National Library of Energy BETA

Sample records for apple laptop battery

  1. A Lighting Solution using Discarded Laptop Batteries

    E-Print Network [OSTI]

    Toronto, University of

    UrJar A Lighting Solution using Discarded Laptop Batteries Vikas Chandan vchanda4@in.ibm.com IBM year 3 #12;Li-Ion Batteries Li-Ion batteries power laptops, tablets and phones, form a key constituent of e-waste IBM India produced ~10 tons of discarded laptop batteries (2013) Recycling Li-Ion batteries

  2. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing...

  3. Apple Closeout Prices unh computer store

    E-Print Network [OSTI]

    Apple Closeout Prices 6/5/15 unh computer store university of new hampshire phone: (603) 862 and battery life.1 Key Features MacBook Pro with Retina display (13-inch) AppleCare for MacBook Pro Apple Compared with the previous-generation. 2 Battery life varies by use and configuration. See www.apple

  4. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good...

  5. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good...

  6. Sketch Retrieval via Dense Stroke Features bottle apple apple apple apple apple swan giraffe mug giraffe giraffe giraffe

    E-Print Network [OSTI]

    Yang, Ming-Hsuan

    Sketch Retrieval via Dense Stroke Features bottle apple apple apple apple apple swan giraffe mug giraffe giraffe giraffe bottle swan giraffe swan swan swan swan apple apple apple apple bottle bottle swan

  7. Coated Silicon Nanowires as Anodes in Lithium Ion Batteries

    E-Print Network [OSTI]

    Watts, David James

    2014-01-01

    silicon nanowires for lithium ion battery anode with longfor high-performance lithium-ion battery anodes. Appl. Phys.as the anode for a lithium-ion battery with high coulombic

  8. Testing three 90Whr Dell Batteries for Latitude E6410 I have been able, for complicated reasons, to test three batteries sold as 9cell 90Whr batteries for

    E-Print Network [OSTI]

    Sloman, Aaron

    Testing three 90Whr Dell Batteries for Latitude E6410 I have been able, for complicated reasons, to test three batteries sold as 9cell 90Whr batteries for the Dell Latitude E6410 computer, one made battery was fully charged then allowed to discharge while the laptop was on, and not doing very much

  9. A Battery-Aware Algorithm for Supporting Collaborative Applications

    E-Print Network [OSTI]

    Rollins, Sami

    A Battery-Aware Algorithm for Supporting Collaborative Applications Sami Rollins and Cheryl Chang. Battery-powered devices such as laptops, cell phones, and MP3 players are becoming ubiquitous. There are several significant ways in which the ubiquity of battery-powered technology impacts the field

  10. Silicon nanowire boost for rechargeable batteries Online Shop Contact us Advanced

    E-Print Network [OSTI]

    Cui, Yi

    Silicon nanowire boost for rechargeable batteries Online Shop Contact us Advanced search Chemistry batteries 17 December 2007 Scientists in the US have devised an easy way of using silicon nanowires to increase the capacity of lithium batteries - like those in laptops - by up to five times. A lithium battery

  11. Kiss Apple

    E-Print Network [OSTI]

    Hacker, Randi; Boyd, David

    2011-08-24

    the tiny kiss apple. Apples are known to be natural breath fresheners but chomping down on an after dinner regulation size fruit could ruin the romantic mood. Hence the kiss apple. The ping-pong ball sized fruit can be popped in the mouth whole. Not content...

  12. Request for Information on Evaluating New Products for the Battery...

    Energy Savers [EERE]

    and External Power Supply Rulemaking - Ex Parte Communication List of topics that Apple Inc. discussed with DOE RFIEvaluating New ProductsBattery Chargers & External Power...

  13. Use My Laptop 2013 -2014 University Libraries www.lib.umd.edu/tl/guides/laptops

    E-Print Network [OSTI]

    Hill, Wendell T.

    /FAQ.html Does my dorm room have wireless coverage? How do I set up a wireless router? Will my iPhone work to the campus' wireless network REQUIREMENT: In order to connect your laptop to the Internet, you must to connect to the University's wireless network: www.it.umd.edu/nts/noc/wireless/connect.html Login using

  14. An investigation of transportation methods of laptop computers and peripheral equipment 

    E-Print Network [OSTI]

    Parker, Martha Katherine

    1997-01-01

    Laptop computer usage is a significant portion of business computer use. Many mobile computer users face problems with laptop and peripheral equipment transportation. This study gathered and analyzed data concerning three methods of laptop...

  15. Wireless bridges : the laptop experience in the learning environment

    E-Print Network [OSTI]

    Lee, Sophia J. (Sophia Juhee), 1977-

    2003-01-01

    The Laptop experience has changed the way people work and interact with learning space. The integration of technology in learning environments affects the usage of space and produces new learning patterns. However, new ...

  16. Batteries: Overview of Battery Cathodes

    SciTech Connect (OSTI)

    Doeff, Marca M

    2010-07-12

    The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can meet requirements for all applications, research into cathodes for Li-ion batteries is, as of this writ

  17. GRACE: Cross-Layer Adaptation for Multimedia Quality and Battery Energy

    E-Print Network [OSTI]

    Nahrstedt, Klara

    1 GRACE: Cross-Layer Adaptation for Multimedia Quality and Battery Energy Wanghong Yuan, Klara multimedia data need to support multimedia quality with limited battery energy. To address this challenging reduces the laptop's energy consumption by 1.4% to 31.4% while providing better or same video quality

  18. Comparing Apples to Apples: Benchmarking Electrocatalysts for...

    Office of Science (SC) Website

    Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information May 2015 Comparing Apples to Apples: Benchmarking Electrocatalysts for...

  19. Plastic Bags to Batteries: A Green Chemistry Solution

    ScienceCinema (OSTI)

    None

    2013-04-19

    Plastic bags are the scourge of roadsides, parking lots and landfills. But chemistry comes to the rescue! At Argonne National Laboratory, Vilas Pol has found a way to not only recycle plastic bags--but make them into valuable batteries for cell phones and laptops.

  20. Batteries: Overview of Battery Cathodes

    E-Print Network [OSTI]

    Doeff, Marca M

    2011-01-01

    M=Mn, Ni, Co) in Lithium Batteries at 50°C. Electrochem.Electrodes for Lithium Batteries. J. Am. Ceram. Soc. 82:S CIENCE AND T ECHNOLOGY Batteries: Overview of Battery

  1. Batteries: Overview of Battery Cathodes

    E-Print Network [OSTI]

    Doeff, Marca M

    2011-01-01

    Challenges in Future Li-Battery Research. Phil Trans. RoyalBatteries: Overview of Battery Cathodes Marca M. Doeffduring cell discharge. Battery-a device consisting of one or

  2. Abstract--Low power dissipation and maximum battery runtime are crucial in portable electronics. With accurate and

    E-Print Network [OSTI]

    Rincon-Mora, Gabriel A.

    cell phones, PDAs, digital cameras, and laptop computers has propelled battery technologies battery technologies cannot yet meet the progressive energy demands and size limi- tations of today designs and simula- tions. With minor modifications, this model can be extended to fuel cells and other

  3. Battery system

    DOE Patents [OSTI]

    Dougherty, Thomas J; Wood, Steven J; Trester, Dale B; Andrew, Michael G

    2013-08-27

    A battery module includes a plurality of battery cells and a system configured for passing a fluid past at least a portion of the plurality of battery cells in a parallel manner.

  4. Lithium Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thin-Film Battery with Lithium Anode Courtesy of Oak Ridge National Laboratory, Materials Science and Technology Division Lithium Batteries Resources with Additional Information...

  5. Batteries: Overview of Battery Cathodes

    E-Print Network [OSTI]

    Doeff, Marca M

    2011-01-01

    2000) Costs of Lithium-Ion Batteries for Vehicles. Report,for High-Power Lithium-Ion Batteries. J. Power Sources 128:in High-Power Lithium-Ion Batteries. J. Electrochem. Soc.

  6. Batteries: Overview of Battery Cathodes

    E-Print Network [OSTI]

    Doeff, Marca M

    2011-01-01

    used graphite anode. After charging, the batteries are readylithium ion batteries (i.e. , to lithiate graphite anodes soGraphite Electrodes Due to the Deposition of Manganese Ions on Them in Li-Ion Batteries.

  7. Apple Trees for Every Garden

    E-Print Network [OSTI]

    Martin, Orin

    2008-01-01

    Grower Press. Organic Apple Production Manual. Publication #of dwarf and semi-dwarf apple varieties can be seen in theGardener Apple Trees for Every Garden Orin Martin manages

  8. Cynthia Sandberg: Love Apple Farm

    E-Print Network [OSTI]

    Rabkin, Sarah

    2010-01-01

    me about the name, Love Apple Farm. Where does that comegrowbetterveggies/about-love-apple-farm.html See http://Photo by Tana Butler Love Apple Farm Cynthia Sandberg is

  9. Hardware Architecture for Measurements for 50-V Battery Modules

    SciTech Connect (OSTI)

    Patrick Bald; Evan Juras; Jon P. Christophersen; William Morrison

    2012-06-01

    Energy storage devices, especially batteries, have become critical for several industries including automotive, electric utilities, military and consumer electronics. With the increasing demand for electric and hybrid electric vehicles and the explosion in popularity of mobile and portable electronic devices such as laptops, cell phones, e-readers, tablet computers and the like, reliance on portable energy storage devices such as batteries has likewise increased. Because many of the systems these batteries integrated into are critical, there is an increased need for an accurate in-situ method of monitoring battery state-of-health. Over the past decade the Idaho National Laboratory (INL), Montana Tech of the University of Montana (Tech), and Qualtech Systems, Inc. (QSI) have been developing the Smart Battery Status Monitor (SBSM), an integrated battery management system designed to monitor battery health, performance and degradation and use this knowledge for effective battery management and increased battery life. Key to the success of the SBSM is an in-situ impedance measurement system called the Impedance Measurement Box (IMB). One of the challenges encountered has been development of a compact IMB system that will perform rapid accurate measurements of a battery impedance spectrum working with higher voltage batteries of up to 300 volts. This paper discusses the successful realization of a system that will work up to 50 volts.

  10. AIDP -Apple Interface Design Project

    E-Print Network [OSTI]

    Tollmar, Konrad

    AIDP - Apple Interface Design Project AIDP - Apple Interface Design Project m 92-95 m Joy Mountford m Design Centre, Advanced Technology Group m Apple's Industrial Design Group "Encourage ProjectThe Project m Bridge the gulf between the physical and virtual worlds - Apple m Design a new way

  11. ONE LAPTOP PER CHILD OLPC: Desafos de software. C. Scott Ananian, October 25, 2008. 1

    E-Print Network [OSTI]

    Ananian, C. Scott

    Software Universidad San Martín de Porres, Facultad de Ingeniería y Arquitectura Dr. C. Scott Ananian una sociedad equitativa y viable; 2 Una computadora laptop conectada es una herramienta muy poderosa

  12. ONE LAPTOP PER CHILD TALK TITLE. C. Scott Ananian, TALK DATE. 1

    E-Print Network [OSTI]

    Ananian, C. Scott

    - Notifications (startup & alerts) Part II: GNOME - Panel Part III: Fedora - Fork merging & notification software" Backend-agnostic! - Fedora uses yum, XO builds use ...? #12;ONE LAPTOP PER CHILD TALK TITLE. C

  13. Windows Laptop Windows Laptop

    E-Print Network [OSTI]

    Stuart, Steven J.

    Construction Science & Management Landscape Architecture Performing Arts Planning, Development, & Preservation & Bus. Environmental Resource Mgmt. Forest Resource Management Horticulture Soils and Sustainable Crop Systems Turfgrass Wildlife & Fisheries Biology Biological Sciences Food Science Packaging Science Mac

  14. Rechargeable lithium battery for use in applications requiring a low to high power output

    DOE Patents [OSTI]

    Bates, John B. (Oak Ridge, TN)

    1996-01-01

    Rechargeable lithium batteries which employ characteristics of thin-film batteries can be used to satisfy power requirements within a relatively broad range. Thin-film battery cells utilizing a film of anode material, a film of cathode material and an electrolyte of an amorphorus lithium phosphorus oxynitride can be connected in series or parallel relationship for the purpose of withdrawing electrical power simultaneously from the cells. In addition, such battery cells which employ a lithium intercalation compound as its cathode material can be connected in a manner suitable for supplying power for the operation of an electric vehicle. Still further, by incorporating within the battery cell a relatively thick cathode of a lithium intercalation compound, a relatively thick anode of lithium and an electrolyte film of lithium phosphorus oxynitride, the battery cell is rendered capable of supplying power for any of a number of consumer products, such as a laptop computer or a cellular telephone.

  15. Rechargeable lithium battery for use in applications requiring a low to high power output

    DOE Patents [OSTI]

    Bates, John B. (Oak Ridge, TN)

    1997-01-01

    Rechargeable lithium batteries which employ characteristics of thin-film batteries can be used to satisfy power requirements within a relatively broad range. Thin-film battery cells utilizing a film of anode material, a film of cathode material and an electrolyte of an amorphous lithium phosphorus oxynitride can be connected in series or parallel relationship for the purpose of withdrawing electrical power simultaneously from the cells. In addition, such battery cells which employ a lithium intercalation compound as its cathode material can be connected in a manner suitable for supplying power for the operation of an electric vehicle. Still further, by incorporating within the battery cell a relatively thick cathode of a lithium intercalation compound, a relatively thick anode of lithium and an electrolyte film of lithium phosphorus oxynitride, the battery cell is rendered capable of supplying power for any of a number of consumer products, such as a laptop computer or a cellular telephone.

  16. Batteries: Overview of Battery Cathodes

    E-Print Network [OSTI]

    Doeff, Marca M

    2011-01-01

    for Li-ion batteries. Solid Electrolyte Interface (SEI)-athe formation of a solid electrolyte interface (SEI) onElectrolyte Solutions, Temperatures). Electrochem. and Solid-

  17. KAir Battery

    Broader source: Energy.gov [DOE]

    KAir Battery, from Ohio State University, is commercializing highly energy efficient cost-effective potassium air batteries for use in the electrical stationary storage systems market (ESSS). Beyond, the ESSS market potential applications range from temporary power stations and electric vehicle.

  18. Reflectivematerials enhance `Fuji'apple

    E-Print Network [OSTI]

    Crisosto, Carlos H.

    Reflectivematerials enhance `Fuji'apple color Harry Andris o Carlos H. Crisosto Red color developmentis an important factor for consumer acceptance of California 'Fuji' apples. Several attempts to im not affect fla- vor, it is an important factor for con- sumer acceptance of apples. Cyanidin is the immediate

  19. About APPLE II Operation

    SciTech Connect (OSTI)

    Schmidt, T.; Zimoch, D.

    2007-01-19

    The operation of an APPLE II based undulator beamline with all its polarization states (linear horizontal and vertical, circular and elliptical, and continous variation of the linear vector) requires an effective description allowing an automated calculation of gap and shift parameter as function of energy and operation mode. The extension of the linear polarization range from 0 to 180 deg. requires 4 shiftable magnet arrrays, permitting use of the APU (adjustable phase undulator) concept. Studies for a pure fixed gap APPLE II for the SLS revealed surprising symmetries between circular and linear polarization modes allowing for simplified operation. A semi-analytical model covering all types of APPLE II and its implementation will be presented.

  20. Battery Charger Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery Charger Efficiency Issues with Marine and Recreational Vehicle Battery Chargers Marine and RV battery chargers differ from power tool and small appliance chargers CEC...

  1. Energy-Agile Laptops: Demand Response of Mobile Plug Loads Using Sensor/Actuator Networks

    E-Print Network [OSTI]

    California at Berkeley, University of

    Energy-Agile Laptops: Demand Response of Mobile Plug Loads Using Sensor/Actuator Networks Nathan@me.berkeley.edu Abstract--This paper explores demand response techniques for managing mobile, distributed loads with on observed. Our first simulation study explores a classic demand response scenario in which a large number

  2. turn over N Wireless printing allows you to print documents from your laptop

    E-Print Network [OSTI]

    turn over N Wireless printing allows you to print documents from your laptop to selected campus printers while connected to the U ofT campus wireless network.You will need to set up one (or more) of the available printers on your computer.You retrieve your printout at Wireless printing costs the same

  3. Desktop/Laptop/Mobile Devices Security Requirements When Accessing Sensitive Data

    E-Print Network [OSTI]

    Columbia University

    Desktop/Laptop/Mobile Devices Security Requirements When Accessing Sensitive Data IT Security Requirements for Workstations/Mobile Devices with access to Personally Identifiable Information (PII) or Other with inactivity threshold of 10 minutes. 10.Mobile devices (e.g., Blackberries, iPads and iPhones) must use

  4. Aditya Shah, Abhinav Dalal April 13, 2009 The Global Laptop Industry

    E-Print Network [OSTI]

    : The laptop and PC industry is expected to grow at a faster rate in developing countries compared to the developed countries. Therefore, changes in government policies in developing countries like India and China) and WEEE (Waste Electrical and Electronic Equipment) Directive. The additional testing and certification

  5. Apple Strength Issues

    SciTech Connect (OSTI)

    Syn, C

    2009-12-22

    Strength of the apple parts has been noticed to decrease, especially those installed by the new induction heating system since the LEP campaign started. Fig. 1 shows the ultimate tensile strength (UTS), yield strength (YS), and elongation of the installed or installation-simulated apples on various systems. One can clearly see the mean values of UTS and YS of the post-LEP parts decreased by about 8 ksi and 6 ksi respectively from those of the pre-LEP parts. The slight increase in elongation seen in Fig.1 can be understood from the weak inverse relationship between the strength and elongation in metals. Fig.2 shows the weak correlation between the YS and elongation of the parts listed in Fig. 1. Strength data listed in Figure 1 were re-plotted as histograms in Figs. 3 and 4. Figs. 3a and 4a show histograms of all UTS and YS data. Figs. 3b and 4b shows histograms of pre-LEP data and Figs. 3c and 4c of post-LEP data. Data on statistical scatter of tensile strengths have been rarely published by material suppliers. Instead, only the minimum 'guaranteed' strength data are typically presented. An example of strength distribution of aluminum 7075-T6 sheet material, listed in Fig. 5, show that its scatter width of both UTS and YS for a single sheet can be about 6 ksi and for multi-lot scatter can be as large as 11 ksi even though the sheets have been produced through well-controlled manufacturing process. By approximating the histograms shown in Figs. 3 and 4 by a Gaussian or similar type of distribution curves, one can plausibly see the strength reductions in the later or more recent apples. The pre-LEP data in Figs. 3b and 4b show wider scatter than the post-LEP data in Figs. 3c and 4c and seem to follow the binomial distribution of strength indicating that the apples might have been made from two different lots of material, either from two different vendors or from two different melts of perhaps slightly different chemical composition by a single vendor. The post-LEP apples seem to have been from a single batch of material. The pre-LEP apples of the weak strength and the post-LEP apples with even weaker strength could have been made of the same batch of material, and the small strength differential might be due to the difference in the induction heating system. If the pre-LEP apples with the lower strength and the post LEP apples are made from the same batch of material, their combined scatter of strength data would be wider and can be understood as a result of the additional processing steps of stress relief and induction heating as discussed.

  6. AVTA: Battery Testing - DC Fast Charging's Effects on PEV Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery Testing - DC Fast Charging's Effects on PEV Batteries AVTA: Battery Testing - DC Fast Charging's Effects on PEV Batteries The Vehicle Technologies Office's Advanced Vehicle...

  7. Applying the Battery Ownership Model in Pursuit of Optimal Battery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applying the Battery Ownership Model in Pursuit of Optimal Battery Use Strategies Applying the Battery Ownership Model in Pursuit of Optimal Battery Use Strategies 2012 DOE...

  8. Century Learning through Apple Technology

    E-Print Network [OSTI]

    21st Century Learning through Apple Technology July 4 ­ 5, 2013 This exciting institute will appeal to educators who wish to enhance their teaching in support of 21st century learning using Apple technology. This institute begins with a keynote address that looks at how new technologies can enhance 21st century learning

  9. Metal-Air Batteries

    SciTech Connect (OSTI)

    Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

    2011-08-01

    Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

  10. Fungicide control of apple scab: 2010 field trial

    E-Print Network [OSTI]

    Eynard, James; Wunderlich, Lynn; Gubler, W D

    2010-01-01

    communications. 2010 Apple scab field trial, Department ofduring leaf fall to control apple scab (Venturia inaequalis)mixtures on scab control in apple orchards. Plant Pathology

  11. Potential of Mineral Uptake Efficiency by Some Apple Rootstocks

    E-Print Network [OSTI]

    Amiri, Mohammad E; Fallahi, Esmail

    2009-01-01

    1999. Drought tolerance of apple rootstocks: Production andwater relations of five apple rootstocks. Acta Horticultureon Mineral Composition of Apple Leaves. J. Am. Soc. Hort.

  12. Did Apple’s refusal to license proprietary information enabling interoperability with its iPod music player constitute an abuse under Article 82 of the EC Treaty?

    E-Print Network [OSTI]

    Mazziotti, Giuseppe

    2005-01-01

    Did Apple’s refusal to license proprietary informationtechnology that allowed Apple, as the creator of amises en œuvre par la société Apple Computer, Inc. dans les

  13. Automating Personalized Battery Management on Smartphones

    E-Print Network [OSTI]

    Falaki, Mohamamd Hossein

    2012-01-01

    3 Automating Battery Management . . . . . . .122 Battery Goal Setting UI . . . . . . . . . . . . . . .Power and Battery Management . . . . . . . . . . . . . . .

  14. Battery cell feedthrough apparatus

    DOE Patents [OSTI]

    Kaun, Thomas D. (New Lenox, IL)

    1995-01-01

    A compact, hermetic feedthrough apparatus comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance.

  15. Piezonuclear battery

    DOE Patents [OSTI]

    Bongianni, Wayne L. (Los Alamos, NM)

    1992-01-01

    A piezonuclear battery generates output power arising from the piezoelectric voltage produced from radioactive decay particles interacting with a piezoelectric medium. Radioactive particle energy may directly create an acoustic wave in the piezoelectric medium or a moderator may be used to generate collision particles for interacting with the medium. In one embodiment a radioactive material (.sup.252 Cf) with an output of about 1 microwatt produced a 12 nanowatt output (1.2% conversion efficiency) from a piezoelectric copolymer of vinylidene fluoride/trifluorethylene.

  16. Fire blight of apple blossoms Fireblight of apples and pears, caused by the

    E-Print Network [OSTI]

    Fire blight of apple blossoms Fireblight of apples and pears, caused by the bacterium Erwinia. W. Lightner. 1990. Predicting apple blossom infections by Erwinia amylovora using the Maryblyt model for forecasting fire blight disease in apples and pears. University of Maryland, College Park, MD. #12;

  17. RECHARGEABLE HIGH-TEMPERATURE BATTERIES

    E-Print Network [OSTI]

    Cairns, Elton J.

    2014-01-01

    F. Eshman, High-Performance Batteries for Electric-VehicleS. Sudar, High Performance Batteries for Electric-VehicleHIGH-TEMPERATURE BATTERIES Elton J. Cairns January 1981 TWO-

  18. Mesoporous Block Copolymer Battery Separators

    E-Print Network [OSTI]

    Wong, David Tunmin

    2012-01-01

    Xiangyun Song helped me with battery experiments. I want toMesoporous Block Copolymer Battery Separators by DavidMesoporous Block Copolymer Battery Separators by David

  19. Connecting your Apple to Octopus 7600's

    SciTech Connect (OSTI)

    Barton, G.W. Jr.

    1983-01-17

    In UCID-19588, Communicating between the Apple and the Wang, we described how to take Apple DOS text files and send them to the Wang, and how to return Wang files to the Apple. It is also possible to use your Apple as an Octopus terminal, and to exchange files with Octopus 7600's. Presumably, you can also talk to the Crays, or any other part of the system. This connection has another virtue. It eliminates one of the terminals in your office.

  20. Feasibility of utilizing apple pomace

    SciTech Connect (OSTI)

    Stapleton, J.

    1983-06-01

    Apple pomace, the solid residue from juice production, is a solid waste problem in the Hudson Valley. This study investigates possibilities for converting it to a resource. The characteristics of the region's apple growing and processing industries are examined at length, including their potential for converting waste biomass. The properties of apple pomace are described. From interviews with Hudson Valley apple processors the following information is presented: quantities of pomace produced; seasonality of production; disposal procedures, costs, and revenues; trends in juice production; and attitudes toward alternatives. Literature research resulted in a list of more than 25 end uses for apple pomace of which eight were selected for analysis. Landfilling, landspreading, composting, animal feed, direct burning, gasification, anaerobic digestion (methane generation), and fermentation (ethanol production) were analyzed with regard to technical availability, regulatory and environmental impact, attitudes toward end use, and energetic and economic feasibility (See Table 19). The study recommends (1) a pilot anaerobic digestion plant be set up, (2) the possibility of extracting methane from the Marlborough landfill be investigated, (3) a study of the mid-Hudson waste conversion potential be conducted, and (4) an education program in alternative waste management be carried out for the region's industrial and agricultural managers.

  1. Energy accounting of apple processing operations

    SciTech Connect (OSTI)

    Romero, R.; Singh, R.P.; Brown, D.

    1981-01-01

    A thermal-energy accounting study was conducted at an apple processing plant. An analysis is given of thermal energy use and thermal efficiencies of an apple-juice single-effect evaporator and an apple-sauce cooker. 3 refs.

  2. California Lithium Battery, Inc.

    Broader source: Energy.gov [DOE]

    California Lithium Battery (CaLBattery), based in Los Angeles, California, is developing a low-cost, advanced lithium-ion battery that employs a novel silicon graphene composite material that will substantially improve battery cycle life. When combined with other advanced battery materials, it could effectively lower battery life cycle cost by up to 70 percent. Over the next year, CALBattery will be working with Argonne National Laboratory to combine their patented silicon-graphene anode material process together with other advanced ANL cathode and electrolyte battery materials.

  3. Battery cell feedthrough apparatus

    DOE Patents [OSTI]

    Kaun, T.D.

    1995-03-14

    A compact, hermetic feedthrough apparatus is described comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance. 8 figs.

  4. agbioresearch.msu.edu MSU Fruit Team Apple Maturity Report

    E-Print Network [OSTI]

    1 agbioresearch.msu.edu MSU Fruit Team Apple Maturity Report Northwest Region Reports - 2009 Michigan Apple Research Committee Michigan Apple Shippers MSU Extension MSU AgBioResearch NW MICHIGAN APPLE MATURITY REPORT #1 September 16, 2009 General Comments - This year the NWMHRS will be testing apples

  5. agbioresearch.msu.edu MSU Fruit Team Apple Maturity Report

    E-Print Network [OSTI]

    1 agbioresearch.msu.edu MSU Fruit Team Apple Maturity Report Northwest Region Reports - 2007 Nikki Horticulture Society Michigan Apple Research Committee Michigan apple Shippers MSU Extension MSU Ag Pome Fruit Code-a-phone/Apple Maturity Line (231) 947-3063 NW MICHIGAN APPLE MATURITY REPORT #1 August

  6. C Battery Corral 

    E-Print Network [OSTI]

    Unknown

    2011-09-05

    reliability. The total consumption of lead-acid batteries in the United States reported in 2008 is $2.9 billion per year and is growing at an annual rate of 8%. The utilization of Lithium-ion battery is growing rapidly. The possibility of lithium-ion... Energy Storage Parameters ............................................................................ 25 Table 2 Case I Cost Comparison ................................................................................ 27 Table 3 PHEV Battery...

  7. battery, map parcel, med

    E-Print Network [OSTI]

    Rosenthal, Jeffrey S.

    Attic *** book teachest Servant dictionary scarf [11] Winery demijohn battery, map AuntLair X] EastAnnex battery[4] Cupboard2 [2] mask DeadEnd rucksack AlisonWriting [16] TinyBalcony [17] gold key. [2] Need new torch battery (see [4]) to enter. Then get painting. [3] To please aunt, must move

  8. Servant dictionary battery, map

    E-Print Network [OSTI]

    Rosenthal, Jeffrey S.

    Attic *** book teachest Servant dictionary scarf [11] Winery demijohn battery, map AuntLair X] EastAnnex battery[4] Cupboard2 [2] mask DeadEnd rucksack AlisonWriting [16] TinyBalcony [17] gold key. [2] Need new torch battery (see [4]) to enter. Then get painting. [3] To please aunt, must move

  9. Organic salts as super-high rate capability materials for lithium-ion batteries Y. Y. Zhang, Y. Y. Sun, S. X. Du, H.-J. Gao, and S. B. Zhang

    E-Print Network [OSTI]

    Gao, Hongjun

    Organic salts as super-high rate capability materials for lithium-ion batteries Y. Y. Zhang, Y. Y of electrode nanomaterials in lithium-ion battery: The effects of surface stress J. Appl. Phys. 112, 103507://apl.aip.org/about/rights_and_permissions #12;Organic salts as super-high rate capability materials for lithium-ion batteries Y. Y. Zhang,1,2 Y

  10. Fruit Preparation Apples Select crisp and firm apples. Wash, peel and core. Slice medium apples

    E-Print Network [OSTI]

    New Hampshire, University of

    quart of fruit. Package, leaving head space,** seal, label and freeze. Pears Wash, peel and core. Slice whole strawberries and mix. Let stand 15 minutes. Package, leaving head space.** Seal, label, and freeze the sugar. Treated apple slices can also be frozen on a tray and then packed. Package, leaving head space

  11. Negative Electrodes for Li-Ion Batteries

    E-Print Network [OSTI]

    Kinoshita, Kim; Zaghib, Karim

    2001-01-01

    on New Sealed Rechargeable Batteries and Supercapacitors, B.10. S. Hossain, in Handbook of Batteries, Second Edition, D.Workshop on Advanced Batteries (Lithium Batteries), February

  12. Design and Simulation of Lithium Rechargeable Batteries

    E-Print Network [OSTI]

    Doyle, C.M.

    2010-01-01

    of a Rechargeable Lithium Battery," J. Power Sources, 24,Wada, "Rechargeable Lithium Battery Based on Pyrolytic Car-Li-Ion Battery," Lithium Battery Symposium, Electrochemical

  13. Automated audiometry using Apple iOS-based application technology

    E-Print Network [OSTI]

    Foulad, A; Bui, P; Djalilian, H

    2013-01-01

    Automated Audiometry Using Apple iOS-Based ApplicationAutomated Audiometry Using Apple iOS-Based Applicationthe feasibility of an Apple iOS-based automated hearing

  14. Apple Computer: The iCEO Seizes the Internet

    E-Print Network [OSTI]

    West, Joel

    2002-01-01

    sales. Table 3: Milestones in Apple direct online retailingDate Event mid-1994 Apple launches first web site Nov. 19971998 Sept. 1998 Jan. 1999 Apple Store (U.S. ) opens; first

  15. Fungicide control of apple scab: 2007 trial results

    E-Print Network [OSTI]

    Janousek, Christopher N; Lorber, Jacob D; Wunderlich, Lynn; Gubler, W D

    2010-01-01

    from Adaskaveg et al. (2007). Apple trial, 2007. W.D. Gublerpp. MacHardy, W.E. 1996. Apple Scab. Biology, Epidemiology,Pest Management for Apples & Pears. 2 nd ed. University of

  16. Collecting battery data with Open Battery Gareth L. Jones1

    E-Print Network [OSTI]

    Imperial College, London

    Collecting battery data with Open Battery Gareth L. Jones1 and Peter G. Harrison2 1,2 Imperial present Open Battery, a tool for collecting data on mobile phone battery usage, describe the data we have a useful tool in future work to describe mobile phone battery traces. 1998 ACM Subject Classification D.4

  17. Instructions for Apple Leaf Sample Collection.doc September 2013 Instructions for Apple Leaf Sample Collection Vermont

    E-Print Network [OSTI]

    Hayden, Nancy J.

    Instructions for Apple Leaf Sample Collection.doc September 2013 Instructions for Apple Leaf Sample;Instructions for Apple Leaf Sample Collection.doc September 2013 Washing Leaf Samples 1. Wash the leaf samples

  18. Apple Harvest Time! Determining when apples are ready to be harvested can be tricky. You need to know the variety of the apple and its approximate harvest

    E-Print Network [OSTI]

    New Hampshire, University of

    Apple Harvest Time! Determining when apples are ready to be harvested can be tricky. You need to know the variety of the apple and its approximate harvest date. These dates vary each year with fluctuations in blooming rates, degree days and rainfall. If you're growing your own apples, perhaps the best

  19. Remote Control Inserting the batteries

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    Top View Rear View Inserting the batteries 1 3Press in on the arrow mark and slide in the direction of the arrow to remove the battery cover. 2 Insert two AA size batteries, making sure their polarities match the and marks inside the battery compartment. Insert the side tabs of the battery cover into their slots

  20. Battery utilizing ceramic membranes

    DOE Patents [OSTI]

    Yahnke, Mark S. (Berkeley, CA); Shlomo, Golan (Haifa, IL); Anderson, Marc A. (Madison, WI)

    1994-01-01

    A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range.

  1. Lithium battery management system

    DOE Patents [OSTI]

    Dougherty, Thomas J. (Waukesha, WI)

    2012-05-08

    Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.

  2. Redox Flow Batteries, a Review

    E-Print Network [OSTI]

    Weber, Adam Z.

    2013-01-01

    P. C. Butler, "Advanced Batteries for Electric Vehicles andIntroduction," in Hnadbook of Batteries, 3rd Edition, D.T. B. Reddy, Handbook of Batteries, 2002). [67] R. Zito, US

  3. Mesoporous Block Copolymer Battery Separators

    E-Print Network [OSTI]

    Wong, David Tunmin

    2012-01-01

    L. C. , R. , Costs of Lithium-Ion Batteries for Vehicles. Inpast two decades, lithium-ion batteries have emerged as anMore recently, lithium-ion batteries have been employed in

  4. Redox Flow Batteries, a Review

    E-Print Network [OSTI]

    Weber, Adam Z.

    2013-01-01

    of a Vanadium Redox-Flow Battery to Maintain Power Quality,"Fuel System Using Redox Flow Battery," ed: WO Patentand D. B. Hickey, "Redox Flow Battery System for Distributed

  5. Production of alcohol from apple pomace

    SciTech Connect (OSTI)

    Hang, Y.D.; Lee, C.Y.; Woodams, E.E.; Cooley, H.J.

    1981-12-01

    Production of ethyl alcohol from apple pomace with a Montrachet strain of Saccharomyces cerevisiae is described. More than 43 grams of the ethyl alcohol could be produced per kg of apple pomace fermented at 30 degrees Celcius in 24 hours. The fermentation efficiency of this process was approximately 89%. (Refs. 9).

  6. Low energy electron irradiation of an apple 

    E-Print Network [OSTI]

    Brescia, Giovanni Batista

    2002-01-01

    simulation. A software package, MCNP (Monte Carlo N-Particle), was used to simulate an electron beam irradiation with a 1.0, 1.5 and 2.0 MeV sources on an apple modeled by interconnecting two spheres. The apple radii were 4.4 cm (perpendicular to its axis...

  7. Michigan Apple Committee Research Priorities for 2014/15

    E-Print Network [OSTI]

    Michigan Apple Committee Research Priorities for 2014/15 Following are the 2014/15 priorities of the Michigan Apple Committee. (In priority order.) 1. Increase demand To conduct consumer related research that will help sell Michigan Apples more profitably. a. Market research b. Value ­ convenience, apples versus

  8. Michigan Apple Committee 2014/15 Request for Proposals

    E-Print Network [OSTI]

    1 Michigan Apple Committee 2014/15 Request for Proposals The Michigan Apple Committee (MAC the profitability of apple growing through improving production information and techniques; developing new markets subcommittee established the following as its charter in early 2009: To help the Michigan Apple Committee

  9. agbioresearch.msu.edu MSU Fruit Team Apple Maturity Report

    E-Print Network [OSTI]

    1 agbioresearch.msu.edu MSU Fruit Team Apple Maturity Report Northwest Region Reports - 2005 Jim Project GREEEN Michigan State Horticulture Society Michigan Apple Research Committee Michigan apple sites: www.ams.usda.gov/marketnews.htm www.bhfm.com NW Michigan Pome Fruit Code-a-phone/Apple Maturity

  10. agbioresearch.msu.edu MSU Fruit Team Apple Maturity Report

    E-Print Network [OSTI]

    1 agbioresearch.msu.edu MSU Fruit Team Apple Maturity Report Northwest Region Reports - 2008 Michigan Apple Research Committee Michigan apple Shippers MSU Extension MSU AgBioResearch Current pricing information can be obtained at the following web sites: http://www.bhfm.com/ NW Michigan Pome Fruit Code-a-phone/Apple

  11. SW MICHIGAN APPLE MATURITY REPORT ISSUE 1 August 25, 2010

    E-Print Network [OSTI]

    SW MICHIGAN APPLE MATURITY REPORT ISSUE 1 ­ August 25, 2010 Bill Shane, Diane Brown-Rytlewski, and Mark Longstroth Michigan State University This is the first of weekly apple maturity report for SW. See the Michigan State University apple web site (apples.msu.edu) for more information, including

  12. SW MICHIGAN APPLE MATURITY REPORT ISSUE 2 August 31, 2010

    E-Print Network [OSTI]

    SW MICHIGAN APPLE MATURITY REPORT ISSUE 2 ­ August 31, 2010 Bill Shane, Diane Brown-Rytlewski, and Mark Longstroth Michigan State University This is the first of weekly apple maturity report for SW. See the Michigan State University apple web site (apples.msu.edu) for more information, including

  13. agbioresearch.msu.edu MSU Fruit Team Apple Maturity Report

    E-Print Network [OSTI]

    1 agbioresearch.msu.edu MSU Fruit Team Apple Maturity Report Northwest Region Reports - 2006 Jim Project GREEEN Michigan State Horticulture Society Michigan Apple Research Committee Michigan apple sites: www.ams.usda.gov/marketnews.htm www.bhfm.com NW Michigan Pome Fruit Code-a-phone/Apple Maturity

  14. Friction welded battery component

    SciTech Connect (OSTI)

    Bowen, G.K.; Zagrodnik, J.P.

    1990-07-31

    This patent describes a battery component for use in a flow battery containing fluid electrolyte. It comprises: first and second bond ribs disposed on opposite sides of and defining a channel and respective primary flash traps disposed adjacent the bond ribs opposite the channel.

  15. Synthetic and organic fungicide control of apple scab: 2009 field trial

    E-Print Network [OSTI]

    Janousek, Christopher N; Bay, Ian S; Gubler, W. Douglas

    2009-01-01

    during leaf fall to control apple scab (Venturia inaequalis)mixtures on scab control in apple orchards. Plant Pathologyscab development in an organic apple orchard. Agriculture,

  16. EFFECT OF TWO ROOTSTOCK SELECTIONS ON THE SEASONAL NUTRITIONAL VARIABILITY OF BRAEBURN APPLE

    E-Print Network [OSTI]

    Hirzel, Juan Fernando; Best, Stanley

    2009-01-01

    potasium and magnesium into apple fruit in high densityof Golden delicious apple trees. Acta Horticulturae 448:107-in leaves of different apple rootstocks and Elise Scion

  17. Abiotic and biotic factors affecting light brown apple moth, Epiphyas postvittana, in California

    E-Print Network [OSTI]

    Buergi, Linda Patricia

    2012-01-01

    mortality of lightbrown apple moth. In: O’Callaghan, M. (tryoni and the light brown apple moth Epiphyas postvittanaof the light brown apple moth, Epiphyas postvittana (

  18. Storage battery systems analysis

    SciTech Connect (OSTI)

    Murphy, K.D.

    1982-01-01

    Storage Battery Systems Analysis supports the battery Exploratory Technology Development and Testing Project with technical and economic analysis of battery systems in various end-use applications. Computer modeling and simulation techniques are used in the analyses. Analysis objectives are achieved through both in-house efforts and outside contracts. In-house studies during FY82 included a study of the relationship between storage battery system reliability and cost, through cost-of-investment and cost-of-service interruption inputs; revision and update of the SOLSTOR computer code in standard FORTRAN 77 form; parametric studies of residential stand-alone photovoltaic systems using the SOLSTOR code; simulation of wind turbine collector/storage battery systems for the community of Kalaupapa, Molokai, Hawaii.

  19. Nanomaterials for Fuel cells, Batteries, and Supercapacitors Flow Batteries

    E-Print Network [OSTI]

    Dutta, Indranath

    Nanomaterials for Fuel cells, Batteries, and Supercapacitors Flow Batteries 1. Shao Y, X Wang, MH storage in vanadium redox flow batteries." Journal of Power Sources 195(13):4375-4379. 2. Shao Y, MH nanotube electrodes for redox flow batteries." Electrochemistry Communications 11(10):2064-2067. doi:10

  20. Mesoporous Block Copolymer Battery Separators

    E-Print Network [OSTI]

    Wong, David Tunmin

    2012-01-01

    image. Chapter 2 – Relationship Between Morphology and Conductivity of Block- Copolymer Based Battery

  1. BEEST: Electric Vehicle Batteries

    SciTech Connect (OSTI)

    2010-07-01

    BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

  2. Battery utilizing ceramic membranes

    DOE Patents [OSTI]

    Yahnke, M.S.; Shlomo, G.; Anderson, M.A.

    1994-08-30

    A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range. 2 figs.

  3. Polymeric battery separators

    SciTech Connect (OSTI)

    Minchak, R. J.; Schenk, W. N.

    1985-06-11

    Configurations of cross-linked or vulcanized amphophilic or quaternized block copolymer of haloalkyl epoxides and hydroxyl terminated alkadiene polymers are useful as battery separators in both primary and secondary batteries, particularly nickel-zinc batteries. The quaternized block copolymers are prepared by polymerizing a haloalkyl epoxide in the presence of a hydroxyl terminated 1,3-alkadiene to form a block copolymer that is then reacted with an amine to form the quaternized or amphophilic block copolymer that is then cured or cross-linked with sulfur, polyamines, metal oxides, organic peroxides and the like.

  4. SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract -This paper proposes new solar battery

    E-Print Network [OSTI]

    Lehman, Brad

    SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract - This paper proposes new solar battery chargers for NiMH batteries. Used with portable solar panels, existing charge control methods are shown of consumer portable solar arrays. These new arrays are lightweight, durable, and flexible and have been

  5. Recycle Batteries CSM recycles a variety of battery types including automotive, sealed lead acid, nickel

    E-Print Network [OSTI]

    Recycle Batteries CSM recycles a variety of battery types including automotive, sealed lead acid, and alkaline batteries. All batteries need to be sorted by battery type. Each battery type must be accumulated in a clearly labeled receptacle to identify the acceptable battery type. Batteries can be dropped off

  6. Sodium Titanate Anodes for Sodium Ion Batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2014-01-01

    for  Sodium  Ion  Batteries   One   of   the   challenges  of   sodium   ion   batteries   is   identification   of  for   use   in   batteries.   Our   recent   work   has  

  7. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01

    Secondary Lithium Batteries. Journal of the Electrochemicalin Rechargeable Lithium Batteries for Overcharge Protection.G. M. in Handbook of Batteries (eds Linden, D. & Reddy, T.

  8. Design and Simulation of Lithium Rechargeable Batteries

    E-Print Network [OSTI]

    Doyle, C.M.

    2010-01-01

    Gabano, Ed. , Lithium Batteries, Academic Press, New York,K. V. Kordesch, "Primary Batteries 1951-1976," J. Elec- n ~.Rechargeable Lithium Batteries," J. Electrochem. Soc. , [20

  9. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01

    facing rechargeable lithium batteries. Nature 414, 359-367 (lithium and lithium-ion batteries. Solid State Ionics 135,electrolytes for lithium-ion batteries. Advanced Materials

  10. Titanate Anodes for Sodium Ion Batteries

    E-Print Network [OSTI]

    Doeff, Marca

    2014-01-01

    Company-v3832/Lithium-Ion-Batteries- Outlook-Alternative-Anodes for Sodium Ion Batteries Marca M. Doeff * , Jordirechargeable sodium ion batteries, particularly for large-

  11. Aluminum ion batteries: electrolytes and cathodes

    E-Print Network [OSTI]

    Reed, Luke

    2015-01-01

    Anodes for Aluminum-Air Batteries. J. Electrochem. Soc.Anodes for Aluminum-Air Batteries. J. Electrochem. Soc.ALLOYS FOR ALUMINUM AIR BATTERIES. J. Electrochem. Soc.

  12. Ionic liquids for rechargeable lithium batteries

    E-Print Network [OSTI]

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

    2008-01-01

    their use in lithium-ion batteries. However, applications atresponse of lithium rechargeable batteries,” Journal of therechargeable lithium batteries (Preliminary report, Sept.

  13. Titanate Anodes for Sodium Ion Batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2014-01-01

    Anodes for Sodium Ion Batteries Identification of a suitabledevelopment of sodium ion batteries, because graphite, theanode for lithium ion batteries, does not undergo sodium

  14. Sodium Titanate Anodes for Dual Intercalation Batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2014-01-01

    for Dual Intercalation Batteries Lithium supply securityinterest in sodium-ion batteries. These devices operate muchsodium-ion or lithium-ion batteries that utilize them as

  15. Vehicle Battery Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Battery Basics November 22, 2013 - 1:58pm Addthis Vehicle Battery Basics Batteries are essential for electric drive technologies such as hybrid electric vehicles...

  16. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    battery charging and discharging. Researchers first charged commercial-grade battery cells to 50% full in 30 minutes, mimicking real world conditions. Then, the battery cell...

  17. Advances in lithium-ion batteries

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01

    Advances in Lithium-Ion Batteries Edited by Walter A. vanpuzzling mysteries of lithium ion batteries. The book beginssuch importance to lithium ion batteries one is amazed that

  18. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01

    film lithium and lithium-ion batteries. Solid State Ionicselectrolytes for lithium-ion batteries. Advanced Materialsand side reactions in lithium-ion batteries. Journal of the

  19. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01

    additive for lithium-ion batteries. Elec- trochemistryOptimization of Lithium-Ion Batteries PhD thesis (Universityfor Rechargeable Lithium-Ion Batteries. Journal of The

  20. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01

    K. M. Directions in secondary lithium battery research-and-runaway inhibitors for lithium battery electrolytes. Journalrunaway inhibitors for lithium battery electrolytes. Journal

  1. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01

    Ethylene Carbonate for Lithium Ion Battery Use. Journal oflithium atoms in lithium-ion battery electrolyte. Chemicalcapacity fading of a lithium-ion battery cycled at elevated

  2. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone...

  3. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping Particle Charges in Battery Electrodes Mapping Particle Charges in Battery Electrodes Print Friday, 26 July 2013 14:18 The deceivingly simple appearance of batteries masks...

  4. Ergonomic evaluation of the Apple Adjustable Keyboard

    SciTech Connect (OSTI)

    Tittiranonda, P.; Burastero, S.; Shih, M.; Rempel, D.

    1994-05-01

    This study presents an evaluation of the Apple Adjustable Keyboard based on subjective preference and observed joint angles during typing. Thirty five keyboard users were asked to use the Apple adjustable keyboard for 7--14 days and rate the various characteristics of the keyboard. Our findings suggest that the most preferred opening angles range from 11--20{degree}. The mean ulnar deviation on the Apple Adjustable keyboard is 11{degree}, compared to 16{degree} on the standard keyboard. The mean extension was decreased from 24{degree} to 16{degree} when using the adjustable keyboard. When asked to subjectively rate the adjustable keyboard in comparison to the standard, the average subject felt that the Apple Adjustable Keyboard was more comfortable and easier to use than the standard flat keyboard.

  5. Parallel flow diffusion battery

    DOE Patents [OSTI]

    Yeh, H.C.; Cheng, Y.S.

    1984-01-01

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  6. Parallel flow diffusion battery

    DOE Patents [OSTI]

    Yeh, Hsu-Chi (Albuquerque, NM); Cheng, Yung-Sung (Albuquerque, NM)

    1984-08-07

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  7. Battery packaging - Technology review

    SciTech Connect (OSTI)

    Maiser, Eric [The German Engineering Federation (VDMA), Battery Production Industry Group, Lyoner Str. 18, 60528 Frankfurt am Main (Germany)

    2014-06-16

    This paper gives a brief overview of battery packaging concepts, their specific advantages and drawbacks, as well as the importance of packaging for performance and cost. Production processes, scaling and automation are discussed in detail to reveal opportunities for cost reduction. Module standardization as an additional path to drive down cost is introduced. A comparison to electronics and photovoltaics production shows 'lessons learned' in those related industries and how they can accelerate learning curves in battery production.

  8. Advances in lithium-ion batteries

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01

    current reviews of the lithium ion battery literature byof view of the lithium ion battery scientist and engineer,lithium ion batteries. The chapter on aging summarizes the effects of the chemistry on the battery

  9. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01

    Model for Aging of Lithium-Ion Battery Cells. Journal of TheSalts Formed on the Lithium-Ion Battery Negative Electrodeion batteries In a lithium ion battery, positively charged

  10. Design and Simulation of Lithium Rechargeable Batteries

    E-Print Network [OSTI]

    Doyle, C.M.

    2010-01-01

    polymer battery, lithium-ion batteries, and lithium-basedElectrolyte For Lithium-Ion Rechargeable Batteries," LithiumK. Ozawa, "Lithium-ion Rechargeable Batteries with LiCo0 and

  11. Nickel coated aluminum battery cell tabs

    DOE Patents [OSTI]

    Bucchi, Robert S.; Casoli, Daniel J.; Campbell, Kathleen M.; Nicotina, Joseph

    2014-07-29

    A battery cell tab is described. The battery cell tab is anodized on one end and has a metal coating on the other end. Battery cells and methods of making battery cell tabs are also described.

  12. New sealed rechargeable batteries and supercapacitors

    SciTech Connect (OSTI)

    Barnett, B.M. ); Dowgiallo, E. ); Halpert, G. ); Matsuda, Y. ); Takehara, Z.I. )

    1993-01-01

    This conference was divided into the following sections: supercapacitors; nickel-metal hydride batteries; lithium polymer batteries; lithium/carbon batteries; cathode materials; and lithium batteries. Separate abstracts were prepared for the 46 papers of this conference.

  13. Testimonials- Partnerships in Battery Technologies- CalBattery

    Broader source: Energy.gov [DOE]

    Phil Roberts, CEO and Founder of California Lithium Battery (CalBattery), describes the new growth and development that was possible through partnering with the U.S. Department of Energy.

  14. Advances in lithium-ion batteries

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01

    current reviews of the lithium ion battery literature byof view of the lithium ion battery scientist and engineer,

  15. Battery venting system and method

    DOE Patents [OSTI]

    Casale, T.J.; Ching, L.K.W.; Baer, J.T.; Swan, D.H.

    1999-01-05

    Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve. 8 figs.

  16. Battery venting system and method

    DOE Patents [OSTI]

    Casale, Thomas J. (Aurora, CO); Ching, Larry K. W. (Littleton, CO); Baer, Jose T. (Gaviota, CA); Swan, David H. (Monrovia, CA)

    1999-01-05

    Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

  17. Battery Vent Mechanism And Method

    DOE Patents [OSTI]

    Ching, Larry K. W. (Littleton, CO)

    2000-02-15

    Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

  18. Production of fuels and chemicals from apple pomace

    SciTech Connect (OSTI)

    Hang, Y.D.

    1987-03-01

    Nearly 36 million tons of apples are produced annually in the US. Approximately 45% of the total US apple production is used for processing purposes. The primary by-product of apple processing is apple pomace. It consists of the presscake resulting from pressing apples for juice or cider, including the presscake obtained in pressing peel and core wastes generated in the manufacture of apple sauce or slices. More than 500 food processing plants in the US produce a total of about 1.3 million metric tons of apple pomace each year, and it is likely that annual disposal fees exceed $10 million. Apple pomace has the potential to be used for the production of fuels (ethanol and biogas containing 60% methane) and food-grade chemicals. These uses will be reviewed in this article.

  19. Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems

    DOE Patents [OSTI]

    Tuffner, Francis K. (Richland, WA); Kintner-Meyer, Michael C. W. (Richland, WA); Hammerstrom, Donald J. (West Richland, WA); Pratt, Richard M. (Richland, WA)

    2012-05-22

    Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

  20. Circulating current battery heater

    DOE Patents [OSTI]

    Ashtiani, Cyrus N. (West Bloomfield, MI); Stuart, Thomas A. (Toledo, OH)

    2001-01-01

    A circuit for heating energy storage devices such as batteries is provided. The circuit includes a pair of switches connected in a half-bridge configuration. Unidirectional current conduction devices are connected in parallel with each switch. A series resonant element for storing energy is connected from the energy storage device to the pair of switches. An energy storage device for intermediate storage of energy is connected in a loop with the series resonant element and one of the switches. The energy storage device which is being heated is connected in a loop with the series resonant element and the other switch. Energy from the heated energy storage device is transferred to the switched network and then recirculated back to the battery. The flow of energy through the battery causes internal power dissipation due to electrical to chemical conversion inefficiencies. The dissipated power causes the internal temperature of the battery to increase. Higher internal temperatures expand the cold temperature operating range and energy capacity utilization of the battery. As disclosed, either fixed frequency or variable frequency modulation schemes may be used to control the network.

  1. Mechanical design of flow batteries

    E-Print Network [OSTI]

    Hopkins, Brandon J. (Brandon James)

    2013-01-01

    The purpose of this research is to investigate the design of low-cost, high-efficiency flow batteries. Researchers are searching for next-generation battery materials, and this thesis presents a systems analysis encompassing ...

  2. Safe battery solvents

    DOE Patents [OSTI]

    Harrup, Mason K. (Idaho Falls, ID); Delmastro, Joseph R. (Idaho Falls, ID); Stewart, Frederick F. (Idaho Falls, ID); Luther, Thomas A. (Idaho Falls, ID)

    2007-10-23

    An ion transporting solvent maintains very low vapor pressure, contains flame retarding elements, and is nontoxic. The solvent in combination with common battery electrolyte salts can be used to replace the current carbonate electrolyte solution, creating a safer battery. It can also be used in combination with polymer gels or solid polymer electrolytes to produce polymer batteries with enhanced conductivity characteristics. The solvents may comprise a class of cyclic and acyclic low molecular weight phosphazenes compounds, comprising repeating phosphorus and nitrogen units forming a core backbone and ion-carrying pendent groups bound to the phosphorus. In preferred embodiments, the cyclic phosphazene comprises at least 3 phosphorus and nitrogen units, and the pendent groups are polyethers, polythioethers, polyether/polythioethers or any combination thereof, and/or other groups preferably comprising other atoms from Group 6B of the periodic table of elements.

  3. SW MICHIGAN APPLE MATURITY REPORT ISSUE 3 September 7, 2010

    E-Print Network [OSTI]

    SW MICHIGAN APPLE MATURITY REPORT ISSUE 3 ­ September 7, 2010 Bill Shane, Diane Brown like to have samples from your farm tested for maturity. See the Michigan State University apple web site (apples.msu.edu) for more information, including reports from other regions, past season reports

  4. MSU Fruit Team 2012 Apple Maturity Report Northwest Region Reports

    E-Print Network [OSTI]

    1 MSU Fruit Team 2012 Apple Maturity Report Northwest Region Reports During the harvest season, apples from different regions are collected for maturity testing. The data is then compiled by MSU Extension educators into recommendations for harvest and storage of the most commonly grown apple varieties

  5. MSU Fruit Team 2011 Apple Maturity Report Northwest Region Reports

    E-Print Network [OSTI]

    1 MSU Fruit Team 2011 Apple Maturity Report Northwest Region Reports During the harvest season, apples from different regions are collected for maturity testing. The data is then compiled by MSU Extension educators into recommendations for harvest and storage of the most commonly grown apple varieties

  6. MSU Fruit Team 2010 Apple Maturity Report Northwest Region Reports

    E-Print Network [OSTI]

    1 MSU Fruit Team 2010 Apple Maturity Report Northwest Region Reports During the harvest season, apples from different regions are collected for maturity testing. The data is then compiled by MSU Extension educators into recommendations for harvest and storage of the most commonly grown apple varieties

  7. Crabapples Resistant to Apple Scab and Japanese Beetle in Indiana

    E-Print Network [OSTI]

    Pittendrigh, Barry

    Crabapples Resistant to Apple Scab and Japanese Beetle in Indiana Cliff Sadof, Department pests, apple scab and Japanese beetle, have also given this plant a reputation of being prone to insect and disease problems. Both these pests are widely distributed in Indiana. Apple scab is a fungal disease

  8. APPLE ROOTSTOCKS COMPARISON CHART v. 1 Jessica Lyga,

    E-Print Network [OSTI]

    Chen, Tsuhan

    GENEVA® APPLE ROOTSTOCKS COMPARISON CHART v. 1 Contact: Jessica Lyga, Plant Varieties & Germplasm University and United States Department of Agriculture-Agricultural Research Service (USDA- ARS) Apple, resistance to the soil pathogens of the sub-temperate regions of the US, and tolerance to apple replant

  9. Battery switch for downhole tools

    DOE Patents [OSTI]

    Boling, Brian E. (Sugar Land, TX)

    2010-02-23

    An electrical circuit for a downhole tool may include a battery, a load electrically connected to the battery, and at least one switch electrically connected in series with the battery and to the load. The at least one switch may be configured to close when a tool temperature exceeds a selected temperature.

  10. Flow Batteries A Historical Perspective

    E-Print Network [OSTI]

    Flow Batteries A Historical Perspective Robert F. Savinell Case Western Reserve University Department of Chemical Engineering DOE Flow Battery Workshop March 2012 #12;2 OUTLINE ·The first flow cell? ·Review articles- documented progress ·Early NASA Work- some learning ·Fuel Cell and Flow Battery

  11. Recommended Student Laptop/Desktop Configurations for the Social Sciences The chart below provides general minimum guidelines for new computer acquisitions as of February 2014.

    E-Print Network [OSTI]

    Lennard, William N.

    general minimum guidelines for new computer acquisitions as of February 2014. Laptop Processor i3, i5 or i Premium or latest MS Windows Platform Other Software Anti-Virus, any product (Trend Micro Internet Security or AVG can be purchased at Campus Computer Store.) Microsoft Office (Optional) Standard Desktop

  12. Export Guidance: Traveling Out of the Country with Laptops and Other Equipment You need to comply with United States export statutes and regulations whenever you take equipment,

    E-Print Network [OSTI]

    Sorin, Eric J.

    Export Guidance: Traveling Out of the Country with Laptops and Other Equipment You need to comply with United States export statutes and regulations whenever you take equipment, devices, computer software to take any special actions to comply with the export rules. Most of the equipment and data that you

  13. Proposals with computer/laptop and software purchases: In order to use agency funds to pay for computers, software and peripherals,

    E-Print Network [OSTI]

    Kurapov, Alexander

    Proposals with computer/laptop and software purchases: In order to use agency funds to pay for computers, software and peripherals, specific language needs to be included as part of your proposal budget and/or software to complete the project goals. Try to be as specific as possible. Computer Purchase

  14. Apple Maturity Protocol Tests for apple flesh firmness and starch conversion are important tools for monitoring crop

    E-Print Network [OSTI]

    Apple Maturity Protocol Tests for apple flesh firmness and starch conversion are important tools dissolved. A magnetic stir plate with a plastic coated stir bar works well. Add 2.2 grams of iodine crystals the solution on the cut surface of an immature apple. Dip the cut surface for a second or two. It should stain

  15. Soluble Lead Flow Battery: Soluble Lead Flow Battery Technology

    SciTech Connect (OSTI)

    2010-09-01

    GRIDS Project: General Atomics is developing a flow battery technology based on chemistry similar to that used in the traditional lead-acid battery found in nearly every car on the road today. Flow batteries store energy in chemicals that are held in tanks outside the battery. When the energy is needed, the chemicals are pumped through the battery. Using the same basic chemistry as a traditional battery but storing its energy outside of the cell allows for the use of very low cost materials. The goal is to develop a system that is far more durable than today’s lead-acid batteries, can be scaled to deliver megawatts of power, and which lowers the cost of energy storage below $100 per kilowatt hour.

  16. EV Everywhere Batteries Workshop - Materials Processing and Manufactur...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries Breakout Session Report EV Everywhere Batteries Workshop - Beyond...

  17. Current balancing for battery strings

    DOE Patents [OSTI]

    Galloway, James H. (New Baltimore, MI)

    1985-01-01

    A battery plant is described which features magnetic circuit means for balancing the electrical current flow through a pluraliircuitbattery strings which are connected electrically in parallel. The magnetic circuit means is associated with the battery strings such that the conductors carrying the electrical current flow through each of the battery strings pass through the magnetic circuit means in directions which cause the electromagnetic fields of at least one predetermined pair of the conductors to oppose each other. In an alternative embodiment, a low voltage converter is associated with each of the battery strings for balancing the electrical current flow through the battery strings.

  18. Battery electrode growth accommodation

    DOE Patents [OSTI]

    Bowen, Gerald K. (Cedarburg, WI); Andrew, Michael G. (Wauwatosa, WI); Eskra, Michael D. (Fredonia, WI)

    1992-01-01

    An electrode for a lead acid flow through battery, the grids including a plastic frame, a plate suspended from the top of the frame to hang freely in the plastic frame and a paste applied to the plate, the paste being free to allow for expansion in the planar direction of the grid.

  19. Johnson Controls Develops an Improved Vehicle Battery, Works...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half...

  20. Communicating between the Apple and the Wang

    SciTech Connect (OSTI)

    Barton, G.W., Downey, R.

    1982-10-26

    This manual covers what the beginner needs to know in order to transfer files between an Apple's Microcomputer and a Wang's OIS Word Processor. We have also tried to indicate where the experienced user might want to look for additional details. We cover the use of Apple Writer )(, VisiTerm, VisiCalc, and EasyWriter Professional. For us, the two most useful connections are from Applewriter to Wang and from Visicalc to Wang. From Wang to Apple Writer via Visiterm may have some value. Files can be transferred by VisiTerm to Wang, but they arrive with RETURNS in the middle of words, which have to be edited out, so we do not recommend it. We describe how to go from EasyWriter to Wang, but we do not know how to go from Wang to EasyWriter. We see no reason to go from Wang to VisiCalc, so we haven't thought about it. All instructions are given for a typical configuration of the Apple, namely the one on which this manual was composed. It is detailed in the section on Hardware and Software.

  1. Advanced Battery Manufacturing (VA)

    SciTech Connect (OSTI)

    Stratton, Jeremy

    2012-09-30

    LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATT’s products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATT’s work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease payments for space to the IDA. A commercial venture is being formed to utilize the LiFeBATT product for consumer use in enabling photovoltaic powered boat lifts. Field tests of the system have proven to be very effective and commercially promising. This venture is expected to result in significant sales within the next six months.

  2. High power rechargeable batteries Paul V. Braun

    E-Print Network [OSTI]

    Braun, Paul

    High power rechargeable batteries Paul V. Braun , Jiung Cho, James H. Pikul, William P. King storage Secondary batteries High energy density High power density Lithium ion battery 3D battery of rechargeable (second- ary) batteries, as this is critical for most applications. As the penetration

  3. Preliminary Design of a Smart Battery Controller for SLI Batteries Xiquan Wang and Pritpal Singh

    E-Print Network [OSTI]

    Singh, Pritpal

    Preliminary Design of a Smart Battery Controller for SLI Batteries Xiquan Wang and Pritpal Singh Automotive start, light, ignition (SLI) lead acid batteries are prone to capacity loss due to low of these batteries can be improved by using the concept of a smart battery system (SBS). In a SBS, battery data from

  4. An Interleaved Dual-Battery Power Supply for Battery-Operated Electronics

    E-Print Network [OSTI]

    Pedram, Massoud

    An Interleaved Dual-Battery Power Supply for Battery-Operated Electronics QingQing Wu,Wu, Qinru VoltageAnalysis of Optimal Supply Voltage Design of Interleaved DualDesign of Interleaved Dual--Battery PowerBattery Power SupplySupply ConclusionsConclusions #12;Batteries in Mobile/Portable ElectronicsBatteries

  5. V-164: Apple QuickTime Multiple Flaws Let Remote Users Execute...

    Broader source: Energy.gov (indexed) [DOE]

    Apple QuickTime Multiple Flaws Let Remote Users Execute Arbitrary Code PLATFORM: Apple QuickTime prior to 7.7.4. ABSTRACT: Apple QuickTime Multiple Vulnerabilities REFERENCE LINKS:...

  6. Light brown apple moth’s arrival in California worries commodity groups

    E-Print Network [OSTI]

    Varela, Lucia G.; Johnson, Marshall W; Strand, Larry; Wilen, Cheryl A; Pickel, Carolyn

    2008-01-01

    control of light brown apple moth, Epi- phyas postvittana (2007a. Light brown apple moth host list. www.cdfa.ca.gov/p. CDFA. 2007b. Light brown apple moth project: Advisories.

  7. Impact of Foliar Fertilizer Containing Iodine on “Golden Delicious” Apple Trees

    E-Print Network [OSTI]

    Szwonek, Eugeniusz

    2009-01-01

    on marketable Golden Delicious/M.9 apple production. At thecontaining fertilizer on apple fruits firmness and theirold “Golden Delicious/M.9” apple trees Trees were spaced at

  8. New Zealand lessons may aid efforts to control light brown apple moth in California

    E-Print Network [OSTI]

    Varela, Lucia G.; Walker, James T.S.; Lo, Peter L; Rogers, David J

    2010-01-01

    1975. Integrated control of apple pests in New Zealand. 1.of the light brown apple moth Epiphyas postvittana (Walker),685–92. Dumbleton L J. 1932. The apple leaf-roller (Tortrix

  9. Why the Apple Doesn’t Fall Far: Understanding Intergenerational Transmission of Human Capital

    E-Print Network [OSTI]

    Black, Sandra; Devereux, Paul; Salvanes, Kjell

    2004-01-01

    Kjell G. Salvanes. 2003. “Why the Apple Doesn’t Fall Far:Why the Apple Doesn't Fall Far: UnderstandingPaper Series Why the Apple Doesn’t Fall Far: Understanding

  10. Self-charging solar battery

    SciTech Connect (OSTI)

    Curiel, R.F.

    1986-01-07

    This self-charging solar battery consists of: a flashlight housing formed at least partially of a transparent material, an open-ended cylindrical battery housing formed at least partially of a transparent material, a rechargeable battery cell means mounted in the battery housing (with its transparent material positioned adjacent the transparent material of the flashlight housing and comprising positive and negative terminals, one at each end thereof), a solar electric panel comprising photo-voltaic cell means having positive and negative terminals, and a diode means mounted in the battery housing and comprising an anode and a cathode. The solar battery also has: a first means for connecting the positive terminal of the photo-voltaic cell means to the anode and for connecting the cathode to the positive terminal of the battery cell means, a second means for connecting the negative terminal of the battery cell means to the negative terminal of the photo-voltaic cell means, and cap means for closing each end of the battery housing.

  11. Self-charging solar battery

    SciTech Connect (OSTI)

    Curiel, R.F.

    1987-03-03

    This patent describes a flashlight employing a self-charging solar battery assembly comprising: a flashlight housing formed at least partially of a transparent material, an open-ended cylindrical battery housing formed at least partially of a transparent material, a rechargeable battery cell means mounted in the battery housing with its transparent material positioned adjacent the transparent material of the flashlight housing and comprising positive and negative terminals, one at each end thereof, a solar electric panel comprising photo-voltaic cell means having positive and negative terminals, the panel being mounted within the battery housing with the photo-voltaic cell means juxtapositioned to the transparent material of the battery housing such that solar rays may pass through the transparent material of the flashlight housing and the battery housing and excite the photo-voltaic cell means, a first means for connecting the positive terminal of the photo-voltaic cell means to the positive terminal of the battery cell means, and a second means for connecting the negative terminal of the battery cell means to the negative terminal of the photo-voltaic cell means.

  12. Advances in lithium-ion batteries

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01

    Advances in Lithium-Ion Batteries Edited by Walter A. vantolerance of these batteries this is a curious omission andmysteries of lithium ion batteries. The book begins with an

  13. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery...

  14. Ionic liquids for rechargeable lithium batteries

    E-Print Network [OSTI]

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

    2008-01-01

    their use in lithium-ion batteries. However, applications atfor use in lithium-ion batteries. Thermal stabilities andFor rechargeable lithium-ion batteries, we require that any

  15. Aluminum ion batteries: electrolytes and cathodes

    E-Print Network [OSTI]

    Reed, Luke

    2015-01-01

    in High-Power Lithium-Ion Batteries for Use in Hybridas Cathodes for Lithium-Ion Batteries. Chem. Mater. 2011,seen in magnesium or lithium ion batteries would operate at

  16. Advanced battery modeling using neural networks 

    E-Print Network [OSTI]

    Arikara, Muralidharan Pushpakam

    1993-01-01

    battery models are available today that can accurately predict the performance of the battery system. This thesis presents a modeling technique for batteries employing neural networks. The advantage of using neural networks is that the effect of any...

  17. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01

    simulate those in a lithium battery. Chapter 3 TransientModel for Aging of Lithium-Ion Battery Cells. Journal of TheRole in Nonaqueous Lithium-Oxygen Battery Electrochemistry.

  18. Apple Burrknot Borers in New York Revisited Pest status and chemical control of borers infesting apple burrknots in New York State

    E-Print Network [OSTI]

    Agnello, Arthur M.

    Apple Burrknot Borers in New York ­ Revisited Pest status and chemical control of borers infesting apple burrknots in New York State DAVID P. KAIN, RICHARD W. STRAUB AND ARTHUR M. AGNELLO Department damage to dwarf apple trees caused by American plum borer, a survey was conducted in the major apple

  19. The Atom and the Apple, Princeton University Press, "The Atom and the Apple is a delightful ramble through many areas of science as well as

    E-Print Network [OSTI]

    Balibar, Sébastien

    The Atom and the Apple, Princeton University Press, Reviews: "The Atom and the Apple and stimulating, and it frequently challenges political correctness. . . . The Atom and the Apple provides." --Publishers Weekly (Starred Review) #12;Science Teacher Association recommends : The Atom and the Apple

  20. Battery-Aware Power Management Based on Markovian Decision

    E-Print Network [OSTI]

    Pedram, Massoud

    Dynamic Power Management 101 ! Motivation and principle of operation " Rationale: Power and Smart BatteriesBattery Characteristics and Smart Batteries ! Nonlinear characteristics of batteries " Rate capacity effect # The total energy capacity that a battery can deliver during its lifetime depends

  1. Response of Lithium Polymer Batteries to Mechanical Loading

    E-Print Network [OSTI]

    Petta, Jason

    Response of Lithium Polymer Batteries to Mechanical Loading Karl Suabedissen1, Christina Peabody2 #12;Outline · Motivation · Battery Structure · Testing and Results · Conclusions #12;Motivation · Lithium polymer batteries are everywhere. · Efforts to create flexible batteries. · Restrictive battery

  2. Battery Manufacturing Processes Improved by Johnson Controls...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Office. The project focused on three major aspects of the lithium ion (Li-ion) battery manufacturing process: reducing process time for battery formation and...

  3. Development of Industrially Viable Battery Electrode Coatings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrially Viable Battery Electrode Coatings Development of Industrially Viable Battery Electrode Coatings 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies...

  4. Ionic liquids for rechargeable lithium batteries

    E-Print Network [OSTI]

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

    2008-01-01

    molten salts as lithium battery electrolyte,” ElectrochimicaFigure 15. Rechargeable lithium-ion battery. Figure 16 showsbattery. It is essential that an ionic liquid – lithium salt

  5. Washington: Graphene Nanostructures for Lithium Batteries Recieves...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award February...

  6. Vehicle Technologies Office: Advanced Battery Development, System...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research (USCAR). It also works directly with industry battery and material suppliers through competitive research and development awards. To learn how batteries are used...

  7. Battery resource assessment. Subtask II. 5. Battery manufacturing capability recycling of battery materials. Draft final report

    SciTech Connect (OSTI)

    Pemsler, P.

    1981-02-01

    Studies were conducted on the recycling of advanced battery system components for six different battery systems. These include: Nickel/Zinc, Nickel/Iron, Zinc/Chlorine, Zinc/Bromine, Sodium/Sulfur, and Lithium-Aluminum/Iron Sulfide. For each battery system, one or more processes has been developed which would permit recycling of the major or active materials. Each recycle process has been designed to produce a product material which can be used directly as a raw material by the battery manufacturer. Metal recoverabilities are in the range of 93 to 95% for all processes. In each case, capital and operating costs have been developed for a recycling plant which processes 100,000 electric vehicle batteries per year. These costs have been developed based on material and energy balances, equipment lists, factored installation costs, and manpower estimates. In general, there are no technological barriers for recycling in the Nickel/Zinc, Nickel/Iron, Zinc/Chlorine and Zinc/Bromine battery systems. The recycling processes are based on essentially conventional, demonstrate technology. The lead times required to build battery recycling plants based on these processes is comparable to that of any other new plant. The total elapsed time required from inception to plant operation is approximately 3 to 5 y. The recycling process for the sodium/sulfur and lithium-aluminum/sulfide battery systems are not based on conventional technology. In particular, mechanical systems for dismantling these batteries must be developed.

  8. T-673: Apple Safari Multiple Flaws Let Remote Users Execute Arbitrary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3: Apple Safari Multiple Flaws Let Remote Users Execute Arbitrary Code, Conduct Cross-Site Scripting Attacks T-673: Apple Safari Multiple Flaws Let Remote Users Execute Arbitrary...

  9. Flow Battery Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES OctoberEvanServices »First ObservationFast(ER1)Flow Battery

  10. Battery system with temperature sensors

    DOE Patents [OSTI]

    Wood, Steven J.; Trester, Dale B.

    2012-11-13

    A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

  11. Redox Flow Batteries, a Review

    SciTech Connect (OSTI)

    U. Tennessee Knoxville; U. Texas Austin; McGill U; Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.; Ross, Philip N.; Gostick, Jeffrey T.; Liu, Qinghua

    2011-07-15

    Redox flow batteries are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of redox flow batteries with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

  12. A Desalination Battery Mauro Pasta,

    E-Print Network [OSTI]

    Cui, Yi

    A Desalination Battery Mauro Pasta, Colin D. Wessells, Yi Cui,,§ and Fabio La Mantia Information ABSTRACT: Water desalination is an important approach to provide fresh water around the world demonstrate the novel concept of a "desalination battery", which operates by performing cycles in reverse

  13. Principles of an Atomtronic Battery

    E-Print Network [OSTI]

    Alex A. Zozulya; Dana Z. Anderson

    2013-08-06

    An asymmetric atom trap is investigated as a means to implement a "battery" that supplies ultracold atoms to an atomtronic circuit. The battery model is derived from a scheme for continuous loading of a non-dissipative atom trap proposed by Roos et al.(Europhysics Letters V61, 187 (2003)). The trap is defined by longitudinal and transverse trap frequencies and corresponding trap energy heights. The battery's ability to supply power to a load is evaluated as a function of an input atom flux and power. For given trap parameters and input flux the battery is shown to have a resonantly optimum value of input power. The battery behavior can be cast in terms of an equivalent circuit model; specifically, for fixed input flux and power the battery is modeled in terms of a Th\\'{e}venin equivalent chemical potential and internal resistance. The internal resistance establishes the maximum power that can be supplied to a circuit, the heat that will be generated by the battery, and that noise will be imposed on the circuit. We argue that any means of implementing a battery for atomtronics can be represented by a Th\\'{e}venin equivalent and that its performance will likewise be determined by an internal resistance.

  14. Zinc-bromine battery technology

    SciTech Connect (OSTI)

    Bellows, R.; Grimes, P.; Malachesky, P.

    1983-01-01

    Some progress in the field of zinc-bromine batteries is reviewed, and a number of successes and some difficulties are related. The direction of work includes, among other areas, testing of parametric and large batteries. The program includes the control of electrode planarity through electrode thickness and electrode support, improved cathode activation coatings to increase and maintain performance near the end of battery capacity, reduced retention of bromine in the battery cell stock at shutdown to lower capacity loss and improve sealing techniques. Projected factory cost should be competitive with lead-acid batteries. Progress has been demonstrated in scale-up and performance, as well as improving the life of the system. (LEW)

  15. Battery Model for Embedded Systems , Gaurav Singhal

    E-Print Network [OSTI]

    Navet, Nicolas

    in design of mobile embedded sys- tems today is the battery lifetime for a given size and weight in the energy densities of the battery technologies, estimating the lifetime and energy delivered by the battery applications. Stochastic battery models [6, 8] have also been proposed which are faster than to the PDE model

  16. Battery Thermal Management System Design Modeling (Presentation)

    SciTech Connect (OSTI)

    Kim, G-H.; Pesaran, A.

    2006-10-01

    Presents the objectives and motivations for a battery thermal management vehicle system design study.

  17. Battery-Powered Digital CMOS Massoud Pedram

    E-Print Network [OSTI]

    Pedram, Massoud

    1 Page 1 USC Low Power CAD Massoud Pedram Battery-Powered Digital CMOS Design Massoud Pedram Power CAD Massoud Pedram Motivation Extending the battery service life of battery-powered micro in the VLSI circuit Y The battery system is assumed to be an ideal source that delivers a fixed amount

  18. Principles of an Atomtronic Battery

    E-Print Network [OSTI]

    Zozulya, Alex A

    2013-01-01

    An asymmetric atom trap is investigated as a means to implement a "battery" that supplies ultracold atoms to an atomtronic circuit. The battery model is derived from a scheme for continuous loading of a non-dissipative atom trap proposed by Roos et al.(Europhysics Letters V61, 187 (2003)). The trap is defined by longitudinal and transverse trap frequencies and corresponding trap energy heights. The battery's ability to supply power to a load is evaluated as a function of an input atom flux and power. For given trap parameters and input flux the battery is shown to have a resonantly optimum value of input power. The battery behavior can be cast in terms of an equivalent circuit model; specifically, for fixed input flux and power the battery is modeled in terms of a Th\\'{e}venin equivalent chemical potential and internal resistance. The internal resistance establishes the maximum power that can be supplied to a circuit, the heat that will be generated by the battery, and that noise will be imposed on the circui...

  19. Handleiding eduroam op Apple iOS6

    E-Print Network [OSTI]

    Handleiding eduroam op Apple iOS6 Version: 1.0 eduroam Date: 24-04-2013 #12;2 Inleiding Deze handleiding beschrijft hoe u met uw Apple iPad of iPhone met iOS6 een verbinding met eduroam kan opzetten

  20. Cell for making secondary batteries

    DOE Patents [OSTI]

    Visco, S.J.; Liu, M.; DeJonghe, L.C.

    1992-11-10

    The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145 C (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium trifluorate (PEO[sub 8]LiCF[sub 3]SO[sub 3]), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS)[sub n], and carbon black, dispersed in a polymeric electrolyte. 2 figs.

  1. Cell for making secondary batteries

    DOE Patents [OSTI]

    Visco, Steven J. (2336 California St., Berkeley, CA 94703); Liu, Meilin (1121C Ninth St., #29, Albany, CA 94710); DeJonghe, Lutgard C. (910 Acalanes Rd., Lafayette, CA 94549)

    1992-01-01

    The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145.degree. C. (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium triflate (PEO.sub.8 LiCF.sub.3 SO.sub.3), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS).sub.n, and carbon black, dispersed in a polymeric electrolyte.

  2. Solid polymer battery electrolyte and reactive metal-water battery

    DOE Patents [OSTI]

    Harrup, Mason K. (Idaho Falls, ID); Peterson, Eric S. (Idaho Falls, ID); Stewart, Frederick F. (Idaho Falls, ID)

    2000-01-01

    In one implementation, a reactive metal-water battery includes an anode comprising a metal in atomic or alloy form selected from the group consisting of periodic table Group 1A metals, periodic table Group 2A metals and mixtures thereof. The battery includes a cathode comprising water. Such also includes a solid polymer electrolyte comprising a polyphosphazene comprising ligands bonded with a phosphazene polymer backbone. The ligands comprise an aromatic ring containing hydrophobic portion and a metal ion carrier portion. The metal ion carrier portion is bonded at one location with the polymer backbone and at another location with the aromatic ring containing hydrophobic portion. The invention also contemplates such solid polymer electrolytes use in reactive metal/water batteries, and in any other battery.

  3. Multiple locus genealogies and phenotypic characters reappraise the causal agents of apple ring rot in China

    E-Print Network [OSTI]

    Biggs, Alan R.

    Multiple locus genealogies and phenotypic characters reappraise the causal agents of apple ring rot # School of Science 2014 Abstract Apple ring rot inflicts severe economic losses in the main apple phylogenetic species recognition (GCPSR) was applied to pathogenic fungal isolates from apple and pear from

  4. Who Captures Value in a Global Innovation System? The case of Apple's iPod

    E-Print Network [OSTI]

    Linden, Greg; Kraemer, Kenneth L; Dedrick, Jason

    2007-01-01

    Portelligent Inc. (2006). Apple iPod Video, 30GB MultimediaSystem? The case of Apple's iPod Greg Linden, Kenneth L.to look at one member of Apple’s iPod family, part of a

  5. 7.5 Declaration in Apple vs. Microsoft/Hewlett-Packard

    E-Print Network [OSTI]

    Shneiderman, Ben

    327 7.5 Declaration in Apple vs. Microsoft/Hewlett-Packard Ben Shneiderman I, Ben Shneiderman declarations and to further identify the arrangement that is unique to Apple and that makes the overall Petrie, Attorneys for Plaintiff, Apple Computer, Inc.; APPLE COMPUTER, INC., Plaintiff, vs. MCROSOFT CORP

  6. Apple watch: has its time come? Charles Arthur for guardian.co.uk

    E-Print Network [OSTI]

    South Bohemia, University of

    Apple watch: has its time come? Charles Arthur for guardian.co.uk Apple's next big thing will be a "smart watch" which will "fill a gaping hole in the Apple ecosystem" ­ at least according to one already being worked on inside Apple. With the company being sued by Greenlight Capital for hoarding its

  7. Dimer Dissociation and Unfolding Mechanism of Coagulation Factor XI Apple 4 Domain: Spectroscopic

    E-Print Network [OSTI]

    Roder, Heinrich

    Dimer Dissociation and Unfolding Mechanism of Coagulation Factor XI Apple 4 Domain: Spectroscopic of disulfide- linked chains each containing four apple domains and a catalytic domain. The apple 4 domain (A4; A4, apple 4 domain of factor XI; DLS, dynamic light scattering; FXI, factor XI; FXIa, factor FXIa

  8. MSU Fruit Team Apple Maturity Report 2014 Northwest Region, Report Number 5: October 8, 2014

    E-Print Network [OSTI]

    MSU Fruit Team Apple Maturity Report 2014 Northwest Region, Report Number 5: October 8, 2014 Nikki Rothwell and Emily Pochubay, Extension Fruit Educators Wet conditions have slowed apple harvest are not cooperating with northwest Michigan apple growers as many apples are ripening quicker this week, but rain has

  9. Historical Perspectives on Apple Production: Fruit Tree Pest Management, Regulation and

    E-Print Network [OSTI]

    Jentsch, Peter J.

    2 Historical Perspectives on Apple Production: Fruit Tree Pest Management, Regulation and New. Historical Use of Pesticides in Apple Production Overview of Apple Production and Pest Management Prior in Apple Production Chemical Residues in Early Insect Management Historical Chemical Regulation Recent

  10. Evaluation of Pest Management Tactics for Organic Apple Production A. Agnello, H. Reissig, and D. Combs

    E-Print Network [OSTI]

    Agnello, Arthur M.

    Evaluation of Pest Management Tactics for Organic Apple Production A. Agnello, H. Reissig, and D number of both native and introduced insect and mite species attack apples grown in commercial apple orchards. Control of this pest complex is particularly challenging, because unlike the more arid apple

  11. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01

    electrode in lithium-ion batteries: AFM study in an ethylenelithium-ion rechargeable batteries. Carbon 1999, 37, 165-batteries. J. Electrochem. Soc. 2001,

  12. Sodium Titanates as Anodes for Sodium Ion Batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2014-01-01

    Anodes  for  Sodium  Ion  Batteries   Marca  M.  Doeff,  dual   intercalation   batteries   based   on   sodium  future   of   sodium  ion  batteries  will  be  discussed  

  13. EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout...

    Broader source: Energy.gov (indexed) [DOE]

    beyondlithiumionb.pdf More Documents & Publications EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries Breakout Session Report EV Everywhere Batteries...

  14. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01

    Alloy design for lithium-ion battery anodes. J. Electrochem.advances in lithium ion battery materials. Electrochim. Actamaterials for lithium ion battery. Journal of Nanoparticle

  15. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery,...

  16. Visualization of Charge Distribution in a Lithium Battery Electrode

    E-Print Network [OSTI]

    Liu, Jun

    2010-01-01

    microdiffraction. Lithium ion batteries have made a greatthose used in lithium-ion batteries. Dynamic potentiometricrechargeable lithium ion batteries consist of many layers of

  17. The UC Davis Emerging Lithium Battery Test Project

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01

    Characteristics of Lithium-ion Batteries of Variouselectrodes for lithium-ion batteries, Journal of MaterialsAdvances in Lithium-Ion Batteries (Chapter 4), Kluwer

  18. Three-dimensional batteries using a liquid cathode

    E-Print Network [OSTI]

    Malati, Peter Moneir

    2013-01-01

    2000). Costs of Lithium-Ion Batteries for Vehicles, (ANL/Lithium ion Batteries 2.1.1 Lithium versus Lithium ion Batteries Lithium systems

  19. Developing Next-Gen Batteries With Help From NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC Helps Develop Next-Gen Batteries NERSC Helps Develop Next-Gen Batteries A genomics approach to materials research could speed up advancements in battery performance December...

  20. The UC Davis Emerging Lithium Battery Test Project

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01

    The UC Davis Emerging Lithium Battery Test Project Andrewto evaluate emerging lithium battery technologies for plug-vehicles. By emerging lithium battery chemistries were meant

  1. Three-dimensional batteries using a liquid cathode

    E-Print Network [OSTI]

    Malati, Peter Moneir

    2013-01-01

    3 2.1.2 Lithium ion Battery2.2 Schematic of lithium ion battery operating principles (be rechargeable. The lithium ion battery is often referred

  2. New imaging capability reveals possible key to extending battery...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    developed for studying battery failures points to a potential next step in extending lithium ion battery lifetime and capacity, opening a path to wider use of these batteries...

  3. Final Progress Report for Linking Ion Solvation and Lithium Battery

    Office of Scientific and Technical Information (OSTI)

    for Linking Ion Solvation and Lithium Battery Electrolyte Properties Henderson, Wesley 25 ENERGY STORAGE battery, electrolyte, solvation, ionic association battery, electrolyte,...

  4. Battery Lifetime Analysis and Simulation Tool (BLAST) Documentation

    Office of Scientific and Technical Information (OSTI)

    Battery Lifetime Analysis and Simulation Tool (BLAST) Documentation Neubauer, J. 25 ENERGY STORAGE BATTERY; LITHIUM-ION; STATIONARY ENERGY STORAGE; BLAST; BATTERY DEGRADATION;...

  5. Manufacturing of Protected Lithium Electrodes for Advanced Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing of Protected Lithium Electrodes for Advanced Batteries Manufacturing of Protected Lithium Electrodes for Advanced Batteries PolyPlus Battery Company - Berkeley, CA A...

  6. MATHEMATICAL MODELING OF THE LITHIUM-ALUMINUM, IRON SULFIDE BATTERY

    E-Print Network [OSTI]

    Pollard, Richard

    2012-01-01

    and J. Newman, Proc. Syrup. Battery Design and Optimization,123, 1364 (1976). Symp, Battery Design and Optimization, S.~ALUMINUM, IRON SULFIDE BATTERY Contents ACKNOWLEDGEMENTS

  7. Psychometric properties of the penn computerized neurocognitive battery

    E-Print Network [OSTI]

    Moore, TM; Reise, SP; Gur, RE; Hakonarson, H; Gur, RC; Gur, RC

    2015-01-01

    a computerized neurocognitive battery in children age 8 –21.based neurocog- nitive battery. Therapeutic Hypothermia anda standardized neurocognitive battery. Neuropsychology, 28,

  8. Electroactive materials for rechargeable batteries

    SciTech Connect (OSTI)

    Wu, Huiming; Amine, Khalil; Abouimrane, Ali

    2015-04-21

    An as-prepared cathode for a secondary battery, the cathode including an alkaline source material including an alkali metal oxide, an alkali metal sulfide, an alkali metal salt, or a combination of any two or more thereof.

  9. Rechargeable Aluminum-Ion Batteries

    SciTech Connect (OSTI)

    Paranthaman, Mariappan Parans [ORNL; Liu, Hansan [ORNL; Sun, Xiao-Guang [ORNL; Dai, Sheng [ORNL; Brown, Gilbert M [ORNL

    2015-01-01

    This chapter reports on the development of rechargeable aluminum-ion batteries. A possible concept of rechargeable aluminum/aluminum-ion battery based on low-cost, earth-abundant Al anode, ionic liquid EMImCl:AlCl3 (1-ethyl-3-methyl imidazolium chloroaluminate) electrolytes and MnO2 cathode has been proposed. Al anode has been reported to show good reversibility in acid melts. However, due to the problems in demonstrating the reversibility in cathodes, alternate battery cathodes and battery concepts have also been presented. New ionic liquid electrolytes for reversible Al dissolution and deposition are needed in the future for replacing corrosive EMImCl:AlCl3 electrolytes.

  10. Optimization of blended battery packs

    E-Print Network [OSTI]

    Erb, Dylan C. (Dylan Charles)

    2013-01-01

    This thesis reviews the traditional battery pack design process for hybrid and electric vehicles, and presents a dynamic programming (DP) based algorithm that eases the process of cell selection and pack design, especially ...

  11. Reinventing Batteries for Grid Storage

    SciTech Connect (OSTI)

    Banerjee, Sanjoy

    2012-01-01

    The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

  12. Solid polymer electrolyte lithium batteries

    DOE Patents [OSTI]

    Alamgir, M.; Abraham, K.M.

    1993-10-12

    This invention pertains to Lithium batteries using Li ion (Li[sup +]) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride). 3 figures.

  13. Batteries using molten salt electrolyte

    DOE Patents [OSTI]

    Guidotti, Ronald A. (Albuquerque, NM)

    2003-04-08

    An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

  14. Solid polymer electrolyte lithium batteries

    DOE Patents [OSTI]

    Alamgir, Mohamed (Dedham, MA); Abraham, Kuzhikalail M. (Needham, MA)

    1993-01-01

    This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

  15. Reinventing Batteries for Grid Storage

    ScienceCinema (OSTI)

    Banerjee, Sanjoy

    2013-05-29

    The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

  16. Thermal Batteries for Electric Vehicles

    SciTech Connect (OSTI)

    2011-11-21

    HEATS Project: UT Austin will demonstrate a high-energy density and low-cost thermal storage system that will provide efficient cabin heating and cooling for EVs. Compared to existing HVAC systems powered by electric batteries in EVs, the innovative hot-and-cold thermal batteries-based technology is expected to decrease the manufacturing cost and increase the driving range of next-generation EVs. These thermal batteries can be charged with off-peak electric power together with the electric batteries. Based on innovations in composite materials offering twice the energy density of ice and 10 times the thermal conductivity of water, these thermal batteries are expected to achieve a comparable energy density at 25% of the cost of electric batteries. Moreover, because UT Austin’s thermal energy storage systems are modular, they may be incorporated into the heating and cooling systems in buildings, providing further energy efficiencies and positively impacting the emissions of current building heating/cooling systems.

  17. Applying the Battery Ownership Model in Pursuit of Optimal Battery Use Strategies (Presentation)

    SciTech Connect (OSTI)

    Neubauer, J.; Ahmad, P.; Brooker, A.; Wood, E.; Smith, K.; Johnson, C.; Mendelsohn, M.

    2012-05-01

    This Annual Merit Review presentation describes the application of the Battery Ownership Model for strategies for optimal battery use in electric drive vehicles (PEVs, PHEVs, and BEVs).

  18. Blake Farms is a diversified apple orchard, offering U-pick apples and farm stand sales in the fall, as well as a growing business making and selling hard cider. Our goal is to provide quality

    E-Print Network [OSTI]

    Isaacs, Rufus

    Overview Blake Farms is a diversified apple orchard, offering U-pick apples and farm stand sales. In the fall we harvest apples, which we pick, sort, press into cider, and either bottle for sale as sweet customers come to pick apples, buy sweet cider and donuts, and taste and buy hard cider. Once the apples

  19. 1. Open up Apple Mail. If you do not have a non Barnard email account already configured in Apple Mail you can skip to step 2. If you already have a different email

    E-Print Network [OSTI]

    1. Open up Apple Mail. If you do not have a non Barnard email account already configured in Apple. Then hit the "+ "symbol to add a new account. If you already have a Barnard account set up in Apple Mail will be set up in Apple Mail. 5. From within the Apple Mail program, click "Mail" at the top

  20. Model based control of a coke battery

    SciTech Connect (OSTI)

    Stone, P.M.; Srour, J.M.; Zulli, P. [BHP Research, Mulgrave (Australia). Melbourne Labs.; Cunningham, R.; Hockings, K. [BHP Steel, Pt Kembla, New South Wales (Australia). Coal and Coke Technical Development Group

    1997-12-31

    This paper describes a model-based strategy for coke battery control at BHP Steel`s operations in Pt Kembla, Australia. The strategy uses several models describing the battery thermal and coking behavior. A prototype controller has been installed on the Pt Kembla No. 6 Battery (PK6CO). In trials, the new controller has been well accepted by operators and has resulted in a clear improvement in battery thermal stability, with a halving of the standard deviation of average battery temperature. Along with other improvements to that battery`s operations, this implementation has contributed to a 10% decrease in specific battery energy consumption. A number of enhancements to the low level control systems on that battery are currently being undertaken in order to realize further benefits.

  1. Optimal management of batteries in electric systems

    DOE Patents [OSTI]

    Atcitty, Stanley (Albuquerque, NM); Butler, Paul C. (Albuquerque, NM); Corey, Garth P. (Albuquerque, NM); Symons, Philip C. (Morgan Hill, CA)

    2002-01-01

    An electric system including at least a pair of battery strings and an AC source minimizes the use and maximizes the efficiency of the AC source by using the AC source only to charge all battery strings at the same time. Then one or more battery strings is used to power the load while management, such as application of a finish charge, is provided to one battery string. After another charge cycle, the roles of the battery strings are reversed so that each battery string receives regular management.

  2. Two Studies Reveal Details of Lithium-Battery Function

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    optimizing better battery materials. A Battery of Tests for Better Batteries The prosaic battery has often been overlooked as little more than an afterthought in a consumer-driven...

  3. EV Everywhere Batteries Workshop - Next Generation Lithium Ion...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout Session Report EV Everywhere Batteries Workshop - Materials...

  4. Improved Positive Electrode Materials for Li-ion Batteries

    E-Print Network [OSTI]

    Conry, Thomas Edward

    2012-01-01

    commercial Li-ion batteries today use graphite or a mixturein certain primary batteries). Graphite has a potential of

  5. EV Everywhere Batteries Workshop - Next Generation Lithium Ion...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout Session Report EV Everywhere Batteries Workshop - Materials Processing...

  6. Three-dimensional batteries using a liquid cathode

    E-Print Network [OSTI]

    Malati, Peter Moneir

    2013-01-01

    for powering microelectromechanical systems and otherSurvey of battery powered microelectromechanical systems.with battery powered microelectromechanical systems (MEMS),

  7. Improved Positive Electrode Materials for Li-ion Batteries

    E-Print Network [OSTI]

    Conry, Thomas Edward

    2012-01-01

    battery cathodes for portable electronics (and is even the material used in batteries for the original Tesla

  8. Extended abstracts: seventh battery and electrochemical contractors' conference

    SciTech Connect (OSTI)

    Sheppard, D.; Hurwitch, J. (comps.)

    1985-11-01

    Seventy-two papers are arranged under the following session headings: EPRI storage program, review of key program activities, sodium/sulfur battery development, advanced battery research (two sessions), flow battery development, sodium/sulfur battery research, systems analysis and technology transfer, performance and testing (two sessions), flow battery research, metal/air batteries, and fuel cells. (DLC)

  9. An Analytical Model for Predicting the Remaining Battery Capacity of Lithium-Ion Batteries

    E-Print Network [OSTI]

    Pedram, Massoud

    An Analytical Model for Predicting the Remaining Battery Capacity of Lithium-Ion Batteries Peng cycle-life tends to shrink significantly. The capacities of commercial lithium-ion batteries fade by 10 prediction model to estimate the remaining capacity of a Lithium-Ion battery. The proposed analytical model

  10. Energy Storage & Battery | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and additive components for lithium-ion, llithium-air, lithium-sulfur, sodium-ion, and flow batteries. Employing some of the most respected and cited battery researchers in the...

  11. Electrolyte Model Helps Researchers Develop Better Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolyte Model Helps Researchers Develop Better Batteries, Wins R&D 100 Award Electrolyte Model Helps Researchers Develop Better Batteries, Wins R&D 100 Award October 15, 2014 -...

  12. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01

    batteries are leading candidates to play an important role in the transition to a renewableBatteries by William Rodgers Hudson Doctor of Philosophy in Chemistry University of California, Berkeley Professor Jeffrey Long, Chair Increasing interest in renewable

  13. Michael Thackery on Lithium-air Batteries

    SciTech Connect (OSTI)

    Michael Thackery

    2009-09-14

    Michael Thackery, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  14. A User Programmable Battery Charging System 

    E-Print Network [OSTI]

    Amanor-Boadu, Judy M

    2013-05-07

    , have to be replenished or recharged once their energy is depleted. Battery charging systems must perform this replenishment by using very fast and efficient methods to extend battery life and to increase periods between charges. In this regard...

  15. Michael Thackeray on Lithium-air Batteries

    ScienceCinema (OSTI)

    Thackeray, Michael

    2013-04-19

    Michael Thackeray, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  16. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01

    Model for the Graphite Anode in Li-Ion Batteries. Journal ofgraphite Chapters 2-3 have developed a method using ferrocene to characterize the SEI in lithium- ion batteries.

  17. Khalil Amine on Lithium-air Batteries

    ScienceCinema (OSTI)

    Khalil Amine

    2010-01-08

    Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  18. Michael Thackery on Lithium-air Batteries

    ScienceCinema (OSTI)

    Michael Thackery

    2010-01-08

    Michael Thackery, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  19. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion...

  20. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01

    experimental data from plastic lithium ion cells. Journal ofelectrolyte additive for lithium-ion batteries. Elec-Model for Aging of Lithium-Ion Battery Cells. Journal of The

  1. Khalil Amine on Lithium-air Batteries

    SciTech Connect (OSTI)

    Khalil Amine

    2009-09-14

    Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  2. Alternator control for battery charging

    DOE Patents [OSTI]

    Brunstetter, Craig A.; Jaye, John R.; Tallarek, Glen E.; Adams, Joseph B.

    2015-07-14

    In accordance with an aspect of the present disclosure, an electrical system for an automotive vehicle has an electrical generating machine and a battery. A set point voltage, which sets an output voltage of the electrical generating machine, is set by an electronic control unit (ECU). The ECU selects one of a plurality of control modes for controlling the alternator based on an operating state of the vehicle as determined from vehicle operating parameters. The ECU selects a range for the set point voltage based on the selected control mode and then sets the set point voltage within the range based on feedback parameters for that control mode. In an aspect, the control modes include a trickle charge mode and battery charge current is the feedback parameter and the ECU controls the set point voltage within the range to maintain a predetermined battery charge current.

  3. Vehicle Battery Safety Roadmap Guidance

    SciTech Connect (OSTI)

    Doughty, D. H.

    2012-10-01

    The safety of electrified vehicles with high capacity energy storage devices creates challenges that must be met to assure commercial acceptance of EVs and HEVs. High performance vehicular traction energy storage systems must be intrinsically tolerant of abusive conditions: overcharge, short circuit, crush, fire exposure, overdischarge, and mechanical shock and vibration. Fail-safe responses to these conditions must be designed into the system, at the materials and the system level, through selection of materials and safety devices that will further reduce the probability of single cell failure and preclude propagation of failure to adjacent cells. One of the most important objectives of DOE's Office of Vehicle Technologies is to support the development of lithium ion batteries that are safe and abuse tolerant in electric drive vehicles. This Roadmap analyzes battery safety and failure modes of state-of-the-art cells and batteries and makes recommendations on future investments that would further DOE's mission.

  4. Nanocomposite Materials for Lithium Ion Batteries

    SciTech Connect (OSTI)

    2011-05-31

    Fact sheet describing development and application of processing and process control for nanocomposite materials for lithium ion batteries

  5. Battery Thermal Modeling and Testing (Presentation)

    SciTech Connect (OSTI)

    Smith, K.

    2011-05-01

    This presentation summarizes NREL battery thermal modeling and testing work for the DOE Annual Merit Review, May 9, 2011.

  6. Review of flow battery testing at Sandia

    SciTech Connect (OSTI)

    Butler, P.C.; Miller, D.W.; Robinson, C.E.; Rodriguez, G.P.

    1984-01-01

    Sandia National Laboratories is evaluating prototype zinc/bromine, Redox, and zinc/ferricyanide flowing electrolyte batteries and cells. This paper will update previous reports of test results of two Exxon zinc/bromine batteries and one NASA Redox iron/chromium battery. Two 60-sq. cm. zinc/ferricyanide cells from Lockheed Missiles and Space Co. are also being evaluated. Performance, life, and operating data will be described for these batteries and cells.

  7. Battery Thermal Management System Design Modeling

    SciTech Connect (OSTI)

    Pesaran, A.; Kim, G. H.

    2006-11-01

    Looks at the impact of cooling strategies with air and both direct and indirect liquid cooling for battery thermal management.

  8. Electrochemically controlled charging circuit for storage batteries

    DOE Patents [OSTI]

    Onstott, E.I.

    1980-06-24

    An electrochemically controlled charging circuit for charging storage batteries is disclosed. The embodiments disclosed utilize dc amplification of battery control current to minimize total energy expended for charging storage batteries to a preset voltage level. The circuits allow for selection of Zener diodes having a wide range of reference voltage levels. Also, the preset voltage level to which the storage batteries are charged can be varied over a wide range.

  9. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    DOE Patents [OSTI]

    Bockelmann, Thomas R. (Battle Creek, MI); Hope, Mark E. (Marshall, MI); Zou, Zhanjiang (Battle Creek, MI); Kang, Xiaosong (Battle Creek, MI)

    2009-02-10

    A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

  10. Specific heat of apple at different moisture contents and temperatures

    E-Print Network [OSTI]

    Viacheslav Mykhailyk; Nikolai Lebovka

    2013-05-11

    This work discusses results of experimental investigations of the specific heat, $C$, of apple in a wide interval of moisture contents ($W=0-0.9$) and temperatures ($T = 283-363$ K). The obtained data reveal the important role of the bound water in determination of $C(W,T)$ behaviour. The additive model for description of $C(W)$ dependence in the moisture range of $0.1apple was considered as a mixture of water and hydrated apple material (water plasticised apple) with specific heat $C_h$. The difference between $C_h$ and specific heat of dry apple, $\\Delta Cb=C_h-C_d$, was proposed as a measure of the excess contribution of bound water to the specific heat. The estimated amounts of bound water $W_b$ were comparable with the monolayer moisture content in apple. The analytical equation was proposed for approximation of $C(W,T)$ dependencies in the studied intervals of moisture content and temperature.

  11. Review of storage battery system cost estimates

    SciTech Connect (OSTI)

    Brown, D.R.; Russell, J.A.

    1986-04-01

    Cost analyses for zinc bromine, sodium sulfur, and lead acid batteries were reviewed. Zinc bromine and sodium sulfur batteries were selected because of their advanced design nature and the high level of interest in these two technologies. Lead acid batteries were included to establish a baseline representative of a more mature technology.

  12. Propagation testing multi-cell batteries.

    SciTech Connect (OSTI)

    Orendorff, Christopher J.; Lamb, Joshua; Steele, Leigh Anna Marie; Spangler, Scott Wilmer

    2014-10-01

    Propagation of single point or single cell failures in multi-cell batteries is a significant concern as batteries increase in scale for a variety of civilian and military applications. This report describes the procedure for testing failure propagation along with some representative test results to highlight the potential outcomes for different battery types and designs.

  13. Batteries for Vehicular Applications Venkat Srinivasan

    E-Print Network [OSTI]

    Knowles, David William

    Batteries for Vehicular Applications Venkat Srinivasan Lawrence Berkeley National Lab 1 Cyclotron Road, MS 70R 0108B Berkeley, CA 94720 Abstract. This paper will describe battery technology), and plug-in- hybrid-electric vehicles (PHEV). The present status of rechargeable batteries

  14. Bimetallic Cathode Materials for Lithium Based Batteries

    E-Print Network [OSTI]

    Bimetallic Cathode Materials for Lithium Based Batteries Frontiers in Materials Science Seminar / Chemistryg g g g g y University at Buffalo ­ The State University of New York (SUNY) Abstract Batteries/SVO batteries. A case study highlighting the rich chemistry and electrochemistry of the Li/SVO system providing

  15. Overview of the Batteries for Advanced Transportation

    E-Print Network [OSTI]

    Knowles, David William

    Overview of the Batteries for Advanced Transportation Technologies (BATT) Program Venkat Srinivasan of the DOE/EERE FreedomCAR and Vehicle Technologies Program to develop batteries for vehicular applications double the energy density of presently available Li batteries · HEV: low-T operation, cost, and abuse

  16. 0 INFORMATION BATTERIES-FOR BIOTELEMETRY

    E-Print Network [OSTI]

    Thomas, David D.

    A -BIAC 0 INFORMATION MODULE MIO BATTERIES-FOR BIOTELEMETRY AND OTHER APPLICATIONS Prepared by go to the Applications Engineering Department of P. R. Mallory Battery Company for supplying. High vacuum or pressures of 5C00 psi have no detectable effect on mercury batteries. Momentary short

  17. Transparent lithium-ion batteries , Sangmoo Jeongb

    E-Print Network [OSTI]

    Cui, Yi

    Transparent lithium-ion batteries Yuan Yanga , Sangmoo Jeongb , Liangbing Hua , Hui Wua , Seok Woo, and solar cells; however, transparent batteries, a key component in fully integrated transparent devices, have not yet been reported. As battery electrode materials are not transpar- ent and have to be thick

  18. Progress in Grid Scale Flow Batteries

    E-Print Network [OSTI]

    Progress in Grid Scale Flow Batteries IMRE GYUK, PROGRAM MANAGER ENERGY STORAGE RESEARCH, DOE Flow 2011Year #12;Flow Battery Research at PNNL and Sandia #12; Iron-containing "MetIL" Redox Couples for Flow Batteries, Sandia Sandia has developed

  19. Electrothermal Analysis of Lithium Ion Batteries

    SciTech Connect (OSTI)

    Pesaran, A.; Vlahinos, A.; Bharathan, D.; Duong, T.

    2006-03-01

    This report presents the electrothermal analysis and testing of lithium ion battery performance. The objectives of this report are to: (1) develop an electrothermal process/model for predicting thermal performance of real battery cells and modules; and (2) use the electrothermal model to evaluate various designs to improve battery thermal performance.

  20. Battery charging in float vs. cycling environments

    SciTech Connect (OSTI)

    COREY,GARTH P.

    2000-04-20

    In lead-acid battery systems, cycling systems are often managed using float management strategies. There are many differences in battery management strategies for a float environment and battery management strategies for a cycling environment. To complicate matters further, in many cycling environments, such as off-grid domestic power systems, there is usually not an available charging source capable of efficiently equalizing a lead-acid battery let alone bring it to a full state of charge. Typically, rules for battery management which have worked quite well in a floating environment have been routinely applied to cycling batteries without full appreciation of what the cycling battery really needs to reach a full state of charge and to maintain a high state of health. For example, charge target voltages for batteries that are regularly deep cycled in off-grid power sources are the same as voltages applied to stand-by systems following a discharge event. In other charging operations equalization charge requirements are frequently ignored or incorrectly applied in cycled systems which frequently leads to premature capacity loss. The cause of this serious problem: the application of float battery management strategies to cycling battery systems. This paper describes the outcomes to be expected when managing cycling batteries with float strategies and discusses the techniques and benefits for the use of cycling battery management strategies.

  1. Jeff Chamberlain on Lithium-air batteries

    SciTech Connect (OSTI)

    Chamberlain, Jeff

    2009-01-01

    Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

  2. Jeff Chamberlain on Lithium-air batteries

    ScienceCinema (OSTI)

    Chamberlain, Jeff

    2013-04-19

    Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

  3. Adaptive Battery Charge Scheduling with Bursty Workloads

    E-Print Network [OSTI]

    Wu, Jie

    1 Adaptive Battery Charge Scheduling with Bursty Workloads Dylan Lexie , Shan Lin, and Jie Wu.wu@temple.edu Abstract--Battery-powered wireless sensor devices need to be charged to provide the desired functionality after deployment. Task or even device failures can occur if the voltage of the battery is low

  4. Solid-state lithium battery

    DOE Patents [OSTI]

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  5. Models for Battery Reliability and Lifetime

    SciTech Connect (OSTI)

    Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G. H.; Neubauer, J.; Pesaran, A.

    2014-03-01

    Models describing battery degradation physics are needed to more accurately understand how battery usage and next-generation battery designs can be optimized for performance and lifetime. Such lifetime models may also reduce the cost of battery aging experiments and shorten the time required to validate battery lifetime. Models for chemical degradation and mechanical stress are reviewed. Experimental analysis of aging data from a commercial iron-phosphate lithium-ion (Li-ion) cell elucidates the relative importance of several mechanical stress-induced degradation mechanisms.

  6. Advanced batteries for electric vehicle applications

    SciTech Connect (OSTI)

    Henriksen, G.L.

    1993-08-01

    A technology assessment is given for electric batteries with potential for use in electric powered vehicles. Parameters considered include: specific energy, specific power, energy density, power density, cycle life, service life, recharge time, and selling price. Near term batteries include: nickel/cadmium and lead-acid batteries. Mid term batteries include: sodium/sulfur, sodium/nickel chloride, nickel/metal hydride, zinc/air, zinc/bromine, and nickel/iron systems. Long term batteries include: lithium/iron disulfide and lithium- polymer systems. Performance and life testing data for these systems are discussed. (GHH)

  7. Cathode material for lithium batteries

    DOE Patents [OSTI]

    Park, Sang-Ho; Amine, Khalil

    2013-07-23

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  8. STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES

    E-Print Network [OSTI]

    Wilcox, James D.

    2010-01-01

    as cathode materials for lithium ion battery. ElectrochimicaCapacity, High Rate Lithium-Ion Battery Electrodes Utilizinghours. 1.4 Lithium Ion Batteries Lithium battery technology

  9. Molten Air -- A new, highest energy class of rechargeable batteries

    E-Print Network [OSTI]

    Licht, Stuart

    2013-01-01

    This study introduces the principles of a new class of batteries, rechargeable molten air batteries, and several battery chemistry examples are demonstrated. The new battery class uses a molten electrolyte, are quasi reversible, and have amongst the highest intrinsic battery electric energy storage capacities. Three examples of the new batteries are demonstrated. These are the iron, carbon and VB2 molten air batteries with respective intrinsic volumetric energy capacities of 10,000, 19,000 and 27,000 Wh per liter.

  10. Lithium-Air Battery: High Performance Cathodes for Lithium-Air Batteries

    SciTech Connect (OSTI)

    2010-08-01

    BEEST Project: Researchers at Missouri S&T are developing an affordable lithium-air (Li-Air) battery that could enable an EV to travel up to 350 miles on a single charge. Today’s EVs run on Li-Ion batteries, which are expensive and suffer from low energy density compared with gasoline. This new Li-Air battery could perform as well as gasoline and store 3 times more energy than current Li-Ion batteries. A Li-Air battery uses an air cathode to breathe oxygen into the battery from the surrounding air, like a human lung. The oxygen and lithium react in the battery to produce electricity. Current Li-Air batteries are limited by the rate at which they can draw oxygen from the air. The team is designing a battery using hierarchical electrode structures to enhance air breathing and effective catalysts to accelerate electricity production.

  11. U-239: Apple iPhone SMS Processing Flaw Lets Remote Users Spoof...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    39: Apple iPhone SMS Processing Flaw Lets Remote Users Spoof SMS Source Addresses U-239: Apple iPhone SMS Processing Flaw Lets Remote Users Spoof SMS Source Addresses August 20,...

  12. Introduction This guide will assist you in connecting your Apple Mac to the University wireless networks.

    E-Print Network [OSTI]

    Balasuriya, Sanjeeva

    Introduction This guide will assist you in connecting your Apple Mac to the University wireless change your password. Procedure 1. Click the Apple Icon ( ) 2. Select `System Preferences' from the menu

  13. T-676: Apple iOS Certificate Chain Validation Flaw Lets Certain...

    Energy Savers [EERE]

    676: Apple iOS Certificate Chain Validation Flaw Lets Certain Remote Users Access or Modify SSLTLS Sessions T-676: Apple iOS Certificate Chain Validation Flaw Lets Certain Remote...

  14. U-121: Apple iOS Bugs Let Remote Users Execute Arbitrary Code...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    21: Apple iOS Bugs Let Remote Users Execute Arbitrary Code, Conduct Cross-Site Scripting Attacks, and Obtain Potentially Sensitive Information U-121: Apple iOS Bugs Let Remote...

  15. U-170: Apple QuickTime Multiple Flaws Let Remote Users Execute...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0: Apple QuickTime Multiple Flaws Let Remote Users Execute Arbitrary Code U-170: Apple QuickTime Multiple Flaws Let Remote Users Execute Arbitrary Code May 16, 2012 - 7:00am...

  16. V-020: Apple QuickTime Multiple Flaws Let Remote Users Execute...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0: Apple QuickTime Multiple Flaws Let Remote Users Execute Arbitrary Code V-020: Apple QuickTime Multiple Flaws Let Remote Users Execute Arbitrary Code November 9, 2012 - 6:00am...

  17. U-165: Apple iOS Bugs Let Remote Users Execute Arbitrary Code...

    Office of Environmental Management (EM)

    5: Apple iOS Bugs Let Remote Users Execute Arbitrary Code and Spoof Address Bar URLs U-165: Apple iOS Bugs Let Remote Users Execute Arbitrary Code and Spoof Address Bar URLs May 9,...

  18. V-171: Apple Safari Bugs Let Remote Users Execute Arbitrary Code...

    Broader source: Energy.gov (indexed) [DOE]

    Apple Safari Bugs Let Remote Users Execute Arbitrary Code and Conduct Cross-Site Scripting Attacks PLATFORM: Apple Safari prior to 6.0.5 ABSTRACT: Several vulnerabilities were...

  19. Introduction To configure Apple Mail to access your University student email account

    E-Print Network [OSTI]

    Balasuriya, Sanjeeva

    Introduction To configure Apple Mail to access your University student email account Procedure 1 8313 3000 or servicedesk@adelaide.edu.au Technology Services Configure Student Gmail - Apple Mail #12;

  20. Theor Appl Genet DOI 10.1007/s00122-007-0605-2

    E-Print Network [OSTI]

    Burke, John M.

    Theor Appl Genet DOI 10.1007/s00122-007-0605-2 123 ORIGINAL PAPER Universal markers for comparative Blvd, Boston, MA 02125, USA #12;Theor Appl Genet 123 genome sequence of Arabidopsis thaliana (e

  1. MSU Fruit Team Apple Maturity Report 2013 Northwest Region, Report Number 2

    E-Print Network [OSTI]

    MSU Fruit Team Apple Maturity Report 2013 Northwest Region, Report Number 2 September 11, 2013 will be testing apples for maturity for 2013, and results will be sent via fax and email to past apple maturity/centers/nwmihort/nwmihort_resources_and_reports#NWMIAppleMaturityReps Reports for other regions around the state can be viewed at http://msue.anr.msu.edu/resources/apple

  2. Apple and the Apple logo are trademarks of Apple Inc., registered in the U.S. and other countries. App Store is a service mark of Apple Inc. | Android and Google Play are trademarks of Google Inc. *The downloading and use of the myCigna Mobile App is subj

    E-Print Network [OSTI]

    . App Store is a service mark of Apple Inc. | Android and Google Play are trademarks of Google Inc. *The

  3. Lithium sulfide compositions for battery electrolyte and battery electrode coatings

    DOE Patents [OSTI]

    Liang, Chengdu; Liu, Zengcai; Fu, Wunjun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

    2013-12-03

    Methods of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electroytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one or .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

  4. Lithium sulfide compositions for battery electrolyte and battery electrode coatings

    DOE Patents [OSTI]

    Liang, Chengdu; Liu, Zengcai; Fu, Wujun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

    2014-10-28

    Method of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electrolytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

  5. From: Nicholas Ammann [mailto:nammann@apple.com

    Broader source: Energy.gov (indexed) [DOE]

    Tuesday, July 16, 2013 4:35 PM To: Exparte Communications Subject: Request for Information on Evaluating New Products for the Battery Chargers and External Power Supply Rulemaking...

  6. AVTA: Battery Testing- DC Fast Charging's Effects on PEV Batteries

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report describes DC fast charging's effects on plug-in electric vehicle batteries. This research was conducted by Idaho National Laboratory.

  7. Steve Jobs' creations simplified life, Apple enthusiasts say in mourning his death

    E-Print Network [OSTI]

    Fernandez, Eduardo

    Steve Jobs' creations simplified life, Apple enthusiasts say in mourning his death By ADAM PLAYFORD as soon as they got confirmation." Word of the Apple co-founder's death of pancreatic cancer hit hard live without a computer," said Joerg von Veltar, the founder of the Palm Beach Phoenix Apple User Group

  8. Configuring ICEMail for Apple Mail for MacOS 10.10 Yosemite

    E-Print Network [OSTI]

    Chen, Yiling

    Configuring ICEMail for Apple Mail for MacOS 10.10 Yosemite Once you have received notification on at https://icemail.harvard.edu, you will need to add the new settings in Apple Mail. Step 1. Launch Mail the Accounts tab. And click on the + in the lower left corner. (See Figure 2) Figure 2 SEAS-ICE Apple Mail

  9. WHOLE-FARM APPLE ARTHROPOD MANAGEMENT USING REDUCED-RISK TACTICS AND IPM SAMPLING AND MONITORING

    E-Print Network [OSTI]

    Agnello, Arthur M.

    WHOLE-FARM APPLE ARTHROPOD MANAGEMENT USING REDUCED-RISK TACTICS AND IPM SAMPLING AND MONITORING management programs in apples, using provisional action thresholds for specific major pests based on previous-farm approaches for managing the arthropod pests of apple orchards that rely on RR and OP-replacement insecticides

  10. 130 Florida Entomologist 93(1) March 2010 BIOLOGICAL CONTROL OF TROPICAL SODA APPLE

    E-Print Network [OSTI]

    Ma, Lena

    130 Florida Entomologist 93(1) March 2010 BIOLOGICAL CONTROL OF TROPICAL SODA APPLE (SOLANACEAE for natural ene- mies of the invasive plant tropical soda apple, Solanum viarum Dunal (Solanaceae) were con apple in Brazil and Paraguay (Medal et al. 1996). A biological control program was initiated

  11. Light brown apple moth (LBAM) (Epiphyas postvittana) is an important invasive leafroller pest

    E-Print Network [OSTI]

    Ishida, Yuko

    Light brown apple moth (LBAM) (Epiphyas postvittana) is an important invasive leafroller pest for Light Brown Apple Moth IN CALIFORNIA NURSERIES Eggs are not easily observed by nursery scouts or other the head. Male light brown apple moths caught in pheromone traps. e wing-color pattern of males can

  12. Minimal Spray Strategy for Frosted Apple Trees Nikki Rothwell, District Fruit IPM Educator

    E-Print Network [OSTI]

    1 Minimal Spray Strategy for Frosted Apple Trees Nikki Rothwell, District Fruit IPM Educator Amy morning frost of Saturday, May 6th , many apples in the northwest region were affected. Based on some preliminary observations, we have found most apples in 'cherry sites' fared pretty well, although some trees

  13. Title: Use of Physical Barriers to Prevent Borer Infestation of Apple Burrknots Project Leaders

    E-Print Network [OSTI]

    Agnello, Arthur M.

    Title: Use of Physical Barriers to Prevent Borer Infestation of Apple Burrknots Project Leaders of burrknot tissue on apple dwarfing rootstocks is an increasing problem throughout the northeast. One into the winter. We also discuss economic considerations. Background and Justification: Apple growers

  14. THE APPLE GAME AND THE PRESSING-DOWN LEMMA Brian White

    E-Print Network [OSTI]

    White, Brian

    THE APPLE GAME AND THE PRESSING-DOWN LEMMA Brian White Math 161 Lecture Notes (Winter 2005) Recall, but for every apple game is played in a series of stages, one for each element of 1. At stage 0, you are given a countable collection of apples. At each stage n 1 with n > 0: (1) If you have

  15. MSU Fruit Team Apple Maturity Report 2014 Northwest Region, Report Number 3

    E-Print Network [OSTI]

    MSU Fruit Team Apple Maturity Report 2014 Northwest Region, Report Number 3: September 24, 2014 Nikki Rothwell and Emily Pochubay, Extension Fruit Educators Apples are maturing slowly, but warm and sunny weather should move fruit along this week. We expect apples to be ready for harvest close

  16. Low and High-Level Visual Feature Based Apple Detection from Multi-modal Images

    E-Print Network [OSTI]

    Wachs, Juan

    1 Low and High-Level Visual Feature Based Apple Detection from Multi-modal Images J. P. Wachs1 , H discusses the development of a machine vision system, capable of recognizing occluded green apples within a tree canopy. This involves the detection of "green" apples within scenes of "green leaves", shadow

  17. http://agbioresearch.msu.edu/centers/nwmihort/ MSU Fruit Team Apple Maturity Report 2014

    E-Print Network [OSTI]

    http://agbioresearch.msu.edu/centers/nwmihort/ MSU Fruit Team Apple Maturity Report 2014 Northwest Gingergold harvest continues, and many growers are waiting on McIntosh harvest to begin. Apples are coloring nicely with the cool temperatures. Cool temperatures have hit the northwest region, and apple maturity

  18. Light brown apple moth Epiphyas postvittana Michigan State University's invasive species factsheets

    E-Print Network [OSTI]

    Isaacs, Rufus

    Light brown apple moth Epiphyas postvittana Michigan State University's invasive species factsheets University IPM Program and M. Philip of Michigan Department of Agriculture. The light brown apple moth and agricultural commodities. Michigan risk maps for exotic plant pests. Other common names apple leafroller

  19. MSU Fruit Team Apple Maturity Report 2013 Northwest Region, Report Number 5: October 2, 2013

    E-Print Network [OSTI]

    MSU Fruit Team Apple Maturity Report 2013 Northwest Region, Report Number 5: October 2, 2013 Nikki Rothwell and Emily Pochubay, Extension Fruit Educators This is the fifth week of 2013 apple maturity testing at NWMHRC. Results will be sent via fax and email to past apple maturity list subscribers. Results

  20. MSU Fruit Team Apple Maturity Report 2013 Northwest Region, Report Number 7: October 16, 2013

    E-Print Network [OSTI]

    MSU Fruit Team Apple Maturity Report 2013 Northwest Region, Report Number 7: October 16, 2013 Nikki Rothwell and Emily Pochubay, Extension Fruit Educators This is the seventh week of 2013 apple maturity testing at NWMHRC. Results will be sent via fax and email to past apple maturity list subscribers. Results

  1. MSU Fruit Team Apple Maturity Report 2013 Northwest Region, Report Number 1

    E-Print Network [OSTI]

    MSU Fruit Team Apple Maturity Report 2013 Northwest Region, Report Number 1 September 4, 2013 General Comments - The NWMHRC will be testing apples for maturity for 2013, and results will be sent via fax and email to past apple maturity list subscribers. Results will also be available at: http

  2. MSU Fruit Team Apple Maturity Report 2014 Northwest Region, Report Number 6: October 15, 2014

    E-Print Network [OSTI]

    MSU Fruit Team Apple Maturity Report 2014 Northwest Region, Report Number 6: October 15, 2014 Emily, which is slowing apple harvest in the north. Cool weather and rain continues across northwest Michigan at the NWMHRC, many growers dropped off samples for testing because apple varieties have been slow to mature

  3. Apple Tree, NH Big Tree for May By Anne Krantz, NH Big Tree Team,

    E-Print Network [OSTI]

    New Hampshire, University of

    Apple Tree, NH Big Tree for May By Anne Krantz, NH Big Tree Team, UNH Cooperative Extension The explosion of apple blossoms in May transforms the most gnarled old tree into a delicate cloud of beauty (1817-1862) in his essay "The Wild Apple Tree," described the blossoms perfectly: `The flowers

  4. MSU Fruit Team Apple Maturity Report 2013 Northwest Region, Report Number 6: October 9, 2013

    E-Print Network [OSTI]

    MSU Fruit Team Apple Maturity Report 2013 Northwest Region, Report Number 6: October 9, 2013 Nikki Rothwell and Emily Pochubay, Extension Fruit Educators This is the sixth week of 2013 apple maturity testing at NWMHRC. Results will be sent via fax and email to past apple maturity list subscribers. Results

  5. Apple detection in natural tree canopies from multimodal images J. P. Wachs1,2

    E-Print Network [OSTI]

    Wachs, Juan

    1 Apple detection in natural tree canopies from multimodal images J. P. Wachs1,2 , H. I. Stern2 , T apples within a tree canopy using infra-red and color images in order to achieve automated harvesting. Infra-red provides clues regarding the physical structure and location of the apples based

  6. MSU Fruit Team Apple Maturity Report 2013 Northwest Region, Report Number 3

    E-Print Network [OSTI]

    MSU Fruit Team Apple Maturity Report 2013 Northwest Region, Report Number 3 September 18, 2013 Nikki Rothwell and Emily Pochubay, Extension Fruit Educators This is the third week of 2013 apple maturity testing at NWMHRC. General Comments - The NWMHRC will be testing apples for maturity for 2013

  7. APPL: A Probability Programming Language Maj. Andrew G. GLEN, Diane L. EVANS, and Lawrence M. LEEMIS

    E-Print Network [OSTI]

    Leemis, Larry

    APPL: A Probability Programming Language Maj. Andrew G. GLEN, Diane L. EVANS, and Lawrence M having arbitrary distributions. This arti- cle presents a prototype probability package named APPL (A probability software package, referred to as "A Prob- ability Programming Language" (APPL), that fills

  8. Enhanced the expression of an apple gene that switches on a tree's natural defenses

    E-Print Network [OSTI]

    · Enhanced the expression of an apple gene that switches on a tree's natural defenses when fire the roots and killing the tree. Fire blight can kill an apple tree in as little as 30 days. It's called fire Sundin/MSU George Sundin/MSU #12;Enhanced the expression of an apple gene that switches on a tree

  9. Borer problems and their control in dwarf apple trees David Kain, Entomology, NYSAES, Geneva, NY

    E-Print Network [OSTI]

    Agnello, Arthur M.

    Borer problems and their control in dwarf apple trees David Kain, Entomology, NYSAES, Geneva, NY in western New York, were invading burrknots on dwarf apple trees. About the same time, Dick Straub seemed to be becoming more common in dwarf apple plantings, as well. Based on Deb's alert, we decided

  10. MSU Fruit Team Apple Maturity Report 2013 Northwest Region, Report Number 4: September 25, 2013

    E-Print Network [OSTI]

    MSU Fruit Team Apple Maturity Report 2013 Northwest Region, Report Number 4: September 25, 2013 Nikki Rothwell and Emily Pochubay, Extension Fruit Educators This is the fourth week of 2013 apple maturity testing at NWMHRC. Results will be sent via fax and email to past apple maturity list subscribers

  11. Li2O Particulate Flow Concept, APPLE APEX Interim Report November, 1999

    E-Print Network [OSTI]

    California at Los Angeles, University of

    Li2O Particulate Flow Concept, APPLE APEX Interim Report November, 1999 9-1 CHAPTER 9: Li2O PARTICULATE FLOW CONCEPT ­ APPLE DESIGN Contributors Lead Author: Dai Kai Sze Dai Kai Sze, Zhanhe Wang (ANL Particulate Flow Concept, APPLE APEX Interim Report November, 1999 9-2 9. LI2O PARTICULATE FLOW CONCEPT

  12. Apple Price List Buy your Mac with us and qualify for free warranty service

    E-Print Network [OSTI]

    Apple Price List Buy your Mac with us and qualify for free warranty service on campus storage to 256GB storage $200.00 Apple USB SuperDrive $79.00 Canon Printer with cables & paper $74://computerstore.unh.edu/support for more details on warranty coverage, loaner policies, and more. #12;Apple Price List Buy your Mac with us

  13. Privacy Failures in Encrypted Messaging Services: Apple iMessage and Beyond

    E-Print Network [OSTI]

    International Association for Cryptologic Research (IACR)

    Privacy Failures in Encrypted Messaging Services: Apple iMessage and Beyond Scott E. Coull Red of communication among consumers around the world. Apple iMessage, for example, handles over 2 bil- lion message evaluation focuses on Apple iMessage, the attacks are completely generic and we show how they can be applied

  14. New SRC APPLE ll Variable Polarization Beamline

    SciTech Connect (OSTI)

    M Severson; M Bissen; M Fisher; G Rogers; R Reininger; M Green; D Eisert; B Tredinnick

    2011-12-31

    SRC has recently commissioned a new Varied Line-Spacing Plane Grating Monochromator (VLS-PGM) utilizing as its source a 1 m long APPLE II insertion device in short-straight-section 9 of the Aladdin storage ring. The insertion device reliably delivers horizontal, vertical, and right and left circularly polarized light to the beamline. Measurements from an in situ polarimeter can be used for undulator corrections to compensate for depolarizing effects of the beamline. The beamline has only three optical elements and covers the energy range from 11.1 to 270 eV using two varied line-spacing gratings. A plane mirror rotates to illuminate the gratings at the correct angle to cancel the defocus term at all photon energies. An exit slit and elliptical-toroid refocusing mirror complete the beamline. Using a 50 {mu}m exit slit, the beamline provides moderate to high resolution, with measured flux in the mid 10{sup 12} (photons/s/200 mA) range, and a spot size of 400 {mu}m horizontal by 30 {mu}m vertical.

  15. Online Prediction of Battery Lifetime for Embedded and Mobile Devices

    E-Print Network [OSTI]

    Krintz, Chandra

    Online Prediction of Battery Lifetime for Embedded and Mobile Devices Ye Wen, Rich Wolski, and compare it to two similar battery prediction technologies: ACPI and Smart Battery. We employ twenty is a critical resource for battery-powered embedded systems and mobile devices. As such, battery life must

  16. LITHIUM-ION BATTERY CHARGING REPORT G. MICHAEL BARRAMEDA

    E-Print Network [OSTI]

    Ruina, Andy L.

    LITHIUM-ION BATTERY CHARGING REPORT G. MICHAEL BARRAMEDA 1. Abstract This report introduces how. Battery Pack 1 · Cycle 1 : 2334 mAh · Cycle 2: 2312 mAh #12;LITHIUM-ION BATTERY CHARGING REPORT 3 · Cycle to handle the Powerizer Li-Ion rechargeable Battery Packs. It will bring reveal battery specifications

  17. A Battery Health Monitoring Framework for Planetary Rovers

    E-Print Network [OSTI]

    Daigle, Matthew

    A Battery Health Monitoring Framework for Planetary Rovers Matthew Daigle NASA Ames Research Center Moffett Field, CA 94035 chetan.s.kulkarni@nasa.gov Abstract--Batteries have seen an increased use source. An important aspect of using batteries in such contexts is battery health monitoring. Batteries

  18. Cascade redox flow battery systems

    DOE Patents [OSTI]

    Horne, Craig R.; Kinoshita, Kim; Hickey, Darren B.; Sha, Jay E.; Bose, Deepak

    2014-07-22

    A reduction/oxidation ("redox") flow battery system includes a series of electrochemical cells arranged in a cascade, whereby liquid electrolyte reacts in a first electrochemical cell (or group of cells) before being directed into a second cell (or group of cells) where it reacts before being directed to subsequent cells. The cascade includes 2 to n stages, each stage having one or more electrochemical cells. During a charge reaction, electrolyte entering a first stage will have a lower state-of-charge than electrolyte entering the nth stage. In some embodiments, cell components and/or characteristics may be configured based on a state-of-charge of electrolytes expected at each cascade stage. Such engineered cascades provide redox flow battery systems with higher energy efficiency over a broader range of current density than prior art arrangements.

  19. Recombination device for storage batteries

    DOE Patents [OSTI]

    Kraft, H.; Ledjeff, K.

    1984-01-01

    A recombination device including a gas-tight enclosure connected to receive the discharge gases from a rechargeable storage battery. Catalytic material for the recombination of hydrogen and oxygen to form water is supported within the enclosure. The enclosure is sealed from the atmosphere by a liquid seal including two vertical chambers interconnected with an inverted U-shaped overflow tube. The first chamber is connected at its upper portion to the enclosure and the second chamber communicates at its upper portion with the atmosphere. If the pressure within the enclosure differs as overpressure or vacuum by more than the liquid level, the liquid is forced into one of the two chambers and the overpressure is vented or the vacuum is relieved. The recombination device also includes means for returning recombined liquid to the battery and for absorbing metal hydrides.

  20. Recombination device for storage batteries

    DOE Patents [OSTI]

    Kraft, Helmut (Liederbach, DE); Ledjeff, Konstantin (Bad Krozingen, DE)

    1985-01-01

    A recombination device including a gas-tight enclosure connected to receive he discharge gases from a rechargeable storage battery. Catalytic material for the recombination of hydrogen and oxygen to form water is supported within the enclosure. The enclosure is sealed from the atmosphere by a liquid seal including two vertical chambers interconnected with an inverted U-shaped overflow tube. The first chamber is connected at its upper portion to the enclosure and the second chamber communicates at its upper portion with the atmosphere. If the pressure within the enclosure differs as overpressure or vacuum by more than the liquid level, the liquid is forced into one of the two chambers and the overpressure is vented or the vacuum is relieved. The recombination device also includes means for returning recombined liquid to the battery and for absorbing metal hydrides.

  1. Battery system with temperature sensors

    DOE Patents [OSTI]

    Wood, Steven J; Trester, Dale B

    2014-02-04

    A battery system includes a platform having an aperture formed therethrough, a flexible member having a generally planar configuration and extending across the aperture, wherein a portion of the flexible member is coextensive with the aperture, a cell provided adjacent the platform, and a sensor coupled to the flexible member and positioned proximate the cell. The sensor is configured to detect a temperature of the cell.

  2. A lithium oxygen secondary battery

    SciTech Connect (OSTI)

    Semkow, K.W.; Sammells, A.F.

    1987-08-01

    In principle the lithium-oxygen couple should provide one of the highest energy densities yet investigated for advanced battery systems. The problem to this time has been one of identifying strategies for achieving high electrochemical reversibilities at each electrode under conditions where one might anticipate to also achieve long materials lifetimes. This has been addressed in recent work by us via the application of stabilized zirconia oxygen vacancy conducting solid electrolytes, for the effective separation of respective half-cell reactions.

  3. Electrolytes for lithium ion batteries

    DOE Patents [OSTI]

    Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

    2014-08-05

    A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

  4. Hydrogen-Bromine Flow Battery: Hydrogen Bromine Flow Batteries for Grid Scale Energy Storage

    SciTech Connect (OSTI)

    2010-10-01

    GRIDS Project: LBNL is designing a flow battery for grid storage that relies on a hydrogen-bromine chemistry which could be more efficient, last longer and cost less than today’s lead-acid batteries. Flow batteries are fundamentally different from traditional lead-acid batteries because the chemical reactants that provide their energy are stored in external tanks instead of inside the battery. A flow battery can provide more energy because all that is required to increase its storage capacity is to increase the size of the external tanks. The hydrogen-bromine reactants used by LBNL in its flow battery are inexpensive, long lasting, and provide power quickly. The cost of the design could be well below $100 per kilowatt hour, which would rival conventional grid-scale battery technologies.

  5. America Chooses the Next Top Energy Innovator | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    greatly improve the performance of lithium-ion batteries. Lithium-ion batteries are rechargeable batteries that are widely used in portable devices such as laptops and power...

  6. Capacity fade analysis of a battery/super capacitor hybrid and a battery under pulse loads full cell studies

    E-Print Network [OSTI]

    Popov, Branko N.

    Capacity fade analysis of a battery/super capacitor hybrid and a battery under pulse loads ­ full ion battery-super capacitor hybrid system is preferred over a lithium ion battery for higher rates ion battery ($100 W/kg). Also, since the inter- nal resistance of the super capacitor is smaller than

  7. Fuzzy Logic-Based Smart Battery State-of-Charge (SOC) Monitor for SLI Batteries Pritpal Singh

    E-Print Network [OSTI]

    Singh, Pritpal

    1 Fuzzy Logic-Based Smart Battery State-of-Charge (SOC) Monitor for SLI Batteries Pritpal Singh. Monitoring and charge control of these batteries can be improved by using the concept of a smart battery system (SBS). In the present work, a smart battery monitor has been designed and manufactured

  8. Batteries for Large Scale Energy Storage

    SciTech Connect (OSTI)

    Soloveichik, Grigorii L.

    2011-07-15

    In recent years, with the deployment of renewable energy sources, advances in electrified transportation, and development in smart grids, the markets for large-scale stationary energy storage have grown rapidly. Electrochemical energy storage methods are strong candidate solutions due to their high energy density, flexibility, and scalability. This review provides an overview of mature and emerging technologies for secondary and redox flow batteries. New developments in the chemistry of secondary and flow batteries as well as regenerative fuel cells are also considered. Advantages and disadvantages of current and prospective electrochemical energy storage options are discussed. The most promising technologies in the short term are high-temperature sodium batteries with ?”-alumina electrolyte, lithium-ion batteries, and flow batteries. Regenerative fuel cells and lithium metal batteries with high energy density require further research to become practical.

  9. Using the Apple LaserWriter at ANL

    SciTech Connect (OSTI)

    Errion, S.M.; Thommes, M.M. Caruthers, C.M.

    1987-09-01

    Using the Apple LaserWriter at ANL (ANL/TM 452) explains how Argonne computer users (with CMS, MVS, or VAX/VMS accounts) can print quality text and graphics on the Apple LaserWriter. Currently, applications at Argonne that are compatible with the Apple LaserWriter include Waterloo Script, CA/ISSCO graphics software (i.e., Cuechart, Tellagraf, and Disspla), SAS/Graph, ANSYS (version 4.2), and some personal computer test and graphics software. This manual does not attempt to cover use of the Apple LaserWriter with other applications, though some information on the handling of PostScript-compatible files may be valid for other applications. Refer to the documentation of those applications to learn how they work with the Apple LaserWriter. Most of the information in this manual applies to the Allied Linotype L300P typesetter in Building 222. However, the typesetter is not a high volume output device and should be used primarily for high quality (1250 and 2500 dots per inch) final copy output for Laboratory publications prior to making printing plates. You should print all drafts and proof pages on LaserWriers or other printers compatible with the PostScript page description language. Consult with Graphic Arts (at extension 2-5603) to determine the availability of the typesetter for printing the final copy of your document or graphics application. Since the Apple LaserWriter itself produces good quality output (300 dots per inch), we expect that most internal documents consisting of test or graphics will continue to be printed at LaserWriters distributed throughout the Laboratory. 5 figs., 2 tabs.

  10. Primer on lead-acid storage batteries

    SciTech Connect (OSTI)

    1995-09-01

    This handbook was developed to help DOE facility contractors prevent accidents caused during operation and maintenance of lead-acid storage batteries. Major types of lead-acid storage batteries are discussed as well as their operation, application, selection, maintenance, and disposal (storage, transportation, as well). Safety hazards and precautions are discussed in the section on battery maintenance. References to industry standards are included for selection, maintenance, and disposal.

  11. NO. REV. NO. LSPE THERMAL BATTERY TEST

    E-Print Network [OSTI]

    Rathbun, Julie A.

    NO. REV. NO. ATM 1086 LSPE THERMAL BATTERY TEST PAGE 1 OF DATE 2/25/72 Prepared by @c!_.e,~.~ ~P. Weir Approved by ~~---:J L. Lewis 5 #12;KC::Y, NO. LSPE THERMAL BATTERY TEST ATM 1086 2 PAGE OF DATE 2-52-72 Introduction The purpose of this ATM is to document the results of a Thermal Battery test for the Lunar Seismic

  12. Firm develops own EMS built on Apple computer

    SciTech Connect (OSTI)

    Pospisil, R.

    1982-04-05

    Firestone Fibers and Textile Co. programmed a $2000 desktop Apple II computer and special electronic panels designed by the engineering staff to perform process control and other energy-management functions. The system should reduce natural gas consumption 40% and save the company up to $75,000 a year by reducing the amount of hot air exhausted from fabric-treating ovens. The system can be expanded to control lights and space-conditioning equipment. The company is willing to negotiate with other firms to market the panels. The Apple II was chosen because it has a high capacity for data acquisition and testing and because of the available software. (DCK)

  13. 'Thirsty' Metals Key to Longer Battery Lifetimes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Replacing lithium with other metals with multiple charges could greatly increase battery capacity. But first researchers need to understand how to keep multiply charged...

  14. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01

    to 1) - a New Cathode Material for Batteries of High- Energyefforts to develop new high-energy materials such as silicon

  15. Washington: Battery Manufacturer Brings Material Production Home...

    Office of Environmental Management (EM)

    batteries enable electric drive vehicles to consume less petroleum and produce less pollution than conventional vehicles. At full capacity, the EnerG2 plant will produce enough...

  16. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the porous electrode. Using the STXM lithium maps and the high-resolution TEM images, researchers found that LFP battery particles do not charge simultaneously....

  17. Ultracapacitors and Batteries in Hybrid Vehicles

    SciTech Connect (OSTI)

    Pesaran, A.; Markel, T.; Zolot, M.; Sprik, S.

    2005-08-01

    Using an ultracapacitor in conjunction with a battery in a hybrid vehicle combines the power performance of the former with the greater energy storage capability of the latter.

  18. Nanocomposite Materials for Lithium-Ion Batteries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    abuse tolerant lithium-ion (Li-ion) batteries is an important step in electrifying the drive train and facilitating widespread adoption of HEVs and PHEVs. Nanocomposite...

  19. Advanced Battery Materials Characterization: Success stories...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    stories from the High Temperature Materials Laboratory (HTML) User Program Advanced Battery Materials Characterization: Success stories from the High Temperature Materials...

  20. Redox shuttle additives for overcharge protection in lithium batteries

    E-Print Network [OSTI]

    Richardson, Thomas J.; Ross Jr., P.N.

    1999-01-01

    Protection in Lithium Batteries”, T. J. Richardson* and P.PROTECTION IN LITHIUM BATTERIES T. J. Richardson* and P. N.in lithium and lithium ion batteries are now available. The

  1. Are Batteries Ready for Plug-in Hybrid Buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

    2009-01-01

    higher power density batteries have reduced energy density,2008 UCD-ITS-WP-09-02 Are batteries ready for plug-in hybridprograms mischaracterize the batteries needed to start

  2. Improved Positive Electrode Materials for Li-ion Batteries

    E-Print Network [OSTI]

    Conry, Thomas Edward

    2012-01-01

    T. , Tozawa, K. Prog. Batteries Solar Cells 1990, 9, 209. E.Costs of Lithium-Ion Batteries for Vechicles. ” Center forin Solids: Solid State Batteries and Devices, Ed. by W. vn

  3. Are Batteries Ready for Plug-in Hybrid Buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

    2010-01-01

    237–253. Burke, A. , 2007. Batteries and ultracapacitors forresults with lithium-ion batteries. In: Proceedings (CD)locate/tranpol Are batteries ready for plug-in hybrid

  4. Coated Silicon Nanowires as Anodes in Lithium Ion Batteries

    E-Print Network [OSTI]

    Watts, David James

    2014-01-01

    for advanced lithium-ion batteries. J. Power Sources 174,for lithium rechargeable batteries. Angew. Chem. Int. Ed.anodes for lithium-ion batteries. J. Mater. Chem. A 1,

  5. Are batteries ready for plug-in hybrid buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

    2008-01-01

    higher power density batteries have reduced energy density,2008 UCD-ITS-WP-09-02 Are batteries ready for plug-in hybridprograms mischaracterize the batteries needed to start

  6. Three-dimensional batteries using a liquid cathode

    E-Print Network [OSTI]

    Malati, Peter Moneir

    2013-01-01

    Costs of Lithium-Ion Batteries for Vehicles, (ANL/ESD- 42) .Linden, D. , Handbook of Batteries, McGraw-Hill Companies,2012). Lithium Use in Batteries, U.S. Geological Survey (

  7. Automated Battery Swap and Recharge to Enable Persistent UAV Missions

    E-Print Network [OSTI]

    Toksoz, Tuna

    This paper introduces a hardware platform for automated battery changing and charging for multiple UAV agents. The automated station holds a bu er of 8 batteries in a novel dual-drum structure that enables a "hot" battery ...

  8. Model Reformulation and Design of Lithium-ion Batteries

    E-Print Network [OSTI]

    Subramanian, Venkat

    987 94 Model Reformulation and Design of Lithium-ion Batteries V.R. Subramanian1,*, V. Boovaragavan Prediction......................................997 Optimal Design of Lithium-ion Batteries Lithium-ion batteries, product design, Bayesian estimation, Markov Chain Monte Carlo simulation

  9. Nonlinear Predictive Energy Management of Residential Buildings with Photovoltaics & Batteries

    E-Print Network [OSTI]

    Sun, Chao; Sun, Fengchun; Moura, Scott J

    2015-01-01

    system and second-life lithium-ion battery energy storage. Atrade-off between lithium-ion battery aging and economicIncorporating an empirical lithium-ion battery capacity loss

  10. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries A Better Anode Design to Improve Lithium-Ion Batteries Print Friday, 23 March 2012 13:53 Lithium-ion batteries are in smart...

  11. Team Led by Argonne National Lab Selected as DOE's Batteries...

    Office of Environmental Management (EM)

    Building a Better Battery for Vehicles and the Grid New Battery Design Could Help Solar and Wind Power the Grid New Battery Design Could Help Solar and Wind Power the Grid...

  12. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01

    1/3 O 2 for advanced lithium-ion batteries. J. Power Sourcesof LiFePO4 based lithium ion batteries. Mater. Lett. 2007,negative electrode in lithium-ion batteries: AFM study in an

  13. Coated Silicon Nanowires as Anodes in Lithium Ion Batteries

    E-Print Network [OSTI]

    Watts, David James

    2014-01-01

    for advanced lithium-ion batteries. J. Power Sources 174,composite anodes for lithium-ion batteries. J. Mater. Chem.cathode materials for lithium-ion batteries. J. Mater. Chem.

  14. Visualization of Charge Distribution in a Lithium Battery Electrode

    E-Print Network [OSTI]

    Liu, Jun

    2010-01-01

    Charge Distribution in a Lithium Battery Electrode Jun Liu,Modeling of a Lithium-Polymer Battery. J. Power SourcesBehavior of a Lithium-Polymer Battery. J. Power Sources

  15. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01

    Alloy design for lithium-ion battery anodes. J. Electrochem.advances in lithium ion battery materials. Electrochim. ActaO 2 cathode material for lithium ion battery: Dependence of

  16. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01

    negative electrode in lithium-ion batteries: AFM study in anJ. R. , Alloy design for lithium-ion battery anodes. J.Carbon materials for lithium-ion rechargeable batteries.

  17. Benefits of battery-uItracapacitor hybrid energy storage systems

    E-Print Network [OSTI]

    Smith, Ian C., S.M. (Ian Charles). Massachusetts Institute of Technology

    2012-01-01

    This thesis explores the benefits of battery and battery-ultracapacitor hybrid energy storage systems (ESSs) in pulsed-load applications. It investigates and quantifies the benefits of the hybrid ESS over its battery-only ...

  18. A Bayesian nonparametric approach to modeling battery health

    E-Print Network [OSTI]

    Doshi-Velez, Finale P.

    The batteries of many consumer products are both a substantial portion of the product's cost and commonly a first point of failure. Accurately predicting remaining battery life can lower costs by reducing unnecessary battery ...

  19. Battery Lifetime-Aware Automotive Climate Control for Electric Vehicles

    E-Print Network [OSTI]

    Al Faruque, Mohammad Abdullah

    Battery Lifetime-Aware Automotive Climate Control for Electric Vehicles Korosh Vatanparvar) optimization involves stringent con- straints on driving range and battery lifetime. Sophisticated embedded systems and huge number of computing resources have enabled re- searchers to implement advanced Battery

  20. Visualization of Charge Distribution in a Lithium Battery Electrode

    E-Print Network [OSTI]

    Liu, Jun

    2010-01-01

    of a Lithium-Polymer Battery. J. Power Sources 2006, 163,of a Lithium-Polymer Battery. J. Power Sources 2008, 180,Up of a Lithium-Ion Polymer Battery. J. Power Sources 2009,

  1. Models for Battery Reliability and Lifetime: Applications in Design and Health Management (Presentation)

    SciTech Connect (OSTI)

    Smith, K.; Neubauer, J.; Wood, E.; Jun, M.; Pesaran, A.

    2013-06-01

    This presentation discusses models for battery reliability and lifetime and the Battery Ownership Model.

  2. Savings Potential of ENERGY STAR(R) External Power Adapters and Battery Chargers

    E-Print Network [OSTI]

    Webber, Carrie; Korn, David; Sanchez, Marla

    2007-01-01

    than converted into useful energy. Battery charging systemscharging – directly useful energy or “battery energy”) –

  3. STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES

    E-Print Network [OSTI]

    Wilcox, James D.

    2010-01-01

    Capacity, High Rate Lithium-Ion Battery Electrodes Utilizingas cathode materials for lithium ion battery. Electrochimica

  4. Lithium Polymer (LiPo) Battery Usage Lithium polymer batteries are now being widely used in hobby and UAV applications. They work

    E-Print Network [OSTI]

    Langendoen, Koen

    Lithium Polymer (LiPo) Battery Usage 1 Lithium polymer batteries are now being widely used in hobby nickel metal and ni-cad batteries. But with this increase in battery life come potential hazards. Use batteries with a battery charger specifically designed for lithium polymer batteries. As an example, you

  5. Graphene-based battery electrodes having continuous flow paths...

    Office of Scientific and Technical Information (OSTI)

    Graphene-based battery electrodes having continuous flow paths Citation Details In-Document Search Title: Graphene-based battery electrodes having continuous flow paths Some...

  6. Rechargeable Heat Battery's Secret Revealed: Solar Energy Capture...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rechargeable Heat Battery Rechargeable Heat Battery's Secret Revealed Solar energy capture in chemical form makes it storable and transportable January 11, 2011 | Tags: Chemistry,...

  7. Two Studies Reveal Details of Lithium-Battery Function

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Studies Reveal Details of Lithium-Battery Function Print Our way of life is deeply intertwined with battery technologies that have enabled a mobile revolution powering cell...

  8. X-Ray Microscopy Reveals How Crystal Mechanics Drive Battery...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microscopy Reveals How Crystal Mechanics Drive Battery Performance Print Rechargeable lithium-ion batteries power most portable electronics and are becoming more widely used in...

  9. Preparation of lithium-ion battery anodes using lignin (Journal...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Preparation of lithium-ion battery anodes using lignin Citation Details In-Document Search Title: Preparation of lithium-ion battery anodes using lignin Authors:...

  10. Diagnostic Studies on Lithium Battery Cells and Cell Components...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Studies on Lithium Battery Cells and Cell Components Diagnostic Studies on Lithium Battery Cells and Cell Components 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  11. Nanocomposite Materials for Lithium-Ion Batteries | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanocomposite Materials for Lithium-Ion Batteries Nanocomposite Materials for Lithium-Ion Batteries nanocompositematerialsliion.pdf More Documents & Publications Progress of DOE...

  12. GE Uses DOE Advanced Light Sources to Develop Revolutionary Battery...

    Office of Science (SC) Website

    chemistry of an actual commercial battery while charging and discharging in real time. Additional studies of battery cross-sections at APS helped engineers further...

  13. The Science of Battery Degradation. Sullivan, John P; Fenton...

    Office of Scientific and Technical Information (OSTI)

    to cross-section commercial scale battery electrodes, the demonstration of scanning transmission x-ray microscopy (STXM) to probe lithium transport mechanisms within Li-ion battery...

  14. Fact Sheet: Sodium-Beta Batteries (October 2012) | Department...

    Office of Environmental Management (EM)

    Batteries (October 2012) Fact Sheet: Sodium-Beta Batteries (October 2012) DOE's Energy Storage Program is funding research to further develop a novel planar design for...

  15. Computer-Aided Engineering for Electric Drive Vehicle Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) 2011 DOE Hydrogen and Fuel Cells...

  16. Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) DOE's Energy Storage...

  17. Electrolyte Genome Could Be Battery Game-Changer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Be Battery Game-Changer Electrolyte Genome Could Be Battery Game-Changer The Materials Project screens molecules to accelerate electrolyte discovery April 15, 2015 Julie Chao,...

  18. KAir Battery Wins Southwest Regional Clean Energy Business Plan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    KAir Battery Wins Southwest Regional Clean Energy Business Plan Competition KAir Battery Wins Southwest Regional Clean Energy Business Plan Competition April 18, 2014 - 12:05pm...

  19. Development of Polymer Electrolytes for Advanced Lithium Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Polymer Electrolytes for Advanced Lithium Batteries Development of Polymer Electrolytes for Advanced Lithium Batteries 2013 DOE Hydrogen and Fuel Cells Program and Vehicle...

  20. Rechargeable Aluminum Batteries with Conducting Polymers as Active...

    Office of Scientific and Technical Information (OSTI)

    Rechargeable Aluminum Batteries with Conducting Polymers as Active Cathode Materials. Citation Details In-Document Search Title: Rechargeable Aluminum Batteries with Conducting...

  1. Coated Silicon Nanowires as Anodes in Lithium Ion Batteries

    E-Print Network [OSTI]

    Watts, David James

    2014-01-01

    materials for advanced lithium-ion batteries. J. Powersilicon nanowires for lithium ion battery anode with longal. High-performance lithium-ion anodes using a hierarchical

  2. ORNL, Industry to Collaborate in Advanced Battery Research |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Advanced Battery Research December 30, 2010 ORNL's Jagjit Nanda assembles a lithium ion battery for performance testing within a controlled environment Through new...

  3. Special Feature: Reducing Energy Costs with Better Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reducing Energy Costs with Better Batteries Special Feature: Reducing Energy Costs with Better Batteries September 9, 2013 Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov...

  4. How Can We Enable EV Battery Recycling? | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How Can We Enable EV Battery Recycling? Title How Can We Enable EV Battery Recycling? Publication Type Presentation Year of Publication 2015 Authors Gaines, LL Abstract...

  5. Can Automotive Battery Recycling Help Meet Lithium Demand? |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Can Automotive Battery Recycling Help Meet Lithium Demand? Title Can Automotive Battery Recycling Help Meet Lithium Demand? Publication Type Presentation Year of Publication 2013...

  6. The Future of Automobile Battery Recycling | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Future of Automobile Battery Recycling Title The Future of Automobile Battery Recycling Publication Type Presentation Year of Publication 2014 Authors Gaines, LL Abstract...

  7. Enabling Future Li-Ion Battery Recycling | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Future Li-Ion Battery Recycling Title Enabling Future Li-Ion Battery Recycling Publication Type Presentation Year of Publication 2014 Authors Gaines, LL Abstract Presentation made...

  8. Battery Cathode Developed by Argonne Powers Plug-in Electric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    capacities than conventional cathode materials, resulting in batteries with higher energy density. Because the batteries can store more energy, manufacturers can either use...

  9. Three-dimensional batteries using a liquid cathode

    E-Print Network [OSTI]

    Malati, Peter Moneir

    2013-01-01

    for powering microelectromechanical systems and otherSurvey of battery powered microelectromechanical systems.battery powered microelectromechanical systems (MEMS), it is

  10. High power bipolar battery/cells with enhanced overcharge tolerance

    DOE Patents [OSTI]

    Kaun, Thomas D. (New Lenox, IL)

    1998-01-01

    A cell or battery of cells having improved overcharge tolerance and increased power capability, and methods for the construction of such cells or batteries, via electrolyte modification.

  11. Novel Electrolytes for Lithium Ion Batteries Lucht, Brett L 25...

    Office of Scientific and Technical Information (OSTI)

    Electrolytes for Lithium Ion Batteries Lucht, Brett L 25 ENERGY STORAGE We have been investigating three primary areas related to lithium ion battery electrolytes. First, we have...

  12. Energy Storage - Summary of the FY 2005 Batteries for Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Batteries for Advanced Transportation Technologies (BATT) Research Program Annual Review Energy Storage - Summary of the FY 2005 Batteries for Advanced Transportation Technologies...

  13. Wireless Battery Management System for Safe High-Capacity Energy...

    Office of Scientific and Technical Information (OSTI)

    Wireless Battery Management System for Safe High-Capacity Energy Storage Citation Details In-Document Search Title: Wireless Battery Management System for Safe High-Capacity Energy...

  14. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solid Polymer Batteries for Electric Drive Vehicles High-Voltage Solid Polymer Batteries for Electric Drive Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  15. Development of Computer-Aided Design Tools for Automotive Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Progress of Computer-Aided Engineering of Batteries (CAEBAT) Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT)...

  16. Development of High Energy Lithium Batteries for Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lithium Batteries for Electric Vehicles Development of High Energy Lithium Batteries for Electric Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program...

  17. USABC Development of Advanced High-Performance Batteries for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Batteries for EV Applications USABC Development of Advanced High-Performance Batteries for EV Applications 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  18. Overview and Progress of the Batteries for Advanced Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Batteries for Advanced Transportation Technologies (BATT) Activity Overview and Progress of the Batteries for Advanced Transportation Technologies (BATT) Activity 2012 DOE Hydrogen...

  19. In situ Characterizations of New Battery Materials and the Studies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characterizations of New Battery Materials and the Studies of High Energy Density Li-Air Batteries 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program...

  20. In Situ Characterizations of New Battery Materials and the Studies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characterizations of New Battery Materials and the Studies of High Energy Density Li-Air Batteries 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer...

  1. Characterization of Li-ion Batteries using Neutron Diffraction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques Characterization of Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques 2011 DOE...

  2. Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production...

    Office of Environmental Management (EM)

    Celebrates Expansion of Lithium-Ion Battery Production in North Carolina Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production in North Carolina July 26, 2011 -...

  3. Diagnostic and Prognostic Analysis of Battery Performance & Aging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Prognostic Analysis of Battery Performance & Aging based on Kinetic and Thermodynamic Principles Diagnostic and Prognostic Analysis of Battery Performance & Aging based on...

  4. Advanced Battery Materials Synthesis and Manufacturing R&D Program...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Battery Materials Synthesis and Manufacturing R&D Program Argonne's Materials Engineering Research Facility (MERF) supports the laboratory's Advanced Battery Materials...

  5. 2008 Annual Merit Review Results Summary - 2. Applied Battery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2. Applied Battery Research 2008 Annual Merit Review Results Summary - 2. Applied Battery Research DOE Vehicle Technologies Annual Merit Review 2008meritreview2.pdf More...

  6. HP Ex Parte Memo on Proposed Rulemaking for Battery Chargers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HP Ex Parte Memo on Proposed Rulemaking for Battery Chargers and External Power Supplies HP Ex Parte Memo on Proposed Rulemaking for Battery Chargers and External Power Supplies...

  7. International Battery Presentation - Keeping The Lights On: Smart...

    Office of Environmental Management (EM)

    International Battery Presentation - Keeping The Lights On: Smart Storage for a Smart Grid (July 12, 2011) International Battery Presentation - Keeping The Lights On: Smart Storage...

  8. Closing the Lithium-ion Battery Life Cycle: Poster handout |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Closing the Lithium-ion Battery Life Cycle: Poster handout Title Closing the Lithium-ion Battery Life Cycle: Poster handout Publication Type Miscellaneous Year of Publication 2014...

  9. Overview and Progress of the Battery Testing, Analysis, and Design...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery Testing, Analysis, and Design Activity Overview and Progress of the Battery Testing, Analysis, and Design Activity 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  10. 2008 Annual Merit Review Results Summary - 3. Battery Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3. Battery Development, Testing, Simulation, Analysis 2008 Annual Merit Review Results Summary - 3. Battery Development, Testing, Simulation, Analysis DOE Vehicle Technologies...

  11. Electric Drive and Advanced Battery and Components Testbed (EDAB...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vss033carlson2011o.pdf More Documents & Publications Electric Drive and Advanced Battery and Components Testbed (EDAB) Electric Drive and Advanced Battery and Components...

  12. Are Batteries Ready for Plug-in Hybrid Buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

    2009-01-01

    PHEV from which those battery requirements flow. The circlesbattery technologies do not meet the requirements that flowflow from them. In summary, policymakers, automakers, battery

  13. Are batteries ready for plug-in hybrid buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

    2008-01-01

    PHEV from which those battery requirements flow. The circlesbattery technologies do not meet the requirements that flowflow from them. In summary, policymakers, automakers, battery

  14. Fault-tolerant battery system employing intra-battery network architecture

    DOE Patents [OSTI]

    Hagen, Ronald A. (Stillwater, MN); Chen, Kenneth W. (Fair Oaks, CA); Comte, Christophe (Montreal, CA); Knudson, Orlin B. (Vadnais Heights, MN); Rouillard, Jean (Saint-Luc, CA)

    2000-01-01

    A distributed energy storing system employing a communications network is disclosed. A distributed battery system includes a number of energy storing modules, each of which includes a processor and communications interface. In a network mode of operation, a battery computer communicates with each of the module processors over an intra-battery network and cooperates with individual module processors to coordinate module monitoring and control operations. The battery computer monitors a number of battery and module conditions, including the potential and current state of the battery and individual modules, and the conditions of the battery's thermal management system. An over-discharge protection system, equalization adjustment system, and communications system are also controlled by the battery computer. The battery computer logs and reports various status data on battery level conditions which may be reported to a separate system platform computer. A module transitions to a stand-alone mode of operation if the module detects an absence of communication connectivity with the battery computer. A module which operates in a stand-alone mode performs various monitoring and control functions locally within the module to ensure safe and continued operation.

  15. Beyond Conventional Cathode Materials for Li-ion Batteries and Na-ion Batteries Nickel fluoride conversion materials and P2 type Na-ion intercalation cathodes /

    E-Print Network [OSTI]

    Lee, Dae Hoe

    2013-01-01

    Electrode for Sodium Ion Batteries. Chemistry of Materialsnickel fluoride in Li ion batteries. Electrochimica Actafor advanced lithium ion batteries. Materials Science and

  16. Beyond Conventional Cathode Materials for Li-ion Batteries and Na-ion Batteries Nickel fluoride conversion materials and P2 type Na-ion intercalation cathodes /

    E-Print Network [OSTI]

    Lee, Dae Hoe

    2013-01-01

    for advanced lithium ion batteries. Materials Science andin high voltage lithium ion batteries: A joint experimentalof rechargeable lithium-ion batteries after prolonged

  17. Thin film buried anode battery

    DOE Patents [OSTI]

    Lee, Se-Hee (Lakewood, CO); Tracy, C. Edwin (Golden, CO); Liu, Ping (Denver, CO)

    2009-12-15

    A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

  18. Anodes for rechargeable lithium batteries

    DOE Patents [OSTI]

    Thackeray, Michael M. (Naperville, IL); Kepler, Keith D. (Mountain View, CA); Vaughey, John T. (Elmhurst, IL)

    2003-01-01

    A negative electrode (12) for a non-aqueous electrochemical cell (10) with an intermetallic host structure containing two or more elements selected from the metal elements and silicon, capable of accommodating lithium within its crystallographic host structure such that when the host structure is lithiated it transforms to a lithiated zinc-blende-type structure. Both active elements (alloying with lithium) and inactive elements (non-alloying with lithium) are disclosed. Electrochemical cells and batteries as well as methods of making the negative electrode are disclosed.

  19. Self-Charging Battery Project

    SciTech Connect (OSTI)

    Yager, Eric

    2007-07-25

    In March 2006, a Cooperative Research and Development Agreement (CRADA) was formed between Fauton Tech, Inc. and INL to develop a prototype for a commercial application that incorporates some INL-developed Intellectual Properties (IP). This report presents the results of the work performed at INL during Phase 1. The objective of Phase 1 was to construct a prototype battery in a “D” cell form factor, determine optimized internal components for a baseline configuration using a standard coil design, perform a series of tests on the baseline configuration, and document the test results in a logbook.

  20. Battery Ventures | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to:Greece:Bajo en Carbono, MexicoBanhamOil HomeBattery

  1. Sandia Energy - Battery Calorimetry Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumni >ScientificApplied TurbulentAssessmentBattery

  2. Alloys of clathrate allotropes for rechargeable batteries

    SciTech Connect (OSTI)

    Chan, Candace K; Miller, Michael A; Chan, Kwai S

    2014-12-09

    The present disclosure is directed at an electrode for a battery wherein the electrode comprises clathrate alloys of silicon, germanium or tin. In method form, the present disclosure is directed at methods of forming clathrate alloys of silicon, germanium or tin which methods lead to the formation of empty cage structures suitable for use as electrodes in rechargeable type batteries.

  3. State of charge indicators for a battery

    DOE Patents [OSTI]

    Rouhani, S. Zia (Idaho Falls, ID)

    1999-01-01

    The present invention relates to state of charge indicators for a battery. One aspect of the present invention utilizes expansion and contraction displacements of an electrode plate of a battery to gauge the state of charge in the battery. One embodiment of a battery of the present invention includes an anodic plate; a cathodic plate; an electrolyte in contact with the anodic and cathodic plates; plural terminals individually coupled with one of the anodic and cathodic plates; a separator intermediate the anodic and cathodic plates; an indicator configured to indicate an energy level of the battery responsive to movement of the separator; and a casing configured to house the anodic and cathodic plates, electrolyte, and separator.

  4. Lithium ion battery with improved safety

    DOE Patents [OSTI]

    Chen, Chun-hua; Hyung, Yoo Eup; Vissers, Donald R.; Amine, Khalil

    2006-04-11

    A lithium battery with improved safety that utilizes one or more additives in the battery electrolyte solution wherein a lithium salt is dissolved in an organic solvent, which may contain propylene, carbonate. For example, a blend of 2 wt % triphenyl phosphate (TPP), 1 wt % diphenyl monobutyl phosphate (DMP) and 2 wt % vinyl ethylene carbonate additives has been found to significantly enhance the safety and performance of Li-ion batteries using a LiPF6 salt in EC/DEC electrolyte solvent. The invention relates to both the use of individual additives and to blends of additives such as that shown in the above example at concentrations of 1 to 4-wt % in the lithium battery electrolyte. This invention relates to additives that suppress gas evolution in the cell, passivate graphite electrode and protect it from exfoliating in the presence of propylene carbonate solvents in the electrolyte, and retard flames in the lithium batteries.

  5. The Internal Resistance of a Battery

    E-Print Network [OSTI]

    Singal, Ashok K

    2013-01-01

    The standard exposition of the internal resistance of a battery, as given in the undergraduate text-books, is lacking in proper physics. The battery has a tendency to maintain the electric potential difference across its terminals equal to its chemical potential, and in an open circuit, when no electric current flows, these two do match. However in a closed circuit, a drop in electric potential across the battery terminals is inevitable for a steady flow of electric current throughout the circuit, because the chemical reactions driving the electric current within the battery can proceed only if the electric potential at its terminals differs from the chemical potential. It is shown that for small voltage changes, the current passing through the battery is linearly proportional to the change in potential from the open-circuit value (i.e., its chemical potential), giving rise to a semblance of an internal resistance in series with the external resistance.

  6. Multi-cell storage battery

    DOE Patents [OSTI]

    Brohm, Thomas (Hattersheim, DE); Bottcher, Friedhelm (Kelkheim, DE)

    2000-01-01

    A multi-cell storage battery, in particular to a lithium storage battery, which contains a temperature control device and in which groups of one or more individual cells arranged alongside one another are separated from one another by a thermally insulating solid layer whose coefficient of thermal conductivity lies between 0.01 and 0.2 W/(m*K), the thermal resistance of the solid layer being greater by at least a factor .lambda. than the thermal resistance of the individual cell. The individual cell is connected, at least in a region free of insulating material, to a heat exchanger, the thermal resistance of the heat exchanger in the direction toward the neighboring cell being selected to be greater by at least a factor .lambda. than the thermal resistance of the individual cell and, in addition, the thermal resistance of the heat exchanger toward the temperature control medium being selected to be smaller by at least a factor of about 10 than the thermal resistance of the individual cell, and .lambda. being the ratio of the energy content of the individual cell to the amount of energy that is needed to trigger a thermally induced cell failure at a defined upper operating temperature limit.

  7. Limits to the potential distribution of light brown apple moth in Arizona–California based on climate suitability and host plant availability

    E-Print Network [OSTI]

    Gutierrez, Andrew Paul; Mills, Nicholas J.; Ponti, Luigi

    2010-01-01

    503–531 Dumbleton LJ (1932) The apple leaf roller (TortrixJW (1937) The light-brown apple moth (Tortrix post- vittana,distribution of light brown apple moth in Arizona–California

  8. Energy Conservation Standards for Battery Chargers and External...

    Energy Savers [EERE]

    Chargers and External Power Supplies; Proposed Rule Making - Ex Parte Communication Apple Inc. met with DOE to discuss the notice of proposed rule making the Department sent...

  9. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01

    into the battery market. Therefore the standard carbonaceouselectric vehicle demand market in our modern life, the

  10. Mechanical Properties of Lithium-Ion Battery Separator Materials

    E-Print Network [OSTI]

    Petta, Jason

    Mechanical Properties of Lithium-Ion Battery Separator Materials Patrick Sinko B.S. Materials and motivation ­ Why study lithium-ion batteries? ­ Lithium-ion battery fundamentals ­ Why study the mechanical behaviors in lithium-ion batteries? · Current work ­ Mechanical behaviors the separator ­ How do we test

  11. Engineering design factors in flowing electrolyte bipolar batteries

    SciTech Connect (OSTI)

    Grimes, P.; Bellows, R.; Malachesky, P.

    1984-08-01

    Flowing electrolyte bipolar batteries allow a system designer great flexibility in fitting the batteries to applications. A mathematical model has been developed describing flow battery characteristics to aid the designer. This model can be used to compute the interrelationships of power, energy, volume, number of cells, cell area, capacity, weight, etc. Examples from zinc bromine battery systems are given.

  12. Zinc-bromine batteries for bulk energy storage

    SciTech Connect (OSTI)

    Bellows, R.J.; Elspass, C.; Einstein, H.; Grimes, P.; Kantner, E.; Malachesky, P.; Newby, K.

    1983-01-01

    The design, testing, operation, and state of development of zinc-bromine batteries are discussed. (LEW)

  13. U.S. Battery R&D Progress and Plans

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improvement Failure Mitigation Advanced Battery Development Performance Optimization Cost Reduction Cell Design & Electrochemistry Optimization Power & Capacity...

  14. AN EXPLORATION INTO BATTERY CHEMISTRY IONIC FLOW, INTERCALATION AND

    E-Print Network [OSTI]

    Petta, Jason

    AN EXPLORATION INTO BATTERY CHEMISTRY IONIC FLOW, INTERCALATION AND CRYSTAL LATTICES JAKE GARCIA ALLA ZAMARAYEVA ADVISOR: DAN STEINGART #12;A PROBLEM IN SOCIETY! · The energy problem · Batteries-cost and environmentally friendly battery? #12;BACKGROUND · Different Common Battery types: Galvanic "Wet" Cell Dry Cell

  15. Resistive companion battery modeling for electric circuit simulations , R. Dougalb

    E-Print Network [OSTI]

    Resistive companion battery modeling for electric circuit simulations B. Wua , R. Dougalb , R be achieved based on RC models. In this study, the construction of RC battery models is investigated. A general battery model and a nickel±metal hydride cell model have been built. Simulations of RC battery

  16. Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems

    E-Print Network [OSTI]

    Nottrott, A.; Kleissl, J.; Washom, B.

    2013-01-01

    photovoltaic systems with battery storages control based onthat the energy stored in the battery is bounded withinthe capacity of the battery. Eq. 3b constrains the battery

  17. Hierarchically Structured Materials for Lithium Batteries

    SciTech Connect (OSTI)

    Xiao, Jie; Zheng, Jianming; Li, Xiaolin; Shao, Yuyan; Zhang, Jiguang

    2013-09-25

    Lithium-ion battery (LIB) is one of the most promising power sources to be deployed in electric vehicles (EV), including solely battery powered vehicles, plug-in hybrid electric vehicles, and hybrid electrical vehicles. With the increasing demand on devices of high energy densities (>500 Wh/kg) , new energy storage systems, such as lithium-oxygen (Li-O2) batteries and other emerging systems beyond the conventional LIB also attracted worldwide interest for both transportation and grid energy storage applications in recent years. It is well known that the electrochemical performances of these energy storage systems depend not only on the composition of the materials, but also on the structure of electrode materials used in the batteries. Although the desired performances characteristics of batteries often have conflict requirements on the micro/nano-structure of electrodes, hierarchically designed electrodes can be tailored to satisfy these conflict requirements. This work will review hierarchically structured materials that have been successfully used in LIB and Li-O2 batteries. Our goal is to elucidate 1) how to realize the full potential of energy materials through the manipulation of morphologies, and 2) how the hierarchical structure benefits the charge transport, promotes the interfacial properties, prolongs the electrode stability and battery lifetime.

  18. Lithium Metal Anodes for Rechargeable Batteries

    SciTech Connect (OSTI)

    Xu, Wu; Wang, Jiulin; Ding, Fei; Chen, Xilin; Nasybulin, Eduard N.; Zhang, Yaohui; Zhang, Jiguang

    2014-01-01

    Rechargeable lithium metal batteries have much higher energy density than those of lithium ion batteries using graphite anode. Unfortunately, uncontrollable dendritic lithium growth inherent in these batteries (upon repeated charge/discharge cycling) and limited Coulombic efficiency during lithium deposition/striping has prevented their practical application over the past 40 years. With the emerging of post Li-ion batteries, safe and efficient operation of lithium metal anode has become an enabling technology which may determine the fate of several promising candidates for the next generation of energy storage systems, including rechargeable Li-air battery, Li-S battery, and Li metal battery which utilize lithium intercalation compounds as cathode. In this work, various factors which affect the morphology and Coulombic efficiency of lithium anode will be analyzed. Technologies used to characterize the morphology of lithium deposition and the results obtained by modeling of lithium dendrite growth will also be reviewed. At last, recent development in this filed and urgent need in this field will also be discussed.

  19. Flow Battery System Design for Manufacturability.

    SciTech Connect (OSTI)

    Montoya, Tracy Louise; Meacham, Paul Gregory; Perry, David; Broyles, Robin S.; Hickey, Steven; Hernandez, Jacquelynne

    2014-10-01

    Flow battery energy storage systems can support renewable energy generation and increase energy efficiency. But, presently, the costs of flow battery energy storage systems can be a significant barrier for large-scale market penetration. For cost- effective systems to be produced, it is critical to optimize the selection of materials and components simultaneously with the adherence to requirements and manufacturing processes to allow these batteries and their manufacturers to succeed in the market by reducing costs to consumers. This report analyzes performance, safety, and testing requirements derived from applicable regulations as well as commercial and military standards that would apply to a flow battery energy storage system. System components of a zinc-bromine flow battery energy storage system, including the batteries, inverters, and control and monitoring system, are discussed relative to manufacturing. The issues addressed include costs and component availability and lead times. A service and support model including setup, maintenance and transportation is outlined, along with a description of the safety-related features of the example flow battery energy storage system to promote regulatory and environmental, safety, and health compliance in anticipation of scale manufacturing.

  20. 2010 Honda Civic Hybrid UltraBattery Conversion 5577 - Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of on-road fleet testing. This report documents battery testing performed for the 2010 Honda Civic HEV UltraBattery Conversion (VIN JHMFA3F24AS005577). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  1. Power electronic interface circuits for batteries and ultracapacitors in electric vehicles and battery storage systems

    DOE Patents [OSTI]

    King, Robert Dean (Schenectady, NY); DeDoncker, Rik Wivina Anna Adelson (Malvern, PA)

    1998-01-01

    A method and apparatus for load leveling of a battery in an electrical power system includes a power regulator coupled to transfer power between a load and a DC link, a battery coupled to the DC link through a first DC-to-DC converter and an auxiliary passive energy storage device coupled to the DC link through a second DC-to-DC converter. The battery is coupled to the passive energy storage device through a unidirectional conducting device whereby the battery can supply power to the DC link through each of the first and second converters when battery voltage exceeds voltage on the passive storage device. When the load comprises a motor capable of operating in a regenerative mode, the converters are adapted for transferring power to the battery and passive storage device. In this form, resistance can be coupled in circuit with the second DC-to-DC converter to dissipate excess regenerative power.

  2. Power electronic interface circuits for batteries and ultracapacitors in electric vehicles and battery storage systems

    DOE Patents [OSTI]

    King, R.D.; DeDoncker, R.W.A.A.

    1998-01-20

    A method and apparatus for load leveling of a battery in an electrical power system includes a power regulator coupled to transfer power between a load and a DC link, a battery coupled to the DC link through a first DC-to-DC converter and an auxiliary passive energy storage device coupled to the DC link through a second DC-to-DC converter. The battery is coupled to the passive energy storage device through a unidirectional conducting device whereby the battery can supply power to the DC link through each of the first and second converters when battery voltage exceeds voltage on the passive storage device. When the load comprises a motor capable of operating in a regenerative mode, the converters are adapted for transferring power to the battery and passive storage device. In this form, resistance can be coupled in circuit with the second DC-to-DC converter to dissipate excess regenerative power. 8 figs.

  3. Beyond Conventional Cathode Materials for Li-ion Batteries and Na-ion Batteries Nickel fluoride conversion materials and P2 type Na-ion intercalation cathodes /

    E-Print Network [OSTI]

    Lee, Dae Hoe

    2013-01-01

    graphite negative electrode for lithium-ion batteries.batteries. The Na anode materials must not be overlooked since graphite-

  4. Redox Flow Batteries: An Engineering Perspective

    SciTech Connect (OSTI)

    Chalamala, Babu R.; Soundappan, Thiagarajan; Fisher, Graham R.; Anstey, Mitchell A.; Viswanathan, Vilayanur V.; Perry, Mike L.

    2014-10-01

    Redox flow batteries are well suited to provide modular and scalable energy storage systems for a wide range of energy storage applications. In this paper, we review the development of redox flow battery technology including recent advances in new redox active materials and systems. We discuss cost, performance, and reliability metrics that are critical for deployment of large flow battery systems. The technology, while relatively young, has the potential for significant improvement through reduced materials costs, improved energy and power efficiency, and significant reduction in the overall system cost.

  5. Method of making a sodium sulfur battery

    DOE Patents [OSTI]

    Elkins, P. E.

    1981-09-22

    A method of making a portion of a sodium sulfur battery is disclosed. The battery portion made is a portion of the container which defines the volume for the cathodic reactant materials which are sulfur and sodium polysulfide materials. The container portion is defined by an outer metal casing with a graphite liner contained therein, the graphite liner having a coating on its internal diameter for sealing off the porosity thereof. The steel outer container and graphite pipe are united by a method which insures that at the operating temperature of the battery, relatively low electrical resistance exists between the two materials because they are in intimate contact with one another. 3 figs.

  6. 1600 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 22, NO. 5, SEPTEMBER 2007 Solar Battery Chargers for NiMH Batteries

    E-Print Network [OSTI]

    Lehman, Brad

    1600 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 22, NO. 5, SEPTEMBER 2007 Solar Battery Chargers for NiMH Batteries Florent Boico, Brad Lehman, Member, IEEE, and Khalil Shujaee Abstract--This paper proposes new solar battery chargers for NiMH batteries. First, it is shown that existing charge

  7. The Effect of PV Array Size and Battery Size on the Economics of PV/Diesel/Battery Hybrid RAPS Systems

    E-Print Network [OSTI]

    The Effect of PV Array Size and Battery Size on the Economics of PV/Diesel/Battery Hybrid RAPS WA 6150 Abstract This paper focuses on pv/diesel/battery hybrid RAPS systems meeting loads above 50 kWh. INTRODUCTION A diesel hybrid system, incorporating a battery and inverter, can often provide power at a lower

  8. Network for minimizing current imbalances in a faradaic battery

    DOE Patents [OSTI]

    Wozniak, Walter (Dearborn, MI); Haskins, Harold J. (Ann Arbor, MI)

    1994-01-01

    A circuit for connecting a faradaic battery with circuitry for monitoring the condition of the battery includes a plurality of voltage divider networks providing battery voltage monitoring nodes and includes compensating resistors connected with the networks to maintain uniform discharge currents through the cells of the battery. The circuit also provides a reduced common mode voltage requirement for the monitoring circuitry by referencing the divider networks to one-half the battery voltage.

  9. Second use of transportation batteries: Maximizing the value of batteries for transportation and grid services

    SciTech Connect (OSTI)

    Viswanathan, Vilayanur V.; Kintner-Meyer, Michael CW

    2010-09-30

    Plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs) are expected to gain significant market share over the next decade. The economic viability for such vehicles is contingent upon the availability of cost-effective batteries with high power and energy density. For initial commercial success, government subsidies will be highly instrumental in allowing PHEVs to gain a foothold. However, in the long-term, for electric vehicles to be commercially viable, the economics have to be self-sustaining. Towards the end of battery life in the vehicle, the energy capacity left in the battery is not sufficient to provide the designed range for the vehicle. Typically, the automotive manufacturers indicated the need for battery replacement when the remaining energy capacity reaches 70-80%. There is still sufficient power (kW) and energy capacity (kWh) left in the battery to support various grid ancillary services such as balancing, spinning reserve, load following services. As renewable energy penetration increases, the need for such balancing services is expected to increase. This work explores optimality for the replacement of transportation batteries to be subsequently used for grid services. This analysis maximizes the value of an electric vehicle battery to be used as a transportation battery (in its first life) and then as a resource for providing grid services (in its second life). The results are presented across a range of key parameters, such as depth of discharge (DOD), number of batteries used over the life of the vehicle, battery life in vehicle, battery state of health (SOH) at end of life in vehicle and ancillary services rate. The results provide valuable insights for the automotive industry into maximizing the utility and the value of the vehicle batteries in an effort to either reduce the selling price of EVs and PHEVs or maximize the profitability of the emerging electrification of transportation.

  10. Develop improved battery charger (Turbo-Z Battery Charging System). Final report

    SciTech Connect (OSTI)

    1999-09-01

    The output of this project was a flexible control board. The control board can be used to control a variety of rapid battery chargers. The control module will reduce development cost of rapid battery charging hardware. In addition, PEPCO's proprietary battery charging software have been pre-programmed into the control microprocessor. This product is being applied to the proprietary capacitive charging system now under development.

  11. U-222: Apple Safari Bugs Let Remote Users Execute Arbitrary Code...

    Broader source: Energy.gov (indexed) [DOE]

    Apple Safari Bugs Let Remote Users Execute Arbitrary Code, Spoof the URL Address Bar, Conduct Cross-Site Scripting Attacks, and Obtain Potentially Sensitive Information PLATFORM:...

  12. PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS Prog. Photovolt: Res. Appl. 2006; 14:603614

    E-Print Network [OSTI]

    PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS Prog. Photovolt: Res. Appl. 2006; 14 Reactive Ion Etching of Dielectrics and Silicon for Photovoltaic Applications Prakash N. K. Deenapanray1

  13. Use of an Apple IIe microcomputer for pyrolysis data acquisition

    SciTech Connect (OSTI)

    Not Available

    1988-02-01

    An Apple IIe microcomputer is being used to collect data and to control a pyrolysis system. Pyrolysis data for bitumen and kerogen are widely used to estimate source rock maturity. For a detailed analysis of kinetic parameters, however, data must be obtained more precisely than for routine pyrolysis. The authors discuss the program which controls the temperature ramp of the furnace that heats the sample, and collects data from a thermocouple in the furnace and from the flame ionization detector measuring evolved hydrocarbons. These data are stored on disk for later use by programs that display the results of the experiment or calculate kinetic parameters. The program is written in Applesoft BASIC with subroutines in Apple assembler for speed and efficiency.

  14. Mercury residues in south Florida apple snails (Pomacea paludosa)

    SciTech Connect (OSTI)

    Eisemann, J.D.; Beyer, W.N.; Morton, A.; Bennetts, R.E.

    1997-05-01

    Mercury concentrations in the sediments of south Florida wetlands have increased three fold in the last century. Because south Florida is home to many endemic and endangered species, it is important to understand the potential impacts of mercury in this ecosystem`s food web. Recent research by Malley et al. has shown mollusks to be sensitive indicators of methyl mercury which can reflect small differences in background methyl mercury concentrations. In this study, we attempted to determine if the apple snail (Pomacea paludosa) or its eggs are good indicators of bioavailable mercury. Then, using the apple snail as an indicator, we attempted to determine geographic differences in the concentrations of mercury in south Florida. 12 refs., 1 fig., 1 tab.

  15. Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics

    E-Print Network [OSTI]

    Kang, Jin Sung

    2012-01-01

    of thin- film Li-ion batteries under flexural deflection,”thin-film solar cells and batteries (2) Characterizesolar cells and batteries for multifunctional performance (

  16. Six-Membered-Ring Malonatoborate-Based Lithium Salts as Electrolytes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Yang, Li

    2014-01-01

    References 1. Lithium Ion Batteries: Fundamentals andProgram for Lithium Ion Batteries, U.S. Department ofas Electrolytes for Lithium Ion Batteries Li Yang a , Hanjun

  17. A Failure and Structural Analysis of Block Copolymer Electrolytes for Rechargeable Lithium Metal Batteries

    E-Print Network [OSTI]

    Stone, Gregory Michael

    2012-01-01

    for Rechargeable Lithium Metal Batteries By Gregory Michaelfor Rechargeable Lithium Metal Batteries by Gregory Michaelin rechargeable lithium metal batteries. The block copolymer

  18. Improved layered mixed transition metal oxides for Li-ion batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2010-01-01

    for rechargeable lithium batteries," Science 311(5763), 977-^ for Advanced Lithium-Ion Batteries," J. Electrochem. Soc.02 for lithium-ion batteries," Chem. Lett. , [3] Yabuuchi,

  19. Characterization of nanostructured materials for lithium-ion batteries and electrochemical capacitors

    E-Print Network [OSTI]

    Augustyn, Veronica

    2013-01-01

    of High Energy-Density Batteries. Electrochemistry: Past and1971). Huggins, R. A. Advanced Batteries: Materials ScienceC. A. & Scrosati, B. Modern Batteries: An Introduction to

  20. Cu2Sb thin film electrodes prepared by pulsed laser deposition f or lithium batteries

    E-Print Network [OSTI]

    Song, Seung-Wan; Reade, Ronald P.; Cairns, Elton J.; Vaughey, Jack T.; Thackeray, Michael M.; Striebel, Kathryn A.

    2003-01-01

    The Electrochemical Society (Batteries and Energy ConversionDeposition for Lithium Batteries Seung-Wan Song, a, * Ronaldrechargeable lithium batteries. Introduction Sb-containing

  1. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01

    on fuel cells, advanced batteries, and ultracapacitorof Lithium-ion Batteries of Various Chemistries for Plug-inAdvisor utilizing lithium-ion batteries of the different

  2. Experimental Validation of Voltage-Based State-of-Charge Algorithm for Power Batteries

    E-Print Network [OSTI]

    Jia, Zhuo

    2013-01-01

    for nickel metal hydride batteries including hysteresis” ,Control of Lithium-Ion Batteries”, Control Systems, IEEE,modeling of lead acid batteries”, Applied Power Electronics

  3. STUDIES ON THE ROLE OF THE SUBSTRATE INTERFACE FOR GERMANIUM AND SILICON LITHIUM ION BATTERY ANODES

    E-Print Network [OSTI]

    Florida, University of

    AND SILICON LITHIUM ION BATTERY ANODES........................................................................................................................16 1.1 Lithium Ion Batteries...................................................................................17 1.1.2 Lithium Ion Battery Chemistry

  4. Design Principles for the Use of Electroactive Polymers for Overcharge Protection of Lithium-Ion Batteries

    E-Print Network [OSTI]

    Thomas-Alyea, Karen E.; Newman, John; Chen, Guoying; Richardson, Thomas J.

    2005-01-01

    environment of the lithium- ion battery. The model, in bothlithium-ion batteries. The model shows how the cell is transformed upon overcharge from a battery

  5. Battery State Estimation for a Single Particle Model with Electrolyte Dynamics

    E-Print Network [OSTI]

    Moura, Scott J; Bribiesca Argomedo, Federico; Klein, Reinhardt; Mirtabatabaei, Anahita; Krstic, Miroslav

    2015-01-01

    and G. Fiengo, “Lithium-Ion Battery State of Charge andestimation of the lithium-ion battery using an adaptiveelectrochemical model for lithium ion battery on electric

  6. Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage

    E-Print Network [OSTI]

    Wang, Zuoqian

    2013-01-01

    developments in lithium ion batteries,” Materials Sciencefor advanced lithium-ion batteries,” Journal of PowerWhite, and R. T. Long, Lithium-Ion Batteries Hazard and Use

  7. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries

    E-Print Network [OSTI]

    Lin, Feng

    2014-01-01

    O 2 Cathode Material in Lithium Ion Batteries. Adv. Energydecomposition in lithium ion batteries: first-principlesMaterials for Lithium-Ion Batteries. Adv. Funct. Mater. 23,

  8. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01

    Characteristics of Lithium-ion Batteries of VariousAdvisor utilizing lithium-ion batteries of the differentin hybrids. Keywords: lithium-ion batteries, plug-in hybrid

  9. Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage

    E-Print Network [OSTI]

    Wang, Zuoqian

    2013-01-01

    J. Østergaard, “Battery energy storage technology for powerBattery for Grid Energy Storage..Energy Storage for the Grid: A Battery of Choices,” Science,

  10. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01

    Whether any of the lithium battery chemistries can meetgeneral the higher cost lithium battery chemistries have thecosts for various lithium battery chemistries Electrode

  11. Synthesis and Characterization of Simultaneous Electronic and Ionic Conducting Block Copolymers for Lithium Battery Electrodes

    E-Print Network [OSTI]

    Patel, Shrayesh

    2013-01-01

    Copolymer: Application in Lithium Battery Electrodes. Angew.Schematic of the Proposed lithium battery electrode with aBlock Copolymers for Lithium Battery Electrodes By Shrayesh

  12. Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics

    E-Print Network [OSTI]

    Kang, Jin Sung

    2012-01-01

    the solid state thin-film lithium battery S8-ES ( Front EdgeLithium-Ion Polymer Battery ..Mikhaylik, "Lithium-Sulfur Secondary Battery: Chemistry and

  13. MATHEMATICAL MODELING OF THE LITHIUM-ALUMINUM, IRON SULFIDE BATTERY. I. GALVONOSTATIC DISCHARGE BEHAVIOR

    E-Print Network [OSTI]

    Pollard, Richard

    2012-01-01

    composition profiles in lithium/sulfur battery analogues hasTHE LITHIUM-ALUMINUM, IRON SULFIDE BATTERY. I. GALVONOSTATICthe Lithium-Aluminum, Iron Sulfide Battery I. Galvanostatic

  14. Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics

    E-Print Network [OSTI]

    Kang, Jin Sung

    2012-01-01

    Lithium-Ion Polymer Battery ..Performance of Lithium-Ion Polymer Battery Introduction Assolid state lithium-ion (Li-ion) battery were adhesively

  15. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries

    E-Print Network [OSTI]

    Lin, Feng

    2014-01-01

    O 2 Cathode Material in Lithium Ion Batteries. Adv. Energysolvent decomposition in lithium ion batteries: first-Cathode Materials for Lithium-Ion Batteries. Adv. Funct.

  16. Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques

    E-Print Network [OSTI]

    Doeff, Marca M.

    2013-01-01

    Alternatives to Current Lithium-Ion Batteries. Adv. EnergyElectrode Materials for Lithium Ion Batteries. MaterialsTechniques to the Study of Lithium Ion Batteries. J. Solid

  17. Studies of ionic liquids in lithium-ion battery test systems

    E-Print Network [OSTI]

    Salminen, Justin; Prausnitz, John M.; Newman, John

    2006-01-01

    liquids in lithium-ion battery test systems J. Salminen a,a detrimental effect on battery performance. Introductionat 25 o C, sufficient for battery applications. The measured

  18. Battery State Estimation for a Single Particle Model with Electrolyte Dynamics

    E-Print Network [OSTI]

    Moura, Scott J; Bribiesca Argomedo, Federico; Klein, Reinhardt; Mirtabatabaei, Anahita; Krstic, Miroslav

    2015-01-01

    Algorithms for advanced battery-management systems,” IEEEG. Fiengo, “Lithium-Ion Battery State of Charge and CriticalExtended Kalman filtering for battery management systems of

  19. A Novel Behavioral Test Battery to Assess Global Drug Effects Using the Zebrafish

    E-Print Network [OSTI]

    Echevarria, David J.; Hammack, Catherine M.; Pratt, Drew W.; Hosemann, John D.

    2008-01-01

    A Novel Behavioral Test Battery to Assess Global Druga novel behavioral battery of tests aimed at identifyingof this three-tiered test battery, fish were individually

  20. Savings Potential of ENERGY STAR(R) External Power Adapters and Battery Chargers

    E-Print Network [OSTI]

    Webber, Carrie; Korn, David; Sanchez, Marla

    2007-01-01

    Requirements for Products with Battery Charging Systems (Power Tools Slow Charger Battery Energy No load (stdby) FastWorkshop on Power Supply and Battery Test Procedures, San