Sample records for appliances tables percent

  1. Table 2. Percent of Households with Vehicles, Selected Survey Years

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan FebDecadeDecade21752 2,616 January 1996 January1996Percent

  2. "Table HC15.10 Home Appliances Usage Indicators by Four Most...

    U.S. Energy Information Administration (EIA) Indexed Site

    AppliancesTools",56.2,5,3.4,4.3,6.2 "Other Appliances Used" "Auto BlockEngineBattery Heater",0.8,"Q","N","N","N" "Hot Tub or Spa",6.7,"Q",0.7,0.5,1.2 "Swimming Pool with...

  3. "Table HC11.10 Home Appliances Usage Indicators by Northeast...

    U.S. Energy Information Administration (EIA) Indexed Site

    AppliancesTools",56.2,12.2,9.4,2.8 "Other Appliances Used" "Auto BlockEngineBattery Heater",0.8,"Q","Q","Q" "Hot Tub or Spa",6.7,1,0.8,0.2 "Swimming Pool with...

  4. "Table HC12.10 Home Appliances Usage Indicators by Midwest Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    AppliancesTools",56.2,12,9,3.1 "Other Appliances Used" "Auto BlockEngineBattery Heater",0.8,0.4,"Q","Q" "Hot Tub or Spa",6.7,1.3,0.9,0.4 "Swimming Pool with...

  5. "Table HC14.10 Home Appliances Usage Indicators by West Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    AppliancesTools",56.2,11.6,3.3,8.2 "Other Appliances Used" "Auto BlockEngineBattery Heater",0.8,0.2,"Q",0.1 "Hot Tub or Spa",6.7,2.2,0.6,1.7 "Swimming Pool with...

  6. Table HC15.10 Home Appliances Usage Indicators by Four Most...

    Gasoline and Diesel Fuel Update (EIA)

    Tools... 56.2 5.0 3.4 4.3 6.2 Other Appliances Used Auto BlockEngineBattery Heater... 0.8 Q N N N Hot Tub or Spa......

  7. "Table HC9.10 Home Appliances Usage Indicators by Climate Zone...

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Home Appliances Usage Indicators by Climate Zone, 2005" " Million U.S. Housing Units" ,,"Climate Zone1" ,,"Less than 2,000 CDD and --",,,,"2,000 CDD or More and Less than 4,000...

  8. "Table HC13.10 Home Appliances Usage Indicators by South Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    Tools",56.2,20.5,10.8,3.6,6.1 "Other Appliances Used" "Auto BlockEngineBattery Heater",0.8,"N","N","N","N" "Hot Tub or Spa",6.7,2.1,1.2,0.2,0.7 "Swimming Pool with...

  9. "Table HC4.10 Home Appliances Usage Indicators by Renter-Occupied...

    U.S. Energy Information Administration (EIA) Indexed Site

    Tools",56.2,23.6,4.4,2.4,4.6,11.3,0.8 "Other Appliances Used" "Auto BlockEngineBattery Heater",0.8,"Q","Q","Q","Q","N","N" "Hot Tub or Spa",6.7,"Q","Q","Q","N","N","Q" "Swimming...

  10. "Table HC3.10 Home Appliances Usage Indicators by Owner-Occupied...

    U.S. Energy Information Administration (EIA) Indexed Site

    Tools",56.2,32.6,25,2.2,1.1,1.5,2.8 "Other Appliances Used" "Auto BlockEngineBattery Heater",0.8,0.7,0.7,"N","Q","N","Q" "Hot Tub or Spa",6.7,6.5,6.2,"Q","N","N","Q" "Swimming...

  11. "Table HC8.10 Home Appliances Usage Indicators by Urban/Rural...

    U.S. Energy Information Administration (EIA) Indexed Site

    Tools",56.2,27.2,10.6,9.3,9.2 "Other Appliances Used" "Auto BlockEngineBattery Heater",0.8,"Q","Q","Q",0.4 "Hot Tub or Spa",6.7,1.7,1.2,2.2,1.6 "Swimming Pool with...

  12. Table HC6.10 Home Appliances Usage Indicators by Number of Household...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Tools..... 56.2 20.1 14.4 8.6 6.9 6.2 Other Appliances Used Auto BlockEngineBattery Heater... 0.8 Q 0.4 Q Q Q Hot Tub or Spa......

  13. "Table HC10.10 Home Appliances Usage Indicators by U.S. Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    Tools",56.2,12.2,12,20.5,11.6 "Other Appliances Used" "Auto BlockEngineBattery Heater",0.8,"Q",0.4,"N",0.2 "Hot Tub or Spa",6.7,1,1.3,2.1,2.2 "Swimming Pool with...

  14. "Table HC12.9 Home Appliances Characteristics by Midwest Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space2.9 Home Appliances

  15. "Table HC13.9 Home Appliances Characteristics by South Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space2.9 Home Appliances78 Water3.9

  16. "Table HC14.9 Home Appliances Characteristics by West Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space2.9 Home Appliances7835

  17. Table B29. Percent of Floorspace Cooled, Number of Buildings and Floorspace, 199

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWestQuantity of2".9. Percent of

  18. Table B30. Percent of Floorspace Lit When Open, Number of Buildings and Floorspa

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWestQuantity of2".9. Percent of.0.

  19. Table B28. Percent of Floorspace Heated, Number of Buildings and Floorspace, 199

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWestQuantity of2".

  20. "Table HC13.10 Home Appliances Usage Indicators by South Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space2.9 Home Appliances Housing

  1. "Table HC14.10 Home Appliances Usage Indicators by West Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space2.9 Home Appliances78 Water3.90

  2. "Table HC15.10 Home Appliances Usage Indicators by Four Most Populated States, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space2.9 Home Appliances7835 Housing0

  3. "Table HC15.9 Home Appliances Characteristics by Four Most Populated States, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space2.9 Home Appliances7835258

  4. "Table HC3.10 Home Appliances Usage Indicators by Owner-Occupied Housing Unit, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space2.9 Home Appliances78352580 Home

  5. Table 1. Number and Percent of Women Faculty in Science/Engineering by Department, 2000* Division/Department Women Men % Women

    E-Print Network [OSTI]

    Sheridan, Jennifer

    .2% Agricultural & Applied Economics 0.00 22.00 0.0% Life Sciences Communication 3.80 8.33 31.3% Rural Sociology 3 Communication 4.41 11.00 28.6% School of Library & Information Studies 4.00 2.00 66.7% #12;Political Science 8Table 1. Number and Percent of Women Faculty in Science/Engineering by Department, 2000* Division

  6. Table 1. Number and Percent of Women Faculty in Science/Engineering by Department, 2005 Division/Department Women Men % Women

    E-Print Network [OSTI]

    Sheridan, Jennifer

    223.20 366.73 37.8% Agricultural & Applied Economics 3.00 22.90 11.6% Life Sciences Communication 5 Communication 5.00 8.50 37.0% School of Library & Information Studies 7.00 0.50 93.3% Political Science 7.00 27Table 1. Number and Percent of Women Faculty in Science/Engineering by Department, 2005 Division

  7. APPLIANCE EFFICIENCY REGULATIONS FOR REFRIGERATORS AND FREEZERS

    E-Print Network [OSTI]

    CENTRAL AIR CONDITIONERS GAS SPACE HEATERS WATER HEATERS PLUMBING FITTINGS FLUORESCENT LAMP BALLASTS LUMINAIRES GAS COOKING APPLIANCES AND GAS POOL HEATERS SEPTEMBER 1992 #12;TABLE OF CONTENTS APPLIANCE) Gas space heaters, excluding the following types: (1) gravity type central furnaces; (2) heaters

  8. appliance efficiency program: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of California eScholarship Repository Summary: 2002. Commercial Cooking Appliance Technology Assessment.technology costs reported in Table 1 are not included in these plots...

  9. APPLIANCE STANDARDS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See theDoctoral20ALSNewstt^APPLIANCE STANDARDS How they

  10. Arnold Schwarzenegger 2010 APPLIANCE

    E-Print Network [OSTI]

    : Appliance Efficiency Regulations, appliance standards, refrigerators, air conditioners, space heaters, water heaters, pool heaters, pool pumps, electric spas, pool pump motors, plumbing fittings, plumbing fixtures, showerheads, spray valves, faucets, tub spout diverters, water closets, urinals, ceiling fans, ceiling fan

  11. Appliance Efficiency Regulations

    Broader source: Energy.gov [DOE]

    Note: The federal government has imposed and updated appliance efficiency standards through several legislative acts,* and now has standards in place or under development for 30 classes of...

  12. An intelligent appliance control

    SciTech Connect (OSTI)

    Maher, C.A. Jr. [Tridelta Industries, Inc., Mentor, OH (United States)] [Tridelta Industries, Inc., Mentor, OH (United States); McMahon, G. [Pitco Frialator, Inc., Concord, NH (United States)] [Pitco Frialator, Inc., Concord, NH (United States)

    1998-05-01T23:59:59.000Z

    This paper describes the use of a microcontroller to implement an adaptive form of an ON/OFF-type control system. The principal benefits that this technique offers are the ability to self adjust automatically to the dynamics of the appliance being controlled and to minimize the cyclic wear and tear on the final heat-control elements. This technique is best applied to those systems with at least one large energy storage element (e.g., thermal mass), not needing fine control of the controlled variable, and ones using ON/OFF (relay type) rather than continuous final control outputs. This profile encompasses a large number of potential applications, particularly in the appliance field.

  13. Energy Efficiency Standards for Appliances

    Broader source: Energy.gov [DOE]

    '' Note: The federal government has imposed and updated appliance efficiency standards through several legislative acts,* and now has standards in place or under development for 30 classes of...

  14. Appliance and Equipment Efficiency Standards

    Broader source: Energy.gov [DOE]

    '' Note: The federal government has imposed and updated appliance efficiency standards through several legislative acts,* and now has standards in place or under development for 30 classes of...

  15. Streamlining ENERGY STAR Appliance Testing

    Broader source: Energy.gov [DOE]

    To save taxpayer dollars and help lower the costs of innovative energy-efficient technologies, the Energy Department is streamlining ENERGY STAR testing for appliances.

  16. Appliance and Equipment Standards

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque,APPENDIX A: Technical Support DocumentAppliance and

  17. Appliances, Lighting, Electronics, and Miscellaneous Equipment Electricity Use in New Homes

    E-Print Network [OSTI]

    Brown, Richard E.; Rittelman, William; Parker, Danny; Homan, Gregory

    2007-01-01T23:59:59.000Z

    62440 Appliances, Lighting, Electronics, and Miscellaneousof California. Appliances, Lighting, Electronics, anduses (appliances, lighting, electronics, and miscellaneous

  18. Remote repair appliance

    DOE Patents [OSTI]

    Heumann, F.K.; Wilkinson, J.C.; Wooding, D.R.

    1997-12-16T23:59:59.000Z

    A remote appliance for supporting a tool for performing work at a work site on a substantially circular bore of a work piece and for providing video signals of the work site to a remote monitor comprises: a base plate having an inner face and an outer face; a plurality of rollers, wherein each roller is rotatably and adjustably attached to the inner face of the base plate and positioned to roll against the bore of the work piece when the base plate is positioned against the mouth of the bore such that the appliance may be rotated about the bore in a plane substantially parallel to the base plate; a tool holding means for supporting the tool, the tool holding means being adjustably attached to the outer face of the base plate such that the working end of the tool is positioned on the inner face side of the base plate; a camera for providing video signals of the work site to the remote monitor; and a camera holding means for supporting the camera on the inner face side of the base plate, the camera holding means being adjustably attached to the outer face of the base plate. In a preferred embodiment, roller guards are provided to protect the rollers from debris and a bore guard is provided to protect the bore from wear by the rollers and damage from debris. 5 figs.

  19. Remote repair appliance

    DOE Patents [OSTI]

    Heumann, Frederick K. (Ballston Spa, NY); Wilkinson, Jay C. (Ballston Spa, NY); Wooding, David R. (Saratoga Springs, NY)

    1997-01-01T23:59:59.000Z

    A remote appliance for supporting a tool for performing work at a worksite on a substantially circular bore of a workpiece and for providing video signals of the worksite to a remote monitor comprising: a baseplate having an inner face and an outer face; a plurality of rollers, wherein each roller is rotatably and adjustably attached to the inner face of the baseplate and positioned to roll against the bore of the workpiece when the baseplate is positioned against the mouth of the bore such that the appliance may be rotated about the bore in a plane substantially parallel to the baseplate; a tool holding means for supporting the tool, the tool holding means being adjustably attached to the outer face of the baseplate such that the working end of the tool is positioned on the inner face side of the baseplate; a camera for providing video signals of the worksite to the remote monitor; and a camera holding means for supporting the camera on the inner face side of the baseplate, the camera holding means being adjustably attached to the outer face of the baseplate. In a preferred embodiment, roller guards are provided to protect the rollers from debris and a bore guard is provided to protect the bore from wear by the rollers and damage from debris.

  20. Energy Star Appliances 1 Texas A&M AgriLife Extension Service ENERGY STAR Appliances

    E-Print Network [OSTI]

    Energy Star® Appliances 1 Texas A&M AgriLife Extension Service ENERGY STAR® Appliances ENERGY STAR®-labeled appliances save you money by using less electricity and water than other appliances. Better appliance energy efficiency comes from quality materials and technologically advanced materials. Although energy efficient

  1. Incorporating Experience Curves in Appliance Standards Analysis

    E-Print Network [OSTI]

    Desroches, Louis-Benoit

    2012-01-01T23:59:59.000Z

    appliance price projections than the assumption-basedrepresentative projection of future prices than the constant

  2. GE Appliances: Order (2010-CE-2113)

    Broader source: Energy.gov [DOE]

    DOE issued an Order after entering into a Compromise Agreement with General Electric Appliances after finding GE Appliances had failed to certify that certain models of dehumidifiers comply with the applicable energy conservation standards.

  3. Catalog of DC Appliances and Power Systems

    E-Print Network [OSTI]

    Garbesi, Karina

    2012-01-01T23:59:59.000Z

    DC Conversion Loss Savings of Appliances Running on DirectConversion Loss Savings of Appliances Running on Direct DCrunning on AC and, in column B, the avoided AC-DC conversions losses

  4. Appliance Standards and Rulemaking Federal Advisory Committee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Issuance Appliance Standards and Rulemaking Federal Advisory Committee (ASRAC) - Central Air Conditioner Regional Standards Enforcement Working Group; Notice of Open...

  5. Appliance Standards and Rulemaking Federal Advisory Committee...

    Energy Savers [EERE]

    of the National Energy Laboratories Buildings Home About Emerging Technologies Residential Buildings Commercial Buildings Appliance & Equipment Standards Building Energy Codes...

  6. Modeling of GE Appliances: Final Presentation

    SciTech Connect (OSTI)

    Fuller, Jason C.; Vyakaranam, Bharat; Leistritz, Sean M.; Parker, Graham B.

    2013-01-31T23:59:59.000Z

    This report is the final in a series of three reports funded by U.S. Department of Energy Office of Electricity Delivery and Energy Reliability (DOE-OE) in collaboration with GE Appliances through a Cooperative Research and Development Agreement (CRADA) to describe the potential of GE Appliances DR-enabled appliances to provide benefits to the utility grid.

  7. Appliances, Lighting, Electronics, and Miscellaneous Equipment Electricity Use in New Homes

    E-Print Network [OSTI]

    Brown, Richard E.; Rittelman, William; Parker, Danny; Homan, Gregory

    2007-01-01T23:59:59.000Z

    62440 Appliances, Lighting, Electronics, and MiscellaneousAppliances, Lighting, Electronics, and Miscellaneoususes (appliances, lighting, electronics, and miscellaneous

  8. Use of Residential Smart Appliances for Peak Load Shifting & Spinning Reserves: Cost Benefit Analysis

    SciTech Connect (OSTI)

    Sastry, Chellury; Pratt, Robert G.

    2010-12-01T23:59:59.000Z

    Abstract In this paper, we present the results of an analytical cost-benefit study of residential smart appliances in support of a joint stakeholder petition to the EPA and DOE to provide a 5% credit to meet ENERGY STAR eligibility criteria for products that meet the definition of a smart appliance. The underlying hypothesis is that smart appliances can play a critical role in addressing some of the challenges associated with increased electricity demand, and increased penetration of renewable sources of power. Our analytical model utilizes current annual appliance electricity consumption data, and estimates what the wholesale grid operating cost savings would be if some percentage of appliance loads were shifted away from peak hours to run during off-peak hours, and appliance loads serve power system balancing needs such as spinning reserves that would otherwise have to be provided by generators. Historical wholesale market clearing prices (location marginal and spinning reserve) from major wholesale power markets in the United States are used to estimate savings. The savings are then compared with the five percent credit, to determine if the savings in grid operating costs (benefits) are at least as high as the credit (cost) if not higher.

  9. Distinctive Appliances: Proposed Penalty (2014-CE-23020)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Distinctive Appliances Distributing Inc. failed to certify cooking products as compliant with the applicable energy conservation standards.

  10. Smart Domestic Appliances Provide Flexibility for Sustainable...

    Open Energy Info (EERE)

    benefits and difficulties associated with smart grid appliances. The presenter discusses demand response and load management and how users of smart grid can benefit renewable...

  11. Appliance and Equipment Energy Efficiency Standards

    Broader source: Energy.gov [DOE]

    '' Note: The federal government has imposed and updated appliance efficiency standards through several legislative acts,* and now has standards in place or under development for 30 classes of...

  12. Earthjustice, Appliance Standards Awareness Project, Natural...

    Energy Savers [EERE]

    Council - Comments in response to DOE solicitation of views on the implementation of test procedure waivers for large capacity clothes washers Earthjustice, Appliance Standards...

  13. GE Appliances: Proposed Penalty (2010-CE-2113)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that General Electric Appliances failed to certify a variety of dehumidifiers as compliant with the applicable energy conservation standards.

  14. Appliance remanufacturing and life cycle energy and economic savings

    E-Print Network [OSTI]

    Boustani, Avid

    In this paper we evaluate the energy and economic consequences of appliance remanufacturing relative to purchasing new. The appliances presented in this report constitute major residential appliances: refrigerator, dishwasher, ...

  15. Table Search (or Ranking Tables)

    E-Print Network [OSTI]

    Halevy, Alon

    ;Table Search #3 #12;Outline Goals of table search Table search #1: Deep Web Table search #3 search Table search #1: Deep Web Table search #3: (setup): Fusion Tables Table search #2: WebTables Version 1: modify document search Version 2: recover table semantics #12;Searching the Deep Web store

  16. spaceheat_percent2001.pdf

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances by Climate Zone,8,1996and Methane2a.6a.Space

  17. State Energy Efficient Appliance Rebate Program (SEEARP) American...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Energy Efficient Appliance Rebate Program (SEEARP) American Recovery and Reinvestment Act (ARRA) Funding Opportunity Number: DE-FOA-0000119 State Energy Efficient Appliance...

  18. Sales Tax Holiday for Energy-Efficient Appliances

    Broader source: Energy.gov [DOE]

    In November 2007, Maryland enacted legislation creating a sales and use tax "holiday" for certain energy-efficient appliances, beginning in 2011. Under the law, qualifying appliances purchased...

  19. Secretary Chu Announces More Stringent Appliance Standards for...

    Energy Savers [EERE]

    Secretary Chu Announces More Stringent Appliance Standards for Home Water Heaters and Other Heating Products Secretary Chu Announces More Stringent Appliance Standards for Home...

  20. Four-County EMC- Residential Energy Efficiency Appliance Rebate Program

    Broader source: Energy.gov [DOE]

    Four-County EMC offers its customers $50 rebates for purchasing certain Energy Star appliances. Eligible appliances include refrigerators, dishwashers, clothes washers and freezers. The rebates are...

  1. MC Appliance: Order (2012-CE-1508)

    Broader source: Energy.gov [DOE]

    DOE ordered CNA International Inc. d/b/a MC Appliance Corporation to pay a $8,000 civil penalty after finding MC Appliance had failed to certify that certain models of room air conditioners comply with the applicable energy conservation standards.

  2. Retrospective Evaluation of Appliance Price Trends

    SciTech Connect (OSTI)

    Dale, Larry; Antinori, Camille; McNeil, Michael; McMahon, James E.; Fujita, K. Sydny

    2008-07-20T23:59:59.000Z

    Real prices of major appliances (refrigerators, dishwashers, heating and cooling equipment) have been falling since the late 1970s despite increases in appliance efficiency and other quality variables. This paper demonstrates that historic increases in efficiency over time, including those resulting from minimum efficiency standards, incur smaller price increases than were expected by Department of Energy (DOE) forecasts made in conjunction with standards. This effect can be explained by technological innovation, which lowers the cost of efficiency, and by market changes contributing to lower markups and economies of scale in production of higher efficiency units. We reach four principal conclusions about appliance trends and retail price setting: 1. For the past several decades, the retail price of appliances has been steadily falling while efficiency has been increasing. 2. Past retail price predictions made by DOE analyses of efficiency standards, assuming constant prices over time, have tended to overestimate retail prices. 3. The average incremental price to increase appliance efficiency has declined over time. DOE technical support documents have typically overestimated this incremental price and retail prices. 4. Changes in retail markups and economies of scale in production of more efficient appliances may have contributed to declines in prices of efficient appliances.

  3. Use of Residential Smart Appliances for Peak-Load Shifting and Spinning Reserves Cost/Benefit Analysis

    SciTech Connect (OSTI)

    Sastry, Chellury; Pratt, Robert G.; Srivastava, Viraj; Li, Shun

    2010-12-01T23:59:59.000Z

    In this report, we present the results of an analytical cost/benefit study of residential smart appliances from a utility/grid perspective in support of a joint stakeholder petition to the ENERGY STAR program within the Environmental Protection Agency (EPA) and Department of Energy (DOE). The goal of the petition is in part to provide appliance manufacturers incentives to hasten the production of smart appliances. The underlying hypothesis is that smart appliances can play a critical role in addressing some of the societal challenges, such as anthropogenic global warming, associated with increased electricity demand, and facilitate increased penetration of renewable sources of power. The appliances we consider include refrigerator/freezers, clothes washers, clothes dryers, room air-conditioners, and dishwashers. The petition requests the recognition that providing an appliance with smart grid capability, i.e., products that meet the definition of a smart appliance, is at least equivalent to a corresponding five percent in operational machine efficiencies. It is then expected that given sufficient incentives and value propositions, and suitable automation capabilities built into smart appliances, residential consumers will be adopting these smart appliances and will be willing participants in addressing the aforementioned societal challenges by more effectively managing their home electricity consumption. The analytical model we utilize in our cost/benefit analysis consists of a set of user-definable assumptions such as the definition of on-peak (hours of day, days of week, months of year), the expected percentage of normal consumer electricity consumption (also referred to as appliance loads) that can shifted from peak hours to off-peak hours, the average power rating of each appliance, etc. Based on these assumptions, we then formulate what the wholesale grid operating-cost savings, or benefits, would be if the smart capabilities of appliances were invoked, and some percentage of appliance loads were shifted away from peak hours to run during off-peak hours, and appliance loads served power-system balancing needs such as spinning reserves that would otherwise have to be provided by generators. The rationale is that appliance loads can be curtailed for about ten minutes or less in response to a grid contingency without any diminution in the quality of service to the consumer. We then estimate the wholesale grid operating-cost savings based on historical wholesale-market clearing prices (location marginal and spinning reserve) from major wholesale power markets in the United States. The savings derived from the smart grid capabilities of an appliance are then compared to the savings derived from a five percent increase in traditional operational machine efficiencies, referred to as cost in this report, to determine whether the savings in grid operating costs (benefits) are at least as high as or higher than the operational machine efficiency credit (cost).

  4. West Virginia Consumers Have Appliance Rebate 'Trifecta'

    Broader source: Energy.gov [DOE]

    West Virginians didnt waste any time in taking advantage of the Energy Efficient Appliance Rebate Program. Only three months in, and almost half of the available $1.7 million is already spoken for.

  5. Catalog of DC Appliances and Power Systems

    E-Print Network [OSTI]

    Garbesi, Karina

    2012-01-01T23:59:59.000Z

    main conclusions about off-grid markets for DC appliances,and power systems. Mature Off-Grid Markets for DC Appliancesapplications include off-grid residential, telecom, remote

  6. 2009 CALIFORNIA RESIDENTIAL APPLIANCE SATURATION STUDY

    E-Print Network [OSTI]

    data, household energy consumption data and weather information to calculate average annual information on appliances, equipment, and general consumption patterns. Data collection was completed in early 2010. The study yielded energy consumption estimates for 27 electric and 10 natural gas

  7. Equator Appliance: ENERGY STAR Referral (EZ 3720)

    Broader source: Energy.gov [DOE]

    DOE referred Equator Appliance clothes washer EZ 3720 to EPA, brand manager of the ENERGY STAR program, for appropriate action after DOE testing revealed that the model does not meet ENERGY STAR requirements.

  8. Energy-Efficient Appliance Manufacturing Tax Credit

    Broader source: Energy.gov [DOE]

    '''''Note: This tax credit expired at the end of 2011. The American Taxpayer Relief Act of 2012 retroactively renewed this tax credit for certain appliances manufactured in 2012 and 2013. '''''

  9. MC Appliance: Proposed Penalty (2014-CE-20002)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that MC Appliance Corporation failed to certify residential clothes washers and residential clothes dryers as compliant with the applicable energy conservation standards.

  10. Pollutant Emission Factors from Residential Natural Gas Appliances: A Literature Review

    E-Print Network [OSTI]

    Traynor, G.W.

    2011-01-01T23:59:59.000Z

    distributions from residential natural gas appliances. CH 4ng/J) distribution from residential natural gas appliances.from Residential Natural Gas Appliances: A Literature Review

  11. Impact of Natural Gas Appliances on Pollutant Levels in California Homes

    E-Print Network [OSTI]

    Mullen, Nasim A.

    2014-01-01T23:59:59.000Z

    35): 5661-67. Impact of Natural Gas Appliances on PollutantO-. ! Natural Gas Appliances on PollutantA! =? >7! =::! Impact of Natural Gas Appliances on Pollutant

  12. State Appliance Standards (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01T23:59:59.000Z

    State appliance standards have existed for decades, starting with Californias enforcement of minimum efficiency requirements for refrigerators and several other products in 1979. In 1987, recognizing that different efficiency standards for the same products in different states could create problems for manufacturers, Congress enacted the National Appliance Energy Conservation Act (NAECA), which initially covered 12 products. The Energy Policy Act of 1992 (EPACT92), EPACT2005, and EISA2007 added additional residential and commercial products to the 12 products originally specified under NAECA.

  13. Non-intrusive appliance monitor apparatus

    DOE Patents [OSTI]

    Hart, George W. (Natick, MA); Kern, Jr., Edward C. (Lincoln, MA); Schweppe, Fred C. (Carlisle, MA)

    1989-08-15T23:59:59.000Z

    A non-intrusive monitor of energy consumption of residential appliances is described in which sensors, coupled to the power circuits entering a residence, supply analog voltage and current signals which are converted to digital format and processed to detect changes in certain residential load parameters, i.e., admittance. Cluster analysis techniques are employed to group change measurements into certain categories, and logic is applied to identify individual appliances and the energy consumed by each.

  14. Non-intrusive appliance monitor apparatus

    DOE Patents [OSTI]

    Hart, G.W.; Kern, E.C. Jr.; Schweppe, F.C.

    1989-08-15T23:59:59.000Z

    A non-intrusive monitor of energy consumption of residential appliances is described in which sensors, coupled to the power circuits entering a residence, supply analog voltage and current signals which are converted to digital format and processed to detect changes in certain residential load parameters, i.e., admittance. Cluster analysis techniques are employed to group change measurements into certain categories, and logic is applied to identify individual appliances and the energy consumed by each. 9 figs.

  15. Predicting Backdrafting and Spillage for Natural-Draft Gas Combustion Appliances: Validating VENT-II

    E-Print Network [OSTI]

    Rapp, Vi H.

    2014-01-01T23:59:59.000Z

    and Spillage for Natural-Draft Gas Combustion Appliances:and Spillage for Natural-Draft Gas Combustion Appliances: A

  16. Energy Efficient Appliance Sales Soar in North Carolina | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Efficient Appliance Sales Soar in North Carolina Energy Efficient Appliance Sales Soar in North Carolina July 23, 2010 - 11:00am Addthis Joshua DeLung What does this mean...

  17. Reading Municipal Light Department- Residential ENERGY STAR Appliance Rebate Program

    Broader source: Energy.gov [DOE]

    Reading Municipal Light Department (RMLD) offers rebates to residential customers who install Energy Star appliances in eligible homes. The offer is limited to one rebate per appliance or a maximum...

  18. 2012 APPLIANCE EFFICIENCY REGULATIONS Edmund G. Brown Jr., Governor

    E-Print Network [OSTI]

    : Appliance Efficiency Regulations, appliance standards, refrigerators, air conditioners, space heaters, water heaters, pool heaters, pool pumps, electric spas, pool pump motors, plumbing fittings, plumbing fixtures, showerheads, spray valves, faucets, tub spout diverters, water closets, urinals, ceiling fans, ceiling fan

  19. 2014-08-19 Issuance Appliance Standards and Rulemaking Federal...

    Energy Savers [EERE]

    Issuance Appliance Standards and Rulemaking Federal Advisory Committee (ASRAC) - Central Air Conditioner Regional Standards Enforcement Working Group; Notice of Open...

  20. Low-cost Appliance State Sensing for Energy Disaggregation

    E-Print Network [OSTI]

    Wu, Tianji

    2012-01-01T23:59:59.000Z

    and Steven B. Leeb. Non-intrusive electrical load monitor-in recent years, namely non-intrusive appliance load

  1. Assessment of Literature Related to Combustion Appliance Venting

    E-Print Network [OSTI]

    1 Assessment of Literature Related to Combustion Appliance Venting Systems V.H. Rapp, B.C. Singer., Assessment of Literature Related to Combustion Appliance Venting Systems. LBNL-5798E 3 ABSTRACT In many by concerns about related impacts on the safety of naturally vented combustion appliances. Tighter housing

  2. Results of the Grid Friendly Appliance Project

    SciTech Connect (OSTI)

    Hammerstrom, Donald J.

    2010-04-14T23:59:59.000Z

    As part of the Pacific Northwest GridWise Testbed Demonstration funded by the U.S. Department of Energy and others, Pacific Northwest National Laboratory (PNNL) collaborated with Whirlpool Corporation, Invensys Controls, the Bonneville Power Administration, PacifiCorp, Portland General Electric and several smaller utilities to install 150 new Sears Kenmore clothes dryers and to retrofit 50 existing electric water heaters in homes in Washington and Oregon. Each dryer and water heater was configured to respond to the Grid Friendly appliance controller, a small electronic circuit that sensed underfrequency grid conditions and requested that electric load be shed by the appliances. These controllers and appliances were observed for over a year in residences spread over a wide geographic area. The controllers were found to respond predictably and reliably despite their geographic separation. Over 350 minor underfrequency events were observed during the experiment. This paper presents the distributions of these events by season and by time of day. Based on measured load profiles for the dryers and water heaters, the average electrical load that can be shed by each of the two appliance types was estimated by time of day and by season. Battelle Memorial Institute and PNNL have been assembling a suite of grid-responsive functions and benefits that can be achieved through the control of relatively small, distributed loads and resources on a power grid. These controllers should eventually receive acceptance for the opportunities they offer for circuit protection, regulation services, facilitation of demand responsiveness, and even power quality.

  3. New analysis techniques for estimating impacts of federal appliance efficiency standards

    SciTech Connect (OSTI)

    McMahon, James E.

    2003-06-24T23:59:59.000Z

    Impacts of U.S. appliance and equipment standards have been described previously. Since 2000, the U.S. Department of Energy (DOE) has updated standards for clothes washers, water heaters, and residential central air conditioners and heat pumps. A revised estimate of the aggregate impacts of all the residential appliance standards in the United States shows that existing standards will reduce residential primary energy consumption and associated carbon dioxide (CO{sub 2}) emissions by 89 percent in 2020 compared to the levels expected without any standards. Studies of possible new standards are underway for residential furnaces and boilers, as well as a number of products in the commercial (tertiary) sector, such as distribution transformers and unitary air conditioners. The analysis of standards has evolved in response to critiques and in an attempt to develop more precise estimates of costs and benefits of these regulations. The newer analysis elements include: (1) valuing energy savings by using marginal (rather than average) energy prices specific to an end-use; (2) simulating the impacts of energy efficiency increases over a sample population of consumers to quantify the proportion of households having net benefits or net costs over the life of the appliance; and (3) calculating marginal markups in distribution channels to derive the incremental change in retail prices associated with increased manufacturing costs for improving energy efficiency.

  4. Appliances & Electronics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle ReductionOfficesActive SolarAnnualAppliances &

  5. Percent of Commercial Natural Gas Deliveries in Louisiana Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan Feb Mar AprPricePrice (Percent)the

  6. Percent of Commercial Natural Gas Deliveries in New Hampshire Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan Feb Marby the Price (Percent)

  7. Percent of Industrial Natural Gas Deliveries in Connecticut Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan Feb MarbyPrice (Percent)the Price

  8. Percent of Industrial Natural Gas Deliveries in Connecticut Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan Feb MarbyPrice (Percent)the

  9. Percent of Industrial Natural Gas Deliveries in Louisiana Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan FebPricePrice (Percent)the Price

  10. Percent of Industrial Natural Gas Deliveries in Louisiana Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan FebPricePrice (Percent)the

  11. Percent of Industrial Natural Gas Deliveries in New Hampshire Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear JanPrice (Percent) Year Jan Feb Marby

  12. Percent of Industrial Natural Gas Deliveries in New Hampshire Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear JanPrice (Percent) Year Jan Feb

  13. Percent of Industrial Natural Gas Deliveries in North Carolina Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear JanPrice (Percent) Year JanthePriceby

  14. Percent of Industrial Natural Gas Deliveries in North Carolina Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear JanPrice (Percent) Year

  15. Percent of Industrial Natural Gas Deliveries in Pennsylvania Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear JanPrice (Percent)Pricethe Price

  16. Percent of Industrial Natural Gas Deliveries in Pennsylvania Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear JanPrice (Percent)Pricethe Pricethe

  17. Percent of Industrial Natural Gas Deliveries in South Carolina Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear JanPrice (Percent)Pricetheby the Price

  18. Percent of Industrial Natural Gas Deliveries in South Carolina Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear JanPrice (Percent)Pricetheby the

  19. Percent of Industrial Natural Gas Deliveries in Tennessee Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear JanPrice (Percent)Pricetheby

  20. Percent of Industrial Natural Gas Deliveries in Tennessee Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear JanPrice (Percent)Pricethebythe Price

  1. Percent of Industrial Natural Gas Deliveries in Washington Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear JanPricePrice (Percent) YearPricethe

  2. Percent of Industrial Natural Gas Deliveries in Washington Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear JanPricePrice (Percent)

  3. Percent of Industrial Natural Gas Deliveries in West Virginia Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear JanPricePrice (Percent)by the Price

  4. Percent of Industrial Natural Gas Deliveries in West Virginia Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear JanPricePrice (Percent)by the Priceby

  5. Percent of Industrial Natural Gas Deliveries in Wisconsin Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear JanPricePrice (Percent)by the

  6. Percent of Industrial Natural Gas Deliveries in Wisconsin Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear JanPricePrice (Percent)by thethe Price

  7. Hydrophilic structures for condensation management in refrigerator appliances

    DOE Patents [OSTI]

    Kuehl, Steven John; Vonderhaar, John J; Wu, Guolian; Wu, Mianxue

    2014-10-21T23:59:59.000Z

    A refrigerator appliance that includes a freezer compartment having a freezer compartment door, and a refrigeration compartment having at least one refrigeration compartment door. The appliance further includes a mullion with an exterior surface. The mullion divides the compartments and the exterior surface directs condensation toward a transfer point. The appliance may also include a cabinet that houses the compartments and has two sides, each with an exterior surface. Further, at least one exterior surface directs condensation toward a transfer point.

  8. Measure Guideline: Combustion Safety for Natural Draft Appliances Through Appliance Zone Isolation

    SciTech Connect (OSTI)

    Fitzgerald, J.; Bohac, D.

    2014-04-01T23:59:59.000Z

    This measure guideline covers how to assess and carry out the isolation of natural draft combustion appliances from the conditioned space of low-rise residential buildings. It deals with combustion appliances located either within the living space in enclosed closets or side rooms or outside the living space in an adjacent area like an attic or garage. This subset of houses does not require comprehensive combustion safety tests and simplified prescriptive procedures can be used to address safety concerns. This allows residential energy retrofit contractors inexperienced in advanced combustion safety testing to effectively address combustion safety issues and allow energy retrofits including tightening and changes to distribution and ventilation systems to proceed.

  9. appliances current situation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for copies of this document are available from: Public Reference Action Final Rule 66 Smart Meter Deployment Optimization for Efficient Electrical Appliance State Monitoring...

  10. appliance ownership survey: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    day's events and weather. The system stores information on the user Takahashi, Shin 87 Smart Meter Deployment Optimization for Efficient Electrical Appliance State Monitoring...

  11. appliance labeling rule: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    day's events and weather. The system stores information on the user Takahashi, Shin 54 Smart Meter Deployment Optimization for Efficient Electrical Appliance State Monitoring...

  12. appliances maeleudstyr og: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    day's events and weather. The system stores information on the user Takahashi, Shin 129 Smart Meter Deployment Optimization for Efficient Electrical Appliance State Monitoring...

  13. appliance markettransformation program: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    day's events and weather. The system stores information on the user Takahashi, Shin 42 Smart Meter Deployment Optimization for Efficient Electrical Appliance State Monitoring...

  14. ISSUANCE 2015-06-30: Appliance Standards and Rulemaking Federal...

    Energy Savers [EERE]

    Standards and Rulemaking Federal Advisory Committee: Notice of Intent to Establish the Central Air Conditioners and Heat Pumps Working Group ISSUANCE 2015-06-30: Appliance...

  15. HVAC, Water Heating, and Appliances Overview - 2015 BTO Peer...

    Office of Environmental Management (EM)

    HVAC, Water Heater and Appliance R&D - 2014 BTO Peer Review Research & Development Roadmap: Emerging HVAC Technologies This thermoelastic system provides a promising...

  16. Appliance Standards Program Schedule - CCE Overview and Update...

    Broader source: Energy.gov (indexed) [DOE]

    Meeting CCE Overview and Update Presenation, dated April 13, 2011 NEMA Distribution Transformers, CCE Overview and Update presentation, dated 05242011 Appliance Standards Program...

  17. Orange and Rockland Utilities (Electric)- Residential Appliance Recycling Program

    Broader source: Energy.gov [DOE]

    Orange and Rockland Utilities provides rebates for residential customers for recycling older, inefficient refrigerators and freezers. All appliances must meet the program requirements listed on the...

  18. appliances walking sticks: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    themselves and adolescents, children and adolescents have not provided any substantial data. (more) Walton, Daniel K. 2010-01-01 23 Appliance remanufacturing and life cycle...

  19. Kitchen Appliance Upgrades Improve Water Efficiency at DOD Exchange...

    Broader source: Energy.gov (indexed) [DOE]

    Kitchen Appliance Upgrades Improve Water Efficiency at DOD Exchange Facilities Case study details the U.S. Department of Defense (DOD) Exchange (formerly the Army and Air Force...

  20. Webinar: Appliance Standards and Rulemaking Federal Advisory Committee

    Broader source: Energy.gov [DOE]

    DOE is conducting a public meeting and webinar regarding the Appliance Standards and Rulemaking Federal Advisory Committee (ASRAC). For more information, please visit the ASRAC page.

  1. State Energy Efficient Appliance Rebate Program (SEEARP) reports...

    Open Energy Info (EERE)

    The successes and challenges of SEEARP provide valuable lessons for designing and running a consumer-focused appliance rebate program. In addition to the SEEARP reports...

  2. BSH Home Appliances: Proposed Penalty (2014-CE-23013)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that BSH Home Appliances Corporation failed to certify cooking products as compliant with the applicable energy conservation standards.

  3. T-588: HP Virtual SAN Appliance Stack Overflow

    Broader source: Energy.gov [DOE]

    A vulnerability has been reported in HP StorageWorks P4000 Virtual SAN Appliance Software, which can be exploited by malicious people to compromise a vulnerable system.

  4. Microwave vs. Electric Kettle: Which Appliance Is in Hot Water...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is more efficient? Tell Us Addthis Microwave or electric kettle, which appliance should win the honor of heating your water? | Graphic by Stacy Buchanan, National Renewable Energy...

  5. Buying an Appliance this Holiday Season? ENERGY STAR Products...

    Office of Environmental Management (EM)

    Freezers Room air conditioners Televisions Clothes washers Dishwashers Battery chargers Water heaters Fluorescent lamp ballasts Incandescent reflector lamps If your appliance has...

  6. "EIA-914 Production Weighted Response Rates, Percent"

    U.S. Energy Information Administration (EIA) Indexed Site

    EIA-914 Production Weighted Response Rates, Percent" "Areas",38353,38384,38412,38443,38473,38504,38534,38565,38596,38626,38657,38687,38718,38749,38777,"application...

  7. Coal deposit characterization by gamma-gamma density/percent dry ash relationships

    E-Print Network [OSTI]

    Wright, David Scott

    1984-01-01T23:59:59.000Z

    Density/Ash Relationship . APPLICATION OF THE GAMMA-GAMMA DENSITY/PERCENT DRY ASH RELATIONSHIPS The Density/Ash Relationship of a South Texas Lignite Deposit Characterization of a South Texas Lignite Deposit CONCLUSIONS REFERENCES. 52 53 53 53... 58 64 67 6g 80 87 LIST OF TABLES TABLE I Coal Classification by Rank. 2 Common Minerals in Coal. 3 Results of Linear Regression Analyses for a South Texas Lignite Deposit. 4 Variability of Geophysica11y-Derived Percent Dry Ash Values...

  8. Appliances, Lighting, Electronics, and Miscellaneous EquipmentElectricity Use in New Homes

    SciTech Connect (OSTI)

    Brown, Richard E.; Rittelman, William; Parker, Danny; Homan,Gregory

    2007-02-28T23:59:59.000Z

    The "Other" end-uses (appliances, lighting, electronics, andmiscellaneous equipment) continue to grow. This is particularly true innew homes, where increasing floor area and amenities are leading tohigher saturation of these types of devices. This paper combines thefindings of several field studies to assess the current state ofknowledge about the "Other" end-uses in new homes. The field studiesinclude sub-metered measurements of occupied houses in Arizona, Florida,and Colorado, as well as device-level surveys and power measurements inunoccupied new homes. We find that appliances, lighting, electronics, andmiscellaneous equipment can consume from 46 percent to 88 percent ofwhole-house electricity use in current low-energy homes. Moreover, theannual consumption for the "Other" end-uses is not significantly lower innew homes (even those designed for low energy use) compared to existinghomes. The device-level surveys show that builder-installed equipment isa significant contributor to annual electricity consumption, and certaindevices that are becoming more common in new homes, such as structuredwiring systems, contribute significantly to this power consumption. Thesefindings suggest that energy consumption by these "Other" end uses isstill too large to allow cost-effective zero-energy homes.

  9. Wyoming's Appliance Rebate Program Surges Ahead | Department...

    Energy Savers [EERE]

    Equality State can receive rebates on ENERGY STAR certified clothes washers, dishwashers, water heaters and gas furnaces ranging from 50 to 250. The program still has 40 percent...

  10. 9th Semi-Annual Report to Congress on Appliance Energy Efficiency...

    Office of Environmental Management (EM)

    to Congress on Appliance Energy Efficiency Rulemakings - Implementation Report: Energy Conservation Standards Activities 9th Semi-Annual Report to Congress on Appliance Energy...

  11. 3rd Semi-Annual Report to Congress on Appliance Energy-Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Congress on Appliance Energy-Efficiency Rulemakings - Implementation Report: Energy Conservation Standards Activities 3rd Semi-Annual Report to Congress on Appliance...

  12. 17TH SEMI-ANNUAL REPORT TO CONGRESS ON APPLIANCE ENERGY EFFICIENCY...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TO CONGRESS ON APPLIANCE ENERGY EFFICIENCY RULEMAKINGS - IMPLEMENTATION REPORT: ENERGY CONSERVATION STANDARDS ACTIVITIES 17TH SEMI-ANNUAL REPORT TO CONGRESS ON APPLIANCE ENERGY...

  13. 16th Semi-Annual Report to Congress on Appliance Energy Efficiency...

    Office of Environmental Management (EM)

    to Congress on Appliance Energy Efficiency Rulemakings - Implementation Report: Energy Conservation Standards Activities 16th Semi-Annual Report to Congress on Appliance Energy...

  14. 5th Semi-Annual Report to Congress on Appliance Energy-Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Congress on Appliance Energy-Efficiency Rulemakings - Implementation Report: Energy Conservation Standards Activities 5th Semi-Annual Report to Congress on Appliance...

  15. 7th Semi-Annual Report to Congress on Appliance Energy Efficiency...

    Office of Environmental Management (EM)

    to Congress on Appliance Energy Efficiency Rulemakings - Implementation Report: Energy Conservation Standards Activities 7th Semi-Annual Report to Congress on Appliance Energy...

  16. 14th Semi-Annual Report to Congress on Appliance Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Congress on Appliance Energy Efficiency Rulemakings Implementation Report: Energy Conservation Standards Activities 14th Semi-Annual Report to Congress on Appliance Energy...

  17. Predicting Backdrafting and Spillage for Natural-Draft Gas Combustion Appliances: Validating VENT-II

    E-Print Network [OSTI]

    Rapp, Vi H.

    2014-01-01T23:59:59.000Z

    for Natural-Draft Gas Combustion Appliances: Validatingfor Natural-Draft Gas Combustion Appliances: A Validation ofs ability to predict combustion gas spillage events due to

  18. Data Availability in Appliance Standards and Labeling Program Development and Evaluation

    E-Print Network [OSTI]

    Romankiewicz, John

    2014-01-01T23:59:59.000Z

    by design option) Data Availability and Use InternationallyData Availability in Appliance Standards and Labelingemployer. Data Availability in Appliance Standards and

  19. Trends in the cost of efficiency for appliances and consumer electronics

    E-Print Network [OSTI]

    Desroches, Louis-Benoit

    2013-01-01T23:59:59.000Z

    appliances and consumer electronics Louis-Benoit Desroches,appliances and consumer electronics have decreased in realappliances and consumer electronics are likely to diminish

  20. U-247: EMC Cloud Tiering Appliance Flaw Lets Remote Users Bypass...

    Broader source: Energy.gov (indexed) [DOE]

    7: EMC Cloud Tiering Appliance Flaw Lets Remote Users Bypass Authentication and Gain Administrative Access U-247: EMC Cloud Tiering Appliance Flaw Lets Remote Users Bypass...

  1. Tips: Shopping for Appliances | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010 1 TNews &Appliances Tips: Shopping for

  2. Tips: Smart Appliances | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010 1 TNews &Appliances Tips:

  3. Appliance Standards Awareness Project | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA NewslettersPartnership of the Americasfor a Clean EnergyAppliance

  4. Appliance Equipment Standards Northwest Impact Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative FuelsSanta3 TableimpurityAppeals8I.1,,AttachmentAppliance

  5. Appliances and Commercial Equipment Standards: Guidance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative FuelsSanta3Appliance and Equipment Standards Fact

  6. Catalog of DC Appliances and Power Systems

    E-Print Network [OSTI]

    Garbesi, Karina

    2012-01-01T23:59:59.000Z

    46 Table 22. Lead-acid battery models used in residential PVSolar [51] Because PV systems with battery backup includeno Battery Backup Typical Operation: Residential PV systems

  7. appliance energy testing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    appliance energy testing First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Energy Star Appliances 1 Texas...

  8. Utility Rebates for ENERGY STAR Appliances: Are They Effective?

    E-Print Network [OSTI]

    cost. The World Energy Outlook 2009, published by the International Energy Agency (IEA), highlightsUtility Rebates for ENERGY STAR Appliances: Are They Effective? Souvik Datta Sumeet Gulati CEPE;UTILITY REBATES FOR ENERGY STAR APPLIANCES: ARE THEY EFFECTIVE? SOUVIK DATTA ETH Zurich SUMEET GULATI

  9. Introducing a digital library reading appliance into a reading group

    E-Print Network [OSTI]

    Marshall, Cathy

    Introducing a digital library reading appliance into a reading group Catherine C. Marshall, Morgan will we read digital library materials? This paper describes the reading practices of an on-going reading group, and how these practices changed when we introduced XLibris, a digital library reading appliance

  10. Load Component Database of Household Appliances and Small Office Equipment

    SciTech Connect (OSTI)

    Lu, Ning; Xie, YuLong; Huang, Zhenyu; Puyleart, Francis; Yang, Steve

    2008-07-24T23:59:59.000Z

    This paper discusses the development of a load component database for household appliances and office equipment. To develop more accurate load models at both transmission and distribution level, a better understanding on the individual behaviors of home appliances and office equipment under power system voltage and frequency variations becomes more and more critical. Bonneville Power Administration (BPA) has begun a series of voltage and frequency tests against home appliances and office equipments since 2005. Since 2006, Researchers at Pacific Northwest National Laboratory has collaborated with BPA personnel and developed a load component database based on these appliance testing results to facilitate the load model validation work for the Western Electricity Coordinating Council (WECC). In this paper, the testing procedure and testing results are first presented. The load model parameters are then derived and grouped. Recommendations are given for aggregating the individual appliance models to feeder level, the models of which are used for distribution and transmission level studies.

  11. Waste water heat recovery appliance. Final report

    SciTech Connect (OSTI)

    Chapin, H.D.; Armstrong, P.R.; Chapin, F.A.W.

    1983-11-21T23:59:59.000Z

    An efficient convective waste heat recovery heat exchanger was designed and tested. The prototype appliance was designed for use in laundromats and other small commercial operations which use large amounts of hot water. Information on general characteristics of the coin-op laundry business, energy use in laundromats, energy saving resources already in use, and the potential market for energy saving devices in laundromats was collected through a literature search and interviews with local laundromat operators in Fort Collins, Colorado. A brief survey of time-use patterns in two local laundromats was conducted. The results were used, with additional information from interviews with owners, as the basis for the statistical model developed. Mathematical models for the advanced and conventional types were developed and the resulting computer program listed. Computer simulations were made using a variety of parameters; for example, different load profiles, hold-up volumes, wall resistances, and wall areas. The computer simulation results are discussed with regard to the overall conclusions. Various materials were explored for use in fabricating the appliance. Resistance to corrosion, workability, and overall suitability for laundromat installations were considered for each material.

  12. Incorporating Experience Curves in Appliance Standards Analysis

    SciTech Connect (OSTI)

    Garbesi, Karina; Chan, Peter; Greenblatt, Jeffery; Kantner, Colleen; Lekov, Alex; Meyers, Stephen; Rosenquist, Gregory; Buskirk, Robert Van; Yang, Hung-Chia; Desroches, Louis-Benoit

    2011-10-31T23:59:59.000Z

    The technical analyses in support of U.S. energy conservation standards for residential appliances and commercial equipment have typically assumed that manufacturing costs and retail prices remain constant during the projected 30-year analysis period. There is, however, considerable evidence that this assumption does not reflect real market prices. Costs and prices generally fall in relation to cumulative production, a phenomenon known as experience and modeled by a fairly robust empirical experience curve. Using price data from the Bureau of Labor Statistics, and shipment data obtained as part of the standards analysis process, we present U.S. experience curves for room air conditioners, clothes dryers, central air conditioners, furnaces, and refrigerators and freezers. These allow us to develop more representative appliance price projections than the assumption-based approach of constant prices. These experience curves were incorporated into recent energy conservation standards for these products. The impact on the national modeling can be significant, often increasing the net present value of potential standard levels in the analysis. In some cases a previously cost-negative potential standard level demonstrates a benefit when incorporating experience. These results imply that past energy conservation standards analyses may have undervalued the economic benefits of potential standard levels.

  13. Impacts of China's Current Appliance Standards and LabelingProgram to 2020

    SciTech Connect (OSTI)

    Fridley, David; Aden, Nathaniel; Zhou, Nan; Lin, Jiang

    2007-03-03T23:59:59.000Z

    The report summarizes the history and nature of China sstandardsand labeling program in the Introduction in Section 1. Trends indomestic production, exports, penetration rates, unit energy consumptionand the history of S&L technical levels by product are discussed ingreat detail in Section 2. The national energy impactsanalysis found inSection 3 concludes that overall China s standards and labeling programsreduce total electricity consumption in 2020 by an annual 106 TWh, or 16percent of what would otherwise been expected in that year in the absenceof standards and labeling programs.In total, the report concludes thatthe S&L programs currently in place in China are expected to save acumulative 1143 TWh by 2020, or 9 percent of the cumulative consumptionof residential electricity to that year. In 2020 alone, annual savingsare expected to be equivalent to 11 percent of residential electricityuse. In average generation terms, this is equivalent to 27 1-GW coalfired plants that would have required around 75 million tonnes of coal tooperate.In comparison, savings from the US appliance standards programalone is expected to save 10 percent of residential electricityconsumption in 2020.

  14. Using Hidden Markov Models for Iterative Non-intrusive Appliance Monitoring

    E-Print Network [OSTI]

    Southampton, University of

    Using Hidden Markov Models for Iterative Non-intrusive Appliance Monitoring Oliver Parson, Hampshire, SO17 1BJ, UK {op106,sg2,mjw,acr}@ecs.soton.ac.uk Abstract Non-intrusive appliance load monitoring appliances. 1 Introduction Non-intrusive appliance load monitoring (NIALM), or energy disaggregation, aims

  15. Nebraska Appliance Rebate Program opens | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Appliance Rebate Program opens July 12, 2010 - 4:00pm Addthis Lindsay Gsell Nearly 500 people lined up outside of Omaha's Nebraska Furniture Mart on July 6, waiting to get ENERGY...

  16. Innovative Concept Appliances: Proposed Penalty (2010-CE-03/0415)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Innovative Concept Appliances, LLC, failed to certify a variety of residential clothes washers and clothes dryers as compliant with the applicable energy conservation standards.

  17. ASKO Appliances: Proposed Penalty (2010-CE-04/0614)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that ASKO Appliances, Inc. failed to certify a variety of residential dishwashers and clothes dryers as compliant with the applicable energy conservation standards.

  18. Midea Washing Appliance: Proposed Penalty (2011-CE-1903)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Midea Washing Appliances Mfg. Co., Ltd. failed to certify a variety of dishwashers as compliant with the applicable water and energy conservation standards.

  19. Sales Tax Holiday for Energy-Efficient Appliances

    Broader source: Energy.gov [DOE]

    The state of Missouri offers consumers a seven-day ''exemption from state sales taxes'' on certain Energy Star certified new appliances. The state sales tax holiday, known as the "Show-Me Green...

  20. Detailed Modeling and Response of Demand Response Enabled Appliances

    SciTech Connect (OSTI)

    Vyakaranam, Bharat; Fuller, Jason C.

    2014-04-14T23:59:59.000Z

    Proper modeling of end use loads is very important in order to predict their behavior, and how they interact with the power system, including voltage and temperature dependencies, power system and load control functions, and the complex interactions that occur between devices in such an interconnected system. This paper develops multi-state time variant residential appliance models with demand response enabled capabilities in the GridLAB-DTM simulation environment. These models represent not only the baseline instantaneous power demand and energy consumption, but the control systems developed by GE Appliances to enable response to demand response signals and the change in behavior of the appliance in response to the signal. These DR enabled appliances are simulated to estimate their capability to reduce peak demand and energy consumption.

  1. Modeling diffusion of electrical appliances in the residential sector

    SciTech Connect (OSTI)

    McNeil, Michael A.; Letschert, Virginie E.

    2009-11-22T23:59:59.000Z

    This paper presents a methodology for modeling residential appliance uptake as a function of root macroeconomic drivers. The analysis concentrates on four major energy end uses in the residential sector: refrigerators, washing machines, televisions and air conditioners. The model employs linear regression analysis to parameterize appliance ownership in terms of household income, urbanization and electrification rates according to a standard binary choice (logistic) function. The underlying household appliance ownership data are gathered from a variety of sources including energy consumption and more general standard of living surveys. These data span a wide range of countries, including many developing countries for which appliance ownership is currently low, but likely to grow significantly over the next decades as a result of economic development. The result is a 'global' parameterization of appliance ownership rates as a function of widely available macroeconomic variables for the four appliances studied, which provides a reliable basis for interpolation where data are not available, and forecasting of ownership rates on a global scale. The main value of this method is to form the foundation of bottom-up energy demand forecasts, project energy-related greenhouse gas emissions, and allow for the construction of detailed emissions mitigation scenarios.

  2. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, SourcesType"A50. Table

  3. Percent of Industrial Natural Gas Deliveries in Oregon Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear JanPrice (Percent)Price (Percent)

  4. Electrical appliance energy consumption control methods and electrical energy consumption systems

    DOE Patents [OSTI]

    Donnelly, Matthew K. (Kennewick, WA); Chassin, David P. (Pasco, WA); Dagle, Jeffery E. (Richland, WA); Kintner-Meyer, Michael (Richland, WA); Winiarski, David W. (Kennewick, WA); Pratt, Robert G. (Kennewick, WA); Boberly-Bartis, Anne Marie (Alexandria, VA)

    2008-09-02T23:59:59.000Z

    Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

  5. Electrical appliance energy consumption control methods and electrical energy consumption systems

    DOE Patents [OSTI]

    Donnelly, Matthew K. (Kennewick, WA); Chassin, David P. (Pasco, WA); Dagle, Jeffery E. (Richland, WA); Kintner-Meyer, Michael (Richland, WA); Winiarski, David W. (Kennewick, WA); Pratt, Robert G. (Kennewick, WA); Boberly-Bartis, Anne Marie (Alexandria, VA)

    2006-03-07T23:59:59.000Z

    Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

  6. Federal Government Increases Renewable Energy Use Over 1000 Percent...

    Office of Environmental Management (EM)

    Government Increases Renewable Energy Use Over 1000 Percent since 1999; Exceeds Goal Federal Government Increases Renewable Energy Use Over 1000 Percent since 1999; Exceeds Goal...

  7. Predicting Backdrafting and Spillage for Natural-Draft Gas Combustion Appliances: Validating VENT-II

    E-Print Network [OSTI]

    1 Predicting Backdrafting and Spillage for Natural-Draft Gas Combustion Appliances: Validating VENT. "Predicting Backdrafting and Spillage for Natural-Draft Gas Combustion Appliances: A Validation of VENT

  8. V-021: Cisco IronPort Web / Email Security Appliance Sophos Anti...

    Broader source: Energy.gov (indexed) [DOE]

    1: Cisco IronPort Web Email Security Appliance Sophos Anti-Virus Multiple Vulnerabilities V-021: Cisco IronPort Web Email Security Appliance Sophos Anti-Virus Multiple...

  9. Impacts of China's Current Appliance Standards and Labeling Program to 2020

    E-Print Network [OSTI]

    Fridley, David; Aden, Nathaniel; Zhou, Nan; Lin, Jiang

    2007-01-01T23:59:59.000Z

    coal-fired electricity generation in China, appliance standards and labeling programs also help to mitigate air-pollution

  10. 11th Semi-Annual Report to Congress on Appliance Energy Efficiency...

    Office of Environmental Management (EM)

    Energy Conservation Standards Activities Buildings Home About Emerging Technologies Residential Buildings Commercial Buildings Appliance & Equipment Standards Building Energy Codes...

  11. Comment submitted by BSH Home Appliances Corporation regarding the Energy Star Verification Testing Program

    Broader source: Energy.gov [DOE]

    This document is a comment submitted by BSH Home Appliances Corporation regarding the Energy Star Verification Testing Program

  12. 2003 CBECS RSE Tables

    Gasoline and Diesel Fuel Update (EIA)

    of the Excel tables (access from main detailed tables page) or in PDF format here: Building Characteristics for All Buildings (Tables A1-A8) RSE Tables: PDF, 16 pages, 312KB...

  13. COMPRESSIVE SAMPLING FOR NON-INTRUSIVE APPLIANCE LOAD MONITORING (NALM) USING CURRENT WAVEFORMS

    E-Print Network [OSTI]

    Leus, Geert

    COMPRESSIVE SAMPLING FOR NON-INTRUSIVE APPLIANCE LOAD MONITORING (NALM) USING CURRENT WAVEFORMS advanced services like dynamic electricity pricing. The non-intrusive appliance load monitoring (NALM) [1/off status of each appliance from the compressed measurement as if the original non-compressed measurement

  14. Nonserial Dynamic Programming with Applications in Smart Home Appliances Scheduling Part I: Precedence Graph Simplification

    E-Print Network [OSTI]

    Johansson, Karl Henrik

    Nonserial Dynamic Programming with Applications in Smart Home Appliances Scheduling Part I-- In this and a companion paper a dynamic pro- gramming (DP) approach to solve a smart home appliances scheduling problem to the smart home appliances scheduling problem considered in [1], [2]. The problem seeks to determine

  15. Table 4

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours" ,"Entity","TypeWyoming"5 Selected Byproducts in.

  16. Table 4

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours" ,"Entity","TypeWyoming"5 Selected Byproducts in.0.

  17. Table 4

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours" ,"Entity","TypeWyoming"5 Selected Byproducts in.0.1.

  18. Table 4

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours" ,"Entity","TypeWyoming"5 Selected Byproducts

  19. Table 4

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours" ,"Entity","TypeWyoming"5 Selected Byproducts3. Mean

  20. Table 4

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours" ,"Entity","TypeWyoming"5 Selected Byproducts3. Mean4.

  1. Table 4

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours" ,"Entity","TypeWyoming"5 Selected Byproducts3.

  2. Table 4

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours" ,"Entity","TypeWyoming"5 Selected Byproducts3.6.

  3. Table 4

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours" ,"Entity","TypeWyoming"5 Selected Byproducts3.6.7.

  4. Table 4

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours" ,"Entity","TypeWyoming"5 Selected Byproducts3.6.7..

  5. Table 4

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours" ,"Entity","TypeWyoming"5 Selected Byproducts3.6.7..3.

  6. Table 4

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours" ,"Entity","TypeWyoming"5 Selected

  7. Table 4

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours" ,"Entity","TypeWyoming"5 Selected5. Light Usage by

  8. Table 4

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours" ,"Entity","TypeWyoming"5 Selected5. Light Usage by6.

  9. Table 4

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours" ,"Entity","TypeWyoming"5 Selected5. Light Usage

  10. Table 4

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours" ,"Entity","TypeWyoming"5 Selected5. Light Usage8.

  11. Table 4

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours" ,"Entity","TypeWyoming"5 Selected5. Light Usage8.9.

  12. Table 7

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total DeliveredPrincipal shale gas:1 Table 7 Created on:

  13. General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey Campbelllong version)ConfinementGeneral Tables The

  14. COOKING APPLIANCE USE IN CALIFORNIA HOMES--DATA

    E-Print Network [OSTI]

    COOKING APPLIANCE USE IN CALIFORNIA HOMES--DATA COLLECTED FROM A WEB-BASED SURVEY Victoria L. Klug, Agnes B. Lobscheid, and Brett C. Singer Environmental Energy Technologies Division August 2011 LBNL-5028 FROM A WEB-BASED SURVEY Victoria L. Klug, Agnes B. Lobscheid, and Brett C. Singer Indoor Environment

  15. Smart Meter Deployment Optimization for Efficient Electrical Appliance State Monitoring

    E-Print Network [OSTI]

    Wang, Yongcai

    appliances in buildings has attracted great attentions for smart, green and sustainable living. Traditional hard, greedy algorithm, approxi- mation ratio, smart building, sensor network I. INTRODUCTION in such buildings, researches in the field of smart building and smart grid are exploring an efficient energy

  16. Monitoring Massive Appliances by a Minimal Number of Smart Meters

    E-Print Network [OSTI]

    Wang, Yongcai

    56 Monitoring Massive Appliances by a Minimal Number of Smart Meters YONGCAI WANG, XIAOHONG HAO. This article presents a framework for deploying a minimal number of smart meters to accurately track the ON of required smart meters is studied by an entropy-based approach, which qualifies the impact of meter

  17. Leveraging smart meter data to recognize home appliances Markus Weiss+#

    E-Print Network [OSTI]

    Leveraging smart meter data to recognize home appliances Markus Weiss+# , Adrian Helfenstein -- The worldwide adoption of smart meters that measure and communicate residential electricity consumption gives demand. In this paper we present an infrastructure and a set of algorithms that make use of smart meters

  18. Rebound Effect in Energy Efficient Appliance Adopting Households

    E-Print Network [OSTI]

    Glenn, Jacob Matthew

    2014-12-10T23:59:59.000Z

    This paper uses data from smart meter technology to estimate the occurrence of energy rebound, a substitution and income effect where the price-per-use of an appliance falls relative to its energy efficiency. This causes households to have more...

  19. Combustion Safety for Appliances Using Indoor Air (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-05-01T23:59:59.000Z

    This measure guideline covers how to assess and carry out the combustion safety procedures for appliances and heating equipment that uses indoor air for combustion in low-rise residential buildings. Only appliances installed in the living space, or in an area freely communicating with the living space, vented alone or in tandem with another appliance are considered here. A separate measure guideline addresses combustion appliances located either within the living space in enclosed closets or side rooms or outside the living space in an adjacent area like an attic or garage that use outdoor air for combustion. This document is for inspectors, auditors, and technicians working in homes where energy upgrades are being conducted whether or not air infiltration control is included in the package of measures being applied. In the indoor combustion air case, guidelines summarized here are based on language provided in several of the codes to establish minimum requirements for the space using simplified prescriptive measures. In addition, building performance testing procedures are provided by testing agencies. The codes in combination with the test procedures offer comprehensive combustion safety coverage to address safety concerns, allowing inexperienced residential energy retrofit inspectors to effectively address combustion safety issues and allow energy retrofits to proceed.

  20. ISSUANCE 2015-06-08: Solicitation of Nominations for Membership on the Appliance Standards and Rulemaking Federal Advisory Committee

    Broader source: Energy.gov [DOE]

    Solicitation of Nominations for Membership on the Appliance Standards and Rulemaking Federal Advisory Committee

  1. A System for Smart Home Control of Appliances based on Timer and Speech Interaction

    E-Print Network [OSTI]

    Haque, S M Anamul; Islam, Md Ashraful

    2010-01-01T23:59:59.000Z

    The main objective of this work is to design and construct a microcomputer based system: to control electric appliances such as light, fan, heater, washing machine, motor, TV, etc. The paper discusses two major approaches to control home appliances. The first involves controlling home appliances using timer option. The second approach is to control home appliances using voice command. Moreover, it is also possible to control appliances using Graphical User Interface. The parallel port is used to transfer data from computer to the particular device to be controlled. An interface box is designed to connect the high power loads to the parallel port. This system will play an important role for the elderly and physically disable people to control their home appliances in intuitive and flexible way. We have developed a system, which is able to control eight electric appliances properly in these three modes.

  2. Modeling of GE Appliances: Cost Benefit Study of Smart Appliances in Wholesale Energy, Frequency Regulation, and Spinning Reserve Markets

    SciTech Connect (OSTI)

    Fuller, Jason C.; Parker, Graham B.

    2012-12-31T23:59:59.000Z

    This report is the second in a series of three reports describing the potential of GEs DR-enabled appliances to provide benefits to the utility grid. The first report described the modeling methodology used to represent the GE appliances in the GridLAB-D simulation environment and the estimated potential for peak demand reduction at various deployment levels. The third report will explore the technical capability of aggregated group actions to positively impact grid stability, including frequency and voltage regulation and spinning reserves, and the impacts on distribution feeder voltage regulation, including mitigation of fluctuations caused by high penetration of photovoltaic distributed generation. In this report, a series of analytical methods were presented to estimate the potential cost benefit of smart appliances while utilizing demand response. Previous work estimated the potential technical benefit (i.e., peak reduction) of smart appliances, while this report focuses on the monetary value of that participation. The effects on wholesale energy cost and possible additional revenue available by participating in frequency regulation and spinning reserve markets were explored.

  3. "Table HC7.10 Home Appliances Usage Indicators by Household...

    U.S. Energy Information Administration (EIA) Indexed Site

    Income, 2005" " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ,"Housing Units (millions)" ,,"Less than...

  4. Table HC15.10 Home Appliances Usage Indicators by Four Most Populated States, 2005

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total DeliveredPrincipal shale gas:14:9a.0 Home

  5. Table HC2.9 Home Appliances Characteristics by Type of Housing Unit, 2005

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total DeliveredPrincipal shale gas:14:9a.0 Home7 Million

  6. Table HC6.10 Home Appliances Usage Indicators by Number of Household Members, 2005

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total DeliveredPrincipal shale gas:14:9a.0 Home7.4

  7. Table HC6.9 Home Appliances Characteristics by Number of Household Members, 2005

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total DeliveredPrincipal shale gas:14:9a.0

  8. Table HC9.9 Home Appliances Characteristics by Climate Zone, 2005

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total DeliveredPrincipal shale gas:14:9a.05a.4 Space69

  9. Table HC15.10 Home Appliances Usage Indicators by Four Most Populated States, 2005

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly Download:Stocks by3a.

  10. Table HC2.9 Home Appliances Characteristics by Type of Housing Unit, 2005

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly Download:Stocks by3a.7 Million U.S.

  11. Table HC6.10 Home Appliances Usage Indicators by Number of Household Members, 2005

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly Download:Stocks by3a.7 Million0 Home

  12. Table HC6.9 Home Appliances Characteristics by Number of Household Members, 2005

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly Download:Stocks by3a.7 Million047HC6.9

  13. Table HC9.9 Home Appliances Characteristics by Climate Zone, 2005

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly Download:Stocks by3a.76a. Home119 Home

  14. "Table HC11.9 Home Appliances Characteristics by Northeast Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space Heating8TotalTotal436278

  15. "Table HC7.10 Home Appliances Usage Indicators by Household Income, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space2.9 Home72 Home8 Water0 Home

  16. "Table HC9.10 Home Appliances Usage Indicators by Climate Zone, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space2.9 Home72 Home8 Water00 Home

  17. Design Considerations for Frequency Responsive Grid Friendly Appliances

    SciTech Connect (OSTI)

    Lu, Ning; Hammerstrom, Donald J.

    2006-05-24T23:59:59.000Z

    The paper addresses design considerations for frequency responsive Grid FriendlyTM appliances (FR-GFAs). Case studies have been done based on the frequency data collected in 2003 in Western Electricity Coordinating Council (WECC) systems. An FR-GFA can turn on/off based on frequency signals and make selective low-frequency load shedding possible at appliance level. FR-GFAs can also be treated as an spinning reserve to maintain a load-to-generation balance under power system normal operation states. The triggering frequency and duration of the FR-GFA device with different frequency setting schemes are simulated. Design considerations of the FR-GFA are then discussed based on simulation results.

  18. Progress toward Producing Demand-Response-Ready Appliances

    SciTech Connect (OSTI)

    Hammerstrom, Donald J.; Sastry, Chellury

    2009-12-01T23:59:59.000Z

    This report summarizes several historical and ongoing efforts to make small electrical demand-side devices like home appliances more responsive to the dynamic needs of electric power grids. Whereas the utility community often reserves the word demand response for infrequent 2 to 6 hour curtailments that reduce total electrical system peak load, other beneficial responses and ancillary services that may be provided by responsive electrical demand are of interest. Historically, demand responses from the demand side have been obtained by applying external, retrofitted, controlled switches to existing electrical demand. This report is directed instead toward those manufactured products, including appliances, that are able to provide demand responses as soon as they are purchased and that require few, or no, after-market modifications to make them responsive to needs of power grids. Efforts to be summarized include Open Automated Demand Response, the Association of Home Appliance Manufacturer standard CHA 1, a simple interface being developed by the U-SNAP Alliance, various emerging autonomous responses, and the recent PinBus interface that was developed at Pacific Northwest National Laboratory.

  19. Laboratory Testing of Demand-Response Enabled Household Appliances

    SciTech Connect (OSTI)

    Sparn, B.; Jin, X.; Earle, L.

    2013-10-01T23:59:59.000Z

    With the advent of the Advanced Metering Infrastructure (AMI) systems capable of two-way communications between the utility's grid and the building, there has been significant effort in the Automated Home Energy Management (AHEM) industry to develop capabilities that allow residential building systems to respond to utility demand events by temporarily reducing their electricity usage. Major appliance manufacturers are following suit by developing Home Area Network (HAN)-tied appliance suites that can take signals from the home's 'smart meter,' a.k.a. AMI meter, and adjust their run cycles accordingly. There are numerous strategies that can be employed by household appliances to respond to demand-side management opportunities, and they could result in substantial reductions in electricity bills for the residents depending on the pricing structures used by the utilities to incent these types of responses.The first step to quantifying these end effects is to test these systems and their responses in simulated demand-response (DR) conditions while monitoring energy use and overall system performance.

  20. Comparison of analytical methods for percent phosphorus determination in electroless nickel plate

    SciTech Connect (OSTI)

    Owens, W.W.; Sullivan, H.H.

    1982-08-13T23:59:59.000Z

    This report presents the results of the evaluation of five analytical methods for percent phosphorus determination and makes recommendations for the use of common methods to provide accurate and precise results in the field. The analytical methods are: (1) ASTM-E39 gravimetric method; (2) development colorimetric method; (3) independent colorimetric method; (4) UCC-ND alkalimetric method; (5) UCC-ND inductively coupled plasma method. Analysis of the data indicates the concentration of phosphorus in the electroless nickel plate sample to be approximately 12.1%. All of the methods evaluated demonstrated the capability of determining percent phosphorus accurately through the accumulation of a large number of readings. The primary difference among the methods is the precision capabilites of individual tests. 3 figures, 6 tables.

  1. An Analysis of the Price Elasticity of Demand for Household Appliances

    SciTech Connect (OSTI)

    Fujita, Kimberly; Dale, Larry; Fujita, K. Sydny

    2008-01-25T23:59:59.000Z

    This report summarizes our study of the price elasticity of demand for home appliances, including refrigerators, clothes washers, and dishwashers. In the context of increasingly stringent appliance standards, we are interested in what kind of impact the increased manufacturing costs caused by higher efficiency requirements will have on appliance sales. We begin with a review of existing economics literature describing the impact of economic variables on the sale of durable goods.We then describe the market for home appliances and changes in this market over the past 20 years, performing regression analysis on the shipments of home appliances and relevant economic variables including changes to operating cost and household income. Based on our analysis, we conclude that the demand for home appliances is price inelastic.

  2. Pacific Northwest GridWise Testbed Demonstration Projects; Part II. Grid Friendly Appliance Project

    SciTech Connect (OSTI)

    Hammerstrom, Donald J.; Brous, Jerry; Chassin, David P.; Horst, Gale R.; Kajfasz, Robert; Michie, Preston; Oliver, Terry V.; Carlon, Teresa A.; Eustis, Conrad; Jarvegren, Olof M.; Marek, W.; Munson, Ryan L.; Pratt, Robert G.

    2007-10-01T23:59:59.000Z

    Fifty residential electric water heaters and 150 new residential clothes dryers were modified to respond to signals received from underfrequency, load-shedding appliance controllers. Each controller monitored the power-grid voltage signal and requested that electrical load be shed by its appliance whenever electric power-grid frequency fell below 59.95 Hz. The controllers and their appliances were installed and monitored for more than a year at residential sites at three locations in Washington and Oregon. The controllers and their appliances responded reliably to each shallow underfrequency eventan average of one event per dayand shed their loads for the durations of these events. Appliance owners reported that the appliance responses were unnoticed and caused little or no inconvenience for the homes occupants.

  3. Percent of Commercial Natural Gas Deliveries in Illinois Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan Feb Mar AprPrice (Percent) Decade

  4. Percent of Commercial Natural Gas Deliveries in Indiana Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan Feb Mar AprPrice (Percent)

  5. Percent of Commercial Natural Gas Deliveries in Iowa Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan Feb Mar AprPrice (Percent)Price

  6. Percent of Commercial Natural Gas Deliveries in Kentucky Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan Feb Mar AprPricePrice (Percent)

  7. Percent of Commercial Natural Gas Deliveries in New Jersey Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan Feb Marby the Price (Percent)the

  8. Percent of Commercial Natural Gas Deliveries in New York Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan Feb Marby the PricePrice (Percent)

  9. Percent of Commercial Natural Gas Deliveries in South Dakota Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan Feb Marby thethe Price (Percent)

  10. Percent of Industrial Natural Gas Deliveries in Arizona Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan Feb Marby thethethePrice (Percent)

  11. Percent of Industrial Natural Gas Deliveries in Colorado Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan Feb MarbyPrice (Percent) Decade

  12. Percent of Industrial Natural Gas Deliveries in Colorado Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan Feb MarbyPrice (Percent)

  13. Percent of Industrial Natural Gas Deliveries in Delaware Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan Feb MarbyPrice (Percent)thePrice

  14. Percent of Industrial Natural Gas Deliveries in Illinois Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan FebPrice (Percent) Decade Year-0

  15. Percent of Industrial Natural Gas Deliveries in Illinois Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan FebPrice (Percent) Decade

  16. Percent of Industrial Natural Gas Deliveries in Indiana Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan FebPrice (Percent) DecadePrice

  17. Percent of Industrial Natural Gas Deliveries in Indiana Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan FebPrice (Percent)

  18. Percent of Industrial Natural Gas Deliveries in Iowa Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan FebPrice (Percent)Price

  19. Percent of Industrial Natural Gas Deliveries in Iowa Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan FebPrice (Percent)PricePrice

  20. Percent of Industrial Natural Gas Deliveries in Kansas Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan FebPrice (Percent)PricePricePrice

  1. Percent of Industrial Natural Gas Deliveries in Kentucky Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan FebPricePrice (Percent) Decade

  2. Percent of Industrial Natural Gas Deliveries in Kentucky Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan FebPricePrice (Percent)

  3. Percent of Industrial Natural Gas Deliveries in Maine Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan FebPricePrice (Percent)thePrice

  4. Percent of Industrial Natural Gas Deliveries in Maryland Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan FebPricePricePrice (Percent)

  5. Percent of Industrial Natural Gas Deliveries in Maryland Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan FebPricePricePrice (Percent)Price

  6. Percent of Industrial Natural Gas Deliveries in Nevada Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear JanPrice (Percent) Year Jan Feb Mar

  7. Percent of Industrial Natural Gas Deliveries in New Jersey Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear JanPrice (Percent) Year Jan Febthe

  8. Percent of Industrial Natural Gas Deliveries in New Jersey Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear JanPrice (Percent) Year Jan Febthethe

  9. Percent of Industrial Natural Gas Deliveries in New Mexico Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear JanPrice (Percent) Year Jan

  10. Percent of Industrial Natural Gas Deliveries in New Mexico Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear JanPrice (Percent) Year Janthe Price

  11. Percent of Industrial Natural Gas Deliveries in New York Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear JanPrice (Percent) Year Janthe

  12. Percent of Industrial Natural Gas Deliveries in New York Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear JanPrice (Percent) Year JanthePrice

  13. Percent of Industrial Natural Gas Deliveries in North Dakota Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear JanPrice (Percent) Yearthe Price

  14. Percent of Industrial Natural Gas Deliveries in North Dakota Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear JanPrice (Percent) Yearthe Pricethe

  15. Percent of Industrial Natural Gas Deliveries in Ohio Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear JanPrice (Percent) Yearthe

  16. Percent of Industrial Natural Gas Deliveries in Ohio Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear JanPrice (Percent) YearthePrice

  17. Percent of Industrial Natural Gas Deliveries in Oklahoma Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear JanPrice (Percent) YearthePricePrice

  18. Percent of Industrial Natural Gas Deliveries in Oklahoma Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear JanPrice (Percent)

  19. Percent of Industrial Natural Gas Deliveries in Oregon Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear JanPrice (Percent)Price

  20. Percent of Industrial Natural Gas Deliveries in Rhode Island Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear JanPrice (Percent)Pricethe Pricethethe

  1. Percent of Industrial Natural Gas Deliveries in Rhode Island Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear JanPrice (Percent)Pricethe

  2. Percent of Industrial Natural Gas Deliveries in South Dakota Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear JanPrice (Percent)Pricetheby thethe

  3. Percent of Industrial Natural Gas Deliveries in South Dakota Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear JanPrice (Percent)Pricetheby thethethe

  4. Percent of Industrial Natural Gas Deliveries in Texas Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear JanPrice (Percent)Pricethebythe

  5. Percent of Industrial Natural Gas Deliveries in Texas Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear JanPrice (Percent)PricethebythePrice

  6. Percent of Industrial Natural Gas Deliveries in Utah Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear JanPricePrice (Percent) Year Jan Feb

  7. Percent of Industrial Natural Gas Deliveries in Vermont Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear JanPricePrice (Percent) Year Jan

  8. Percent of Industrial Natural Gas Deliveries in Vermont Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear JanPricePrice (Percent) Year JanPrice

  9. Percent of Industrial Natural Gas Deliveries in Virginia Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear JanPricePrice (Percent) Year

  10. Percent of Industrial Natural Gas Deliveries in Virginia Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear JanPricePrice (Percent) YearPrice

  11. Percent of Industrial Natural Gas Deliveries in Wyoming Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear JanPricePrice (Percent)by thethe

  12. Percent of Industrial Natural Gas Deliveries in Wyoming Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear JanPricePrice (Percent)by thethePrice

  13. Load control in low voltage level of the electricity grid using CHP appliances

    E-Print Network [OSTI]

    Al Hanbali, Ahmad

    1 Load control in low voltage level of the electricity grid using µCHP appliances M.G.C. Bosman, V.g.c.bosman@utwente.nl Abstract--The introduction of µCHP (Combined Heat and Power) appliances and other means of distributed on the transformers and, thus, on the grid. In this work we study the influence of introducing µCHP appliances

  14. Realized and Projected Impacts of U.S. Energy Efficiency Standards for Residential and Commercial Appliances

    SciTech Connect (OSTI)

    Meyers, Stephen P.; McMahon, James; Atkinson, Barbara

    2008-05-08T23:59:59.000Z

    This study estimated energy, environmental and consumer economic impacts of U.S. Federal residential energy efficiency standards that became effective in the 1988-2006 period, and of energy efficiency standards for fluorescent lamp ballasts and distribution transformers. These standards have been the subject of in-depth analyses conducted as part of DOE's standards rulemaking process. This study drew on those analyses, but updated certain data and developed a common framework and assumptions for all of the products in order to estimate realized impacts and to update projected impacts. It also performed new analysis for the first (1990) fluorescent ballast standards, which had been introduced in the NAECA legislation without a rulemaking. We estimate that the considered standards will reduce residential/ commercial primary energy consumption and carbon dioxide emissions in 2030 by 4percent compared to the levels expected without any standards. The reduction for the residential sector is larger, at 8percent. The estimated cumulative energy savings from the standards amount to 39 quads by 2020, and 63 quads by 2030. The standards will also reduce emissions of carbon dioxide by considerable amounts.The estimated cumulative net present value of consumer benefit amounts to $241 billion by 2030, and grows to $269 billion by 2045. The overall ratio of consumer benefits to costs (in present value terms) in the 1987-2050 period is 2.7 to 1. Although the estimates made in this study are subject to a fair degree of uncertainty, we believe they provide a reasonable approximation of the national benefits resulting from Federal appliance efficiency standards.

  15. 6th Semi-Annual Report to Congress on Appliance Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    to Congress on Appliance Energy Efficiency Rulemakings - Implementation Report: Energy Conservation Standards Activities, as issued by the Assistant Secretary on February 2009....

  16. 8th Semi-Annual Report to Congress on Appliance Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    to Congress on Appliance Energy Efficiency Rulemakings - Implementation Report: Energy Conservation Standards Activities, as issued by the Deputy Assistant Secretary on February...

  17. 2nd Semi-Annual Report to Congress on Appliance Energy-Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    to Congress on Appliance Energy-Efficiency Rulemakings - Implementation Report: Energy Conservation Standards Activities, as issued by the Assistant Secretary on February 2007....

  18. 15th Semi-Annual Report to Congress on Appliance Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Congress on Appliance Energy Efficiency Rulemakings - Implementation Report: Energy Conservation Standards Activities, as issued by the Assistant Secretary on February 2014....

  19. 4th Semi-Annual Report to Congress on Appliance Energy-Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    to Congress on Appliance Energy-Efficiency Rulemakings - Implementation Report: Energy Conservation Standards Activities, as issued by the Assistant Secretary on February 2008....

  20. 10th Semi-Annual Report to Congress on Appliance Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    to Congress on Appliance Energy Efficiency Rulemakings - Implementation Report: Energy Conservation Standards Activities, as issued by the Assistant Secretary on August 2011....

  1. 1st Semi-Annual Report to Congress on Appliance Energy-Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    to Congress on Appliance Energy-Efficiency Rulemakings - Implementation Report: Energy Conservation Standards Activities, as issued by the Assistant Secretary on August 2006....

  2. Pollutant Emission Factors from Residential Natural Gas Appliances: A Literature Review

    E-Print Network [OSTI]

    Traynor, G.W.

    2011-01-01T23:59:59.000Z

    journals related to natural gas combustion and air pollutionemitted from natural gas combustion are predominately lessNatural Gas- fired Appliances," Proceedings: How Significant Are Residential Combustion

  3. Impacts of Imported Liquefied Natural Gas on Residential Appliance Components: Literature Review

    E-Print Network [OSTI]

    Lekov, Alex

    2010-01-01T23:59:59.000Z

    Fundamentals of Gas Combustion. 2001: Washington, DC. 131Components A gas appliance combustion system accomplishestransfers energy from hot combustion gases to water or air

  4. Pollutant Emission Factors from Residential Natural Gas Appliances: A Literature Review

    E-Print Network [OSTI]

    Traynor, G.W.

    2011-01-01T23:59:59.000Z

    related to natural gas combustion and air pollution wereemitted from natural gas combustion are predominately lessGas- fired Appliances," Proceedings: How Significant Are Residential Combustion

  5. Impacts of Imported Liquefied Natural Gas on Residential Appliance Components: Literature Review

    E-Print Network [OSTI]

    Lekov, Alex

    2010-01-01T23:59:59.000Z

    which, in the case of home heating appliances, could resultHeaters, Direct Heating Equipment, Mobile Home Furnaces,Heaters, Direct Heating Equipment, Mobile Home Furnaces,

  6. New energy test procedures for refrigerators and other appliances

    SciTech Connect (OSTI)

    Meier, Alan; Ernebrant, Stefan; Kawamoto, Kaoru; Wihlborg, Mats

    1999-04-01T23:59:59.000Z

    Many innovations in refrigerator design rely on microprocessors, sensors, and algorithms to control automatic defrost, variable speed,and other features. Even though these features strongly influence energy consumption, the major energy test procedures presently test only a refrigerator's mechanical efficiency and ignore the ''software'' aspects. We describe a new test procedure where both ''hardware'' and ''software'' tests are fed into a dynamic simulation model. A wide range of conditions can be tested and simulated. This approach promotes international harmonization because the simulation model can also be programmed to estimate energy use for the ISO, DOE, or JIS test. The approach outlined for refrigerators can also be applied to other appliances.

  7. Appliance energy efficiency in new home construction. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-11-30T23:59:59.000Z

    A survey of 224 builders was conducted to which 160 builders responded. Each respondent completed between one and seven separate questionnaires. Each of the seven questionnaires were designed to collect information about one type of equipment or major appliance. These are: heat pump; heating system; air conditioner; domestic water heater; dishwasher; range; and refrigerator. Analysis of the resulting 406 questionnaires indicated that builders were primarily responsible for brand selection. These choices were made primarily without regard for the energy efficiency of the product. A similar apparent lack of consideration of energy efficiency during brand and model selection was found among home buyers and specialized subcontractors.

  8. A State-Queueing Model of Thermostatically Controlled Appliances

    SciTech Connect (OSTI)

    Lu, Ning; Chassin, David P.

    2004-08-01T23:59:59.000Z

    This paper develops a new method to analyze the price response of aggregated loads consisting of thermostatically controlled appliances (TCAs). Assuming a perfectly diversified load before the price response, we show that TCA setpoint changes in response to the market price will result in a redistribution of TCAs in on/off states and therefore change the probabilities for a unit to reside in each state. A randomly distributed load can be partially synchronized and the aggregated diversity lost. The lost of the load diversity can then create unexpected dynamics in the aggregated load profile. Raising issues such as restoring load diversity and damping the peak loads are also addressed in the paper.

  9. GE Appliances: Order (2012-SE-1403) | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf0 Budget Fossil EnergyFull Text ManagementDOEGE Appliances: Order

  10. DOE Issues Final Appliance Test Procedure Rule | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2 DOE F 1300.2Million) GoDOEMedicalAppliance

  11. Appliance and Equipment Standards Program | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010 1A PotentialAllison CaseyAnnualAppliance and

  12. Research & Development Roadmap: Next-Generation Appliances | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR -Department ofEMSpent NuclearEnergy Appliances Research

  13. Save Energy on Appliances this Holiday Season | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter Principal InvestigatorsSave Energy on Appliances this

  14. Estimating Appliance and Home Electronic Energy Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 FederalTexas EnergyofIdaho | Department of EnergyEstimating Appliance

  15. Appliance Rebates: Frequently Asked Questions | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystemsProgram OverviewAdvocate -AmirAnnual ReportAppliance Rebates:

  16. Recently a lot of multimedia applications are emerging on portable appliances. They require both the flexibility of

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Abstract Recently a lot of multimedia applications are emerging on portable appliances and not only prototypes. Reconfigurable FPGA's are particularly suited for multimedia applications on portable appliances. In fact, tomorrow's multimedia applications will require both the flexibility of upgradeable

  17. Using National Survey Data to Estimate Lifetimes of Residential Appliances

    E-Print Network [OSTI]

    Lutz, James D.

    2013-01-01T23:59:59.000Z

    furnaces, boilers, water heaters, room air-conditioners,furnaces, boilers, water heaters, room air-conditioners (and Electric Storage Water Heaters Table 6 and 7 show the

  18. Cal Poly, San Luis Obispo | University Housing Update to Appliance and Electronic Device Guidelines for Residence Halls

    E-Print Network [OSTI]

    Sze, Lawrence

    Cal Poly, San Luis Obispo | University Housing Update to Appliance and Electronic Device Guidelines guidelines. This guideline notice serves as a campus update to the Appliance and Electronic Device Community appliances and personal care devices being used in the rooms. Often these items are not energy efficient

  19. Tabled Execution in Scheme

    SciTech Connect (OSTI)

    Willcock, J J; Lumsdaine, A; Quinlan, D J

    2008-08-19T23:59:59.000Z

    Tabled execution is a generalization of memorization developed by the logic programming community. It not only saves results from tabled predicates, but also stores the set of currently active calls to them; tabled execution can thus provide meaningful semantics for programs that seemingly contain infinite recursions with the same arguments. In logic programming, tabled execution is used for many purposes, both for improving the efficiency of programs, and making tasks simpler and more direct to express than with normal logic programs. However, tabled execution is only infrequently applied in mainstream functional languages such as Scheme. We demonstrate an elegant implementation of tabled execution in Scheme, using a mix of continuation-passing style and mutable data. We also show the use of tabled execution in Scheme for a problem in formal language and automata theory, demonstrating that tabled execution can be a valuable tool for Scheme users.

  20. Appendix B Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    B Right-of-Way Tower Configuration Tables and Figures Page B-1 Table B-1 West Alternative Tower Configurations Segment Segment Length (miles) Section (Tower to Tower) Additional...

  1. The Demand Reduction Potential of Smart Appliances in U.S. Homes

    SciTech Connect (OSTI)

    Makhmalbaf, Atefe; Srivastava, Viraj; Parker, Graham B.

    2013-08-14T23:59:59.000Z

    The widespread deployment of demand respond (DR) enabled home appliances is expected to have significant reduction in the demand of electricity during peak hours. The work documented in this paper focuses on estimating the energy shift resulting from the installation of DR enabled smart appliances in the U.S. This estimation is based on analyzing the market for smart appliances and calculating the total energy demand that can potentially be shifted by DR control in appliances. Appliance operation is examined by considering their sub components individually to identify their energy consumptions and savings resulting from interrupting and shifting their load, e.g., by delaying the refrigerator defrost cycle. In addition to major residential appliances, residential pool pumps are also included in this study given their energy consumption profiles that make them favorable for DR applications. In the market analysis study documented in this paper, the U.S. Energy Information Administration's (EIA) Residential Energy Consumption Survey (RECS) and National Association of Home Builders (NAHB) databases are used to examine the expected life of an appliance, the number of appliances installed in homes constructed in 10 year intervals after 1940 and home owner income. Conclusions about the effectiveness of the smart appliances in reducing electrical demand have been drawn and a ranking of appliances in terms of their contribution to load shift is presented. E.g., it was concluded that DR enabled water heaters result in the maximum load shift; whereas, dishwashers have the highest user elasticity and hence the highest potential for load shifting through DR. This work is part of a larger effort to bring novel home energy management concepts and technologies to reduce energy consumption, reduce peak electricity demand, integrate renewables and storage technology, and change homeowner behavior to manage and consume less energy and potentially save consumer energy costs.

  2. Table 1. Annual estimates, uncertainty, and change Figure 1. Area of timberland and forest land by

    E-Print Network [OSTI]

    errors/bars provided in figures and tables represent 68 percent confidence intervals 0.0 1.0 2.0 3.0 4/American elm/red maple White oak/red oak/hickory Area (1,000 acres) Small Medium Large #12;Table 2. Top 10

  3. Issues in federal preemption of state appliance energy efficiency regulations

    SciTech Connect (OSTI)

    Fang, J.M.; Balistocky, S.; Schaefler, A.M.

    1982-12-01T23:59:59.000Z

    The findings and conclusions of the analysis of the various issues involved in the federal preemption of state regulations for the DOE no standard rule on covered appliances are summarized. The covered products are: refrigerators, refrigerator-freezers, freezers, clothes dryers, kitchen ranges and ovens, water heaters (excluding heat pump water heaters), room air conditioners, central air conditioners (excluding heat pumps), and furnaces. A detailed discussion of the rationale for the positions of groups offering comment for the record is presneted. The pertinent categories of state and local regulations and programs are explained, then detailed analysis is conducted on the covered products and regulations. Issues relating to the timing of preemption of state regulations are discussed, as well as issues relating to burden of proof, contents of petitions for exemptions from preemption, criteria for evaluating petitions, and procedural and other issues. (LEW)

  4. Efficiency of appliance models on the market before and after DOE standards

    SciTech Connect (OSTI)

    Meyers, Stephen

    2004-06-15T23:59:59.000Z

    Energy efficiency standards for appliances mandate that appliance manufacturers not manufacture or import models that have a test energy efficiency below a specified level after the standard effective date. Thus, appliance standards set a floor for energy efficiency. But do they also induce more significant changes in the efficiencies that manufacturers offer after the standard becomes effective? To address this question, we undertook an examination of before-standard and after-standard efficiency of models on the market for three products: (1) Refrigerators (1990, 1993, and 2001 standards); (2) Room air conditioners (1990 and 2000 standards); and (3) Gas furnaces (1992 standard).

  5. Environmental Justice Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... H-1 Table H-1. Poverty Thresholds in 1999 by Size of Family and Number of Related Children Under 18 Years...

  6. Mitigating Carbon Emissions: the Potential of Improving Efficiency of Household Appliances in China

    E-Print Network [OSTI]

    Lin, Jiang

    2006-01-01T23:59:59.000Z

    in the next 20-30 years as China builds large quantity ofof power generation in China from 0.230 in 2003 to 0.164 kgHousehold Appliances in China Jiang Lin Environmental Energy

  7. Impacts of China's Current Appliance Standards and Labeling Program to 2020

    E-Print Network [OSTI]

    Fridley, David; Aden, Nathaniel; Zhou, Nan; Lin, Jiang

    2007-01-01T23:59:59.000Z

    58: Historical and Forecast China Average Household Size,P ROGRAM Impacts of Chinas Current Appliance Standards and68 Implications for Chinas Current Energy Policy and

  8. Impacts of Imported Liquefied Natural Gas on Residential Appliance Components: Literature Review

    SciTech Connect (OSTI)

    Lekov, Alex; Sturges, Andy; Wong-Parodi, Gabrielle

    2009-12-09T23:59:59.000Z

    An increasing share of natural gas supplies distributed to residential appliances in the U.S. may come from liquefied natural gas (LNG) imports. The imported gas will be of a higher Wobbe number than domestic gas, and there is concern that it could produce more pollutant emissions at the point of use. This report will review recently undertaken studies, some of which have observed substantial effects on various appliances when operated on different mixtures of imported LNG. While we will summarize findings of major studies, we will not try to characterize broad effects of LNG, but describe how different components of the appliance itself will be affected by imported LNG. This paper considers how the operation of each major component of the gas appliances may be impacted by a switch to LNG, and how this local impact may affect overall safety, performance and pollutant emissions.

  9. 0 + 0 = 1 : the appliance model of selling software bundled with hardware

    E-Print Network [OSTI]

    Hein, Bettina

    2007-01-01T23:59:59.000Z

    The business model of selling software bundled with hardware is called the appliance model. As hardware becomes less and less expensive and open source software is being offered for free, the traditional business model of ...

  10. Estimation of the Energy and Capacity Savings in Texas from Appliance Efficiency Standards

    E-Print Network [OSTI]

    Verdict, M.

    1986-01-01T23:59:59.000Z

    The purpose of this presentation will be to assess the technical potential for energy and capacity savings in Texas by the year 2006 by the statewide adoption of minimum appliance efficiency standards equivalent to those recently adopted...

  11. Ways to Increase Percent Calf Crop in Beef Cattle.

    E-Print Network [OSTI]

    Beverly, John R.

    1973-01-01T23:59:59.000Z

    in young heifers shows a marked increase in breeding efficiency. Work at the University of Arizona on rebreeding first calf heifers supports this data. Arizona work showed 79 percent pregnancy rates in heifers with calves early weaned and 46 percent... mo. mo. mo. mo. mo. mo. mo. mo. Low level Angus 0 0 0 33 82 90100100 Hereford 0 11 22 33 38 50 100 100 Crossbreed 0 0 12 68 85 100 100 100 Setting some arbitrary age at which t heifers is not the solution. The outcome would largely on how...

  12. Percent of Commercial Natural Gas Deliveries in Washington Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice (Percent) YearPrice (Percent)the

  13. Percent of Commercial Natural Gas Deliveries in West Virginia Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice (Percent) YearPrice (Percent)theby

  14. Evaluation of advanced technologies for residential appliances and residential and commercial lighting

    SciTech Connect (OSTI)

    Turiel, I.; Atkinson, B.; Boghosian, S.; Chan, P.; Jennings, J.; Lutz, J.; McMahon, J.; Rosenquist, G.

    1995-01-01T23:59:59.000Z

    Section 127 of the Energy Policy Act requires that the Department of Energy (DOE) prepare a report to Congress on the potential for the development and commercialization of appliances that substantially exceed the present federal or state efficiency standards. Candidate high-efficiency appliances must meet several criteria including: the potential exists for substantial improvement (beyond the minimum established in law) of the appliance`s energy efficiency; electric, water, or gas utilities are prepared to support and promote the commercialization of such appliances; manufacturers are unlikely to undertake development and commercialization of such appliances on their own, or development and production would be substantially accelerated by support to manufacturers. This report describes options to improve the efficiency of residential appliances, including water heaters, clothes washers and dryers, refrigerator/freezers, dishwashers, space heating and cooling devices, as well as residential and commercial lighting products. Data from this report (particularly Appendix 1)were used to prepare the report to Congress mentioned previously. For the residential sector, national energy savings are calculated using the LBL Residential Energy Model. This model projects the number of households and appliance saturations over time. First, end-use consumption is calculated for a base case where models that only meet the standard replace existing models as these reach the end of their lifetime. Second, models with efficiencies equal to the technology under consideration replace existing models that reach the end of their lifetime. For the commercial sector, the COMMEND model was utilized to project national energy savings from new technologies. In this report, energy savings are shown for the period 1988 to 2015.

  15. TABLE53.CHP:Corel VENTURA

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV - DailyPercent 0 0 09.Table 53.

  16. TABLE54.CHP:Corel VENTURA

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV - DailyPercent 0 0 09.Table

  17. 2003 CBECS Detailed Tables: Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    c12-pdf c12.xls c12.html Electricity (Tables C13-C22) set10.pdf Table C13. Total Electricity Consumption and Expenditures c13.pdf c13.xls c13.html Table C14. Electricity...

  18. Comment submitted by the Association of Home Appliance Manufacturers (AHAM) regarding the Energy Star Verification Testing Program

    Broader source: Energy.gov [DOE]

    This document is a comment submitted by the Association of Home Appliance Manufacturers (AHAM) regarding the Energy Star Verification Testing Program

  19. What can we learn from high-frequency appliance-level energy metering? Results from a field experiment

    E-Print Network [OSTI]

    Chen, VL; Delmas, MA; Kaiser, WJ; Locke, SL

    2015-01-01T23:59:59.000Z

    Newborough, M. , 2003. Dynamic energy-consumption indicatorsbehaviour and design. Energy Build. 35 (8), Please cite thisfrequency appliance-level energy metering? Results from a ?

  20. Percent of Commercial Natural Gas Deliveries in South Carolina Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan Feb Marby the

  1. Percent of Commercial Natural Gas Deliveries in Tennessee Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan Feb Marby thethe Price

  2. Percent of Commercial Natural Gas Deliveries in Washington Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan Feb Marby thethethe Price

  3. Percent of Industrial Natural Gas Deliveries in California Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan Feb Marby

  4. Using image processing to measure tree crown diameters and estimate percent crown closure

    E-Print Network [OSTI]

    Gabriel, Darren Kyle

    1994-01-01T23:59:59.000Z

    Table 3 Table 4 Table 5 Table 6 Table 7 DISCUSSION AND CONCLUSIONS 13 16 18 19 19 20 21 21 23 23 24 24 27 28 30 31 33 35 FUTURE STUDY REFERENCES APPENDIX A APPENDIX B VITA Page 40 80 82 LIST OF TABLES Page TABLE 1 CROWN... AND CONVERSIONS USING THE RETICLE AND COMPUTER METHODS FOR STAND 13 72 TABLE 21. CROWN DIAMETER MEASURES AND CONVERSIONS USING THE RETICLE AND COMPUTER METHODS FOR STAND 14 TABLE 22. CROWN DIAMETER MEASURES AND CONVERSIONS USING THE RETICLE AND COMPUTER...

  5. Material World: Forecasting Household Appliance Ownership in a Growing Global Economy

    SciTech Connect (OSTI)

    Letschert, Virginie; McNeil, Michael A.

    2009-03-23T23:59:59.000Z

    Over the past years the Lawrence Berkeley National Laboratory (LBNL) has developed an econometric model that predicts appliance ownership at the household level based on macroeconomic variables such as household income (corrected for purchase power parity), electrification, urbanization and climate variables. Hundreds of data points from around the world were collected in order to understand trends in acquisition of new appliances by households, especially in developing countries. The appliances covered by this model are refrigerators, lighting fixtures, air conditioners, washing machines and televisions. The approach followed allows the modeler to construct a bottom-up analysis based at the end use and the household level. It captures the appliance uptake and the saturation effect which will affect the energy demand growth in the residential sector. With this approach, the modeler can also account for stock changes in technology and efficiency as a function of time. This serves two important functions with regard to evaluation of the impact of energy efficiency policies. First, it provides insight into which end uses will be responsible for the largest share of demand growth, and therefore should be policy priorities. Second, it provides a characterization of the rate at which policies affecting new equipment penetrate the appliance stock. Over the past 3 years, this method has been used to support the development of energy demand forecasts at the country, region or global level.

  6. Recovery and separation of high-value plastics from discarded household appliances

    SciTech Connect (OSTI)

    Karvelas, D.E.; Jody, B.J.; Poykala, J.A. Jr.; Daniels, E.J. [Argonne National Lab., IL (United States). Energy Systems Div.; Arman, B. [Argonne National Lab., IL (United States). Energy Systems Div.]|[Praxair, Inc., Tarrytown, NY (United States)

    1996-03-01T23:59:59.000Z

    Argonne National Laboratory is conducting research to develop a cost- effective and environmentally acceptable process for the separation of high-value plastics from discarded household appliances. The process under development has separated individual high purity (greater than 99.5%) acrylonitrile-butadiene-styrene (ABS) and high- impact polystyrene (HIPS) from commingled plastics generated by appliance-shredding and metal-recovery operations. The process consists of size-reduction steps for the commingled plastics, followed by a series of gravity-separation techniques to separate plastic materials of different densities. Individual plastics of similar densities, such as ABS and HIPS, are further separated by using a chemical solution. By controlling the surface tension, the density, and the temperature of the chemical solution we are able to selectively float/separate plastics that have different surface energies. This separation technique has proven to be highly effective in recovering high-purity plastics materials from discarded household appliances. A conceptual design of a continuous process to recover high-value plastics from discarded appliances is also discussed. In addition to plastics separation research, Argonne National Laboratory is conducting research to develop cost-effective techniques for improving the mechanical properties of plastics recovered from appliances.

  7. Supervised start system for microprocessor based appliance controls

    SciTech Connect (OSTI)

    Fowler, D.L.; Kadwell, B.J.

    1986-12-09T23:59:59.000Z

    A supervisory start system is described for an appliance control that includes a microprocessor, manually actuatable keyboard switch means, and first and second relay means; the microprocessor including first, second and third input means and first, second and third output means and being conditioned to generate control signals at the output means upon receipt of electrical signals at the input means; the supervisory start circuit comprising, in combination, first, second and third transistors each having a base, an emitter and a collector. The first transistor means controls energization of the first relay means and is controlled by the manually actuatable switch means; the manually actuatable switch means being electrically connected to the first output means of the microprocessor and the base of the first transistor; the base of the second transistor being connected to the second output means of the microprocessor, the emitter of the second transistor being connected to a source of potential, the collector of the second transistor being connected to the emitter of the first transistor; the collector of the first transistor being connected to the first relay means; the second transistor being operable to connect the emitter of the first transistor to the source of potential when a signal from the second output means of the microprocessor is applied to the base of the second transistor; the microprocessor being conditioned to emit a signal at the second output means upon receipt of a signal at the first input means; means for latching the first transistor in a conducting condition upon being energized; and means for applying an electrical signal to the second input means when the first transistor means is in a conducting condition.

  8. 1997 Housing Characteristics Tables Housing Unit Tables

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 Oil demand8) JunePercent of U.S.Million

  9. 1997 Housing Characteristics Tables Housing Unit Tables

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 Oil demand8) JunePercent of

  10. Percent of Commercial Natural Gas Deliveries in Louisiana Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice (Percent) Year Jan Feb Mar Aprthe Price

  11. Percent of Commercial Natural Gas Deliveries in Massachusetts Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice (Percent) Year Jan Feb Mar

  12. Percent of Commercial Natural Gas Deliveries in Minnesota Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice (Percent) Year Jan Feb MarPricethe

  13. Percent of Commercial Natural Gas Deliveries in Mississippi Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice (Percent) Year Jan Feb MarPricethethe

  14. Percent of Commercial Natural Gas Deliveries in New Hampshire Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice (Percent) Year Jan FebPricePricePriceby

  15. Percent of Commercial Natural Gas Deliveries in North Carolina Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice (Percent) Year Janthe PricePriceby the

  16. Percent of Commercial Natural Gas Deliveries in Pennsylvania Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice (Percent) Year JanthePricethe Price

  17. Percent of Commercial Natural Gas Deliveries in South Carolina Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice (Percent) Year JanthePricethe

  18. Percent of Commercial Natural Gas Deliveries in Tennessee Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice (Percent) Year JanthePricethethe

  19. Percent of Commercial Natural Gas Deliveries in Wisconsin Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice (Percent) YearPrice

  20. PERCENT FEDERAL LAND FOR OIL/GAS FIELD OUTLINES

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15LiquidBGOperablePERCENT FEDERAL LAND FOR

  1. U.S. Natural Gas % of Total Residential Deliveries (Percent)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet) U.S.Developmental WellsYear JanDeliveries (Percent)

  2. "Table HC10.10 Home Appliances Usage Indicators by U.S. Census Regions, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space Heating8TotalTotal4 Cooled0.10

  3. "Table HC10.9 Home Appliances Characteristics by U.S. Census Regions, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space Heating8TotalTotal436 Air780.9

  4. "Table HC11.10 Home Appliances Usage Indicators by Northeast Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space Heating8TotalTotal436 Air780.90

  5. "Table HC12.10 Home Appliances Usage Indicators by Midwest Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space Heating8TotalTotal4362780 Home

  6. "Table HC3.9 Home Appliances Characteristics by Owner-Occupied Housing Unit, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space2.9 Home7 Air-ConditioningHC3.9

  7. "Table HC4.10 Home Appliances Usage Indicators by Renter-Occupied Housing Unit, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space2.9 Home7 Air-ConditioningHC3.90

  8. "Table HC4.9 Home Appliances Characteristics by Renter-Occupied Housing Unit, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space2.9 Home72 Home8 Water

  9. "Table HC8.10 Home Appliances Usage Indicators by Urban/Rural Location, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space2.9 Home72 Home8 Water0 Home250

  10. Table B1. Summary Table: Totals and Means of Floorspace, Number of Workers, and

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWestQuantity of2". Summary Table:

  11. Abstract-In this paper we evaluate the energy and economic consequences of appliance remanufacturing relative to purchasing

    E-Print Network [OSTI]

    Gutowski, Timothy

    Abstract- In this paper we evaluate the energy and economic consequences of appliance that economic incentives can be an influential driver for consumers to remanufacture and re-use old appliances washer. There is considerable amount of literature regarding policy, economics, and efficiency impacts

  12. Building Storage Appliances for the Grid and Beyond John Bent, Andrea Arpaci-Dusseau, Remzi Arpaci-Dusseau, Miron Livny

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Building Storage Appliances for the Grid and Beyond John Bent, Andrea Arpaci-Dusseau, Remzi Arpaci,dusseau,remzi,miron@cs.wisc.edu Abstract Current storage appliances have been traditionally de- signed to meet either the storage demands challenges to storage ap- pliances that would be used on the grid. NeST is a user-level software-only storage

  13. Building Storage Appliances for the Grid and Beyond John Bent, Andrea ArpaciDusseau, Remzi ArpaciDusseau, Miron Livny

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Building Storage Appliances for the Grid and Beyond John Bent, Andrea ArpaciDusseau, Remzi Arpaci,dusseau,remzi,miron@cs.wisc.edu Abstract Current storage appliances have been traditionally de signed to meet either the storage demands challenges to storage ap pliances that would be used on the grid. NeST is a userlevel softwareonly storage

  14. Florida Natural Gas % of Total Residential - Sales (Percent)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas ProvedCommercialNov-14 Dec-14 Jan-15Decade

  15. Florida Natural Gas % of Total Residential - Sales (Percent)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas ProvedCommercialNov-14 Dec-14

  16. Georgia Natural Gas % of Total Residential - Sales (Percent)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear JanPrice Data59.2

  17. Georgia Natural Gas % of Total Residential - Sales (Percent)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear JanPrice Data59.2Year Jan Feb Mar Apr

  18. Hawaii Natural Gas % of Total Residential - Sales (Percent)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOW TO OBTAIN EIACubicDecade Year-0

  19. Hawaii Natural Gas % of Total Residential - Sales (Percent)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOW TO OBTAIN EIACubicDecade

  20. Idaho Natural Gas % of Total Residential - Sales (Percent)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-Month Week2009 2010

  1. Idaho Natural Gas % of Total Residential - Sales (Percent)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-Month Week2009 2010Year Jan

  2. Illinois Natural Gas % of Total Residential - Sales (Percent)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal Consumption (Million381 -260 74 127 419

  3. Illinois Natural Gas % of Total Residential - Sales (Percent)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal Consumption (Million381 -260 74 127 419Year

  4. Indiana Natural Gas % of Total Residential - Sales (Percent)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal Consumptionper Thousand Cubic4 15.8 8Decade

  5. Indiana Natural Gas % of Total Residential - Sales (Percent)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal Consumptionper Thousand Cubic4 15.8

  6. Percent of Commercial Natural Gas Deliveries in California Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan Feb Mar Apr MayPeachThree 0 0the Price

  7. Percent of Commercial Natural Gas Deliveries in Connecticut Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan Feb Mar Apr MayPeachThree 0 0thethe

  8. Percent of Commercial Natural Gas Deliveries in District of Columbia

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan Feb Mar Apr MayPeachThree 0Represented

  9. Percent of Commercial Natural Gas Deliveries in Massachusetts Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan Feb Mar AprPricePricePriceby the Price

  10. Percent of Commercial Natural Gas Deliveries in Minnesota Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan Feb Mar AprPricePricePriceby thethe

  11. Percent of Commercial Natural Gas Deliveries in Mississippi Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan Feb Mar AprPricePricePriceby thethethe

  12. Percent of Commercial Natural Gas Deliveries in North Carolina Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan Feb Marby the PricePrice

  13. Percent of Commercial Natural Gas Deliveries in Pennsylvania Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan Feb Marby the PricePricethePricethe

  14. Percent of Commercial Natural Gas Deliveries in West Virginia Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan Feb Marby thethethe Priceby the Price

  15. Percent of Commercial Natural Gas Deliveries in Wisconsin Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan Feb Marby thethethe Priceby the

  16. Percent of Industrial Natural Gas Deliveries in California Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan Feb Marby thethethePricePricePricethe

  17. Percent of Industrial Natural Gas Deliveries in District of Columbia

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan Feb MarbyPriceRepresented by the Price

  18. Percent of Industrial Natural Gas Deliveries in District of Columbia

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan Feb MarbyPriceRepresented by the

  19. Percent of Industrial Natural Gas Deliveries in Massachusetts Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan FebPricePricePrice

  20. Percent of Industrial Natural Gas Deliveries in Massachusetts Represented

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan FebPricePricePriceby the Price

  1. Percent of Industrial Natural Gas Deliveries in Minnesota Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan FebPricePricePriceby thethe Price

  2. Percent of Industrial Natural Gas Deliveries in Minnesota Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan FebPricePricePriceby thethe Pricethe

  3. Percent of Industrial Natural Gas Deliveries in Mississippi Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan FebPricePricePriceby thethe

  4. Percent of Industrial Natural Gas Deliveries in Mississippi Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan FebPricePricePriceby thethethe Price

  5. New York Natural Gas % of Total Residential - Sales (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousand CubicFeet)perFeet) New2 1,033 1,034264

  6. New York Natural Gas % of Total Residential - Sales (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousand CubicFeet)perFeet) New2 1,033

  7. North Carolina Natural Gas % of Total Residential - Sales (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousandWithdrawals (MillionNine8 2.415Decade Year-0

  8. North Carolina Natural Gas % of Total Residential - Sales (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousandWithdrawals (MillionNine8 2.415Decade Year-0Year

  9. North Dakota Natural Gas % of Total Residential - Sales (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996)McGuire"Feet) EstimatedProduction 4 12 73 9 12

  10. North Dakota Natural Gas % of Total Residential - Sales (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996)McGuire"Feet) EstimatedProduction 4 12 73 9

  11. Ohio Natural Gas % of Total Residential - Sales (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr May Jun Jul AugFeet)Foot) DecadeDecade

  12. Ohio Natural Gas % of Total Residential - Sales (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr May Jun Jul AugFeet)Foot)

  13. Oklahoma Natural Gas % of Total Residential - Sales (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr May Jun Jul9ThousandFeet)41 1,0412008

  14. Oklahoma Natural Gas % of Total Residential - Sales (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr May Jun Jul9ThousandFeet)41 1,0412008Year

  15. Oregon Natural Gas % of Total Residential - Sales (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr MayYear Jan Feb Mar Apr May

  16. Oregon Natural Gas % of Total Residential - Sales (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr MayYear Jan Feb Mar Apr MayYear Jan Feb Mar

  17. Pennsylvania Natural Gas % of Total Residential - Sales (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr MayYear JanProduction 1980 1981 1982Decade

  18. Pennsylvania Natural Gas % of Total Residential - Sales (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr MayYear JanProduction 1980 1981

  19. Mitigating Carbon Emissions: the Potential of Improving Efficiencyof Household Appliances in China

    SciTech Connect (OSTI)

    Lin, Jiang

    2006-07-10T23:59:59.000Z

    China is already the second's largest energy consumer in the world after the United States, and its demand for energy is expected to continue to grow rapidly in the foreseeable future, due to its fast economic growth and its low level of energy use per capita. From 2001 to 2005, the growth rate of energy consumption in China has exceeded the growth rate of its economy (NBS, 2006), raising serious concerns about the consequences of such energy use on local environment and global climate. It is widely expected that China is likely to overtake the US in energy consumption and greenhouse gas (GHG) emissions during the first half of the 21st century. Therefore, there is considerable interest in the international community in searching for options that may help China slow down its growth in energy consumption and GHG emissions through improving energy efficiency and adopting more environmentally friendly fuel supplies such as renewable energy. This study examines the energy saving potential of three major residential energy end uses: household refrigeration, air-conditioning, and water heating. China is already the largest consumer market in the world for household appliances, and increasingly the global production base for consumer appliances. Sales of household refrigerators, room air-conditioners, and water heaters are growing rapidly due to rising incomes and booming housing market. At the same time, the energy use of Chinese appliances is relatively inefficient compared to similar products in the developed economies. Therefore, the potential for energy savings through improving appliance efficiency is substantial. This study focuses particularly on the impact of more stringent energy efficiency standards for household appliances, given that such policies are found to be very effective in improving the efficiency of household appliances, and are well established both in China and around world (CLASP, 2006).

  20. Modeling of GE Appliances in GridLAB-D: Peak Demand Reduction

    SciTech Connect (OSTI)

    Fuller, Jason C.; Vyakaranam, Bharat GNVSR; Prakash Kumar, Nirupama; Leistritz, Sean M.; Parker, Graham B.

    2012-04-29T23:59:59.000Z

    The widespread adoption of demand response enabled appliances and thermostats can result in significant reduction to peak electrical demand and provide potential grid stabilization benefits. GE has developed a line of appliances that will have the capability of offering several levels of demand reduction actions based on information from the utility grid, often in the form of price. However due to a number of factors, including the number of demand response enabled appliances available at any given time, the reduction of diversity factor due to the synchronizing control signal, and the percentage of consumers who may override the utility signal, it can be difficult to predict the aggregate response of a large number of residences. The effects of these behaviors can be modeled and simulated in open-source software, GridLAB-D, including evaluation of appliance controls, improvement to current algorithms, and development of aggregate control methodologies. This report is the first in a series of three reports describing the potential of GE's demand response enabled appliances to provide benefits to the utility grid. The first report will describe the modeling methodology used to represent the GE appliances in the GridLAB-D simulation environment and the estimated potential for peak demand reduction at various deployment levels. The second and third reports will explore the potential of aggregated group actions to positively impact grid stability, including frequency and voltage regulation and spinning reserves, and the impacts on distribution feeder voltage regulation, including mitigation of fluctuations caused by high penetration of photovoltaic distributed generation and the effects on volt-var control schemes.

  1. Comparison of analytical methods for percent phosphorous determination in electroless nickel plate. [UCC-ND alkalimetric method; UCC-ND Inductively Coupled Plasma (ICP) method; ASTM-E39 gravimetric method; development colorimetric method; independent colorimetric method

    SciTech Connect (OSTI)

    Owens, W.W.; Sullivan, H.H.

    1982-01-01T23:59:59.000Z

    Electroless nicke-plate characteristics are substantially influenced by percent phosphorous concentrations. Available ASTM analytical methods are designed for phosphorous concentrations of less than one percent compared to the 4.0 to 20.0% concentrations common in electroless nickel plate. A variety of analytical adaptations are applied through the industry resulting in poor data continuity. This paper presents a statistical comparison of five analytical methods and recommends accurate and precise procedures for use in percent phosphorous determinations in electroless nickel plate. 2 figures, 1 table.

  2. Appliance and Equipment Standards Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is alwaysISOSource Heat 1 Table2014 2013October 26,

  3. Table of Contents

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,ZaleskiThis Decision considersTable 1: Points of Entry/Exit andTable

  4. Table_of_Contents

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,ZaleskiThis Decision considersTable 1: Points of Entry/ExitTable of

  5. Electrical Appliances Students may use clocks, sound equipment, computers, electric razors, hair dryers,

    E-Print Network [OSTI]

    Aalberts, Daniel P.

    with a heating coil *Torchiere type lamps with a halogen bulb, and other lamps with a halogen bulb greater than there is specific UL approval for a higher wattage. Violators of any of the above policies will be charged $50, Prohibited Appliances, and Halogen Torchiere Lamps 1st offense: $50.00 fine and the student will be called

  6. Tracking States of Massive Electrical Appliances by Lightweight Metering and Sequence Decoding

    E-Print Network [OSTI]

    Wang, Yongcai

    to track the on/off states of N appliances by deploying only m smart meters on the power load tree, where m demonstrate some interesting structures of the problem. Keywords Energy auditing, Smart meter, Deployment smart meter networks, and thus suffer from the high deploy- ment, maintenance and data collection costs

  7. T-531: The WebVPN implementation on Cisco Adaptive Security Appliances (ASA) 5500

    Broader source: Energy.gov [DOE]

    The WebVPN implementation on Cisco Adaptive Security Appliances (ASA) 5500 series devices with software before 8.2(3) permits the viewing of CIFS shares even when CIFS file browsing has been disabled, which allows remote authenticated users to bypass intended access restrictions via CIFS requests, aka Bug ID CSCsz80777.

  8. Less Watts, More Performance: An Intelligent Storage Engine for Data Appliances

    E-Print Network [OSTI]

    Teubner, Jens

    how Ibex reduces data movement, CPU usage, and overall energy consumption in database appliances27, 2013, New York, New York, USA. Copyright 2013 ACM 978-1-4503-2037-5/13/06 ...$10.00. MySQL Server M y- proves performance and also reduces energy consumption. Query processing in relational databases may

  9. @scale: Insights from a Large, Long-Lived Appliance Stephen Dawson-Haggerty

    E-Print Network [OSTI]

    Culler, David E.

    Design, Measurement, Performance Keywords Energy, Audit, Building, Power, Wireless, Sensor Network 1@scale: Insights from a Large, Long-Lived Appliance Energy WSN Stephen Dawson-Haggerty , Steven Lanzisera , Jay Taneja , Richard Brown , and David Culler Computer Science Division Environmental Energy

  10. Design Techniques for Sensor Appliances: Foundations and Light Compass Case Study

    E-Print Network [OSTI]

    Potkonjak, Miodrag

    sensors of the appliance, and (2) error minimization-based sensor data interpretation middleware. We have University of California, Los Angeles jwong@cs.ucla.edu Seapahn Megerian University of California, Los Angeles seapahn@cs.ucla.edu Miodrag Potkonjak University of California, Los Angeles miodrag

  11. Energy-Harvesting Thermoelectric Sensing for Unobtrusive Water and Appliance Metering

    E-Print Network [OSTI]

    Dutta, Prabal

    Energy-Harvesting Thermoelectric Sensing for Unobtrusive Water and Appliance Metering Bradford that meters using the same thermoelectric generator with which it powers itself. In short, the rate at which be harvested with a thermoelectric generator (TEG) to power a sensor node. TEGs utilize the Seebeck effect

  12. Energy and CO2 efficient scheduling of smart appliances in active houses equipped with batteries

    E-Print Network [OSTI]

    Johansson, Karl Henrik

    Energy and CO2 efficient scheduling of smart appliances in active houses equipped with batteries the electricity bill and the CO2 emissions. Mathematically, the scheduling problem is posed as a multi that the new formulation can decrease both the CO2 emissions and the electricity bill. Furthermore, a survey

  13. A Texas Study of the Effects of the National Appliance Energy Conservation Act of 1987

    E-Print Network [OSTI]

    Bachmeier, R.

    1987-01-01T23:59:59.000Z

    on the amount of energy which can be consumed by major new household appliances. The efficiency standards mandated by the NAECA will be phased in between 1988 and 1993 and will focus on space heating equipment, air conditioners, water heaters, refrigerators...

  14. Impact of domestic woodburning appliances on indoor air quality Corinne Mandin1

    E-Print Network [OSTI]

    Boyer, Edmond

    air pollution study (CITEPA), France * Corresponding email: Eva.Leoz@ineris.fr SUMMARY Data pollutants in ambient air. Consequently our study aims at describing both emission factors and inerisImpact of domestic woodburning appliances on indoor air quality Corinne Mandin1 , Jacques Ribron2

  15. Measure Guideline: Combustion Safety for Natural Draft Appliances Using Indoor Air

    SciTech Connect (OSTI)

    Brand, L.

    2014-04-01T23:59:59.000Z

    This measure guideline covers how to assess and carry out the combustion safety procedures for appliances and heating equipment that uses indoor air for combustion in low-rise residential buildings. Only appliances installed in the living space, or in an area freely communicating with the living space, vented alone or in tandem with another appliance are considered here. A separate measure guideline addresses combustion appliances located either within the living space in enclosed closets or side rooms or outside the living space in an adjacent area like an attic or garage that use outdoor air for combustion. This document is for inspectors, auditors, and technicians working in homes where energy upgrades are being conducted whether or not air infiltration control is included in the package of measures being applied. In the indoor combustion air case, guidelines summarized here are based on language provided in several of the codes to establish minimum requirements for the space using simplified prescriptive measures. In addition, building performance testing procedures are provided by testing agencies. The codes in combination with the test procedures offer comprehensive combustion safety coverage to address safety concerns, allowing inexperienced residential energy retrofit inspectors to effectively address combustion safety issues and allow energy retrofits to proceed.

  16. An Appliance-driven Approach to Detection of Corrupted Load Curve Data

    E-Print Network [OSTI]

    Pei, Jian

    An Appliance-driven Approach to Detection of Corrupted Load Curve Data Guoming Tang1,3 , Kui Wu1@sfu.ca, jiuyang_tang@nudt.edu.cn, jshlei@shiep.edu.cn ABSTRACT Load curve data in power systems refers to users discov- ered in the data. Load curve data, however, usually suffers from corruptions caused by various

  17. A Communication-Based Appliance Scheduling Scheme for Consumer-Premise Energy Management Systems

    E-Print Network [OSTI]

    Snyder, Larry

    of electricity prices and distributed wind power uncertainty. We model the evolution of the protocol as a two is an energy management controller that incorporates prices and user preferences to providA Communication-Based Appliance Scheduling Scheme for Consumer-Premise Energy Management Systems

  18. 2014-06-06 Appliance Standards and Rulemaking Federal Advisory Committee; Preliminary Agenda

    Broader source: Energy.gov [DOE]

    This document is a preliminary agenda for the Appliance Standards and Rulemaking Federal Advisory Committee open meeting being held on June 6, 2014 from 1:00 p.m.-5:00 p.m. (EST) at the U.S. Department of Energy, Forrestal Building, Room 8E-089, 1000 Independence Avenue SW., Washington, DC 20585.

  19. Experience from Building Industry Strength Agent-Based Appliances Leon Sterling

    E-Print Network [OSTI]

    Taveter, Kuldar

    Experience from Building Industry Strength Agent-Based Appliances Leon Sterling The University of Melbourne Department of Computer Science and Software Engineering Victoria, 3010, Australia leon@cs.mu.oz.au Kuldar Taveter The University of Melbourne Department of Computer Science and Software Engineering

  20. Standby and off-mode power demand of new appliances in the Anbal de Almeida

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Standby and off-mode power demand of new appliances in the market Anbal de Almeida ISR regulation to limit the standby and off-mode power consumption of non-networked household electronic involved in the project. Standby and off-mode values by product categories are analyzed and compared

  1. Cost Recovery Charge (CRC) Calculation Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cost Recovery Charge (CRC) Calculation Table Updated: March 20, 2015 FY 2016 February 2015 CRC Calculation Table (pdf) Final FY 2015 CRC Letter & Table (pdf) Note: The Cost...

  2. Advanced Vehicle Technologies Awards Table

    Broader source: Energy.gov [DOE]

    The table contains a listing of the applicants, their locations, the amounts of the awards, and description of each project.

  3. Mentoring Guide TABLE OF CONTENTS

    E-Print Network [OSTI]

    Dasgupta, Dipankar

    Mentoring Guide 1 #12;TABLE OF CONTENTS Introduction...........................................................................................................3 CCFA Mentoring Guide.........................................................................................3 Why Do I Need A Mentor

  4. Table 2.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict

  5. 1999 CBECS Detailed Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels for Electric Utility Plants 1998 Tables

  6. July 11 Public Meeting: Physical Characterization of Grid-Connected Commercial And Residential Building End-Use Equipment And Appliances

    Broader source: Energy.gov [DOE]

    These documents contain the three slide decks presented at the public meeting on the Physical Characterization of Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances, held on July 11, 2014 in Washington, DC.

  7. Table 4.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota" "megawatts" "Item", 2013, 2012,West1 Offsite-Produced

  8. Table G3

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWestQuantity of2".9..1.1. 1905-0194

  9. Table1.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWestQuantityReporting Entities, Data Year

  10. FY 2008 Laboratory Table

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment ofAppropriationBudgetLaboratory Table

  11. FY 2009 State Table

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6 FY 2007 FY 2008State Tables

  12. FY 2009 Statistical Table

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6 FY 2007 FY 2008State TablesStatistical

  13. Microsoft Word - table_08

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15LiquidBG 0 20 40 60 807 Created on:3 Table

  14. A=19 Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less2012KE01)93TI07) (Not observed)95TI07)95TI07)72AJ02) (SeeTables

  15. TABLE OF CONTENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructureProposed Action(InsertAbout theSystems3, Revision 0 i TABLE OF

  16. TABLE OF CONTENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructureProposed Action(InsertAbout theSystems3, Revision 0 i TABLE

  17. TABLE OF CONTENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructureProposed Action(InsertAbout theSystems3, Revision 0 i TABLE5,

  18. 1992 CBECS Detailed Tables

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet) 1,001 to7. Electricity4.Rocky6 AprilTables

  19. 8He General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2 Q3 U . SHe General Tables

  20. 9Be General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2 Q3 U . SHeBBe General Table

  1. Table of Contents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2D Alloys &8-5070P3. U.S.7. U.S.8.5TABLE

  2. Table of Contents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2D Alloys &8-5070P3. U.S.7. U.S.8.5TABLE2

  3. Near Zero Emissions at 50 Percent Thermal Efficiency

    SciTech Connect (OSTI)

    None

    2012-12-31T23:59:59.000Z

    Detroit Diesel Corporation (DDC) has successfully completed a 10 year DOE sponsored heavy-duty truck engine program, hereafter referred to as the NZ-50 program. This program was split into two major phases. The first phase was called ??Near-Zero Emission at 50 Percent Thermal Efficiency,? and was completed in 2007. The second phase was initiated in 2006, and this phase was named ??Advancements in Engine Combustion Systems to Enable High-Efficiency Clean Combustion for Heavy-Duty Engines.? This phase was completed in September, 2010. The key objectives of the NZ-50 program for this first phase were to: ? Quantify thermal efficiency degradation associated with reduction of engine-out NOx emissions to the 2007 regulated level of ~1.1 g/hp-hr. ? Implement an integrated analytical/experimental development plan for improving subsystem and component capabilities in support of emerging engine technologies for emissions and thermal efficiency goals of the program. ? Test prototype subsystem hardware featuring technology enhancements and demonstrate effective application on a multi-cylinder, production feasible heavy-duty engine test-bed. ? Optimize subsystem components and engine controls (calibration) to demonstrate thermal efficiency that is in compliance with the DOE 2005 Joule milestone, meaning greater than 45% thermal efficiency at 2007 emission levels. ? Develop technology roadmap for meeting emission regulations of 2010 and beyond while mitigating the associated degradation in engine fuel consumption. Ultimately, develop technical prime-path for meeting the overall goal of the NZ-50 program, i.e., 50% thermal efficiency at 2010 regulated emissions. These objectives were successfully met during the course of the NZ-50 program. The most noteworthy achievements in this program are summarized as follows: ? Demonstrated technologies through advanced integrated experiments and analysis to achieve the technical objectives of the NZ-50 program with 50.2% equivalent thermal efficiency under EPA 2010 emissions regulations. ? Experimentally demonstrate brake efficiency of 48.5% at EPA 2010 emission level at single steady-state point. ? Analytically demonstrated additional brake efficiency benefits using advanced aftertreatment configuration concept and air system enhancement including, but not limited to, turbo-compound, variable valve actuator system, and new cylinder head redesign, thus helping to achieve the final program goals. ? Experimentally demonstrated EPA 2010 emissions over FTP cycles using advanced integrated engine and aftertreatment system. These aggressive thermal efficiency and emissions results were achieved by applying a robust systems technology development methodology. It used integrated analytical and experimental tools for subsystem component optimization encompassing advanced fuel injection system, increased EGR cooling capacity, combustion process optimization, and advanced aftertreatment technologies. Model based controls employing multiple input and output techniques enabled efficient integration of the various subsystems and ensured optimal performance of each system within the total engine package. . The key objective of the NZ-50 program for the second phase was to explore advancements in engine combustion systems using high-efficiency clean combustion (HECC) techniques to minimize cylinder-out emissions, targeting a 10% efficiency improvement. The most noteworthy achievements in this phase of the program are summarized as follows: ? Experimentally and analytically evaluated numerous air system improvements related to the turbocharger and variable valve actuation. Some of the items tested proved to be very successful and modifications to the turbine discovered in this program have since been incorporated into production hardware. ? The combustion system development continued with evaluation of various designs of the 2-step piston bowl. Significant improvemen

  4. Agenda for Public Meeting on the Physical Characterization of Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    Download the agenda below for the July 11 Public Meeting on the Physical Characterization of Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances.

  5. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia"Maryland" "TechnologyDakota"Virginia"1 Table 16.

  6. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia"Maryland" "TechnologyDakota"Virginia"1 Table

  7. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia"Maryland" "TechnologyDakota"Virginia"1 TableIllinois"

  8. Table B10. Employment Size Category, Number of Buildings, 1999

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWestQuantity of2". Summary Table:0.

  9. Comparison of the percent recoveries of activated charcoal and Spherocarb after storage utilizing thermal desorption

    E-Print Network [OSTI]

    Stidham, Paul Emery

    1980-01-01T23:59:59.000Z

    between the two adsorbents. The parameters of storage in- cluded various durations of time, temperatures, and concentrations. Rather than the present conventional solvent desorption methods, thermal desorption was used in the analysis of samples... Duncan's Multiple Range Test For Variable Percent. 32 6 Mean Percent Recoveries For The Interaction Between Type Of Adsorbent And Storage Time . 7 Mean Percent Recoveries For The Interaction Between Sample Concentration And Storage Time. 39 40 8...

  10. FNANO12 Table of Contents Table of Contents

    E-Print Network [OSTI]

    Reif, John H.

    Bardram Software tools for automated design of dynamic nucleic acid systems Table of Contents In Silico Design, In Vitro Characterization and Ex-Vivo Studies of Functional RNA-based Nanoparticles

  11. FY 2015 Summary Control Table by Appropriation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary Control Table by Appropriation (dollars in thousands - OMB Scoring) Summary Control Table by Appropriation Page 1 FY 2015 Congressional Request FY 2013 FY 2014 FY 2014 FY...

  12. Max Tech and Beyond: Maximizing Appliance and Equipment Efficiency by Design

    SciTech Connect (OSTI)

    Desroches, Louis-Benoit; Garbesi, Karina

    2011-07-20T23:59:59.000Z

    It is well established that energy efficiency is most often the lowest cost approach to reducing national energy use and minimizing carbon emissions. National investments in energy efficiency to date have been highly cost-effective. The cumulative impacts (out to 2050) of residential energy efficiency standards are expected to have a benefit-to-cost ratio of 2.71:1. This project examined energy end-uses in the residential, commercial, and in some cases the industrial sectors. The scope is limited to appliances and equipment, and does not include building materials, building envelopes, and system designs. This scope is consistent with the scope of DOE's appliance standards program, although many products considered here are not currently subject to energy efficiency standards. How much energy could the United States save if the most efficient design options currently feasible were adopted universally? What design features could produce those savings? How would the savings from various technologies compare? With an eye toward identifying promising candidates and strategies for potential energy efficiency standards, the Max Tech and Beyond project aims to answer these questions. The analysis attempts to consolidate, in one document, the energy savings potential and design characteristics of best-on-market products, best-engineered products (i.e., hypothetical products produced using best-on-market components and technologies), and emerging technologies in research & development. As defined here, emerging technologies are fundamentally new and are as yet unproven in the market, although laboratory studies and/or emerging niche applications offer persuasive evidence of major energy-savings potential. The term 'max tech' is used to describe both best-engineered and emerging technologies (whichever appears to offer larger savings). Few best-on-market products currently qualify as max tech, since few apply all available best practices and components. The three primary analyses presented in this report are: Nevertheless, it is important to analyze best-on-market products, since data on truly max tech technologies are limited. (1) an analysis of the cross-cutting strategies most promising for reducing appliance and equipment energy use in the U.S.; (2) a macro-analysis of the U.S. energy-saving potential inherent in promising ultra-efficient appliance technologies; and (3) a product-level analysis of the energy-saving potential.

  13. PRESS RELEASES OF SENATOR PETE DOMENICI Domenici Supports 12 Percent Increase for Nuclear Energy, Disputes Fusion

    E-Print Network [OSTI]

    PRESS RELEASES OF SENATOR PETE DOMENICI Domenici Supports 12 Percent Increase for Nuclear Energy his support for a 12 percent increase in federal funding for nuclear energy research, but challenged of modern nuclear power plants. Domenici is chairman of the Energy and Water Development Appropriations

  14. Automation of BESSY scanning tables

    E-Print Network [OSTI]

    Hanton, J

    1981-01-01T23:59:59.000Z

    A microprocessor M6800 is used for the automation of scanning and premeasuring BESSY tables. The tasks achieved by the microprocessor are: control of spooling of the four asynchronous film winding devices and switching on and off the 4 projection lamps; preprocessing of the data coming from a bipolar coordinates measuring device; bidirectional interchange of information between the operator, the BESSY table and the DEC PDP 11/34 mini computer controlling the scanning operations; control of the magnification on the table by swapping the projection lenses of appropriate focal lengths and the associated light boxes (under development). In connection with the last of these, study is being made for the use of BESSY tables for accurate measurements (+/- 5 microns), by encoding the displacements of the projection lenses. (0 refs).

  15. TABLE OF CONTENTS ABSTRACT . . .. . . .. . . . . . . . . . . . . . . . . . . . . . v

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    ............................................... 12 Water-Source Heat Pump Performance ............................ 18 Air-Source Heat Pump QUARTZ CONTENT OF SEDIMENTARY ROCK LAYERS ........ 17 TABLE 10. PROPERTIES OF SEDIMENTARY ROCK LAYERS OF PERFORMANCE OF WATER-SOURCE HEAT PUMP .............................. ................. 23 FIGURE 2. NODAL

  16. EPA ENERGY STAR: Tackling Growth in Home Electronics and Small Appliances

    SciTech Connect (OSTI)

    Sanchez, Marla Christine; Brown, Richard; Homan, Gregory

    2008-11-17T23:59:59.000Z

    Over a decade ago, the electricity consumption associated with home electronics and other small appliances emerged onto the global energy policy landscape as one of the fastest growing residential end uses with the opportunity to deliver significant energy savings. As our knowledge of this end use matures, it is essential to step back and evaluate the degree to which energy efficiency programs have successfully realized energy savings and where savings opportunities have been missed.For the past fifteen years, we have quantified energy, utility bill, and carbon savings for US EPA?s ENERGY STAR voluntary product labeling program. In this paper, we present a unique look into the US residential program savings claimed to date for EPA?s ENERGY STAR office equipment, consumer electronics, and other small household appliances as well as EPA?s projected program savings over the next five years. We present a top-level discussion identifying program areas where EPA?s ENERGY STAR efforts have succeeded and program areas where ENERGY STAR efforts did not successfully address underlying market factors, technology issues and/or consumer behavior. We end by presenting the magnitude of ?overlooked? savings.

  17. APPLIANCE STANDARDS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fan Light Kits External Power Supplies Walk-in Coolers & Freezers Commercial Refrigeration Equipment Refrigerators & Freezers Water Heaters CAC HP CAC HP Furnaces &...

  18. If I generate 20 percent of my national electricity from wind...

    Open Energy Info (EERE)

    generate 20 percent of my national electricity from wind and solar - what does it do to my GDP and Trade Balance ? Home I think that the economics of fossil fuesl are well...

  19. Absolute Percent Error Based Fitness Functions for Evolving Forecast Models AndyNovobilski,Ph.D.

    E-Print Network [OSTI]

    Fernandez, Thomas

    Absolute Percent Error Based Fitness Functions for Evolving Forecast Models Andy computfi~gas a methodof data mining,is its intrinsic ability to drive modelselection accordingto a mixedset of criteria. Basedon natural selection, evolutionary computing utilizes evaluationof candidatesolutions

  20. Impacts of Increasing Natural Gas Fueled CHP from 20 to 35 Percent...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impacts of Increasing Natural Gas Fueled CHP from 20 to 35 Percent of Total Electricity Production in Texas, April 2011 Impacts of Increasing Natural Gas Fueled CHP from 20 to 35...

  1. Residential Appliance Data, Assumptions and Methodology for End-Use Forecasting with EPRI-REEPS 2.1

    E-Print Network [OSTI]

    was developed by the Electric Power Research Institute (McMenamin et al. 1992). In this modeling framework the modeling framework of the Residential End-Use Energy Planning System (REEPS) developed for the Electric provided by the Appliance Model in the Residential End-Use Energy Planning System (REEPS), which

  2. Creating and Implementing a Regularized Monitoring and EnforcementSystem for China's Mandatory Standards and Energy Information Label forAppliances

    SciTech Connect (OSTI)

    Lin, Jiang

    2007-03-01T23:59:59.000Z

    China has developed a comprehensive program of energy efficiency standards and labels for household appliances. In 1989, China first launched its minimum energy performance standards (MEPS), which are now applied to an extensive list of products. In 1998, China launched a voluntary energy endorsement label, which has grown to cover both energy-saving and water-saving products. And, in 2005, China launched a mandatory energy information label that initially covered two products. CLASP has assisted China in developing 11 minimum energy performance standards (MEPS) for 9 products and endorsement labels for 11 products including: refrigerators; air conditioners; televisions; printers; computers; monitors; fax machines; copiers; DVD/VCD players; external power supplies; and set-top boxes. CLASP has also assisted China in the development of the mandatory energy information label. Increasingly, attention is being placed on maximum energy savings from China's standards and labeling (S&L) efforts in order to meet the recently announced goal of reducing China's energy intensity by 20 percent by 2010 with an interim objective of 4 percent in 2006. China's mandatory standards system is heavily focused on the technical requirements for efficiency performance, but historically, it has lacked administrative and personnel capacity to undertake monitoring and enforcement of these legally binding standards. Similarly, resources for monitoring and enforcement have been quite limited. As a consequence, compliance to both the mandatory standards and the mandatory energy information label is uneven with the potential and likely result of lost energy savings. Thus, a major area for improvement, which could significantly increase overall energy savings, is the creation and implementation of a regularized monitoring system for tracking the compliance to, and enforcement of, mandatory standards and the energy information label in China. CLASP has been working with the China National Institute of Standardization (CNIS), the China Administration for Quality, Supervision, Inspection and Quarantine (AQSIQ) and relevant stakeholders in the industry to develop a stronger system of monitoring and enforcement. In November 2005, CNIS and LBNL (a CLASP implementing partner) with funding from the Energy Foundation jointly organized an international workshop to present the international best practices in S&L monitoring and enforcement. Currently, CNIS is developing a guideline for monitoring and enforcement for appliance standards. With support from METI, CLASP has been able to expand the on-going collaboration with CNIS to include enforcement needs for the mandatory energy information label and to accelerate the progress of the project to develop a more robust monitoring and enforcement for S&L programs in China. This expanded effort has included: (1) Holding an enforcement and monitoring roadmap planning workshop with key S&L stakeholders; (2) Interviews with S&L stakeholders on the need and scope of national compliance tests; (3) Research on past enforcement activities; (4) An analysis of compliance data from the mandatory energy information labeling program; (5) Interviews with stakeholders on the need and scope of testing infrastructure; and (6) Development of a roadmap for future activities. This report summarizes the findings of these activities and identifies the progress that China is making, and can make, toward developing a stronger system of monitoring and enforcement (M&E). In sum, it outlines a vision of moving forward with more vigorous M&E in China.

  3. Effects of time constraint and percent defective on visual inspection performance

    E-Print Network [OSTI]

    Gilmore, Walter Edgar

    1982-01-01T23:59:59.000Z

    EFFECTS OF TIME CONSTRAINT AND PERCENT DEFECTIVE ON VISUAL INSPECTION PERFORMANCE A Thesis by WALTER EDGAR GILMORE II Submitted to the Graduate College of Texas ABM University in partial fulfillment of the requirement for the degree MASTER... OF SCIENCE August 1982 Major Subject: Industrial Engineering EFFECTS OF TIME CONSTRAINT AND PERCENT DEFECTIVE ON VISUAL INSPECTION PERFORMANCE A Thesis by WALTER EDGAR GILMORE II Approved as to sty1e and content by: Chairman of Committ e) (Memb r...

  4. Energy-efficiency labels and standards: A guidebook for appliances, equipment and lighting

    SciTech Connect (OSTI)

    McMahon, James E.; Wiel, Stephen

    2001-02-16T23:59:59.000Z

    Energy-performance improvements in consumer products are an essential element in any government's portfolio of energy-efficiency and climate change mitigation programs. Governments need to develop balanced programs, both voluntary and regulatory, that remove cost-ineffective, energy-wasting products from the marketplace and stimulate the development of cost-effective, energy-efficient technology. Energy-efficiency labels and standards for appliances, equipment, and lighting products deserve to be among the first policy tools considered by a country's energy policy makers. The U.S. Agency for International Development (USAID) and the United Nations Foundation (UNF) recognize the need to support policy makers in their efforts to implement energy-efficiency standards and labeling programs and have developed this guidebook, together with the Collaborative Labeling and Appliance Standards Program (CLASP), as a primary reference. This guidebook was prepared over the course of the past year with significant contribution from the authors and reviewers mentioned previously. Their diligent participation has made this the international guidance tool it was intended to be. The lead authors would also like to thank the following individuals for their support in the development, production, and distribution of the guidebook: Marcy Beck, Elisa Derby, Diana Dhunke, Ted Gartner, and Julie Osborn of Lawrence Berkeley National Laboratory as well as Anthony Ma of Bevilacqua-Knight, Inc. This guidebook is designed as a manual for government officials and others around the world responsible for developing, implementing, enforcing, monitoring, and maintaining labeling and standards-setting programs. It discusses the pros and cons of adopting energy-efficiency labels and standards and describes the data, facilities, and institutional and human resources needed for these programs. It provides guidance on the design, development, implementation, maintenance, and evaluation of the programs and on the design of the labels and standards themselves. In addition, it directs the reader to references and other resources likely to be useful in conducting the activities described and includes a chapter on energy policies and programs that complement appliance efficiency labels and standards. This guidebook attempts to reflect the essential framework of labeling and standards programs. It is the intent of the authors and sponsors to distribute copies of this book worldwide at no charge for the general public benefit. The guidebook is also available on the web at www.CLASPonline.org and can be downloaded to be used intact or piecemeal for whatever beneficial purposes readers may conceive.

  5. Evaluation of Waste Heat Recovery and Utilization from Residential Appliances and Fixtures

    SciTech Connect (OSTI)

    Tomlinson, John J [ORNL; Christian, Jeff [Oak Ridge National Laboratory (ORNL); Gehl, Anthony C [ORNL

    2012-09-01T23:59:59.000Z

    Executive Summary In every home irrespective of its size, location, age, or efficiency, heat in the form of drainwater or dryer exhaust is wasted. Although from a waste stream, this energy has the potential for being captured, possibly stored, and then reused for preheating hot water or air thereby saving operating costs to the homeowner. In applications such as a shower and possibly a dryer, waste heat is produced at the same time as energy is used, so that a heat exchanger to capture the waste energy and return it to the supply is all that is needed. In other applications such as capturing the energy in drainwater from a tub, dishwasher, or washing machine, the availability of waste heat might not coincide with an immediate use for energy, and consequently a heat exchanger system with heat storage capacity (i.e. a regenerator) would be necessary. This study describes a two-house experimental evaluation of a system designed to capture waste heat from the shower, dishwasher clothes washer and dryer, and to use this waste heat to offset some of the hot water energy needs of the house. Although each house was unoccupied, they were fitted with equipment that would completely simulate the heat loads and behavior of human occupants including operating the appliances and fixtures on a demand schedule identical to Building American protocol (Hendron, 2009). The heat recovery system combined (1) a gravity-film heat exchanger (GFX) installed in a vertical section of drainline, (2) a heat exchanger for capturing dryer exhaust heat, (3) a preheat tank for storing the captured heat, and (4) a small recirculation pump and controls, so that the system could be operated anytime that waste heat from the shower, dishwasher, clothes washer and dryer, and in any combination was produced. The study found capturing energy from the dishwasher and clothes washer to be a challenge since those two appliances dump waste water over a short time interval. Controls based on the status of the dump valve on these two appliances would have eliminated uncertainty in knowing when waste water was flowing and the recovery system operated. The study also suggested that capture of dryer exhaust heat to heat incoming air to the dryer should be examined as an alternative to using drying exhaust energy for water heating. The study found that over a 6-week test period, the system in each house was able to recover on average approximately 3000 W-h of waste heat daily from these appliance and showers with slightly less on simulated weekdays and slightly more on simulated weekends which were heavy wash/dry days. Most of these energy savings were due to the shower/GFX operation, and the least savings were for the dishwasher/GFX operation. Overall, the value of the 3000 W-h of displaced energy would have been $0.27/day based on an electricity price of $.09/kWh. Although small for today s convention house, these savings are significant for a home designed to approach maximum affordable efficiency where daily operating costs for the whole house are less than a dollar per day. In 2010 the actual measured cost of energy in one of the simulated occupancy houses which waste heat recovery testing was undertaken was $0.77/day.

  6. COOKING APPLIANCE USE IN CALIFORNIA HOMES DATA COLLECTED FROM A WEB-BASED SURVEY

    SciTech Connect (OSTI)

    Klug, Victoria; Lobscheid, Agnes; Singer, Brett

    2011-08-01T23:59:59.000Z

    Cooking of food and use of natural gas cooking burners generate pollutants that can have substantial impacts on residential indoor air quality. The extent of these impacts depends on cooking frequency, duration and specific food preparation activities in addition to the extent to which exhaust fans or other ventilation measures (e.g. windows) are used during cooking. With the intent of improving our understanding of indoor air quality impacts of cooking-related pollutants, we created, posted and advertised a web-based survey about cooking activities in residences. The survey included questions similar to those in California's Residential Appliance Saturation Survey (RASS), relating to home, household and cooking appliance characteristics and weekly patterns of meals cooked. Other questions targeted the following information not captured in the RASS: (1) oven vs. cooktop use, the number of cooktop burners used and the duration of burner use when cooking occurs, (2) specific cooking activities, (3) the use of range hood or window to increase ventilation during cooking, and (4) occupancy during cooking. Specific cooking activity questions were asked about the prior 24 hours with the assumption that most people are able to recollect activities over this time period. We examined inter-relationships among cooking activities and patterns and relationships of cooking activities to household demographics. We did not seek to obtain a sample of respondents that is demographically representative of the California population but rather to inexpensively gather information from homes spanning ranges of relevant characteristics including the number of residents and presence or absence of children. This report presents the survey, the responses obtained, and limited analysis of the results.

  7. Pollutant Emission Factors from Residential Natural Gas Appliances: A Literature Review

    E-Print Network [OSTI]

    Traynor, G.W.

    2011-01-01T23:59:59.000Z

    Furnace (2) Heater (35) Water Heater (32) ~ Space u.. c:Emissionsfrom Gas-fired Water Heaters, Report No. 1507,gas furnaces and water heaters," JAPCA 31:1268 (1981). Table

  8. Table of Contents INTRODUCTION 2

    E-Print Network [OSTI]

    O'Mahony, Donal E.

    #12;1 Table of Contents INTRODUCTION 2 SECTION ONE: PRINCIPLES OF GOOD PRACTICE 4 SECTION TWO, it offers a practical guide to staff and volunteers who work with children by outlining a number of fundamental principles of good practice, highlighting the key elements of each one and discussing the issues

  9. EIA - Annual Energy Outlook (AEO) 2013 Data Tables

    Gasoline and Diesel Fuel Update (EIA)

    Floorspace, and Equipment Efficiency XLS Table 24. Industrial Sector Macroeconomic Indicators XLS Table 25. Refining Industry Energy Consumption XLS Table 26. Food Industry...

  10. 2014-04-30 Public Meeting Agenda: Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    This document is the agenda for the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting being held on April 30, 2014.

  11. 2014-04-30 Public Meeting Presentation Slides: Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    These documents contain slide decks presented at the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting held on April 30, 2014.

  12. SOFA 2 Documentation Table of contents

    E-Print Network [OSTI]

    SOFA 2 Documentation Table of contents 1 Overview...................................................................................................................... 2 2 Documentation............................................................................................................. 2 3 Other documentation and howtos

  13. The Interactive Dining Table Florian Echtler

    E-Print Network [OSTI]

    Deussen, Oliver

    into the table lamp for sensing interaction and a small LED-based projector mounted on the ceiling for displaying

  14. Percent of Commercial Natural Gas Deliveries in Vermont Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice (Percent) YearPrice (Percent) Year

  15. Percent of Commercial Natural Gas Deliveries in Virginia Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice (Percent) YearPrice (Percent)

  16. Percent of Commercial Natural Gas Deliveries in Wyoming Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice (Percent) YearPricePrice (Percent)

  17. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, SourcesType"A50.

  18. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions,

  19. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions,Illinois"

  20. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions,Illinois"Indiana"

  1. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History

  2. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series HistoryKansas"

  3. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series HistoryKansas"Kentucky"

  4. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series HistoryKansas"Kentucky"Louisiana"

  5. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series

  6. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download SeriesMassachusetts"

  7. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download SeriesMassachusetts"Michigan"

  8. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download SeriesMassachusetts"Michigan"Mississippi"

  9. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download

  10. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History DownloadMontana"

  11. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History DownloadMontana"Nebraska"

  12. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History DownloadMontana"Nebraska"Nevada"

  13. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History DownloadMontana"Nebraska"Nevada"Hampshire"

  14. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History

  15. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series HistoryMexico"

  16. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series HistoryMexico"Carolina"

  17. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series HistoryMexico"Carolina"Dakota"

  18. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series HistoryMexico"Carolina"Dakota"Ohio"

  19. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series HistoryMexico"Carolina"Dakota"Ohio"Oklahoma"

  20. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series