National Library of Energy BETA

Sample records for application process section

  1. Application of three-dimensional digital image processing for reconstruction of microstructural volume from serial sections

    SciTech Connect (OSTI)

    Tewari, A.; Gokhale, A.M.

    2000-03-01

    Three-dimensional digital image processing is useful for reconstruction of microstructural volume from a stack of serial sections. Application of this technique is demonstrated via reconstruction of a volume segment of the liquid-phase sintered microstructure of a tungsten heavy alloy processed in the microgravity environment of NASA's space shuttle, Columbia. Ninety serial sections (approximately one micrometer apart) were used for reconstruction of the three-dimensional microstructure. The three-dimensional microstructural reconstruction clearly revealed that the tungsten grains are almost completely connected in three-dimensional space. Both the matrix and the grains are topologically co-continuous, although the alloy was liquid-phase sintered in microgravity. Therefore, absence of gravity did not produced a microstructure consisting of discrete isolated W grains uniformly dispersed in the liquid Ni-Fe alloy matrix at the sintering temperature.

  2. Vermont Section 401 Water Quality Certification Application ...

    Open Energy Info (EERE)

    Abstract Application required for Section 401 water quality certification under the Clean Water Act. Form Type ApplicationNotice Form Topic Section 401 Water Quality...

  3. Postdoc Application Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program » Application Process Postdoc Application Process Point your career towards LANL: work with the best minds on the planet in an inclusive environment that is rich in intellectual vitality and opportunities for growth. Submit general application or apply for specific posted position For initial consideration, you can submit a general application to the Postdoctoral Research program and/or for a specific posted position. Access the general application or view specific posted postdoc

  4. Application Process and Eligibility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program » Application Process and Eligibility Application Process and Eligibility Both US and non-US citizens are eligible to apply, but US citizenship may be required for some research. Contacts Director Albert Migliori Deputy Franz Freibert 505 667-6879 Email Professional Staff Assistant Susan Ramsay 505 665 0858 Email Applications for the program shall consist of a clearly defined research proposal of up to 300 words, written by the sponsor, describing the candidate's proposed research in

  5. Idaho Section 319 Grant Application | Open Energy Information

    Open Energy Info (EERE)

    to library Form: Idaho Section 319 Grant Application Abstract This page provides access to an online form Section 319 Project Application for grants for watershed and aquifer...

  6. QuickSite Cross Section Processing

    Energy Science and Technology Software Center (OSTI)

    2003-05-27

    This AGEM-developed system produces cross sections by inputting data in both standard and custom file formats and outputting a graphic file that can be printed or further modified in a commercial graphic program. The system has evolved over several years in order to combine and visualize a changing set of field data more rapidly than was possible with commercially available cross section software packages. It uses some commercial packages to produce the input and tomore » modify the output files. Flexibility is provided by a dynamic set of programs that are customized to accept varying input and accomodate varying output requirements. There are two basic types of routines: conversion routines and cross section generation routines. The conversion routines convery various data files to logger file format which is compatible with a standard file format for LogPlot 98, a commonly used commercial log plotting program. The cross section routines generate cross sections and apply topography to these cross sections. All of the generation routines produce a standard graphic DXF file, which is the format used in AutoCAD and can then be modified in a number of available graphics programs.« less

  7. Vermont Application for Individual Section 401 Water Quality...

    Open Energy Info (EERE)

    Application for Individual Section 401 Water Quality Certification Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Vermont Application for Individual...

  8. USDA Section 502 Direct Loan Application Packaging Training

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Agriculture (USDA) is providing Section 502 direct loan application packaging training.

  9. Interested Parties - Multiple Loan Applications per Developer under Section

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1705 Program | Department of Energy Multiple Loan Applications per Developer under Section 1705 Program Interested Parties - Multiple Loan Applications per Developer under Section 1705 Program (86.96 KB) More Documents & Publications Interested Parties - Allowing Multiple Projects per Application for Section 1705 Loan Guarantees Interested Parties - K&L Group Interested Parties - Shipp

  10. Interested Parties - Allowing Multiple Projects per Application for Section

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1705 Loan Guarantees | Department of Energy Allowing Multiple Projects per Application for Section 1705 Loan Guarantees Interested Parties - Allowing Multiple Projects per Application for Section 1705 Loan Guarantees Multiple_Projects_Section_1705_Loan_Guarantees.pdf (24.78 KB) More Documents & Publications Interested Parties - Multiple Loan Applications per Developer under Section 1705 Program Interested Parties - K&L Group Lobbyist Disclosure Form - John Thorne

  11. ACHP - Section 106 Applicant Toolkit | Open Energy Information

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: ACHP - Section 106 Applicant ToolkitPermittingRegulatory GuidanceGuide...

  12. NESAP Application Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    partner with approximately 20 application teams to help prepare codes for the Cori architecture. A key feature of the Cori system is the Intel Knights Landing processor which will...

  13. Section 15: Content of Compliance Recertification Application(s)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Content of Compliance Recertification Application(s) (40 CFR § 194.15) United States Department of Energy Waste Isolation Pilot Plant Carlsbad Field Office Carlsbad, New Mexico Compliance Recertification Application 2014 Content of Compliance Recertification Application(s) (40 CFR § 194.15) Table of Contents 15.0 Content of Compliance Recertification Application(s) (40 CFR § 194.15) 15.1 Requirements 15.2 Background 15.3 1998 Certification Decision 15.4 Changes in the CRA-2004 15.5 EPA's

  14. Biomass Boiler for Food Processing Applications | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Boiler for Food Processing Applications Biomass Boiler for Food Processing Applications Biomass Boiler Uses a Combination of Wood Waste and Tire-Derived Fuel In 2011, the ...

  15. Grant Application Process | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Grant Application Process | National Nuclear Security Administration Facebook Twitter ... Apply for Our Jobs Our Jobs Working at NNSA Blog Home Grant Application Process Grant ...

  16. SECTION J, APPENDIX N - LIST OF APPLICABLE DIRECTIVES

    National Nuclear Security Administration (NNSA)

    N, Page 1 SECTION J APPENDIX N LIST OF APPLICABLE DIRECTIVES 09/17/2014 Directive Directive Title 10 CFR 824, Current Rule Procedural Rules for the Assessment of Civil Penalties for Classified Information Security Violations 10 CFR 830 - Current Rule Nuclear Safety Management 10 CFR 851 - Current Rule Worker Safety and Health Program ANSI B30.11 Monorails and Underhung Hoists ANSI N323A Radiation Protection Instrumentation Test and Calibration Portable Survey Instrumentation, 1997 ANSI N43.2

  17. Application Process | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Prospective applicants may use the LPO Online Application Portal to apply to both loan ... Apply Now The LPO Online Application Portal guides users through the loan and loan ...

  18. Cross section measurements at LANSCE for defense, science and applications

    SciTech Connect (OSTI)

    Nelson, Ronald O.; Schwengner, R.; Zuber, K.

    2015-05-28

    The Los Alamos Neutron Science Center (LANSCE) has three neutron sources that are used for nuclear science measurements. These sources are driven by an 800 MeV proton linear accelerator and cover an energy range from sub-thermal to hundreds of MeV. Research at the facilities is performed under the auspices of a US DOE user program under which research proposals are rated for merit by a program advisory committee and are scheduled based on merit and availability of beam time. A wide variety of instruments is operated at the neutron flight paths at LANSCE including neutron detector arrays, gamma-ray detector arrays, fission fragment detectors, and charged particle detectors. These instruments provide nuclear data for multiple uses that range from increasing knowledge in fundamental science to satisfying data needs for diverse applications such as nuclear energy, global security, and industrial applications. In addition, highlights of recent research related to cross sections measurements are presented, and future research initiatives are discussed.

  19. Cross section measurements at LANSCE for defense, science and applications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nelson, Ronald O.; Schwengner, R.; Zuber, K.

    2015-05-28

    The Los Alamos Neutron Science Center (LANSCE) has three neutron sources that are used for nuclear science measurements. These sources are driven by an 800 MeV proton linear accelerator and cover an energy range from sub-thermal to hundreds of MeV. Research at the facilities is performed under the auspices of a US DOE user program under which research proposals are rated for merit by a program advisory committee and are scheduled based on merit and availability of beam time. A wide variety of instruments is operated at the neutron flight paths at LANSCE including neutron detector arrays, gamma-ray detector arrays,more » fission fragment detectors, and charged particle detectors. These instruments provide nuclear data for multiple uses that range from increasing knowledge in fundamental science to satisfying data needs for diverse applications such as nuclear energy, global security, and industrial applications. In addition, highlights of recent research related to cross sections measurements are presented, and future research initiatives are discussed.« less

  20. Detailed photonuclear cross-section calculations and astrophysical applications

    SciTech Connect (OSTI)

    Gardner, D.G.; Gardner, M.A.; Hoff, R.W.

    1989-06-15

    We have investigated the role of an isomeric state and its coupling to the ground state (g.s.) via photons and neutron inelastic scattering in a stellar environment by making detailed photonuclear and neutron cross-section calculations for /sup 176/Lu and /sup 210/Bi. In the case of /sup 176/Lu, the g.s. would function as an excellent galactic slow- (s-) process chronometer were it not for the 3.7-h isomer at 123 keV. Our calculations predicted much larger photon cross sections for production of the isomer, as well as a lower threshold, than had been assumed based on earlier measurements. These two factors combine to indicate that an enormous correction, a factor of 10/sup 7/, must be applied to shorten the current estimate of the half-life against photoexcitation of /sup 176/Lu as a function of temperature. This severely limits the use of /sup 176/Lu as a stellar chronometer and indicates a significantly lower temperature at which the two states reach thermal equilibrium. For /sup 210/Bi, our preliminary calculations of the production and destruction of the 3 /times/ 10/sup 6/ y isomeric state by neutrons and photons suggest that the /sup 210/Bi isomer may not be destroyed by photons as rapidly as assumed in certain stellar environments. This leads to an alternate production path of /sup 207/Pb and significantly affects presently interpreted lead isotopic abundances. We have been able to make such detailed nuclear cross-section calculations using: modern statistical-model codes of the Hauser-Feshbach type, with complete conservation of angular momentum and parity; reliable systematics of the input parameters required by these codes, including knowledge of the absolute gamma-ray strength-functions for E1, M1, and E2 transitions; and codes developed to compute large, discrete, nuclear level sets, their associated gamma-ray branchings, and the presence and location of isomeric states. 7 refs., 2 figs.

  1. Grant Application Process | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Grant Application Process Please visit www.grants.gov off site link to find out more about the grant application process. At www.grants.gov off site link you can find grant opportunities, register to apply for federal grants, apply for grants, track your application and more

  2. Online Application Process | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Online Application Process How to apply NETL uses an online process to apply for most of our jobs. You can access our job listings through USAJOBS. You can browse jobs; but before you can apply for a specific vacancy you must complete the registration process through USAJOBS home page. In addition to the steps below, see NETL's Frequently Asked Questions about the online application process. Submitting a resume The registration process asks you to submit a resume. Although you must have an

  3. Application of nuclear models to neutron nuclear cross section calculations

    SciTech Connect (OSTI)

    Young, P.G.

    1982-01-01

    Nuclear theory is used increasingly to supplement and extend the nuclear data base that is available for applied studies. Areas where theoretical calculations are most important include the determination of neutron cross sections for unstable fission products and transactinide nuclei in fission reactor or nuclear waste calculations and for meeting the extensive dosimetry, activation, and neutronic data needs associated with fusion reactor development, especially for neutron energies above 14 MeV. Considerable progress has been made in the use of nuclear models for data evaluation and, particularly, in the methods used to derive physically meaningful parameters for model calculations. Theoretical studies frequently involve use of spherical and deformed optical models, Hauser-Feshbach statistical theory, preequilibrium theory, direct-reaction theory, and often make use of gamma-ray strength function models and phenomenological (or microscopic) level density prescriptions. The development, application, and limitations of nuclear models for data evaluation are discussed, with emphasis on the 0.1 to 50 MeV energy range. (91 references).

  4. Process safety management (OSHA) and process risk management (CAA) application. Application to a coke plant

    SciTech Connect (OSTI)

    Graeser, W.C.; Mentzer, W.P.

    1995-12-01

    Risk Management Programs for Chemical Accidental Release Prevention is the name of the proposed rule for the RMP Risk Management Program. The RMP was written in response to several catastrophic releases of hazardous substances. The rule is applicable to facilities that store, process or use greater than threshold quantities of 62 listed flammable chemicals and another 100 listed toxic substances. Additionally, a Risk Management Plan is registered with the EPA, Chemical Safety and Hazardous Investigation Board, state governments and the local emergency planning commission. The Clean Air Act Amendments of 1990 (specifically Section 112r) required the EPA to develop a three phase Risk Management Plan for industry: prevention program; hazard assessment; and emergency response program. The Prevention Program closely follows the OSHA`s Process Safety Management Standard. The Hazard Assessment section requires facilities to develop plans for a worst case scenario. The Emergency Response section defines the steps the facility and each employee will take if a release occurs. This section also needs to be coordinated with the Local Emergency Planning Commission. These regulations are described using Clairton Works as an example of compliance.

  5. Parallel processing for control applications

    SciTech Connect (OSTI)

    Telford, J. W.

    2001-01-01

    Parallel processing has been a topic of discussion in computer science circles for decades. Using more than one single computer to control a process has many advantages that compensate for the additional cost. Initially multiple computers were used to attain higher speeds. A single cpu could not perform all of the operations necessary for real time operation. As technology progressed and cpu's became faster, the speed issue became less significant. The additional processing capabilities however continue to make high speeds an attractive element of parallel processing. Another reason for multiple processors is reliability. For the purpose of this discussion, reliability and robustness will be the focal paint. Most contemporary conceptions of parallel processing include visions of hundreds of single computers networked to provide 'computing power'. Indeed our own teraflop machines are built from large numbers of computers configured in a network (and thus limited by the network). There are many approaches to parallel configfirations and this presentation offers something slightly different from the contemporary networked model. In the world of embedded computers, which is a pervasive force in contemporary computer controls, there are many single chip computers available. If one backs away from the PC based parallel computing model and considers the possibilities of a parallel control device based on multiple single chip computers, a new area of possibilities becomes apparent. This study will look at the use of multiple single chip computers in a parallel configuration with emphasis placed on maximum reliability.

  6. Innovation in the Interconnection Application Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation in the Interconnection Application Process" Ken Parks, SDG&E and Bob Woerner, PG&E April 2, 2014 2 Purpose of Today's Meeting * Learn about recent innovations in the distributed PV interconnection process * Examine how certain challenges related to increased demand for distributed PV can be addressed through revised application processes and procedures * Hear specific examples from electric utilities in mature solar markets (SDG&E and PG&E) 3 Speakers Ken Parks

  7. Source Water and Groundwater Withdrawal Permit Application Process...

    Open Energy Info (EERE)

    Permit Application Process Guidance Citation Vermont Department of Environmental Conservation. 2015. Source Water and Groundwater Withdrawal Permit Application Process...

  8. Application Content and Evaluation Criteria/Process

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation Criteria/Process Reginald Tyler Golden Field Office Office of Hydrogen, Fuel Cells and Infrastructure Technologies Application Content o Separate Applications for Each Major Topic o Title Should Identify the Topic Area o Application - SF 424 o Budget File - SF 424A o Project Summary - 1 page, non-proprietary Project Narrative o Provide clear description of the technical concept and how you plan to accomplish the work. o Include a description of the relevance of and justification for

  9. Consultation with Indian Tribes in the Section 106 Review Process: A

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Handbook (ACHP, 2012) | Department of Energy Consultation with Indian Tribes in the Section 106 Review Process: A Handbook (ACHP, 2012) Consultation with Indian Tribes in the Section 106 Review Process: A Handbook (ACHP, 2012) Section 106 of the National Historic Preservation Act (NHPA) requires federal agencies to take into account the effects of their undertakings on historic properties and provide the Advisory Council on Historic Preservation (ACHP) reasonable opportunity to comment on

  10. Elastic Cross Sections for Electron Collisions with Molecules Relevant to Plasma Processing

    SciTech Connect (OSTI)

    Yoon, J.-S.; Song, M.-Y.; Kato, H.; Hoshino, M.; Tanaka, H.; Brunger, M. J.; Buckman, S. J.; Cho, H.

    2010-09-15

    Absolute electron-impact cross sections for molecular targets, including their radicals, are important in developing plasma reactors and testing various plasma processing gases. Low-energy electron collision data for these gases are sparse and only the limited cross section data are available. In this report, elastic cross sections for electron-polyatomic molecule collisions are compiled and reviewed for 17 molecules relevant to plasma processing. Elastic cross sections are essential for the absolute scale conversion of inelastic cross sections, as well as for testing computational methods. Data are collected and reviewed for elastic differential, integral, and momentum transfer cross sections and, for each molecule, the recommended values of the cross section are presented. The literature has been surveyed through early 2010.

  11. File:07CAAPlantCommissioningProcessApplicationForCertification...

    Open Energy Info (EERE)

    7CAAPlantCommissioningProcessApplicationForCertification.pdf Jump to: navigation, search File File history File usage Metadata File:07CAAPlantCommissioningProcessApplicationForCert...

  12. Working Toward Robust Process Monitoring for Safeguards Applications...

    Office of Scientific and Technical Information (OSTI)

    Working Toward Robust Process Monitoring for Safeguards Applications Citation Details In-Document Search Title: Working Toward Robust Process Monitoring for Safeguards Applications ...

  13. Atmospheric Pressure Plasma Process And Applications

    SciTech Connect (OSTI)

    Peter C. Kong; Myrtle

    2006-09-01

    This paper provides a general discussion of atmospheric-pressure plasma generation, processes, and applications. There are two distinct categories of atmospheric-pressure plasmas: thermal and nonthermal. Thermal atmospheric-pressure plasmas include those produced in high intensity arcs, plasma torches, or in high intensity, high frequency discharges. Although nonthermal plasmas are at room temperatures, they are extremely effective in producing activated species, e.g., free radicals and excited state atoms. Thus, both thermal and nonthermal atmosphericpressure plasmas are finding applications in a wide variety of industrial processes, e.g. waste destruction, material recovery, extractive metallurgy, powder synthesis, and energy conversion. A brief discussion of recent plasma technology research and development activities at the Idaho National Laboratory is included.

  14. Application Content and Evaluation Criteria/Process

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation Criteria/Process Jill Gruber Golden Field Office Department of Energy May 18, 2007 The information presented here is an outline of how the Funding Opportunity Announcement (FOA) may be structured. The final application requirements will be shown in the FOA when it is posted on Grants.gov. The schedule and awards are dependent on future appropriations and may change if future appropriations are lower than expected or in the event of a continuing resolution. DOE Points of Contact DOE

  15. The Energy Audit Process & State Applications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Energy Audit Process & State Applications The Energy Audit Process & State Applications This presentation contains information about the Energy Audit Process & State Applications. Presentation (4.46 MB) Transcript (230.88 KB) More Documents & Publications U.S. DOE TAP Webinar - The Energy Audit Process and State Applications States & Emerging Energy Technologies stateandemergingtechnologies.doc

  16. ATVM APPLICATION PROCESS | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    In order to apply for an ATVM direct loan, applicants must submit a substantially complete application meeting all applicable eligibility requirements. No payment of fees to the ...

  17. Section 08: Approval Process for Waste Shipment From Waste Generator Sites

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Disposal at the WIPP Approval Process for Waste Shipment From Waste Generator Sites for Disposal at the WIPP (40 CFR § 194.8) United States Department of Energy Waste Isolation Pilot Plant Carlsbad Field Office Carlsbad, New Mexico Compliance Recertification Application 2014 Approval Process for Waste Shipment From Waste Generator Sites for Disposal at the WIPP (40 CFR § 194.8) Table of Contents 8.0 Approval Process for Waste Shipment From Waste Generator Sites for Disposal at the WIPP

  18. File:04FDBExplorationPreApplicationProcess.pdf | Open Energy...

    Open Energy Info (EERE)

    FDBExplorationPreApplicationProcess.pdf Jump to: navigation, search File File history File usage Metadata File:04FDBExplorationPreApplicationProcess.pdf Size of this preview: 463...

  19. Email Update on the Status of the Section 1222 Review Process Sent to Interested Parties on September 3, 2015

    Broader source: Energy.gov [DOE]

    A brief email update on the status of the Section 1222 review process was sent to interested parties on September 3, 2015.

  20. 1993 RCRA Part B permit renewal application, Savannah River Site: Volume 10, Consolidated Incineration Facility, Section C, Revision 1

    SciTech Connect (OSTI)

    Molen, G.

    1993-08-01

    This section describes the chemical and physical nature of the RCRA regulated hazardous wastes to be handled, stored, and incinerated at the Consolidated Incineration Facility (CIF) at the Savannah River Site. It is in accordance with requirements of South Carolina Hazardous Waste Management Regulations R.61-79.264.13(a) and(b), and 270.14(b)(2). This application is for permit to store and teat these hazardous wastes as required for the operation of CIF. The permit is to cover the storage of hazardous waste in containers and of waste in six hazardous waste storage tanks. Treatment processes include incineration, solidification of ash, and neutralization of scrubber blowdown.

  1. Assessment of Fission Product Cross-Section Data for Burnup Credit Applications

    SciTech Connect (OSTI)

    Leal, Luiz C; Derrien, Herve; Dunn, Michael E; Mueller, Don

    2007-12-01

    Past efforts by the Department of Energy (DOE), the Electric Power Research Institute (EPRI), the Nuclear Regulatory Commission (NRC), and others have provided sufficient technical information to enable the NRC to issue regulatory guidance for implementation of pressurized-water reactor (PWR) burnup credit; however, consideration of only the reactivity change due to the major actinides is recommended in the guidance. Moreover, DOE, NRC, and EPRI have noted the need for additional scientific and technical data to justify expanding PWR burnup credit to include fission product (FP) nuclides and enable burnup credit implementation for boiling-water reactor (BWR) spent nuclear fuel (SNF). The criticality safety assessment needed for burnup credit applications will utilize computational analyses of packages containing SNF with FP nuclides. Over the years, significant efforts have been devoted to the nuclear data evaluation of major isotopes pertinent to reactor applications (i.e., uranium, plutonium, etc.); however, efforts to evaluate FP cross-section data in the resonance region have been less thorough relative to actinide data. In particular, resonance region cross-section measurements with corresponding R-matrix resonance analyses have not been performed for FP nuclides. Therefore, the objective of this work is to assess the status and performance of existing FP cross-section and cross-section uncertainty data in the resonance region for use in burnup credit analyses. Recommendations for new cross-section measurements and/or evaluations are made based on the data assessment. The assessment focuses on seven primary FP isotopes (103Rh, 133Cs, 143Nd, 149Sm, 151Sm, 152Sm, and 155Gd) that impact reactivity analyses of transportation packages and two FP isotopes (153Eu and 155Eu) that impact prediction of 155Gd concentrations. Much of the assessment work was completed in 2005, and the assessment focused on the latest FP cross-section evaluations available in the

  2. Applications of membrane processes for in-process materials recycling

    SciTech Connect (OSTI)

    Kim, B.M.; Thornton, R.F.; Shapiro, A.P.; Freshour, A.R.; El-Shoubary, Y.

    1996-12-31

    Zero discharge of wastes should be the ultimate goal of manufacturers. Waste reduction lowers costs and lessens liability associated with plant effluents. One approach toward this goal is elimination or minimization of wastes by in-process recycling of waste materials. We have examined opportunities for waste minimization for many equipment manufacturing plants and have evaluated membrane processes for in-process recycling. Membrane processes evaluated include vibrating membranes for suspended solid removal, ion exchange membranes for acid recovery, reverse osmosis and electrodialysis for dissolved salt removal, microporous membranes for recycling of machining coolants, oil emulsions, alkaline cleaners and others. This paper presents several examples of evaluations of membrane processes for materials recycling in manufacturing plants. 5 figs., 1 tab.

  3. Self-contained exothermic applicator and process

    DOE Patents [OSTI]

    Koehmstedt, Paul L.

    1984-01-01

    An adhesive resin application system which requires no external heating apparatus, and which is operative in the absence of a reactive atmosphere, is disclosed. The system provides its own heat by employing an adhesive material containing reactants which react exothermally when electrically ignited. After ignition of the reactants, sufficient heat energy is liberated by the exothermic reaction either to plasticize a thermoplastic resin or to cure a thermosetting resin and therby bond together two closely spaced objects. This application is a continuation-in-part of application Ser. No. 489,006, filed Apr. 27, 1983, which is a continuation-in-part of application, Ser. No. 929,120, filed July 28, 1978, both now abandoned.

  4. 18 CFR 5: Integrated License Application Process | Open Energy...

    Open Energy Info (EERE)

    5: Integrated License Application Process Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Federal RegulationFederal Regulation: 18 CFR 5:...

  5. Processing of Double-Differential Cross Sections in the New ENDF-VI Format.

    Energy Science and Technology Software Center (OSTI)

    1987-08-28

    Version 00 GROUPXS does file handling and processing of the double-differential continuum-emission cross sections stored in the new MF6 format of ENDF/VI. It treats the energy-angle data that are supposed to be represented by a Legendre-polynomial expansion in the center-of-mass system and can do the following: (1) Conversion of MF6 data from center-of-mass system to the laboratory system, with the possibility to continue the calculation with the options (2), (3), and (4). (2) Conversion ofmore » Legendre-polynomial representation into point-wise angular data, in MF6 format. (3) Conversion of data from MF6 into MF4 + MF5 (ENDF-V). (4) Calculation of group constants, scattering matrices and transfer matrices for arbitrary group structures with a fusion micro-flux weighting spectrum (PN-approximation). The code treats only continuum reaction types that are stored in the MF6 format with the restrictions as specified for the European Fusion File (EFF1). These restrictions are not inconvenient for the purpose of fusion neutronics calculations and they facilitate relatively simple processing .« less

  6. Title 18 CFR 5 Integrated License Application Process | Open...

    Open Energy Info (EERE)

    5 Integrated License Application Process Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 18 CFR 5 Integrated License...

  7. Application Content and Evaluation Criteria/Process | Department...

    Office of Environmental Management (EM)

    Presentation on Application Content and Evaluation CriteriaProcess presented at the PEM fuel cell pre-solicitation meeting held May 26, 2005 in Arlington, VA. fcwrkshpreg.pdf ...

  8. Fine-Group Cross Section Library Based on JEFF3.1 for Nuclear Fission Applications.

    Energy Science and Technology Software Center (OSTI)

    2009-10-16

    Version 00 The NJOY-99.160 data processing system was used for the MATJEFF31.BOLIB library generation to assure the consistency with the previous generation of the VITJEFF31.BOLIB /6/ twin library, based on the same GENDF cross section data file. In particular it used a revised version of the GROUPR /7/ module, originally developed in ENEA-Bologna before the free release of an analogous GROUPR revised version with NJOY-99.161, in order to correctly deal with the non-Cartesian interpolation schemes,more » contained in 69 JEFF-3.1 evaluated nuclear data files. The TRANSX-2.15 /8/ code was then used to obtain the total (prompt + delayed) fission spectra for U-235, U-238 and Pu-239. These data, contained in the MATJEFF31.BOLIB package, are available in tabulated form as in the VITJEFF31.BOLIB library package. On the contrary the VITAMIN-B6, VITJEF22.BOLIB /9/ and MATJEF22.BOLIB /10/ similar library packages contain in tabulated form only the prompt components. MATJEFF31.BOLIB is a pseudo-problem-independent library based on the Bondarenko /11/ (f-factor) method for the treatment of neutron resonance self-shielding and temperature effects. The library contains 176 nuclides at 4 temperatures, obtained for the most part with 6 to 8 values for the background cross section. Thermal scattering cross sections were processed at all temperatures available in the JEFF-3.1 thermal scattering law data file for 6 additional bound nuclides (H-1 in light water (H-H2O), H-1 in polyethylene (H-CH2), H-1 in zirconium hydride (H-ZrH) (not contained in VITAMIN-B6, VITJEF22.BOLIB and MATJEF22.BOLIB), H-2 in heavy water (H2-D2O), C in graphite (C-GPH) and Be in beryllium metal (Be-TH)). From MATJEFF31.BOLIB it is easily possible to generate, with the use of the TRANSX code, working libraries of collapsed and self-shielded cross sections in GOXS or FIDO-ANISN format for calculations with the DOORS /12/, DANTSYS /13/ and PARTISN /14/ deterministic transport systems and the MORSE /15/ Monte

  9. College Student Internship Program Requirements and Application Process |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Education & Training » Internships » College Student Internship Program Requirements and Application Process College Student Internship Program Requirements and Application Process Current full-time graduate students-who are familiar with Native American culture and tribal issues-are needed to support projects funded by the U.S. Department of Energy (DOE) Office of Indian Energy. Our student interns assist a cross-disciplinary team to perform specific technical

  10. Consultation with Indian Tribes in the Section 106 Review Process: A Handbook (2012)

    Broader source: Energy.gov [DOE]

    This Advisory Council on Historic Preservation handbook is a reference for federal agency staff responsible for compliance with Section 106 of the National Historic Preservation Act, and for Tribal Historic Preservation Officers and tribal cultural resource managers.

  11. Consultation with Native Hawaiian Organizations in the Section 106 Review Process: A Handbook (ACHP, 2011)

    Broader source: Energy.gov [DOE]

    The National Historic Preservation Act (NHPA) requires that, in carrying out the requirements of Section 106, "Protection of Historic Properties," each federal agency must consult with any Native Hawaiian organization that attaches religious and cultural significance to historic properties that may be affected by the agency's undertakings.

  12. Consultation with Native Hawaiian Organizations in the Section 106 Review Process: A Handbook (2011)

    Broader source: Energy.gov [DOE]

    The National Historic Preservation Act (NHPA) requires that, in carrying out the requirements of Section 106, "Protection of Historic Properties," each federal agency must consult with any Native Hawaiian organization that attaches religious and cultural significance to historic properties that may be affected by the agency's undertakings.

  13. Solar feasibility study for site-specific industrial-process-heat applications. Final report

    SciTech Connect (OSTI)

    Murray, O.L.

    1980-03-18

    This study addresses the technical feasibility of solar energy in industrial process heat (IPH) applications in Mid-America. The study was one of two contracted efforts covering the MASEC 12-state region comprised of: Illinois, Michigan, North Dakota, Indiana, Minnesota, Ohio, Iowa, Missouri, South Dakota, Kansas, Nebraska, Wisconsin. The results of our study are encouraging to the potential future role of solar energy in supplying process heat to a varied range of industries and applications. We identified and developed Case Study documentation of twenty feasible solar IPH applications covering eight major SIC groups within the Mid-American region. The geographical distribution of these applications for the existing range of solar insolation levels are shown and the characteristics of the applications are summarized. The results of the study include process identification, analysis of process heat requirements, selection of preliminary solar system characteristics, and estimation of system performance and cost. These are included in each of the 20 Case Studies. The body of the report is divided into two primary discussion sections dealing with the Study Methodology employed in the effort and the Follow-On Potential of the identified applications with regard to possible demonstration projects. The 20 applications are rated with respect to their relative overall viability and procedures are discussed for possible demonstration project embarkment. Also, a possible extension of this present feasibility study for late-comer industrial firms expressing interest appears worthy of consideration.

  14. Solvent-refined-coal (SRC) process. Volume II. Sections V-XIV. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-05-01

    This report documents the completion of development work on the Solvent Refined Coal Process by The Pittsburgh and Midway Coal Mining Co. The work was initiated in 1966 under Office of Coal Research, US Department of Interior, Contract No. 14-01-0001-496 and completed under US Department of Energy Contract No. DE-AC05-79ET10104. This report discusses work leading to the development of the SRC-I and SRC-II processes, construction of the Fort Lewis Pilot Plant for the successful development of these processes, and results from the operation of this pilot plant. Process design data generated on a 1 ton-per-day Process Development Unit, bench-scale units and through numerous research projects in support of the design of major demonstration plants are also discussed in summary form and fully referenced in this report.

  15. NGNP Process Heat Applications: Hydrogen Production Accomplishments for FY2010

    SciTech Connect (OSTI)

    Charles V Park

    2011-01-01

    This report summarizes FY10 accomplishments of the Next Generation Nuclear Plant (NGNP) Engineering Process Heat Applications group in support of hydrogen production technology development. This organization is responsible for systems needed to transfer high temperature heat from a high temperature gas-cooled reactor (HTGR) reactor (being developed by the INL NGNP Project) to electric power generation and to potential industrial applications including the production of hydrogen.

  16. - Compliance Recertification Application 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About | PDF Documents CRA-2014 Table of Contents Executive Summary Structure of the CRA-2014 Section 8: Approval Process for Waste Shipment From Waste Generator Sites for Disposal at the WIPP Section 15: Content of Compliance Recertification Application(s) Section 21: Inspections Section 22: Quality Assurance Section 23: Models and Computer Codes Section 24: Waste Characterization Section 25: Future State Assumptions Section 26: Expert Judgment Section 27: Peer Review Section 31: Application of

  17. High-flux solar photon processes: Opportunities for applications

    SciTech Connect (OSTI)

    Steinfeld, J.I.; Coy, S.L.; Herzog, H.; Shorter, J.A.; Schlamp, M.; Tester, J.W.; Peters, W.A. )

    1992-06-01

    The overall goal of this study was to identify new high-flux solar photon (HFSP) processes that show promise of being feasible and in the national interest. Electric power generation and hazardous waste destruction were excluded from this study at sponsor request. Our overall conclusion is that there is promise for new applications of concentrated solar photons, especially in certain aspects of materials processing and premium materials synthesis. Evaluation of the full potential of these and other possible applications, including opportunities for commercialization, requires further research and testing. 100 refs.

  18. On two-parameter models of photon cross sections: Application to dual-energy CT imaging

    SciTech Connect (OSTI)

    Williamson, Jeffrey F.; Li Sicong; Devic, Slobodan; Whiting, Bruce R.; Lerma, Fritz A.

    2006-11-15

    The goal of this study is to evaluate the theoretically achievable accuracy in estimating photon cross sections at low energies (20-1000 keV) from idealized dual-energy x-ray computed tomography (CT) images. Cross-section estimation from dual-energy measurements requires a model that can accurately represent photon cross sections of any biological material as a function of energy by specifying only two characteristic parameters of the underlying material, e.g., effective atomic number and density. This paper evaluates the accuracy of two commonly used two-parameter cross-section models for postprocessing idealized measurements derived from dual-energy CT images. The parametric fit model (PFM) accounts for electron-binding effects and photoelectric absorption by power functions in atomic number and energy and scattering by the Klein-Nishina cross section. The basis-vector model (BVM) assumes that attenuation coefficients of any biological substance can be approximated by a linear combination of mass attenuation coefficients of two dissimilar basis substances. Both PFM and BVM were fit to a modern cross-section library for a range of elements and mixtures representative of naturally occurring biological materials (Z=2-20). The PFM model, in conjunction with the effective atomic number approximation, yields estimated the total linear cross-section estimates with mean absolute and maximum error ranges of 0.6%-2.2% and 1%-6%, respectively. The corresponding error ranges for BVM estimates were 0.02%-0.15% and 0.1%-0.5%. However, for photoelectric absorption frequency, the PFM absolute mean and maximum errors were 10.8%-22.4% and 29%-50%, compared with corresponding BVM errors of 0.4%-11.3% and 0.5%-17.0%, respectively. Both models were found to exhibit similar sensitivities to image-intensity measurement uncertainties. Of the two models, BVM is the most promising approach for realizing dual-energy CT cross-section measurement.

  19. Magnetohydrodynamic Particle Acceleration Processes: SSX Experiments, Theory, and Astrophysical Applications

    SciTech Connect (OSTI)

    Brown, Michael R.

    2006-11-16

    Project Title: Magnetohydrodynamic Particle Acceleration Processes: SSX Experiments, Theory, and Astrophysical Applications PI: Michael R. Brown, Swarthmore College The purpose of the project was to provide theoretical and modeling support to the Swarthmore Spheromak Experiment (SSX). Accordingly, the theoretical effort was tightly integrated into the SSX experimental effort. During the grant period, Michael Brown and his experimental collaborators at Swarthmore, with assistance from W. Matthaeus as appropriate, made substantial progress in understanding the physics SSX plasmas.

  20. Elastic and inelastic neutron scattering cross sections for fission reactor applications

    SciTech Connect (OSTI)

    Hicks, S. F.; Combs, B.; Downes, L.; Girgis, J.; Kersting, L. J.; Lueck, C. J.; McDonough, P. J.; Schniederjan, J.; Sidwell, L.; Sigillito, A. J.; Chakraborty, A.; Crider, B. P.; Kumar, A.; McEllistrem, M. T.; Peters, E. E.; Prados-Estevz, F. M.; Vanhoy, J. R.; Watts, D.; Yates, S. W.

    2013-04-19

    Nuclear data important for the design and development of the next generation of light-water reactors and future fast reactors include neutron elastic and inelastic scattering cross sections on important structural materials, such as Fe, and on coolant materials, such as Na. These reaction probabilities are needed since neutron reactions impact fuel performance during irradiations and the overall efficiency of reactors. While neutron scattering cross sections from these materials are available for certain incident neutron energies, the fast neutron region, particularly above 2 MeV, has large gaps for which no measurements exist, or the existing uncertainties are large. Measurements have been made at the University of Kentucky Accelerator Laboratory to measure neutron scattering cross sections on both Fe and Na in the region where these gaps occur and to reduce the uncertainties on scattering from the ground state and first excited state of these nuclei. Results from measurements on Fe at incident neutron energies between 2 and 4 MeV will be presented and comparisons will be made to model calculations available from data evaluators.

  1. A survey of decontamination processes applicable to DOE nuclear facilities

    SciTech Connect (OSTI)

    Chen, L.; Chamberlain, D.B.; Conner, C.; Vandegrift, G.F.

    1997-05-01

    The objective of this survey was to select an appropriate technology for in situ decontamination of equipment interiors as part of the decommissioning of U.S. Department of Energy nuclear facilities. This selection depends on knowledge of existing chemical decontamination methods. This report provides an up-to-date review of chemical decontamination methods. According to available information, aqueous systems are probably the most universally used method for decontaminating and cleaning metal surfaces. We have subdivided the technologies, on the basis of the types of chemical solvents, into acid, alkaline permanganate, highly oxidizing, peroxide, and miscellaneous systems. Two miscellaneous chemical decontamination methods (electrochemical processes and foam and gel systems) are also described. A concise technical description of various processes is given, and the report also outlines technical considerations in the choice of technologies, including decontamination effectiveness, waste handing, fields of application, and the advantages and limitations in application. On the basis of this survey, six processes were identified for further evaluation. 144 refs., 2 tabs.

  2. Process automation using combinations of process and machine control technologies with application to a continuous dissolver

    SciTech Connect (OSTI)

    Spencer, B.B.: Yarbro, O.O.

    1991-01-01

    Operation of a continuous rotary dissolver, designed to leach uranium-plutonium fuel from chopped sections of reactor fuel cladding using nitric acid, has been automated. The dissolver is a partly continuous, partly batch process that interfaces at both ends with batchwise processes, thereby requiring synchronization of certain operations. Liquid acid is fed and flows through the dissolver continuously, whereas chopped fuel elements are fed to the dissolver in small batches and move through the compartments of the dissolver stagewise. Sequential logic (or machine control) techniques are used to control discrete activities such as the sequencing of isolation valves. Feedback control is used to control acid flowrates and temperatures. Expert systems technology is used for on-line material balances and diagnostics of process operation. 1 ref., 3 figs.

  3. Cross sections for proton-induced reactions on Pd isotopes at energies relevant for the {gamma} process

    SciTech Connect (OSTI)

    Dillmann, I.; Coquard, L.; Domingo-Pardo, C.; Kaeppeler, F.; Marganiec, J.; Uberseder, E.; Giesen, U.; Heiske, A.; Feinberg, G.; Hentschel, D.; Hilpp, S.; Leiste, H.; Rauscher, T.; Thielemann, F.-K.

    2011-07-15

    Proton-activation reactions on natural and enriched palladium samples were investigated via the activation technique in the energy range of E{sub p}=2.75-9 MeV, close to the upper end of the respective Gamow window of the {gamma} process. We have determined cross sections for {sup 102}Pd(p, {gamma}){sup 103}Ag, {sup 104}Pd(p, {gamma}){sup 105}Ag, and {sup 105}Pd(p, n){sup 105}Ag, as well as partial cross sections of {sup 104}Pd(p, n){sup 104}Ag{sup g}, {sup 105}Pd(p, {gamma}){sup 106}Ag{sup m}, {sup 106}Pd(p, n){sup 106}Ag{sup m}, and {sup 110}Pd(p, n){sup 110}Ag{sup m} with uncertainties between 3% and 15% for constraining theoretical Hauser-Feshbach rates and for direct use in {gamma}-process calculations.

  4. SECTION B

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    phases of the fee determination process consistent with Section B.2 of the subject contract. ... At the end of the rating period, after the determination of the award fee, the CBFO ...

  5. An application of neural networks to process and materials control

    SciTech Connect (OSTI)

    Howell, J.A.; Whiteson, R. )

    1991-01-01

    Process control consists of two basic elements: a model of the process and knowledge of the desired control algorithm. In some cases the level of the control algorithm is merely supervisory, as in an alarm-reporting or anomaly-detection system. If the model of the process is known, then a set of equations may often be solved explicitly to provide the control algorithm. Otherwise, the model has to be discovered through empirical studies. Neural networks have properties that make them useful in this application. The problems of anomaly detection in nuclear materials control systems fits well into this general control framework. To successfully model a process with a neutral network, a good set of observable must be chosen. These observable just in some sense adequately span the space of representable events, so that a signature metric can be built for normal operation. In this way, a non-normal event, one that does not fit within the signature, can be detected. In this paper, the authors discuss the issues involved in applying a neural network model to anomaly detection in materials control systems.

  6. Vibrational spectra of light and heavy water with application to neutron cross section calculations

    SciTech Connect (OSTI)

    Damian, J. I. Marquez; Granada, J. R.; Malaspina, D. C.

    2013-07-14

    The design of nuclear reactors and neutron moderators require a good representation of the interaction of low energy (E < 1 eV) neutrons with hydrogen and deuterium containing materials. These models are based on the dynamics of the material, represented by its vibrational spectrum. In this paper, we show calculations of the frequency spectrum for light and heavy water at room temperature using two flexible point charge potentials: SPC-MPG and TIP4P/2005f. The results are compared with experimental measurements, with emphasis on inelastic neutron scattering data. Finally, the resulting spectra are applied to calculation of neutron scattering cross sections for these materials, which were found to be a significant improvement over library data.

  7. File:05-FD-b - DrillingApplicationProcess.pdf | Open Energy Informatio...

    Open Energy Info (EERE)

    5-FD-b - DrillingApplicationProcess.pdf Jump to: navigation, search File File history File usage Metadata File:05-FD-b - DrillingApplicationProcess.pdf Size of this preview: 463 ...

  8. File:05-FD-a - DrillingPreApplicationProcess.pdf | Open Energy...

    Open Energy Info (EERE)

    -FD-a - DrillingPreApplicationProcess.pdf Jump to: navigation, search File File history File usage Metadata File:05-FD-a - DrillingPreApplicationProcess.pdf Size of this preview:...

  9. File:05CAADrillingApplicationProcess (1).pdf | Open Energy Information

    Open Energy Info (EERE)

    CAADrillingApplicationProcess (1).pdf Jump to: navigation, search File File history File usage Metadata File:05CAADrillingApplicationProcess (1).pdf Size of this preview: 463 ...

  10. Application Selection Process and Notification | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Application Selection Process and Notification Community College Internships (CCI) CCI Home Eligibility Benefits Participant Obligations How to Apply Selecting a Host DOE Laboratory Recommender Information Application Selection Process and Notification Key Dates Frequently Asked Questions Contact WDTS Home How to Apply Application Selection Process and Notification Print Text Size: A A A FeedbackShare Page CCI Program Application Review and Selection Overview Application Eligibility and

  11. Application Review and Selection Process | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Application Review and Selection Process Albert Einstein Distinguished Educator Fellowship (AEF) Program Einstein Fellowship Home Eligibility Benefits Obligations How to Apply Recommender Information Application Review and Selection Process Key Dates Frequently Asked Questions Fellows Central Contact WDTS Home How to Apply Application Review and Selection Process Print Text Size: A A A FeedbackShare Page Application Eligibility and Compliance: To be considered for this program, an applicant must

  12. Application Selection Process and Notification | U.S. DOE Office...

    Office of Science (SC) Website

    Applications will be assessed based upon the applicant's performance in completed academic coursework, and especially coursework in science, technology, engineering, or mathematics ...

  13. U.S. DOE TAP Webinar- The Energy Audit Process and State Applications

    Broader source: Energy.gov [DOE]

    This document contains a transcript for the The Energy Audit Process & State Applications webinar held on May 23, 2013.

  14. Application of Gaussian Process Modeling to Analysis of Functional Unreliability

    SciTech Connect (OSTI)

    R. Youngblood

    2014-06-01

    This paper applies Gaussian Process (GP) modeling to analysis of the functional unreliability of a “passive system.” GPs have been used widely in many ways [1]. The present application uses a GP for emulation of a system simulation code. Such an emulator can be applied in several distinct ways, discussed below. All applications illustrated in this paper have precedents in the literature; the present paper is an application of GP technology to a problem that was originally analyzed [2] using neural networks (NN), and later [3, 4] by a method called “Alternating Conditional Expectations” (ACE). This exercise enables a multifaceted comparison of both the processes and the results. Given knowledge of the range of possible values of key system variables, one could, in principle, quantify functional unreliability by sampling from their joint probability distribution, and performing a system simulation for each sample to determine whether the function succeeded for that particular setting of the variables. Using previously available system simulation codes, such an approach is generally impractical for a plant-scale problem. It has long been recognized, however, that a well-trained code emulator or surrogate could be used in a sampling process to quantify certain performance metrics, even for plant-scale problems. “Response surfaces” were used for this many years ago. But response surfaces are at their best for smoothly varying functions; in regions of parameter space where key system performance metrics may behave in complex ways, or even exhibit discontinuities, response surfaces are not the best available tool. This consideration was one of several that drove the work in [2]. In the present paper, (1) the original quantification of functional unreliability using NN [2], and later ACE [3], is reprised using GP; (2) additional information provided by the GP about uncertainty in the limit surface, generally unavailable in other representations, is discussed

  15. - Compliance Recertification Application 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    documents in pdf CRA-2014 Main | References | CFR Index | Search CRA-2014 | About CRA-2014 Table of Contents Executive Summary Structure of the CRA-2014 Section 8: Approval Process for Waste Shipment From Waste Generator Sites for Disposal at the WIPP Section 15: Content of Compliance Recertification Application(s) Section 21: Inspections Section 22: Quality Assurance Section 23: Models and Computer Codes Section 24: Waste Characterization Section 25: Future State Assumptions Section 26: Expert

  16. Section CC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contract No. DE-AC06-09RL14728 Modification 464 J-11-1 ATTACHMENT J-11 CONTRACT DELIVERABLES TABLE J-11.1 DELIVERABLE LIST FROM SECTION C (SOW) ID Deliverable DOE Contract Deliverable Due Contract Section Action Response Time a CD0001 Hanford Site Services and Interface Requirements Matrix Approve 30 days July 24, 2009; thereafter by request as applicable C.1.3 CD0002 Annual Forecast of Services and Infrastructure Review NA November 21, 2009; annually thereafter by November 31 C.1.3 CD0003

  17. B-spline algebraic diagrammatic construction: Application to photoionization cross-sections and high-order harmonic generation

    SciTech Connect (OSTI)

    Ruberti, M.; Averbukh, V.; Decleva, P.

    2014-10-28

    We present the first implementation of the ab initio many-body Green's function method, algebraic diagrammatic construction (ADC), in the B-spline single-electron basis. B-spline versions of the first order [ADC(1)] and second order [ADC(2)] schemes for the polarization propagator are developed and applied to the ab initio calculation of static (photoionization cross-sections) and dynamic (high-order harmonic generation spectra) quantities. We show that the cross-section features that pose a challenge for the Gaussian basis calculations, such as Cooper minima and high-energy tails, are found to be reproduced by the B-spline ADC in a very good agreement with the experiment. We also present the first dynamic B-spline ADC results, showing that the effect of the Cooper minimum on the high-order harmonic generation spectrum of Ar is correctly predicted by the time-dependent ADC calculation in the B-spline basis. The present development paves the way for the application of the B-spline ADC to both energy- and time-resolved theoretical studies of many-electron phenomena in atoms, molecules, and clusters.

  18. NOTICE OF PROPOSED RULEMAKING ON THE INTEGRATED INTERAGENCY PRE-APPLICATION PROCESS (IIP) ON ELECTRIC GRID TRANSMISSION

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) proposes to amend its regulations for the timely coordination of Federal Authorizations for proposed interstate electric transmission facilities pursuant to section 216(h) of the Federal Power Act (FPA). The proposed amendments are intended to improve the preapplication procedures and result in more efficient processing of applications. Public comment on this proposed rule will be accepted until April 4, 2016.

  19. WAC 173-400-111 - Processing Notice of Construction Applications...

    Open Energy Info (EERE)

    and Portable SourcesLegal Abstract Construction application requirements for sources of air pollution. Published NA Year Signed or Took Effect 2011 Legal Citation WAC...

  20. Application Selection Process and Notification | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Application Selection Process and Notification Visiting Faculty Program (VFP) VFP Home Eligibility Benefits Participant Obligations How to Apply Selecting a Host DOE Laboratory Developing a Research Proposal Recommender Information Student Participants Submitting a Proposal to DOE Application Selection Process and Notification Key Dates Frequently Asked Questions Contact WDTS Home How to Apply Application Selection Process and Notification Print Text Size: A A A FeedbackShare Page VFP

  1. AN APPLICATION OF THE SSHAC LEVEL 3 PROCESS TO THE PROBABILISTIC SEISMIC

    Office of Environmental Management (EM)

    HAZARD ANALYSIS FOR NUCLEAR FACILITIES AT THE HANFORD SITE, EASTERN WASHINGTON, USA | Department of Energy AN APPLICATION OF THE SSHAC LEVEL 3 PROCESS TO THE PROBABILISTIC SEISMIC HAZARD ANALYSIS FOR NUCLEAR FACILITIES AT THE HANFORD SITE, EASTERN WASHINGTON, USA AN APPLICATION OF THE SSHAC LEVEL 3 PROCESS TO THE PROBABILISTIC SEISMIC HAZARD ANALYSIS FOR NUCLEAR FACILITIES AT THE HANFORD SITE, EASTERN WASHINGTON, USA An Application of the SSHAC Level 3 Process to the Probabilistic Seismic

  2. Dynacracking process first commerical application for upgrading heavy oils

    SciTech Connect (OSTI)

    Dawson, F.N. Jr.

    1981-01-01

    The Dynacracking process developed by Hydrocarbon Research, Inc., is a non-catalytic process capable of upgrading heavy oil whose sulfur, metal, and carbon contents may be high. It converts residual stocks to distillates with high naphtha yields, and to synthetic fuel gas of high quality (700-800 Btu/ft/sup 3/). It has esentially no air polution emissions and requires a relatively small amount of water and utilities. The process generates sufficient heat internally such that, except for start-up, no boilers, furnaces, or external heaters are required to operate the plant. Several aspects of the process are discussed: chemistry, hardware, feedstock, flexibility in the product mix, product quality, and economics.

  3. TERA Application and Review Process Flowchart | Open Energy Informatio...

    Open Energy Info (EERE)

    and Review Process FlowchartLegal Published NA Year Signed or Took Effect 2014 Legal Citation Not provided DOI Not Provided Check for DOI availability: http:crossref.org Online...

  4. On Baryon-Antibaryon Cross Sections from Initial State Radiation Processes at BABAR and their Surprising Threshold Behavior

    SciTech Connect (OSTI)

    Pacetti, Simone

    2015-04-14

    BABAR has measured with unprecedented accuracy the e+e- → pp-bar and e+e- → ΛΛ-bar cross sections by means of the initial state radiation technique, which has the advantages of good efficiency and energy resolution, and full angular acceptance in the threshold region. A striking feature of these cross sections is their non-vanishing values at threshold. In the case of charged baryons, the phenomenon is well understood in terms of the Coulomb interaction between the outgoing baryon and antibaryon. However, such an effect is not expected for neutral baryons. We suggest a simple explanation for both charged and neutral baryon pairs based on Coulomb interactions at the valence quark level.

  5. Applications of biochemical processes in geothermal and other industries

    SciTech Connect (OSTI)

    Premuzic, E.T.; Lin, M.S.; Jin, J.Z.

    1994-06-01

    Laboratory studies aimed at the development of economically and technically feasible, and environmentally acceptable technology for the disposal of geothermal sludges and wastes have led to the development of biochemical processes which meet the above conditions. A pilot-scale plant has been constructed and used to identify process variables and optimize processing conditions. The total process is flexible and can be used in several modes of operation which include (1) solubilization and removal of many metals, including radionuclides, from brines and sludges; (2) selective removal of a few metals; (3) concentration of metals; (4) recovery of metals; and (5) recovery of salts. The end product is a silica-type material which meets regulatory requirements, while the aqueous phase meets drinking water standards and can be reinjected and/or used for irrigation. Preliminary engineering studies of the metal and salt recovery technologies have indicated that significant cost benefits could be obtained by means of combined processing. Recent accomplishments in the development of new biochemical technologies will be discussed in this paper.

  6. Application of polymer membrane technology in coal combustion processes

    SciTech Connect (OSTI)

    Kaldis, S.P.; Skodras, G.; Grammelis, P.; Sakellaropoulos, G.P.

    2007-03-15

    The energy efficiency and the environmental consequences of typical coal upgrading processes, such as combustion, depend to a large extent on the degree of gas separation, recovery, and recycle. Among the available methods used in chemical industry for a variety of gas separation tasks, the technology of polymer membranes offers several advantages such as low size, simplicity of operation and maintenance, compatibility, and use with a diversity of fuel sources. To examine the impact of membrane separation on coal upgrading processes, the Aspen Plus simulation software was used, in combination with developed membrane mathematical models. Energy analysis in coal combustion processes, where the main scope is CO{sub 2} removal, showed that very promising results can be attained. It is estimated that 95% of the emitted CO{sub 2} can be captured with a moderately low energy penalty (10%). This penalty can be further decreased if higher selectivity and/or permeability polymers can be developed.

  7. Processing and properties of iridium alloys for space power applications

    SciTech Connect (OSTI)

    Ohriner, E.K.

    1994-12-31

    Iridium alloys are used as fuel cladding in radioisotope thermoelectric generators due to their high-melting point, high- temperature strength, and oxidation and corrosion resistance. Although iridium has a face-centered cubic crystal structure, it undergoes a distinct ductile-to-brittle transition characteristic of many body-centered cubic metals. Improved ductility in the alloys is achieved through material purification and controlled alloy additions at the parts per million (ppm) level. A vacuum arc remelt operation produces a nearly defect-free casting, which is further processed to sheet products. A change in processing from drop castings of small arc-melted buttons to large arc-remelted ingots has substantially improved product yields. The effects of processing changes on alloy microstructure, sheet textures, oxidation effects, high-strain-rate ductility, and fabricability are discussed.

  8. Industrial application of GNEP solvent-extraction processes

    SciTech Connect (OSTI)

    Arm, S.T.; Phillips, C.; Dobson, A.

    2008-07-01

    EnergySolutions is currently studying the feasibility of commercially recycling spent nuclear fuel in the USA as part of the Global Nuclear Energy Partnership. Uranium, plutonium, and neptunium recycling are accomplished by employing well-established solvent-extraction technology based on the tributylphosphate extractant and acetohydroxamic complexant stripping in a commercially demonstrated configuration. Americium and curium recycling is best achieved by employing the TRUEX and TALSPEAK solvent-extraction processes or a simplified variant of them. Facility design is not predicated on performing any research and development a priori. Process development and demonstration will proceed in parallel with design by proven design-management techniques. (authors)

  9. Section 19

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observations and Applications of Data Taken with the Cloud Profiling Radar System J. M. Firda, S. M. Sekelsky, S. P. Lohmeier, R. E. McIntosh Microwave Remote Sensing Laboratory, University of Massachusetts Amherst, Massachusetts Introduction During the past year, the University of Massachusetts' Cloud Profiling Radar System (CPRS) team has been active in collecting and processing data. Participation in several field campaigns has produced new and interesting data sets. A classification software

  10. Development of Integrated Die Casting Process for Large Thin-Wall Magnesium Applications Enabling Production of Lightweight Magnesium Parts for Near-Term Automotive Applications

    Office of Energy Efficiency and Renewable Energy (EERE)

    Development of Integrated Die Casting Process for Large Thin-Wall Magnesium Applications Enabling Production of Lightweight Magnesium Parts for Near-Term Automotive Applications

  11. An integrated approach to improving the parallel applications development process

    SciTech Connect (OSTI)

    Rasmussen, Craig E; Watson, Gregory R; Tibbitts, Beth R

    2009-01-01

    The development of parallel applications is becoming increasingly important to a broad range of industries. Traditionally, parallel programming was a niche area that was primarily exploited by scientists trying to model extremely complicated physical phenomenon. It is becoming increasingly clear, however, that continued hardware performance improvements through clock scaling and feature-size reduction are simply not going to be achievable for much longer. The hardware vendor's approach to addressing this issue is to employ parallelism through multi-processor and multi-core technologies. While there is little doubt that this approach produces scaling improvements, there are still many significant hurdles to be overcome before parallelism can be employed as a general replacement to more traditional programming techniques. The Parallel Tools Platform (PTP) Project was created in 2005 in an attempt to provide developers with new tools aimed at addressing some of the parallel development issues. Since then, the introduction of a new generation of peta-scale and multi-core systems has highlighted the need for such a platform. In this paper, we describe some of the challenges facing parallel application developers, present the current state of PTP, and provide a simple case study that demonstrates how PTP can be used to locate a potential deadlock situation in an MPI code.

  12. Application Of Optical Processing For Growth Of Silicon Dioxide

    DOE Patents [OSTI]

    Sopori, Bhushan L.

    1997-06-17

    A process for producing a silicon dioxide film on a surface of a silicon substrate. The process comprises illuminating a silicon substrate in a substantially pure oxygen atmosphere with a broad spectrum of visible and infrared light at an optical power density of from about 3 watts/cm.sup.2 to about 6 watts/cm.sup.2 for a time period sufficient to produce a silicon dioxide film on the surface of the silicon substrate. An optimum optical power density is about 4 watts/cm.sup.2 for growth of a 100.ANG.-300.ANG. film at a resultant temperature of about 400.degree. C. Deep level transient spectroscopy analysis detects no measurable impurities introduced into the silicon substrate during silicon oxide production and shows the interface state density at the SiO.sub.2 /Si interface to be very low.

  13. Application of optical processing for growth of silicon dioxide

    DOE Patents [OSTI]

    Sopori, B.L.

    1997-06-17

    A process for producing a silicon dioxide film on a surface of a silicon substrate is disclosed. The process comprises illuminating a silicon substrate in a substantially pure oxygen atmosphere with a broad spectrum of visible and infrared light at an optical power density of from about 3 watts/cm{sup 2} to about 6 watts/cm{sup 2} for a time period sufficient to produce a silicon dioxide film on the surface of the silicon substrate. An optimum optical power density is about 4 watts/cm{sup 2} for growth of a 100{angstrom}-300{angstrom} film at a resultant temperature of about 400 C. Deep level transient spectroscopy analysis detects no measurable impurities introduced into the silicon substrate during silicon oxide production and shows the interface state density at the SiO{sub 2}/Si interface to be very low. 1 fig.

  14. Application of process safety management to the coke industry

    SciTech Connect (OSTI)

    Mentzer, W.P. (USX Corp., Clairton, PA (United States))

    1994-09-01

    OSHA's Process Safety Management (PSM) standard went into effect on May 26, 1992. Explosions at various industrial facilities that claimed the lives of workers over the past several years were the catalyst for the new federal regulations. The new PSM standard deals with 130 specific chemicals along with flammable liquids and gases used at nearly 25,000 worksites. The performance-based PSM standard consists of 14 elements that establish goals and describe basic program elements to fulfill these goals. The PSM standard requires employers to conduct a process hazard analysis to examine potential problems and determine what preventative measures should be taken. Key elements include employee training, written operating procedures, safety reviews and maintenance requirements to insure the mechanical integrity of critical components. The presentation will cover the evolution of OSHA's PSM standard, the requirements of the 14 elements in the PSM standard and discuss the significant achievements in the development and implementation of the PSM process at US Steel's Clairton coke plant.

  15. Cross Section Measurements of High-p(T) Dilepton Final-State Processes Using a Global Fitting Method

    SciTech Connect (OSTI)

    Abulencia, A.; Adelman, J.; Affolder, T.; Akimoto, T.; Albrow, M.G.; Ambrose, D.; Amerio, S.; Amidei, D.; Anastassov, A.; Anikeev, K.; Annovi, A.; /Taiwan, Inst. Phys. /Argonne /Barcelona, IFAE /Baylor U. /INFN, Bologna /Brandeis U. /UCLA /UC, San Diego /UC, Santa Barbara /Cantabria U., Santander /Carnegie Mellon U.

    2006-12-01

    The authors present a new method for studying high-p{sub T} dilepton events (e{sup {+-}}e{sup {-+}}, {mu}{sup {+-}}{mu}{sup {-+}}, e{sup {+-}}{mu}{sup {-+}}) and simultaneously extracting the production cross sections of p{bar p} {yields} t{bar t}, p{bar p} {yields} W{sup +}W{sup -}, and p{bar p} {yields} Z{sup 0} {yields} {tau}{sup +}{tau}{sup -} at a center-of-mass energy of {radical}s = 1.96 TeV. They perform a likelihood fit to the dilepton data in a parameter space defined by the missing transverse energy and the number of jets in the event. The results, which use 360 pb{sup -1} of data recorded with the CDF II detector at the Fermilab Tevatron Collider, are {sigma}(t{bar t}) = 8.5{sub -2.2}{sup +2.7} pb, {sigma}(W{sup +}W{sup -}) = 16.3{sub -4.4}{sup +5.2} pb, and {sigma}(Z{sup 0} {yields} {tau}{sup +}{tau}{sup -}) = 291{sub -46}{sup +50} pb.

  16. Application of x-ray imaging to oil refinery processes

    SciTech Connect (OSTI)

    Gamblin, B.R.; Newton, D.; Smith, G.B.

    1996-12-31

    X-ray imaging is a non-intrusive method of visualizing the flow patterns of rapidly changing multiphase systems and is based on the variation in the absorbance of X-rays by the different phases. BP has applied the X-ray technique to a variety of problems encountered within the oil and petrochemical industries in which two or three phases are present e.g. Fluid Catalytic Cracking (riser, stripper, regenerator) and three phase systems such as slurry bubble column reactors. In general, to obtain the maximum productivity from these units it is essential to optimize the contacting between a catalyst and a process fluid or fluids. This work reports on laboratory experimental work in which full scale refinery components were visualized in order to characterize the existing designs. Modified designs were then tested and evaluated before implementation on the refinery unit. Economic assessments of some of the benefits which can be realized in an oil refinery as a result of such design improvements are also presented. 3 refs., 1 fig.

  17. Enforcement Policy on the Application of Waivers and on the Waiver Process

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Policy on the Application of Waivers and on the Waiver Process Enforcement Policy on the Application of Waivers and on the Waiver Process December 23, 2010 In response to questions from manufacturers, on November 30, 2010, the Department of Energy sought views on the implementation of recently granted waivers establishing an alternative test procedure for large-capacity clothes washers. After reviewing the comments, relevant provisions of the Energy Policy and

  18. Trial Application of the Facility Safeguardability Assessment Process to the NuScale SMR Design

    SciTech Connect (OSTI)

    Coles, Garill A.; Hockert, John; Gitau, Ernest TN; Zentner, Michael D.

    2013-01-26

    FSA is a screening process intended to focus a facility designers attention on the aspects of their facility or process design that would most benefit from application of SBD principles and practices. The process is meant to identify the most relevant guidance within the SBD tools for enhancing the safeguardability of the design. In fiscal year (FY) 2012, NNSA sponsored PNNL to evaluate the practical application of FSA by applying it to the NuScale small modular nuclear power plant. This report documents the application of the FSA process, presenting conclusions regarding its efficiency and robustness. It describes the NuScale safeguards design concept and presents functional "infrastructure" guidelines that were developed using the FSA process.

  19. Trial Application of the Facility Safeguardability Assessment Process to the NuScale SMR Design

    SciTech Connect (OSTI)

    Coles, Garill A.; Gitau, Ernest TN; Hockert, John; Zentner, Michael D.

    2012-11-09

    FSA is a screening process intended to focus a facility designers attention on the aspects of their facility or process design that would most benefit from application of SBD principles and practices. The process is meant to identify the most relevant guidance within the SBD tools for enhancing the safeguardability of the design. In fiscal year (FY) 2012, NNSA sponsored PNNL to evaluate the practical application of FSA by applying it to the NuScale small modular nuclear power plant. This report documents the application of the FSA process, presenting conclusions regarding its efficiency and robustness. It describes the NuScale safeguards design concept and presents functional "infrastructure" guidelines that were developed using the FSA process.

  20. Permit applicants' guidance manual for exposure information requirements under RCRA (Resource Conservation and Recovery Act) Section 3019. Final report

    SciTech Connect (OSTI)

    Not Available

    1985-07-03

    The purpose of this document is to provide owners and operators of hazardous-waste landfills and surface impoundments that are subject to permitting under the Resource Conservation and Recovery Act (RCRA) with guidance for submitting information on the potential for public exposure to hazardous wastes, as required by Section 3019 of RCRA.

  1. Fault-tolerant interconnection network and image-processing applications for the PASM parallel processing system

    SciTech Connect (OSTI)

    Adams, G.B. III

    1984-01-01

    The demand for very high speed data processing coupled with falling hardware costs has made large-scale parallel and distributed computer systems both desirable and feasible. Two modes of parallel processing are single instruction stream-multiple data stream (SIMD) and multiple instruction stream-multiple data stream (MIMD). PASM, a partitionable SIMD/MIMD system, is a reconfigurable multimicroprocessor system being designed for image processing and pattern recognition. An important component of these systems is the interconnection network, the mechanism for communication among the computation nodes and memories. Assuring high reliability for such complex systems is a significant task. Thus, a crucial practical aspect of an interconnection network is fault tolerance. In answer to this need, the Extra Stage Cube (ESC), a fault-tolerant, multistage cube-type interconnection network, is define. The fault tolerance of the ESC is explored for both single and multiple faults, routing tags are defined, and consideration is given to permuting data and partitioning the ESC in the presence of faults. The ESC is compared with other fault-tolerant multistage networks. Finally, reliability of the ESC and an enhanced version of it are investigated.

  2. SECTION H

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations Contract Section H Contract No. DE-AC27-08RV14800 Modification No. 360 H-i PART I - THE SCHEDULE SECTION H SPECIAL CONTRACT REQUIREMENTS TABLE OF CONTENTS H.1 WORKFORCE ...

  3. SECTION E

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    E Contract No. DE-AC27-01RV14136 Conformed Thru Modification No. A143 E - i SECTION E INSPECTION AND ACCEPTANCE WTP Contract Section E Contract No. DE-AC27-01RV14136 Conformed Thru...

  4. Application

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Application Searchable Application Supplemental Information

  5. PBMR as an Ideal Heat Source for High-Temperature Process Heat Applications

    SciTech Connect (OSTI)

    Correia, Michael; Greyvenstein, Renee; Silady, Fred; Penfield, Scott

    2006-07-01

    The Pebble Bed Modular Reactor (PBMR) is an advanced helium-cooled, graphite-moderated High Temperature Gas-cooled Reactor (HTGR). A 400 MWt PBMR Demonstration Power Plant (DPP) for the production of electricity is being developed in South Africa. This PBMR technology is also an ideal heat source for process heat applications, including Steam Methane Reforming, steam for Oil Sands bitumen recovery, Hydrogen Production and co-generation (process heat and/or electricity and/or process steam) for petrochemical industries. The cycle configuration used to transport the heat of the reactor to the process plant or to convert the reactor's heat into electricity or steam directly influences the cycle efficiency and plant economics. The choice of cycle configuration depends on the process requirements and is influenced by practical considerations, component and material limitations, maintenance, controllability, safety, performance, risk and cost. This paper provides an overview of the use of a PBMR reactor for process applications and possible cycle configurations are presented for applications which require high temperature process heat and/or electricity. (authors)

  6. Strategy Guideline. Application of a Construction Quality Process to Existing Home Retrofits

    SciTech Connect (OSTI)

    Mallay, D.; Del Bianco, M.

    2013-08-01

    The Partnership for Home Innovation developed a construction quality process for new and existing high performance homes (HPH) in which high performance goals are established, specifications to meet those goals are defined, and construction monitoring points are added to the construction schedule so that critical energy efficiency details are systematically reviewed, documented, and tested in a timely manner. This report follows the evolution of the construction quality process from its development for new homes, to its application in the construction of a high performance home with enhanced specifications, and its application in a crawlspace renovation.

  7. Strategy Guideline: Application of a Construction Quality Process to Existing Home Retrofits

    SciTech Connect (OSTI)

    Mallay, D.; Del Bianco, M.

    2013-08-01

    The Home Innovation Research Labs developed a construction quality process for new and existing high performance homes (HPH) in which high performance goals are established, specifications to meet those goals are defined, and construction monitoring points are added to the construction schedule so that critical energy efficiency details are systematically reviewed, documented, and tested in a timely manner. This report follows the evolution of the construction quality process from its development for new homes, to its application in the construction of a high performance home with enhanced specifications, and its application in a crawlspace renovation.

  8. The application of neural networks with artificial intelligence technique in the modeling of industrial processes

    SciTech Connect (OSTI)

    Saini, K. K.; Saini, Sanju

    2008-10-07

    Neural networks are a relatively new artificial intelligence technique that emulates the behavior of biological neural systems in digital software or hardware. These networks can 'learn', automatically, complex relationships among data. This feature makes the technique very useful in modeling processes for which mathematical modeling is difficult or impossible. The work described here outlines some examples of the application of neural networks with artificial intelligence technique in the modeling of industrial processes.

  9. Nitrogen management in landfill leachate: Application of SHARON, ANAMMOX and combined SHARON-ANAMMOX process

    SciTech Connect (OSTI)

    Sri Shalini, S.; Joseph, Kurian

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Significant research on ammonia removal from leachate by SHARON and ANAMMOX process. Black-Right-Pointing-Pointer Operational parameters, microbiology, biochemistry and application of the process. Black-Right-Pointing-Pointer SHARON-ANAMMOX process for leachate a new research and this paper gives wide facts. Black-Right-Pointing-Pointer Cost-effective process, alternative to existing technologies for leachate treatment. Black-Right-Pointing-Pointer Address the issues and operational conditions for application in leachate treatment. - Abstract: In today's context of waste management, landfilling of Municipal Solid Waste (MSW) is considered to be one of the standard practices worldwide. Leachate generated from municipal landfills has become a great threat to the surroundings as it contains high concentration of organics, ammonia and other toxic pollutants. Emphasis has to be placed on the removal of ammonia nitrogen in particular, derived from the nitrogen content of the MSW and it is a long term pollution problem in landfills which determines when the landfill can be considered stable. Several biological processes are available for the removal of ammonia but novel processes such as the Single Reactor System for High Activity Ammonia Removal over Nitrite (SHARON) and Anaerobic Ammonium Oxidation (ANAMMOX) process have great potential and several advantages over conventional processes. The combined SHARON-ANAMMOX process for municipal landfill leachate treatment is a new, innovative and significant approach that requires more research to identify and solve critical issues. This review addresses the operational parameters, microbiology, biochemistry and application of both the processes to remove ammonia from leachate.

  10. SECTION J

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    K-1 SECTION J APPENDIX K CONTRACTOR'S TRANSITION PLAN (RESERVED) Contract No.: DE-RW0000005 QA:QA J-K-2

  11. Section J

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    L-1 Section J Appendix L MEMORANDUM FROM DAVID R. HILL, GENERAL COUNSEL, DATED NOVEMBER 30, 2006, SUBJECT: ONGOING LICENSING SUPPORT NETWORK ("LSN") OBLIGATIONS Contract No.: ...

  12. TECHNICAL BASIS AND APPLICATION OF NEW RULES ON FRACTURE CONTROL OF HIGH PRESSURE HYDROGEN VESSEL IN ASME SECTION VIII, DIVISION 3 CODE

    SciTech Connect (OSTI)

    Rawls, G

    2007-04-30

    As a part of an ongoing activity to develop ASME Code rules for the hydrogen infrastructure, the ASME Boiler and Pressure Vessel Code Committee approved new fracture control rules for Section VIII, Division 3 vessels in 2006. These rules have been incorporated into new Article KD-10 in Division 3. The new rules require determining fatigue crack growth rate and fracture resistance properties of materials in high pressure hydrogen gas. Test methods have been specified to measure these fracture properties, which are required to be used in establishing the vessel fatigue life. An example has been given to demonstrate the application of these new rules.

  13. Microwave applicator for in-drum processing of radioactive waste slurry

    DOE Patents [OSTI]

    White, Terry L. (Oak Ridge, TN)

    1994-01-01

    A microwave applicator for processing of radioactive waste slurry uses a waveguide network which splits an input microwave of TE.sub.10 rectangular mode to TE.sub.01 circular mode. A cylindrical body has four openings, each receiving 1/4 of the power input. The waveguide network includes a plurality of splitters to effect the 1/4 divisions of power.

  14. OE Announces Public Workshop for Proposed Rulemaking on the Integrated Interagency Pre-Application Process (IIP)

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's (DOE) Office of Electricity Delivery and Energy Reliability has announced a public workshop to discuss the Notice of Proposed Rulemaking on the Integrated Interagency Pre-Application Process (IIP) on electric grid transmission. The IIP is intended to provide a roadmap and encourage early coordination between electric grid transmission project proponents and permitting agencies on transmission projects.

  15. Process for selecting NEAMS applications for access to Idaho National Laboratory high performance computing resources

    SciTech Connect (OSTI)

    Michael Pernice

    2010-09-01

    INL has agreed to provide participants in the Nuclear Energy Advanced Mod- eling and Simulation (NEAMS) program with access to its high performance computing (HPC) resources under sponsorship of the Enabling Computational Technologies (ECT) program element. This report documents the process used to select applications and the software stack in place at INL.

  16. Methods, media and systems for managing a distributed application running in a plurality of digital processing devices

    DOE Patents [OSTI]

    Laadan, Oren; Nieh, Jason; Phung, Dan

    2012-10-02

    Methods, media and systems for managing a distributed application running in a plurality of digital processing devices are provided. In some embodiments, a method includes running one or more processes associated with the distributed application in virtualized operating system environments on a plurality of digital processing devices, suspending the one or more processes, and saving network state information relating to network connections among the one or more processes. The method further include storing process information relating to the one or more processes, recreating the network connections using the saved network state information, and restarting the one or more processes using the stored process information.

  17. SECTION I

    National Nuclear Security Administration (NNSA)

    to Mod 0108 DE-NA0000622 Section I, Page i PART II - CONTRACT CLAUSES SECTION I CONTRACT CLAUSES TABLE OF CONTENTS I-1 FAR 52.202-1 DEFINITIONS (NOV 2013) (AS MODIFIED BY DEAR 952.202-1) (REPLACED MODS 020, 029, 0084) ................................................................................................................................ 1 I-2 FAR 52.203-3 GRATUITIES (APR 1984) ................................................................................................. 1 I-3 FAR

  18. Dynamic Complexity Study of Nuclear Reactor and Process Heat Application Integration

    SciTech Connect (OSTI)

    J'Tia Patrice Taylor; David E. Shropshire

    2009-09-01

    Abstract This paper describes the key obstacles and challenges facing the integration of nuclear reactors with process heat applications as they relate to dynamic issues. The paper also presents capabilities of current modeling and analysis tools available to investigate these issues. A pragmatic approach to an analysis is developed with the ultimate objective of improving the viability of nuclear energy as a heat source for process industries. The extension of nuclear energy to process heat industries would improve energy security and aid in reduction of carbon emissions by reducing demands for foreign derived fossil fuels. The paper begins with an overview of nuclear reactors and process application for potential use in an integrated system. Reactors are evaluated against specific characteristics that determine their compatibility with process applications such as heat outlet temperature. The reactor system categories include light water, heavy water, small to medium, near term high-temperature, and far term high temperature reactors. Low temperature process systems include desalination, district heating, and tar sands and shale oil recovery. High temperature processes that support hydrogen production include steam reforming, steam cracking, hydrogen production by electrolysis, and far-term applications such as the sulfur iodine chemical process and high-temperature electrolysis. A simple static matching between complementary systems is performed; however, to gain a true appreciation for system integration complexity, time dependent dynamic analysis is required. The paper identifies critical issues arising from dynamic complexity associated with integration of systems. Operational issues include scheduling conflicts and resource allocation for heat and electricity. Additionally, economic and safety considerations that could impact the successful integration of these systems are considered. Economic issues include the cost differential arising due to an integrated

  19. Section I

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projectile and Target Z-scaling of Target K-vacancy Production Cross Sections at 10A MeV R. L. Watson, V. Horvat and K. E. Zaharakis Molecular Orbital Effects in Near-symmetric ...

  20. SECTION J

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    J-1 SECTION J APPENDIX J PERFORMANCE EVALUATION AND MEASUREMENT PLAN (TO BE NEGOTIATED AFTER CONTRACT AWARD) Contract No.: DE-RW0000005 QA:QA J-J-2 Page Blank

  1. Application of Entry-Time Processes in Asset Management for Nuclear Power Plants (Final Report)

    SciTech Connect (OSTI)

    Paul Nelson

    2008-01-23

    A mathematical model of entry-time processes was developed, and a computational method for solving that model was verified. This methodology was demonstrated via application to a succession of increasingly more complex subsystems of nuclear power plants. The effort culminated in the application to main generators that constituted the PhD dissertation of Shuwen (Eric) Wang. Dr. Wang is now employed by ABS Consulting, in Anaheim, CA. ABS is a principal provider to the nuclear industry of technical services related to reliability and safety.

  2. Excimer laser surface processing for tribological applications in metals and ceramics

    SciTech Connect (OSTI)

    Jervis, T.R.; Hivonen, Juha-Pekka; Nastasi, M.

    1991-01-01

    The use of pulsed excimer lasers, operating at UV wavelengths, for surface modification has many potential applications in the tribology of metals and ceramics. Alterations of surface chemistry and microstructure are possible on standard engineering materials. We have demonstrated improved tribological performance in stainless steel by the formation of a unique oxide and by Ti mixing and in SiC by Ti mixing. Specifically, we have observed reduced friction in dry sliding conditions and a change in the wear process resulting in greatly reduced surface damage. We have also demonstrated the effectiveness of excimer laser mixing in other systems with potential tribological applications. 22 refs., 7 figs.

  3. SECTION J

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A-1 SECTION J APPENDIX A ADVANCE UNDERSTANDING ON HUMAN RESOURCES (TO BE NEGOTIATED DURING CONTRACT TRANSITION) The personnel appendix required by DEAR Subpart 970.31 entitled "Contract Cost Principles and Procedures" as referenced in Section I Clause, DEAR 970.5232-2, "Payments and Advances" will be Appendix A of the contract. The personnel appendix will be negotiated between DOE OCRWM and the selected offeror during the contract transition period. Contract No.: DE-RW0000005

  4. Section 66

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CFCl 3 ) (CF 2 Cl 2 ) (CHFCl 2 ) CF 4 CCl 4 (CFCl 3 ) (CF 2 Cl 2 ) (CHFCl 2 ) SF 6 CF 4 CCl 4 Session Papers 277 Figure 1. Spectral absorption cross-sections of CF 4 between 1281 and 1284 cm . The experimental -1 conditions correspond to the surface, 5-km, and 19-km levels of the U.S. Standard Atmosphere. Figure 2. Spectral absorption cross-sections of CCl 4 between 755 and 810 cm . The experimental conditions -1 correspond to the surface, 5-km, and 19-km levels of the U.S. Standard Atmosphere.

  5. Section CC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    30 J-12-1 ATTACHMENT J-12 GOVERNMENT FURNISHED SERVICES AND INFORMATION TABLE J-12.1 GFS/I LIST FROM SECTION C (SOW) ID GFS/I GFS/I Due Contract Section GF0001 DOE will administer MOUs with other law enforcement agencies or other Federal agencies (e.g., U.S. Department of Defense [Yakima Training Center]). DOE will provide copies of MOUs and/or contracts to the MSC. As required C.2.1.1.1 GF0002 DOE will provide Federal Commissions for Hanford Patrol personnel. As required C.2.1.1.1 GF0003 DOE

  6. Section I

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contract Modification No.0200 Section I I-1 PART II SECTION I CONTRACT CLAUSES TABLE OF CONTENTS CLAUSE I.1 - FAR 52.202-1 DEFINITIONS (NOV 2013); MODIFIED BY DEAR 952.202-1 9 CLAUSE I.2 - FAR 52.203-3 GRATUITIES (APR 1984) 9 CLAUSE I.3 - FAR 52.203-5 COVENANT AGAINST CONTINGENT FEES (MAY 2014) 10 CLAUSE I.4 - FAR 52.203-6 RESTRICTIONS ON SUBCONTRACTOR SALES TO THE GOVERNMENT (SEP 2006) 11 CLAUSE I.5 - FAR 52.203-7 ANTI-KICKBACK PROCEDURES (MAY 2014) 11 CLAUSE I.6 - FAR 52.203-8 CANCELLATION,

  7. Progress Report for Diffusion Welding of the NGNP Process Application Heat Exchangers

    SciTech Connect (OSTI)

    R.E. Mizia; D.E. Clark; M.V. Glazoff; T.E. Lister; T.L. Trowbridge

    2011-04-01

    The NGNP Project is currently investigating the use of metallic, diffusion welded, compact heat exchangers to transfer heat from the primary (reactor side) heat transport system to the secondary heat transport system. The intermediate heat exchanger will transfer this heat to downstream applications such as hydrogen production, process heat, and electricity generation. The channeled plates that make up the heat transfer surfaces of the intermediate heat exchanger will have to be assembled into an array by diffusion welding.

  8. Surfactant process for promoting gas hydrate formation and application of the same

    DOE Patents [OSTI]

    Rogers, Rudy E.; Zhong, Yu

    2002-01-01

    This invention relates to a method of storing gas using gas hydrates comprising forming gas hydrates in the presence of a water-surfactant solution that comprises water and surfactant. The addition of minor amounts of surfactant increases the gas hydrate formation rate, increases packing density of the solid hydrate mass and simplifies the formation-storage-decomposition process of gas hydrates. The minor amounts of surfactant also enhance the potential of gas hydrates for industrial storage applications.

  9. Microwave applicator for in-drum processing of radioactive waste slurry

    DOE Patents [OSTI]

    White, T.L.

    1994-06-28

    A microwave applicator for processing of radioactive waste slurry uses a waveguide network which splits an input microwave of TE[sub 10] rectangular mode to TE[sub 01] circular mode. A cylindrical body has four openings, each receiving 1/4 of the power input. The waveguide network includes a plurality of splitters to effect the 1/4 divisions of power. 4 figures.

  10. Section CC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    support expertise, including clearance and special access processing, ... DOE will monitor and provide reporting on the various stages of clearance actions, when ...

  11. Section 57

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    It is hypothesized that their statistics are scaled observed time series. From this step, ... A cloud classification process. Two simple statistics that time series of these means and ...

  12. Section 106 Archaeology Guidance

    Broader source: Energy.gov [DOE]

    The Advisory Council on Historic Preservation's Section 106 guidance is designed to assist federal agencies in making effective management decisions about archaeological resources in completing the requirements of Section 106 of the National Historic Preservation Act (16 U.S.C. 470f) and its implementing regulations (36 CFR Part 800). This guidance highlights the decision-making role of the federal agency in the Section 106 process. It is also designed for use by State and Tribal Historic Preservation Officers, Indian tribes, Native Hawaiian organizations, and cultural resource management professionals when assisting federal agencies to meet their responsibilities under Section 106.

  13. Section J

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    M-1 Section J Appendix M Key Design, Licensing and Site Management M&O Milestone Chart Activity Planned Date Develop and Submit CD-2 (25%-30%) 08/2009 Submission of Construction Performance Specifications - Balance of Plant Support Facilities (OCRWM Start of Construction 3/2012) TBD Submission of Construction Performance Specifications - Initial Handling Facility (IHF) (OCRWM Start of Construction for IHF: 9/2013) TBD Submission of Construction Performance Specifications - Wet Handling

  14. Section L

    National Nuclear Security Administration (NNSA)

    Section L - Attachment F - Past Performance Cover Letter and Questionnaire Date: ________________ Dear _________________: Our firm is submitting a proposal for a Department of Energy (DOE)/National Nuclear Security Administration (NNSA) Contract for the management and operation of the Nevada National Security Site with an estimated value of approximately $550M per year. Our firm is seeking your assistance. We are asking you to complete the attached questionnaire evaluating our performance on

  15. SECTION J

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D-1 SECTION J APPENDIX D KEY PERSONNEL Name Position Doug Cooper General Manager John Donnell Repository Licensing Lead Al Ebner, PE, PhD Repository Design Lead Steve Piccolo Deputy General Manager Steve White Quality & Performance Assurance Lead George Clare Project Management & Integration Lead Mike Hitchler Preclosure Safety Analysis Lead Contract No.: DE-RW0000005 QA:QA J-D-2 POSITION DESCRIPTIONS OCRWM SPECIFIED KEY PERSONNEL 1. General Manager: Requires 10 years experience as a

  16. SECTION J

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    H-1 SECTION J APPENDIX H CONTRACT GUIDANCE FOR PREPARATION OF DIVERSITY PLAN This Guidance is to assist the Contractor in understanding the information being sought by the Department for each of the Diversity elements and where these issues may already be addressed in the contract. To the extent these issues are already addressed in the contract, the Contractor need only cross reference the location. Contractor's Workforce The Department's contracts contain clauses on Equal Employment

  17. Section 89

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sensitivity Tests on the Microphysical Parameters of a 2-Dimensional Cirrus Model R.-F. Lin Department of Meteorology, Pennsylvania State University University Park, Pennsylvania Introduction Radiatively induced convection may serve a key role in the evolution of cirrus. A 2-dimensional cirrus model with a spatial resolution of 100 m is developed to investigate dynam- ical-radiative-microphysical interactions. It is assumed that the model domain represents part of a cross-section of cirrus

  18. Application of a new scale up methodology to the simulation of displacement processes in heterogeneous reservoirs

    SciTech Connect (OSTI)

    Durlofsky, L.J.; Milliken, W.J.; Dehghani, K.; Jones, R.C.

    1994-12-31

    A general method for the scale up of highly detailed, heterogeneous reservoir cross sections is presented and applied to the simulation of several recovery processes in a variety of geologic settings. The scale up technique proceeds by first identifying portions of the fine scale reservoir description which could potentially lead to high fluid velocities, typically regions of connected, high permeability. These regions are then modeled in detail while the remainder of the domain is coarsened using a general numerical technique for the calculation of effective permeability. The overall scale up method is applied to the cross sectional simulation of three actual fields. Waterflood, steamflood and miscible flood recovery processes are considered. In all these cases, the scale up technique is shown to give coarsened reservoir descriptions which provide simulation results in very good agreement with those of the detailed reservoir descriptions. For these simulations, speedups in computation times, for the coarsened models relative to their fine grid counterparts, range from a factor of 10 to a factor of 200.

  19. Part III - Section J

    National Nuclear Security Administration (NNSA)

    Corporation Contract No. DE-AC04-94AL85000 Modification No. 585 Attachment 2 Page 1 of 5 Part III - Section J Appendix G List of Applicable Directives and NNSA Policy Letters In addition to the list of applicable directives referenced below, the contractor shall also comply with supplementary directives (e.g., manuals), which are invoked by a Contractor Requirements Document (CRD) attached to a directive referenced below. This List excludes directives that have been granted an exemption from the

  20. Part III - Section J

    National Nuclear Security Administration (NNSA)

    M280 Attachment 1 Page 1 of 5 Part III - Section J Appendix G List of Applicable Directives and NNSA Policy Letters In addition to the list of applicable directives referenced below, the contractor shall also comply with supplementary directives (e.g., manuals), which are invoked by a Contractor Requirements Document (CRD) attached to a directive referenced below. DIRECTIVE NUMBER DATE DOE DIRECTIVE TITLE APPH Chapter X Revision 10 09/08/98 Accounting Practices & Procedures Handbook Chapter

  1. Application of Entry-Time Processes to Asset Management in Nuclear Power Plants

    SciTech Connect (OSTI)

    Nelson, Paul; Wang, Shuwen; Kee, Ernie J.

    2006-07-01

    The entry-time approach to dynamic reliability is based upon computational solution of the Chapman-Kolmogorov (generalized state-transition) equations underlying a certain class of marked point processes. Previous work has verified a particular finite-difference approach to computational solution of these equations. The objective of this work is to illustrate the potential application of the entry-time approach to risk-informed asset management (RIAM) decisions regarding maintenance or replacement of major systems within a plant. Results are presented in the form of plots, with replacement/maintenance period as a parameter, of expected annual revenue, along with annual variance and annual skewness as indicators of associated risks. Present results are for a hypothetical system, to illustrate the capability of the approach, but some considerations related to potential application of this approach to nuclear power plants are discussed. (authors)

  2. Section 15

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Factors Determining the Temperature Dependence of the Optical Thickness of Low Clouds A. D. Del Genio NASA/Goddard Institute for Space Studies New York, New York A. B. Wolf Science Systems and Applications Inc./Goddard Institute for Space Studies New York, New York G. Tselioudis Columbia University New York, New York The factors that control changes in cloud optical thickness are at warm temperatures, accounting for most of the simulated among the major uncertainties in climate model

  3. Section 18

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis of the Temperature Dependence of Low Cloud Optical Thickness Using ARM Data and the GISS GCM A. D. Del Genio NASA/Goddard Institute for Space Studies New York, New York A. B. Wolf Science Systems and Applications, Inc. New York, New York G. Tselioudis Columbia University New York, New York One of the larger uncertainties in global climate model C The Belfort Laser Ceilometer (BLC) measures cloud base estimates of sensitivity to external perturbations is the height projected climate

  4. Section 52

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 On the Extension of Rapid Radiative Transfer Model to the Shortwave Region E.J. Mlawer and S.A. Clough Atmospheric and Environmental Research, Inc. Cambridge, Massachusetts Introduction In this work we describe the second phase in the development of the rapid radiative transfer model (RRTM) (Mlawer et al. 1996), a rapid and accurate radiative transfer model designed for climate applications. The initial phase of RRTM, which uses the correlated-k method for radiative transfer, allowed the

  5. Section L

    National Nuclear Security Administration (NNSA)

    Unsatisfactory. Completely failed to meet the contract requirements. Contractor displayed a total lack of understanding of contract requirements. NA = Not applicable DK = Don't know. No knowledge to rate this question. Past Performance Questionnaire DRAFT Request for Proposal No. DE-SOL-0008418 Page 2 of 6 Please complete the following: Contract Reference Information Contract Number: Date of Contract Award: Contract Type (Fixed Price, Cost Reimbursement, etc.): Date Contractor Started

  6. Section L

    National Nuclear Security Administration (NNSA)

    Performance does not meet most contractual requirements and recovery is not likely in a timely manner. The contractual performance of the element or sub-element contains a serious problem(s) for which the contractor's corrective actions appear or were ineffective. NA = Not applicable DK = Don't know. No knowledge to rate this question. Past Performance Questionnaire DRAFT Request for Proposal No. DE-SOL-0008418 Page 2 of 6 Please complete the following: Contract Reference Information Contract

  7. Section 9

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    &58)((0.25(1365)/(971)'&20 Session Papers 37 (1) Application of CAGEX for the Evaluation of Shortwave Codes and for the Testing of CERES TRMM Algorithms T. P. Charlock NASA Langley Research Center Hampton, Virginia T. L. Alberta, F. G. Rose, and D. A. Rutan Analytical Services and Materials, Inc. Hampton, Virginia The Atmospheric Radiation Measurement Program Enhanced (TOA) insolation in W/m** corresponds to the available Shortwave Experiment (ARESE) currently addresses the sample for

  8. Section V

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unsatisfactory. Completely failed to meet the contract requirements. Contractor displayed a total lack of understanding of contract requirements. NA = Not applicable DK = Don't know. No knowledge to rate this question. Past Performance Questionnaire DRAFT Request for Proposal No. DE-SOL-0008418 Page 2 of 6 Please complete the following: Contract Reference Information Contract Number: Date of Contract Award: Contract Type (Fixed Price, Cost Reimbursement, etc.): Date Contractor Started

  9. A proposed acceptance process for commercial off-the-shelf (COTS) software in reactor applications

    SciTech Connect (OSTI)

    Preckshot, G.G.; Scott, J.A.

    1996-03-01

    This paper proposes a process for acceptance of commercial off-the-shelf (COTS) software products for use in reactor systems important to safety. An initial set of four criteria establishes COTS software product identification and its safety category. Based on safety category, three sets of additional criteria, graded in rigor, are applied to approve/disapprove the product. These criteria fall roughly into three areas: product assurance, verification of safety function and safety impact, and examination of usage experience of the COTS product in circumstances similar to the proposed application. A report addressing the testing of existing software is included as an appendix.

  10. A Modified Version of XLACS-II for Processing ENDF Data into Multigroup Neutron Cross Sections in AMPX Master Library Format.

    Energy Science and Technology Software Center (OSTI)

    1982-05-07

    XLACS-IIA calculates fine-group averaged neutron cross sections from ENDF data. Its primary purpose is to produce full range multigroup libraries for the XSDRN-PM program. It also serves this purpose in the AMPX system. Provisions are included for treating fast, resonance, and thermal ENDF/B data. Fine-group energy structures and expansion orders used to represent differential cross sections for XSDRN can be arbitrarily specified by the user. Cross sections can be averaged over an arbitrary user-supplied weightingmore » function or by any of several built-in weighting functions.« less

  11. HFE Process Guidance and Standards for potential application to updating NRC guidance

    SciTech Connect (OSTI)

    Jacques Hugo; J. J. Persensky

    2012-07-01

    The U.S. Nuclear Regulatory Commission (NRC) reviews and evaluates the human factors engineering (HFE) programs of applicants for nuclear power plant construction permits, operating licenses, standard design certifications, and combined operating licenses. The purpose of these safety reviews is to help ensure that personnel performance and reliability are appropriately supported. Detailed design review procedures and guidance for the evaluations is provided in three key documents: the Standard Review Plan (NUREG-0800), the HFE Program Review Model (NUREG-0711), and the Human-System Interface Design Review Guidelines (NUREG-0700). These documents were last revised in 2007, 2004 and 2002, respectively. The NRC is committed to the periodic update and improvement of these guidance documents to ensure that they remain state-of-the-art design evaluation tools. Thus, the NRC has initiated a project with BNL to update the NRC guidance to remain current with recent research on human performance, advances in HFE methods and tools, and new technology. INL supported Brookhaven National Lab (BNL) to update the detailed HFE review criteria contained in NUREG-0711 and NUREG-0700 based on (1) feedback obtained from end users, (2) the results of NRC research and development efforts supporting the NRC staff’s HFE safety reviews, and (3) other material the project staff identify as applicable to the update effort. INL submitted comments on development plans and sections of NUREGs 0800, 0711, and 0700. The contractor prepared the report attached here as the deliverable for this work.

  12. Prospects for applications of electron beams in processing of gas and oil hydrocarbons

    SciTech Connect (OSTI)

    Ponomarev, A. V.; Pershukov, V. A.; Smirnov, V. P.

    2015-12-15

    Waste-free processing of oil and oil gases can be based on electron-beam technologies. Their major advantage is an opportunity of controlled manufacturing of a wide range of products with a higher utility value at moderate temperatures and pressures. The work considers certain key aspects of electron beam technologies applied for the chain cracking of heavy crude oil, for the synthesis of premium gasoline from oil gases, and also for the hydrogenation, alkylation, and isomerization of unsaturated oil products. Electronbeam processing of oil can be embodied via compact mobile modules which are applicable for direct usage at distant oil and gas fields. More cost-effective and reliable electron accelerators should be developed to realize the potential of electron-beam technologies.

  13. Section 55

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    F 2& SO 4 ' &F T " ( 8 $ 8 (2 o )T 2 (1&R s ) 2 B 2& SO 4 )F 2& SO 4 ' 1 2 )F 2& SO 4 dµ o ; µ o ' cos 2 o )F 2& SO 4 (Wm &2 ) ' &30J 2& SO 4 B 2& so 4 , 1 2 Session Papers 239 (1) (2) (3) Applicability of a Simple Model for Computing Direct Shortwave Climate Forcing by Sulfate Aerosols S. Nemesure, R. N. Halthore, and S. E. Schwartz Environmental Chemistry Division Brookhaven National Laboratory Upton, New York Recent estimates of global

  14. Section 92

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cld ' CWP 1&f ice k liq % f ice k ice e liq (v) ' A v r liq B v % C v k ice ' 0.005 % 1 r ice Session Papers 409 (1) (2) (3) Shortwave and Longwave Enhancements in the Rapid Radiative Transfer Model E. J. Mlawer and S. A. Clough Atmospheric and Environmental Research, Inc. Cambridge, Massachusetts Introduction This work describes recent advances in the rapid radiative transfer model (RRTM) (Mlawer et al. 1997), a rapid and accurate model designed for climate applications. The initial phase

  15. Development of A New Class of Fe-3Cr-W(V)Ferritic Steels for Industrial Process Applications

    SciTech Connect (OSTI)

    Sikka, V.J.; Jawad, M.H.

    2005-06-15

    The project, 'Development of a New Class of Fe-Cr-W(V) Ferritic Steels for Industrial Process Applications', was a Cooperative Research and Development Agreement (CRADA) between Oak Ridge National Laboratory (ORNL) and Nooter Corporation. This project dealt with improving the materials performance and fabrication for the hydrotreating reactor vessels, heat recovery systems, and other components for the petroleum and chemical industries. The petroleum and chemical industries use reactor vessels that can approach the ship weights of approximately 300 tons with vessel wall thicknesses of 3 to 8 in. These vessels are typically fabricated from Fe-Cr-Mo steels with chromium ranging from 1.25 to 12% and molybdenum from 1 to 2%. Steels in this composition have great advantages of high thermal conductivity, low thermal expansion, low cost, and properties obtainable by heat treatment. With all of the advantages of Fe-Cr-Mo steels, several issues are faced in design and fabrication of vessels and related components. These issues include the following: (1) low strength properties of current alloys require thicker sections; (2) increased thickness causes heat-treatment issues related to nonuniformity across the thickness and thus not achieving the optimum properties; (3) fracture toughness (ductile-to-brittle transition ) is a critical safety issue for these vessels, and it is affected in thick sections due to nonuniformity of microstructure; (4) PWHT needed after welding and makes fabrication more time-consuming with increased cost; and (5) PWHT needed after welding also limits any modifications of the large vessels in service. The goal of this project was to reduce the weight of large-pressure vessel components (ranging from 100 to 300 tons) by approximately 25% and reduce fabrication cost and improve in-service modification feasibility through development of Fe-3Cr-W(V) steels with combination of nearly a 50% higher strength, a lower DBTT and a higher upper-shelf energy

  16. Section 107

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Effect of Surface Topography and Surface Albedo Variation on the Radiation Environment of Palmer Station, Antarctic P. Ricchiazzi and C. Gautier Institute for Computational Earth System Science University of California, Santa Barbara Santa Barbara, California Abstract Radiative Transfer Model We present results from a 3-D radiative transfer simulation of The SAMCRT code treats surface-radiation processes in fine the radiation environment of Palmer Station, Antarctica. The detail, at the

  17. Section 20

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Satellite-Derived Surface Characterization and Surface Fluxes Across the Southern Great Plains Cloud and Radiation Testbed Site W. Gao, R. L. Coulter, B. M. Lesht, J. Qiu, and M. L. Wesely Argonne National Laboratory Argonne, Illinois Introduction AVHRR-Derived Surface Atmospheric processes in the lower boundary layer are strongly modulated by energy and mass fluxes from and to the underlying surface. The atmosphere-surface interactions usually occur at small temporal (seconds to minutes) and

  18. Section 39

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    e ' m 4 0 Q e (r)Br 2 n(r)dr Session Papers 161 Cloud Processing of Aerosols and Their Effects on Aerosol Radiative Properties Q. Liu and Y. L. Kogan Cooperative Institute for Mesoscale Meteorological Studies University of Oklahoma Norman, Oklahoma Introduction The scavenging of aerosols by clouds and their removal from the atmosphere by precipitation are important sinks for atmospheric aerosols. It is estimated that, on the global scale, precipitation removes about 80% of the mass of aerosols

  19. Section 43

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of Calculated and Measured Radiative Fluxes Under Altocumulus and Stratocumulus Cloud Layers D. Xia, S. K. Krueger and K. Sassen University of Utah Salt Lake City, Utah Introduction Properly accounting for the effects of clouds on radiative fluxes in numerical models of the atmosphere remains diffi- cult. The difficulty arises from the complexity of the processes that determine macroscopic cloud structure (cloud fraction, height, thickness, and water content) and from the need to know

  20. Section 61

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improved Treatment of Surface Evapotranspiration in a Mesoscale Numerical Model C-R Chen and P. J. Lamb Cooperative Institute for Mesoscale Meteorological Studies and School of Meteorology The University of Oklahoma Norman, Oklahoma Surface evapotranspiration can affect the formation processes overestimated or underestimated by the PM method is mainly of low-level clouds and even precipitation. Accordingly, in controlled by the setting of stomatal resistance. Less surface daily short- and

  1. Progress Report for Diffusion Welding of the NGNP Process Application Heat Exchangers

    SciTech Connect (OSTI)

    R.E. Mizia; D.E. Clark; M.V. Glazoff; T.E. Lister; T.L. Trowbridge

    2011-12-01

    The U.S. Department of Energy selected the high temperature gas-cooled reactor as the basis for the Next Generation Nuclear Plant (NGNP). The NGNP will demonstrate the use of nuclear power for electricity, hydrogen production, and process heat applications. The NGNP Project is currently investigating the use of metallic, diffusion welded, compact heat exchangers to transfer heat from the primary (reactor side) heat transport system to the secondary heat transport system. An intermediate heat exchanger will transfer this heat to downstream applications such as hydrogen production, process heat, and electricity generation. The channeled plates that make up the heat transfer surfaces of the intermediate heat exchanger will have to be assembled into an array by diffusion welding. This report describes the preliminary results of a scoping study that evaluated the diffusion welding process parameters and the resultant mechanical properties of diffusion welded joints using Alloy 800H. The long-term goal of the program is to progress towards demonstration of small heat exchanger unit cells fabricated with diffusion welds. Demonstration through mechanical testing of the unit cells will support American Society of Mechanical Engineers rules and standards development, reduce technical risk, and provide proof of concept for heat exchanger fabrication methods needed to deploy heat exchangers in several potential NGNP configurations.1 Researchers also evaluated the usefulness of modern thermodynamic and diffusion computational tools (Thermo-Calc and Dictra) in optimizing the parameters for diffusion welding of Alloy 800H. The modeling efforts suggested a temperature of 1150 C for 1 hour with an applied pressure of 5 MPa using 15 {micro}m nickel foil as joint filler to reduce chromium oxidation on the welded surfaces. Good agreement between modeled and experimentally determined concentration gradients was achieved

  2. Covariance Evaluation Methodology for Neutron Cross Sections

    SciTech Connect (OSTI)

    Herman,M.; Arcilla, R.; Mattoon, C.M.; Mughabghab, S.F.; Oblozinsky, P.; Pigni, M.; Pritychenko, b.; Songzoni, A.A.

    2008-09-01

    We present the NNDC-BNL methodology for estimating neutron cross section covariances in thermal, resolved resonance, unresolved resonance and fast neutron regions. The three key elements of the methodology are Atlas of Neutron Resonances, nuclear reaction code EMPIRE, and the Bayesian code implementing Kalman filter concept. The covariance data processing, visualization and distribution capabilities are integral components of the NNDC methodology. We illustrate its application on examples including relatively detailed evaluation of covariances for two individual nuclei and massive production of simple covariance estimates for 307 materials. Certain peculiarities regarding evaluation of covariances for resolved resonances and the consistency between resonance parameter uncertainties and thermal cross section uncertainties are also discussed.

  3. Bayesian Treed Multivariate Gaussian Process with Adaptive Design: Application to a Carbon Capture Unit

    SciTech Connect (OSTI)

    Konomi, Bledar A.; Karagiannis, Georgios; Sarkar, Avik; Sun, Xin; Lin, Guang

    2014-05-16

    Computer experiments (numerical simulations) are widely used in scientific research to study and predict the behavior of complex systems, which usually have responses consisting of a set of distinct outputs. The computational cost of the simulations at high resolution are often expensive and become impractical for parametric studies at different input values. To overcome these difficulties we develop a Bayesian treed multivariate Gaussian process (BTMGP) as an extension of the Bayesian treed Gaussian process (BTGP) in order to model and evaluate a multivariate process. A suitable choice of covariance function and the prior distributions facilitates the different Markov chain Monte Carlo (MCMC) movements. We utilize this model to sequentially sample the input space for the most informative values, taking into account model uncertainty and expertise gained. A simulation study demonstrates the use of the proposed method and compares it with alternative approaches. We apply the sequential sampling technique and BTMGP to model the multiphase flow in a full scale regenerator of a carbon capture unit. The application presented in this paper is an important tool for research into carbon dioxide emissions from thermal power plants.

  4. Field application of a genetically engineered microorganism for polycyclic aromatic hydrocarbon bioremediation process monitoring and control

    SciTech Connect (OSTI)

    Sayler, G.S.; Cox, C.D.; Ripp, S.; Nivens, D.E.; Werner, C.; Ahn, Y.; Matrubutham, U.; Burlage, R.

    1998-11-01

    On October 30, 1996, the US Environmental Protection Agency (EPA) commenced the first test release of genetically engineered microorganisms (GEMs) for use in bioremediation. The specific objectives of the investigation were multifaceted and include (1) testing the hypothesis that a GEM can be successfully introduced and maintained in a bioremediation process, (2) testing the concept of using, at the field scale, reporter organisms for direct bioremediation process monitoring and control, and (3) acquiring data that can be used in risk assessment decision making and protocol development for future field release applications of GEMs. The genetically engineered strain under investigation is Pseudomonas fluorescens strain HK44 (King et al., 1990). The original P. fluorescens parent strain was isolated from polycyclic aromatic hydrocarbon (PAH) contaminated manufactured gas plant soil. Thus, this bacterium is able to biodegrade naphthalene (as well as other substituted naphthalenes and other PAHs) and is able to function as a living bioluminescent reporter for the presence of naphthalene contamination, its bioavailability, and the functional process of biodegradation. A unique component of this field investigation was the availability of an array of large subsurface soil lysimeters. This article describes the experience associated with the release of a genetically modified microorganism, the lysimeter facility and its associated instrumentation, as well as representative data collected during the first eighteen months of operation.

  5. Method for evaluating the potential of geothermal energy in industrial process heat applications

    SciTech Connect (OSTI)

    Packer, M.B.; Mikic, B.B.; Meal, H.C., Guillamon-Duch, H.

    1980-05-01

    A method is presented for evaluating the technical and economic potential of geothermal energy for industrial process heat applications. The core of the method is a computer program which can be operated either as a design analysis tool to match energy supplies and demands, or as an economic analysis tool if a particular design for the facility has already been selected. Two examples are given to illustrate the functioning of the model and to demonstrate that results reached by use of the model closely parallel those that have been determined by more traditional techniques. Other features of interest in the model include: (1) use of decision analysis techniques as well as classical methods to deal with questions relating optimization; (2) a tax analysis of current regulations governing percentage depletion for geothermal deposits; and (3) development of simplified correlations for the thermodynamic properties of salt solutions in water.

  6. Interfacial electron and phonon scattering processes in high-powered nanoscale applications.

    SciTech Connect (OSTI)

    Hopkins, Patrick E.

    2011-10-01

    The overarching goal of this Truman LDRD project was to explore mechanisms of thermal transport at interfaces of nanomaterials, specifically linking the thermal conductivity and thermal boundary conductance to the structures and geometries of interfaces and boundaries. Deposition, fabrication, and post possessing procedures of nanocomposites and devices can give rise to interatomic mixing around interfaces of materials leading to stresses and imperfections that could affect heat transfer. An understanding of the physics of energy carrier scattering processes and their response to interfacial disorder will elucidate the potentials of applying these novel materials to next-generation high powered nanodevices and energy conversion applications. An additional goal of this project was to use the knowledge gained from linking interfacial structure to thermal transport in order to develop avenues to control, or 'tune' the thermal transport in nanosystems.

  7. POTENTIAL AND FUTURE TRENDS ON INDUSTRIAL RADIATION PROCESSING TECHNOLOGY APPLICATION IN EMERGING COUNTRY - BRAZIL

    SciTech Connect (OSTI)

    Sampa, M.H.O.; Omi, N.M.; Rela, C.S.; Tsai, D.

    2004-10-06

    Brazil started the use of radiation technology in the seventies on crosslinking polyethylene for insulation of wire and electronic cables and sterilization of medical care devices. The present status of industrial applications of radiation shows that the use of this technology is increasing according to the economical development and the necessity to become the products manufactured in the local industries competitive in quality and price for internal and external market. The on going development activities in this area are concentrated on polymers processing (materials modification), foodstuff treatment and environmental protection. The development, the promotion and the technical support to consolidate this technology to the local industries is the main attribution of Institute for Energetic and Nuclear Research-IPEN, a governmental Institution.

  8. Surface contouring by controlled application of processing fluid using Marangoni effect

    DOE Patents [OSTI]

    Rushford, Michael C.; Britten, Jerald A.

    2003-04-29

    An apparatus and method for modifying the surface of an object by contacting said surface with a liquid processing solution using the liquid applicator geometry and Marangoni effect (surface tension gradient-driven flow) to define and confine the dimensions of the wetted zone on said object surface. In particular, the method and apparatus involve contouring or figuring the surface of an object using an etchant solution as the wetting fluid and using realtime metrology (e.g. interferometry) to control the placement and dwell time of this wetted zone locally on the surface of said object, thereby removing material from the surface of the object in a controlled manner. One demonstrated manifestation is in the deterministic optical figuring of thin glasses by wet chemical etching using a buffered hydrofluoric acid solution and Marangoni effect.

  9. Stellar (n,{gamma}) cross sections of p-process isotopes. II. {sup 168}Yb, {sup 180}W, {sup 184}Os, {sup 190}Pt, and {sup 196}Hg

    SciTech Connect (OSTI)

    Marganiec, J.; Dillmann, I.; Pardo, C. Domingo; Kaeppeler, F.; Walter, S.

    2010-09-15

    The neutron-capture cross sections of {sup 168}Yb, {sup 180}W, {sup 184}Os, {sup 190}Pt, and {sup 196}Hg have been measured by means of the activation technique. The samples were irradiated in a quasistellar neutron spectrum of kT=25 keV, which was produced at the Karlsruhe 3.7-MV Van de Graaff accelerator via the {sup 7}Li(p,n){sup 7}Be reaction. Systematic uncertainties were investigated in repeated activations with different samples and by variation of the experimental parameters, that is, irradiation times, neutron fluxes, and {gamma}-ray counting conditions. The measured data were converted into Maxwellian-averaged cross sections at kT=30 keV, yielding 1214{+-}61, 624{+-}54, 590{+-}43, 511{+-}46, and 201{+-}11 mb for {sup 168}Yb, {sup 180}W, {sup 184}Os, {sup 190}Pt, and {sup 196}Hg, respectively. The present results either represent first experimental data ({sup 168}Yb, {sup 184}Os, and {sup 196}Hg) or could be determined with significantly reduced uncertainties ({sup 180}W and {sup 190}Pt). These measurements are part of a systematic study of stellar (n,{gamma}) cross sections of the stable p isotopes.

  10. A survey of geothermal process heat applications in Guatemala: An engineering survey

    SciTech Connect (OSTI)

    Altseimer, J.H.; Edeskuty, F.J.

    1988-08-01

    This study investigates how process heat from Guatemala's geothermal energy resources can be developed to reduce Guatemala's costly importation of oil, create new employment by encouraging new industry, and reduce fuel costs for existing industry. This investigation was funded by the US Agency for International Development and carried out jointly by the Guatemalan Government and the Los Alamos National Laboratory. Two sites, Amatitlan and Zunil, are being developed geothermally. Amatitlan is in the better industrial area but Zunil's geothermal development is more advanced. The industry around Zunil is almost exclusively agricultural and the development of an agricultural processing plant (freezing, dehydration, and cold storage) using geothermal heat is recommended. Similar developments throughout the volcanic zones of Guatemala are possible. Later, when the field at Amatitlan has been further developed, an industrial park can be planned. Potential Amatitlan applications are the final stage of salt refining, a thermal power plant, hospital/hotel heating and cooling, steam curing of concrete blocks, production of alcohol from sugar cane, and production of polyethylene from ethanol. Other special developments such as water pumping for the city of Guatemala and the use of moderate-temperature geothermal fluids for localized power production are also possible. 12 refs., 13 figs., 14 tabs.

  11. PART III - SECTION J

    National Nuclear Security Administration (NNSA)

    L, Page 1 SECTION J APPENDIX L SPECIAL FINANCIAL INSTITUTION AGREEMENT FOR USE WITH THE PAYMENTS-CLEARED FINANCING ARRANGEMENT Note: (1) The Contractor shall enter into a new banking agreement(s) during the Transition Term of the Contract, utilizing the format contained in this Appendix and include other applicable Contract terms and conditions. (2) Items in brackets [ ] below are provided for clarification and will be removed from the document prior to execution. Agreement entered into this,

  12. 14655 Section J

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8RL14655 640 PART III - LIST OF DOCUMENTS, EXHIBITS, AND OTHER ATTACHMENTS SECTION J LIST OF ATTACHMENTS TABLE OF CONTENTS ATTACHMENT J-1 TABLE OF RIVER CORRIDOR CLOSURE CONTRACT WORK SCOPE ATTACHMENT J-2 DOE DIRECTIVES APPLICABLE TO THE RIVER CORRIDOR CLOSURE CONTRACT ATTACHMENT J-3 PERFORMANCE GUARANTEE AGREEMENTS ATTACHMENT J-4 SMALL BUSINESS SUBCONTRACTING PLAN ATTACHMENT J-5 SMALL DISADVANTAGED BUSINESS PARTICIPATION PROGRAM TARGETS ATTACHMENT J-6 ADVANCE AGREEMENT, PERSONNEL, AND RELATED

  13. Processing and Protection of Rare Earth Permanent Magnet Particulate for Bonded Magnet Applications

    SciTech Connect (OSTI)

    Peter Kelly Sokolowski

    2007-12-01

    Rapid solidification of novel mixed rare earth-iron-boron, MRE{sub 2}Fe{sub 14}B (MRE = Nd, Y, Dy; currently), magnet alloys via high pressure gas atomization (HPGA) have produced similar properties and structures as closely related alloys produced by melt spinning (MS) at low wheel speeds. Recent additions of titanium carbide and zirconium to the permanent magnet (PM) alloy design in HPGA powder (using He atomization gas) have made it possible to achieve highly refined microstructures with magnetic properties approaching melt spun particulate at cooling rates of 10{sup 5}-10{sup 6}K/s. By producing HPGA powders with the desirable qualities of melt spun ribbon, the need for crushing ribbon was eliminated in bonded magnet fabrication. The spherical geometry of HPGA powders is more ideal for processing of bonded permanent magnets since higher loading fractions can be obtained during compression and injection molding. This increased volume loading of spherical PM powder can be predicted to yield a higher maximum energy product (BH){sub max} for bonded magnets in high performance applications. Passivation of RE-containing powder is warranted for the large-scale manufacturing of bonded magnets in applications with increased temperature and exposure to humidity. Irreversible magnetic losses due to oxidation and corrosion of particulates is a known drawback of RE-Fe-B based alloys during further processing, e.g. injection molding, as well as during use as a bonded magnet. To counteract these effects, a modified gas atomization chamber allowed for a novel approach to in situ passivation of solidified particle surfaces through injection of a reactive gas, nitrogen trifluoride (NF{sub 3}). The ability to control surface chemistry during atomization processing of fine spherical RE-Fe-B powders produced advantages over current processing methodologies. In particular, the capability to coat particles while 'in flight' may eliminate the need for post atomization treatment

  14. Consent Order of Dismissal, Section III

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 SRR-ESH-2013-00054 Revision 1 August 28, 2013 Page 1 of 6 Consent Order of Dismissal, Section III.7 Z-Area Saltstone Disposal Facility Permit General Condition B.5.a-h Information Permit Condition Requirement Estimated Value Updated Value Comments B.5 a) Cumulative process volume of salt waste disposed to date Not Applicable 7,845 kgals Vault 4, Cells B, D, E, F, H, J, K, L SDU 2, Cells 2A and 2B b) Process volume of saltstone grout disposed and vault/disposal unit location (including cell

  15. Consent Order of Dismissal, Section III

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 SRR-ESH-2014-00039 Revision 1 August 28, 2014 Page 1 of 6 Z-Area Saltstone Disposal Facility Permit General Condition B.5.a-h Information and Consent Order of Dismissal, Section III.7 Permit Condition Requirement Estimated Value Updated Value Comments B.5 a) Cumulative process volume of salt waste disposed to date Not Applicable 8,770 kgals Vault 4, Cells B, D, E, F, H, J, K, L SDU 2, Cells 2A and 2B SDU 5, Cell 5B b) Process volume of saltstone grout disposed and vault/disposal unit location

  16. Consent Order of Dismissal, Section III

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 SRR-ESH-2014-00076 Revision 1 Posted Date: December 2, 2014 Page 1 of 6 Z-Area Saltstone Disposal Facility Permit General Condition B.5.a-h Information and Consent Order of Dismissal, Section III.7 Permit Condition Requirement Estimated Value Updated Value Comments B.5 a) Cumulative process volume of salt waste disposed to date Not Applicable 9,066 kgal Vault 4, Cells B, D, E, F, H, J, K, L SDU 2, Cells 2A and 2B SDU 5, Cell 5B b) Process volume of saltstone grout disposed and vault/disposal

  17. Consent Order of Dismissal, Section III

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 SRR-ESH-2015-00014 Revision 1 Posted Date: May 29, 2015 Page 1 of 6 Z-Area Saltstone Disposal Facility Permit General Condition B.5.a-h Information and Consent Order of Dismissal, Section III.7 Permit Condition Requirement Estimated Value Updated Value Comments B.5 a) Cumulative process volume of salt waste disposed to date Not Applicable 9,894 kgal Vault 4, Cells B, D, E, F, H, J, K, L SDU 2, Cells 2A and 2B SDU 5, Cell 5B b) Process volume of saltstone grout disposed and vault/disposal unit

  18. Consent Order of Dismissal, Section III

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 SRR-ESH-2015-00110 Revision 1 Post Date: February 29, 2016 Page 1 of 6 Z-Area Saltstone Disposal Facility Permit General Condition B.5.a-h Information and Consent Order of Dismissal, Section III.7 Permit Condition Requirement Estimated Value Updated Value Comments B.5 a) Cumulative process volume of salt waste disposed to date Not Applicable 10, 722 kgal Vault 4, Cells B, D, E, F, H, J, K, L SDU 2, Cells 2A and 2B SDU 5, Cells 5A and 5B b) Process volume of saltstone grout disposed and

  19. Consent Order of Dismissal, Section III

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 SRR-ESH-2016-00025 Revision 1 Post Date: May 27, 2016 Page 1 of 6 Z-Area Saltstone Disposal Facility Permit General Condition B.5.a-h Information and Consent Order of Dismissal, Section III.7 Permit Condition Requirement Estimated Value Updated Value Comments B.5 a) Cumulative process volume of salt waste disposed to date Not Applicable 10, 744 kgal SDU 4, Cells B, D, E, F, H, J, K, L SDU 2, Cells A and B SDU 5, Cells A and B b) Process volume of saltstone grout disposed and vault/disposal

  20. Consent Order of Dismissal, Section III

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 SRR-ESH-2016-00052 Revision 1 Post Date: August 26, 2016 Page 1 of 6 Z-Area Saltstone Disposal Facility Permit General Condition B.5.a-h Information and Consent Order of Dismissal, Section III.7 Permit Condition Requirement Estimated Value Updated Value Comments B.5 a) Cumulative process volume of salt waste disposed to date Not Applicable 11,143 kgal SDU 4, Cells B, D, E, F, H, J, K, L SDU 2, Cells A and B SDU 5, Cells A and B b) Process volume of saltstone grout disposed and vault/disposal

  1. Consent Order of Dismissal, Section III

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 SRR-ESH-2016-00068 Revision 0 Post Date: August 26, 2016 Page 1 of 6 Z-Area Saltstone Disposal Facility Permit General Condition B.5.a-h Information and Consent Order of Dismissal, Section III.7 Permit Condition Requirement Estimated Value Updated Value Comments B.5 a) Cumulative process volume of salt waste disposed to date Not Applicable 11,610 kgal SDU 4, Cells B, D, E, F, H, J, K, L SDU 2, Cells A and B SDU 5, Cells A and B b) Process volume of saltstone grout disposed and vault/disposal

  2. Consent Order of Dismissal, Section III

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 SRR-ESH-2015-00052 Revision 1 Post Date: August 28, 2015 Page 1 of 6 Z-Area Saltstone Disposal Facility Permit General Condition B.5.a-h Information and Consent Order of Dismissal, Section III.7 Permit Condition Requirement Estimated Value Updated Value Comments B.5 a) Cumulative process volume of salt waste disposed to date Not Applicable 9,948 kgal Vault 4, Cells B, D, E, F, H, J, K, L SDU 2, Cells 2A and 2B SDU 5, Cell 5B b) Process volume of saltstone grout disposed and vault/disposal unit

  3. Cross-Sectional Conductive Atomic Force Microscopy of CdTe/CdS Solar Cells: Effects of Etching and Back-Contact Processes; Preprint

    SciTech Connect (OSTI)

    Moutinho, H. R.; Dhere, R. G.; Jiang, C.-S.; Gessert, T. A.; Duda, A. M.; Young, M.; Metzger, W. K.; Li, X.; Al-Jassim, M. M.

    2006-05-01

    We investigated the effects of the etching processes using bromine and nitric-phosphoric acid solutions, as well as of Cu, in the bulk electrical conductivity of CdTe/CdS solar cells using conductive atomic force microscopy (C-AFM). Although the etching process can create a conductive layer on the surface of the CdTe, the layer is very shallow. In contrast, the addition of a thin layer of Cu to the surface creates a conductive layer inside the CdTe that is not uniform in depth, is concentrated at grains boundaries, and may short circuit the device if the CdTe is too thin. The etching process facilitates the Cu diffusion and results in thicker conductive layers. The existence of this inhomogeneous conductive layer directly affects the current transport and is probably the reason for needing thick CdTe in these devices.

  4. The processing of alcohols, hydrocarbons and ethers to produce hydrogen for a PEMFC for transportation applications

    SciTech Connect (OSTI)

    Dams, R.A.J.; Hayter, P.R.; Moore, S.C.

    1997-12-31

    Wellman CJB Limited is involved in a number of projects to develop fuel processors to provide a hydrogen-rich fuel in Proton Exchange Membrane Fuel Cells (PEMFC) systems for transportation applications. This work started in 1990 which resulted in the demonstration of 10kW PEMFC system incorporating a methanol reformer and catalytic gas clean-up system. Current projects include: The development of a compact fast response methanol reformer and gas clean-up system for a motor vehicle; Reforming of infrastructure fuels including gasoline, diesel, reformulated fuel gas and LPG to produce a hydrogen rich gas for PEMFC; Investigating the potential of dimethylether (DME) as source of hydrogen rich gas for PEMFCs; The use of thin film palladium diffusers to produce a pure hydrogen stream from the hydrogen rich gas from a reformer; and Processing of naval logistic fuels to produce a hydrogen rich gas stream for PEMFC power system to replace diesel generators in surface ships. This paper outlines the background to these projects and reports their current status.

  5. ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing Processes and Applications to Accelerate Commercial Use of Nanomaterials, January 2011

    Broader source: Energy.gov [DOE]

    Portfolio highlighting projects that seek to make improvements in a broad range of energy production, storage, and consumption applications.

  6. Factorization structure of gauge theory amplitudes and application to hard scattering processes at the LHC

    SciTech Connect (OSTI)

    Chiu Juiyu; Fuhrer, Andreas; Kelley, Randall; Manohar, Aneesh V.

    2009-11-01

    Previous work on electroweak radiative corrections to high-energy scattering using soft-collinear effective theory (SCET) has been extended to include external transverse and longitudinal gauge bosons and Higgs bosons. This allows one to compute radiative corrections to all parton-level hard scattering amplitudes in the standard model to next-to-leading-log order, including QCD and electroweak radiative corrections, mass effects, and Higgs exchange corrections, if the high-scale matching, which is suppressed by two orders in the log counting, and contains no large logs, is known. The factorization structure of the effective theory places strong constraints on the form of gauge theory amplitudes at high energy for massless and massive gauge theories, which are discussed in detail in the paper. The radiative corrections can be written as the sum of process-independent one-particle collinear functions, and a universal soft function. We give plots for the radiative corrections to qq{yields}W{sub T}W{sub T}, Z{sub T}Z{sub T}, W{sub L}W{sub L}, and Z{sub L}H, and gg{yields}W{sub T}W{sub T} to illustrate our results. The purely electroweak corrections are large, ranging from 12% at 500 GeV to 37% at 2 TeV for transverse W pair production, and increasing rapidly with energy. The estimated theoretical uncertainty to the partonic (hard) cross section in most cases is below 1%, smaller than uncertainties in the parton distribution functions. We discuss the relation between SCET and other factorization methods, and derive the Magnea-Sterman equations for the Sudakov form factor using SCET, for massless and massive gauge theories, and for light and heavy external particles.

  7. 14655 Section J

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2, Modification 476 J.2-1 ATTACHMENT J.2 REQUIREMENTS SOURCES AND IMPLEMENTING DOCUMENTS The following lists are provided in accordance with the Section I Clause entitled, DEAR 970.5204-2, Laws, Regulations, and DOE Directives. LIST A: APPLICABLE FEDERAL, STATE, AND LOCAL REGULATIONS Table J.2.1 Code of Federal Regulations (CFR) Document Number Title 10 CFR 63 Disposal of High-Level Radioactive Wastes in a Geologic Repository at Yucca Mountain, Nevada 10 CFR 71 Packaging And Transportation Of

  8. Commercial application of process for hydrotreating vacuum distillate in G-43-107 unit at the Moscow petroleum refinery

    SciTech Connect (OSTI)

    Kurganov, V.M.; Samokhvalov, A.I.; Osipov, L.N.; Lebedev, B.L.; Chagovets, A.N.; Melik-Akhnazarov, T.K.; Kruglova, T.F.; Imarov, A.K.

    1987-05-01

    The authors present results obtained during the shakedown run on the hydrotreating section of the title catalytic cracking unit. The flow plan of the unit is shown. The characteristics of the hydrotreater feed and the product are given. Changes in hydrotreating process parameters during unit operation are shown, as are changes in the raw and hydrotreated feed quality during the periods before and after a shutdown.

  9. PART III-SECTION J

    National Nuclear Security Administration (NNSA)

    C SECTION J APPENDIX C TRANSITION PLAN Plan: [To be inserted by the Contracting Officer.] Requirements: In accordance with Section F, Deliverables During Transition, the Contractor shall submit a Transition Plan for the Contracting Officer's approval 10 days after Contract award. The Transition plan shall describe the process, details, schedule, and cost for providing an orderly transition during the Contract's Transition Term stated in Section F, F-3 Period of Performance. The Transition Plan

  10. Gas atomization processing of tin and silicon modified LaNi{sub 5} for nickel-metal hydride battery applications

    SciTech Connect (OSTI)

    Ting, J.

    1999-02-12

    Numerous researchers have studied the relevant material properties of so-called AB{sub 5} alloys for battery applications. These studies involved LaNi{sub 5} substituted alloys which were prepared using conventional cast and crush alloying techniques. While valuable to the understanding of metal hydride effects, the previous work nearly ignored the potential for alternative direct powder production methods, like high pressure gas atomization (HPGA). Thus, there is a need to understand the relationship between gas atomization processes, powder particle solidification phases, and hydrogen absorption properties of ultra fine (< 25 {micro}m) atomized powders with high surface area for enhanced battery performance. Concurrently, development of a gas atomization nozzle that is more efficient than all current designs is needed to increase the yield of ultrafine AB{sub 5} alloy powder for further processing advantage. Gas atomization processing of the AB{sub 5} alloys was demonstrated to be effective in producing ultrafine spherical powders that were resilient to hydrogen cycling for the benefit of improving corrosion resistance in battery application. These ultrafine powders benefited from the rapid solidification process by having refined solute segregation in the microstructure of the gas atomized powders which enabled a rapid anneal treatment of the powders. The author has demonstrated the ability to produce high yields of ultrafine powder efficiently and cost effectively, using the new HPGA-III technology. Thus, the potential benefits of processing AB{sub 5} alloys using the new HPGA technology could reduce manufacturing cost of nickel-metal hydride powder. In the near future, the manufacture of AB{sub 5} alloy powders could become a continuous and rapid production process. The economic benefit of an improved AB{sub 5} production process may thereby encourage the use of nickel-metal hydride rechargeable batteries in electrical vehicle applications in the foreseeable

  11. Measurement of Heat Flux and Heat Transfer Coefficient Due to Spray Application for the Die Casting Process

    SciTech Connect (OSTI)

    Sabau, Adrian S

    2007-01-01

    Lubricant spray application experiments were conducted for the die casting process. The heat flux was measured in situ using a differential thermopile sensor for three application techniques. First, the lubricant was applied under a constant flowrate while the nozzle was held in the same position. Second, the lubricant was applied in a pulsed, static manner, in which the nozzle was held over the same surface while it was turned on and off several times. Third, the lubricant was applied in a sweeping manner, in which the nozzle was moved along the die surface while it was held open. The experiments were conducted at several die temperatures and at sweep speeds of 20, 23, and 68 cm/s. The heat flux data, which were obtained with a sensor that was located in the centre of the test plate, were presented and discussed. The sensor can be used to evaluate lubricants, monitor the consistency of die lubrication process, and obtain useful process data, such as surface temperature, heat flux, and heat transfer coefficients. The heat removed from the die surface during lubricant application is necessary for (a) designing the cooling channels in the die, i.e. their size and placement, and (b) performing accurate numerical simulations of the die casting process.

  12. Literature on fabrication of tungsten for application in pyrochemical processing of spent nuclear fuels

    SciTech Connect (OSTI)

    Edstrom, C.M.; Phillips, A.G.; Johnson, L.D.; Corle, R.R.

    1980-10-11

    The pyrochemical processing of nuclear fuels requires crucibles, stirrers, and transfer tubing that will withstand the temperature and the chemical attack from molten salts and metals used in the process. This report summarizes the literature that pertains to fabrication (joining, chemical vapor deposition, plasma spraying, forming, and spinning) is the main theme. This report also summarizes a sampling of literature on molbdenum and the work previously performed at Argonne National Laboratory on other container materials used for pyrochemical processing of spent nuclear fuels.

  13. Application of the Granuflow Process to Pipeline-Transported Coal Slurry CRADA PC96-010, Final Report

    SciTech Connect (OSTI)

    Richard P. Killmeyer; Wu-Wey Wen

    1997-09-24

    In light of the current difficulties in processing fine coal and the potential for a significant increase in fines due to more demanding quality specifications, the U.S. Department of Energy's Federal Energy Technology Center (FETC) has been involved in the reconstitution of the fine clean coal resulting from advanced fine coal cleaning technologies. FETC has invented and developed a new strategy that combines fine-coal dewatering and reconstitution into one step. The process reduces the moisture content of the clean coal, and alleviates handling problems related to dustiness, stickiness, flowability, and freezing. This process has been named the GranuFlow Process. Early work successfully demonstrated the feasibility of the process for laboratory-scale vacuum filtration dewatering using asphalt emulsion. Further tests focused on the application of the process to a screen-bowl centrifuge via batch mode tests at 300 lb/hr. These tests produced roughly the same results as the laboratory filtration tests did, and they included some testing using Orimulsion, a bitumen emulsion. The Orimulsion seemed to offer greater potential for moisture reduction and was less affected by colder slurry temperatures. Most recently, FETC has conducted several series of tests in its Coal Preparation Process Research Facility. These tests dramatically showed the visible difference in the dewatered product by applying the GranuFlow Process, turning it from a clumpy, wet, sticky material into a granular, dry free-flowing product. In addition, it verified previous results with improvements in moisture content, dustiness, stickiness, and freezing. Orimulsion showed a significant benefit over asphalt emulsion in moisture reduction at additions more than 5%. The overall goal of this project was to successfully apply FETC'S GranuFlow Process to improve coal slurry pipeline operations. Williams Technologies, Inc. (WTI), a leader in pipeline technology, has an interest in reducing the moisture

  14. Integration of High-Temperature Gas-Cooled Reactors into Industrial Process Applications

    SciTech Connect (OSTI)

    Lee Nelson

    2011-09-01

    This report is a summary of analyses performed by the NGNP project to determine whether it is technically and economically feasible to integrate high temperature gas cooled reactor (HTGR) technology into industrial processes. To avoid an overly optimistic environmental and economic baseline for comparing nuclear integrated and conventional processes, a conservative approach was used for the assumptions and calculations.

  15. Process for decontaminating radioactive liquids using a calcium cyanamide-containing composition. [Patent application

    DOE Patents [OSTI]

    Silver, G.L.

    1980-09-24

    The present invention provides a process for decontaminating a radioactive liquid containing a radioactive element capable of forming a hydroxide. This process includes the steps of contacting the radioactive liquid with a decontaminating composition and separating the resulting radioactive sludge from the resulting liquid. The decontaminating composition contains calcium cyanamide.

  16. THE INTEGRATION OF PROCESS HEAT APPLICATIONS TO HIGH TEMPERATURE GAS REACTORS

    SciTech Connect (OSTI)

    Michael G. McKellar

    2011-11-01

    A high temperature gas reactor, HTGR, can produce industrial process steam, high-temperature heat-transfer gases, and/or electricity. In conventional industrial processes, these products are generated by the combustion of fossil fuels such as coal and natural gas, resulting in significant emissions of greenhouse gases such as carbon dioxide. Heat or electricity produced in an HTGR could be used to supply process heat or electricity to conventional processes without generating any greenhouse gases. Process heat from a reactor needs to be transported by a gas to the industrial process. Two such gases were considered in this study: helium and steam. For this analysis, it was assumed that steam was delivered at 17 MPa and 540 C and helium was delivered at 7 MPa and at a variety of temperatures. The temperature of the gas returning from the industrial process and going to the HTGR must be within certain temperature ranges to maintain the correct reactor inlet temperature for a particular reactor outlet temperature. The returning gas may be below the reactor inlet temperature, ROT, but not above. The optimal return temperature produces the maximum process heat gas flow rate. For steam, the delivered pressure sets an optimal reactor outlet temperature based on the condensation temperature of the steam. ROTs greater than 769.7 C produce no additional advantage for the production of steam.

  17. Engineering study for the treatment of spent ion exchange resin resulting from nuclear process applications

    SciTech Connect (OSTI)

    Place, B.G.

    1990-09-01

    This document is an engineering study of spent ion exchange resin treatment processes with the purpose of identifying one or more suitable treatment technologies. Classifications of waste considered include all classes of low-level waste (LLW), mixed LLW, transuranic (TRU) waste, and mixed TRU waste. A total of 29 process alternatives have been evaluated. Evaluation parameters have included economic parameters (both total life-cycle costs and capital costs), demonstrated operability, environmental permitting, operational availability, waste volume reduction, programmatic consistency, and multiple utilization. The results of this study suggest that there are a number of alternative process configurations that are suitable for the treatment of spent ion exchange resin. The determinative evaluation parameters were economic variables (total life-cycle cost or capital cost) and waste volume reduction. Immobilization processes are generally poor in volume reduction. Thermal volume reduction processes tend to have high capital costs. There are immobilization processes and thermal volume reduction processes that can treat all classifications of spent ion exchange resin likely to be encountered. 40 refs., 19 figs., 17 tabs.

  18. Application of an Informatics-Based Decision-Making Framework and Process to the Assessment of Radiation Safety in Nanotechnology

    SciTech Connect (OSTI)

    Hoover, Mark D.; Myers, David S.; Cash, Leigh J.; Guilmette, Raymond A.; Kreyling, Wolfgang G.; Oberdörster, Günter; Smith, Rachel; Cassata, James R.; Boecker, Bruce B.; Grissom, Michael P.

    2015-01-01

    The National Council on Radiation Protection and Measurements (NCRP) has established NCRP Scientific Committee 2-6 to develop a report on the current state of knowledge and guidance for radiation safety programs involved with nanotechnology. Nanotechnology is the understanding and control of matter at the nanoscale, at dimensions between approximately 1 and 100 nanometers, where unique phenomena enable novel applications. While the full report is in preparation, this article presents and applies an informatics-based decision-making framework and process through which the radiation protection community can anticipate that nano-enabled applications, processes, nanomaterials, and nanoparticles are likely to become present or are already present in radiation-related activities; recognize specific situations where environmental and worker safety, health, well-being, and productivity may be affected by nano-related activities; evaluate how radiation protection practices may need to be altered to improve protection; control information, interpretations, assumptions, and conclusions to implement scientifically sound decisions and actions; and confirm that desired protection outcomes have been achieved. This generally applicable framework and supporting process can be continuously applied to achieve health and safety at the convergence of nanotechnology and radiation-related activities.

  19. Application of an Informatics-Based Decision-Making Framework and Process to the Assessment of Radiation Safety in Nanotechnology

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hoover, Mark D.; Myers, David S.; Cash, Leigh J.; Guilmette, Raymond A.; Kreyling, Wolfgang G.; Oberdörster, Günter; Smith, Rachel; Cassata, James R.; Boecker, Bruce B.; Grissom, Michael P.

    2015-01-01

    The National Council on Radiation Protection and Measurements (NCRP) has established NCRP Scientific Committee 2-6 to develop a report on the current state of knowledge and guidance for radiation safety programs involved with nanotechnology. Nanotechnology is the understanding and control of matter at the nanoscale, at dimensions between approximately 1 and 100 nanometers, where unique phenomena enable novel applications. While the full report is in preparation, this article presents and applies an informatics-based decision-making framework and process through which the radiation protection community can anticipate that nano-enabled applications, processes, nanomaterials, and nanoparticles are likely to become present or are alreadymore » present in radiation-related activities; recognize specific situations where environmental and worker safety, health, well-being, and productivity may be affected by nano-related activities; evaluate how radiation protection practices may need to be altered to improve protection; control information, interpretations, assumptions, and conclusions to implement scientifically sound decisions and actions; and confirm that desired protection outcomes have been achieved. This generally applicable framework and supporting process can be continuously applied to achieve health and safety at the convergence of nanotechnology and radiation-related activities.« less

  20. Application of the metal compression forming process for the production of an aluminum alloy component

    SciTech Connect (OSTI)

    Viswanathan, S.; Porter, W.D.; Ren, W.; Purgert, R.M.

    1997-01-01

    Metal Compression Forming (MCF) is a variant of the squeeze casting process, in which molten metal is allowed to solidify under pressure in order to close porosity and form a sound part. MCF applies pressure on the entire mold face, thereby directing pressure on all regions of the casting. It also enhances the solidification rate of the metal, promoting a very fine grain structure which results in improved properties. Consequently, the process is capable of producing parts with properties close to that of forgings, while retaining the near net shape, complex geometry, and relatively low cost of the casting process.

  1. Survey of Processing Methods for High Strength High Conductivity Wires for High Field Magnet Applications

    SciTech Connect (OSTI)

    Han, K.; Embury, J.D.

    1998-10-01

    This paper will deal with the basic concepts of attaining combination of high strength and high conductivity in pure materials, in-situ composites and macrocomposites. It will survey current attainments, and outline where some future developments may lie in developing wire products that are close to the theoretical strength of future magnet applications.

  2. Synthetic process for preparation of high surface area electroactive compounds for battery applications

    DOE Patents [OSTI]

    Evenson, Carl; Mackay, Richard

    2013-07-23

    A process is disclosed for the preparation of electroactive cathode compounds useful in lithium-ion batteries, comprising exothermic mixing of low-cost precursors and calcination under appropriate conditions. The exothermic step may be a spontaneous flameless combustion reaction. The disclosed process can be used to prepare any lithium metal phosphate or lithium mixed metal phosphate as a high surface area single phase compound.

  3. Development and Demonstration of a Biomass Boiler for Food Processing Applications

    SciTech Connect (OSTI)

    2009-02-01

    Burns & McDonnell Engineering Company, in collaboration with Frito-Lay, Inc., Oak Ridge National Laboratory, CPL Systems, Inc., Alpha Boilers, and Kansas State University will demonstrate use of a biomass boiler in the food processing industry. The 60,000 lb/hr innovative biomass boiler system utilizing a combination of wood waste and tire-derived fuel (TDF) waste will offset all natural gas consumption at Frito-Lay's Topeka, Kansas, processing facility.

  4. PART III … SECTION J

    National Nuclear Security Administration (NNSA)

    18 Section J Appendix F List of Applicable Laws, Regulations, and DOE Directives In addition to the list of applicable directives referenced below, the Contractor shall also comply with supplementary directives (e.g., manuals), which are invoked by a Contractor Requirements Document (CRD) attached to a directive referenced below. This List excludes directives that have been granted an exemption from the CRD in whole or in part. For those Directives whereby the Contractor has been granted an

  5. Section IV.D.3 for DOE 2013 Annual Report: Novel Phosphazene-based Compounds to Enhance Safety and Stability of Cell Chemistries for High Voltage Applications (INL)

    SciTech Connect (OSTI)

    Kevin L. Gering; Mason K. Harrup; Eric J. Dufek; Sergiy V. Sazhin; Harry W. Rollins; David K. Jamison; Fred F. Stewart; John Burba

    2013-09-01

    Electrolytes play a central role in performance and aging in most electrochemical systems. As automotive and grid applications place a higher reliance on electrochemical stored energy, it becomes more urgent to have electrolyte components that enable optimal battery performance while promoting battery safety and longevity. Safety remains a foremost concern for widespread utilization of Li-ion technology in electric-drive vehicles, especially as the focus turns to higher voltage systems (5V). This work capitalizes on the long established INL expertise regarding phosphazene chemistry, aimed at battery-viable compounds for electrolytes and electrodes that are highly tolerant to abusive conditions. This report showcases our 2013 work for the DOE applied battery research (ABR) program, wherein testing results are summarized for INL electrolytes and alternative anode materials.

  6. Application of nuclear density functionals to lepton number violating weak processes

    SciTech Connect (OSTI)

    Rodriguez, Tomas R.; Martinez-Pinedo, Gabriel

    2012-10-20

    We present an application of energy density functional methods with the Gogny interaction to the calculation of nuclear matrix elements (NME) for neutrinoless double beta decay and double electron capture. Beyond mean field effects have been included by particle number and angular momentum restoration and shape mixing within the generator coordinate method (GCM) framework. We analyze in detail the NME for {sup 116}Cd nucleus which is one of the most promising candidates to detect neutrinoless double beta decay.

  7. Achieving clean epitaxial graphene surfaces suitable for device applications by improved lithographic process

    SciTech Connect (OSTI)

    Nath, A., E-mail: anath@gmu.edu; Rao, M. V. [George Mason University, 4400 University Dr., Fairfax, Virginia 22030 (United States); Koehler, A. D.; Jernigan, G. G.; Wheeler, V. D.; Hite, J. K.; Hernndez, S. C.; Robinson, Z. R.; Myers-Ward, R. L.; Eddy, C. R.; Gaskill, D. K. [U.S. Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, D.C. 20375 (United States); Garces, N. Y. [Sotera Defense Solutions, 2200 Defense Hwy. Suite 405, Crofton, Maryland 21114 (United States)

    2014-06-02

    It is well-known that the performance of graphene electronic devices is often limited by extrinsic scattering related to resist residue from transfer, lithography, and other processes. Here, we report a polymer-assisted fabrication procedure that produces a clean graphene surface following device fabrication by a standard lithography process. The effectiveness of this improved lithography process is demonstrated by examining the temperature dependence of epitaxial graphene-metal contact resistance using the transfer length method for Ti/Au (10?nm/50?nm) metallization. The Landauer-Buttiker model was used to explain carrier transport at the graphene-metal interface as a function of temperature. At room temperature, a contact resistance of 140 ?-?m was obtained after a thermal anneal at 523?K for 2?hr under vacuum, which is comparable to state-of-the-art values.

  8. Nanomanufacturing Portfolio: Manufacturing Processes and Applications to Accelerate Commercial Use of Nanomaterials

    SciTech Connect (OSTI)

    Industrial Technologies Program

    2011-01-05

    This brochure describes the 31 R&D projects that AMO supports to accelerate the commercial manufacture and use of nanomaterials for enhanced energy efficiency. These cost-shared projects seek to exploit the unique properties of nanomaterials to improve the functionality of industrial processes and products.

  9. Some notes on the application of discrete wavelet transform in image processing

    SciTech Connect (OSTI)

    Caria, Egydio C. S.; Costa A, Trajano A. de; Rebello, Joao Marcos A.

    2011-06-23

    Mathematical transforms are used in signal processing in order to extract what is known as 'hidden' information. One of these mathematical tools is the Discrete Wavelet Transform (DWT), which has been increasingly employed in non-destructive testing and, more specifically, in image processing. The main concern in the present work is to employ DWT to suppress noise without losing relevant image features. However, some aspects must be taken into consideration when applying DWT in image processing, mainly in the case of weld radiographs, in order to achieve consistent results. Three topics were selected as representative of these difficulties, as follows: 1) How can image matrix be filled to fit the 2{sup n} lines and 2{sup n} rows requirement? 2) How can the most suitable decomposition level of the DWT function and the correct choice of their coefficient suppression be selected? 3) Is there any influence of the scanning direction and the weld radiograph image, e.g., longitudinal or transversal, on the final processing image? It is known that some artifacts may be present in weld radiograph images. Indeed, the weld surface is frequently rough and rippled, what can be seen as gray level variation on the radiograph, being sometimes mistaken as defective areas. Depending on the position of these artifacts, longitudinal or transversal to the weld bead, they may have different influences on the image processing procedure. This influence is clearly seen in the distribution of the DWT Function coefficients. In the present work, examples of two weld radiographs of quite different image quality were given in order to exemplify it.

  10. H2S removal with ZnO during fuel processing for PEM fuel cell applications

    SciTech Connect (OSTI)

    Li, Liyu; King, David L.

    2006-09-15

    The possibility of using ZnO as a H2S absorbent to protect catalysts in the gasoline and diesel fuel processor for PEM fuel cell applications was studied. It is possible to use commercial ZnO absorbent as a guard bed to protect the PROX catalyst and PEM fuel cell. However, it is not feasible to use ZnO to protect high and low temperature WGS catalysts, most likely due to COS formation via reactions CO + H2S = COS + H2 and CO2 + H2S = COS + H2O.

  11. Application of commercial simulator to reproduce a real natural gas processing unit

    SciTech Connect (OSTI)

    Gomes, L.G.; Maciel, M.R.W.

    1996-12-31

    In this work the intention is, using a commercial simulator, to reproduce the operating conditions of a Natural Gas Processing Unit. This is a complex task since in a real plant there are several kinds of equipments, accessories and designs that the most important available simulators cannot represent properly. This being the case, in this study, the simulation has been built in a unique computer file, simulating 48 equipments and 16 valves of the process unit. It was created five additional equipments and some adjust, recycle and set operations to adjust the simulator equipments to the real ones. The simulations has 84 operations and 116 streams of mass and energy. To bring near the column internal flows and temperatures to the real values, it were incorporated the column stage efficiencies, using a method, beginning with O`Connell global efficiency. 7 refs., 4 tabs.

  12. Water-enhanced solubility of carboxylic acids in organic solvents and its applications to extraction processes

    SciTech Connect (OSTI)

    Starr, J.N.; King, C.J.

    1991-11-01

    The solubilities of carboxylic acids in certain organic solvents increase remarkably with an increasing amount of water in the organic phase. This phenomenon leads to a novel extract regeneration process in which the co-extracted water is selectively removed from an extract, and the carboxylic acid precipitates. This approach is potentially advantageous compared to other regeneration processes because it removes a minor component of the extract in order to achieve a large recovery of acid from the extract. Carboxylic acids of interest include adipic acid, fumaric acid, and succinic acid because of their low to moderate solubilities in organic solvents. Solvents were screened for an increase in acid solubility with increased water concentration in the organic phase. Most Lewis-base solvents were found to exhibit this increased solubility phenomena. Solvents that have a carbonyl functional group showed a very large increase in acid solubility. 71 refs., 52 figs., 38 tabs.

  13. RFP Section H and Section L Templates

    Broader source: Energy.gov [DOE]

    On April 26, 2011, two draft RFP Section H templates "Performance Requirements" and "Performance Evaluation and Measurement Plan" and one draft RFP Section L template "Proposal Preparation Instructions – Cover Letter and Volume I, Offer and Other Documents" were distributed for Procurement Director (PD), Head of Contracting Activity (HCA), General Counsel and National Nuclear Security Administration (NNSA) review and comment. All comments received were considered and changes were made as appropriate. The final version of the three aforementioned RFP Section H and L templates are available in STRIPES.

  14. SECTION L… ATTACHMENT H

    National Nuclear Security Administration (NNSA)

    III-SECTION J APPENDIX K TRANSITION PLAN To be Added at a Later Date

  15. Roll-to-roll atomic layer deposition process for flexible electronics encapsulation applications

    SciTech Connect (OSTI)

    Maydannik, Philipp S. Kriinen, Tommi O.; Lahtinen, Kimmo; Cameron, David C.; Sderlund, Mikko; Soininen, Pekka; Johansson, Petri; Kuusipalo, Jurkka; Moro, Lorenza; Zeng, Xianghui

    2014-09-01

    At present flexible electronic devices are under extensive development and, among them, flexible organic light-emitting diode displays are the closest to a large market deployment. One of the remaining unsolved challenges is high throughput production of impermeable flexible transparent barrier layers that protect sensitive light-emitting materials against ambient moisture. The present studies deal with the adaptation of the atomic layer deposition (ALD) process to high-throughput roll-to-roll production using the spatial ALD concept. We report the development of such a process for the deposition of 20?nm thickness Al{sub 2}O{sub 3} diffusion barrier layers on 500?mm wide polymer webs. The process uses trimethylaluminum and water as precursors at a substrate temperature of 105?C. The observation of self-limiting film growth behavior and uniformity of thickness confirms the ALD growth mechanism. Water vapor transmission rates for 20?nm Al{sub 2}O{sub 3} films deposited on polyethylene naphthalate (PEN) substrates were measured as a function of substrate residence time, that is, time of exposure of the substrate to one precursor zone. Moisture permeation levels measured at 38?C/90% relative humidity by coulometric isostaticisobaric method were below the detection limit of the instrument (<5??10{sup ?4}?g/m{sup 2} day) for films coated at web moving speed of 0.25?m/min. Measurements using the Ca test indicated water vapor transmission rates ?5??10{sup ?6} g/m{sup 2} day. Optical measurements on the coated web showed minimum transmission of 80% in the visible range that is the same as the original PEN substrate.

  16. Workshop on innovation in materials processing and manufacture: Exploratory concepts for energy applications

    SciTech Connect (OSTI)

    Horton, L.L.

    1993-06-01

    The goal of the workshop was to bring together industrial, academic, and DOE Laboratory personnel to discuss and identify potential areas for which creative, innovative, and/or multidisciplinary solutions could result in major payoffs for the nation`s energy economy, DOE, and industry. The topics emphasized in these discussions were: surfaces and interfacial processing technologies, biomolecular materials, powder/precursor technologies, magnetic materials, nanoscale materials, novel ceramics and composites, novel intermetallics and alloys, environmentally benign materials, and energy efficiency. The workshop had a 2-day format. One the first day, there was an introductory session that summarized future directions within DOE`s basic and materials technology programs, and the national studies on manufacturing and materials science and engineering. The balance of the workshop was devoted to brainstorming sessions by seven working groups. During the first working group session, the entire group was divided to discuss topics on: challenges for hostile environments, novel materials in transportation technologies, novel nanoscale materials, and opportunities in biomolecular materials. For the second session, the entire group (except for the working group on biomolecular materials) was reconfigured into new working groups on: alternative pathways to energy efficiency, environmentally benign materials and processes, and waste treatment and reduction: a basic sciences approach. This report contains separate reports from each of the seven working groups.

  17. Summary of the government/industry workshop on new materials and processing technologies for industrial applications

    SciTech Connect (OSTI)

    Young, J K

    1992-07-01

    This report presents a summary of the 1-day workshop conducted at Ann Arbor, Michigan, on April 16, 1992, between the National Center for Manufacturing Sciences (NCMS) and the US Department of Energy Advanced Industrial Materials Program (DOE AIM). The workshop objectives were to: (1) encourage collaboration between DOE, the DOE national laboratories, and NCMS material manufacturers and (2) assist the DOE AIM program in targeting research and development (R D) more effectively. During the workshop, participants from industry and DOE laboratories were divided into three working groups. Representatives from the DOE national laboratories currently conducting major research programs for AIM were asked to be working group leaders. The groups developed recommendations for NCMS and AIM managers using a six-step process. As a result of the workshop, the groups identified problems of key concern to NCMS member companies and promising materials and processes to meet industry needs. Overall, the workshop found that the research agenda of DOE AIM should include working with suppliers to develop manufacturing technology. The agenda should not be solely driven by energy considerations, but rather it should be driven by industry needs. The role of DOE should be to ensure that energy-efficient technology is available to meet these needs.

  18. Summary of the government/industry workshop on new materials and processing technologies for industrial applications

    SciTech Connect (OSTI)

    Young, J.K.

    1992-07-01

    This report presents a summary of the 1-day workshop conducted at Ann Arbor, Michigan, on April 16, 1992, between the National Center for Manufacturing Sciences (NCMS) and the US Department of Energy Advanced Industrial Materials Program (DOE AIM). The workshop objectives were to: (1) encourage collaboration between DOE, the DOE national laboratories, and NCMS material manufacturers and (2) assist the DOE AIM program in targeting research and development (R&D) more effectively. During the workshop, participants from industry and DOE laboratories were divided into three working groups. Representatives from the DOE national laboratories currently conducting major research programs for AIM were asked to be working group leaders. The groups developed recommendations for NCMS and AIM managers using a six-step process. As a result of the workshop, the groups identified problems of key concern to NCMS member companies and promising materials and processes to meet industry needs. Overall, the workshop found that the research agenda of DOE AIM should include working with suppliers to develop manufacturing technology. The agenda should not be solely driven by energy considerations, but rather it should be driven by industry needs. The role of DOE should be to ensure that energy-efficient technology is available to meet these needs.

  19. Ultrasound based monitoring of the injection moulding process - Methods, applications and limitations

    SciTech Connect (OSTI)

    Praher, B., E-mail: bernhard.praher@jku.at, E-mail: klaus.straka@jku.at, E-mail: jesenka.usanovic@jku.at, E-mail: georg.steinbichler@jku.at; Straka, K., E-mail: bernhard.praher@jku.at, E-mail: klaus.straka@jku.at, E-mail: jesenka.usanovic@jku.at, E-mail: georg.steinbichler@jku.at; Usanovic, J., E-mail: bernhard.praher@jku.at, E-mail: klaus.straka@jku.at, E-mail: jesenka.usanovic@jku.at, E-mail: georg.steinbichler@jku.at; Steinbichler, G., E-mail: bernhard.praher@jku.at, E-mail: klaus.straka@jku.at, E-mail: jesenka.usanovic@jku.at, E-mail: georg.steinbichler@jku.at [Institute of Polymer Injection Moulding and Process Automation, Johannes Kepler University Linz (Austria)

    2014-05-15

    We developed novel non-invasive ultrasound based systems for the measurement of temperature distributions in the screw-ante chamber, the detection of unmelted granules and for the monitoring of the plasticizing process along the screw channel. The temperature of the polymer melt stored in the screw ante-chamber after the plasticization should be homogeneous. However, in reality the polymer melt in the screw ante-chamber is not homogeneous. Due to the fact the sound velocity in a polymer melt is temperature depending, we developed a tomography system using the measured transit times of ultrasonic pulses along different sound paths for calculating the temperature distribution in radial direction of a polymer melt in the screw ante-chamber of an injection moulding machine. For the detection of unmelted granules in the polymer melt we implemented an ultrasound transmission measurement. By analyzing the attenuation of the received pulses it is possible to detect unwanted inclusions. For the monitoring of the plasticizing process in the channels of the screw an ultrasonic pulse is transmitted into the barrel. By analyzing the reflected pulses it is possible to estimate solid bed and melt regions in the screw channel. The proposed systems were tested for accuracy and validity by simulations and test measurements.

  20. Organo Luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOE Patents [OSTI]

    Weiss, Shimon; Bruchez, Jr., Marcel; Alivisatos, Paul

    1999-01-01

    A luminescent semiconductor nanocrystal compound is described which is capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation (luminescing) in a narrow wavelength band and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source (of narrow or broad bandwidth) or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affinity molecule. The luminescent semiconductor nanocrystal compound is linked to an affinity molecule to form an organo luminescent semiconductor nanocrystal probe capable of bonding with a detectable substance in a material being analyzed, and capable of emitting electromagnetic radiation in a narrow wavelength band and/or absorbing, scattering, or diffracting energy when excited by an electromagnetic radiation source (of narrow or broad bandwidth) or a particle beam. The probe is stable to repeated exposure to light in the presence of oxygen and/or other radicals. Further described is a process for making the luminescent semiconductor nanocrystal compound and for making the organo luminescent semiconductor nanocrystal probe comprising the luminescent semiconductor nanocrystal compound linked to an affinity molecule capable of bonding to a detectable substance. A process is also described for using the probe to determine the presence of a detectable substance in a material.

  1. Development and application of new techniques for blast furnace process control at SSAB Tunnplaat, Luleaa Works

    SciTech Connect (OSTI)

    Braemming, M.; Hallin, M.; Zuo, G.

    1995-12-01

    SSAB Tunnplaat AB operates two blast furnaces (M1 and M2) in Luleaa. In recent years research efforts have to a great extent been aimed at the development of new techniques for blast furnace process control. An example is the installation of a burden profile measurement system, which was useful in the development of a new burden distribution praxis on the big furnace (M2), equipped with a bell-less-top. Hearth level detection and continuous measurement of the hot metal temperature in the runner are under evaluation. The purpose of these techniques is to give earlier information concerning the state of the blast furnace process. Parallel to this work, models for prediction of silicon in hot metal, the position and shape of the cohesive zone and slip-warning are being developed and tested off-line. These new models and information from new measuring techniques will be integrated into a new Operating Guidance System, hopefully resulting in a powerful tool in the efforts to stabilize blast furnace operations.

  2. Processes and Procedures for Application of CFD to Nuclear Reactor Safety Analysis

    SciTech Connect (OSTI)

    Richard W. Johnson; Richard R. Schultz; Patrick J. Roache; Ismail B. Celik; William D. Pointer; Yassin A. Hassan

    2006-09-01

    Traditionally, nuclear reactor safety analysis has been performed using systems analysis codes such as RELAP5, which was developed at the INL. However, goals established by the Generation IV program, especially the desire to increase efficiency, has lead to an increase in operating temperatures for the reactors. This increase pushes reactor materials to operate towards their upper temperature limits relative to structural integrity. Because there will be some finite variation of the power density in the reactor core, there will be a potential for local hot spots to occur in the reactor vessel. Hence, it has become apparent that detailed analysis will be required to ensure that local hot spots do not exceed safety limits. It is generally accepted that computational fluid dynamics (CFD) codes are intrinsically capable of simulating fluid dynamics and heat transport locally because they are based on first principles. Indeed, CFD analysis has reached a fairly mature level of development, including the commercial level. However, CFD experts are aware that even though commercial codes are capable of simulating local fluid and thermal physics, great care must be taken in their application to avoid errors caused by such things as inappropriate grid meshing, low-order discretization schemes, lack of iterative convergence and inaccurate time-stepping. Just as important is the choice of a turbulence model for turbulent flow simulation. Turbulence models model the effects of turbulent transport of mass, momentum and energy, but are not necessarily applicable for wide ranges of flow types. Therefore, there is a well-recognized need to establish practices and procedures for the proper application of CFD to simulate flow physics accurately and establish the level of uncertainty of such computations. The present document represents contributions of CFD experts on what the basic practices, procedures and guidelines should be to aid CFD analysts to obtain accurate estimates of

  3. Enabling Technologies for Ceramic Hot Section Components

    SciTech Connect (OSTI)

    Venkat Vedula; Tania Bhatia

    2009-04-30

    components for gas turbine engines. Significant technical progress has been made towards maturation of the EBC and CMC technologies for incorporation into gas turbine engine hot-section. Promising EBC candidates for longer life and/or higher temperature applications relative to current state of the art BSAS-based EBCs have been identified. These next generation coating systems have been scaled-up from coupons to components and are currently being field tested in Solar Centaur 50S engine. CMC combustor liners were designed, fabricated and tested in a FT8 sector rig to demonstrate the benefits of a high temperature material system. Pretest predictions made through the use of perfectly stirred reactor models showed a 2-3x benefit in CO emissions for CMC versus metallic liners. The sector-rig test validated the pretest predictions with >2x benefit in CO at the same NOx levels at various load conditions. The CMC liners also survived several trip shut downs thereby validating the CMC design methodology. Significant technical progress has been made towards incorporation of ceramic matrix composites (CMC) and environmental barrier coatings (EBC) technologies into gas turbine engine hot-section. The second phase of the program focused on the demonstration of a reverse flow annular CMC combustor. This has included overcoming the challenges of design and fabrication of CMCs into 'complex' shapes; developing processing to apply EBCs to 'engine hardware'; testing of an advanced combustor enabled by CMCs in a PW206 rig; and the validation of performance benefits against a metal baseline. The rig test validated many of the pretest predictions with a 40-50% reduction in pattern factor compared to the baseline and reductions in NOx levels at maximum power conditions. The next steps are to develop an understanding of the life limiting mechanisms in EBC and CMC materials, developing a design system for EBC coated CMCs and durability testing in an engine environment.

  4. Developing New Mexico Health Care Policy: An application of the Vital Issues Process

    SciTech Connect (OSTI)

    Engi, D.; Icerman, L.

    1995-06-01

    The Vital Issues Process, developed by the Sandia National Laboratories Strategic Technologies Department, was utilized by the Health Care Task Force Advisory Group to apply structure to their policy deliberations. By convening three expert panels, an overarching goal for the New Mexico health care system, seven desired outcomes, nine policy options, and 17 action items were developed for the New Mexico health care system. Three broadly stated evaluation criteria were articulated and used to produce relative rankings of the desired outcomes and policy options for preventive care and information systems. Reports summarizing the policy deliberations were submitted for consideration by the Health Care Task Force, a Joint Interim Committee of the New Mexico Legislature, charged with facilitating the development and implementation of a comprehensive health care delivery system for New Mexico. The Task Force reported its findings and recommendations to the Second Session of the 41st New Mexico State Legislature in January 1994.

  5. Method for improving dissolution efficiency in gas-absorption and liquid extraction processes. [Patent application

    DOE Patents [OSTI]

    Kanak, B.E.; Stephenson, M.J.

    1980-01-11

    A method is described for improving dissolution efficiency in processes in which a feed fluid is introduced to a zone where it is contacted with a liquid solvent for preferentially removing a component of the feed and where part of the solvent so contacted undergoes transfer into the feed fluid to saturate the same. It has been found that such transfer significantly impairs dissolution efficiency. In accordance with the invention, an amount of the above-mentioned solvent is added to the feed fluid being introduced to the contact zone, the solvent being added in an amount sufficient to effect reduction or elimination of the above-mentioned transfer. Preferably, the solvent is added to the feed fluid in an amount saturating or supersaturating the feed fluid under the conditions prevailing in the contact zone.

  6. Molten tin reprocessing of spent nuclear fuel elements. [Patent application; continuous process

    DOE Patents [OSTI]

    Heckman, R.A.

    1980-12-19

    A method and apparatus for reprocessing spent nuclear fuel is described. Within a containment vessel, a solid plug of tin and nitride precipitates supports a circulating bath of liquid tin therein. Spent nuclear fuel is immersed in the liquid tin under an atmosphere of nitrogen, resulting in the formation of nitride precipitates. The layer of liquid tin and nitride precipitates which interfaces the plug is solidified and integrated with the plug. Part of the plug is melted, removing nitride precipitates from the containment vessel, while a portion of the plug remains solidified to support te liquid tin and nitride precipitates remaining in the containment vessel. The process is practiced numerous times until substantially all of the precipitated nitrides are removed from the containment vessel.

  7. The effect of processing parameters on plasma sprayed beryllium for fusion applications

    SciTech Connect (OSTI)

    Castro, R.G.; Stanek, P.W.; Jacobson, L.A.; Cowgill, D.F.; Snead, L.L.

    1993-10-01

    Plasma spraying is being investigated as a potential coating technique for applying thin (0.1--5mm) layers of beryllium on plasma facing surfaces of blanket modules in ITER and also as an in-situ repair technique for repairing eroded beryllium surfaces in high heat flux divertor regions. High density spray deposits (>98% of theoretical density) of beryllium will be required in order to maximize the thermal conductivity of the beryllium coatings. A preliminary investigation was done to determine the effect of various processing parameters (particle size, particle morphology, secondary gas additions and reduced chamber pressure) on the as-deposited density of beryllium. The deposits were made using spherical beryllium feedstock powder which was produced by centrifugal atomization at Los Alamos National Laboratory (LANL). Improvements in the as-deposited densities and deposit efficiencies of the beryllium spray deposits will be discussed along with the corresponding thermal conductivity and outgassing behavior of these deposits.

  8. Beryllium processing technology review for applications in plasma-facing components

    SciTech Connect (OSTI)

    Castro, R.G.; Jacobson, L.A.; Stanek, P.W.

    1993-07-01

    Materials research and development activities for the International Thermonuclear Experimental Reactor (ITER), i.e., the next generation fusion reactor, are investigating beryllium as the first-wall containment material for the reactor. Important in the selection of beryllium is the ability to process, fabricate and repair beryllium first-wall components using existing technologies. Two issues that will need to be addressed during the engineering design activity will be the bonding of beryllium tiles in high-heat-flux areas of the reactor, and the in situ repair of damaged beryllium tiles. The following review summarizes the current technology associated with welding and joining of beryllium to itself and other materials, and the state-of-the-art in plasma-spray technology as an in situ repair technique for damaged beryllium tiles. In addition, a review of the current status of beryllium technology in the former Soviet Union is also included.

  9. Semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOE Patents [OSTI]

    Weiss, Shimon; Bruchez, Marcel; Alivisatos, Paul

    2012-10-16

    A semiconductor nanocrystal compound and probe are described. The compound is capable of linking to one or more affinity molecules. The compound comprises (1) one or more semiconductor nanocrystals capable of, in response to exposure to a first energy, providing a second energy, and (2) one or more linking agents, having a first portion linked to the one or more semiconductor nanocrystals and a second portion capable of linking to one or more affinity molecules. One or more semiconductor nanocrystal compounds are linked to one or more affinity molecules to form a semiconductor nanocrystal probe capable of bonding with one or more detectable substances in a material being analyzed, and capable of, in response to exposure to a first energy, providing a second energy. Also described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and treating materials with the probe.

  10. Semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOE Patents [OSTI]

    Weiss, Shimon; Bruchez, Marcel; Alivisatos, Paul

    2011-12-06

    A semiconductor nanocrystal compound and probe are described. The compound is capable of linking to one or more affinity molecules. The compound comprises (1) one or more semiconductor nanocrystals capable of, in response to exposure to a first energy, providing a second energy, and (2) one or more linking agents, having a first portion linked to the one or more semiconductor nanocrystals and a second portion capable of linking to one or more affinity molecules. One or more semiconductor nanocrystal compounds are linked to one or more affinity molecules to form a semiconductor nanocrystal probe capable of bonding with one or more detectable substances in a material being analyzed, and capable of, in response to exposure to a first energy, providing a second energy. Also described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and treating materials with the probe.

  11. Organo luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOE Patents [OSTI]

    Weiss, Shimon; Bruchez, Jr., Marcel; Alivisatos, Paul

    2005-08-09

    A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affinity molecule. The compound is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. Subsequent exposure to excitation energy will excite the semiconductor nanocrystal in the probe causing the emission of electromagnetic radiation. Further described are processes for respectively: making the luminescent semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.

  12. Semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOE Patents [OSTI]

    Weiss, Shimon; Bruchez, Marcel; Alivisatos, Paul

    2011-12-20

    A semiconductor nanocrystal compound and probe are described. The compound is capable of linking to one or more affinity molecules. The compound comprises (1) one or more semiconductor nanocrystals capable of, in response to exposure to a first energy, providing a second energy, and (2) one or more linking agents, having a first portion linked to the one or more semiconductor nanocrystals and a second portion capable of linking to one or more affinity molecules. One or more semiconductor nanocrystal compounds are linked to one or more affinity molecules to form a semiconductor nanocrystal probe capable of bonding with one or more detectable substances in a material being analyzed, and capable of, in response to exposure to a first energy, providing a second energy. Also described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and treating materials with the probe.

  13. Organo luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOE Patents [OSTI]

    Weiss, Shimon; Bruchez, Jr., Marcel; Alivisatos, Paul

    2002-01-01

    A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affity molecule. The compound is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. Subsequent exposure to excitation energy will excite the semiconductor nanocrystal in he probe, causing the emission of electromagnetic radiation. Further described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.

  14. Semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOE Patents [OSTI]

    Weiss, Shimon; Bruchez, Marcel; Alivisatos, Paul

    2014-01-28

    A semiconductor nanocrystal compound and probe are described. The compound is capable of linking to one or more affinity molecules. The compound comprises (1) one or more semiconductor nanocrystals capable of, in response to exposure to a first energy, providing a second energy, and (2) one or more linking agents, having a first portion linked to the one or more semiconductor nanocrystals and a second portion capable of linking to one or more affinity molecules. One or more semiconductor nanocrystal compounds are linked to one or more affinity molecules to form a semiconductor nanocrystal probe capable of bonding with one or more detectable substances in a material being analyzed, and capable of, in response to exposure to a first energy, providing a second energy. Also described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and treating materials with the probe.

  15. Organo luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOE Patents [OSTI]

    Weiss, Shimon; Bruchez, Jr., Marcel; Alivisatos, Paul

    2008-01-01

    A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) an affinity molecule linked to the semiconductor nanocrystal. The semiconductor nanocrystal is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. Exposure of the semiconductor nanocrystal to excitation energy will excite the semiconductor nanocrystal causing the emission of electromagnetic radiation. Further described are processes for respectively: making the luminescent semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.

  16. Organo luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOE Patents [OSTI]

    Weiss, Shimon; Bruchez, Jr., Marcel; Alivisatos, Paul

    2004-03-02

    A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affinity molecule. The compound is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. Subsequent exposure to excitation energy will excite the semiconductor nanocrystal in the probe, causing the emission of electromagnetic radiation. Further described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.

  17. Organo luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOE Patents [OSTI]

    Weiss, Shimon; Bruchez, Jr., Marcel; Alivisatos, Paul

    2006-09-05

    A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affinity molecule. The compound is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. subsequent exposure to excitation energy will excite the semiconductor nanocrystal in the probe causing the emission of electromagnetic radiation. Further described are processes for respectively: making the luminescent semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.

  18. Microtopography for Ductile Fracture Process Characterization - Part 2: Application for CTOA Analysis

    SciTech Connect (OSTI)

    Lloyd, Wilson Randolph; F. A. McClintock

    2003-02-01

    The crack tip opening angle (CTOA) is seeing increased use to characterize fracture in so-called "low constraint" geometries, such as thin sheet aerospace structures and thin-walled pipes. With this increase in application comes a need to more fully understand and measure actual CTOA behavior. CTOA is a measure of the material response during ductile fracture, a "crack tip response function". In some range of crack extension following growth initiation, a constant value of CTOA is often assumed. However, many questions concerning the use of CTOA as a material response-characterizing parameter remain. For example, when is CTOA truly constant? What three-dimensional effects may be involved (even in thin sheet material)? What are the effects of crack tunneling on general CTOA behavior? How do laboratory specimen measurements of CTOA compare to actual structural behavior? Measurements of CTOA on the outer surface of test specimens reveal little about threedimensional effects in the specimen interior, and the actual measurements themselves are frequently difficult. The Idaho National Engineering and Environmental Laboratory (INEEL) use their microtopography system to collect data from the actual fracture surfaces following a test. Analyses of these data provide full three-dimensional CTOA distributions, at any amount of crack extension. The analysis is accomplished using only a single specimen and is performed entirely after the completion of a test. The resultant CTOA distributions allow development of full and effective understanding of CTOA behaviors. This paper presents underlying principles, various sources of measurement error and their corrections, and experimental and analytical verification of CTOA analysis with the microtopography method.

  19. Separation of metals from waste incineration residue by application of mineral processing

    SciTech Connect (OSTI)

    Schmelzer, G.

    1995-12-31

    The incineration of municipal waste produced approx. 2.7--2.8 million tons of solid residues in 1993 in the Federal Republic of Germany, which in part included still considerable amounts of organic and inorganic pollutants that could potentially be released into the environment. The most significant of these in terms of volume is incinerator ash at approx. 2.4 million tons. Through the use of innovative processing techniques, attempts are being made to convert the residues into a form that remains environmentally neutral over the longest period of time possible. One such group of techniques includes smelting technologies. After it has undergone specialized treatment, mineral incinerator ash is converted into environmentally neutral and reusable glass (vitrification) since, besides a reduction in the volume of the residues by approx. 90%, the main goal is a complete immobilization and destruction of inorganic and organic pollutants respectively. These glasses, after they have been reshaped, are resold as commercial products such as damming or form glass.

  20. Assessing your competitors' application of CIM/CIP. [Computer Integrated Manufacturing/Processing

    SciTech Connect (OSTI)

    King, M.J. ); Evans, H.N. )

    1993-07-01

    As part of the authors consulting assignments, they are frequently asked to describe what is best industry practice in the area of computer integrated manufacturing/processing (CIM/CIP). This might be specific to a particular piece, such as advanced controls or a laboratory system. Often it is in response to the enormous publicity given to CIM/CIP--begging the question, Who in the hydrocarbon industry is actually doing it '' Although much of this information is available to consultants, client confidentiality precludes its release. Instead, included is a questionnaire intended to be completed by representatives of manufacturing sites. The data gathered will be analyzed and reported in a future issue. The intent is to give anyone who has completed the questionnaire the opportunity to assess the position of his or her site with respect to the competition. To show how this might work a prototype study was completed. This included an estimate of the advanced control benefits achieved in 68 refineries in Western Europe. So that sites could be compared, these were expressed as a percentage of the maximum economically achievable.

  1. The application of projected conjugate gradient solvers on graphical processing units

    SciTech Connect (OSTI)

    Lin, Youzuo; Renaut, Rosemary

    2011-01-26

    Graphical processing units introduce the capability for large scale computation at the desktop. Presented numerical results verify that efficiencies and accuracies of basic linear algebra subroutines of all levels when implemented in CUDA and Jacket are comparable. But experimental results demonstrate that the basic linear algebra subroutines of level three offer the greatest potential for improving efficiency of basic numerical algorithms. We consider the solution of the multiple right hand side set of linear equations using Krylov subspace-based solvers. Thus, for the multiple right hand side case, it is more efficient to make use of a block implementation of the conjugate gradient algorithm, rather than to solve each system independently. Jacket is used for the implementation. Furthermore, including projection from one system to another improves efficiency. A relevant example, for which simulated results are provided, is the reconstruction of a three dimensional medical image volume acquired from a positron emission tomography scanner. Efficiency of the reconstruction is improved by using projection across nearby slices.

  2. PART III - SECTION J

    National Nuclear Security Administration (NNSA)

    E SECTION J APPENDIX E PERFORMANCE GUARANTEE AGREEMENT(S) [Note: To be inserted by the Contracting Officer prior to contract award. For Performance Guarantee Agreement(s) template, see Section L, Attachment A.]

  3. Section 31: Application of Release Limits

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a reference than has not been previously submitted.) Clayton, D., S. Dunagan, J. Garner, A. Ismail, T. Kirchner, R. Kirkes, and M. Nemer. 2008. Summary Report of the...

  4. Section 27: Peer Review

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Decommissioning Project CAO Carlsbad Area Office CARD Compliance Application Review Document CBFO Carlsbad Field Office CCA Compliance Certification Application CFR...

  5. PART III - SECTION J

    National Nuclear Security Administration (NNSA)

    I SECTION J APPENDIX I SMALL BUSINESS SUBCONTRACTING PLAN [Note: To be inserted by the Contracting Officer prior to

  6. PART III - SECTION J

    National Nuclear Security Administration (NNSA)

    I SECTION J APPENDIX I SMALL BUSINESS SUBCONTRACTING PLAN Note: To be inserted by the Contracting Officer prior to...

  7. applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    It will be the critical enabler of many ground-based, ship-based, and potentially space-based missions and applications." - FEL report to the DOD Joint Technology Office, June 2001 ...

  8. applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dark Systems Surface Processing Microfabrication Investigate mechanisms for photodynamic cancer therapy FEL Medical Uses Light Therapy Evaluate the potential use of Terahertz...

  9. Application of electrolytic in-process dressing for high-efficiency grinding of ceramic parts. Research activities 1995--96

    SciTech Connect (OSTI)

    Bandyopadhyay, B.P.

    1997-02-01

    The application of Electrolytic In-Process Dressing (ELID) for highly efficient and stable grinding of ceramic parts is discussed. This research was performed at the Institute of Physical and Chemical Research (RIKEN), Tokyo, Japan, June 1995 through August 1995. Experiments were conducted using a vertical machining center. The silicon nitride work material, of Japanese manufacture and supplied in the form of a rectangular block, was clamped to a vice which was firmly fixed on the base of a strain gage dynamometer. The dynamometer was clamped on the machining center table. Reciprocating grinding was performed with a flat-faced diamond grinding wheel. The output from the dynamometer was recorded with a data acquisition system and the normal component of the force was monitored. Experiments were carried out under various cutting conditions, different ELID conditions, and various grinding wheel bonds types. Rough grinding wheels of grit sizes {number_sign}170 and {number_sign}140 were used in the experiments. Compared to conventional grinding, there was a significant reduction in grinding force with ELID grinding. Therefore, ELID grinding can be recommended for high material removal rate grinding, low rigidity machines, and low rigidity workpieces. Compared to normal grinding, a reduction in grinding ratio was observed when ELID grinding was performed. A negative aspect of the process, this reduced G-ratio derives from bond erosion and can be improved somewhat by adjustments in the ELID current. The results of this investigation are discussed in detail in this report.

  10. TITLE XVII APPLICATION PORTAL

    Broader source: Energy.gov [DOE]

    The Title XVII online application portal guides users through the Title XVII loan guarantee application process.