Kurata AIST, Japan t.kurata@aist.go.jp Abstract We describe a benchmark

Boyer, Edmond

332

How kelp produce blade shapes suited to different flow regimes: A new wrinkle  

E-Print Network [OSTI]

How kelp produce blade shapes suited to different flow regimes: A new wrinkle M. A. R. Koehl,1,Ã? W bull kelp, Nereocystis luetkeana, to investigate how these ecomorphological differences are produced, strap-like blades of kelp from habitats with rapid flow collapse into streamlined bundles and flutter

Mahadevan, L.

333

Aviation Safety Reporting System 625 Ellis St. Suite 305 Mountain View California 94043  

E-Print Network [OSTI]

of the event. Those who work to improve aviation safety have long recognized that incident reporting fromAviation Safety Reporting System 625 Ellis St. Suite 305 Mountain View California 94043 Cabin Crew Safety Information Article Presented at the 17th International Aircraft Cabin Safety Symposium by Linda

334

COLUMBIA RIVER INTER-TRIBAL FISH COMMISSION 700 NE Multnomah Street, Suite 1200  

E-Print Network [OSTI]

COLUMBIA RIVER INTER-TRIBAL FISH COMMISSION 700 NE Multnomah Street, Suite 1200 Portland, Oregon 97232 F (503) 235-4228 (503) 238-0667 F (503) 235-4228 www.critfc.org Putting fish back in the rivers and protecting the watersheds where fish live September 17, 2013 Bill Bradbury, Chairman Northwest Power

335

Constructed Wetlands Research Group meeting Forth Suite, SEPA Riccarton Office, Edinburgh EH14 4AP  

E-Print Network [OSTI]

, to address diffuse pollution (particularly hydrocarbons) associated with the nearby Brucefield Industry Park1 Minutes of Constructed Wetlands Research Group meeting Forth Suite, SEPA Riccarton Office. It was set up several years ago, particularly to support the implementation of constructed farm wetlands

Heal, Kate

336

The Impact of Test Suite Granularity on the CostEffectiveness of Regression Testing  

E-Print Network [OSTI]

The Impact of Test Suite Granularity on the Cost­Effectiveness of Regression Testing Gregg,pkallakug@cse.unl.edu ABSTRACT Regression testing is an expensive testing process used to validate software following modi#12;cations. The cost-e#11;ective- ness of regression testing techniques varies with characteris- tics of test

Rothermel, Gregg

337

On Test Suite Composition and Cost-Effective Regression Testing Gregg Rothermel  

E-Print Network [OSTI]

On Test Suite Composition and Cost-Effective Regression Testing Gregg Rothermel , Sebastian Elbaum}@cse.unl.edu August 31, 2004 Abstract Regression testing is an expensive testing process used to re-validate software as it evolves. Various methodologies for improving regression testing processes have been explored, but the cost

Rothermel, Gregg

338

The Impact of Test Suite Granularity on the Cost-Effectiveness of Regression Testing  

E-Print Network [OSTI]

The Impact of Test Suite Granularity on the Cost-Effectiveness of Regression Testing Gregg,pkallakug@cse.unl.edu ABSTRACT Regression testing is an expensive testing process used to validate software following modi cations. The cost-e ective- ness of regression testing techniques varies with characteris- tics of test

Rothermel, Gregg

339

The Impact of Test Suite Granularity on the CostEffectiveness of Regression Testing  

E-Print Network [OSTI]

The Impact of Test Suite Granularity on the Cost­Effectiveness of Regression Testing Gregg,pkallakug@cse.unl.edu ABSTRACT Regression testing is an expensive testing process used to validate software following modifications. The cost­effective­ ness of regression testing techniques varies with characteris­ tics of test

Rothermel, Gregg

340

On Test Suite Composition and Cost-Effective Regression Testing. Gregg Rothermel  

E-Print Network [OSTI]

On Test Suite Composition and Cost-Effective Regression Testing. Gregg Rothermel , Sebastian Elbaum}@cse.unl.edu August 30, 2003 Abstract Regression testing is an expensive testing process used to re-validate software as it evolves. Various methodologies for improving regression testing processes have been explored, but the cost

Rothermel, Gregg

Note: This page contains sample records for the topic "application suite high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Test Factoring: Focusing Test Suites for the Task at Hand Michael D. Ernst, research advisor  

E-Print Network [OSTI]

Test Factoring: Focusing Test Suites for the Task at Hand David Saff Michael D. Ernst, research and Subject Descriptors: D.2.5 (Testing and Debug- ging): Testing tools General Terms: Algorithms, Design, Performance, Verification Keywords: test factoring, mock objects, unit testing 1. Problem: slow, unfocused

Liskov, Barbara

342

Test Factoring: Focusing Test Suites for the Task at Hand Michael D. Ernst, research advisor  

E-Print Network [OSTI]

Test Factoring: Focusing Test Suites for the Task at Hand David Saff Michael D. Ernst, research and Subject Descriptors: D.2.5 (Testing and Debug­ ging): Testing tools General Terms: Algorithms, Design, Performance, Verification Keywords: test factoring, mock objects, unit testing 1. Problem: slow, unfocused

Liskov, Barbara

343

Two Distinctive Granite Suites in the SW Bohemian Massif and their Record of  

E-Print Network [OSTI]

Two Distinctive Granite Suites in the SW Bohemian Massif and their Record of Emplacement types of gneisses, migmatites and granites dominate the out- crops of the Bavarian Forest characteristics ofa crustal root zone. Fourteen granite intrusions from this area have been dated by the single

Siebel, Wolfgang

344

7900 SE 28th Street, Suite 200 Mercer, Island, WA 98040-2970  

E-Print Network [OSTI]

7900 SE 28th Street, Suite 200 Mercer, Island, WA 98040-2970 v 206.236.7200 f 206.236.3019 www-standing rivalries over the distribution of the Northwest's premiere asset. It will allow the customers to apply to acquire new generation assets. This conclusion, also reached by the Comprehensive Review of the Northwest

345

Development of Polybenzimidazole-Based High-Temperature Membrane and Electrode Assemblies for Stationary and Automotive Applications  

SciTech Connect (OSTI)

The program began on August 1, 2003 and ended on July 31, 2007. The goal of the project was to optimize a high-temperature polybenzimidazole (PBI) membrane to meet the performance, durability, and cost targets required for stationary fuel cell applications. These targets were identified in the Fuel Cell section (3.4) of DOE’s Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan. A membrane that operates at high temperatures is important to the fuel cell industry because it is insensitive to carbon monoxide (a poison to low-temperature fuel cells), and does not require complex water management strategies. Together, these two benefits greatly simplify the fuel cell system. As a result, the high-temperature fuel cell system realizes a cost benefit as the number of components is reduced by nearly 30%. There is also an inherent reliability benefit as components such as humidifiers and pumps for water management are unnecessary. Furthermore, combined heat and power (CHP) systems may be the best solution for a commercial, grid-connected, stationary product that must offer a cost benefit to the end user. For a low-temperature system, the quality of the heat supplied is insufficient to meet consumer needs and comfort requirements, so peak heaters or supplemental boilers are required. The higher operating temperature of PBI technology allows the fuel cell to meet the heat and comfort demand without the additional equipment. Plug Power, working with the Rensselaer Polytechnic Institute (RPI) Polymer Science Laboratory, made significant advances in optimizing the PBI membrane material for operation at temperatures greater than 160oC with a lifetime of 40,000 hours. Supporting hardware such as flow field plates and a novel sealing concept were explored to yield the lower-cost stack assembly and corresponding manufacturing process. Additional work was conducted on acid loss, flow field design and cathode electrode development. Membranes and MEAs were supplied by team member BASF Fuel Cell (formerly PEMEAS), a manufacturer of polymer and fiber. Additional subcontractors Entegris, the University of South Carolina (USC) Fuel Cell Center, and RPI’s Fuel Cell Center conducted activities with regard to stack sealing, acid modeling, and electrode development.

Vogel, John A.

2008-09-03T23:59:59.000Z

346

Assessing the CAM5 Physics Suite in the WRF-Chem Model: Implementation, Resolution Sensitivity, and a First Evaluation for a Regional Case Study  

SciTech Connect (OSTI)

A suite of physical parameterizations (deep and shallow convection, turbulent boundary layer, aerosols, cloud microphysics, and cloud fraction) from the global climate model Community Atmosphere Model version 5.1 (CAM5) has been implemented in the regional model Weather Research and Forecasting with chemistry (WRF-Chem). A downscaling modeling framework with consistent physics has also been established in which both global and regional simulations use the same emissions and surface fluxes. The WRF-Chem model with the CAM5 physics suite is run at multiple horizontal resolutions over a domain encompassing the northern Pacific Ocean, northeast Asia, and northwest North America for April 2008 when the ARCTAS, ARCPAC, and ISDAC field campaigns took place. These simulations are evaluated against field campaign measurements, satellite retrievals, and ground-based observations, and are compared with simulations that use a set of common WRF-Chem Parameterizations. This manuscript describes the implementation of the CAM5 physics suite in WRF-Chem provides an overview of the modeling framework and an initial evaluation of the simulated meteorology, clouds, and aerosols, and quantifies the resolution dependence of the cloud and aerosol parameterizations. We demonstrate that some of the CAM5 biases, such as high estimates of cloud susceptibility to aerosols and the underestimation of aerosol concentrations in the Arctic, can be reduced simply by increasing horizontal resolution. We also show that the CAM5 physics suite performs similarly to a set of parameterizations commonly used in WRF-Chem, but produces higher ice and liquid water condensate amounts and near-surface black carbon concentration. Further evaluations that use other mesoscale model parameterizations and perform other case studies are needed to infer whether one parameterization consistently produces results more consistent with observations.

Ma, Po-Lun; Rasch, Philip J.; Fast, Jerome D.; Easter, Richard C.; Gustafson, William I.; Liu, Xiaohong; Ghan, Steven J.; Singh, Balwinder

2014-05-06T23:59:59.000Z

347

Study of SiCnickel alloy bonding for high temperature applications M.L. Hattalia,, S. Valettea, F. Ropitalc, G. Stremsdoerfera, N. Mesratib, D. Trheuxa  

E-Print Network [OSTI]

Study of SiC­nickel alloy bonding for high temperature applications M.L. Hattalia,, S. Valettea, F). In some cases a thin coating on the ceramic or the alloy by the electroless JetMétalTM process has been used. Often used in brazing, nickel, when added to silicon carbide, usually give silicides

Paris-Sud XI, Université de

348

Postdoctoral Position in Neuroengineering and Cognitive Engineering at the SiNAPSE Institute, Inquiries and applications are invited from highly productive, creative and ambitious young scientists for a  

E-Print Network [OSTI]

Postdoctoral Position in Neuroengineering and Cognitive Engineering at the SiNAPSE Institute, Singapore Inquiries and applications are invited from highly productive, creative and ambitious young Collaborators (Prof. Hasan Al-Nashash). Candidates with a PhD degree in Electrical and Computer Engineering

Adams, Mark

349

A HIGH ASPECT RATIO, FLEXIBLE, TRANSPARENT AND LOW-COST PARYLENE-C SHADOW MASK TECHNOLOGY FOR MICROPATTERNING APPLICATIONS  

E-Print Network [OSTI]

(HAR) structures. The potential applications of this stencil technology are numerous including. Sridhar3 , A. Khademhosseini4 , A. Busnaina2 , and M. R. Dokmeci1,* 1 Department of Electrical) up to 9 times. This technology has potential applications for patterning proteins, cells and organic

Dokmeci, Mehmet

350

Specification and Analysis of the AER/NCA Active Network Protocol Suite in Real-Time Maude  

E-Print Network [OSTI]

Specification and Analysis of the AER/NCA Active Network Protocol Suite in Real-Time Maude Peter-Time Maude tool and the Maude formal methodology to the specification and analysis of the AER/NCA suite-sensitive behavior, the presence of probabilistic algorithms, and the composability of its components, AER/NCA poses

Ã?lveczky, Peter Csaba

351

Analysis of the Energy Savings Potential in K-5 Schools in Hot and Humid Climates: Application of High Performance Measures and Renewable Energy Systems  

E-Print Network [OSTI]

-08-05 of the building. Since the DOE-2 simulation program is not capable of simulating solar thermal and PV systems, the F-Chart and PV F-Chart program were used to calculate the hot water and the electricity generation from a solar thermal and PV system... measures were applied to the target building. Those measures include: increased glazing U-value, VFD application for the HVAC system, cold deck reset, variable speed for pumps, high-efficiency boiler, skylights, and the application of solar thermal...

Im, P.; Haberl, J.

352

The Carmen-Suite: Maya Plisetskaya Challenging Soviet Culture and Policy  

E-Print Network [OSTI]

for the degree of MASTER OF ARTS Chair of Committee, Judith Hamera Committee Members, Jayson Beaster-Jones Olga Cooke Head of Department, Donnalee Dox May 2014 Major Subject: Performance Studies Copyright 2014 Anna Kalashnikova ii ABSTRACT... Cold War, research into the artistic, cultural and political significance of the 1967 Carmen-Suite may be of particular significance. iii ACKNOWLEDGEMENTS I would like to thank my committee chair, Dr. Judith Hamera for her passion, interest...

Kalashnikova, Anna

2014-04-24T23:59:59.000Z

353

Thermionic/AMTEC cascade converter concept for high-efficiency space power  

SciTech Connect (OSTI)

This paper presents trade studies that address the use of the thermionic/AMTEC cell--a cascaded, high-efficiency, static power conversion concept that appears well-suited to space power applications. Both the thermionic and AMTEC power conversion approaches have been shown to be promising candidates for space power. Thermionics offers system compactness via modest efficiency at high heat rejection temperatures, and AMTEC offers high efficiency at modest heat rejection temperature. From a thermal viewpoint the two are ideally suited for cascaded power conversion: thermionic heat rejection and AMTEC heat source temperatures are essentially the same. In addition to realizing conversion efficiencies potentially as high as 35--40%, such a cascade offers the following perceived benefits: survivability; simplicity; technology readiness; and technology growth. Mechanical approaches and thermal/electric matching criteria for integrating thermionics and AMTEC into a single conversion device are described. Focusing primarily on solar thermal space power applications, parametric trends are presented to show the performance and cost potential that should be achievable with present-day technology in cascaded thermionic/AMTEC systems.

Hagan, T.H. van; Smith, J.N. Jr. [General Atomics, San Diego, CA (United States); Schuller, M. [PL/VTP, Kirtland AFB, NM (United States)

1996-12-31T23:59:59.000Z

354

Crystalline mesoporous tungsten oxide nanoplate monoliths synthesized by directed soft template method for highly sensitive NO{sub 2} gas sensor applications  

SciTech Connect (OSTI)

Graphical abstract: Display Omitted Highlights: ? Mesoporous WO{sub 3} nanoplate monoliths were obtained by direct templating synthesis. ? Enable effective accession of the analytic molecules for the sensor applications. ? The WO{sub 3} sensor exhibited a high performance to NO{sub 2} gas at low temperature. -- Abstract: Controllable synthesis of nanostructured metal oxide semiconductors with nanocrystalline size, porous structure, and large specific surface area is one of the key issues for effective gas sensor applications. In this study, crystalline mesoporous tungsten oxide nanoplate-like monoliths with high specific surface areas were obtained through instant direct-templating synthesis for highly sensitive nitrogen dioxide (NO{sub 2}) sensor applications. The copolymer soft template was converted into a solid carbon framework by heat treatment in an inert gas prior to calcinations in air to sustain the mesoporous structure of tungsten oxide. The multidirectional mesoporous structures of tungsten oxide with small crystalline size, large specific surface area, and superior physical characteristics enabled the rapid and effective accession of analytic gas molecules. As a result, the sensor response was enhanced and the response and recovery times were reduced, in which the mesoporous tungsten oxide based gas sensor exhibited a superior response of 21,155% to 5 ppm NO{sub 2}. In addition, the developed sensor exhibited selective detection of low NO{sub 2} concentration in ammonia and ethanol at a low temperature of approximately 150 °C.

Hoa, Nguyen Duc, E-mail: ndhoa@itims.edu.vn [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST) (Viet Nam); Duy, Nguyen Van [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST) (Viet Nam)] [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST) (Viet Nam); Hieu, Nguyen Van, E-mail: hieu@itims.edu.vn [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST) (Viet Nam)

2013-02-15T23:59:59.000Z

355

Ionic liquids and ionic liquid acids with high temperature stability for fuel cell and other high temperature applications, method of making and cell employing same  

DOE Patents [OSTI]

Disclosed are developments in high temperature fuel cells including ionic liquids with high temperature stability and the storage of inorganic acids as di-anion salts of low volatility. The formation of ionically conducting liquids of this type having conductivities of unprecedented magnitude for non-aqueous systems is described. The stability of the di-anion configuration is shown to play a role in the high performance of the non-corrosive proton-transfer ionic liquids as high temperature fuel cell electrolytes. Performance of simple H.sub.2(g) electrolyte/O.sub.2(g) fuel cells with the new electrolytes is described. Superior performance both at ambient temperature and temperatures up to and above 200.degree. C. are achieved. Both neutral proton transfer salts and the acid salts with HSO.sup.-.sub.4 anions, give good results, the bisulphate case being particularly good at low temperatures and very high temperatures. The performance of all electrolytes is improved by the addition of a small amount of involatile base of pK.sub.a value intermediate between those of the acid and base that make the bulk electrolyte. The preferred case is the imidazole-doped ethylammonium hydrogensulfate which yields behavior superior in all respects to that of the industry standard phosphoric acid electrolyte.

Angell, C. Austen (Mesa, AZ); Xu, Wu (Broadview Heights, OH); Belieres, Jean-Philippe (Chandler, AZ); Yoshizawa, Masahiro (Tokyo, JP)

2011-01-11T23:59:59.000Z

356

COUPLED MULTI-GROUP NEUTRON PHOTON TRANSPORT FOR THE SIMULATION OF HIGH-RESOLUTION GAMMA-RAY SPECTROSCOPY APPLICATIONS  

SciTech Connect (OSTI)

The accurate and efficient simulation of coupled neutron-photon problems is necessary for several important radiation detection applications. Examples include the detection of nuclear threats concealed in cargo containers and prompt gamma neutron activation analysis for nondestructive determination of elemental composition of unknown samples.

Burns, Kimberly A.

2009-08-01T23:59:59.000Z

357

SnO2 functionalized AlGaN/GaN high electron mobility transistor for hydrogen sensing applications  

E-Print Network [OSTI]

for automotive fuel [1] and fuel cells [2] applications. There is great interest in detection of hydrogen sensors for the use in hydrogen-fueled automobiles and with proton- exchange membrane (PEM) and solid oxide fuel cells for monitoring leakage of hydrogen storage equipment and fuel tanks for spacecraft and hydrogen fuel cell

Florida, University of

358

Templated self-assembly of nanoporous alumina : pore formation and ordering mechanisms, methodologies, and applications  

E-Print Network [OSTI]

Porous anodic aluminum oxide (AAO), also known as porous alumina, is a self-ordered nanostructured material well-suited for use in electronic, magnetic, optical and biological applications due to its small pore size (4-200nm) ...

Krishnan, Ramkumar, 1975-

2005-01-01T23:59:59.000Z

359

Application of a Sweating Manikin Controlled by a Human Physiological Model and Lessons Learned  

SciTech Connect (OSTI)

Discusses two applications of NREL's suite of thermal comfort tools: one to assess impact of an automotive ventilated seat on comfort and fuel economy, and another to evaluate liquid cooling garments for NASA spacesuits.

Rugh, J.; Lustbader, J.

2006-11-01T23:59:59.000Z

360

Laboratory and Field Testing of High Performance-Zero Bleed CLSM Mixes for Future Tank Closure Applications  

SciTech Connect (OSTI)

This work performed in this project is intended to support the SRS and DOE complex effort to close high-level waste tanks.

Langton, C.A.

1998-10-26T23:59:59.000Z

Note: This page contains sample records for the topic "application suite high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Name Phone Location Email Aebel, Barbara 362-3700 CSRB-NTA Suite 200, Room 223 barbara@wustl.edu  

E-Print Network [OSTI]

@path.wustl.edu Anderson, Mary Ann 935-7009 Danforth Campus - North Brookings maryann_anderson@wustl.edu Felton, Michele@wustl.edu Anderson, Margie 454-8101 Cytogenetics - Cortex Building, 4320 Forest Park, Suite 209 manderson

Kroll, Kristen L.

362

Rooftop Unit Suite: RTU Challenge, RTU Advanced Controls and RTU Smart Monitoring and Diagnostic System  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromCommentsRevolving Loan Funds Revolving LoanA l iSoftRTU Suite of

363

Building a Network of SME for a Global PSS Infrastructure in Complex High-Tech Systems: Example of Urban Applications  

E-Print Network [OSTI]

Building a Network of SME for a Global PSS Infrastructure in Complex High-Tech Systems: Example is then applied to the case of urban PSS. Keywords: Network of SME, PSS Organization, Machine and facilitating maintenance. Dynamic high-technology Small and Medium Enterprises (SME) propose innovative

Paris-Sud XI, Université de

364

A 1.8V 2-2 cascade Sigma-Delta modulator for high speed applications  

E-Print Network [OSTI]

In order to satisfy today's most important requirements of the A/D and D/A converters that are low voltage and high speed operation, a low voltage and high speed circuit solutions for [] modulators are strongly demanding. However, simply reducing...

Lee, Kye-Shin

2002-01-01T23:59:59.000Z

365

Spatial application of a cotton growth model for analysis of site-specific irrigation in the Texas High Plains  

E-Print Network [OSTI]

&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2006 Major Subject: Biological and Agricultural Engineering SPATIAL APPLICATION OF A COTTON GROWTH MODEL FOR ANALYSIS OF SITE...: Chair of Committee, Stephen W. Searcy Committee Members, J. Tom Cothren James R. Gilley Clyde R. Munster Head of Department, Gary L. Riskowski May 2006 Major Subject: Biological and Agricultural Engineering iii ABSTRACT...

Clouse, Randy Wayne

2007-09-17T23:59:59.000Z

366

Compact, Low-Profile Power Converters: Highly-Laminated, High-Saturation-Flux-Density, Magnetic Cores for On-Chip Inductors in Power Converter Applications  

SciTech Connect (OSTI)

ADEPT Project: Georgia Tech is creating compact, low-profile power adapters and power bricks using materials and tools adapted from other industries and from grid-scale power applications. Adapters and bricks convert electrical energy into useable power for many types of electronic devices, including laptop computers and mobile phones. These converters are often called wall warts because they are big, bulky, and sometimes cover up an adjacent wall socket that could be used to power another electronic device. The magnetic components traditionally used to make adapters and bricks have reached their limits; they can't be made any smaller without sacrificing performance. Georgia Tech is taking a cue from grid-scale power converters that use iron alloys as magnetic cores. These low-cost alloys can handle more power than other materials, but the iron must be stacked in insulated plates to maximize energy efficiency. In order to create compact, low-profile power adapters and bricks, these stacked iron plates must be extremely thin-only hundreds of nanometers in thickness, in fact. To make plates this thin, Georgia Tech is using manufacturing tools used in microelectromechanics and other small-scale industries.

None

2010-09-01T23:59:59.000Z

367

Dosimetric Comparison of 3-Dimensional Planning Techniques Using an Intravaginal Multichannel Balloon Applicator for High-Dose-Rate Gynecologic Brachytherapy  

SciTech Connect (OSTI)

Purpose: To study the dosimetric differences of various channel combinations of the Capri vaginal applicator. Methods and Materials: The Capri consists of a single central channel (R1), an inner array of 6 channels (R2), and an outer array of 6 channels (R3). Three-dimensional plans were simulated for 6 channel arrangements (R1, R2, R12, R13, R23, and R123). Treatment plans were optimized to the applicator surface or 5-mm depth while minimizing dose to organs at risk (OARs: bladder, rectum, sigmoid, and urethra). The clinical target volume (CTV) was defined as a 5-mm circumferential shell extending 4 cm in length around the applicator. Clinical target volume coverage (D{sub mean}, D{sub 90}, V{sub 100}, and V{sub 150}) and OAR doses (D{sub 0.1} {sub cm{sup 3}}, D{sub 1} {sub cm{sup 3}}, D{sub 2} {sub cm{sup 3}}, and D{sub mean}) were compared. A comparison between the Capri (R123) and a conventional single-channel applicator was also done. Statistical significance (P value <.05) was evaluated with a 2-tailed t test. Results: When prescribing to 5-mm depth, CTV coverage using all 13 channels (R123) versus a single channel (R1) was similar; however, when prescribing to the surface there were differences (P<.0001) in all CTV metrics except for the V{sub 150}. The R1 plans had higher doses to all OARs compared with R123 plans (P<.007). Doses to OARs were not significantly different between R23 and R123 plans (P=.05-.95), and CTV coverage differences were on the order of 1%. Capri R123 plans provided slightly lower CTV D{sub 90} and D{sub mean} but equivalent OAR doses with smaller standard deviations compared with conventional cylinder plans for both prescriptions. Conclusions: The Capri multichannel applicator provides equivalent target coverage at 5-mm depth, with significantly reduced dose to OARs relative to using a single channel. Optimal plans can be achieved using R12 (lowest V{sub 150}) or R123 or R23 (lowest OAR doses)

Park, Sang-June, E-mail: spark@mednet.ucla.edu; Chung, Melody; Demanes, D. Jeffrey; Banerjee, Robyn; Steinberg, Michael; Kamrava, Mitchell

2013-11-15T23:59:59.000Z

368

SLUG -- Stochastically Lighting Up Galaxies. III: A Suite of Tools for Simulated Photometry, Spectroscopy, and Bayesian Inference with Stochastic Stellar Populations  

E-Print Network [OSTI]

Stellar population synthesis techniques for predicting the observable light emitted by a stellar population have extensive applications in numerous areas of astronomy. However, accurate predictions for small populations of young stars, such as those found in individual star clusters, star-forming dwarf galaxies, and small segments of spiral galaxies, require that the population be treated stochastically. Conversely, accurate deductions of the properties of such objects also requires consideration of stochasticity. Here we describe a comprehensive suite of modular, open-source software tools for tackling these related problems. These include: a greatly-enhanced version of the slug code introduced by da Silva et al. (2012), which computes spectra and photometry for stochastically- or deterministically-sampled stellar populations with nearly-arbitrary star formation histories, clustering properties, and initial mass functions; cloudy_slug, a tool that automatically couples slug-computed spectra with the cloudy r...

Krumholz, Mark R; da Silva, Robert L; Rendahl, Theodore; Parra, Jonathan

2015-01-01T23:59:59.000Z

369

Neutron Halo Isomers in Stable Nuclei and their Possible Application for the Production of Low Energy, Pulsed, Polarized Neutron Beams of High Intensity and High Brilliance  

E-Print Network [OSTI]

We propose to search for neutron halo isomers populated via $\\gamma$-capture in stable nuclei with mass numbers of about A=140-180 or A=40-60, where the $4s_{1/2}$ or $3s_{1/2}$ neutron shell model state reaches zero binding energy. These halo nuclei can be produced for the first time with new $\\gamma$-beams of high intensity and small band width ($\\le$ 0.1%) achievable via Compton back-scattering off brilliant electron beams thus offering a promising perspective to selectively populate these isomers with small separation energies of 1 eV to a few keV. Similar to single-neutron halo states for very light, extremely neutron-rich, radioactive nuclei \\cite{hansen95,tanihata96,aumann00}, the low neutron separation energy and short-range nuclear force allows the neutron to tunnel far out into free space much beyond the nuclear core radius. This results in prolonged half lives of the isomers for the $\\gamma$-decay back to the ground state in the 100 ps-$\\mu$s range. Similar to the treatment of photodisintegration of the deuteron, the neutron release from the neutron halo isomer via a second, low-energy, intense photon beam has a known much larger cross section with a typical energy threshold behavior. In the second step, the neutrons can be released as a low-energy, pulsed, polarized neutron beam of high intensity and high brilliance, possibly being much superior to presently existing beams from reactors or spallation neutron sources.

D. Habs; M. Gross; P. G. Thirolf; P. Böni

2010-09-30T23:59:59.000Z

370

The Impact of Memory Subsystem Resource Sharing on Datacenter Applications  

E-Print Network [OSTI]

The Impact of Memory Subsystem Resource Sharing on Datacenter Applications Lingjia Tang University on five Google datacenter applications: a web search engine, bigtable, content analyzer, image stitching across the PARSEC benchmark suite, we find that across these datacenter ap- plications, there is both

Tomkins, Andrew

371

Empirical assessment of the detection efficiency of CR-39 at high proton fluence and a compact, proton detector for high-fluence applications  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

CR-39 solid-state nuclear track detectors are widely used in physics and in many inertial confinement fusion (ICF) experiments, and under ideal conditions these detectors have 100% detection efficiency for ?0.5–8 MeV protons. When the fluence of incident particles becomes too high, overlap of particle tracks leads to under-counting at typical processing conditions (5 h etch in 6N NaOH at 80?°C). Short etch times required to avoid overlap can cause under-counting as well, as tracks are not fully developed. Experiments have determined the minimum etch times for 100% detection of 1.7–4.3-MeV protons and established that for 2.4-MeV protons, relevant for detection of DD protons, the maximum fluence that can be detected using normal processing techniques is ?3?×?106 cm?2. A CR-39-based proton detector has been developed to mitigate issues related to high particle fluences on ICF facilities. Using a pinhole and scattering foil several mm in front of the CR-39, proton fluences at the CR-39 are reduced by more than a factor of ?50, increasing the operating yield upper limit by a comparable amount.

Rosenberg, M. J.; Seguin, F. H.; Waugh, C. J.; Rinderknecht, H. G.; Orozco, D.; Frenje, J. A.; Johnson, M. Gatu; Sio, H.; Zylstra, A. B.; Sinenian, N.; Li, C. K.; Petrasso, R. D.; Glebov, V. Yu.; Stoeckl, C.; Hohenberger, M.; Sangster, T. C.; LePape, S.; Mackinnon, A. J.; Bionta, R. M.; Landen, O. L.; Zacharias, R. A.; Kim, Y.; Herrmann, H. W.; Kilkenny, J. D.

2014-04-01T23:59:59.000Z

372

A model of collaboration between developed and developing clusters of high-tech innovation : benefits and applications  

E-Print Network [OSTI]

Innovation is not produced in an isolated fashion but rather it is a highly interactive process where firms establish a wide variety of networks. This concept is valid for any cluster at any stage of development. Innovation ...

Botero Ramírez, Juan Carlos

2013-01-01T23:59:59.000Z

373

Vehicle Technologies Office Merit Review 2014: High Energy, Long Cycle Life Lithium-ion Batteries for EV Applications  

Broader source: Energy.gov [DOE]

Presentation given by The Pennsylvania State University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy...

374

Application of a systems-theoretic approach to risk analysis of high-speed rail project management in the US  

E-Print Network [OSTI]

High-speed rail (HSR) is drawing attention as an environmentally-friendly transportation mode, and is expected to be a solution for socio-technical transportation issues in many societies. Currently, its market has been ...

Kawakami, Soshi

2014-01-01T23:59:59.000Z

375

Non-linear analysis of advanced high-phase number induction machines for adjustable speed drive applications  

E-Print Network [OSTI]

This study focuses on the effect of high order phases on electrical machines' parameters and performance. A general approach has been conducted using the induction motor equivalent circuit, winding function and conventional design methods...

Qahtany, Nasser H.

2002-01-01T23:59:59.000Z

376

Vehicle Technologies Office Merit Review 2014: Advanced High Energy Li-Ion Cell for PHEV and EV Applications  

Broader source: Energy.gov [DOE]

Presentation given by 3M at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced high energy Li-ion cell for PHEV...

377

Fabrication and characterization of a 0.5-mm lutetium oxyorthosilicate detector array for high-resolution PET applications  

E-Print Network [OSTI]

for a high resolution PET detector using position sensitive51:2131–2142. 0.5- MM LSO A RRAY FOR PET • Stickel et al.Instrumentation aspects of animal PET. Annu Rev Biomed Eng.

Stickel, Jennifer R; Qi, Jinyi; Cherry, Simon R

2007-01-01T23:59:59.000Z

378

Development and application of management tools within a high-mix, low-volume lean aerospace manufacturing environment  

E-Print Network [OSTI]

The design and implementation of a lean production system is a complex task requiring an intimate understanding of the fundamental lean principles. Much of the published lean literature is written at a high level of ...

McKenney, Kevin (Kevin Bryan), 1977-

2005-01-01T23:59:59.000Z

379

Application of Self-Propagating High Temperature Synthesis to the Fabrication of Actinide Bearing Nitride and Other Ceramic Nuclear Fuels  

SciTech Connect (OSTI)

The high vapor pressures of americium (Am) and americium nitride (AmN) are cause for concern in producing nitride ceramic nuclear fuel that contains Am. Along with the problem of Am retention during the sintering phases of current processing methods, are additional concerns of producing a consistent product of desirable homogeneity, density and porosity. Similar difficulties have been experienced during the laboratory scale process development stage of producing metal alloys containing Am wherein compact powder sintering methods had to be abandoned. Therefore, there is an urgent need to develop a low-temperature or low–heat fuel fabrication process for the synthesis of Am-containing ceramic fuels. Self-propagating high temperature synthesis (SHS), also called combustion synthesis, offers such an alternative process for the synthesis of Am nitride fuels. Although SHS takes thermodynamic advantage of the high combustion temperatures of these exothermic SHS reactions to synthesize the required compounds, the very fast heating, reaction and cooling rates can kinetically generate extremely fast reaction rates and facilitate the retention of volatile species within the rapidly propagating SHS reaction front. The initial objective of the research program is to use Mn as the surrogate for Am to synthesize a reproducible, dense, high quality Zr-Mn-N ceramic compound. Having determined the fundamental SHS reaction parameters and optimized SHS processing steps using Mn as the surrogate for Am, the technology will be transferred to Idaho National Laboratory to successfully synthesize a high quality Zr-Am-N ceramic fuel.

John J. Moore, Douglas E. Burkes, Collin D. Donohoue, Marissa M. Reigel, J. Rory Kennedy

2009-05-18T23:59:59.000Z

380

Shear-horizontal surface acoustic wave phononic device with high density filling material for ultra-low power sensing applications  

SciTech Connect (OSTI)

Finite element simulations of a phononic shear-horizontal surface acoustic wave (SAW) sensor based on ST 90°-X Quartz reveal a dramatic reduction in power consumption. The phononic sensor is realized by artificially structuring the delay path to form an acoustic meta-material comprised of a periodic microcavity array incorporating high-density materials such as tantalum or tungsten. Constructive interference of the scattered and secondary reflected waves at every microcavity interface leads to acoustic energy confinement in the high-density regions translating into reduced power loss. Tantalum filled cavities show the best performance while tungsten inclusions create a phononic bandgap. Based on our simulation results, SAW devices with tantalum filled microcavities were fabricated and shown to significantly decrease insertion loss. Our findings offer encouraging prospects for designing low power, highly sensitive portable biosensors.

Richardson, M.; Bhethanabotla, V. R., E-mail: bhethana@usf.edu [Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, Florida 33620 (United States); Sankaranarayanan, S. K. R. S. [Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

2014-06-23T23:59:59.000Z

Note: This page contains sample records for the topic "application suite high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Value Proposition for High Lifetime (p-type) and Thin Silicon Materials in Solar PV Applications: Preprint  

SciTech Connect (OSTI)

Most silicon PV road maps forecast a continued reduction in wafer thickness, despite rapid declines in the primary incentive for doing so -- polysilicon feedstock price. Another common feature of most silicon-technology forecasts is the quest for ever-higher device performance at the lowest possible costs. The authors present data from device-performance and manufacturing- and system-installation cost models to quantitatively establish the incentives for manufacturers to pursue advanced (thin) wafer and (high efficiency) cell technologies, in an age of reduced feedstock prices. This analysis exhaustively considers the value proposition for high lifetime (p-type) silicon materials across the entire c-Si PV supply chain.

Goodrich, A.; Woodhouse, M.; Hacke, P.

2012-06-01T23:59:59.000Z

382

Self-Assembly of Virus-Structured High Surface Area Nanomaterials and Their Application as Battery Electrodes  

E-Print Network [OSTI]

. In Final Form: October 12, 2007 High area nickel and cobalt surfaces were assembled using modified Tobacco-fold increase in surface area. Electroless deposition of ionic metals onto surface-assembled virus templates produced uniform metal coatings up to 40 nm in thickness. Within a nickel-zinc battery system

Rubloff, Gary W.

383

Development of Oxidative Lime Pretreatment and Shock Treatment to Produce Highly Digestible Lignocellulose for Biofuel and Ruminant Feed Applications  

E-Print Network [OSTI]

enhanced the 72-h glucan digestibility of several promising biomass feedstocks: bagasse (74.0), corn stover (92.0), poplar wood (94.0), sorghum (71.8), and switchgrass (89.0). Highly digestible lignocellulose can also be used as ruminant animal feed. Shock...

Falls, Matthew David

2011-10-21T23:59:59.000Z

384

Growth of Large-Area Aligned Molybdenum Nanowires by High Temperature Chemical Vapor Deposition: Synthesis, Growth Mechanism, and Device Application  

E-Print Network [OSTI]

, thermogravimetry, and differential scanning calorimetry analysis, as well as structure analysis by electron on the decomposition of MoO2 vapors through condensation of its vapor at high substrate temperatures. The aligned nanowires with H2 gas.6d-f However, the reduction process degrades the crystal- linity of the nanowires

Wang, Zhong L.

385

Proceeding of Energy Week 1996, ASME APPLICATION OF THE U.S. HIGH CYCLE FATIGUE DATA BASE  

E-Print Network [OSTI]

TURBINE BLADE LIFETIME PREDICTIONS Herbert J. Sutherland Wind Energy Technology Sandia National the service lifetime of wind turbine blades using the high-cycle fatigue data base for typical U.S. blade blades. The LIFE2 fatigue analysis code for wind turbines is then used for the fatigue analysis

386

CHARACTERIZATION OF DEFENSE NUCLEAR WASTE USING HAZARDOUS WASTE GUIDANCE. APPLICATIONS TO HANFORD SITE ACCELERATED HIGH-LEVEL WASTE TREATMENT AND DISPOSAL MISSION0  

SciTech Connect (OSTI)

Federal hazardous waste regulations were developed for management of industrial waste. These same regulations are also applicable for much of the nation's defense nuclear wastes. At the U.S. Department of Energy's (DOE) Hanford Site in southeast Washington State, one of the nation's largest inventories of nuclear waste remains in storage in large underground tanks. The waste's regulatory designation and its composition and form constrain acceptable treatment and disposal options. Obtaining detailed knowledge of the tank waste composition presents a significant portion of the many challenges in meeting the regulatory-driven treatment and disposal requirements for this waste. Key in applying the hazardous waste regulations to defense nuclear wastes is defining the appropriate and achievable quality for waste feed characterization data and the supporting evidence demonstrating that applicable requirements have been met at the time of disposal. Application of a performance-based approach to demonstrating achievable quality standards will be discussed in the context of the accelerated high-level waste treatment and disposal mission at the Hanford Site.

Hamel, William; Huffman, Lori; Lerchen, Megan; Wiemers, Karyn

2003-02-27T23:59:59.000Z

387

NEW GUN CAPABILITY WITH INTERCHANGABLE BARRELS TO INVESTIGATE LOW VELOCITY IMPACT REGIMES AT THE LAWRENCE LIVERMORE NATIONAL LABORATORY HIGH EXPLOSIVES APPLICATIONS FACILITY  

SciTech Connect (OSTI)

A new gas gun capability is being activated at Lawrence Livermore National Laboratories located in the High Explosives Applications Facility (HEAF). The single stage light gas (dry air, nitrogen, or helium) gun has interchangeable barrels ranging from 25.4 mm to 76.2 mm in diameter with 1.8 meters in length and is being fabricated by Physics Applications, Inc. Because it is being used for safety studies involving explosives, the gun is planned for operation inside a large enclosed firing tank, with typical velocities planned in the range of 10-300 m/s. Three applications planned for this gun include: low velocity impact of detonator or detonator/booster assemblies with various projectile shapes, the Steven Impact test that involves impact initiation of a cased explosive target, and the Taylor impact test using a cylindrical explosive sample impacted onto a rigid anvil for fracture studies of energetic materials. A highlight of the gun features, outline on work in progress for implementing this capability, and discussion of the planned areas of research will be included.

Vandersall, K S; Behn, A; Gresshoff, M; Jr., L F; Chiao, P I

2009-09-16T23:59:59.000Z

388

Application of Self-Propagating High Temperature Synthesis to the Fabrication of Actinide Bearing Nitride and Other Ceramic Nuclear Fuels  

SciTech Connect (OSTI)

The project uses an exothermic combustion synthesis reaction, termed self-propagating high-temperature synthesis (SHS), to produce high quality, reproducible nitride fuels and other ceramic type nuclear fuels (cercers and cermets, etc.) in conjunction with the fabrication of transmutation fuels. The major research objective of the project is determining the fundamental SHS processing parameters by first using manganese as a surrogate for americium to produce dense Zr-Mn-N ceramic compounds. These fundamental principles will then be transferred to the production of dense Zr-Am-N ceramic materials. A further research objective in the research program is generating fundamental SHS processing data to the synthesis of (i) Pu-Am-Zr-N and (ii) U-Pu-Am-N ceramic fuels. In this case, Ce will be used as the surrogate for Pu, Mn as the surrogate for Am, and depleted uranium as the surrogate for U. Once sufficient fundamental data has been determined for these surrogate systems, the information will be transferred to Idaho National Laboratory (INL) for synthesis of Zr-Am-N, Pu-Am-Zr-N and U-Pu-Am-N ceramic fuels. The high vapor pressures of americium (Am) and americium nitride (AmN) are cause for concern in producing nitride ceramic nuclear fuel that contains Am. Along with the problem of Am retention during the sintering phases of current processing methods, are additional concerns of producing a consistent product of desirable homogeneity, density and porosity. Similar difficulties have been experienced during the laboratory scale process development stage of producing metal alloys containing Am wherein compact powder sintering methods had to be abandoned. Therefore, there is an urgent need to develop a low-temperature or low–heat fuel fabrication process for the synthesis of Am-containing ceramic fuels. Self-propagating high temperature synthesis (SHS), also called combustion synthesis, offers such an alternative process for the synthesis of Am nitride fuels. Although SHS takes thermodynamic advantage of the high combustion temperatures of these exothermic SHS reactions to synthesize the required compounds, the very fast heating, reaction and cooling rates can kinetically generate extremely fast reaction rates and facilitate the retention of volatile species within the rapidly propagating SHS reaction front. The initial objective of the research program is to use Mn as the surrogate for Am to synthesize a reproducible, dense, high quality Zr-Mn-N ceramic compound. Having determined the fundamental SHS reaction parameters and optimized SHS processing steps using Mn as the surrogate for Am, the technology will be transferred to Idaho National Laboratory to successfully synthesize a high quality Zr-Am-N ceramic fuel.

John J. Moore, Marissa M. Reigel, Collin D. Donohoue

2009-04-30T23:59:59.000Z

389

RAPID, MACHINE-LEARNED RESOURCE ALLOCATION: APPLICATION TO HIGH-REDSHIFT GAMMA-RAY BURST FOLLOW-UP  

SciTech Connect (OSTI)

As the number of observed gamma-ray bursts (GRBs) continues to grow, follow-up resources need to be used more efficiently in order to maximize science output from limited telescope time. As such, it is becoming increasingly important to rapidly identify bursts of interest as soon as possible after the event, before the afterglows fade beyond detectability. Studying the most distant (highest redshift) events, for instance, remains a primary goal for many in the field. Here, we present our Random Forest Automated Triage Estimator for GRB redshifts (RATE GRB-z ) for rapid identification of high-redshift candidates using early-time metrics from the three telescopes onboard Swift. While the basic RATE methodology is generalizable to a number of resource allocation problems, here we demonstrate its utility for telescope-constrained follow-up efforts with the primary goal to identify and study high-z GRBs. For each new GRB, RATE GRB-z provides a recommendation-based on the available telescope time-of whether the event warrants additional follow-up resources. We train RATE GRB-z using a set consisting of 135 Swift bursts with known redshifts, only 18 of which are z > 4. Cross-validated performance metrics on these training data suggest that {approx}56% of high-z bursts can be captured from following up the top 20% of the ranked candidates, and {approx}84% of high-z bursts are identified after following up the top {approx}40% of candidates. We further use the method to rank 200 + Swift bursts with unknown redshifts according to their likelihood of being high-z.

Morgan, A. N.; Richards, Joseph W.; Butler, Nathaniel R.; Bloom, Joshua S. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Long, James; Broderick, Tamara, E-mail: amorgan@astro.berkeley.edu [Department of Statistics, University of California, Berkeley, CA 94720-3860 (United States)

2012-02-20T23:59:59.000Z

390

Preprint version Workshop on Robot Motion Planning: Online, Reactive, and in Real-time, 2012 IEEE/RSJ IROS, Vilamoura, Portugal A Synergetic High-level/Reactive Planning Framework with Application  

E-Print Network [OSTI]

Preprint version Workshop on Robot Motion Planning: Online, Reactive, and in Real-time, 2012 IEEE/RSJ IROS, Vilamoura, Portugal A Synergetic High-level/Reactive Planning Framework with Application to Human parametrization of the trajectory and assumes a basic environ- ment representation. As an application, the online

391

A summary of recent refinements to the WAKE dispersion model, a component of the HGSYSTEM/UF{sub 6} model suite  

SciTech Connect (OSTI)

The original WAKE dispersion model a component of the HGSYSTEM/UF{sub 6} model suite, is based on Shell Research Ltd.`s HGSYSTEM Version 3.0 and was developed by the US Department of Energy for use in estimating downwind dispersion of materials due to accidental releases from gaseous diffusion plant (GDP) process buildings. The model is applicable to scenarios involving both ground-level and elevated releases into building wake cavities of non-reactive plumes that are either neutrally or positively buoyant. Over the 2-year period since its creation, the WAKE model has been used to perform consequence analyses for Safety Analysis Reports (SARs) associated with gaseous diffusion plants in Portsmouth (PORTS), Paducah (PGDP), and Oak Ridge. These applications have identified the need for additional model capabilities (such as the treatment of complex terrain and time-variant releases) not present in the original utilities which, in turn, has resulted in numerous modifications to these codes as well as the development of additional, stand-alone postprocessing utilities. Consequently, application of the model has become increasingly complex as the number of executable, input, and output files associated with a single model run has steadily grown. In response to these problems, a streamlined version of the WAKE model has been developed which integrates all calculations that are currently performed by the existing WAKE, and the various post-processing utilities. This report summarizes the efforts involved in developing this revised version of the WAKE model.

Yambert, M.W.; Lombardi, D.A.; Goode, W.D. Jr.; Bloom, S.G.

1998-08-01T23:59:59.000Z

392

Vehicle Technologies Office Merit Review 2014: The Application of High Energy Ignition and Boosting/Mixing Technology to Increase Fuel Economy in Spark Ignition Gasoline Engines by Increasing EGR Dilution Capability  

Broader source: Energy.gov [DOE]

Presentation given by General Motors LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the application of high...

393

The application of metal cutting technologies in tasks performed in radioactive environments  

SciTech Connect (OSTI)

The design and use of equipment to perform work in radioactive environments is uniquely challenging. Some tasks require that the equipment be operated by a person wearing a plastic suit or full face respirator and donning several pairs of rubber gloves. Other applications may require that the equipment be remotely controlled. Other important, design considerations include material compatibility, mixed waste issues, tolerance to ionizing radiation, size constraints and weight capacities. As always, there is the ``We need it ASAP`` design criteria. This paper describes four applications where different types of metal cutting technologies were used to successfully perform tasks in radioactive environments. The technologies include a plasma cutting torch, a grinder with an abrasive disk, a hydraulic shear, and a high pressure abrasive water jet cutter.

Fogle, R.F.; Younkins, R.M.

1997-05-01T23:59:59.000Z

394

Microwave Metamaterial Applications using Complementary Split Ring Resonators and High Gain Rectifying Reflectarray for Wireless Power Transmission  

E-Print Network [OSTI]

. ..................................................................................... 50 Fig. 28. (a) Half-wave rectifier with capacitor and (b) its waveforms ............................ 52 Fig. 29. Diode current-voltage characteristic curves with the incident fundamental and diode junction voltage waveforms... and 1930?s. In the 1950?s, the development of high power and efficiency micrwave tube by Raytheon Company [18] opened the modern WPT era. The first rectenna was invented in the 1960?s by combining a half-wave dipole antenna and a single diode by W...

Ahn, Chi Hyung

2011-10-21T23:59:59.000Z

395

LP-VIcode: a program to compute a suite of variational chaos indicators  

E-Print Network [OSTI]

An important point in analysing the dynamics of a given stellar or planetary system is the reliable identification of the chaotic or regular behaviour of its orbits. We introduce here the program LP-VIcode, a fully operational code which efficiently computes a suite of ten variational chaos indicators for dynamical systems in any number of dimensions. The user may choose to simultaneously compute any number of chaos indicators among the following: the Lyapunov Exponents, the Mean Exponential Growth factor of Nearby Orbits, the Slope Estimation of the largest Lyapunov Characteristic Exponent, the Smaller ALignment Index, the Generalized ALignment Index, the Fast Lyapunov Indicator, the Othogonal Fast Lyapunov Indicator, the dynamical Spectra of Stretching Numbers, the Spectral Distance, and the Relative Lyapunov Indicator. They are combined in an efficient way, allowing the sharing of differential equations whenever this is possible, and the individual stopping of their computation when any of them saturates.

D. D. Carpintero; N. P. Maffione; L. A. Darriba

2014-04-08T23:59:59.000Z

396

High Energy Density Physics and Applications with a State-of-the-Art Compact X-Pinch  

SciTech Connect (OSTI)

Recent advances in technology has made possible to create matter with extremely high energy density (energy densities and pressure exceeding 1011 J/m3 and 1 Mbar respectively). The field is new and complex. The basic question for high energy density physics (HEDP) is how does matter behave under extreme conditions of temperature, pressure, density and electromagnetic radiation? The conditions for studying HEDP are normally produced using high intensity short pulse laser, x-rays, particle beams and pulsed power z-pinches. Most of these installations occupy a large laboratory floor space and require a team consisting of a large number of scientists and engineers. This limits the number of experiments that can be performed to explore and understand the complex physics. A novel way of studying HEDP is with a compact x-pinch in university scale laboratory. The x-pinch is a configuration in which a pulsed current is passed through two or more wires placed between the electrodes making the shape of the letter ‘X’. Extreme conditions of magnetic field (> 200 MGauss for less than 1 ns), temperature (1 keV) and density (~ 1022 cm-3) are produced at the cross-point, where two wires make contact. Further, supersonic jets are produced on either side of the cross-point. The physics of the formation of the plasma at the cross-point is complex. It is not clear what role radiation plays in the formation of high energy density plasma (>> 1011 J/m3) at the cross-point. Nor it is understood how the supersonic jets are formed. Present numerical codes do not contain complex physics that can take into account some of these aspects. Indeed, a comprehensive experimental study could answer some of the questions, which are relevant to wide-ranging fields such as inertial confinement fusion, astrophysical plasmas, high intensity laser plasma interactions and radiation physics. The main aim of the proposal was to increase the fundamental understanding of high energy density physics and particularly address the key issues associated with x-pinches, which include radiation transport, energetic particle transport, supersonic jet formation, using state-of-the-art compact pulsed power drivers. All the primary objectives of the proposed work were met. These objectives include: • Understanding of the fundamental physics of hot and dense plasma formation, implosion to less than 1 µm size due to the radiation enhanced collapse and energetic electron heating, • Study of the jet formation mechanism, which is of interest due to the astrophysical jets and deposition of energy by energetic electrons in jets, • Characterization of an x-pinch as a point x-ray source for the phase contrast radiography of beryllium cryogenic targets for the National Ignition Facility (NIF) experiments. The work carried out included a strong educational component involving both undergraduate and graduate students. Several undergraduate students from University of California San Diego participated in this project. A post-doctoral fellow, Dr. Simon Bott and two graduate students, David Haas and Erik Shipton contributed to every aspect of this project. The success of the project can be judged from the fact that fifteen peer-reviewed papers were published in high quality journals. In addition several presentations were made to a number of scientific meetings.

Beg, Farhat N [University of California San Diego

2013-08-14T23:59:59.000Z

397

Development of improved processing and evaluation methods for high reliability structural ceramics for advanced heat engine applications Phase II. Final report  

SciTech Connect (OSTI)

The research program had as goals the development and demonstration of significant improvements in processing methods, process controls, and nondestructive evaluation (NDE) which can be commercially implemented to produce high reliability silicon nitride components for advanced heat engine applications at temperatures to 1370{degrees}C. In Phase I of the program a process was developed that resulted in a silicon nitride - 4 w% yttria HIP`ed material (NCX 5102) that displayed unprecedented strength and reliability. An average tensile strength of 1 GPa and a strength distribution following a 3-parameter Weibull distribution were demonstrated by testing several hundred buttonhead tensile specimens. The Phase II program focused on the development of methodology for colloidal consolidation producing green microstructure which minimizes downstream process problems such as drying, shrinkage, cracking, and part distortion during densification. Furthermore, the program focused on the extension of the process to gas pressure sinterable (GPS) compositions. Excellent results were obtained for the HIP composition processed for minimal density gradients, both with respect to room-temperature strength and high-temperature creep resistance. Complex component fabricability of this material was demonstrated by producing engine-vane prototypes. Strength data for the GPS material (NCX-5400) suggest that it ranks very high relative to other silicon nitride materials in terms of tensile/flexure strength ratio, a measure of volume quality. This high quality was derived from the closed-loop colloidal process employed in the program.

Pujari, V.J.; Tracey, D.M.; Foley, M.R. [and others

1996-02-01T23:59:59.000Z

398

EXTENDING NUCLEAR ENERGY TO NON-ELECTRICAL APPLICATIONS  

SciTech Connect (OSTI)

Electricity represents less than half of all energy consumed in the United States and globally. Although a few commercial nuclear power plants world-wide provide energy to non-electrical applications such as district heating and water desalination, nuclear energy has been largely relegated to base-load electricity production. A new generation of smaller-sized nuclear power plants offers significant promise for extending nuclear energy to many non-electrical applications. The NuScale small modular reactor design is especially well suited for these non-traditional customers due to its small unit size, very robust reactor protection features and a highly flexible and scalable plant design. A series of technical and economic evaluation studies have been conducted to assess the practicality of using a NuScale plant to provide electricity and heat to a variety of non-electrical applications, including water desalination, oil refining, and hydrogen production. The studies serve to highlight the unique design features of the NuScale plant for these applications and provide encouraging conclusions regarding the technical and economic viability of extending clean nuclear energy to a broad range of non-electrical energy consumers.

R. Boardman; M. McKellar; D. Ingersoll; Z. Houghton; , R. Bromm; C. Desportes

2014-09-01T23:59:59.000Z

399

Modeling of thermal processes in very high pressure liquid chromatography for column immersed in a water bath: Application of the selected models  

SciTech Connect (OSTI)

Currently, chromatographic analyses are carried out by operating columns packed with sub-2 {micro}m particles under very high pressure gradients, up to 1200 bar for 5 cm long columns. This provides the high flow rates that are necessary for the achievement of high column efficiencies and short analysis times. However, operating columns at high flow rates under such high pressure gradients generate a large amount of heat due to the viscous friction of the mobile phase stream that percolates through a low permeability bed. The evacuation of this heat causes the formation of significant or even large axial and radial gradients of all the physico-chemical parameters characterizing the packing material and the mobile phase, eventually resulting in a loss of column efficiency. We previously developed and successfully applied a model combining the heat and the mass balances of a chromatographic column operated under very high pressure gradients (VHPLC). The use of this model requires accurate estimates of the dispersion coefficients at each applied mobile phase velocity. This work reports on a modification of the mass balance model such that only one measurement is now necessary to accurately predict elution peak profiles in a wide range of mobile phase velocities. The conditions under which the simple equilibrium-dispersive (ED) and transport-dispersive (TD) models are applicable in VHPLC are also discussed. This work proves that the new combination of the heat transfer and the ED model discussed in this work enables the calculation of accurate profiles for peaks eluted under extreme conditions, like when the column is thermostated in a water bath.

Gritti, Fabrice [University of Tennessee, Knoxville (UTK); Guiochon, Georges A [ORNL; Kaczmarski, Krzysztof [University of Tennessee and Rzeszow University of Technology, Poland

2010-01-01T23:59:59.000Z

400

Computer Aided Multi-scale Design of SiC-Si3N4 Nanoceramic Composites for High-Temperature Structural Applications  

SciTech Connect (OSTI)

It is estimated that by using better and improved high temperature structural materials, the power generation efficiency of the power plants can be increased by 15% resulting in significant cost savings. One such promising material system for future high-temperature structural applications in power plants is Silicon Carbide-Silicon Nitride (SiC-Si{sub 3}N{sub 4}) nanoceramic matrix composites. The described research work focuses on multiscale simulation-based design of these SiC-Si{sub 3}N{sub 4} nanoceramic matrix composites. There were two primary objectives of the research: (1) Development of a multiscale simulation tool and corresponding multiscale analyses of the high-temperature creep and fracture resistance properties of the SiC-Si{sub 3}N{sub 4} nanocomposites at nano-, meso- and continuum length- and timescales; and (2) Development of a simulation-based robust design optimization methodology for application to the multiscale simulations to predict the range of the most suitable phase morphologies for the desired high-temperature properties of the SiC-Si{sub 3}N{sub 4} nanocomposites. The multiscale simulation tool is based on a combination of molecular dynamics (MD), cohesive finite element method (CFEM), and continuum level modeling for characterizing time-dependent material deformation behavior. The material simulation tool is incorporated in a variable fidelity model management based design optimization framework. Material modeling includes development of an experimental verification framework. Using material models based on multiscaling, it was found using molecular simulations that clustering of the SiC particles near Si{sub 3}N{sub 4} grain boundaries leads to significant nanocomposite strengthening and significant rise in fracture resistance. It was found that a control of grain boundary thicknesses by dispersing non-stoichiometric carbide or nitride phases can lead to reduction in strength however significant rise in fracture strength. The temperature dependent strength and microstructural stability was also significantly depended upon the dispersion of new phases at grain boundaries. The material design framework incorporates high temperature creep and mechanical strength data in order to develop a collaborative multiscale framework of morphology optimization. The work also incorporates a computer aided material design dataset development procedure where a systematic dataset on material properties and morphology correlation could be obtained depending upon a material processing scientist's requirements. Two different aspects covered under this requirement are: (1) performing morphology related analyses at the nanoscale and at the microscale to develop a multiscale material design and analyses capability; (2) linking material behavior analyses with the developed design tool to form a set of material design problems that illustrate the range of material design dataset development that could be performed. Overall, a software based methodology to design microstructure of particle based ceramic nanocomposites has been developed. This methodology has been shown to predict changes in phase morphologies required for achieving optimal balance of conflicting properties such as minimal creep strain rate and high fracture strength at high temperatures. The methodology incorporates complex material models including atomistic approaches. The methodology will be useful to design materials for high temperature applications including those of interest to DoE while significantly reducing cost of expensive experiments.

Vikas Tomer; John Renaud

2010-08-31T23:59:59.000Z

Note: This page contains sample records for the topic "application suite high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Diffusion Synthetic Acceleration for High-Order Discontinuous Finite Element SN Transport Schemes and Application to Locally Refined Unstructured Meshes  

SciTech Connect (OSTI)

Diffusion synthetic acceleration (DSA) schemes compatible with adaptive mesh refinement (AMR) grids are derived for the SN transport equations discretized using high-order discontinuous finite elements. These schemes are directly obtained from the discretized transport equations by assuming a linear dependence in angle of the angular flux along with an exact Fick's law and, therefore, are categorized as partially consistent. These schemes are akin to the symmetric interior penalty technique applied to elliptic problems and are all based on a second-order discontinuous finite element discretization of a diffusion equation (as opposed to a mixed or P1 formulation). Therefore, they only have the scalar flux as unknowns. A Fourier analysis has been carried out to determine the convergence properties of the three proposed DSA schemes for various cell optical thicknesses and aspect ratios. Out of the three DSA schemes derived, the modified interior penalty (MIP) scheme is stable and effective for realistic problems, even with distorted elements, but loses effectiveness for some highly heterogeneous configurations. The MIP scheme is also symmetric positive definite and can be solved efficiently with a preconditioned conjugate gradient method. Its implementation in an AMR SN transport code has been performed for both source iteration and GMRes-based transport solves, with polynomial orders up to 4. Numerical results are provided and show good agreement with the Fourier analysis results. Results on AMR grids demonstrate that the cost of DSA can be kept low on locally refined meshes.

Yaqi Wang; Jean C. Ragusa

2011-10-01T23:59:59.000Z

402

An investigation of high pressure/late cycle injection of CNG (compressed natural gas) as a fuel for rail applications  

SciTech Connect (OSTI)

This report describes a demonstration effort to investigate the use of natural gas in a medium-speed diesel engine. The effort was unique in the sense that natural gas was injected directly into the combustion chamber late in the compression stroke, as a high pressure gas rather than through low pressure fumigation or low pressure injection early in the compression stroke. Tests were performed on a laboratory two-cylinder, two-stroke cycle medium-speed diesel engine in an attempt to define its ability to operate on the high pressure/late cycle injection concept and to define the performance and emission characteristics of the engine under such operation. A small quantity of No.-2 diesel fuel was injected into the cylinder slightly before the gas injection to be used as an ignition source for the gas. Pilot (diesel fuel) and main (natural gas) timing and injection duration were systematically varied to optimize engine performance. The test demonstrated that the medium-speed engine was capable of attaining full rated speed and load (unlike the low pressure approach) with very low percentages of pilot injection with the absence of knock. Thermal efficiency was as much as 10 percent less than thermal efficiency levels obtained with neat diesel fuel. This was primarily due to the placement and injection characteristics of the pilot and main injectors. Optimization of the injection system would undoubtedly result in increased thermal efficiency. 11 figs., 4 tabs.

Wakenell, J.F.; O'Neal, G.G.; Baker, Q.A.; Urban, C.M.

1988-04-01T23:59:59.000Z

403

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1 Abstract--In high current, high voltage, high temperature  

E-Print Network [OSTI]

and high current applications, such as HVDC transmission [1] or pulsed power application [2], a thyristor

Paris-Sud XI, Université de

404

High rate resistive plate chambers: An inexpensive, fast, large area detector of energetic charged particles for accelerator and non-accelerator applications  

SciTech Connect (OSTI)

Resistive Plate Chambers, or RPCs, have been used until recently as large detectors of cosmic ray muons. They are now finding use as fast large-area trigger and muon detection systems for different high energy physics detectors such the L3 Detector at LEP and future detectors to be built at the Superconducting Super Collider (SSC) and at the Large Hadron Collider (LHC) at CERN. RPC systems at these accelerators must operate with high efficiency, providing nanosecond timing resolution in particle fluences up to a few tens of kHz/cm{sup 2} -- with thousands of square meters of active area. RPCs are simple and cheap to construct. The authors report here recent work on RPCs using new materials that exhibit a combination of desirable RPC features such as low bulk resistivity, high dielectric strength, low mass, and low cost. These new materials were originally developed for use in electronics assembly areas and other applications, where static electric charge buildup can damage sensitive electrical systems.

Wuest, C.R.; Ables, E.; Bionta, R.M.; Clamp, O.; Haro, M.; Mauger, G.J.; Miller, K.; Olson, H.; Ramsey, P.

1993-05-01T23:59:59.000Z

405

Application of single ion activity coefficients to determine solvent extraction mechanism for components of high level nuclear waste  

SciTech Connect (OSTI)

The TRUEX solvent extraction process is being developed to remove and concentrate transuranic (TRU) elements from high-level and TRU radioactive wastes currently stored at US Department of Energy sites. Phosphoric acid is one of the chemical species of concern at the Hanford site where bismuth phosphate was used to recover plutonium. The mechanism of phosphoric acid extraction with TRUEX-NPH solvent at 25{degrees}C was determined by phosphoric acid distribution ratios, which were measured by using phosphoric acid radiotracer and a variety of aqueous phases containing different concentrations of nitric acid and nitrate ions. A model was developed for predicting phosphoric acid distribution ratios as a function of the thermodynamic activities of nitrate ion and hydrogen ion. The Generic TRUEX Model (GTM) was used to calculate these activities based on the Bromley method. The derived model supports CMPO and TBP extraction of a phosphoric acid-nitric acid complex and a CMPO-phosphoric acid complex in TRUEX-NPH solvent.

Nunez, L.; Vandegrift, G.F.

1995-12-31T23:59:59.000Z

406

A global approach of the representativity concept: Application on a high-conversion light water reactor MOX lattice case  

SciTech Connect (OSTI)

The development of new types of reactor and the increase in the safety specifications and requirements induce an enhancement in both nuclear data knowledge and a better understanding of the neutronic properties of the new systems. This enhancement is made possible using ad hoc critical mock-up experiments. The main difficulty is to design these experiments in order to obtain the most valuable information. Its quantification is usually made by using representativity and transposition concepts. These theories enable to extract some information about a quantity of interest (an integral parameter) on a configuration, but generally a posteriori. This paper presents a more global approach of this theory, with the idea of optimizing the representativity of a new experiment, and its transposition a priori, based on a multiparametric approach. Using a quadratic sum, we show the possibility to define a global representativity which permits to take into account several quantities of interest at the same time. The maximization of this factor gives information about all quantities of interest. An optimization method of this value in relation to technological parameters (over-clad diameter, atom concentration) is illustrated on a high-conversion light water reactor MOX lattice case. This example tackles the problematic of plutonium experiment for the plutonium aging and a solution through the optimization of both the over-clad and the plutonium content. (authors)

Santos, N. D.; Blaise, P.; Santamarina, A. [CEA, DEN/DER/SPRC Cadarache, F-13108 Saint Paul-lez-Durance (France)

2013-07-01T23:59:59.000Z

407

APPLICATION OF A THIN FILM EVAPORATOR SYSTEM FOR MANAGEMENT OF LIQUID HIGH-LEVEL WASTES AT HANFORD  

SciTech Connect (OSTI)

A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORP/DOE), through Columbia Energy & Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper discusses results of pre-project pilot-scale testing by Columbia Energy and ongoing technology maturation development scope through fiscal year 2012, including planned additional pilot-scale and full-scale simulant testing and operation with actual radioactive tank waste.

TEDESCHI AR; WILSON RA

2010-01-14T23:59:59.000Z

408

Theory of coupled whistler-electron temperature gradient mode in high beta plasma: Application to linear plasma device  

SciTech Connect (OSTI)

This paper presents a theory of coupled whistler (W) and electron temperature gradient (ETG) mode using two-fluid model in high beta plasma. Non-adiabatic ion response, parallel magnetic field perturbation ({delta}B{sub z}), perpendicular magnetic flutter ({delta}B{sub perpendicular}), and electron collisions are included in the treatment of theory. A linear dispersion relation for whistler-electron temperature gradient (W-ETG) mode is derived. The numerical results obtained from this relation are compared with the experimental results observed in large volume plasma device (LVPD) [Awasthi et al., Phys. Plasma 17, 42109 (2010)]. The theory predicts that the instability grows only where the temperature gradient is finite and the density gradient flat. For the parameters of the experiment, theoretically estimated frequency and wave number of W-ETG mode match with the values corresponding to the peak in the power spectrum observed in LVPD. By using simple mixing length argument, estimated level of fluctuations of W-ETG mode is in the range of fluctuation level observed in LVPD.

Singh, S. K.; Awasthi, L. M.; Singh, R.; Kaw, P. K.; Jha, R.; Mattoo, S. K. [Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India)

2011-10-15T23:59:59.000Z

409

High-? Al{sub 2}O{sub 3} material in low temperature wafer-level bonding for 3D integration application  

SciTech Connect (OSTI)

This work systematically investigated a high-? Al{sub 2}O{sub 3} material for low temperature wafer-level bonding for potential applications in 3D microsystems. A clean Si wafer with an Al{sub 2}O{sub 3} layer thickness of 50 nm was applied as our experimental approach. Bonding was initiated in a clean room ambient after surface activation, followed by annealing under inert ambient conditions at 300?°C for 3 h. The investigation consisted of three parts: a mechanical support study using the four-point bending method, hermeticity measurements using the helium bomb test, and thermal conductivity analysis for potential heterogeneous bonding. Compared with samples bonded using a conventional oxide bonding material (SiO{sub 2}), a higher interfacial adhesion energy (?11.93 J/m{sup 2}) and a lower helium leak rate (?6.84 × 10{sup ?10} atm.cm{sup 3}/sec) were detected for samples bonded using Al{sub 2}O{sub 3}. More importantly, due to the excellent thermal conductivity performance of Al{sub 2}O{sub 3}, this technology can be used in heterogeneous direct bonding, which has potential applications for enhancing the performance of Si photonic integrated devices.

Fan, J., E-mail: fanji@hust.edu.cn; Tu, L. C. [MOE Key Laboratory of Fundamental Physical Quantities Measurement, School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)] [MOE Key Laboratory of Fundamental Physical Quantities Measurement, School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Tan, C. S. [School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)] [School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

2014-03-15T23:59:59.000Z

410

Single particle counting diagnostic system for measuring fine particulates at high number densities in research and industrial applications. Final report summarizing instrument development, validation and operating instructions  

SciTech Connect (OSTI)

Optical methods for particle size distribution measurements in practical high temperature environments have achieved feasibility and offer significant advantages over conventional sampling methods. The present report describes a mobile electro-optical system which has been designed for general use in a wide range of research and industrial environments. Specific features of this system include a method of providing in situ alignment and incorporation of an extinction measurement for application to optically thick aerosol flows. The instrument has demonstrated capability for measuring individual particles in the size range 0.25 to 100 microns at number densities up to 10/sup 12//m/sup 3/. In addition to demonstration of the system's wide dynamic range, we show the utility of the in situ alignment method in hot (1100 K) turbulent flows where beam steering can be a problem. As an example of the instrument's application, number and mass frequency distribution measurements of flyash and pulverized coal obtained in an atmospheric combustion exhaust simulator show that the raw pulverized coal contains large numbers of submicron particles similar to the flyash formed after combustion.

Holve, D.J.

1983-10-01T23:59:59.000Z

411

Section IV.D.3 for DOE 2013 Annual Report: Novel Phosphazene-based Compounds to Enhance Safety and Stability of Cell Chemistries for High Voltage Applications (INL)  

SciTech Connect (OSTI)

Electrolytes play a central role in performance and aging in most electrochemical systems. As automotive and grid applications place a higher reliance on electrochemical stored energy, it becomes more urgent to have electrolyte components that enable optimal battery performance while promoting battery safety and longevity. Safety remains a foremost concern for widespread utilization of Li-ion technology in electric-drive vehicles, especially as the focus turns to higher voltage systems (5V). This work capitalizes on the long established INL expertise regarding phosphazene chemistry, aimed at battery-viable compounds for electrolytes and electrodes that are highly tolerant to abusive conditions. This report showcases our 2013 work for the DOE applied battery research (ABR) program, wherein testing results are summarized for INL electrolytes and alternative anode materials.

Kevin L. Gering; Mason K. Harrup; Eric J. Dufek; Sergiy V. Sazhin; Harry W. Rollins; David K. Jamison; Fred F. Stewart; John Burba

2013-09-01T23:59:59.000Z

412

M5Si3(M=Ti, Nb, Mo) Based Transition-Metal Silicides for High Temperature Applications  

SciTech Connect (OSTI)

Transition metal silicides are being considered for future engine turbine components at temperatures up to 1600 C. Although significant improvement in high temperature strength, room temperature fracture toughness has been realized in the past decade, further improvement in oxidation resistance is needed. Oxidation mechanism of Ti{sub 5}Si{sub 3}-based alloys was investigated. Oxidation behavior of Ti{sub 5}Si{sub 3}-based alloy strongly depends on the atmosphere. Presence of Nitrogen alters the oxidation behavior of Ti{sub 5}Si{sub 3} by nucleation and growth of nitride subscale. Ti{sub 5}Si{sub 3.2} and Ti{sub 5}Si{sub 3}C{sub 0.5} alloys exhibited an excellent oxidation resistance in nitrogen bearing atmosphere due to limited dissolution of nitrogen and increased Si/Ti activity ratio. MoSi{sub 2} coating developed by pack cementation to protect Mo-based Mo-Si-B composites was found to be effective up to 1500 C. Shifting coating composition to T1+T2+Mo{sub 3}Si region showed the possibility to extend the coating lifetime above 1500 C by more than ten times via formation of slow growing Mo{sub 3}Si or T2 interlayer without sacrificing the oxidation resistance of the coating. The phase equilibria in the Nb-rich portion of Nb-B system has been evaluated experimentally using metallographic analysis and differential thermal analyzer (DTA). It was shown that Nb{sub ss} (solid solution) and NbB are the only two primary phases in the 0-40 at.% B composition range, and the eutectic reaction L {leftrightarrow} Nb{sub SS} + NbB was determined to occur at 2104 {+-} 5 C by DTA.

Zhihong Tang

2007-12-01T23:59:59.000Z

413

08/15/2006 04:46 PMGeorgia Tech develops a `SWAN` suit Page 1 of 1http://science.monstersandcritics.com/news/printer_1190655.php  

E-Print Network [OSTI]

://science.monstersandcritics.com/news/printer_1190655.php From Monsters and Critics.com SCIENCE NEWS Georgia Tech develops a `SWAN` suit By UPI Aug 15

414

Office of Technology Transfer and Innovation Partnerships, Innovative Technologies Complex, Suite 2100 Mailing Address: PO Box 6000, Binghamton, New York 13902-6000  

E-Print Network [OSTI]

Office of Technology Transfer and Innovation Partnerships, Innovative Technologies Complex, Suite Hancock Assistant Director for Licensing Binghamton University Office of Technology Transfer

Suzuki, Masatsugu

415

Submitting a Vendor Request 1. Click on `Vendor Request' in the Oracle E-Business Suite screen  

E-Print Network [OSTI]

Submitting a Vendor Request 1. Click on `Vendor Request' in the Oracle E-Business Suite screen 2. Search for the vendor to make sure they're not already in the system (remember to use the wildcard % symbol to make your search more thorough). 3. If the vendor you're trying to set up does not come up

416

Compact Accelerated Life Testing with Expanded Measurement Suite John Raguse, Russell Geisthardt, Jennifer Drayton, James R. Sites  

E-Print Network [OSTI]

Compact Accelerated Life Testing with Expanded Measurement Suite John Raguse, Russell Geisthardt -- An accelerated-life-testing (ALT) system has been built at the Colorado State University Photovoltaics Laboratory, electroluminescence, current measurement. I. INTRODUCTION A state-of-the-art accelerated-life-testing (ALT) system

Sites, James R.

417

STATE OF COLORADO 1560 Broadway, Suite 1600, Denver, Colorado 80202 (303) 866-2723 fax (303) 866-4266  

E-Print Network [OSTI]

STATE OF COLORADO 1560 Broadway, Suite 1600, Denver, Colorado 80202 (303) 866-2723 fax (303) 866-4266 http://highered.colorado.gov DEPARTMENT OF HIGHER EDUCATION John Hickenlooper Governor Lt. Gov. Joseph A. Garcia Executive Director EARLY CHILDHOOD TEACHER EDUCATION TRANSFER AGREEMENT Between COLORADO

Collett Jr., Jeffrey L.

418

Underground coal mining is an industry well suited for robotic automation. Human operators are severely hampered in  

E-Print Network [OSTI]

Abstract Underground coal mining is an industry well suited for robotic automation. Human operators approach meets the requirements for cutting straight entries and mining the proper amount of coal per cycle. Introduction The mining of soft materials, such as coal, is a large industry. Worldwide, a total of 435 million

Stentz, Tony

419

A combined Sm-Nd, Rb-Sr, and U-Pb isotopic study of Mg-suite norite 78238: Further evidence for early differentiation of the Moon  

SciTech Connect (OSTI)

Lunar Mg-suite norite 78238 was dated using the Sm-Nd, Rb-Sr, and U-Pb isotopic systems in order to constrain the age of lunar magma ocean solidification and the beginning of Mg-suite magmatism, as well as to provide a direct comparison between the three isotopic systems. The Sm-Nd isotopic system yields a crystallization age for 78238 of 4334 {+-} 37 Ma and an initial {var_epsilon}{sub Nd}{sup 143} value of -0.27 {+-} 0.74. The age-initial {var_epsilon}{sub Nd}{sup 143} (T-I) systematics of a variety of KREEP-rich samples, including 78238 and other Mg-suite rocks, KREEP basalts, and olivine cumulate NWA 773, suggest that lunar differentiation was completed by 4492 {+-} 61 Ma assuming a Chondritic Uniform Reservoir bulk composition for the Moon. The Rb-Sr isotopic systematics of 78238 were disturbed by post-crystallization processes. Nevertheless, selected data points yield two Rb-Sr isochrons. One is concordant with the Sm-Nd crystallization age, 4366 {+-} 53 Ma. The other is 4003 {+-} 95 Ma and is concordant with an Ar-Ar age for 78236. The {sup 207}Pb-{sup 206}Pb age of 4333 {+-} 59 Ma is concordant with the Sm-Nd age. The U-Pb isotopic systematics of 78238 yield linear arrays equivalent to younger ages than the Pb-Pb system, and may reflect fractionation of U and Pb during sample handling. Despite the disturbed nature of the U-Pb systems, a time-averaged {mu} ({sup 238}U/{sup 204}Pb) value of the source can be estimated at 27 {+-} 30 from the Pb-Pb isotopic systematics. Because KREEP-rich samples are likely to be derived from source regions with the highest U/Pb ratios, the relatively low {mu} value calculated for the 78238 source suggests the bulk Moon does not have an exceedingly high {mu} value.

Edmunson, J; E.Borg, L; Nyquist, L E; Asmerom, Y

2008-11-17T23:59:59.000Z

420

An evaluation of the TSE MR sequence for time efficient data acquisition in polymer gel dosimetry of applications involving high doses and steep dose gradients  

SciTech Connect (OSTI)

The use of magnetic resonance imaging as a readout method for polymer gel dosimetry commonly involves long imaging sessions, particularly when high spatial resolution is required in all three dimensions, for the investigation of dose distributions with steep dose gradients and stringent dose delivery specifications. In this work, a volume selective turbo spin echo (TSE) pulse sequence is compared to the established Carr-Purcell-Meiboom-Gill (CPMG) multiecho acquisition with regard to providing accurate dosimetric results in significantly reduced imaging times. Polyethylene glycol diacrylate based (PABIG) gels were irradiated and subsequently scanned to obtain R2 relaxation rate measurements, using a CPMG multiecho sequence and a dual echo TSE utilizing an acceleration (turbo) factor of 64. R2 values, plotted against corresponding Monte Carlo dose calculations, provided calibration data of PABIG gels dose response over a wide dose range. A linear R2 versus dose relationship was demonstrated for both sequences with TSE results presenting reduced dose sensitivity. Although TSE data were found to deviate from linearity at lower doses compared to CPMG data, a relatively wide dynamic dose range of response extending up to approximately 100 Gy was observed for both sequences. The TSE and CPMG sequences were evaluated with a brachytherapy irradiation using a high dose rate {sup 192}Ir source and a gamma knife stereotactic radiosurgery irradiation with a single 4 mm collimator helmet shot. Dosimetric results obtained with the TSE and CPMG are shown to compare equally well with the expected dose distributions for these irradiations. The 60-fold scan time reduction achieved with TSE implies that this sequence could prove to be a useful tool for the introduction of polymer gel dosimetry in clinical radiation therapy applications involving high doses and steep dose gradients.

Baras, P.; Seimenis, I.; Sandilos, P.; Vlahos, L.; Bieganski, T.; Georgiou, E.; Pantelis, E.; Papagiannis, P.; Sakelliou, L. [Philips Hellas Medical Systems, 44 Kifissias Ave., Maroussi 151 25, Athens (Greece); Department of Radiology, Medical School, University of Athens, Areteion Hospital, 76 Vas. Sofias Ave., 115 28 Athens (Greece) and Medical Physics Department, Hygeia Hospital, Kiffisias Avenue, 24 Erythrou Stavrou, Marousi, 151 23, Athens (Greece); Department of Radiology, Mother's Memorial Hospital, Rzgowska 281/289, 93-388, Lodz (Poland); Medical Physics Department, University of Athens, 75 Mikras Asias, 115 27 Athens (Greece); Nuclear and Particle Physics Section, Physics Department, University of Athens, Panepistimioupolis, Ilisia, 157 71 Athens (Greece)

2005-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "application suite high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

In situ vitrification: application analysis for stabilization of transuranic waste  

SciTech Connect (OSTI)

The in situ vitrification process builds upon the electric melter technology previously developed for high-level waste immobilization. In situ vitrification converts buried wastes and contaminated soil to an extremely durable glass and crystalline waste form by melting the materials, in place, using joule heating. Once the waste materials have been solidified, the high integrity waste form should not cause future ground subsidence. Environmental transport of the waste due to water or wind erosion, and plant or animal intrusion, is minimized. Environmental studies are currently being conducted to determine whether additional stabilization is required for certain in-ground transuranic waste sites. An applications analysis has been performed to identify several in situ vitrification process limitations which may exist at transuranic waste sites. Based on the process limit analysis, in situ vitrification is well suited for solidification of most in-ground transuranic wastes. The process is best suited for liquid disposal sites. A site-specific performance analysis, based on safety, health, environmental, and economic assessments, will be required to determine for which sites in situ vitrification is an acceptable disposal technique. Process economics of in situ vitrification compare favorably with other in-situ solidification processes and are an order of magnitude less than the costs for exhumation and disposal in a repository. Leachability of the vitrified product compares closely with that of Pyrex glass and is significantly better than granite, marble, or bottle glass. Total release to the environment from a vitrified waste site is estimated to be less than 10/sup -5/ parts per year. 32 figures, 30 tables.

Oma, K.H.; Farnsworth, R.K.; Rusin, J.M.

1982-09-01T23:59:59.000Z

422

Semi-nonstandard construction and its application in post-squatter ?stanbul  

E-Print Network [OSTI]

Prefabricated buildings have long played a role in providing inexpensive, yet high quality dwellings for the multitude. However, such structures are typically standardized in nature and poorly suited for deployment within ...

Form, Stephen (Stephen Robert)

2011-01-01T23:59:59.000Z

423

UPb dating of the Madeira Suite and structural control of the albite-enriched granite at Pitinga (Amazonia, Brazil): Evolution of the A-type  

E-Print Network [OSTI]

U­Pb dating of the Madeira Suite and structural control of the albite- enriched granite at Pitinga of A-type magmatism and basin formation occurred. The albite-enriched granite emplacement occurred-enriched facies of Madeira granite (Madeira Suite) that is part of a NE­SW alignment of three granitic bodies

Paris-Sud XI, Université de

424

High performance ceramic engine applications  

SciTech Connect (OSTI)

Several engine component development projects were pursued as demonstrations of the ability of sintered silicon carbide to withstand the physical environment present in diesel and gasoline engines and in turbochargers. 2 refs.

Long, W.D.; Storm, R.S.; Lashway, R.W.

1981-01-01T23:59:59.000Z

425

High Temperature Superconductors: From Delivery to Applications (Presentation from 2011 Ernest Orlando Lawrence Award-winner, Dr. Amit Goyal, and including introduction by Energy Secretary, Dr. Steven Chu)  

SciTech Connect (OSTI)

Dr. Amit Goyal, a high temperature superconductivity (HTS) researcher at Oak Ridge National Laboratory, was named a 2011 winner of the Department of Energy's Ernest Orlando Lawrence Award honoring U.S. scientists and engineers for exceptional contributions in research and development supporting DOE and its mission. Winner of the award in the inaugural category of Energy Science and Innovation, Dr. Goyal was cited for his work in 'pioneering research and transformative contributions to the field of applied high temperature superconductivity, including fundamental materials science advances and technical innovations enabling large-scale applications of these novel materials.' Following his basic research in grain-to-grain supercurrent transport, Dr. Goyal focused his energy in transitioning this fundamental understanding into cutting-edge technologies. Under OE sponsorship, Dr. Goyal co-invented the Rolling Assisted Bi-Axially Textured Substrate technology (RABiTS) that is used as a substrate for second generation HTS wires. OE support also led to the invention of Structural Single Crystal Faceted Fiber Substrate (SSIFFS) and the 3-D Self Assembly of Nanodot Columns. These inventions and associated R&D resulted in 7 R&D 100 Awards including the 2010 R&D Magazine's Innovator of the Year Award, 3 Federal Laboratory Consortium Excellence in Technology Transfer National Awards, a DOE Energy100 Award and many others. As a world authority on HTS materials, Dr. Goyal has presented OE-sponsored results in more than 150 invited talks, co-authored more than 350 papers and is a fellow of 7 professional societies.

Goyal, Amit (Oak Ridge National Laboratory) [Oak Ridge National Laboratory

2012-05-22T23:59:59.000Z

426

High Temperature Superconductors: From Delivery to Applications (Presentation from 2011 Ernest Orlando Lawrence Award-winner, Dr. Amit Goyal, and including introduction by Energy Secretary, Dr. Steven Chu)  

ScienceCinema (OSTI)

Dr. Amit Goyal, a high temperature superconductivity (HTS) researcher at Oak Ridge National Laboratory, was named a 2011 winner of the Department of Energy's Ernest Orlando Lawrence Award honoring U.S. scientists and engineers for exceptional contributions in research and development supporting DOE and its mission. Winner of the award in the inaugural category of Energy Science and Innovation, Dr. Goyal was cited for his work in 'pioneering research and transformative contributions to the field of applied high temperature superconductivity, including fundamental materials science advances and technical innovations enabling large-scale applications of these novel materials.' Following his basic research in grain-to-grain supercurrent transport, Dr. Goyal focused his energy in transitioning this fundamental understanding into cutting-edge technologies. Under OE sponsorship, Dr. Goyal co-invented the Rolling Assisted Bi-Axially Textured Substrate technology (RABiTS) that is used as a substrate for second generation HTS wires. OE support also led to the invention of Structural Single Crystal Faceted Fiber Substrate (SSIFFS) and the 3-D Self Assembly of Nanodot Columns. These inventions and associated R&D resulted in 7 R&D 100 Awards including the 2010 R&D Magazine's Innovator of the Year Award, 3 Federal Laboratory Consortium Excellence in Technology Transfer National Awards, a DOE Energy100 Award and many others. As a world authority on HTS materials, Dr. Goyal has presented OE-sponsored results in more than 150 invited talks, co-authored more than 350 papers and is a fellow of 7 professional societies.

Goyal, Amit (Oak Ridge National Laboratory)

2012-06-28T23:59:59.000Z

427

FinalReport for completed IPP-0110 and 0110A Projects:"High Energy Ion Technology of Interfacial Thin Film Coatings for Electronic, Optical and Industrial Applications"  

SciTech Connect (OSTI)

The DOE-supported IPP (Initiatives for Proliferation Prevention) Project, IPP-0110, and its accompanying 'add-on project' IPP-0110A, entitled 'High Energy Ion Technology of Interfacial Thin Film Coatings for Electronic, Optical and Industrial Applications' was a collaborative project involving the Lawrence Berkeley National Laboratory (LBNL) as the U.S. DOE lab; the US surface modification company, Phygen, Inc., as the US private company involved; and the High Current Electronics Institute (HCEI) of the Russian Academy of Sciences, Tomsk, Siberia, Russia, as the NIS Institute involved. Regular scientific research progress meetings were held to which personnel came from all participating partners. The meetings were held mostly at the Phygen facilities in Minneapolis, Minnesota (with Phygen as host) with meetings also held at Tomsk, Russia (HCEI as host), and at Berkeley, California (LBNL as host) In this way, good exposure of all researchers to the various different laboratories involved was attained. This report contains the Final Reports (final deliverables) from the Russian Institute, HCEI. The first part is that for IPP-0110A (the 'main part' of the overall project) and the second part is that for the add-on project IPP-0110A. These reports are detailed, and contain all aspects of all the research carried out. The project was successful in that all deliverables as specified in the proposals were successfully developed, tested, and delivered to Phygen. All of the plasma hardware was designed, made and tested at HCEI, and the performance was excellent. Some of the machine and performance parameters were certainly of 'world class'. The goals and requirements of the IPP Project were well satisfied. I would like to express my gratitude to the DOE IPP program for support of this project throughout its entire duration, and for the unparalleled opportunity thereby provided for all of the diverse participants in the project to join in this collaborative research. The benefits are superb, as measured in quite a number of different ways.

Brown, Ian

2009-09-01T23:59:59.000Z

428

Development of improved processing and evaluation methods for high reliability structural ceramics for advanced heat engine applications, Phase 1. Final report  

SciTech Connect (OSTI)

The program goals were to develop and demonstrate significant improvements in processing methods, process controls and non-destructive evaluation (NDE) which can be commercially implemented to produce high reliability silicon nitride components for advanced heat engine applications at temperatures to 1,370{degrees}C. The program focused on a Si{sub 3}N{sub 4}-4% Y{sub 2}O{sub 3} high temperature ceramic composition and hot-isostatic-pressing as the method of densification. Stage I had as major objectives: (1) comparing injection molding and colloidal consolidation process routes, and selecting one route for subsequent optimization, (2) comparing the performance of water milled and alcohol milled powder and selecting one on the basis of performance data, and (3) adapting several NDE methods to the needs of ceramic processing. The NDE methods considered were microfocus X-ray radiography, computed tomography, ultrasonics, NMR imaging, NMR spectroscopy, fluorescent liquid dye penetrant and X-ray diffraction residual stress analysis. The colloidal consolidation process route was selected and approved as the forming technique for the remainder of the program. The material produced by the final Stage II optimized process has been given the designation NCX 5102 silicon nitride. According to plan, a large number of specimens were produced and tested during Stage III to establish a statistically robust room temperature tensile strength database for this material. Highlights of the Stage III process demonstration and resultant database are included in the main text of the report, along with a synopsis of the NCX-5102 aqueous based colloidal process. The R and D accomplishments for Stage I are discussed in Appendices 1--4, while the tensile strength-fractography database for the Stage III NCX-5102 process demonstration is provided in Appendix 5. 4 refs., 108 figs., 23 tabs.

Pujari, V.K.; Tracey, D.M.; Foley, M.R.; Paille, N.I.; Pelletier, P.J.; Sales, L.C.; Wilkens, C.A.; Yeckley, R.L. [Norton Co., Northboro, MA (United States)

1993-08-01T23:59:59.000Z

429

Applications of High-Resolution Electrospray Ionization Mass Spectrometry to Measurements of Average Oxygen to Carbon Ratios in Secondary Organic Aerosols  

SciTech Connect (OSTI)

The applicability of high resolution electrospray ionization mass spectrometry (HR ESI-MS) to measurements of the average oxygen to carbon ratio (O/C) in organic aerosols was investigated. Solutions with known average O/C containing up to 10 standard compounds representative of secondary organic aerosol (SOA) were analyzed and corresponding electrospray ionization efficiencies were quantified. The assumption of equal ionization efficiency commonly used in estimating O/C ratios of organic aerosols was found to be reasonably accurate. We found that the accuracy of the measured O/C ratios increases by averaging the values obtained from both (+) and (-) modes. A correlation was found between the ratio of the ionization efficiencies in the positive and negative ESI modes with the octanol-water partition constant, and more importantly, with the compound's O/C. To demonstrate the utility of this correlation for estimating average O/C values of unknown mixtures, we analyzed the ESI (+) and ESI (-) data for SOA produced by oxidation of limonene and isoprene and compared to online O/C measurements using an aerosol mass spectrometer (AMS). This work demonstrates that the accuracy of the HR ESI-MS methods is comparable to that of the AMS, with the added benefit of molecular identification of the aerosol constituents.

Bateman, Adam P.; Laskin, Julia; Laskin, Alexander; Nizkorodov, Sergey

2012-07-02T23:59:59.000Z

430

Scaling Irregular Applications through Data Aggregation and Software Multithreading  

SciTech Connect (OSTI)

Bioinformatics, data analytics, semantic databases, knowledge discovery are emerging high performance application areas that exploit dynamic, linked data structures such as graphs, unbalanced trees or unstructured grids. These data structures usually are very large, requiring significantly more memory than available on single shared memory systems. Additionally, these data structures are difficult to partition on distributed memory systems. They also present poor spatial and temporal locality, thus generating unpredictable memory and network accesses. The Partitioned Global Address Space (PGAS) programming model seems suitable for these applications, because it allows using a shared memory abstraction across distributed-memory clusters. However, current PGAS languages and libraries are built to target regular remote data accesses and block transfers. Furthermore, they usually rely on the Single Program Multiple Data (SPMD) parallel control model, which is not well suited to the fine grained, dynamic and unbalanced parallelism of irregular applications. In this paper we present {\\bf GMT} (Global Memory and Threading library), a custom runtime library that enables efficient execution of irregular applications on commodity clusters. GMT integrates a PGAS data substrate with simple fork/join parallelism and provides automatic load balancing on a per node basis. It implements multi-level aggregation and lightweight multithreading to maximize memory and network bandwidth with fine-grained data accesses and tolerate long data access latencies. A key innovation in the GMT runtime is its thread specialization (workers, helpers and communication threads) that realize the overall functionality. We compare our approach with other PGAS models, such as UPC running using GASNet, and hand-optimized MPI code on a set of typical large-scale irregular applications, demonstrating speedups of an order of magnitude.

Morari, Alessandro; Tumeo, Antonino; Chavarría-Miranda, Daniel; Villa, Oreste; Valero, Mateo

2014-05-30T23:59:59.000Z

431

A Suite of Schemes for User-level Network Diagnosis without Infrastructure  

E-Print Network [OSTI]

Department of Electrical Engineering and Computer Science Northwestern University {yzhao and ychen the performance of their applications. However, the modern Internet is heterogeneous and largely un- regulated to cooperate in collecting the network traffic measurements vital for Internet fault diagnosis. Internet

Chen, Yan

432

A High-Frequency Resonant Inverter Topology With Low-Voltage Stress  

E-Print Network [OSTI]

This paper presents a new switched-mode resonant inverter, which we term the inverter, that is well suited to operation at very high frequencies and to rapid on/off control. Features of this inverter topology include low ...

Rivas, Juan M.

433

A Guide to Insulation Selection for Industrial Applications  

E-Print Network [OSTI]

of new insulations on th mar ket, it is important that the insulation selection process be upgraded. Insulation peci fications need to be reviewed in terms of new products and installation techniques. Also, the specific application or end use should... be critically analyzed to determine whic~ pro f ducts are best suited for that application. INSULATION MATERIAL SELECTION The selection and specification of insulation materials can be broken down int two I separate but interrelated activities. The first...

Harrison, M. R.

1979-01-01T23:59:59.000Z

434

Nuclear Tools For Oilfield Logging-While-Drilling Applications  

SciTech Connect (OSTI)

Schlumberger is an international oilfield service company with nearly 80,000 employees of 140 nationalities, operating globally in 80 countries. As a market leader in oilfield services, Schlumberger has developed a suite of technologies to assess the downhole environment, including, among others, electromagnetic, seismic, chemical, and nuclear measurements. In the past 10 years there has been a radical shift in the oilfield service industry from traditional wireline measurements to logging-while-drilling (LWD) analysis. For LWD measurements, the analysis is performed and the instruments are operated while the borehole is being drilled. The high temperature, high shock, and extreme vibration environment of LWD imposes stringent requirements for the devices used in these applications. This has a significant impact on the design of the components and subcomponents of a downhole tool. Another significant change in the past few years for nuclear-based oilwell logging tools is the desire to replace the sealed radioisotope sources with active, electronic ones. These active radiation sources provide great benefits compared to the isotopic sources, ranging from handling and safety to nonproliferation and well contamination issues. The challenge is to develop electronic generators that have a high degree of reliability for the entire lifetime of a downhole tool. LWD tool testing and operations are highlighted with particular emphasis on electronic radiation sources and nuclear detectors for the downhole environment.

Reijonen, Jani [Schlumberger PTC, 20 Wallace Rd., Princeton Junction, NJ 08550 (United States)

2011-06-01T23:59:59.000Z

435

The high energy emission from black holes  

E-Print Network [OSTI]

The origin of the high energy emission (X-rays and gamma-rays) from black holes is still a matter of debate. We present new evidence that hard X-ray emission in the low/hard state may not be dominated by thermal Comptonization. We present an alternative scenario for the origin of the high energy emission that is well suited to explain the high energy emission from GRO J1655-40.

M. D. Caballero-Garcia; J. M. Miller; E. Kuulkers

2007-11-06T23:59:59.000Z

436

CP Tech Center I Iowa State University I 2711 S. Loop Dr. Suite 4700,Ames, IA 50010-8664 I 515-294-5798 FOR MORE INFORMATION  

E-Print Network [OSTI]

CP Tech Center I Iowa State University I 2711 S. Loop Dr. Suite 4700,Ames, IA 50010-8664 I 515 calcium sulfate in the form of hemihydrate (plaster) in the cement (false set) or the uncontrolled early

437

SOLVING THE HARD PROBLEMSSOLVING THE HARD PROBLEMS Application Deadline Apr 15  

E-Print Network [OSTI]

and Rome, NY; Maui High Performance Computing Center, Maui, HI; Naval Air Warfare Centers in Patuxent River Manager High Performance Computing Modernization Program 10501 Furnace Road Suite 101 Lorton, VA 22079 #12;The High Performance Computing Modernization Program (HPCMP) delivers world-class commercial, high

Olsen, Stephen L.

438

Using the BEopt Automated Residential Simulation Test Suite to Enable Comparative Analysis Between Energy Simulation Engines: Preprint  

SciTech Connect (OSTI)

Verification and validation are crucial software quality control procedures when developing and implementing models. This is particularly important as a variety of stakeholders rely on accurate predictions from building simulation programs. This study uses the BEopt Automated Residential Simulation Test Suite (BARTS) to facilitate comparison of two energy simulation engines across various building components and includes models that isolate the impacts of specific building components on annual energy consumption. As a case study, BARTS has been used to identify important discrepancies between the engines for several components of the building models; these discrepancies are caused by differences in the models used by the engines or coding errors.

Tabares-Velasco, P. C.; Maguire, J.; Horowitz, S.; Christensen, C.

2014-09-01T23:59:59.000Z

439

Extraction of highly charged ions from the electron beam ion trap at LBNL for applications in surface analysis and Materials Science  

E-Print Network [OSTI]

Electron Beam Ion Trap at LBNL for Applications in Surfacetransferred from LLNL to LBNL, and is now operating with+ . The research program at LBNL is focused on the following

2001-01-01T23:59:59.000Z

440

A low-cost, high-resolution, video-rate imaging optical radar  

SciTech Connect (OSTI)

Sandia National Laboratories has developed a unique type of portable low-cost range imaging optical radar (laser radar or LADAR). This innovative sensor is comprised of an active floodlight scene illuminator and an image intensified CCD camera receiver. It is a solid-state device (no moving parts) that offers significant size, performance, reliability, and simplicity advantages over other types of 3-D imaging sensors. This unique flash LADAR is based on low cost, commercially available hardware, and is well suited for many government and commercial uses. This paper presents an update of Sandia`s development of the Scannerless Range Imager technology and applications, and discusses the progress that has been made in evolving the sensor into a compact, low, cost, high-resolution, video rate Laser Dynamic Range Imager.

Sackos, J.T.; Nellums, R.O.; Lebien, S.M.; Diegert, C.F. [Sandia National Labs., Albuquerque, NM (United States); Grantham, J.W.; Monson, T. [Air Force Research Lab., Eglin AFB, FL (United States)

1998-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "application suite high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Advanced Boost System Development for Diesel HCCI/LTC Application...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Boost System Development for Diesel HCCILTC Application Advanced Boost System Development for Diesel HCCILTC Application Optimization of a turbocharger for high EGR applications...

442

High-Power Zinc-Air Energy Storage: Enhanced Metal-Air Energy Storage System with Advanced Grid-Interoperable Power Electronics Enabling Scalability and Ultra-Low Cost  

SciTech Connect (OSTI)

GRIDS Project: Fluidic is developing a low-cost, rechargeable, high-power module for Zinc-air batteries that will be used to store renewable energy. Zinc-air batteries are traditionally found in small, non-rechargeable devices like hearing aids because they are well-suited to delivering low levels of power for long periods of time. Historically, Zinc-air batteries have not been as useful for applications which require periodic bursts of power, like on the electrical grid. Fluidic hopes to fill this need by combining the high energy, low cost, and long run-time of a Zinc-air battery with new chemistry providing high power, high efficiency, and fast response. The battery module could allow large grid-storage batteries to provide much more power on very short demand—the most costly kind of power for utilities—and with much more versatile performance.

None

2010-10-01T23:59:59.000Z

443

http://hpc.sagepub.com Computing Applications  

E-Print Network [OSTI]

.1177/1094342007085025 2008; 22; 33International Journal of High Performance Computing Applications and �mit �atalyürek Chow://www.sagepublications.com can be found at:International Journal of High Performance Computing ApplicationsAdditional services/L APPLICATIONS The International Journal of High Performance Computing Applications, Volume 22, No. 1, Spring

Duisburg-Essen, Universität

444

Guides in Cotton Irrigation on the High Plains.  

E-Print Network [OSTI]

United States cotton crop and one-third the total Texas crop. The terrain is level and, 1 tiltrefore, is suited to large-scale, high-speed, aecl~anized operation. The soils have a high de- tree of inherent fertility and produce good yields r cotton...

Swanson, N. P.; Thaxton, E. L. Jr.

1956-01-01T23:59:59.000Z

445

.NET High Performance Computing.  

E-Print Network [OSTI]

?? Graphics Processing Units (GPUs) have been extensively applied in the High Performance Computing (HPC) community. HPC applications require additional special programming environments to improve… (more)

Ou, Hsuan-Hsiu

2012-01-01T23:59:59.000Z

446

851 S.W. Sixth Avenue, Suite 1100 Portland, Oregon 97204-1348 Executive Director  

E-Print Network [OSTI]

Energy Board, sponsored a high-level, westwide benefit/cost study of the proposal, which WECC Board an overview of the proposed Energy Imbalance Market (EIM) and will review the conclusions of the benefit/cost through the Western Interstate Energy Board, has benefit/cost study of the proposal, which was presented

447

Northwest Power and Conservation Council 851 S.W. Sixth Avenue, Suite 1100  

E-Print Network [OSTI]

and demand. Unlike the natural gas price forecast, the oil and coal forecasts have little effect to reflect the differing views on the supply and demand for natural gas. The high price forecast reflects States; and increased demand from gas-to-liquid projects. In contrast, the low forecast reflects

448

Toroid cavities as NMR detectors in high pressure probes  

SciTech Connect (OSTI)

A cylindrical toroid cavity has been developed for application as an NMR detector for high sensitivity and high resolution spectroscopy in metal vessel probes. Those probes are used for in situ investigations at high temperature and pressure. Since the transmitted r.f. field is completely confined within the torus, the cavity can be placed inside the pressurized system without magnetic coupling to the metal vessel. Resonance frequencies up to 400 MHz make the toroid cavity detector especially suited for use in {sup 1}H and {sup 19}F spectroscopy. Typically achieved static {sup 1}H linewidths, measured on CHCl{sub 3} using cavities in Be-Cu pressure vessels, are 2.0 Hz. On the basis of theoretical considerations that include the radial dependence of the r.f. field within cylindrical or circular toroid detectors, equations were evolved to predict the signal intensity as a function of the pulse width. The equations precisely describe the deviations from the sinusoidal approximation, which is generally used for signal intensities derived from Helmholtz or solenoid coils.

Woelk, K.; Rathke, J.W.; Klingler, R.J.

1993-03-01T23:59:59.000Z

449

851 S.W. Sixth Avenue, Suite 1100 Steve Crow 503-222-5161 Portland, Oregon 97204-1348 Executive Director 800-452-5161  

E-Print Network [OSTI]

to the electricity system. This includes advanced metering, smart-grid applications, and other technological on their website, "...by combining high-end metering, advanced communications, innovative software tools FORCES. NEW DRIVERS. Shaping the future of energy. #12;The smart grid will be influenced by three

450

Simulation of planar integrated photonics devices with the LLNL time- domain finite-difference code suite  

SciTech Connect (OSTI)

Interest has recently grown in applying microwave modeling techniques to optical circuit modeling. One of the simplest, yet most powerful, microwave simulation techniques is the finite-difference time-domain algorithm (FDTD). In this technique, the differential form of the time-domain Maxwell's equations are discretized and all derivatives are approximated as differences. Minor algebraic manipulations on the resulting equations produces a set of update equations that produce fields at a given time step from fields at the previous time step. The FDTD algorithm, then, is quite simple. Source fields are launched into the discrete grid by some means. The FDTD equations advance these fields in time. At the boundaries of the grid, special update equations called radiation conditions are applied that approximate a continuing, infinite space. Because virtually no assumptions are made in the development of the FDTD method, the algorithm is able to represent a wide-range of physical effects. Waves can propagate in any direction, multiple reflections within structures can cause resonances, multiple modes of various polarizations can be launched, each of which may generate within the device an infinite spectrum of bound and radiation modes. The ability to model these types of general physical effects is what makes the FDTD method interesting to the field of optics. In this paper, we discuss the application of the finite-difference time-domain technique to integrated optics. Animations will be shown of the simulations of a TE coupler, TM grating, and a TE integrated detector. 3 refs., 1 fig.

McLeod, R.; Hawkins, R.J.; Kallman, J.S.

1991-04-01T23:59:59.000Z

451

Molecular Chemistry of Organic Aerosols Through the Application...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemistry of Organic Aerosols Through the Application of High Resolution Mass Spectrometry. Molecular Chemistry of Organic Aerosols Through the Application of High Resolution Mass...

452

USDA Seeks Applications for Grants to Assist Rural Communities...  

Broader source: Energy.gov (indexed) [DOE]

Seeks Applications for Grants to Assist Rural Communities with Extremely High Energy Costs USDA Seeks Applications for Grants to Assist Rural Communities with Extremely High Energy...

453

Roll-up of validation results to a target application.  

SciTech Connect (OSTI)

Suites of experiments are preformed over a validation hierarchy to test computational simulation models for complex applications. Experiments within the hierarchy can be performed at different conditions and configurations than those for an intended application, with each experiment testing only part of the physics relevant for the application. The purpose of the present work is to develop methodology to roll-up validation results to an application, and to assess the impact the validation hierarchy design has on the roll-up results. The roll-up is accomplished through the development of a meta-model that relates validation measurements throughout a hierarchy to the desired response quantities for the target application. The meta-model is developed using the computation simulation models for the experiments and the application. The meta-model approach is applied to a series of example transport problems that represent complete and incomplete coverage of the physics of the target application by the validation experiments.

Hills, Richard Guy

2013-09-01T23:59:59.000Z

454

Assessment of the Value, Impact, and Validity of the Jobs and Economic Development Impacts (JEDI) Suite of Models  

SciTech Connect (OSTI)

The Jobs and Economic Development Impacts (JEDI) models, developed by the National Renewable Energy Laboratory (NREL) for the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), use input-output methodology to estimate gross (not net) jobs and economic impacts of building and operating selected types of renewable electricity generation and fuel plants. This analysis provides the DOE with an assessment of the value, impact, and validity of the JEDI suite of models. While the models produce estimates of jobs, earnings, and economic output, this analysis focuses only on jobs estimates. This validation report includes an introduction to JEDI models, an analysis of the value and impact of the JEDI models, and an analysis of the validity of job estimates generated by JEDI model through comparison to other modeled estimates and comparison to empirical, observed jobs data as reported or estimated for a commercial project, a state, or a region.

Billman, L.; Keyser, D.

2013-08-01T23:59:59.000Z

455

Simulation of BPM and DC-monitor assembly for the NESTOR storage ring by CST Studio Suite  

E-Print Network [OSTI]

The piece of NESTOR vacuum chamber with the ceramic insertion for DC-monitor and RF-shields was simulated by using both transient and wake field solvers of CST Studio Suite. For a 6 mm gap between two RF-shields the contributions of the assembly considered to the longitudinal broadband (BB) impedance Z/n and the loss factor kloss are 0.71 Ohm and 0.21 V/pC, correspondingly. These estimates are the second largest after those of the RF-cavity that were obtained till now for the NESTOR ring components. Contributions from a beam position monitor (BPM) are also obtained by simulation and compared with analytical estimates obtained earlier. We also present in the paper the frequency content of longitudinal impedance in the frequency range from 0 to 16 GHz for all ring components considered.

Androsov, V P; Telegin, Yu N

2012-01-01T23:59:59.000Z

456

Quantum-fluid-dynamics approach for strong-field processes: Application to the study of multiphoton ionization and high-order harmonic generation of He and Ne atoms  

E-Print Network [OSTI]

of the hydrodynamical density and wave function in space and time. The procedure is applied to the study of multiphoton for Ne, good agreement is achieved. Four different exchange-correlation energy functionals are used systems. Among these novel high-intensity phenomena, multiple high-order har- monic generation HHG

Chu, Shih-I

457

3028 J. Phys. Chem. 1993,97, 3028-3033 EPR Spectroscopy of Interdoublet Transitions in High-Spin Iron: Applications to Transferrin  

E-Print Network [OSTI]

3028 J. Phys. Chem. 1993,97, 3028-3033 EPR Spectroscopy of Interdoublet Transitions in High the contribution of individual resonances to the EPR spectrumof high-apin iron via two kinds of graphical be obtained from the EPR spectra alone. Introduction Heme proteinsprovided the first opportunitiesto compare

Silverstone, Harris J.

458

High School Internship | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High School Internship Internship opportunities during the school year are avaialble for highly motivated high school students at PPPL The 2015 spring internship application is...

459

Langmuir probe diagnostic suite in the C-2 field-reversed configuration  

SciTech Connect (OSTI)

Several in situ probes have been designed and implemented into the diagnostic array of the C-2 field-reversed configuration (FRC) at Tri Alpha Energy [M. Tuszewski et al. (the TAE Team), Phys. Rev. Lett. 108, 255008 (2012)]. The probes are all variations on the traditional Langmuir probe. They include linear arrays of triple probes, linear arrays of single-tipped swept probes, a multi-faced Gundestrup probe, and an ion-sensitive probe. The probes vary from 5 to 7 mm diameter in size to minimize plasma perturbations. They also have boron nitride outer casings that prevent unwanted electrical breakdown and reduce the introduction of impurities. The probes are mounted on motorized linear-actuators allowing for programmatic scans of the various plasma parameters over the course of several shots. Each probe has a custom set of electronics that allows for measurement of the desired signals. High frequency ( > 5MHz) analog optical-isolators ensure that plasma parameters can be measured at sub-microsecond time scales while providing electrical isolation between machine and data acquisition systems. With these probes time-resolved plasma parameters (temperature, density, spatial potential, flow, and electric field) can be directly/locally measured in the FRC jet and edge/scrape-off layer.

Roche, T., E-mail: troche@trialphaenergy.com; Armstrong, S.; Knapp, K.; Slepchenkov, M. [Tri Alpha Energy Inc., PO Box 7010, Rancho Santa Margarita, California 92688 (United States); Sun, X. [Department of Modern Physics, University of Science and Technology of China, Hefei Anhui 230026 (China)

2014-11-15T23:59:59.000Z

460

AISI/DOE Technology Roadmap Program: Characterization of Fatigue and Crash Performance of New Generation High Strength Steels for Automotive Applications  

SciTech Connect (OSTI)

A 2-year project (2001-2002) to generate fatigue and high strain data for a new generation of high strength steels (HSS) has been completed in December 2002. The project tested eleven steel grades, including Dual Phase (DP) steels, Transformation-Induced Plasticity (TRIP) steels, Bake Hardenable (BH) steels, and conventional High Strength Low Alloy (HSLA) steels. All of these steels are of great interest in automotive industry due to the potential benefit in weight reduction, improved fuel economy, enhanced crash energy management and total system cost savings. Fatigue behavior includes strain controlled fatigue data notch sensitivity for high strength steels. High strain rate behavior includes stress-strain data for strain rates from 0.001/s to 1000/s, which are considered the important strain rate ranges for crash event. The steels were tested in two phases, seven were tested in Phase 1 and the remaining steels were tested in Phase. In a addition to the fatigue data and high st rain rate data generated for the steels studied in the project, analyses of the testing results revealed that Advanced High Strength Steels (AHSS) exhibit significantly higher fatigue strength and crash energy absorption capability than conventional HSS. TRIP steels exhibit exceptionally better fatigue strength than steels of similar tensile strength but different microstructure, for conditions both with or without notches present

Brenda Yan; Dennis Urban

2003-04-21T23:59:59.000Z

Note: This page contains sample records for the topic "application suite high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Cosimulating Synchronous DSP Applications with Analog RF Circuits Jos Luis Pino and Khalil Kalbasi  

E-Print Network [OSTI]

, synchronous dataflow (SDF), SPICE and circuit envelope simulation technologies are reviewed. Each. There are several forms of dataflow defined in HP Ptolemy. Synchronous dataflow(SDF), allows the succinct rates in the system are rationally related. SDF is ideally suited to a large set of DSP applications

462

APPLICATION COMPONENTS All QuestBridge applicants are free to apply to Rice with the  

E-Print Network [OSTI]

of the student's choosing. Applicants to the natural sciences and engineering schools must take advanced high process examines an applicant's academic prowess, creativity, motivation, artistic talent, leadership

Alvarez, Pedro J.

463

System Identification and Signal Processing for PID Control of B0 Shim Systems in Ultra-High Field Magnetic Resonance Applications  

E-Print Network [OSTI]

System Identification and Signal Processing for PID Control of B0 Shim Systems in Ultra-High Field identification; parameter optimization; smoothing filters; phase-locked loop; Hurwitz criterion; PID controllers

464

Recovery Act: High-Efficiency, Wideband Three-Phase Rectifiers and Adaptive Rectifier Management for Telecomm Central Office and Large Data Center Applications  

SciTech Connect (OSTI)

Lineage Power and Verizon teamed up to address a DOE funding opportunity focused on improving the power conversion chain in telecommunications facilities and data centers. The project had three significant elements: the design and development of high efficiency and high power three-phase rectifiers by Lineage Power, design and development of software to optimize overall plant energy efficiency by Lineage Power, and a field trial in active Verizon telecommunications facilities where energy consumption was measured before and after efficiency upgrades.

Mark A. Johnson

2012-06-29T23:59:59.000Z

465

http://hpc.sagepub.com Computing Applications  

E-Print Network [OSTI]

.1177/1094342007083802 2007; 21; 485International Journal of High Performance Computing Applications Charles S. Zender://www.sagepublications.com can be found at:International Journal of High Performance Computing