Powered by Deep Web Technologies
Note: This page contains sample records for the topic "appalachian marcellus pa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Multi-scale and Integrated Characterization of the Marcellus Shale in the Appalachian Basin: From Microscopes to Mapping  

SciTech Connect (OSTI)

Historic data from the Department of Energy Eastern Gas Shale Project (ESGP) were compiled to develop a database of geochemical analyses, well logs, lithological and natural fracture descriptions from oriented core, and reservoir parameters. The nine EGSP wells were located throughout the Appalachian Basin and intercepted the Marcellus Shale from depths of 750 meters (2500 ft) to 2500 meters (8200 ft). A primary goal of this research is to use these existing data to help construct a geologic framework model of the Marcellus Shale across the basin and link rock properties to gas productivity. In addition to the historic data, x-ray computerized tomography (CT) of entire cores with a voxel resolution of 240mm and optical microscopy to quantify mineral and organic volumes was performed. Porosity and permeability measurements in a high resolution, steady-state flow apparatus are also planned. Earth Vision software was utilized to display and perform volumetric calculations on individual wells, small areas with several horizontal wells, and on a regional basis. The results indicate that the lithologic character of the Marcellus Shale changes across the basin. Gas productivity appears to be influenced by the properties of the organic material and the mineral composition of the rock, local and regional structural features, the current state of in-situ stress, and lithologic controls on the geometry of induced fractures during stimulations. The recoverable gas volume from the Marcellus Shale is variable over the vertical stratigraphic section, as well as laterally across the basin. The results from this study are expected to help improve the assessment of the resource, and help optimize the recovery of natural gas.

Crandall, Dustin; Soeder, Daniel J; McDannell, Kalin T.; Mroz, Thomas

2010-01-01T23:59:59.000Z

2

Marcellus Shale Educational Webinar Series  

E-Print Network [OSTI]

#12;Marcellus Shale Litigation and Legislation December 17, 2009 7 . Pennsylvania Oil and Gas Law1 Marcellus Shale Educational Webinar Series October 2009 - March 2010 Penn State Cooperative Extension #12;2 Marcellus Shale Webinar Series Planning Committee · Members ­ Mark Douglass, Jefferson

Boyer, Elizabeth W.

3

Appalachian Energy Center Appalachian State University  

E-Print Network [OSTI]

technologies, conservation, and policy. HISTORY Appalachian Energy Center at Appalachian State UniversityAppalachian Energy Center Appalachian State University Annual Report, 2009 & 2010 December 2010 Appalachian Energy Center MISSION Appalachian Energy Center (AEC) is committed to research, development

Rose, Annkatrin

4

Geochemical and Strontium Isotope Characterization of Produced Waters from Marcellus Shale Natural Gas Extraction  

SciTech Connect (OSTI)

Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of ?375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (?Sr SW = +13.8 to +41.6, where ?Sr SW is the deviation of the 87Sr/86Sr ratio from that of seawater in parts per 104); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.

Elizabeth C. Chapman, Rosemary C. Capo, Brian W. Stewart,*, Carl S. Kirby, Richard W. Hammack,

2012-02-24T23:59:59.000Z

5

Geochemical and Strontium Isotope Characterization of Produced Waters from Marcellus Shale Natural Gas Extraction  

SciTech Connect (OSTI)

Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of 375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (?{sub Sr}{sup SW} = +13.8 to +41.6, where ?{sub Sr}{sup SW} is the deviation of the {sup 87}Sr/{sup 86}Sr ratio from that of seawater in parts per 10{sup 4}); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.

Chapman, Elizabeth C; Capo, Rosemary C.; Stewart, Brian W.; Kirby, Carl S.; Hammack, Richard W.; Schroeder, Karl T.; Edenborn, Harry M.

2012-03-20T23:59:59.000Z

6

Preliminary effects of Marcellus shale drilling on Louisiana waterthrush in West Virginia  

SciTech Connect (OSTI)

Preliminary effects of Marcellus shale drilling on Louisiana Waterthrush in West Virginia Page 1 of 1 Doug Becker and James Sheehan, WV Cooperative Fish and Wildlife Research Unit, West Virginia Univ., Morgantown, WV 26506, USA; Petra Bohall Wood, U.S. Geological Survey, WV Cooperative Fish and Wildlife Research Unit, West Virginia Univ., Morgantown, WV 26506, USA; Harry Edenborn, National Energy Technology Laboratory, U.S. Department of Energy, Pittsburgh, PA 15236, USA. Spurred by technological advances and high energy prices, extraction of natural gas from Marcellus shale is increasing in the Appalachian Region. Because little is known about effects on wildlife populations, we studied immediate impacts of oil and gas CO&G) extraction on demographics and relative abundance of Louisiana Waterthrush'CLOWA), a riparian obligate species, to establish a baseline for potential future changes. Annually in 2008-2010, we conducted point counts, monitored Mayfield nesting success, spotted-mapped territories, and measured habitat quality using the EPA Rapid Bioassessment protocol for high gradient streams and a LOWA Habitat Suitability Index CHSI) on a 4,100 ha study area in northern West Virginia. On 11 streams, the stream length affected by O&G activities was 0-58%. Relative abundance, territory denSity, and nest success varied annually but were not significantly different across years. Success did not differ between impacted and unimpacted nests, but territory density had minimal correlation with percent of stream impacted by O&G activities. Impacted nests had lower HSI values in 2010 and lower EPA indices in 2009. High site fidelity could mask the immediate impacts of habitat disturbance from drilling as we measured return rates of 57%. All returning individuals were on the same stream they were banded and 88% were within 250 m of their territory from the previous year. We also observed a spatial shift in LOWA territories, perhaps in response to drilling activities. Preliminary results identified few differences at low habitat disturbance levels but highlight the need for continued monitoring with increasing disturbance. file:

Becker, D.; Sheehan, J.; Wood, P.B.; Edenborn, H.M.

2011-01-01T23:59:59.000Z

7

Energy Transitions: A Systems Approach Including Marcellus Shale Gas Development  

E-Print Network [OSTI]

Energy Transitions: A Systems Approach Including Marcellus Shale Gas Development A Report Transitions: A Systems Approach Including Marcellus Shale Gas Development Executive Summary In the 21st the Marcellus shale In addition to the specific questions identified for the case of Marcellus shale gas in New

Angenent, Lars T.

8

1Prepared by BG Rahm & SJ Riha (NYS Water Resources Institute), D Yoxtheimer (Penn State Marcellus Center for Outreach and Research), E Boyer (PA Water Resources Research Center), D Carder (WVU Center for Alternative Fuels, Engines, and Emissions), K Davi  

E-Print Network [OSTI]

for Alternative Fuels, Engines, and Emissions), K Davis & S Belmecheri (Penn State University) Environmental water Center for Outreach and Research), E Boyer (PA Water Resources Research Center), D Carder (WVU Center sessions: 1. What data sources are currently available for collecting information on water and air systems

9

Focus on the Marcellus Shale By Lisa Sumi  

E-Print Network [OSTI]

Shale Gas: Focus on the Marcellus Shale By Lisa Sumi FOR THE OIL & GAS ACCOUNTABILITY PROJECT on potential oil and gas development in the Marcellus Shale formation in northeastern Pennsylvania · www.ogap.org #12;Shale Gas: Focus on the Marcellus Shale A REPORT COMPILED FOR THE OIL AND GAS

Boyer, Elizabeth W.

10

Pennsylvania Energy Impacts Assessment Report 1: Marcellus Shale Natural Gas and Wind  

E-Print Network [OSTI]

Pennsylvania Energy Impacts Assessment Report 1: Marcellus Shale Natural Gas and Wind #12;1 Pennsylvania Energy Impacts Assessment Report 1: Marcellus Shale Natural Gas and Wind November 15, 2010 Author.....................................................................................................................3 Marcellus Shale Natural Gas

Boyer, Elizabeth W.

11

Launching a Cornell Examination of the Marcellus System The issues related to the development of the Marcellus Shale unconventional gas resource are  

E-Print Network [OSTI]

of the Marcellus Shale unconventional gas resource are emblematic of a whole family of extremely complicated Energy. The development plans for the Marcellus Shale are unfolding immediately in our backyards and require of different ways of developing the Marcellus Shale and the economics of not developing the Marcellus Shale. We

Angenent, Lars T.

12

Development of the Natural Gas Resources in the Marcellus Shale  

E-Print Network [OSTI]

Development of the Natural Gas Resources in the Marcellus Shale New York, Pennsylvania, Virginia for informational purposes only and does not support or oppose development of the Marcellus Shale natural gas information regarding shale gas well development, ancillary facilities asso- ciated with that development

Boyer, Elizabeth W.

13

The Public Health Implications of Marcellus Shale Activities  

E-Print Network [OSTI]

INCIDENT #12;#12;#12;Implications of the Gulf Oil Spill to Marcellus Shale Activities - EnvironmentalThe Public Health Implications of Marcellus Shale Activities Bernard D. Goldstein, MD Department using Data.FracTracker.org. #12;Drilling Rig in Rural Upshur County, WV Source: WVSORO, Modern Shale Gas

Jiang, Huiqiang

14

Appalachian Studies Student Survey Items  

E-Print Network [OSTI]

about Appalachian culture/history Historical Survey Data (Prior to 2006) ACT Appalachian Region Alumni selected Berea College. Major Reason Minor Reason Not a Reason Cost of attendance/affordable price Close

Baltisberger, Jay H.

15

Potential Economic Impacts of Marcellus Shale in Pennsylvania: Reflections on the Perryman Group Analysis from Texas  

E-Print Network [OSTI]

Potential Economic Impacts of Marcellus Shale in Pennsylvania: Reflections on the Perryman Group The exploration and development of the Marcellus Shale natural gas play has significant potential to affect in the Barnett Shale region of north Texas. The Barnett Shale play is very similar in geology to the Marcellus

Boyer, Elizabeth W.

16

Life Cycle Analysis on Greenhouse Gas (GHG) Emissions of Marcellus Shale Gas Supporting Information  

E-Print Network [OSTI]

Life Cycle Analysis on Greenhouse Gas (GHG) Emissions of Marcellus Shale Gas Supporting Information 1. GHG Emissions Estimation for Production of Marcellus Shale Gas 1.1 Preparation of Well Pad estimate from Columbia University shows the size of a multi-well pad of Marcellus Shale averages 20

Jaramillo, Paulina

17

Potential Health Effects of Marcellus Shale Activities: The Need for Public  

E-Print Network [OSTI]

. #12;Implications of the Gulf Oil Spill to Marcellus Shale Activities - Environmental and human health salt (Proprietary) 10.0 - 30.0% #12;Implications of the Gulf Oil Spill to Marcellus Shale ActivitiesPotential Health Effects of Marcellus Shale Activities: The Need for Public Health Surveillance

Sibille, Etienne

18

Depositional Model of the Marcellus Shale in West Virginia Based on Facies Analysis  

SciTech Connect (OSTI)

A lithologic analysis of well exposed Marcellus outcrops has identified six different facies in West Virginia and neighboring states: (1) light gray calcareous shale, (2) fossiliferous limestone, (3) black calcareous shale, (4) black noncalcareous shale, (5) dark gray noncalcareous shale, and (6) K-bentonite. Close interbedding of these rock types attests to a complex, ever-changing environment on the eastern foreland ramp of the Appalachian Basin. The environmental setting was clearly not a deep trough, permanently anoxic, salinity stratified, sediment starved, and populated exclusively by phytoplanktonthe traditional depositional model. To the contrary, our sedimentary data suggest a rather shallow water depth, intermittent anoxia, normal-marine salinity, a fluctuating input of siliciclastic mud, and faunal communities of low and moderate diversity. Interbedding of the shale and limestone lithofacies as well as the vertical stacking of facies associations is explained most simply by fluctuations in water depth coupled with fluctuations in sediment supply. The sea floor was, at times, immediately below wave base (Facies 1 and 2), around the depth of the thermocline (Facies 2 and 3), or below the thermocline (Facies 4 and 5), relative sea level changing through two sequences of lowstand, transgression, and highstand. Simultaneously the supply of siliciclastic mud was greater at times of lowstand (increased erosion) and highstand (prograding shoreline), and the supply smaller during transgression (sediment stored in distant coastal plain).

Bruner, Kathy

2011-11-14T23:59:59.000Z

19

Energy Transitions: A Systems Approach Including Marcellus Shale Gas Development  

E-Print Network [OSTI]

Energy Transitions: A Systems Approach Including Marcellus Shale Gas Development A Report Engineering) W. VA #12;Energy Transitions: A Systems Approach August 2011 version Page 2 Energy Transitions sources globally, some very strong short-term drivers of energy transitions reflect rising concerns over

Walter, M.Todd

20

SPE-163690-MS Synthetic, Geomechanical Logs for Marcellus Shale  

E-Print Network [OSTI]

SPE-163690-MS Synthetic, Geomechanical Logs for Marcellus Shale M. O. Eshkalak, SPE, S. D of hydrocarbons from the reservoirs, notably shale, is attributed to realizing the key fundamentals of reservoir and mineralogy is crucial in order to identify the "right" pay-zone intervals for shale gas production. Also

Mohaghegh, Shahab

Note: This page contains sample records for the topic "appalachian marcellus pa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Office of Sustainability Appalachian State University  

E-Print Network [OSTI]

1 Office of Sustainability Appalachian State University September 2010 Toward Climate Neutrality A 100kw wind turbine stands atop campus' highest point #12;sustain Appalachian Climate Action Plan Towards Climate Neutrality 2 September 2010 Submitted to: American College & University

Rose, Annkatrin

22

Observed Impacts of Marcellus Shale Drilling on  

E-Print Network [OSTI]

Pollution Prevention #12;Site Restoration Mandatory stockpiling of topsoil at time of well pad construction Department of City & Regional Planning Cornell University #12;Why Bradford County, PA? Small Industrial Towns) #12;Typical Well Pad ·Hydraulic Fracturing Phase #12;Storm Water Pollution Prevention Well pads

23

Department of Mechanical Engineering Fall 2010 Geothermal Pressure Reduction Marcellus Shale Production  

E-Print Network [OSTI]

Shale Production Overview (problem and challenges) During the preliminary production stage, Marcellus Shale natural gas wells have a wellhead pressure that exceeds the material limits of typical above understanding of Marcellus Shale natural gas wells and drilling was gathered on-site. Evaluation of (5

Demirel, Melik C.

24

Photo courtesy of Appalachian State University Appalachian State University  

E-Print Network [OSTI]

4 Report from the Appalachian State University Office of Sustainability to the American College of Sustainability Matt Parsons, Graduate Assistant Published spring 2010 A comparative survey of emissions from year to the greenhouse gas inventory completed fall 2009 by per the requirements of the American College and University

Rose, Annkatrin

25

Solar Decathlon: Appalachian State Wins People's Choice Award...  

Broader source: Energy.gov (indexed) [DOE]

Decathlon: Appalachian State Wins People's Choice Award Solar Decathlon: Appalachian State Wins People's Choice Award October 3, 2011 - 10:38am Addthis On Friday, Sept. 30, 2011,...

26

Extracting the economic benefits of natural resources in the Marcellus Shale Region  

E-Print Network [OSTI]

My thesis seeks to explore the challenge of value capture from natural resources using the case of the Marcellus Shale in West Virginia and Pennsylvania as an exemplar. I examine the mechanisms in place to capture the ...

Hess, Sara Lynn

2014-01-01T23:59:59.000Z

27

Facility Design Manual Appalachian State University  

E-Print Network [OSTI]

at Charlotte Design and Construction Manual University of South Carolina Sustainable Design Guidelines US DOE & US Green Building Council (USGBC) Sustainable Building Technical Manual #12;A p p a l a c h i a nFacility Design Manual Appalachian State University #12;#12;© 2009 by Appalachian State University

Thaxton, Christopher S.

28

Life cycle greenhouse gas emissions of Marcellus shale gas This article has been downloaded from IOPscience. Please scroll down to see the full text article.  

E-Print Network [OSTI]

Life cycle greenhouse gas emissions of Marcellus shale gas This article has been downloaded from.1088/1748-9326/6/3/034014 Life cycle greenhouse gas emissions of Marcellus shale gas Mohan Jiang1 , W Michael Griffin2,3 , Chris greenhouse gas (GHG) emissions from the production of Marcellus shale natural gas and compares its emissions

Jaramillo, Paulina

29

Economic Impacts of Marcellus Shale in Pennsylvania: Employment and Income in 2009 2011 Penn State Extension and Penn College www.msetc.org 1  

E-Print Network [OSTI]

Economic Impacts of Marcellus Shale in Pennsylvania: Employment and Income in 2009 ©2011 Penn State Extension and Penn College www.msetc.org 1 Economic Impacts of Marcellus Shale in Pennsylvania: Employment and Income in 2009 August 2011 www.msetc.org The Marcellus Shale Education & Training Center (MSETC

Boyer, Elizabeth W.

30

A Comparative Study of the Mississippian Barnett Shale, Fort Worth Basin, and Devonian Marcellus Shale, Appalachian Basin  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHe β- DecayBenew20-Year6APlasma APast andA

31

Appalachian State University October 11, 2010  

E-Print Network [OSTI]

of Ad-hoc Committee, Chair Michael Ramey, Chair Eric Marland, Vice-Chair Jeff Butts, Parliamentarian and its functions within Appalachian State University. Peter Petschauer, Chair Steve Williams, Vice Chair

Rose, Annkatrin

32

APPALACHIAN COLLEGES COMMUNITY ECONOMIC DEVELOPMENT PARTNERSHIP  

E-Print Network [OSTI]

customized community economic development engagement strategies. Provide on-site Partnership evaluation to undertake new economic development programs. Communication, Sustainability, and Evaluation--Years 1, 2 and 3APPALACHIAN COLLEGES COMMUNITY ECONOMIC DEVELOPMENT PARTNERSHIP The UNC-Chapel Hill Office

Engel, Jonathan

33

Page 1 of 3 Appalachian State University  

E-Print Network [OSTI]

with the department head and appropriate vice chancellor. Physical Plant New River Light & Power Food Service In the event of severe weather conditions, emergency situations, or serious public health threats, Appalachian

Rose, Annkatrin

34

Solar Decathlon Team Using Appalachian Mountain History to Model...  

Broader source: Energy.gov (indexed) [DOE]

Using Appalachian Mountain History to Model Home of the Future Solar Decathlon Team Using Appalachian Mountain History to Model Home of the Future March 31, 2011 - 10:52am Addthis...

35

Private Water Well Testing in Areas Impacted by Marcellus Shale Gas Drilling  

E-Print Network [OSTI]

Private Water Well Testing in Areas Impacted by Marcellus Shale Gas Drilling (Updated November 15th in the absence of shale-gas drilling, well owners are strongly encouraged to evaluate their water on a regular review of shale gas drilling in New York State, as well as the most comprehensive collection of data

Manning, Sturt

36

Geochemical evidence for possible natural migration of Marcellus Formation brine to  

E-Print Network [OSTI]

as the potential for contamination from toxic substances in hydraulic fracturing fluid and/or pro- duced brinesGeochemical evidence for possible natural migration of Marcellus Formation brine to shallow of stray gas, metal-rich formation brines, and hydrau- lic fracturing and/or flowback fluids to drinking

37

New York Marcellus Shale: Industry boom put on hold  

SciTech Connect (OSTI)

Key catalysts for Marcellus Shale drilling in New York were identified. New York remains the only state in the nation with a legislative moratorium on high-volume hydraulic fracturing, as regulators and state lawmakers work to balance the advantages of potential economic benefits while protecting public drinking water resources and the environment. New York is being particularly careful to work on implementing sufficiently strict regulations to mitigate the environmental impacts Pennsylvania has already seen, such as methane gas releases, fracturing fluid releases, flowback water and brine controls, and total dissolved solids discharges. In addition to economic and environmental lessons learned, the New York Department of Environmental Conservation (DEC) also acknowledges impacts to housing markets, security, and other local issues, and may impose stringent measures to mitigate potential risks to local communities. Despite the moratorium, New York has the opportunity to take advantage of increased capital investment, tax revenue generation, and job creation opportunities by increasing shale gas activity. The combination of economic benefits, industry pressure, and recent technological advances will drive the pursuit of natural gas drilling in New York. We identify four principal catalysts as follows: Catalyst 1: Pressure from Within the State. Although high-volume hydraulic fracturing has become a nationally controversial technology, shale fracturing activity is common in every U.S. state except New York. The regulatory process has delayed potential economic opportunities for state and local economies, as well as many industry stakeholders. In 2010, shale gas production accounted for $18.6 billion in federal royalty and local, state, and federal tax revenues. (1) This is expected to continue to grow substantially. The DEC is under increased pressure to open the state to the same opportunities that Alabama, Arkansas, California, Colorado, Kansas, Louisiana, Montana, New Mexico, North Dakota, Ohio, Oklahoma, Pennsylvania, South Dakota, Texas, Utah, West Virginia, and Wyoming are pursuing. Positive labor market impacts are another major economic draw. According to the Revised Draft SGEIS on the Oil, Gas and Solution Mining Regulatory Program (September 2011), hydraulic fracturing would create between 4,408 and 17,634 full-time equivalent (FTE) direct construction jobs in New York State. Indirect employment in other sectors would add an additional 29,174 FTE jobs. Furthermore, the SGEIS analysis suggests that drilling activities could add an estimated $621.9 million to $2.5 billion in employee earnings (direct and indirect) per year, depending upon how much of the shale is developed. The state would also receive direct tax receipts from leasing land, and has the potential to see an increase in generated indirect revenue. Estimates range from $31 million to $125 million per year in personal income tax receipts, and local governments would benefit from revenue sharing. Some landowner groups say the continued delay in drilling is costing tens of thousands of jobs and millions of dollars in growth for New York, especially in the economically stunted upstate. A number of New York counties near Pennsylvania, such as Chemung, NY, have experienced economic uptick from Pennsylvania drilling activity just across the border. Chemung officials reported that approximately 1,300 county residents are currently employed by the drilling industry in Pennsylvania. The Marcellus shale boom is expected to continue over the next decade and beyond. By 2015, gas drilling activity could bring 20,000 jobs to New York State alone. Other states, such as Pennsylvania and West Virginia, are also expected to see a significant increase in the number of jobs. Catalyst 2: Political Reality of the Moratorium. Oil and gas drilling has taken place in New York since the 19th century, and it remains an important industry with more than 13,000 currently active wells. The use of hydraulic fracturing in particular has been employed for decades. Yet, as technological

Mercurio, Angelique

2012-01-16T23:59:59.000Z

38

APPALACHIAN STATE UNIVERSITY OFFICE OF GENERAL COUNSEL  

E-Print Network [OSTI]

APPALACHIAN STATE UNIVERSITY OFFICE OF GENERAL COUNSEL MEMORANDUM TO: Faculty and Staff FROM: Dayton T. Cole, General Counsel DATE: October 22, 2013 SUBJECT: Political Activity [Please print and post Resources website: http://hrs.appstate.edu/announcements/552. Questions concerning the interpretation

Thaxton, Christopher S.

39

E-Print Network 3.0 - appalachian margin foundering Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

margin foundering Page: << < 1 2 3 4 5 > >> 1 Appalachian State University Foundation, Inc. Monthly Payroll Deduction Form (A-3) Summary: Appalachian State University...

40

E-Print Network 3.0 - appalachian region Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Appalachians) - May 1996 ... Source: Collection: Geosciences 23 ANALYSIS OF ENHANCED COALBED METHANE RECOVERY THROUGH CARBON SEQUESTRATION IN THE CENTRAL Summary: APPALACHIAN...

Note: This page contains sample records for the topic "appalachian marcellus pa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale  

SciTech Connect (OSTI)

This Final Scientific/ Technical Report submitted with respect to Project DE-FE0000833 titled 'An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale' in support of final reporting requirements. This final report contains a compilation of previous reports with the most current data in order to produce one final complete document. The goal of this research was to provide an integrated approach aimed at addressing the increasing water resource challenges between natural gas production and other water stakeholders in shale gas basins. The objective was to demonstrate that the AltelaRain{reg_sign} technology could be successfully deployed in the Marcellus Shale Basin to treat frac flow-back water. That objective has been successfully met.

Matthew Bruff; Ned Godshall; Karen Evans

2011-04-30T23:59:59.000Z

42

appalachian ohio region: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thaxton, Christopher S. 34 ECONOMIC IMPACT OF THE APPALACHIAN GATEWAY Fossil Fuels Websites Summary: , natural gas demand is forecast to increase through 2035. The...

43

Appalachian States Low-Level Radioactive Waste Compact (Maryland)  

Broader source: Energy.gov [DOE]

This legislation authorizes Maryland's entrance into the Appalachian States Low-Level Radioactive Waste Compact, which seeks to promote interstate cooperation for the proper management and disposal...

44

Speaker to Address Impact of Natural Gas Production on Greenhouse Gas Emissions When used for power generation, Marcellus Shale natural gas can significantly reduce carbon  

E-Print Network [OSTI]

generation, Marcellus Shale natural gas can significantly reduce carbon dioxide emissions, but questions have been raised whether development of shale gas resources results in an overall lower greenhouse gas, "Life Cycle Greenhouse Gas Emissions of Marcellus Shale Gas," appeared in Environmental Research Letters

Boyer, Elizabeth W.

45

PALEOCEANOGRAPHY, VOL. 24, PA4211, DOI:10.1029/2009PA001783 An Appalachian Amazon? Magnetofossil evidence for  

E-Print Network [OSTI]

the Paleocene-Eocene Thermal Maximum Robert E. Kopp,1,2 Dirk Schumann,3 Timothy D. Raub,4 David S. Powars,5. Using ferromagnetic resonance spectroscopy and electron microscopy, we map the magnetofossil. This is the authors' version of this manuscript. Citation: Kopp, R. E., D. Schumann, T. D. Raub, D. S. Powars, L. V

Swanson-Hysell, Nicholas

46

PA Nanotechnology 2012 Nanotech's Role in Advancing PA's Economy  

E-Print Network [OSTI]

PA Nanotechnology 2012 Nanotech's Role in Advancing PA's Economy June 5, 2012 Harrisburg University technologies that can impact your business and Pennsylvania's economy Moderator: Charles Brumlik, Nanobiz #12

Gilchrist, James F.

47

Origin Basin Destination State STB EIA STB EIA Northern Appalachian...  

Gasoline and Diesel Fuel Update (EIA)

- W - W W W - W Central Appalachian Basin Alabama 26.18 26.10 -0.3% 118.06 22.1% 930 37.4% 100.0% Central Appalachian Basin Delaware 23.73 15.12 -36.3% 88.59 17.1%...

48

appalachian clean coal: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

appalachian clean coal First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 1 INTRODUCTION Appalachian coal...

49

The Economic Impact of the Natural Gas Industry and the Marcellus Shale Development in West Virginia in 2009  

E-Print Network [OSTI]

The Economic Impact of the Natural Gas Industry and the Marcellus Shale Development in West for this research was provided by the West Virginia Oil and Natural Gas Association (WVONGA). The opinions herein Natural gas is a colorless, odorless, and tasteless fuel that is used by households, manufacturers

Mohaghegh, Shahab

50

CLIMATE-FIRE RELATIONSHIPS IN THE SOUTHERN APPALACHIAN MOUNTAINS  

E-Print Network [OSTI]

This study is meant to explain the fire regime of the southern Appalachian Mountain Range of the southeastern United States by analyzing spatial statistics and climate-fire relationships. The spatial statistics were created by obtaining...

Baker, Ralph C.

2011-01-11T23:59:59.000Z

51

PA Nanotechnology 2012: Nanotech's Role in Advancing PA's Economy  

E-Print Network [OSTI]

PA Nanotechnology 2012: Nanotech's Role in Advancing PA's Economy Date: June 5, 2012 Time: 7:30 am impact your business and regional economy · Processes and programs for moving laboratory technologies in Advancing PA's Economy Agenda 730 Registration and Breakfast 820 Welcome 830 Keynote: TBA 910 Break 925

Gilchrist, James F.

52

Study seeks to boost Appalachian gas recovery  

SciTech Connect (OSTI)

Ashland Exploration Inc. and the Gas Research Institute (GRI) are trying to find ways to increase gas recovery in the Appalachian basin. They are working together to investigate Mississippian Berea sandstone and Devonian shale in a program designed to achieve better understanding and improved performance of tight natural gas formations in the area. This paper reports that three wells on Ashland Exploration acreage in Pike County, Ky., are involved in the research program. Findings from the first two wells will be used to optimize evaluation and completion of the third well. The first two wells have been drilled. Drilling of the third well was under way at last report. Ashland Exploration has been involved with GRI's Devonian shale research since 1988. GRI's initial focus was on well stimulation because Devonian shale wells it reviewed had much lower recoveries than could be expected, based on estimated gas in place. Research during the past few years was designed to improve the execution and quality control of well stimulation.

Not Available

1992-07-20T23:59:59.000Z

53

1 INTRODUCTION Appalachian coal recovered during mining fre-  

E-Print Network [OSTI]

of Appalachian underground coal mining (Newman 2003). Storage of coal processing waste is limited to above ground- ground room-and-pillar or longwall coal production do not allow for the separation of waste during coal. Such an analysis requires the ability to predict potential surface ground movements, both vertical (i

54

All majors in geology are required to complete GLY 4750 (Field Methods) which includes classroom lectures on Appalachian Geology, a nine day trip to the Southern Appalachians, and  

E-Print Network [OSTI]

All majors in geology are required to complete GLY 4750 (Field Methods) which includes classroom lectures on Appalachian Geology, a nine day trip to the Southern Appalachians, and two oneday field trips geological data and interpretations, and requires the student to demonstrate proficiency in integrating

Fernandez, Eduardo

55

Siemens Pittsburgh, PA Novelis Corporation Atlanta, GA  

E-Print Network [OSTI]

Industrial Design ­ Shanghai, China Eaton Corporation ­ Pittsburgh, PA CMU, CTTEC ­ PittsburghSiemens ­ Pittsburgh, PA Novelis Corporation ­ Atlanta, GA Expense

McGaughey, Alan

56

Performance evaluation of Appalachian wells using a microcomputer gas simulation model  

SciTech Connect (OSTI)

The Appalachian Basin contains very low reservoir pressures (as low as 120 psi). To help solve these problems, a one-dimensional gas simulator has been developed for use on a microcomputer. The simulation program provides production engineers with tools to generate data and determine the inflow performance relationships (IPR) of Appalachian-type wells. These Appalachian well field case studies were conducted, whereby various production methods were analyzed using the Nodal analysis method. Consequently, improved design criteria were established for selecting compatible production methods and handling production problems in the Appalachian Basin.

Yu, J.P.; Mustafa, A. (West Virginia Univ., Morgantown (USA)); Hefner, M.H. (CNG Transmission Co., Clarksburg, WV (USA))

1990-04-01T23:59:59.000Z

57

E-Print Network 3.0 - appalachian mountain region Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

10-week learning and living experience in the Appalachian Mountains. Students conduct independent... Mountain Lake Biological Station SUMMER2009 APPLY ONLINE: W W W . M L B S ....

58

E-Print Network 3.0 - appalachian assessment summary Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sciences and Ecology 2 CENTER FOR ECONOMIC RESEARCH & POLICY ANALYSIS Walker College of Business | Appalachian State University Summary: OF CONTENTS Executive Summary...

59

E-Print Network 3.0 - appalachian silvopasture pasture Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

State University, Boone, NC Chris Thaxton... Department of Geology Carol Babyak, Ph.D., and Will Benner Department of Chemistry Appalachian State Source: Thaxton,...

60

E-Print Network 3.0 - appalachian spruce fir Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

topography, and potential insolation on the Summary: United States (Noss et al. 1995; White and Miller 1998). Appalachian montane spruce-fir forests... by wind, with natural...

Note: This page contains sample records for the topic "appalachian marcellus pa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Parametric and predictive analysis of horizontal well configurations for coalbed methane reservoirs in Appalachian Basin.  

E-Print Network [OSTI]

??It has been a well-established fact that the Appalachian Basin represents a high potential region for the Coalbed Methane (CBM) production. The thin coal beds (more)

Maricic, Nikola.

2004-01-01T23:59:59.000Z

62

E-Print Network 3.0 - appalachian mined lands Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Appalachian State... of land-use history on the forest development of the Illinois Ozark Hills. B.S. Forest Science - Forest... AND RESEARCH APPOINTMENTS Assistant Professor...

63

E-Print Network 3.0 - appalachian basin exploration Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

production in the Appalachian Basin. Consequently, natural gas development... energy demand in the United States has led to ... Source: USDA, Forestry Service, Northern...

64

E-Print Network 3.0 - appalachian basin gas Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sciences and Ecology 2 ANALYSIS OF ENHANCED COALBED METHANE RECOVERY THROUGH CARBON SEQUESTRATION IN THE CENTRAL Summary: APPALACHIAN BASIN Nino Ripepi, Virginia Tech,...

65

Shale Webinar Series to Start September 13th The Penn State Marcellus Education Team will be offering a new monthly Shale webinar series beginning  

E-Print Network [OSTI]

Shale Webinar Series to Start September 13th The Penn State Marcellus Education Team will be offering a new monthly Shale webinar series beginning Thursday, September 13th from 1:00 to 2:00 PM. Tom the series with an overview of trends and updates on shale development. Tom will provide an analysis of shale

66

Appalachian basin coal-bed methane: Elephant or flea  

SciTech Connect (OSTI)

Historically, interest in the Appalachian basin coal-bed methane resource extends at least over the last 50 years. The Northern and Central Appalachian basins are estimated to contain 61 tcf and 5 tcf of coal-bed methane gas, respectively. Development of this resource has not kept pace with that of other basins, such as the Black Warrior basin of Alabama of the San Juan basin of northern New Mexico and Colorado. Without the benefit of modern completion, stimulation, and production technology, some older Appalachian basin coal-bed methane wells were reported to have produced in excess of 150 used here to characterize some past projects and their results. This work is not intended to comprise a comprehensive survey of all Appalachian basin projects, but rather to provide background information from which to proceed for those who may be interested in doing so. Several constraints to the development of this resource have been identified, including conflicting legal rights of ownership of the gas produced from the coal seams when coal and conventional oil and gas rights are controlled by separate parties. In addition, large leaseholds have been difficult to acquire and finding costs have been high. However, the threshold of minimum economic production may be relatively low when compared with other areas, because low-pressures pipelines are available and gas prices are among the highest in the nation. Interest in the commercial development of the resource seems to be on the increase with several projects currently active and more reported to be planned for the near future.

Hunt, A.M. (Dames and Moore, Cincinnati, OH (United States))

1991-08-01T23:59:59.000Z

67

Opportunities for Visual Resource Management in the Southern Appalachian Coal Basin1  

E-Print Network [OSTI]

Opportunities for Visual Resource Management in the Southern Appalachian Coal Basin1 John W) in the southern Appalachian coal basin resulting from the Surface Mining Control and Reclamation Act. It focuses been concerned with the visual impacts resulting from the surface mined coal the agency purchases

Standiford, Richard B.

68

Evolution of porosity and geochemistry in Marcellus Formation black shale during weathering  

SciTech Connect (OSTI)

Soils developed on the Oatka Creek member of the Marcellus Formation in Huntingdon, Pennsylvania were analyzed to understand the evolution of black shale matrix porosity and the associated changes in elemental and mineralogical composition during infiltration of water into organic-rich shale. Making the reasonable assumption that soil erosion rates are the same as those measured in a nearby location on a less organic-rich shale, we suggest that soil production rates have on average been faster for this black shale compared to the gray shale in similar climate settings. This difference is attributed to differences in composition: both shales are dominantly quartz, illite, and chlorite, but the Oatka Creek member at this location has more organic matter (1.25 wt.% organic carbon in rock fragments recovered from the bottom of the auger cores and nearby outcrops) and accessory pyrite. During weathering, the extremely low-porosity bedrock slowly disaggregates into shale chips with intergranular pores and fractures. Some of these pores are eitherfilled with organic matter or air-filled but remain unconnected, and thus inaccessible to water. Based on weathering bedrock/soil profiles, disintegration is initiated with oxidation of pyrite and organic matter, which increases the overall porosity and most importantly allows water penetration. Water infiltration exposes fresh surface area and thus promotes dissolution of plagioclase and clays. As these dissolution reactions proceed, the porosity in the deepest shale chips recovered from the soil decrease from 9 to 7% while kaolinite and Fe oxyhydroxides precipitate. Eventually, near the land surface, mineral precipitation is outcompeted by dissolution or particle loss of illite and chlorite and porosity in shale chips increases to 20%. As imaged by computed tomographic analysis, weathering causes i) greater porosity, ii) greater average length of connected pores, and iii) a more branched pore network compared to the unweathered sample. This work highlights the impact of shale water O2interactions in near-surface environments: (1) black shale weathering is important for global carbon cycles as previously buried organic matter is quickly oxidized; and (2) black shales weather more quickly than less organic- and sulfide-rich shales, leading to high porosity and mineral surface areas exposed for clay weathering. The fast rates of shale gas exploitation that are ongoing in Pennsylvania, Texas and other regions in the United States may furthermore lead to release of metals to the environment if reactions between water and black shale are accelerated by gas development activities in the subsurface just as they are by low-temperature processes in ourfield study.

Jin, Lixin [University of Texas at El Paso] [University of Texas at El Paso; Ryan, Mathur [Juniata College, Huntingdon] [Juniata College, Huntingdon; Rother, Gernot [ORNL] [ORNL; Cole, David [Ohio State University] [Ohio State University; Bazilevskaya, Ekaterina [Pennsylvania State University, University Park, PA] [Pennsylvania State University, University Park, PA; Williams, Jennifer [Pennsylvania State University] [Pennsylvania State University; Alex, Carone [Pennsylvania State University] [Pennsylvania State University; Brantley, S. L. [Pennsylvania State University, University Park, PA] [Pennsylvania State University, University Park, PA

2013-01-01T23:59:59.000Z

69

Evolution of porosity and geochemistry in Marcellus Formation black shale during weathering  

SciTech Connect (OSTI)

Soils developed on the Oatka Creek member of the Marcellus Formation in Huntingdon, Pennsylvania were analyzed to understand the evolution of black shale matrix porosity and the associated changes in elemental and mineralogical composition during infiltration of water into organic-rich shale. Making the reasonable assumption that soil erosion rates are the same as those measured in a nearby location on a less organic-rich shale, we suggest that soil production rates have on average been faster for this black shale compared to the gray shale in similar climate settings. This difference is attributed to differences in composition: both shales are dominantly quartz, illite, and chlorite, but the Oatka Creek member at this location has more organic matter (1.25 wt% organic carbon in rock fragments recovered from the bottom of the auger cores and nearby outcrops) and accessory pyrite. During weathering, the extremely low-porosity bedrock slowly disaggregates into shale chips with intergranular pores and fractures. Some of these pores are either filled with organic matter or air-filled but remain unconnected, and thus inaccessible to water. Based on weathering bedrock/soil profiles, disintegration is initiated with oxidation of pyrite and organic matter, which increases the overall porosity and most importantly allows water penetration. Water infiltration exposes fresh surface area and thus promotes dissolution of plagioclase and clays. As these dissolution reactions proceed, the porosity in the deepest shale chips recovered from the soil decrease from 9 to 7 % while kaolinite and Fe oxyhydroxides precipitate. Eventually, near the land surface, mineral precipitation is outcompeted by dissolution or particle loss of illite and chlorite and porosity in shale chips increases to 20%. As imaged by computed tomographic analysis, weathering causes i) greater porosity, ii) greater average length of connected pores, and iii) a more branched pore network compared to the unweathered sample. This work highlights the impact of shale-water-O2 interactions in near-surface environments: (1) black shale weathering is important for global carbon cycles as previously buried organic matter is quickly oxidized; and (2) black shales weather more quickly than less organic- and sulfide-rich shales, leading to high porosity and mineral surface areas exposed for clay weathering. The fast rates of shale gas exploitation that are ongoing in Pennsylvania, Texas and other regions in the United States may furthermore lead to release of metals to the environment if reactions between water and black shale are accelerated by gas development activities in the subsurface just as they are by low-temperature processes in our field study.

Jin, Lixin [ORNL; Mathur, Ryan [Juniata College, Huntingdon; Rother, Gernot [ORNL; Cole, David [Ohio State University; Bazilevskaya, Ekaterina [Pennsylvania State University, University Park, PA; Williams, Jennifer [Pennsylvania State University; Carone, Alex [Pennsylvania State University, University Park, PA; Brantley, Susan L [ORNL

2013-01-01T23:59:59.000Z

70

Pa bru Dancing Song 3  

E-Print Network [OSTI]

Description (to be used in archive entry) This song can be sung while dancing at any celebratory gathering. The lyrics describe a happy deer family living in a happy valley. ??????????????????,?????? ???????????????? ?????????????????????... ?????????????????????????????? ???????????????? Tape No. / Track / Item No. Pa bru Dancing Song 3.MP3 Length of track 00:01:29 Related tracks (include description/relationship if appropriate) Title of track The Great Valley ????? ??????????????? Translation of title...

Bsod nams dung mtsho

71

New oilfield air bit improves drilling economics in Appalachian Basin  

SciTech Connect (OSTI)

Petroleum exploration in the Appalachian Basin of the northeastern United States has traditionally relied on compressed air, rather than drilling fluid, for its circulating medium. When compared to drilling mud, compressed air provides such advantages as increased rates of penetration, longer bit life, decreased formation damage, no lost circulation and saves the expense associated with mud handling equipment. Throughout the 1970s and early 1980s, roller cone mining bits and surplus oilfield bits were used to drill these wells. While the cutting structures of mining bits were well-suited for air drilling, the open roller bearings invariably shortened the useful life of the bit, particularly when water was present in the hole. This paper will highlight the development of a new IADC Class 539Y oilfield roller cone bit that is establishing performance records in air drilling applications throughout the Appalachian Basin. Essentially, the latest generation evolved from a roller cone bit successfully introduced in 1985 that combined a specialized non-offset cutting structure with a premium oilfield journal bearing package. Since its introduction, several sizes and types of oilfield air bits have been developed that have continually decreased drilling costs through enhanced performance and reliability. The design and evolution of rock bit cutting structures and bearing packages for high-performance oilfield air drilling applications will be detailed. Laboratory drilling test data will demonstrate the difference in drilling efficiencies between air drilling and conventional fluid drilling. Case studies taken from throughout the Appalachian Basin will be presented to illustrate the improvements in cost per foot, penetration rate, total footage drilled, drilling hours, and bit dull grades.

Brannon, K.C.; Grimes, R.E. [Hughes Christensen Co., Houston, TX (United States); Vietmeier, W.R. [Hughes Christensen Co., Imperial, PA (United States)

1994-12-31T23:59:59.000Z

72

Fire Regimes of the Southern Appalachian Mountains: Temporal and Spatial Variability and Implications for Vegetation Dynamics  

E-Print Network [OSTI]

Ecologists continue to debate the role of fire in forests of the southern Appalachian Mountains. How does climate influence fire in these humid, temperate forests? Did fire regimes change during the transition from Native American settlement to Euro...

Flatley, William 1977-

2012-08-31T23:59:59.000Z

73

Appalachian Colleges Community Economic Development Partnership The Small Private Colleges Economic Development Toolkit  

E-Print Network [OSTI]

Partnerships o Evaluation: Measuring Effectiveness #12;The Small Private Colleges Economic Development ToolkitAppalachian Colleges Community Economic Development Partnership The Small Private Colleges Economic and sustainable economic development outreach programs. It contains carefully selected articles and case studies

Engel, Jonathan

74

Native American Studies at West Virginia University: Continuing the Interactions of Native and Appalachian People  

E-Print Network [OSTI]

Native American Studies at West Virginia University: Continuing the Interactions of Native and Appalachian People Ellesa Clay High and Daniel W. McNeil In the heart of Appalachia, Native American Studies has been growing for almost two decades.... West Virginia is the only state totally encompassed by the Appalachian region, the mountains of which stretch from Maine to Georgia. About the size of the Navajo Nation, "wild and wonderful" West Virginia is a place of intricate ridges, hollows...

High, Ellesa Clay; McNeil, Daniel W.

2001-03-01T23:59:59.000Z

75

The Graduate School PA Public Administration  

E-Print Network [OSTI]

The Graduate School PA Public Administration KEY: # = new course * = course changed = course an overview of information strategies and management approaches to government functions and public policy, and training in the health care sector. Prereq: MHA program status. PA 631 PUBLIC FINANCIAL MANAGEMENT. (3

MacAdam, Keith

76

Variation and Trends of Landscape Dynamics, Land Surface Phenology and Net Primary Production of the Appalachian Mountains  

SciTech Connect (OSTI)

The gradients of the Appalachian Mountains in elevations and latitudes provide a unique regional perspective of landscape variations in the eastern United States and a section of the southeastern Canada. This study reveals patterns and trends of landscape dynamics, land surface phenology and ecosystem production along the Appalachian Mountains using time series data from Global Inventory Modeling and Mapping Studies (GIMMS) and AVHRR Global Production Efficiency Model (GloPEM) datasets. We analyzed the spatial and temporal patterns of Normalized Difference Vegetation Index (NDVI), length of growing season (LOS) and net primary production (NPP) of selected ecoregions along the Appalachian Mountains regions. We compared the results out of the Appalachian Mountains regions in different spatial contexts including the North America and the Appalachian Trail corridor area. To reveal latitudinal variations we analyzed data and compared the results between 30N-40N and 40N-50N latitudes. The result revealed significant decreases in annual peak NDVI in the Appalachian Mountains regions. The trend for the Appalachian Mountains regions was -0.0018 (R2=0.55, P<0.0001) NDVI unit decrease per year during 25 years between 1982 and 2006. The LOS had prolonged 0.3 day yr-1 during 25 years over the Appalachian Mountains regions. The NPP increased by 2.68 gC m-2yr-2 in Appalachian Mountains regions from 1981 to 2000. The comparison with the North America reveals the effects of topography and ecosystem compositions of the Appalachian Mountains. The comparison with the Appalachian Trail corridor area provides a regional mega-transect view of the measured variables.

Wang, Yeqiao; Zhao, Jianjun; Zhou, Yuyu; Zhang, Hongyan

2012-12-15T23:59:59.000Z

77

QER Public Meeting in Pittsburgh, PA: Natural Gas: Transmission...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Pittsburgh, PA: Natural Gas: Transmission, Storage and Distribution QER Public Meeting in Pittsburgh, PA: Natural Gas: Transmission, Storage and Distribution Meeting Date and...

78

The Mars Hill Terrane: An enigmatic southern Appalachian terrane  

SciTech Connect (OSTI)

The Mars Hill Terrane (MHT) in the Appalachian Blue Ride Belt is bordered by complex, locally reactivated thrust and strike-slip faults. On the east, the MHT is bounded by the allochthonous, ensimatic Toe Terrane (TT) across the diachronous, ductile Holland Mountain-Soque River Fault System. The MHT is separated on the northwest from ensialic Laurentian basement (LB), by the Fries-Hayesville Fault System. On the south, the MHT is truncated by the Shope Fork Fault. The MHT is characterized by migmatitic biotite-pyroxene-hornblende gneiss, but contains 1--1.8 b.y. old quartz-feldspar gneisses, plus ultramafic rocks, calc-silicate rocks, mica schists and gneisses, and Neoproterozoic Bakersville gabbros. This rock assemblage contrasts with that of the adjoining terranes. The only correlative units between the MHT and adjoining terranes are Neoproterozoic gabbro, Ordovician-Devonian granitoid plutons, and ultramafic rocks. Gabbro links the MHT with LB rocks. Apparently similar calc-silicate rocks differ petrographically among terranes. During Taconic or Acadian events, both the TT and MHT reached amphibolite to granulite metamorphic grade, but the LB did not exceed greenschist grade. The data conflict. The O-D plutons, ultramafic rocks, and metamorphic histories suggest that the TT had docked with the MHT by Ordovician time. The premetamorphic character of the Holland Mtn.-Soque River Fault System supports that chronology. Neoproterozoic gabbros suggest a MHT-LB link by Cambrian time, but the LB experienced neither O-D plutonism nor Paleozoic amphibolite-granulite facies metamorphism.

Raymond, L.A.; Johnson, P.A. (Appalachian State Univ., Boone, NC (United States). Dept. of Geology)

1994-03-01T23:59:59.000Z

79

appalachian studies uniVeRsitY OF KentucKY  

E-Print Network [OSTI]

progress policy rural heritage humor democracy appalachian studies uniVeRsitY OF KentucKY a land about· NASA· Diego Gutiérrez 1562 Map of America·1888 Map, Lexington, Kentucky, C.J. Pauli (detail: State College of Kentucky). Cover QUotAtioNS: John C. Campbell, The Southern Highlander and His Homeland

MacAdam, Keith

80

CHARACTERIZATION OF CENTRAL APPALACHIAN BASIN CBM DEVELOPMENT: POTENTIAL FOR CARBON SEQUESTRATION  

E-Print Network [OSTI]

of the carbon sequestration potential of the Pennsylvanian-age coalbeds in the Central Appalachian Basin favorable reservoirs for carbon sequestration due to their thickness, depth, rank, and permeability high gas content should provide the optimum reservoirs for carbon sequestration since these coals

Note: This page contains sample records for the topic "appalachian marcellus pa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

PA Regional Nanotechnology Conference Nanotechnology for Industry  

E-Print Network [OSTI]

4/19/2011 Present PA Regional Nanotechnology Conference Nanotechnology for Industry May 31, 2011 9 _____________________________________________________________ _____________The field of nanotechnology continues to be one of the leading forces behind our nation's ability to develop, commercialize, and produce advancements that are enabled by nanotechnology. Therefore, Drexel

Gilchrist, James F.

82

Seepage Model for PA Including Dift Collapse  

SciTech Connect (OSTI)

The purpose of this Analysis/Model Report (AMR) is to document the predictions and analysis performed using the Seepage Model for Performance Assessment (PA) and the Disturbed Drift Seepage Submodel for both the Topopah Spring middle nonlithophysal and lower lithophysal lithostratigraphic units at Yucca Mountain. These results will be used by PA to develop the probability distribution of water seepage into waste-emplacement drifts at Yucca Mountain, Nevada, as part of the evaluation of the long term performance of the potential repository. This AMR is in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (CRWMS M&O 2000 [153447]). This purpose is accomplished by performing numerical simulations with stochastic representations of hydrological properties, using the Seepage Model for PA, and evaluating the effects of an alternative drift geometry representing a partially collapsed drift using the Disturbed Drift Seepage Submodel. Seepage of water into waste-emplacement drifts is considered one of the principal factors having the greatest impact of long-term safety of the repository system (CRWMS M&O 2000 [153225], Table 4-1). This AMR supports the analysis and simulation that are used by PA to develop the probability distribution of water seepage into drift, and is therefore a model of primary (Level 1) importance (AP-3.15Q, ''Managing Technical Product Inputs''). The intended purpose of the Seepage Model for PA is to support: (1) PA; (2) Abstraction of Drift-Scale Seepage; and (3) Unsaturated Zone (UZ) Flow and Transport Process Model Report (PMR). Seepage into drifts is evaluated by applying numerical models with stochastic representations of hydrological properties and performing flow simulations with multiple realizations of the permeability field around the drift. The Seepage Model for PA uses the distribution of permeabilities derived from air injection testing in niches and in the cross drift to stochastically simulate the 3D flow of water in the fractured host rock (in the vicinity of potential emplacement drifts) under ambient conditions. The Disturbed Drift Seepage Submodel evaluates the impact of the partial collapse of a drift on seepage. Drainage in rock below the emplacement drift is also evaluated.

G. Li; C. Tsang

2000-12-20T23:59:59.000Z

83

The Influence of Fire and Other Disturbance on Ericaceous Shrubs in Xeric Pine-Oak Forests of the Appalachian Mountains  

E-Print Network [OSTI]

Fire suppression in the southern and central Appalachian Mountains has resulted in an alteration to vegetation structure and composition. For this research the dominant species, abundance, density and age structure of the ericaceous shrub layer...

Pipkin, Ashley

2012-07-16T23:59:59.000Z

84

The Geology of North America Vol. F-2, The Appalachian-OuachitaOrogen in the United States  

E-Print Network [OSTI]

- ing of the orogen are given in two other volumes in this series: Vogt and Tucholke (1986) and Sheridan., and Viele, G. W., eds., The Appalachian-Oachita Orogen in the United States: Boulder, Colorado, Geological

Olsen, Paul E.

85

Assessment of undiscovered carboniferous coal-bed gas resources of the Appalachian Basin and Black Warrior Basin Provinces, 2002  

SciTech Connect (OSTI)

Coalbed methane (CBM) occurs in coal beds of Mississippian and Pennsylvanian (Carboniferous) age in the Appalachian basin, which extends almost continuously from New York to Alabama. In general, the basin includes three structural subbasins: the Dunkard basin in Pennsylvania, Ohio, and northern West Virginia; the Pocahontas basin in southern West Virginia, eastern Kentucky, and southwestern Virginia; and the Black Warrior basin in Alabama and Mississippi. For assessment purposes, the Appalachian basin was divided into two assessment provinces: the Appalachian Basin Province from New York to Alabama, and the Black Warrior Basin Province in Alabama and Mississippi. By far, most of the coalbed methane produced in the entire Appalachian basin has come from the Black Warrior Basin Province. 8 refs., 1 fig., 1 tab.

Milici, R.C.; Hatch, J.R.

2004-09-15T23:59:59.000Z

86

Simulating Historic Landscape Patterns of Fire in the Southern Appalachian Mountains: Implications for Fire History and Management  

E-Print Network [OSTI]

Fire suppression policies implemented in the early 20th century led to a decrease in fire-associated species and ecosystems in the southern Appalachian Mountains. As managers work towards restoration, a greater understanding of the pre...

Gass, Ellen R

2014-05-21T23:59:59.000Z

87

Post-fire recovery and successional dynamics of an old growth red spruce forest in the southern Appalachian Mountains  

E-Print Network [OSTI]

of fire in a mesic ecosystem, specifically a high-elevation red spruce (Picea rubens Sarg.) forest on Whitetop Mountain in the southern Appalachian Mountains. Six plots were established in a high elevation red spruce stand to characterize the stand...

Krustchinsky, Adam R.

2009-05-15T23:59:59.000Z

88

Technical Insights for Saltstone PA Maintenance  

SciTech Connect (OSTI)

The Cementitious Barriers Partnership (CBP) is a collaborative program sponsored by the US DOE Office of Waste Processing. The objective of the CBP is to develop a set of computational tools to improve understanding and prediction of the long-term structural, hydraulic, and chemical performance of cementitious barriers and waste forms used in nuclear applications. CBP tools are expected to better characterize and reduce the uncertainties of current methodologies for assessing cementitious barrier performance and increase the consistency and transparency of the assessment process, as the five-year program progresses. In September 2009, entering its second year of funded effort, the CBP sought opportunities to provide near-term tangible support to DOE Performance Assessments (PAs). The Savannah River Saltstone Disposal Facility (SDF) was selected for the initial PA support effort because (1) cementitious waste forms and barriers play a prominent role in the performance of the facility, (2) certain important long-term behaviors of cementitious materials composing the facility are uncertain, (3) review of the SDF PA by external stakeholders is ongoing, and (4) the DOE contractor responsible for the SDF PA is open to receiving technical assistance from the CBP. A review of the current (SRR Closure & Waste Disposal Authority 2009) and prior Saltstone PAs (e.g., Cook et al. 2005) suggested five potential opportunities for improving predictions. The candidate topics considered were (1) concrete degradation from external sulfate attack, (2) impact of atmospheric exposure to concrete and grout before closure, such as accelerated slag and Tc-99 oxidation, (3) mechanistic prediction of geochemical conditions, (4) concrete degradation from rebar corrosion due to carbonation, and (5) early age cracking from drying and/or thermal shrinkage. The candidate topics were down-selected considering the feasibility of addressing each issue within approximately six months, and compatibility with existing CBP expertise and already-planned activities. Based on these criteria, the five original topics were down-selected to two: external sulfate attack and mechanistic geochemical prediction. For each of the selected topics, the CBP communicated with the PA analysts and subject matter experts at Savannah River to acquire input data specific to the Saltstone facility and related laboratory experiments. Simulations and analyses were performed for both topics using STADIUM (SIMCO 2008), LeachXS/ORCHESTRA (ECN 2007, Meeussen 2003), and other software tools. These supplemental CBP analyses produced valuable technical insights that can be used to strengthen the Saltstone PA using the ongoing PA maintenance process. This report in part summarizes key information gleaned from more comprehensive documents prepared by Sarkar et al. (2010), Samson (2010), and Sarkar (2010).

Flach, G.; Sarkar, S.; Mahadevan, S.; Kosson, D.

2011-07-20T23:59:59.000Z

89

Sedimentology of gas-bearing Devonian shales of the Appalachian Basin  

SciTech Connect (OSTI)

The Eastern Gas Shales Project (1976-1981) of the US DOE has generated a large amount of information on Devonian shale, especially in the western and central parts of the Appalachian Basin (Morgantown Energy Technology Center, 1980). This report summarizes this information, emphasizing the sedimentology of the shales and how it is related to gas, oil, and uranium. This information is reported in a series of statements each followed by a brief summary of supporting evidence or discussion and, where interpretations differ from our own, we include them. We believe this format is the most efficient way to learn about the gas-bearing Devonian shales of the Appalachian Basin and have organized our statements as follows: paleogeography and basin analysis; lithology and internal stratigraphy; paleontology; mineralogy, petrology, and chemistry; and gas, oil, and uranium.

Potter, P.E.; Maynard, J.B.; Pryor, W.A.

1981-01-01T23:59:59.000Z

90

Appalachian Clean Coal Technology Consortium. Technical progress report, January 1--March 31, 1996  

SciTech Connect (OSTI)

The Appalachian Clean Coal Technology Consortium has been established to help U.S. Coal producers, particularly those in the Appalachian region, increase the production of lower-sulfur coal. In keeping with the recommendations of the Advisory Committee, first-year R&D activities are focused on two areas of research: fine coal dewatering and modeling of spirals. The industry representatives to the Consortium identified fine coal dewatering as the most needed area of technology development. Dewatering studies are conducted by Virginia Tech`s Center for Coal and Minerals Processing. A spiral model will be developed by West Virginia University. The research to be performed by the University of Kentucky has recently been defined as: A Study of Novel Approaches for Destabilization of Flotation Froth. Accomplishments to date of these three projects are presented in this report.

NONE

1996-05-23T23:59:59.000Z

91

Simulation of CO2 Sequestration and Enhanced Coalbed Methane Production in Multiple Appalachian Basin Coal Seams  

SciTech Connect (OSTI)

A DOE-funded field injection of carbon dioxide is to be performed in an Appalachian Basin coal seam by CONSOL Energy and CNX Gas later this year. A preliminary analysis of the migration of CO2 within the Upper Freeport coal seam and the resulting ground movements has been performed on the basis of assumed material and geometric parameters. Preliminary results show that ground movements at the field site may be in a range that are measurable by tiltmeter technology.

Bromhal, G.S.; Siriwardane, H.J.; Gondle, R.K.

2007-11-01T23:59:59.000Z

92

Palmco Power PA, LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOski Energy LLC Place:FerrySprings, California: EnergyPA,

93

US MidAtl PA Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26,8,CoalThousandIL SiteMidAtl PA Site

94

Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins  

SciTech Connect (OSTI)

This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins` heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas` liquid fuels needs.

Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

1992-07-01T23:59:59.000Z

95

Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins  

SciTech Connect (OSTI)

This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins' heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas' liquid fuels needs.

Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

1992-07-01T23:59:59.000Z

96

Appalachian Rivers II Conference: Technology for Monitoring, Assessing, and Restoring Streams, Rivers, and Watersheds  

SciTech Connect (OSTI)

On July 28-29, 1999, the Federal Energy Technology Center (FETC) and the WMAC Foundation co-sponsored the Appalachian Rivers II Conference in Morgantown, West Virginia. This meeting brought together over 100 manufacturers, researchers, academicians, government agency representatives, watershed stewards, and administrators to examine technologies related to watershed assessment, monitoring, and restoration. Sessions included presentations and panel discussions concerning watershed analysis and modeling, decision-making considerations, and emerging technologies. The final session examined remediation and mitigation technologies to expedite the preservation of watershed ecosystems.

None available

1999-07-29T23:59:59.000Z

97

Patterns of Genetic Variation in Southern Appalachian Populations of Athyrium filix?femina var. asplenioides (Dryopteridaceae)  

E-Print Network [OSTI]

polymorphic if the frequency of the most common allele does not exceed 0.95. b Unbiased estimate (see Nei 1978). 769SCIARRETTA ET AL.ALLOZYMES OF APPALACHIAN ATHYRIUM This content downloaded from 129.237.46.100 on Thu, 11 Sep 2014 15:09:49 PM All use subject... species involves a combination of sex- ual and vegetative reproduction, resulting in challenges to defining and recognizing genetic individuals for population genetic analysis (Cook 1983; Ellstrand and Roose 1987; Wolf et al. 1991; Parks and Werth 1993...

Sciarretta, Kimberly L.; Arbuckle, Erin Potter; Haufler, Christopher H.; Werth, Charles R.

2005-09-01T23:59:59.000Z

98

annihilation pa methods: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

saturationCGC formalism for pA collisions at the LHC including the charged hadron multiplicity distribution, the nuclear modification factor for single inclusive hadron and...

99

Fast Track Reservoir Modeling of Shale Formations in the Appalachian Basin. Application to Lower Huron Shale in Eastern Kentucky.  

E-Print Network [OSTI]

SPE 139101 Fast Track Reservoir Modeling of Shale Formations in the Appalachian Basin. Application to Lower Huron Shale in Eastern Kentucky. O. Grujic, S. D. Mohaghegh, SPE, West Virginia University, G Shale in Eastern Kentucky is presented. Unlike conventional reservoir simulation and modeling which

Mohaghegh, Shahab

100

Geochemical analysis of crude oil from northern Appalachian, eastern Illinois, and southern Michigan basins  

SciTech Connect (OSTI)

In May 1986, the Ohio Board of Regents awarded a research grant to Ashland College to investigate the basinal origin of crude oil through trace-element analysis. The major thrust of the project was to attempt to finger print crude oils of various ages and depths from the northern Appalachian, eastern Illinois, and southern Michigan basins, to learn if the oldest crudes may have migrated among the basins. This in turn might give a more definitive time for the separation of the three basins. Nickel to vanadium ratios, were chosen to be the discriminators. Nickel to vanadium ratios show that the Trenton oil from the fields at Lima, Ohio; Oak Harbor in Ottawa County, Ohio; Urbana, Indiana; Peru, Indiana; and Albion, Michigan, are all different. The Trempealeau oils in Harmony and Lincoln Townships, Morrow County, are similar but they are different from those in Peru and Bennington Townships. The Devonian oils of the Illinois and Appalachian basins are distinctly different. The Berea oil shows little or no variability along strike. The Mississippian oils of the Illinois basin are different from the Berea oils and the Salem oil is different from the Chester. The only thing consistent about the Clinton is its inconsistency.

Noel, J.A.; Cole, J.; Innes, C.; Juzwick, S.

1987-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "appalachian marcellus pa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Higher coronary heart disease and heart attack morbidity in Appalachian coal mining regions  

SciTech Connect (OSTI)

This study analyzes the U.S. 2006 Behavioral Risk Factor Surveillance System survey data (N = 235,783) to test whether self-reported cardiovascular disease rates are higher in Appalachian coal mining counties compared to other counties after control for other risks. Dependent variables include self-reported measures of ever (1) being diagnosed with cardiovascular disease (CVD) or with a specific form of CVD including (2) stroke, (3) heart attack, or (4) angina or coronary heart disease (CHD). Independent variables included coal mining, smoking, BMI, drinking, physician supply, diabetes co-morbidity, age, race/ethnicity, education, income, and others. SUDAAN Multilog models were estimated, and odds ratios tested for coal mining effects. After control for covariates, people in Appalachian coal mining areas reported significantly higher risk of CVD (OR = 1.22, 95% CI = 1.14-1.30), angina or CHO (OR = 1.29, 95% C1 = 1.19-1.39) and heart attack (OR = 1.19, 95% C1 = 1.10-1.30). Effects were present for both men and women. Cardiovascular diseases have been linked to both air and water contamination in ways consistent with toxicants found in coal and coal processing. Future research is indicated to assess air and water quality in coal mining communities in Appalachia, with corresponding environmental programs and standards established as indicated.

Hendryx, M.; Zullig, K.J. [West Virginia University, Morgantown, WV (United States). Dept. of Community Medicine

2009-11-15T23:59:59.000Z

102

Fractured gas reservoirs in the Devonian shale of the Illinois and Appalachian basins  

SciTech Connect (OSTI)

The Devonian and Lower Mississippian black shale sequence of Kentucky includes the New Albany Shale of Illinois basin and the Ohio Shale of the Appalachian basin. Fractured reservoirs in the Ohio Shale contain a major gas resource, but have not been so prolific in the New Albany Shale. The authors propose two models of fractured shale reservoirs in both the Illinois and the Appalachian basins, to be tested with gas production data. (1) Where reactivated basement faults have propagated to the surface, the lack of an effective seal has prevented the development of overpressure. The resulting fracture system is entirely tectonic is origin, and served mainly as a conduit for gas migration from the basin to the surface. Gas accumulations in such reservoirs typically are small and underpressured. (2) Where basement faults have been reactivated but have not reached the surface, a seal on the fractured reservoir is preserved. In areas where thermal maturity has been adequate, overpressuring due to gas generation resulted in a major extension of the fracture system, as well as enhanced gas compression and adsorption. Such gas accumulations are relatively large. Original overpressuring has been largely lost, due both to natural depletion and to uncontrolled production. The relative thermal immaturity of the Illinois basin accounts for the scarcity of the second type of fractured reservoir and the small magnitude of the New Albany Shale gas resource.

Hamilton-Smith, T.; Walker, D.; Nuttall, B. (Kentucky Geological Survey, Lexington (United States))

1991-08-01T23:59:59.000Z

103

18 August 2009 www.fwbog.com Range Resources'(RRC) fourth  

E-Print Network [OSTI]

the Marcellus gas shale's breakout year. At the time, the "official" sources, including the U.S. Geological recoverable gas from Appalachian Basin black shales had mysteriously dropped out of sight.At a Petroleum authority on the recent Marcellus gas shale play, holds degrees from Penn State B.S. ('68), Yale M.S. ('72

Engelder, Terry

104

Ultrasound images in the new `iPA Phonetics' App  

E-Print Network [OSTI]

Ultrasound images in the new `iPA Phonetics' App Christopher Coey1 , John H. Esling1 , Scott R in an App iPA Phonetics is an application that illustrates the sounds and articulations of an expanded version of the IPA chart. The App gives users of Apple iOS mobile electronic devices the ability to access

Edinburgh, University of

105

CREATING A GEOLOGIC PLAY BOOK FOR TRENTON-BLACK RIVER APPALACHIAN BASIN EXPLORATION  

SciTech Connect (OSTI)

Private- and public-sector stakeholders formed the new ''Trenton-Black River Appalachian Basin Exploration Consortium'' and began a two-year research effort that will lead to a play book for Trenton-Black River exploration throughout the Appalachian basin. The final membership of the Consortium includes 17 gas exploration companies and 6 research team members, including the state geological surveys in Kentucky, Ohio, Pennsylvania and West Virginia, the New York State Museum Institute and West Virginia University. Seven integrated research tasks are being conducted by basin-wide research teams organized from this large pool of experienced professionals. More than 3400 miles of Appalachian basin digital seismic data have been quality checked. In addition, inquiries have been made regarding the availability of additional seismic data from government and industry partners in the consortium. Interpretations of the seismic data have begun. Error checking is being performed by mapping the time to various prominent reflecting horizons, and analyzing for any anomalies. A regional geological velocity model is being created to make time-to-depth conversions. Members of the stratigraphy task team compiled a generalized, basin-wide correlation chart, began the process of scanning geophysical logs and laid out lines for 16 regional cross sections. Two preliminary cross sections were constructed, a database of all available Trenton-Black River cores was created, and a basin-wide map showing these core locations was produced. Two cores were examined, described and photographed in detail, and were correlated to the network of geophysical logs. Members of the petrology team began the process of determining the original distribution of porous and permeable facies within a sequence stratigraphic framework. A detailed sedimentologic and petrographic study of the Union Furnace road cut in central Pennsylvania was completed. This effort will facilitate the calibration of subsurface core and log data. A core-sampling plan was developed cooperatively with members of the isotope geochemistry and fluid inclusion task team. One hundred thirty (130) samples were prepared for trace element and stable isotope analysis, and six samples were submitted for strontium isotope analysis. It was learned that there is a good possibility that carbon isotope stratigraphy may be a useful tool to locate the top of the Black River Formation in state-to-state correlations. Gas samples were collected from wells in Kentucky, New York and West Virginia. These were sent to a laboratory for compositional, stable isotope and hydrogen and radiogenic helium isotope analysis. Decisions concerning necessary project hardware, software and configuration of the website and database were made by the data, GIS and website task team. A file transfer protocol server was established for project use. The project website is being upgraded in terms of security.

Douglas G. Patchen; James Drahovzal; Larry Wickstrom; Taury Smith; Chris Laughery; Katharine Lee Avary

2004-04-01T23:59:59.000Z

106

Relationship between bitumen maturity and organic facies in Devonian shales from the Appalachian basin  

SciTech Connect (OSTI)

Variation in several bitumen maturity parameters was studied in a core of Devonian shale from the central Appalachian basin. Kerogens in the shales are at maturity levels equivalent to the early stages of oil generation and range in composition from Type III-IV to Type II-III. Maturity parameters based on steranes, terpanes, and n-alkanes exhibit fluctuations that are unrelated to thermal maturity changes in the core. The parameters correlate with one another to a high degree and appear to be directly or indirectly related to the organic facies of the shales. The maturity level indicated by each parameter increases with total organic carbon (TOC) content and hydrogen index value. The greatest variation occurs in rocks with TOC values below 2% and hydrogen index values below 250. The data provide a good opportunity to examine the dependency of bitumen maturity on organic facies, and they highlight a caveat to be considered during interpretation.

Daly, A.R.

1988-01-01T23:59:59.000Z

107

Syllabus (Subject to Change) PA 590 CAPSTONE RESEARCH COURSE  

E-Print Network [OSTI]

Fall 2013 Syllabus (Subject to Change) 1 PA 590 ­ CAPSTONE RESEARCH COURSE Room 110 CUPPA Hall will spend approximately 10-15 hours each, per week, on their team project. #12;Fall 2013 Syllabus (Subject

Illinois at Chicago, University of

108

Structure and function of Pseudomonas aeruginosa protein PA1324 (21170)  

E-Print Network [OSTI]

Northwest National Laboratory, Biological Sciences Division, Northeast Structural Genomics Consortium and Northeast Structural Genomics Consortium, Miami University, Oxford, Ohio 45056 Received 12 June 2008 aeruginosa PA1324; NMR; functional genomics; NMR high-throughput screens; protein-ligand binding; protein

Powers, Robert

109

2012 International Pittsburgh Coal Conference Pittsburgh, PA, USA  

E-Print Network [OSTI]

1 2012 International Pittsburgh Coal Conference Pittsburgh, PA, USA October 15 - 18, 2012 PROGRAM through the bed (1). An aquifer is suited for underground storage of gases or liquids since

Mohaghegh, Shahab

110

alegre pa brazil: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Grant Title: ACADEMIC CAREER AWARD (Parent K07) Funding Opportunity Number: PA-11-192. CFDA Number(s): 93.213, 93.866. Engineering Websites Summary: Grant Title: ACADEMIC CAREER...

111

PA Regional Nanotechnology Conference Collaborating in Today's Economy  

E-Print Network [OSTI]

4/23/2009 Present PA Regional Nanotechnology Conference Collaborating in Today's Economy May 27's future economy and workforce will be affected by new initiatives such as development and implementation

Gilchrist, James F.

112

State College Area High School From State College, PA Wins DOE...  

Broader source: Energy.gov (indexed) [DOE]

State College Area High School From State College, PA Wins DOE's National Science Bowl State College Area High School From State College, PA Wins DOE's National Science Bowl...

113

E-Print Network 3.0 - aeruginosa protein pa1324 Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: Structure and function of Pseudomonas aeruginosa protein PA1324 (21-170) Kelly A. Mercier,1 John R... aeruginosa PA1324; NMR; functional genomics; NMR...

114

Morphological studies on block copolymer modified PA 6 blends  

SciTech Connect (OSTI)

Recent studies show that compounding polyamide 6 (PA 6) with a PA 6 polyether block copolymers made by reaction injection molding (RIM) or continuous anionic polymerization in a reactive extrusion process (REX) result in blends with high impact strength and high stiffness compared to conventional rubber blends. In this paper, different high impact PA 6 blends were prepared using a twin screw extruder. The different impact modifiers were an ethylene propylene copolymer, a PA PA 6 polyether block copolymer made by reaction injection molding and one made by reactive extrusion. To ensure good particle matrix bonding, the ethylene propylene copolymer was grafted with maleic anhydride (EPR-g-MA). Due to the molecular structure of the two block copolymers, a coupling agent was not necessary. The block copolymers are semi-crystalline and partially cross-linked in contrast to commonly used amorphous rubbers which are usually uncured. The combination of different analysis methods like atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) gave a detailed view in the structure of the blends. Due to the partial cross-linking, the particles of the block copolymers in the blends are not spherical like the ones of ethylene propylene copolymer. The differences in molecular structure, miscibility and grafting of the impact modifiers result in different mechanical properties and different blend morphologies.

Poindl, M., E-mail: marcus.poindl@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de; Bonten, C., E-mail: marcus.poindl@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de [Institut fr Kunststofftechnik, University of Stuttgart (Germany)

2014-05-15T23:59:59.000Z

115

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Broader source: Energy.gov (indexed) [DOE]

Bradford,Sullivan&Susquehanna Co,PA Zonal Isolation Improvement for Horizontal Wells Drilling in the Marcellus Shale Collection of real time data during cement jobs through...

116

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Broader source: Energy.gov (indexed) [DOE]

Co,PA Zonal Isolation Improvements for Horizontal Wells Drilled in the Marcellus Shale Activities performed will include: observing cementing operations including rig up,...

117

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Broader source: Energy.gov (indexed) [DOE]

Co,PA Zonal Isolation Improvements for Horizontal Wells Drilled in the Marcellus Shale Observation of cementing operations and collecting small samples (25 lbs or less) of...

118

Health Economics PHS/Econ/PA 848, Spring 2011  

E-Print Network [OSTI]

1 Health Economics PHS/Econ/PA 848, Spring 2011 Tuesdays, 9:30AM-12:00PM, 511 WARF John Mullahy@wisc.edu Office Hours: By Appointment Overview Health Economics is an advanced graduate-level survey course covering selected topics in health economics. In most cases a solid understanding of microeconomic theory

Sheridan, Jennifer

119

Mining conditions and deposition in the Amburgy (Westphalian B) coal, Breathitt Group, central Appalachian basin  

SciTech Connect (OSTI)

Carbonate concretions called clay balls are rare in the Central Appalachian Basin, but were found in the Amburgy coal overlain by the Kendrick Shale Member. In the study area, the Amburgy coal is 0.7 to 0.9 meters thick, moderate to high in sulfur content, moderate to high in ash yield, and mostly bright clarain, except at the top near the area of coal balls, where durain of limited extent occurs. The coal is co-dominated by lycopod and cordaites; tree spores, with subordinate Calamites. The local durain layer is dominated by Densosporites, produced by the shrubby lycopod Ompbalophloios. Coal balls were encountered where the durain is immediately overlain by a coquinoid hash of broken and whole marine fossils, along a trend of coal thinning. The coal balls contain permineralized cordaites, lycopods, calamites, and ferns. The Amburgy coal accumulated as a succession of planar mires. Local splits in the seam are common, indicating contemporaneous clastic influx. The abundance of Cordaites may indicate brackish mire waters related to a coastal position and initial eustatic rise of the marginal Kendrick seas. Near the end of the Amburgy mires, the high ash-Omphalopbloios association is interpreted as a local area that was being drowned by the Kendrick transgression. Ravinement within this local embayment, rapid inundation by marine waters, and concentration of carbonate-bearing waters within transgressive scours may have contributed to the formation of coal balls and pyritic concretions in the upper part of the coal bed.

Greb, S.F.; Eble, C.F. [Kentucky Geological Survey, Lexington, KY (United States); Hower, J.C. [Center for Applied Research, Lexington, KY (United States); Phillips, T.L. [Univ. of illinois, Urbana, IL (United States)

1996-09-01T23:59:59.000Z

120

Appalachian Clean Coal Technology Consortium: Technical progress report, October 1--December 31, 1995  

SciTech Connect (OSTI)

In the dewatering project, two different approaches are taken. One approach involves displacing the water on the surface of coal by a hydrophobic substance that can be readily recovered and recycled. This novel concept, referred to as the Hydrophobic Dewatering (HD) process, is based on improved understanding of the surface chemistry of dewatering. The other approach is to use disposable dewatering substances in mechanical dewatering. The objectives of the proposed work are (1) to test the HD process on a variety of coals from the Appalachian coal fields, and (2) to identify suitable dewatering reagents that would enable mechanical dewatering to reduce the moisture to the levels satisfactory to electrical utilities and other coal users. The objective of the spiral separation project is to use computer modeling to develop better, more efficient spiral designs for coal cleaning. The fully-developed model will predict spiral performance based on variations in spiral profile, flow rate, and pitch. Specific goals are to: (1) design spirals capable of making separations at a specific gravity of 1.5, and (2) broaden the size range at which spirals make effective separations.

NONE

1996-04-23T23:59:59.000Z

Note: This page contains sample records for the topic "appalachian marcellus pa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Geologic Controls of Hydrocarbon Occurrence in the Appalachian Basin in Eastern Tennessee, Southwestern Virginia, Eastern Kentucky, and Southern West Virginia  

SciTech Connect (OSTI)

This report summarizes the accomplishments of a three-year program to investigate the geologic controls of hydrocarbon occurrence in the southern Appalachian basin in eastern Tennessee, southwestern Virginia, eastern Kentucky, and southern West Virginia. The project: (1) employed the petroleum system approach to understand the geologic controls of hydrocarbons; (2) attempted to characterize the P-T parameters driving petroleum evolution; (3) attempted to obtain more quantitative definitions of reservoir architecture and identify new traps; (4) is worked with USGS and industry partners to develop new play concepts and geophysical log standards for subsurface correlation; and (5) geochemically characterized the hydrocarbons (cooperatively with USGS). Third-year results include: All project milestones have been met and addressed. We also have disseminated this research and related information through presentations at professional meetings, convening a major workshop in August 2003, and the publication of results. Our work in geophysical log correlation in the Middle Ordovician units is bearing fruit in recognition that the criteria developed locally in Tennessee and southern Kentucky are more extendible than anticipated earlier. We have identified a major 60 mi-long structure in the western part of the Valley and Ridge thrust belt that has been successfully tested by a local independent and is now producing commercial amounts of hydrocarbons. If this structure is productive along strike, it will be one of the largest producing structures in the Appalachians. We are completing a more quantitative structural reconstruction of the Valley and Ridge and Cumberland Plateau than has been made before. This should yield major dividends in future exploration in the southern Appalachian basin. Our work in mapping, retrodeformation, and modeling of the Sevier basin is a major component of the understanding of the Ordovician petroleum system in this region. Prior to our undertaking this project, this system was the least understood in the Appalachian basin. This project, in contrast to many if not most programs undertaken in DOE laboratories, has a major educational component wherein three Ph.D. students have been partially supported by this grant, one M.S. student partially supported, and another M.S. student fully supported by the project. These students will be well prepared for professional careers in the oil and gas industry.

Hatcher, Robert D

2005-11-30T23:59:59.000Z

122

Proceedings of the 17th Central Hardwood Forest Conference GTR-NRS-P-78 (2011) 134 MAXIMIZING CARBON STORAGE IN THE APPALACHIANS  

E-Print Network [OSTI]

may also provide a baseline for a full accounting of forestry carbon offset projects. The ability CARBON STORAGE IN THE APPALACHIANS: A METHOD FOR CONSIDERING THE RISK OF DISTURBANCE EVENTS Michael R to disturbance events can influence the prediction of carbon flux over a planning horizon, and can affect

123

Strontium isotope quantification of siderite, brine and acid mine drainage contributions to abandoned gas well discharges in the Appalachian Plateau  

SciTech Connect (OSTI)

Unplugged abandoned oil and gas wells in the Appalachian region can serve as conduits for the movement of waters impacted by fossil fuel extraction. Strontium isotope and geochemical analysis indicate that artesian discharges of water with high total dissolved solids (TDS) from a series of gas wells in western Pennsylvania result from the infiltration of acidic, low Fe (Fe < 10 mg/L) coal mine drainage (AMD) into shallow, siderite (iron carbonate)-cemented sandstone aquifers. The acidity from the AMD promotes dissolution of the carbonate, and metal- and sulfate-contaminated waters rise to the surface through compromised abandoned gas well casings. Strontium isotope mixing models suggest that neither upward migration of oil and gas brines from Devonian reservoirs associated with the wells nor dissolution of abundant nodular siderite present in the mine spoil through which recharge water percolates contribute significantly to the artesian gas well discharges. Natural Sr isotope composition can be a sensitive tool in the characterization of complex groundwater interactions and can be used to distinguish between inputs from deep and shallow contamination sources, as well as between groundwater and mineralogically similar but stratigraphically distinct rock units. This is of particular relevance to regions such as the Appalachian Basin, where a legacy of coal, oil and gas exploration is coupled with ongoing and future natural gas drilling into deep reservoirs.

Chapman, Elizabeth C.; Capo, Rosemary C.; Stewart, Brian W.; Hedin, Robert S.; Weaver, Theodore J.; Edenborn, Harry M.

2013-04-01T23:59:59.000Z

124

E-Print Network 3.0 - activator t-pa current Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vol. 91, pp. 3670-3674, April 1994 Summary: activator (tPA) requires an Intravenous infusion (1.5-3 h) became the clearance oftPA from the circulation... -normal...

125

Hemi Orolingual Angioedema after tPA Administration for Acute Ischemic Stroke  

E-Print Network [OSTI]

to improve. As the tPA infusion was ending, the patientplasminogen activator infusion. Figure 2. Patients tongueevery 15 minutes during tPA infusion for signs of clinical

Madden, Bryan; Chebl, Ralphe B.

2015-01-01T23:59:59.000Z

126

Privacy Act (PA) of 1974 | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home DesignPresentationsSRS Responds to TrainPrior-Fiscal-Years(PA) of

127

DOE - Office of Legacy Management -- Pennsylvania Disposal Site - PA 43  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are herePAOsborne Co - OH 34PantexDisposal Site - PA

128

DOE - Office of Legacy Management -- Philadelphia Navy Yard - PA 08  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are herePAOsborne Co - OHPhiladelphia Navy Yard - PA

129

DOE - Office of Legacy Management -- Aliquippa - PA 07  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site -MiamiYVE r.x-L*Aliquippa - PA 07

130

PaTu Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrange County is aOrmesaPPT Research IncPaTu Wind Farm Jump

131

PaSol Italia SpA | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty,Orleans County,PPP Equipment CorporationPV World Co LtdPaSol Italia

132

A Political Ecology of Hydraulic Fracturing for Natural Gas in  

E-Print Network [OSTI]

environments, both in terms of perception and in terms of physical space. (Robbins 2004) #12;Outline ! Background of Marcellus Shale Gas Play ! Current Events: The Case of PA ! Geography of Fracking in Study Corbett #12;PA's Marcellus Shale Country is constructed as a Neoliberal Environment · Residents

Scott, Christopher

133

ENHANCEMENT OF TERRESTRIAL CARBON SINKS THROUGH RECLAMATION OF ABANDONED MINE LANDS IN THE APPALACHIAN REGION  

SciTech Connect (OSTI)

The U.S.D.I. Office of Surface Mining (OSM) estimates that there are approximately 1 million acres of abandoned mine land (AML) in the Appalachian region. AML lands are classified as areas that were inadequately reclaimed or were left unreclaimed prior to the passage of the 1977 Surface Mining Control and Reclamation Act, and where no federal or state laws require any further reclamation responsibility to any company or individual. Reclamation and afforestation of these sites have the potential to provide landowners with cyclical timber revenues, generate environmental benefits to surrounding communities, and sequester carbon in the terrestrial ecosystem. Through a memorandum of understanding, the OSM and the U.S. Department of Energy (DOE) have decided to investigate reclaiming and afforesting these lands for the purpose of mitigating the negative effects of anthropogenic carbon dioxide in the atmosphere. This study determined the carbon sequestration potential of northern red oak (Quercus rubra L.), one of the major reclamation as well as commercial species, planted on West Virginia AML sites. Analyses were conducted to (1) calculate the total number of tons that can be stored, (2) determine the cost per ton to store carbon, and (3) calculate the profitability of managing these forests for timber production alone and for timber production and carbon storage together. The Forest Management Optimizer (FORMOP) was used to simulate growth data on diameter, height, and volume for northern red oak. Variables used in this study included site indices ranging from 40 to 80 (base age 50), thinning frequencies of 0, 1, and 2, thinning percentages of 20, 25, 30, 35, and 40, and a maximum rotation length of 100 years. Real alternative rates of return (ARR) ranging from 0.5% to 12.5% were chosen for the economic analyses. A total of 769,248 thinning and harvesting combinations, net present worths, and soil expectation values were calculated in this study. Results indicate that the cost per ton to sequester carbon ranges from $6.54 on site index 80 land at a 12.5% ARR to $36.68 on site index 40 land at an ARR of 0.5%. Results also indicate that the amount of carbon stored during one rotation ranges between 38 tons per acre on site index 40 land to 58 tons per acre on site index 80 land. The profitability of afforestation on these AML sites in West Virginia increases as the market price for carbon increases from $0 to $100 per ton.

Gary D. Kronrad

2002-12-01T23:59:59.000Z

135

CREATING A GEOLOGIC PLAY BOOK FOR TRENTON-BLACK RIVER APPALACHIAN BASIN EXPLORATION  

SciTech Connect (OSTI)

The Trenton-Black River Appalachian Basin Research Consortium has made significant progress toward their goal of producing a geologic play book for the Trenton-Black River gas play. The final product will include a resource assessment model of Trenton-Black River reservoirs; possible fairways within which to concentrate further studies and seismic programs; and a model for the origin of Trenton-Black River hydrothermal dolomite reservoirs. All seismic data available to the consortium have been examined. Synthetic seismograms constructed for specific wells have enabled researchers to correlate the tops of 15 stratigraphic units determined from well logs to seismic profiles in New York, Pennsylvania, Ohio, West Virginia and Kentucky. In addition, three surfaces for the area have been depth converted, gridded and mapped. A 16-layer velocity model has been developed to help constrain time-to-depth conversions. Considerable progress was made in fault trend delineation and seismic-stratigraphic correlation within the project area. Isopach maps and a network of gamma-ray cross sections supplemented with core descriptions allowed researchers to more clearly define the architecture of the basin during Middle and Late Ordovician time, the control of basin architecture on carbonate and shale deposition and eventually, the location of reservoirs in Trenton Limestone and Black River Group carbonates. The basin architecture itself may be structurally controlled, and this fault-related structural control along platform margins influenced the formation of hydrothermal dolomite reservoirs in original limestone facies deposited in high energy environments. This resulted in productive trends along the northwest margin of the Trenton platform in Ohio. The continuation of this platform margin into New York should provide further areas with good exploration potential. The focus of the petrographic study shifted from cataloging a broad spectrum of carbonate rocks that occur in the Trenton-Black River interval to delineation of regional limestone diagenesis in the basin. A consistent basin-wide pattern of marine and burial diagenesis that resulted in relatively low porosity and permeability in the subtidal facies of these rocks has been documented across the study area. Six diagenetic stages have been recognized: four marine diagenesis stages and two burial diagenesis stages. This dominance of extensive marine and burial diagenesis yielded rocks with low reservoir potential, with the exception of fractured limestone and dolostone reservoirs. Commercial amounts of porosity, permeability and petroleum accumulation appear to be restricted to areas where secondary porosity developed in association with hydrothermal fluid flow along faults and fractures related to basement tectonics. A broad range of geochemical and fluid inclusion analyses have aided in a better understanding of the origin of the dolomites in the Trenton and Black River Groups over the study area. The results of these analyses support a hydrothermal origin for all of the various dolomite types found to date. The fluid inclusion data suggest that all of the dolomite types analyzed formed from hot saline brines. The dolomite is enriched in iron and manganese, which supports a subsurface origin for the dolomitizing brine. Strontium isotope data suggest that the fluids passed through basement rocks or immature siliciclastic rocks prior to forming the dolomites. All of these data suggest a hot, subsurface origin for the dolomites. The project database continued to be redesigned, developed and deployed. Production data are being reformatted for standard relational database management system requirements. Use of the project intranet by industry partners essentially doubled during the reporting period.

Douglas G. Patchen; Katharine Lee Avary; John M. Bocan; Michael Hohn; John B. Hickman; Paul D. Lake; James A. Drahovzal; Christopher D. Laughrey; Jaime Kostelnik; Taury Smith; Ron Riley; Mark Baranoski

2005-04-01T23:59:59.000Z

136

Distribution of Arsenic in Presque Isle, PA, Pond Sediments Jason Murnock, Master of Science Candidate,  

E-Print Network [OSTI]

Distribution of Arsenic in Presque Isle, PA, Pond Sediments Jason Murnock, Master of Science........................................................................................ 3 Arsenic in Soil & Sediments......................................................................................... 12 Sediment Digestion and Analysis

Short, Daniel

137

WC_1990_006_CLASS_WAIVER_of_the_Government_US_and_Foreign_Pa...  

Energy Savers [EERE]

rnmentUSandForeignPa.pdf More Documents & Publications WC1990012CLASSWAIVERofPatentRightsinInventionsMade.pdf WC1990008CLASSWAIVERfortheGovernmentsUSandFore...

138

Improving the Availability and Delivery of Critical Information for Tight Gas Resource Development in the Appalachian Basin  

SciTech Connect (OSTI)

To encourage, facilitate and accelerate the development of tight gas reservoirs in the Appalachian basin, the geological surveys in Pennsylvania and West Virginia collected widely dispersed data on five gas plays and formatted these data into a large database that can be accessed by individual well or by play. The database and delivery system that were developed can be applied to any of the 30 gas plays that have been defined in the basin, but for this project, data compilation was restricted to the following: the Mississippian-Devonian Berea/Murrysville sandstone play and the Upper Devonian Venango, Bradford and Elk sandstone plays in Pennsylvania and West Virginia; and the 'Clinton'/Medina sandstone play in northwestern Pennsylvania. In addition, some data were collected on the Tuscarora Sandstone play in West Virginia, which is the lateral equivalent of the Medina Sandstone in Pennsylvania. Modern geophysical logs are the most common and cost-effective tools for evaluating reservoirs. Therefore, all of the well logs in the libraries of the two surveys from wells that had penetrated the key plays were scanned, generating nearly 75,000 scanned e-log files from more than 40,000 wells. A standard file-naming convention for scanned logs was developed, which includes the well API number, log curve type(s) scanned, and the availability of log analyses or half-scale logs. In addition to well logs, other types of documents were scanned, including core data (descriptions, analyses, porosity-permeability cross-plots), figures from relevant chapters of the Atlas of Major Appalachian Gas Plays, selected figures from survey publications, and information from unpublished reports and student theses and dissertations. Monthly and annual production data from 1979 to 2007 for West Virginia wells in these plays are available as well. The final database also includes digitized logs from more than 800 wells, sample descriptions from more than 550 wells, more than 600 digital photos in 1-foot intervals from 11 cores, and approximately 260 references for these plays. A primary objective of the research was to make data and information available free to producers through an on-line data delivery model designed for public access on the Internet. The web-based application that was developed utilizes ESRI's ArcIMS GIS software to deliver both well-based and play-based data that are searchable through user-originated queries, and allows interactive regional geographic and geologic mapping that is play-based. System tools help users develop their customized spatial queries. A link also has been provided to the West Virginia Geological Survey's 'pipeline' system for accessing all available well-specific data for more than 140,000 wells in West Virginia. However, only well-specific queries by API number are permitted at this time. The comprehensive project web site (http://www.wvgs.wvnet.edu/atg) resides on West Virginia Geological Survey's servers and links are provided from the Pennsylvania Geological Survey and Appalachian Oil and Natural Gas Research Consortium web sites.

Mary Behling; Susan Pool; Douglas Patchen; John Harper

2008-12-31T23:59:59.000Z

139

Innovative Methodology for Detection of Fracture-Controlled Sweet Spots in the Northern Appalachian Basin  

SciTech Connect (OSTI)

For two consecutive years, 2004 and 2005, the largest natural gas well (in terms of gas flow/day) drilled onshore USA targeted the Ordovician Trenton/Black River (T/BR) play in the Appalachian Basin of New York State (NYS). Yet, little data were available concerning the characteristics of the play, or how to recognize and track T/BR prospects across the region. Traditional exploration techniques for entry into a hot play were of limited use here, since existing deep well logs and public domain seismic were almost non-existent. To help mitigate this problem, this research project was conceived with two objectives: (1) to demonstrate that integrative traditional and innovative techniques could be used as a cost-effective reconnaissance exploration methodology in this, and other, areas where existing data in targeted fracture-play horizons are almost non-existent, and (2) determine critical characteristics of the T/BR fields. The research region between Seneca and Cayuga lakes (in the Finger Lakes of NYS) is on strike and east of the discovery fields, and the southern boundary of the field area is about 8 km north of more recently discovered T/BR fields. Phase I, completed in 2004, consisted of integrating detailed outcrop fracture analyses with detailed soil gas analyses, lineaments, stratigraphy, seismic reflection data, well log data, and aeromagnetics. In the Seneca Lake region, Landsat lineaments (EarthSat, 1997) were coincident with fracture intensification domains (FIDs) and minor faults observed in outcrop and inferred from stratigraphy. Soil gas anomalies corresponded to ENE-trending lineaments and FIDs. N- and ENE-trending lineaments were parallel to aeromagnetic anomalies, whereas E-trending lineaments crossed aeromagnetic trends. 2-D seismic reflection data confirmed that the E-trending lineaments and FIDs occur where shallow level Alleghanian salt-cored thrust-faulted anticlines occur. In contrast, the ENE-trending FIDs and lineaments occur where Iapetan rift faults have been episodically reactivated, and a few of these faults extend through the entire stratigraphic section. The ENE-trending faults and N-striking transfer zones controlled the development of the T/BR grabens. In both the Seneca Lake and Cayuga Lake regions, we found more FIDs than Landsat lineaments, both in terms of individual FIDs and trends of FIDs. Our fused Landsat/ASTER image provided more lineaments, but the structural framework inferred from these lineaments is incomplete even for the fused image. Individual lineaments may not predict surface FIDs (within 500m). However, an individual lineament that has been groundtruthed by outcrop FIDs can be used as a proxy for the trend of intense fracturing. Aeromagnetics and seismic reflection data across the discovery fields west of Keuka Lake demonstrate that the fields terminate on the east against northerly-striking faults that extend from Precambrian basement to, in some cases, the surface; the fields terminate in the west at N- and NW-striking faults. Seismic and well log data show that the fields must be compartmentalized, since different parts of the same field show different histories of development. T/BR fields south of the research area also terminate (on the east) against northerly-trending lineaments which we suggest mark faults. Phase II, completed in 2006, consisted of collection and analysis of an oriented, horizontal core retrieved from one of the T/BR fields in a graben south of the field area. The field is located along ENE-trending EarthSat (1997) lineaments, similar to that hypothesized for the study area. The horizontal core shows much evidence for reactivation along the ENE-trending faults, with multiple events of vein development and both horizontal and vertical stylolite growth. Horizontal veins that post- and pre-date other vein sets indicate that at least two orogenic phases (separated by unloading) affected vein development. Many of the veins and releasing bend features (rhombochasms) are consistent with strike-slip motion (oblique) along ENE-striking faults as a result

Robert Jacobi; John Fountain; Stuart Loewenstein; Edward DeRidder; Bruce Hart

2007-03-31T23:59:59.000Z

140

Simulations de Parent / Kinship Simulations Colloque final du projet SimPa  

E-Print Network [OSTI]

Simulations de Parent / Kinship Simulations Colloque final du projet SimPa Final workshop Remarks, Francois Heran (INED) 10h30 From Tip to SimPa. Why Bother with Simulation?, Michael Houseman (University of Ljubjana) 13h00 Lunch 14h30 Machine Learning Applied to Alliance Networks, Telmo Menezes (CAMS

White, Douglas R.

Note: This page contains sample records for the topic "appalachian marcellus pa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Geologic Controls of Hydrocarbon Occurrence in the Southern Appalachian Basin in Eastern Tennessee, Southwestern Virginia, Eastern Kentucky, and Southern West Virginia  

SciTech Connect (OSTI)

This report summarizes the second-year accomplishments of a three-year program to investigate the geologic controls of hydrocarbon occurrence in the southern Appalachian basin in eastern Tennessee, southwestern Virginia, eastern Kentucky, and southern West Virginia. The project: (1) employs the petroleum system approach to understand the geologic controls of hydrocarbons; (2) attempts to characterize the T-P parameters driving petroleum evolution; (3) attempts to obtain more quantitative definitions of reservoir architecture and identify new traps; (4) is working with USGS and industry partners to develop new play concepts and geophysical log standards for subsurface correlation; and (5) is geochemically characterizing the hydrocarbons (cooperatively with USGS). Second-year results include: All current milestones have been met and other components of the project have been functioning in parallel toward satisfaction of year-3 milestones. We also have been effecting the ultimate goal of the project in the dissemination of information through presentations at professional meetings, convening a major workshop in August 2003, and the publication of results. Our work in geophysical log correlation in the Middle Ordovician units is bearing fruit in recognition that the criteria developed locally in Tennessee and southern Kentucky have much greater extensibility than anticipated earlier. We have identified a major 60 mi-long structure in the western part of the Valley and Ridge thrust belt that is generating considerable exploration interest. If this structure is productive, it will be one of the largest structures in the Appalachians. We are completing a more quantitative structural reconstruction of the Valley and Ridge than has been made before. This should yield major dividends in future exploration in the southern Appalachian basin. Our work in mapping, retrodeformation, and modeling of the Sevier basin is a major component of the understanding of the Ordovician petroleum system in this region. Prior to our undertaking this project, this system was the least understood in the Appalachian basin. We have made numerous presentations, convened a workshop, and are beginning to disseminate our results in print. This project, in contrast to many if not most programs undertaken in DOE laboratories, has a major educational component wherein three Ph.D. students have been partially supported by this grant, one M.S. student partially supported, and another M.S. student fully supported by the project. These students will be well prepared for professional careers in the oil and gas industry.

Robert D. Hatcher

2004-05-31T23:59:59.000Z

142

The use of pre- and post-stimulation well test analysis in the evaluation of stimulation effectiveness in the Devonian Shales of the Appalachian Basin  

E-Print Network [OSTI]

gas wells throughout the Appalachian Basin. The analysis of pre-stimulation well tests from four wells in Pike County, KY illustrates the practical difficulties in obtaining analyzable data from Devonian Shale wells. Fig. 1 shows the location... and requires that the flow periods prior to shut-in be even longer. The Martin 1 well located in Martin County, KY illustrates the problem of an insufficient flow period in a more typical Devonian Shale well test. The Martin 1 well was studied as part...

Lancaster, David Earl

1988-01-01T23:59:59.000Z

143

Hemi Orolingual Angioedema after tPA Administration for Acute Ischemic Stroke  

E-Print Network [OSTI]

after alteplase treatment of stroke. Neurology. Volume2015 tPA for ischemic stroke: case report. Air Med J. 2011;in acute ischemic stroke. an in vitro experimental approach.

Madden, Bryan; Chebl, Ralphe B.

2015-01-01T23:59:59.000Z

144

VaPa - nuorten varhennettu kuntoutus Lappeenrannassa; Backdated rehabilitation of youngsters in Lappeenranta.  

E-Print Network [OSTI]

??Kehittmishanke ksittelee Lappeenrannassa vuosina 2001-2003 toteutettua nuorten varhennettua kuntoutusta VaPa- hanketta. Kuntoutuskokeilun jrjestettiin Lappeenrannan sosiaali- ja terveysviraston ostopalveluna yhteis-voimin Lappeenrannan Kelan, tyvoimatoimiston ja toteuttajatahon Laptuote-stin (more)

Korja,Minna-Liisa

2006-01-01T23:59:59.000Z

145

DEPARTII'IENT OF ENERGY EERE PROJECT MA'PA...  

Broader source: Energy.gov (indexed) [DOE]

DEPARTII'IENT OF ENERGY EERE PROJECT MA'PA DETEIU.fiNATION RECIPIENT:ldaho Office of Energy Resources PROJECT TITLE : Program Year 2012 State Energy Program...

146

RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES  

SciTech Connect (OSTI)

The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. In this segment of work, our goal was to review methods for estimating tree survival, growth, yield and value of forests growing on surface mined land in the eastern coalfields of the USA, and to determine the extent to which carbon sequestration is influenced by these factors. Public Law 95-87, the Surface Mining Control and Reclamation Act of 1977 (SMCRA), mandates that mined land be reclaimed in a fashion that renders the land at least as productive after mining as it was before mining. In the central Appalachian region, where prime farmland and economic development opportunities for mined land are scarce, the most practical land use choices are hayland/pasture, wildlife habitat, or forest land. Since 1977, the majority of mined land has been reclaimed as hayland/pasture or wildlife habitat, which is less expensive to reclaim than forest land, since there are no tree planting costs. As a result, there are now hundreds of thousands of hectares of grasslands and scrublands in various stages of natural succession located throughout otherwise forested mountains in the U.S. A literature review was done to develop the basis for an economic feasibility study of a range of land-use conversion scenarios. Procedures were developed for both mixed hardwoods and white pine under a set of low product prices and under a set of high product prices. Economic feasibility is based on land expectation values. Further, our review shows that three types of incentive schemes might be important: (1) lump sum payment at planting (and equivalent series of annual payments); (2) revenue incentive at harvest; and (3) benefit based on carbon volume.

Jonathan Aggett

2003-12-15T23:59:59.000Z

147

Sedimentology, petrology, and gas potential of the Brallier Formation: upper Devonian turbidite facies of the Central and Southern Appalachians  

SciTech Connect (OSTI)

The Upper Devonian Brallier Formation of the central and southern Appalachian basin is a regressive sequence of siltstone turbidites interbedded with mudstones, claystones, and shales. It reaches 1000 meters in thickness and overlies basinal mudrocks and underlies deltaic sandstones and mudrocks. Facies and paleocurrent analyses indicate differences between the depositional system of the Brallier Formation and those of modern submarine fans and ancient Alpine flysch-type sequences. The Brallier system is of finer grain size and lower flow intensity. In addition, the stratigraphic transition from turbidites to deltaic sediments is gradual and differs in its facies succession from the deposits of the proximal parts of modern submarine fans. Such features as massive and pebbly sandstones, conglomerates, debris flows, and massive slump structures are absent from this transition. Paleocurrents are uniformly to the west at right angles to basin isopach, which is atypical of ancient turbidite systems. This suggests that turbidity currents had multiple point sources. The petrography and paleocurrents of the Brallier Formation indicate an eastern source of sedimentary and low-grade metasedimentary rocks with modern relief and rainfall. The depositional system of the Brallier Formation is interpreted as a series of small ephemeral turbidite lobes of low flow intensity which coalesced in time to produce a laterally extensive wedge. The lobes were fed by deltas rather than submarine canyons or upper fan channel systems. This study shows that the present-day turbidite facies model, based mainly on modern submarine fans and ancient Alpine flysch-type sequences, does not adequately describe prodeltaic turbidite systems such as the Brallier Formation. Thickly bedded siltstone bundles are common features of the Brallier Formation and are probably its best gas reservoir facies, especially when fracture porosity is well developed.

Lundegard, P.D.; Samuels, N.D.; Pryor, W.A.

1980-03-01T23:59:59.000Z

148

J/$?$ production in In-In and p-A collisions  

E-Print Network [OSTI]

The NA60 experiment studies dimuon production in In-In and p-A collisions at the CERN SPS. We report recent results on \\jpsi production, measured through its muon pair decay. As a function of centrality, we show that in In-In the \\jpsi yield is suppressed beyond expectations from nuclear absorption. We present also for the first time results on \\jpsi production in p-A collisions at 158 GeV, the same energy of the nucleus-nucleus data. For both p-A and In-In we show preliminary results on \\psip suppression. Finally, we have studied the kinematical distributions of the \\jpsi produced in In-In collisions. We present results on transverse momentum and rapidity, as well as on the angular distribution of the \\jpsi decay products.

E. Scomparin

2007-03-20T23:59:59.000Z

149

Marcellus Shale Advisory Commission Report Summary  

E-Print Network [OSTI]

bodies of water from 100 to 300 feet. Increase setback distance from private water wells from 200 actions. Expand public disclosure and information through enhanced well production and completion,000. Double daily penalties from $1,000 to $2,000 a day. Make penalties for criminal violations consistent

Boyer, Elizabeth W.

150

Potential Ecological Effects of Marcellus Shale Activities  

E-Print Network [OSTI]

· Timber · Agriculture · Oil & Gas · Iron · Limestone · Water #12;Conceptual Model with Fresh water usage, management, recycling · Air fugitive emissions, diesel engines, gas is cleaner as fuel compared to coal & oil · Offgasing from · condensate and · storage tanks · Vs. oil and coal #12;Ecological Impacts ­ Chemical Use

Jiang, Huiqiang

151

January 20, 2011 Marcellus Shale 101  

E-Print Network [OSTI]

. Will oil shale be viable as well? Oil shale will not be economically viable anytime in the near future

Hardy, Christopher R.

152

Geologic Controls of Hydrocarbon Occurrence in the Southern Appalachian Basin in Eastern Tennessee, Southwestern Virginia, Eastern Kentucky, and Southern West Virginia  

SciTech Connect (OSTI)

This report summarizes the first-year accomplishments of a three-year program to investigate the geologic controls of hydrocarbon occurrence in the southern Appalachian basin in eastern Tennessee, southwestern Virginia, eastern Kentucky, and southern West Virginia. The project: (1) employs the petroleum system approach to understand the geologic controls of hydrocarbons; (2) attempts to characterize the T-P parameters driving petroleum evolution; (3) attempts to obtain more quantitative definitions of reservoir architecture and identify new traps; (4) is working with USGS and industry partners to develop new play concepts and geophysical log standards for subsurface correlation; and (5) is geochemically characterizing the hydrocarbons (cooperatively with USGS). First-year results include: (1) meeting specific milestones (determination of thrust movement vectors, fracture analysis, and communicating results at professional meetings and through publication). All milestones were met. Movement vectors for Valley and Ridge thrusts were confirmed to be west-directed and derived from pushing by the Blue Ridge thrust sheet, and fan about the Tennessee salient. Fracture systems developed during Paleozoic, Mesozoic, and Cenozoic to Holocene compressional and extensional tectonic events, and are more intense near faults. Presentations of first-year results were made at the Tennessee Oil and Gas Association meeting (invited) in June, 2003, at a workshop in August 2003 on geophysical logs in Ordovician rocks, and at the Eastern Section AAPG meeting in September 2003. Papers on thrust tectonics and a major prospect discovered during the first year are in press in an AAPG Memoir and published in the July 28, 2003, issue of the Oil and Gas Journal. (2) collaboration with industry and USGS partners. Several Middle Ordovician black shale samples were sent to USGS for organic carbon analysis. Mississippian and Middle Ordovician rock samples were collected by John Repetski (USGS) and RDH for conodont alteration index determination to better define regional P-T conditions. Efforts are being made to calibrate and standardize geophysical log correlation, seismic reflection data, and Ordovician lithologic signatures to better resolve subsurface stratigraphy and structure beneath the poorly explored Plateau in Tennessee and southern Kentucky. We held a successful workshop on Ordovician rocks geophysical log correlation August 7, 2003 that was cosponsored by the Appalachian PTTC, the Kentucky and Tennessee geological surveys, the Tennessee Oil and Gas Association, and small independents. Detailed field structural and stratigraphic mapping of a transect across part of the Ordovician clastic wedge in Tennessee was begun in January 2003 to assist in 3-D reconstruction of part of the southern Appalachian basin and better assess the nature of a major potential source rock assemblage. (3) Laying the groundwork through (1) and (2) to understand reservoir architecture, the petroleum systems, ancient fluid migration, and conduct 3-D analysis of the southern Appalachian basin.

Robert D. Hatcher

2003-05-31T23:59:59.000Z

153

An Econometric Study Of Vine Copulas D. Guganand P.A. Maugis  

E-Print Network [OSTI]

An Econometric Study Of Vine Copulas D. Guganand P.A. Maugis PSE, Universit Paris 1 Panthon. Both results are crucial to motivate any econometrical work based on vine copulas. We provide used in econometrics and finance. They became an essential tool for pricing complex products, managing

Paris-Sud XI, Universit de

154

Failure-Tolerant Path Planning for the PA-10 Robot Operating Amongst Obstacles  

E-Print Network [OSTI]

Failure-Tolerant Path Planning for the PA-10 Robot Operating Amongst Obstacles Rodrigo S. Jamisola/or orientation in the workspace despite any single locked-joint failure at any time. An algorithm is presented relative to its task, only a single locked-joint failure occurs at any given time, the robot is capable

Maciejewski, Anthony A.

155

fishing fleets were allegedly hampering their mackerel-fishing operations. Pa-  

E-Print Network [OSTI]

fishing fleets were allegedly hampering their mackerel-fishing operations. Pa- trols by fishery of the EEZ, d)jurisdiction over the preser- vation of the marine environment (in- cluding control Olicia/ de /a Fedemcion . At a joint press conference following the signing of the Presidential message

156

Paper Number 15736-PA Title Reaction Kinetics of Fuel Formation for In-Situ Combustion  

E-Print Network [OSTI]

Paper Number 15736-PA Title Reaction Kinetics of Fuel Formation for In-Situ Combustion Authors Abu believed to cause fuel formation for in-situ combustion have been studied and modeled. A thin, packed bed the approach of a combustion front. Analysis of gases produced from the reaction cell revealed that pyrolysis

Abu-Khamsin, Sidqi

157

STAPLE USE IN LIBERTY-AND ROUNDUP-TOLERANT COTTON P.A. Dotray  

E-Print Network [OSTI]

STAPLE USE IN LIBERTY- AND ROUNDUP-TOLERANT COTTON P.A. Dotray Texas Tech University, Texas (pyrithiobac) received a Federal 3 label for use in cotton in 1996. Staple provides broad-spectrum, over-the-top weed control with both foliar and soil activity. The use of Staple in cotton has been limited because

Mukhtar, Saqib

158

PA Source  

E-Print Network [OSTI]

production and structural problems with and BaO impregnated tungstenproduction have previously limited the use of LaB 6 temperature for LaB 6 , tungsten,

Center for Energy Research

2013-01-01T23:59:59.000Z

159

Graphene oxide-silica nanohybrids as fillers for PA6 based nanocomposites  

SciTech Connect (OSTI)

Graphene oxide (GO) was prepared by oxidation of graphite flakes by a mixture of H{sub 2}SO{sub 4}/H{sub 3}PO{sub 4} and KMnO{sub 4} based on Marcano's method. Two different masterbatches containing GO (33.3%) and polyamide-6 (PA6) (66.7%) were prepared both via solvent casting in formic acid and by melt mixing in a mini-extruder (Haake). The two masterbatches were then used to prepare PA6-based nanocomposites with a content of 2% in GO. For comparison, a nanocomposite by direct mixing of PA6 and GO (2%) and PA6/graphite nanocomposites were prepared, too. The oxidation of graphite into GO was assessed by X-ray diffraction (XRD), Micro-Raman spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) analyses. All these techniques demonstrated the effectiveness of the graphite modification, since the results put into evidence that, after the acid treatment, interlayer distance, oxygen content and defects increased. SEM micrographs carried out on the nanocomposites, showed GO layers totally surrounded by polyamide-6, this feature is likely due to the strong interaction between the hydrophilic moieties located both on GO and on PA6. On the contrary, no interactions were observed when graphite was used as filler. Mechanical characterization, carried out by tensile and dynamic-mechanical tests, marked an improvement of the mechanical properties observed. Photoluminescence and EPR measurements were carried out onto nanoparticles and nanocomposites to study the nature of the interactions and to assess the possibility to use this class of materials as semiconductors or optical sensors.

Maio, A. [Department of Civil, Environmental, Aerospace, Materials Engineering, University of Palermo, Viale delle Scienze, Ed. 6, 90128, Palermo, Italy and STEBICEF, Section of Biology and Chemistry, University of Palermo, Viale delle Scienze, Parco d'Orleans (Italy); Fucarino, R.; Khatibi, R. [Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica, University of Palermo, Viale delle Scienze, Ed. 6, 90128, Palermo (Italy); Botta, L.; Scaffaro, R. [Department of Civil, Environmental, Aerospace, Materials Engineering, University of Palermo, Viale delle Scienze, Ed. 6, 90128, Palermo (Italy); Rosselli, S.; Bruno, M. [STEBICEF, Section of Biology and Chemistry, University of Palermo, Viale delle Scienze, Parco d'Orleans II, 90128 Palermo (Italy)

2014-05-15T23:59:59.000Z

160

Restoring Sustainable Forests on Appalachian Mined Lands for Wood Products, Renewable Energy, Carbon Sequestration, and Other Ecosystem Services  

SciTech Connect (OSTI)

The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. We are currently estimating the acreage of lands in Virginia, West Virginia, Kentucky, Ohio, and Pennsylvania mined under SMCRA and reclaimed to non-forested post-mining land uses that are not currently under active management, and therefore can be considered as available for carbon sequestration. To determine actual sequestration under different forest management scenarios, a field study was installed as a 3 x 3 factorial in a random complete block design with three replications at each of three locations, one each in Ohio, West Virginia, and Virginia. The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots is 4.5 acres, and the complete installation at each site is 13.5 acres. During the reporting period we determined that by grinding the soil samples to a finer particle size of less than 250 ?m (sieve No. 60), the effect of mine soil coal particle size on the extent to which these particles will be oxidized during the thermal treatment of the carbon partitioning procedure will be eliminated, thus making the procedure more accurate and precise. In the second phase of the carbon sequestration project, we focused our attention on determining the sample size required for carbon accounting on grassland mined fields in order to achieve a desired accuracy and precision of the final soil organic carbon (SOC) estimate. A mine land site quality classification scheme was developed and some field-testing of the methods of implementation was completed. The classification model has been validated for softwoods (white pine) on several reclaimed mine sites in the southern Appalachian coal region. The classification model is a viable method for classifying post-SMCRA abandoned mined lands into productivity classes for white pine. A thinning study was established as a random complete block design to evaluate the response to thinning of a 26-year-old white pine stand growing on a reclaimed surface mine in southwest Virginia. Stand parameters were projected to age 30 using a stand table projection. Site index of the stand was found to be 32.3 m at base age 50 years. Thinning rapidly increased the diameter growth of the residual trees to 0.84 cm yr{sup -1} compared to 0.58 cm yr{sup -1} for the unthinned treatment; however, at age 26, there was no difference in volume or value per hectare. At age 30, the unthinned treatment had a volume of 457.1 m{sup 3} ha{sup -1} but was only worth $8807 ha{sup -1}, while the thinned treatment was projected to have 465.8 m{sup 3} ha{sup -1}, which was worth $11265 ha{sup -1} due to a larger percentage of the volume being in sawtimber size classes.

Burger, James A

2005-07-20T23:59:59.000Z

Note: This page contains sample records for the topic "appalachian marcellus pa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

PENNSYLVANIA APPALACHIAN LABORATORY  

E-Print Network [OSTI]

. Planning Principles 10 4. Sustainable Design Goals and Initiatives 13 5. Major Capital Projects 15 #12;R knowledge through scientific discovery, integration, application, and teaching, that results in a comprehensive understanding of our environment and natural resources, helping to guide the State and world

Boynton, Walter R.

162

PA 9949 Hertz Exhibit E Pricing Sheet Revised by Amendment No. 7  

E-Print Network [OSTI]

/A International Locations International rentals do not include third party liability and loss damage waiver.00 ID Sun Valley $6.00 IL Chicago $8.00 MA Boston $8.00 MD Baltimore $8.00 MI Detroit $8.00 MT Missoula.00 OR Redmond $10.00 OR Salem Airport Only $10.00 OR Sun River $10.00 PA Philadelphia $8.00 WA Pasco $10.00 WA

Maxwell, Bruce D.

163

diversa sa plica ciones de pla nifica cina pa recen restricciones  

E-Print Network [OSTI]

plica ciones de pla nifica cióna pa recen restricciones respectoa tem pora lida d de la sa cciones de la ma ora de pro lema s rea les la e e c ción de n pla n conlleva la tilia ción de rec rsos enera el tiempo pesa r de los res lta dos o tenidos de forma a isla da en pla nifica ción sc ed lina a ido

Garrido, Antonio

164

Restoring Sustainable Forests on Appalachian Mined Lands for Wood Product, Renewable Energy, Carbon Sequestration, and Other Ecosystem Services  

SciTech Connect (OSTI)

Concentrations of CO{sub 2} in the Earths atmosphere have increased dramatically in the past 100 years due to deforestation, land use change, and fossil fuel combustion. These humancaused, higher levels of CO{sub 2} may enhance the atmospheric greenhouse effect and may contribute to climate change. Many reclaimed coal-surface mine areas in the eastern U.S. are not in productive use. Reforestation of these lands could provide societal benefits, including sequestration of atmospheric carbon. The goal of this project was to determine the biological and economic feasibility of restoring high-quality forests on the tens of thousands of hectares of mined land and to measure carbon sequestration and wood production benefits that would be achieved from large-scale application of forest restoration procedures. We developed a mine soil quality model that can be used to estimate the suitability of selected mined sites for carbon sequestration projects. Across the mine soil quality gradient, we tested survival and growth performance of three species assemblages under three levels of silvicultural. Hardwood species survived well in WV and VA, and survived better than the other species used in OH, while white pine had the poorest survival of all species at all sites. Survival was particularly good for the site-specific hardwoods planted at each site. Weed control plus tillage may be the optimum treatment for hardwoods and white pine, as any increased growth resulting from fertilization may not offset the decreased survival that accompanied fertilization. Grassland to forest conversion costs may be a major contributor to the lack of reforestation of previously reclaimed mine lands in the Appalachian coal-mining region. Otherwise profitable forestry opportunities may be precluded by these conversion costs, which for many combinations of factors (site class, forest type, timber prices, regeneration intensity, and interest rate) result in negative land expectation values. Improved technology and/or knowledge of reforestation practices in these situations may provide opportunities to reduce the costs of converting many of these sites as research continues into these practices. It also appears that in many cases substantial payments, non-revenue values, or carbon values are required to reach profitability under the present circumstances. It is unclear when, or in what form, markets will develop to support any of these add-on values to supplement commercial forestry revenues. However, as these markets do develop, they will only enhance the viability of forestry on reclaimed mined lands, although as we demonstrate in our analysis of carbon payments, the form of the revenue source may itself influence management, potentially mitigating some of the benefits of reforestation. For a representative mined-land resource base, reforestation of mined lands with mixed pine-hardwood species would result in an average estimated C accumulation in forms that can be harvested for use as wood products or are likely to remain in the soil C pool at ~250 Mg C ha{sup -1} over a 60 year period following reforestation. The additionality of this potential C sequestration was estimated considering data in scientific literature that defines C accumulation in mined-land grasslands over the long term. Given assumptions detailed in the text, these lands have the potential to sequester ~180 Mg C ha{sup -1}, a total of 53.5 x 10{sup 6} Mg C, over 60 years, an average of ~900,000 Mg C / yr, an amount equivalent to about 0.04% of projected US C emissions at the midpoint of a 60-year period (circa 2040) following assumed reforestation. Although potential sequestration quantities are not great relative to potential national needs should an energy-related C emissions offset requirement be developed at some future date, these lands are available and unused for other economically valued purposes and many possess soil and site properties that are well-suited to reforestation. Should such reforestation occur, it would also produce ancillary benefits by providing env

Burger, James A

2006-09-30T23:59:59.000Z

165

Hardgrove grindability study of Powder River Basin and Appalachian coal components in the blend to a midwestern power station  

SciTech Connect (OSTI)

Five coals representing four distinct coal sources blended at a midwestern power station were subjected to detailed analysis of their Hardgrove grindability. The coals are: a low-sulfur, high volatile A bituminous Upper Elkhorn No. 3 coal (Pike County, KY); a medium-sulfur, high volatile A bituminous Pittsburgh coal (southwestern PA); a low-sulfur, subbituminous Wyodak coal from two mines in the eastern Powder River Basin (Campbell County, WY). The feed and all samples processed in the Hardgrove grindability test procedure were analyzed for their maceral and microlithotype content. The high-vitrinite Pittsburgh coal and the relatively more petrographically complex Upper Elkhorn No. 3 coal exhibit differing behavior in grindability. The Pittsburgh raw feed, 16x30 mesh fraction (HGI test fraction), and the {minus}30 mesh fraction (HGI reject) are relatively similar petrographically, suggesting that the HGI test fraction is reasonably representative of the whole feed. The eastern Kentucky coal is not as representative of the whole feed, the HGI test fraction having lower vitrinite than the rejected {minus}30 mesh fraction. The Powder River Basin coals are high vitrinite and show behavior similar to the Pittsburgh coal.

Padgett, P.L.; Hower, J.C. [Univ. of Kentucky, Lexington, KY (United States)

1996-12-31T23:59:59.000Z

166

Isobaric vapor-liquid equilibria of the tetrahydrofuran/ethanol system at 25, 50, and 100 kPa  

SciTech Connect (OSTI)

The vapor-liquid equilibrium of the system tetrahydrofuran (THF)/ethanol at 25, 50, and 100 kPa has been determined experimentally by using an equilibrium still of the recirculation type. Data reduction based on the Wilson, NRTL, and UNIQUAC models provides a correlation for ..gamma.. /SUB i/. The tetrahydrofuran/ethanol system forms an azeotrope above 53 kPa. At 100 and 150 kPa, the azeotropic mixtures contain respectively 0.908 and 0.844 mole fraction of tetrahydrofuran.

Brunner, E.; Scholz, A.G.R.

1984-01-01T23:59:59.000Z

167

Bottomonium and Drell-Yan production in p-A collisions at 450 GeV  

E-Print Network [OSTI]

The NA50 Collaboration has measured heavy-quarkonium production in p-A collisions at 450 GeV incident energy (sqrt(s) = 29.1 GeV). We report here results on the production of the Upsilon states and of high-mass Drell-Yan muon pairs (m > 6 GeV). The cross-section at midrapidity and the A-dependence of the measured yields are determined and compared with the results of other fixed-target experiments and with the available theoretical estimates. Finally, we also address some issues concerning the transverse momentum distributions of the measured dimuons.

NA50 Collaboration

2006-03-23T23:59:59.000Z

168

DOE - Office of Legacy Management -- Westinghouse Atomic Power Div - PA 16  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site -Miami -NewPlant - PA 04

169

File:USDA-CE-Production-GIFmaps-PA.pdf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf Jump to: navigation,storage planIL.pdfOH.pdf JumpPA.pdf Jump

170

Bottomonium and Drell-Yan production in p-A collisions at 450 GeV  

E-Print Network [OSTI]

The NA50 Collaboration has measured heavy-quarkonium production in p-A collisions at 450 GeV incident energy (sqrt(s) = 29.1 GeV). We report here results on the production of the Upsilon states and of high-mass Drell-Yan muon pairs (m > 6 GeV). The cross-section at midrapidity and the A-dependence of the measured yields are determined and compared with the results of other fixed-target experiments and with the available theoretical estimates. Finally, we also address some issues concerning the transverse momentum distributions of the measured dimuons.

Alessandro, B; Arnaldi, R; Atayan, M; Beol, S; Boldea, V; Bordalo, P; Borges, G; Castor, J; Chaurand, B; Cheynis, B; Chiavassa, E; Cical, C; Comets, M P; Constantinescu, S; Cortese, P; De Falco, A; De Marco, N; Dellacasa, G; Devaux, A; Dita, S; Fargeix, J; Force, P; Gallio, M; Gerschel, C; Giubellino, P; Golubeva, M B; Grigorian, A A; Grossiord, J Y; Guber, F F; Guichard, A; Gulkanian, H R; Idzik, M; Jouan, D; Karavicheva, T L; Kluberg, L; Kurepin, A B; Le Bornec, Y; Loureno, C; MacCormick, M; Marzari-Chiesa, A; Masera, M; Masoni, A; Monteno, M; Musso, A; Petiau, P; Piccotti, A; Pizzi, J R; Prino, F; Puddu, G; Quintans, C; Ramello, L; Ramos, S; Riccati, L; Santos, H; Saturnini, P; Scomparin, E; Serci, S; Shahoyan, R; Sitta, M; Sonderegger, P; Tarrago, X; Topilskaya, N S; Usai, G L; Vercellin, E; Willis, N

2006-01-01T23:59:59.000Z

171

Nuclear absorption of Charmoniums in pA and AA collisions  

E-Print Network [OSTI]

We have analysed the latest NA50 data on $J/\\psi$ production in pA and AA collisions. The $J/\\psi$ production is assumed to be a two step process, (i) formation of $c\\bar{c}$ pairs, perturbatively calculable, and (ii) formation of $J/\\psi$ from the pair, a non-perturbative process, which is conviniently parametrized. In a nuclear medium, as the $c\\bar{c}$ pair passes through the nuclear medium, it gain relative square momentum and some of the pairs can gain enough square momentum to cross the threshold for open charm meson, leading to suppression in nuclear medium. Few parameters of the model were fixed from the latest high statistics NA50 pA and NA38 SU total $J/\\psi$ cross sectional data. The model then reproduces the centrality dependence of $J/\\psi$ over Drell-Yan ration in 200 GeV/c S+U and 158 GeV/c Pb+Pb collisions. We also discuss the centrality dependence of $J/\\psi$ suppression at RHIC energy.

A. K. Chaudhuri

2003-05-19T23:59:59.000Z

172

RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES  

SciTech Connect (OSTI)

The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. We are currently estimating the acreage of lands in VA, WV, KY, OH, and PA mined under SMCRA and reclaimed to non-forested post-mining land uses that are not currently under active management, and therefore can be considered as available for carbon sequestration. To determine actual sequestration under different forest management scenarios, a field study was installed as a 3 x 3 factorial in a random complete block design with three replications at each of three locations, Ohio, West Virginia, and Virginia. The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots requires 4.5 acres, and the complete installation at each site requires 13.5 acres. The plots at all three locations have been installed and the plot corners marked with PVC stakes. GPS coordinates of each plot have been collected. Tree survival, height and diameter were measured after the first growing season. There were significant treatment and treatment x site interactions. A STELLA{reg_sign}-based model helped us develop insight as to whether it is possible to differentiate the permanent SOC from the C contained in the labile forms of SOM. The model can be used for predicting the amount of C sequestered on mine lands, and the amount of C that is expected to reside in the mine soil for more than 1,000 years. Based on our work, it appears that substantial carbon payments to landowners would be required to reach ''profitability'' under present circumstances. However, even though the payments that we examine could generate non-negative LEVs, there is no guarantee that the payments will actually cause landowners to reforest in practice. It is landowner utility associated with forestland profitability that will be the determining factor in actual conversion--utility that likely would include cash flow timing, amenities, and even the credit position of the landowner.

James A. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

2004-11-29T23:59:59.000Z

173

RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES  

SciTech Connect (OSTI)

The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. We are currently estimating the acreage of lands in VA, WV, KY, OH, and PA mined under SMCRA and reclaimed to non-forested post-mining land uses that are not currently under active management, and therefore can be considered as available for carbon sequestration. To determine actual sequestration under different forest management scenarios, a field study was installed as a 3 x 3 factorial in a random complete block design with three replications at each of three locations, Ohio, West Virginia, and Virginia. The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots is 4.5 acres, and the complete installation at each site is 13.5 acres. During the reporting period we compiled and evaluated all soil properties measured on the study sites. Statistical analysis of the properties was conducted, and first year survival and growth of white pine, hybrid poplars, and native hardwoods was assessed. Hardwood species survived better at all sites than white pine or hybrid poplar. Hardwood survival across treatments was 80%, 85%, and 50% for sites in Virginia, West Virginia, and Ohio, respectively, while white pine survival was 27%, 41%, and 58%, and hybrid poplar survival was 37%, 41%, and 72% for the same sites, respectively. Hybrid poplar height and diameter growth were superior to those of the other species tested, with the height growth of this species reaching 126.6cm after one year in the most intensive treatment at the site in Virginia. To determine carbon in soils on these sites, we developed a cost-effective method for partitioning total soil carbon to pedogenic carbon and geogenic carbon in mine soils. We are in the process of evaluating the accuracy and precision of the proposed carbon partitioning technique for which we are designing an experiment with carefully constructed mine soil samples. In a second effort, as part of a mined land reforestation project for carbon sequestration in southwestern Virginia we implemented the first phase of the carbon monitoring protocol that was recently delivered to DOE.

James A. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

2005-06-08T23:59:59.000Z

174

Regional geological assessment of the Devonian-Mississippian shale sequence of the Appalachian, Illinois, and Michigan basins relative to potential storage/disposal of radioactive wastes  

SciTech Connect (OSTI)

The thick and regionally extensive sequence of shales and associated clastic sedimentary rocks of Late Devonian and Early Mississippian age has been considered among the nonsalt geologies for deep subsurface containment of high-level radioactive wastes. This report examines some of the regional and basin-specific characteristics of the black and associated nonblack shales of this sequence within the Appalachian, Illinois, and Michigan basins of the north-central and eastern United States. Principal areas where the thickness and depth of this shale sequence are sufficient to warrant further evaluation are identified, but no attempt is made to identify specific storage/disposal sites. Also identified are other areas with less promise for further study because of known potential conflicts such as geologic-hydrologic factors, competing subsurface priorities involving mineral resources and groundwater, or other parameters. Data have been compiled for each basin in an effort to indicate thickness, distribution, and depth relationships for the entire shale sequence as well as individual shale units in the sequence. Included as parts of this geologic assessment are isopach, depth information, structure contour, tectonic elements, and energy-resource maps covering the three basins. Summary evaluations are given for each basin as well as an overall general evaluation of the waste storage/disposal potential of the Devonian-Mississippian shale sequence,including recommendations for future studies to more fully characterize the shale sequence for that purpose. Based on data compiled in this cursory investigation, certain rock units have reasonable promise for radioactive waste storage/disposal and do warrant additional study.

Lomenick, T.F.; Gonzales, S.; Johnson, K.S.; Byerly, D.

1983-01-01T23:59:59.000Z

175

Oxidation of zirconium alloys in 2.5 kPa water vapor for tritium readiness.  

SciTech Connect (OSTI)

A more reactive liner material is needed for use as liner and cruciform material in tritium producing burnable absorber rods (TPBAR) in commercial light water nuclear reactors (CLWR). The function of these components is to convert any water that is released from the Li-6 enriched lithium aluminate breeder material to oxide and hydrogen that can be gettered, thus minimizing the permeation of tritium into the reactor coolant. Fourteen zirconium alloys were exposed to 2.5 kPa water vapor in a helium stream at 300 C over a period of up to 35 days. Experimental alloys with aluminum, yttrium, vanadium, titanium, and scandium, some of which also included ternaries with nickel, were included along with a high nitrogen impurity alloy and the commercial alloy Zircaloy-2. They displayed a reactivity range of almost 500, with Zircaloy-2 being the least reactive.

Mills, Bernice E.

2007-11-01T23:59:59.000Z

176

Out of equilibrium GigaPa Young modulus of water nanobridge probed by Force Feedback Microscopy  

E-Print Network [OSTI]

Because of capillary condensation, water droplets appear in nano/micropores. The large associated surface interactions can deeply influence macroscopic properties as in granular media. We report that dynamical properties of such nanobridge dramatically change when probed at different time scales. Using a novel AFM mode, the Force Feedback Microscopy, the gap between the nanotip and the surface is continuously varied, and we observe this change in the simultaneous measurements, at different frequencies, of the stiffness G'(N/m), the dissipative coefficient G"(kg/sec) together with the static force. As the measuring time approaches the microsecond, the liquid droplet exhibits a large positive stiffness (it is small and negative in the long time limit). Although clearly controlled by surface effects, it compares to the stiffness of a solid nanobridge with a 1 GigaPa Young modulus. We argue that as evaporation and condensation gradually lose efficiency, the contact line progressively becomes immobile, which explains this behavior.

Simon Carpentier; Mario S. Rodrigues; Luca Costa; Miguel V. Vitorino; Elisabeth Charlaix; Joel Chevrier

2015-03-18T23:59:59.000Z

177

Out of equilibrium GigaPa Young modulus of water nanobridge probed by Force Feedback Microscopy  

E-Print Network [OSTI]

Because of capillary condensation, water droplets appear in nano/micropores. The large associated surface interactions can deeply influence macroscopic properties as in granular media. We report that dynamical properties of such nanobridge dramatically change when probed at different time scales. Using a novel AFM mode, the Force Feedback Microscopy, the gap between the nanotip and the surface is continuously varied, and we observe this change in the simultaneous measurements, at different frequencies, of the stiffness G'(N/m), the dissipative coefficient G"(kg/sec) together with the static force. As the measuring time approaches the microsecond, the liquid droplet exhibits a large positive stiffness (it is small and negative in the long time limit). Although clearly controlled by surface effects, it compares to the stiffness of a solid nanobridge with a 1 GigaPa Young modulus. We argue that as evaporation and condensation gradually lose efficiency, the contact line progressively becomes immobile, which expla...

Carpentier, Simon; Costa, Luca; Vitorino, Miguel V; Charlaix, Elisabeth; Chevrier, Joel

2015-01-01T23:59:59.000Z

178

Grant Title: AHRQ HEALTH SERVICES RESEARCH DEMONSTRATION AND DISSEMINATION GRANTS Funding Opportunity Number: PA-13-046. CFDA Number(s): 93.226.  

E-Print Network [OSTI]

Opportunity Number: PA-13-046. CFDA Number(s): 93.226. Agency/Department: Department of Health and Human

Farritor, Shane

179

Grant Title: RESEARCH ON PSYCHOPATHOLOGY IN INTELLECTUAL DISABILITIES (R01) Funding Opportunity Number: PA-12-219. CFDA Number(s): 93.242.  

E-Print Network [OSTI]

Number: PA-12-219. CFDA Number(s): 93.242. Agency/Department: Department of Health and Human Services

Farritor, Shane

180

Large-scale 700 hPa Height Patterns Associated with Cyclone Passage and Strong Winds on Lake Erie  

E-Print Network [OSTI]

University of Michigan Ann Arbor, Michigan 48109 ABSTRACT. The difference in 700 hPa height patterns Commonwealth Blvd. Ann Arbor, Michigan 48105 2Cooperative Institute for Limnology and Ecosystems Research biological effects (Lam and Schertzer 1987). They can also affect the formation and transport of ice. Hence

Note: This page contains sample records for the topic "appalachian marcellus pa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Directory Home Directory Liaison List Server Help A-Z Index IFAS Main Pa Unit Name: Ft. Lauderdale -REC  

E-Print Network [OSTI]

Directory Home Directory Liaison List Server Help A-Z Index IFAS Main Pa Unit Name: Ft. Lauderdale, and Page 1 of 2Employee and Unit Directory - IFAS - Institute of Food and Agricultural Sciences, University of Flor... 8/13/2013http://directory.ifas.ufl.edu/Dir/searchdir?pageID=2&uid=85 #12;Tampa) 1. Take US-27

Florida, University of

182

A space-charge-neutralizing plasma for beam drift compression P.K. Roya,, P.A. Seidl a  

E-Print Network [OSTI]

- long final focus solenoid (FFS). Measured data show that the plasma forms a thin column of diameter $5A space-charge-neutralizing plasma for beam drift compression P.K. Roya,?, P.A. Seidl a , A. Anders of California, Berkeley, CA 94720, USA c Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA d

Gilson, Erik

183

Graduate student and Associate Professor, respectively, Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA, 16802  

E-Print Network [OSTI]

. and Motta, A. T., "Role of Radiation in BWR Core Shroud Cracking," Reactor Dosimetry, ASTM STP 1398, John G and Materials, West Conshohocken, PA, 2000. Abstract: We present a calculation of the displacement rates years, extensive cracking has been observed in boiling water reactor (BWR) core shroud welds [1

Motta, Arthur T.

184

COTTON RESPONSE TO SOIL APPLIED CADRE AND PURSUIT. J.R. Karnei, P.A. Dotray, J.W. Keeling,  

E-Print Network [OSTI]

COTTON RESPONSE TO SOIL APPLIED CADRE AND PURSUIT. J.R. Karnei, P.A. Dotray, J.W. Keeling, W are faced with numerous weed problems in cotton and peanut, including yellow and purple nutsedge these weeds, but can significantly injure cotton the following growing season. Most of the approximately 200

Mukhtar, Saqib

185

Collective String Interactions in AdS/QCD and High-Multiplicity pA Collisions  

E-Print Network [OSTI]

QCD strings originate from high-energy scattering in the form of Reggions and Pomerons, and have been studied in some detail in lattice numerical simulations. Production of multiple strings, with their subsequent breaking, is now a mainstream model of high energy $pp$ and $pA$ collisions. Recent LHC experiments revealed that high multiplicity end of such collisions show interesting collective effects. This ignited an interest in the interaction of QCD strings and multi-string dynamics. Holographic models, collectively known as AdS/QCD, developed in the last decade, describe both hadronic spectroscopy and basic thermodynamics, but so far no studies of the QCD strings have been done in this context. The subject of this paper is to do this. First, we study in more detail the scalar sector of hadronic spectroscopy, identifying "glueballs" and "scalar mesons," and calculate the degree of their mixing. The QCD strings, holographic images of the fundamental strings, thus have a "gluonic core" and a "sigma cloud." Th...

Iatrakis, Ioannis; Shuryak, Edward

2015-01-01T23:59:59.000Z

186

PaR Tensile Truss for Nuclear Decontamination and Decommissioning - 12467  

SciTech Connect (OSTI)

Remote robotics and manipulators are commonly used in nuclear decontamination and decommissioning (D and D) processes. D and D robots are often deployed using rigid telescoping masts in order to apply and counteract side loads. However, for very long vertical reaches (15 meters or longer) and high lift capacities, a telescopic is usually not practical due to the large cross section and weight required to make the mast stiff and resist seismic forces. For those long vertical travel applications, PaR Systems has recently developed the Tensile Truss, a rigid, hoist-driven 'structure' that employs six independent wire rope hoists to achieve long vertical reaches. Like a mast, the Tensile Truss is typically attached to a bridge-mounted trolley and is used as a platform for robotic manipulators and other remotely operated tools. For suspended, rigid deployment of D and D tools with very long vertical reaches, the Tensile Truss can be a better alternative than a telescoping mast. Masts have length limitations that can make them impractical or unworkable as lengths increase. The Tensile Truss also has the added benefits of increased safety, ease of decontamination, superior stiffness and ability to withstand excessive side loading. A Tensile Truss system is currently being considered for D and D operations and spent fuel recovery at the Fukushima Daiichi Nuclear Power Plant in Japan. This system will deploy interchangeable tools such as underwater hydraulic manipulators, hydraulic shears and crushers, grippers and fuel grapples. (authors)

Doebler, Gary R. [PaR Systems Inc., 707 County Road E West, Shoreview, MN 55126 (United States)

2012-07-01T23:59:59.000Z

187

PRinted On PaPeR with 100% (Pages) and 50% (cOveR) Recycled cOntent. Copyright 2014, AppAlAChiAn StAte UniverSity, Boone, nC iSSn 2162-7487  

E-Print Network [OSTI]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Site Suitability Analysis for a Solar Farm in Watauga County, NC Marcus Mc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 PTR-MS Measurements of Air Toxics at Thompson Farm, NH, 2005-2010 Megan Knuth

Thaxton, Christopher S.

188

456 IEEE TRANSACTIONS ON ROBOTICS, VOL. 24, NO. 2, APRIL 2008 the PA10-6CE utilizing the geometric and flexibility calibration method  

E-Print Network [OSTI]

456 IEEE TRANSACTIONS ON ROBOTICS, VOL. 24, NO. 2, APRIL 2008 the PA10-6CE utilizing the geometric for demanding dynamic ap- plications with the PA10-6CE robot arm. ACKNOWLEDGMENT The authors thank N. Mauntler in robot joints with harmonic drives and torque sensors," Int. J. Robot. Res., vol. 16, no. 2, pp. 214­ 239

189

Aufgabe 4-8: Luft tritt mit 300 K und 100 kPa in eine Gasturbine mit Abwrmenutzung ein. Im Verdichter der Gasturbine wird die Luft auf 800 kPa und 580 K gebracht. Der  

E-Print Network [OSTI]

?bung 10: Aufgabe 4-8: Luft tritt mit 300 K und 100 kPa in eine Gasturbine mit Abwärmenutzung ein einen Wirkungsgrad von 72% und die Luft tritt mit 1200 K in die Turbine ein. Bei einem adiabten. Luft tritt in den Kompressor mit 300 K und 14 kg/s ein. In der Brennkammer wird die Luft auf 1500 K

Peters, Norbert

190

Isobaric vapor-liquid equilibria of the water + 1-propanol system at 30, 60, and 100 kPa  

SciTech Connect (OSTI)

Isobaric vapor-liquid equilibria for the water + 1-propanol system are reported at 30, 60, and 100 kPa. The results were found to be thermodynamically consistent according to Van Ness-Byer-Gibbs, Kojima, and Wisniak methods. The system shows a minimum boiling azeotrope, and the azeotropic composition is scarcely shifted with pressure. Results were compared with literature values. The data were correlated with Margules, Van Laar, Wilson, NRTL, and UNIQUAC liquid-phase activity coefficient models.

Gabaldon, C.; Marzal, P.; Monton, J.B.; Rodrigo, M.A. [Univ. de Valencia (Spain). Dept. de Ingenieria Quimica] [Univ. de Valencia (Spain). Dept. de Ingenieria Quimica

1996-09-01T23:59:59.000Z

191

Vapor-liquid equilibria of ethanol with 2,2,4-trimethylpentane or octane at 101. 3 kPa  

SciTech Connect (OSTI)

Vapor-liquid equilibria (VLE) are required for engineering use such as in the design and operation of separation processes. Isobaric vapor-liquid equilibria were measured for ethanol with 2,2,4-trimethylpentane or octane at 101.3 kPa in an equilibrium still with circulation of both the vapor and liquid phases. The results were correlated with the Wilson and nonrandom two-liquid (NRTL) equations.

Hiaki, Toshihiko; Takahashi, Kenji; Tsuji, Tomoya; Hongo, Masaru (Nihon Univ., Chiba (Japan). Dept. of Industrial Chemistry); Kojima, Kazuo (Nihon Univ., Tokyo (Japan). Dept. of Industrial Chemistry)

1994-10-01T23:59:59.000Z

192

pp, pA and. cap alpha cap alpha. collisions and the understanding of the quark-gluon plasma  

SciTech Connect (OSTI)

Global characteristics of heavy ion collisions at high energy are now understood at some level such that the challenging search for Quark-Gluon plasma signatures becomes of more importance. Some features of pp, pA, and ..cap alpha../ alpha/ interactions at ..sqrt..s less than or equal to 62 GeV are selected to illustrate potential consequences for, and problems of, investigations of the Quark-Gluon plasma. 35 refs., 8 figs.

Geist, W.M.

1988-06-01T23:59:59.000Z

193

Non-Abelian Bremsstrahlung and Azimuthal Asymmetries in High Energy p+A Reactions  

E-Print Network [OSTI]

We apply the GLV reaction operator solution to the Vitev-Gunion-Bertsch (VGB) boundary conditions to compute the all-order in nuclear opacity non-abelian gluon bremsstrahlung of event-by-event fluctuating beam jets in nuclear collisions. We evaluate analytically azimuthal Fourier moments of single gluon, $v_n^M\\{1\\}$, and even number $2\\ell$ gluon, $v_n^M\\{2\\ell\\}$ inclusive distributions in high energy p+A reactions as a function of harmonic $n$, %independent target recoil cluster number, $M$, and gluon number, $2\\ell$, at RHIC and LHC. Multiple resolved clusters of recoiling target beam jets together with the projectile beam jet form Color Scintillation Antenna (CSA) arrays that lead to characteristic boost non-invariant trapezoidal rapidity distributions in asymmetric $B+A$ nuclear collisions. The scaling of intrinsically azimuthally anisotropic and long range in $\\eta$ nature of the non-abelian \\br leads to $v_n$ moments that are similar to results from hydrodynamic models, but due entirely to non-abelian wave interference phenomena sourced by the fluctuating CSA. Our analytic non-flow solutions are similar to recent numerical saturation model predictions but differ by predicting a simple power-law hierarchy of both even and odd $v_n$ without invoking $k_T$ factorization. A test of CSA mechanism is the predicted nearly linear $\\eta$ rapidity dependence of the $v_n(k_T,\\eta)$. Non-abelian beam jet \\br may thus provide a simple analytic solution to Beam Energy Scan (BES) puzzle of the near $\\sqrt{s}$ independence of $v_n(p_T)$ moments observed down to 10 AGeV where large $x$ valence quark beam jets dominate inelastic dynamics. Recoil \\br from multiple independent CSA clusters could also provide a partial explanation for the unexpected similarity of $v_n$ in $p(D)+A$ and non-central $A+A$ at same $dN/d\\eta$ multiplicity as observed at RHIC and LHC.

M. Gyulassy; P. Levai; I. Vitev; T. Biro

2014-05-30T23:59:59.000Z

194

SECONDARY NATURAL GAS RECOVERY IN THE APPALACHIAN BASIN: APPLICATION OF ADVANCED TECHNOLOGIES IN A FIELD DEMONSTRATION SITE, HENDERSON DOME, WESTERN PENNSYLVANIA  

SciTech Connect (OSTI)

Two independent high-resolution aeromagnetic surveys flown by Airmag Surveys, Inc. and interpreted by Pearson, de Ridder and Johnson, Inc were merged, processed and reinterpreted by Pearson, de Ridder and Johnson, Inc for this study. Derived products included depth filtered and reduced to pole maps of total magnetic intensity, vertical and horizontal gradients, interpreted STARMAG structure, lineament analysis and an overall interpretation. The total magnetic intensity patterns of the combined survey conformed reasonably well to those of coarser grid, non-proprietary regional aeromagnetic surveys reviewed. The merged study also helped illustrate regional basement patterns adjacent to and including the northwest edge of the Rome trough. The tectonic grain interpreted is dominantly southwest-northeast with a secondary northwest-southeast component that is consistent with this portion of the Appalachian basin. Magnetic susceptibility appears to be more important locally than basement structure in contributing to the magnetic intensity recorded, based on seismic to aeromagnetic data comparisons made to date. However, significant basement structures cannot be ruled out for this area, and in fact are strongly suspected to be present. The coincidence of the Henderson Dome with a total magnetic intensity low is an intriguing observation that suggests the possibility that structure in the overlying Lower Paleozoic section may be detached from the basement. Rose diagrams of lineament orientations for 2.5 minute unit areas are more practical to use than the full-quadrangle summaries because they focus on smaller areas and involve less averaging. Many of these illustrate a northeast bias. Where orientations abruptly become scattered, there is an indication of intersecting fractures and possible exploration interest. However, the surface lineament study results are less applicable in a practical sense relative to the seismic, subsurface or aeromagnetic control used. Subjectivity in interpretation and uncertainty regarding the upward propagation of deeper faulting through multiple unconformities, salt-bearing zones and possible detachments are problematic. On the other hand, modern day basement-involved earthquakes like the nearby 1998 Pymatuning event have been noted which influenced near-surface, water-bearing fractures. This suggests there is merit in recognizing surface features as possible indicators of deeper fault systems in the area. Suggested future research includes confirmation of the natural mode-conversion of P-waves to down going S-waves at the level of the Onondaga Limestone, acquisition of 3-C, 2-D seismic as an alternative to more expensive 3-D seismic, and drilling one or two test wells in which to collect a variety of reservoir information. Formation Imaging Logs, a Vertical Seismic Profile and sidewall cores would be run or collected in each well, providing direct evidence of the presence of fractures and the calibration of fractured rocks to the seismic response. If the study of these data had indicated the presence of fractures in the well(s), and efforts to calibrate from well bores to VSPs had been successful, then a new seismic survey would have been designed over each well. This would result in a practical application of the naturally mode-converted, multi-component seismic method over a well bore in which microfractures and production-scale fractures had been demonstrated to exist, and where the well-bore stratigraphy had been correlated from well logs to the seismic response.

Douglas G. Patchen

2000-12-01T23:59:59.000Z

195

Initial-State Bremsstrahlung versus Final-State Hydrodynamic Sources of Azimuthal Harmonics in p+A at RHIC and LHC  

E-Print Network [OSTI]

Recent pTfluid'' interpretations of those data. We report results at QM14 on azimuthal harmonics associated with initial-state non-abelian ``wave interference'' effects predicted by perturbative QCD gluon bremsstrahlung and sourced by Color Scintillation Arrays (CSA) of color antennas. CSA are naturally identified with multiple projectile and target beam jets produced in inelastic p+A reactions. We find a remarkable similarity between azimuthal harmonics sourced by initial state CSA and those predicted with final state perfect fluid models of high energy p+A reactions. The question of which mechanism dominates in $p+A$ and $A+A$ remains open at this time.

Miklos Gyulassy; Peter Levai; Ivan Vitev; Tamas S. Biro

2014-07-28T23:59:59.000Z

196

N E W S O L A R H O M E S PA R T N E R S H I P GoSolarCalifornia.org  

E-Print Network [OSTI]

N E W S O L A R H O M E S PA R T N E R S H I P GoSolarCalifornia.org Energy Efficient Solar Homes to May, 2007. MARkeTInG ReSeARCh #12;N E W S O L A R H O M E S PA R T N E R S H I P GopercentbelievethateventuallyalmostallnewlybuilthomesinCaliforniawillhavesolar electric systems. MARkeTInG ReSeARCh #12;N E W S O L A R H O M E S PA R T N

197

Appalachian State | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT Biomass Facility JumpvolcanicPhase 1 Jump to:Virginia(West Name

198

UNREVIEWED DISPOSAL QUESTION EVALUATION: IMPACT OF NEW INFORMATION SINCE 2008 PA ON CURRENT LOW-LEVEL SOLID WASTE OPERATIONS  

SciTech Connect (OSTI)

Solid low-level waste disposal operations are controlled in part by an E-Area Low-Level Waste Facility (ELLWF) Performance Assessment (PA) that was completed by the Savannah River National Laboratory (SRNL) in 2008 (WSRC 2008). Since this baseline analysis, new information pertinent to disposal operations has been identified as a natural outcome of ongoing PA maintenance activities and continuous improvement in model simulation techniques (Flach 2013). An Unreviewed Disposal Question (UDQ) Screening (Attachment 1) has been initiated regarding the continued ability of the ELLWF to meet Department of Energy (DOE) Order 435.1 performance objectives in light of new PA items and data identified since completion of the original UDQ Evaluation (UDQE). The present UDQE assesses the ability of Solid Waste (SW) to meet performance objectives by estimating the influence of new information items on a recent sum-of-fractions (SOF) snapshot for each currently active E-Area low-level waste disposal unit. A final SOF, as impacted by this new information, is projected based on the assumptions that the current disposal limits, Waste Information Tracking System (WITS) administrative controls, and waste stream composition remain unchanged through disposal unit operational closure (Year 2025). Revision 1 of this UDQE addresses the following new PA items and data identified since completion of the original UDQE report in 2013: ? New K{sub d} values for iodine, radium and uranium ? Elimination of cellulose degradation product (CDP) factors ? Updated radionuclide data ? Changes in transport behavior of mobile radionuclides ? Potential delay in interim closure beyond 2025 ? Component-in-grout (CIG) plume interaction correction Consideration of new information relative to the 2008 PA baseline generally indicates greater confidence that PA performance objectives will be met than indicated by current SOF metrics. For SLIT9, the previous prohibition of non-crushable containers in revision 0 of this UDQE has rendered the projected final SOF for SLIT9 less than the WITS Admin Limit. With respect to future disposal unit operations in the East Slit Trench Group, consideration of new information for Slit Trench#14 (SLIT14) reduced the current SOF for the limiting All-Pathways 200-1000 year period (AP2) by an order of magnitude and by one quarter for the Beta-Gamma 12-100 year period (BG2) pathway. On the balance, updates to K{sub d} values and dose factors and elimination of CDP factors (generally favorable) more than compensated for the detrimental impact of a more rigorous treatment of plume dispersion. These observations suggest that future operations in the East Slit Trench Group can be conducted with higher confidence using current inventory limits, and that limits could be increased if desired for future low-level waste disposal units. The same general conclusion applies to future STs in the West Slit Trench Group based on the Impacted Final SOFs for existing STs in that area.

Flach, G.; Smith, F.; Hamm, L.; Butcher, T.

2014-10-06T23:59:59.000Z

199

Safety evaluation of a recombinant plasmin derivative lacking kringles 2-5 and rt-PA in a rat model of transient ischemic stroke  

E-Print Network [OSTI]

al. Experimental & Translational Stroke Medicine 2012, 4:102012 References 1. NINDS (rt-PA Stroke Study Group): Tissueactivator for acute ischemic stroke. N Engl J Med 1995, 333:

2012-01-01T23:59:59.000Z

200

1210 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 41, NO. 5, MAY 2006 A SiGe PA With Dual Dynamic Bias Control and  

E-Print Network [OSTI]

1210 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 41, NO. 5, MAY 2006 A SiGe PA With Dual Dynamic from the battery, is the key factor determining the talk time and battery life for portable wireless

Asbeck, Peter M.

Note: This page contains sample records for the topic "appalachian marcellus pa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Alle Angaben ohne Gewhr -fr eine verbindliche Festlegung wenden Sie sich bitte an den PA Zuordnungsliste Studienschwerpunkt Numerik und Simulation Studiengang Physikalische Ingenieurwissenschaft  

E-Print Network [OSTI]

Zuordnungsliste Studienschwerpunkt Numerik und Simulation Studiengang Physikalische Ingenieurwissenschaft Datum 27 bitte an den PA Zuordnungsliste Studienschwerpunkt Numerik und Simulation Studiengang Physikalische Studienschwerpunkt Numerik und Simulation Studiengang Physikalische Ingenieurwissenschaft Datum 27.08.07 Prüfungsfach

Berlin,Technische Universität

202

Abstract Atmospheric CO2 partial pressure (pCO2) was as low as 18 Pa during the Pleistocene and is projected to  

E-Print Network [OSTI]

Abstract Atmospheric CO2 partial pressure (pCO2) was as low as 18 Pa during the Pleistocene and is projected to increase from 36 to 70 Pa CO2 before the end of the 21st century. High pCO2 often increases the growth and repro- duction of C3 annuals, whereas low pCO2 decreases growth and may reduce or prevent

Antonovics, Janis

203

An air line carries air at 800 kPa and 80C. An Air line ~ O O C insulated tank initially contains 20C air at a  

E-Print Network [OSTI]

An air line carries air at 800 kPa and 80°C. An Air line ~ O O C insulated tank initially contains 20°C air at a pressure of 90kPa. The valve is opened, and air flows into the tank. Determine the final temperature of the air in the tank and the mass of air that enters the tank if the valve is left

Huang, Haimei

204

Autopoietic landscapes : the architectural implications of mining the Marcellus Shale  

E-Print Network [OSTI]

Hydraulic fracturing, a form of natural gas extraction, is a process deeply embedded in the networks of politics, power, economics, energy, infrastructure, and land use. Hydraulic fracturing has become a standard practice ...

Winfield, Catherine (Catherine Anne)

2013-01-01T23:59:59.000Z

205

Water management technologies used by Marcellus Shale Gas Producers.  

SciTech Connect (OSTI)

Natural gas represents an important energy source for the United States. According to the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), about 22% of the country's energy needs are provided by natural gas. Historically, natural gas was produced from conventional vertical wells drilled into porous hydrocarbon-containing formations. During the past decade, operators have increasingly looked to other unconventional sources of natural gas, such as coal bed methane, tight gas sands, and gas shales.

Veil, J. A.; Environmental Science Division

2010-07-30T23:59:59.000Z

206

A study of natural gas extraction in Marcellus shale .  

E-Print Network [OSTI]

??With the dramatic increases in crude oil prices there has been a need to find reliable energy substitutions. One substitution that has been used in (more)

Boswell, Zachary (Zachary Karol)

2011-01-01T23:59:59.000Z

207

A study of natural gas extraction in Marcellus shale  

E-Print Network [OSTI]

With the dramatic increases in crude oil prices there has been a need to find reliable energy substitutions. One substitution that has been used in the United States is natural gas. However, with the increased use of natural ...

Boswell, Zachary (Zachary Karol)

2011-01-01T23:59:59.000Z

208

Marcellus Shale Drilling and Hydraulic Fracturing; Technicalities and  

E-Print Network [OSTI]

Pipe · Air Rotary Drilling Rig · Hydraulic Rotary Drilling Rig ­ Barite/Bentonite infused drilling muds A "Thumper Truck" #12;Rigging Up #12;Drilling · The Drill String ­ Diesel Powered ­ Drilling Bit ­ Drilling

Jiang, Huiqiang

209

Impacts of Marcellus Shale Development on Municipal Governments in Susquehanna  

E-Print Network [OSTI]

-thirds of the state. The development of this natural gas resource is creating significant eco- nomic opportunities to some. Town- ships, boroughs, and cities are re- sponsible for providing important public services

Boyer, Elizabeth W.

210

Water Treatment System Cleans Marcellus Shale Wastewater | Department of  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012NuclearBradleyBudget Water Power Program1 Water

211

Water Withdrawals for Development of Marcellus Shale Gas in Pennsylvania  

E-Print Network [OSTI]

is the fracking fluid (also called drilling return wa- ter, drilling wastewater, flowback, or produced- ing (fracking), the portion of water withdrawals related to mining is likely to rise. The information

Boyer, Elizabeth W.

212

NORM Mitigation and Clean Water Recovery from Marcellus Produced...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

product to be suitable for either beneficial reuse or disposal as nonhazardous waste. We evaluated seven pretreatment processes to remove barium and radium from Design Case-1...

213

NORM Mitigation and Clean Water Recovery from Marcellus Produced Water  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of Women |hits 21Species. |RPSEA Final Report Report

214

{sup 226}Ra and {sup 231}Pa systematics of axial MORB, crustal residence ages, and magma chamber characteristics at 9--10{degree}N East Pacific Rise  

SciTech Connect (OSTI)

Mass spectrometric measurements of {sup 30}Th-22{sup 226}Ra and {sup 235}-U{sup 231}Pa disequilibria for axial basalts are used to determine crustal residence ages for MORB magma and investigate the temporal and spatial characteristics of axial magma chambers (AMC) at 9--10{degrees}N East Pacific Rise (EPR). Relative crustal residence ages can be calculated from variations in {sup 226}Ra/{sup 230}Th and {sup 231}Pa/{sup 235}U activity ratios for axial lavas, if (1) mantle sources and melting are uniform, and mantle transfer times are constant or rapid for axial N-MORB, and (2) {sup 231}Pa/{sup 235}U and {sup 226}Ra/{sup 230}Th in the melt are unaffected by shallow level fractional crystallization. Uniform Th, Sr, and Nd isotopic systematics and incompatible element ratios for N-MORB along the 9--10{degrees}N segment indicate that mantle sources and transfer times are similar. In addition, estimated bulk solid/melt partition coefficients for U, Th, and Pa are small, hence effects of fractional crystallization on {sup 231}Pa/{sup 235}U ratios for the melt are expected to be negligible. However, fractional crystallization of plagioclase in the AMC would lower {sup 226}Ra/{sup 230}Th ratios in the melt and produce a positive bias in {sup 226}Ra crustal residence ages for fractionated lavas.

Goldstein, S.J.; Murrell, M.T. [Los Alamos National Lab., NM (United States); Perfit, M.R. [Univ., of Florida, Gainesville, FL (United States). Dept. of Geology; Batiza, R. [Univ., of Hawaii, Honolulu, HI (United States); Fornari, D.J. [Woods Hole Oceanographic Institution, MA (United States). Dept. of Geology and Geophysics

1994-06-01T23:59:59.000Z

215

Production of mini-(gluon)jets and strangeness enhancement in pA and AA collisions at relativistic energies  

E-Print Network [OSTI]

The idea that effective string tension increases as a result of the hard gluon kinks on a string is applied to study the strange particle production in proton-nucleus and nucleus-nucleus collisions. It is found that the effective string tension increases with the increase of centrality and mass of the colliding system as a consequence of the mini-(gluon)jet production stemming from the collective string-string interaction. This mechanism leads to strangeness enhancement in pA and AA collisions through the enhanced production of the strange quark pairs from the color field of strings. We discuss different roles played by this mechanism and rescattering of the final state hadrons in the production of strange particles and compare our results with experimental data.

Tai An; Sa Ben-Hao

1998-04-01T23:59:59.000Z

216

Isobaric vapor-liquid equilibria of the water + 2-propanol system at 30, 60, and 100 kPa  

SciTech Connect (OSTI)

Distillation is perhaps the separation process most widely used in the chemical processing industry. The correct design of distillation columns requires the availability of accurate and, if possible, thermodynamically consistent vapor-liquid equilibria (VLE) data. The present work is part of a project studying the effect of pressure on the behavior of the azeotropic point in mixtures in which at least one component is an alcohol. Isobaric vapor-liquid equilibria were obtained for the water + 2-propanol system at 30, 60, and 100 kPa. The activity coefficients were found to be thermodynamically consistent by the methods of Van Ness-Byer-Gibbs, Kojima, and Wisniak. The data were correlated with five liquid phase activity coefficient models (Margules, Van Laar, Wilson, NRTL, and UNIQUAC).

Marzal, P.; Monton, J.B.; Rodrigo, M.A. [Univ. de Valencia (Spain). Departamento de Ingenieria Quimica] [Univ. de Valencia (Spain). Departamento de Ingenieria Quimica

1996-05-01T23:59:59.000Z

217

A project funded by the Pennsylvania  

E-Print Network [OSTI]

of Community and the Economy (CSCE) at Lycoming College MARCELLUS NATURAL GAS DEVELOPMENT'S EFFECT ON HOUSING Shale natural gas industry, broadly defined, is having on housing, also broadly defined, across for the Study of Community and the Economy (CSCE) Lycoming College Williamsport, PA 17701 October 31, 2011 #12;i

Boyer, Elizabeth W.

218

What is it? A process that  

E-Print Network [OSTI]

and oil from shale rock by pumping sand, water, and various toxic chemicals into the rock. Why blowout, Bradford Country, PA (Marcellus Shale) in April 2011 BP Oil spill, Gulf of Mexico in April 2010 is it important? It is an advanced drilling method that can utilize the vast reserves of shale deposits in the US

Toohey, Darin W.

219

Grant Title: BEHAVIORAL AND INTEGRATIVE TREATMENT DEVELOPMENT PROGRAM (R01, R03, Funding Opportunity Number: PA-13-077. CFDA Number(s): 93.279, 93.273.  

E-Print Network [OSTI]

Opportunity Number: PA-13-077. CFDA Number(s): 93.279, 93.273. Agency/Department: Department of Health

Farritor, Shane

220

The Innocent Habiyaremye Fellowship Information Networking Institute --Carnegie Mellon | 4616 Henry Street Pittsburgh, PA 15213 | Phone: 412.268.7195 | www.ini.cmu.edu  

E-Print Network [OSTI]

Henry Street · Pittsburgh, PA 15213 | Phone: 412.268.7195 | www.ini.cmu.edu Information Networking Institute (INI) who embodies a sense of community spirit in his or her everyday actions, while also meeting of an INI alumnus and a native of Rwanda who inspired others through his kindness and volunteer activities

McGaughey, Alan

Note: This page contains sample records for the topic "appalachian marcellus pa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

A Finite Volume Approach For Contingent Claims R. Zvan \\Lambda , P.A. Forsyth y , and K.R. Vetzal z  

E-Print Network [OSTI]

A Finite Volume Approach For Contingent Claims Valuation R. Zvan \\Lambda , P.A. Forsyth y , and K presents a nonconservative finite volume approach for solving two dimensional contingent claims valuation problems. The finite volume method is more flexible than finite difference schemes which are often

Forsyth, Peter A.

222

Isobaric vapor-liquid equilibria of ethylbenzene + m-xylene and ethylbenzene + o-xylene systems at 6. 66 and 26. 66 kPa  

SciTech Connect (OSTI)

Vapor-liquid equilibrium data were obtained for systems of ethylbenzene with m- and o-xylenes at 6.66 and 26.66 kPa. The activity coefficients were found to be thermodynamically consistent. They were equally well correlated with the Margules, Van Laar, Wilson, NRTL, and UNIQUAC equations. The parameters of these equations are given.

Monton, J.B.; Llopis, F.J. (Univ. de Valencia (Spain). Dept. de Ingenieria Quimica)

1994-01-01T23:59:59.000Z

223

Hydrogen Storage in Carbon Nanotubes A.C. Dillon, P.A. Parilla, K.E.H. Gilbert, J.L. Alleman, T. Gennett*,  

E-Print Network [OSTI]

Hydrogen Storage in Carbon Nanotubes A.C. Dillon, P.A. Parilla, K.E.H. Gilbert, J.L. Alleman, T. Gennett*, and M.J. Heben National Renewable Energy Laboratory *Rochester Institute of Technology 2003 DOE HFCIT Program Review Meeting DOE Office of Energy Efficiency and Renewable Energy DOE Office of Science

224

HYDROGEN STORAGE IN CARBON SINGLE-WALL NANOTUBES A.C. Dillon, K.E.H. Gilbert, P.A. Parilla, J.L. Alleman,  

E-Print Network [OSTI]

HYDROGEN STORAGE IN CARBON SINGLE-WALL NANOTUBES A.C. Dillon, K.E.H. Gilbert, P.A. Parilla, J.L. Alleman, G.L. Hornyak, K.M. Jones, and M.J. Heben National Renewable Energy Laboratory Golden, CO 80401-3393 Abstract Carbon single-wall nanotubes (SWNTs) and other nanostructured carbon materials have attracted

225

Book Review: Error: On Our Predicament When Things Go Wrong Nicholas Rescher Pittsburgh, PA: University of Pittsburgh Press, 2007 ISBN 9780822943271  

E-Print Network [OSTI]

Book Reviews 27 Error: On Our Predicament When Things Go Wrong Nicholas Rescher Pittsburgh, PA: University o f Pittsburgh Press, 2007 ISBN 9 7 8 0 8 2 2 9 4 3 2 7 1 Review by Mark Cyzyk, Johns Hopkins University This is a short, dense book...

Cyzyk, Mark

226

ELECTRICITY TRANSMISSION IN DEREGULATED MARKETS; CONFERENCE AT CARNEGIE MELLON UNIVERSITY, PITTSBURGH PA USA DECEMBER 2004 1 A criticality approach to monitoring cascading  

E-Print Network [OSTI]

ELECTRICITY TRANSMISSION IN DEREGULATED MARKETS; CONFERENCE AT CARNEGIE MELLON UNIVERSITY, PITTSBURGH PA USA DECEMBER 2004 1 A criticality approach to monitoring cascading failure risk and failure the risk of cascading failure of electric power transmission systems as overall loading is increased

Dobson, Ian

227

PaedDr. Michaela Regecov, PhD., Department of Algebra, Geometry and Didactics of Mathematics, Faculty of Mathematics, Physics and Informatics  

E-Print Network [OSTI]

PaedDr. Michaela Regecová, PhD., Department of Algebra, Geometry and Didactics of Mathematics of Theory of didactic situations for the realisation the current pedagogical practice related with teaching of mathematics at primary and secondary schools (creation of a-didactic situation, levels of didactic situations

Spagnolo, Filippo

228

P.A. Nelson S.M. Kajiura G.S. Losey Exposure to solar radiation may increase ocular UV-filtering  

E-Print Network [OSTI]

P.A. Nelson ? S.M. Kajiura ? G.S. Losey Exposure to solar radiation may increase ocular UV levels of solar radiation than they had previously experienced in the source habitat in the turbid waters spectrum, but sharks exposed to greater solar radiation showed increased UV blocking in their corneal

Kajiura, Stephen

229

ZERH Lender PA Final  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Services are services that ensure a green appraiser and hand-off of the Residential Green and Energy Efficient Addendum to the green appraiser for consideration in the...

230

ZERH Builder PA Final  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of| Department ofDepartmentLieve LaurensThe A ppraisal P rocess: Be Y our

231

ZERH Training PA Final  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of| Department ofDepartmentLieve LaurensThe A ppraisal P rocess: Be Y U.S.

232

ZERH Verifier PA Final  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of| Department ofDepartmentLieve LaurensThe A ppraisal P rocess: Be Y U.S.

233

Appendix PA: Performance Assessment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmes LaboratoryAntonyaAppeals4 STANDARDN NEPA Disclosure for

234

THE Pa{alpha} LUMINOSITY FUNCTION OF H II REGIONS IN NEARBY GALAXIES FROM HST/NICMOS  

SciTech Connect (OSTI)

The H II region luminosity function (LF) is an important tool for deriving the birthrates and mass distribution of OB associations and is an excellent tracer of the newly formed massive stars and associations. To date, extensive work (predominantly in H{alpha}) has been done from the ground, which is hindered by dust extinction and the severe blending of adjacent (spatially or in projection) H II regions. Reliably measuring the properties of H II regions requires a linear resolution <40 pc, but analyses satisfying this requirement have been done only in a handful of galaxies, so far. As the first space-based work using a galaxy sample, we have selected 12 galaxies from our HST/NICMOS Pa{alpha} survey and studied the LF and size distribution of H II regions both in individual galaxies and cumulatively, using a virtually extinction-free tracer of the ionizing photon rate. The high angular resolution and low sensitivity to diffuse emission of NICMOS also offer an advantage over ground-based imaging by enabling a higher degree of de-blending of the H II regions. We do not confirm the broken power-law LFs found in ground-based studies. Instead, we find that the LFs, both individual and co-added, follow a single power law dN(L)/dln L{proportional_to}L {sup -1}, are consistent with the mass function of star clusters in nearby galaxies, and are in agreement with the results of the existing analyses with Hubble Space Telescope (HST) data. The individual and co-added size distributions of H II regions are both roughly consistent with dN(D)/dln D{proportional_to}D {sup -3}, but the power-law scaling is probably contaminated by blended regions or complexes.

Liu Guilin; Calzetti, Daniela [Astronomy Department, University of Massachusetts, Amherst, MA 01003 (United States); Kennicutt, Robert C. Jr. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Schinnerer, Eva [MPI for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Sofue, Yoshiaki [Department of Physics, Meisei University, 2-1-1 Hodokubo, Hino, Tokyo 191-8506 (Japan); Komugi, Shinya [Joint ALMA Office, Alonso de Cordova 3107, Vitacura, Santiago 763-0355 (Chile); Egusa, Fumi [Institute of Space and Aeronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshino-dai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Scoville, Nicholas Z., E-mail: liu@pha.jhu.edu [California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States)

2013-07-20T23:59:59.000Z

235

Berthon P, Katoh M, Dusanter-Fourt 1, Kelly PA, Djiane J, 1986b. Purification of prolactin receptor from sow mam-mary gland and polyclonal antibodies production. Mol Cell Endocrinol, soumis publication  

E-Print Network [OSTI]

Berthon P, Katoh M, Dusanter-Fourt 1, Kelly PA, Djiane J, 1986b. Purification of prolactin receptor publication Djiane J, Durand P, Kelly PA, 1977. Evolution of prolactin receptors in rabbit mammary gland during pregnancy and lactation. Endocrinology, 100:1348-1356 Djiane J, Dusanter-Fourt 1, Katoh M, Kelly

Paris-Sud XI, Université de

236

New results on nuclear dependence of J/psi and psi' production in 450 GeV pA collisions  

E-Print Network [OSTI]

To understand the reliability of the charmonia suppression as a signature of the Quark-Gluon Plasma formation in nucleus-nucleus collisions it is important first to understand the details of the production of J/psi and psi' in pA interactions and the difference in the suppression of these two states. This report presents the results of the study by the NA50 collaboration of the J/psi and psi' production in pA interactions at 450 GeV beam energy and its dependence on rapidity. It is shown that the psi' suffers more suppression than the J/psi, which is consistent with a similar observation made at 800 GeV beam energy by the E866/NuSea collaboration.

R. Shahoyan

2002-07-03T23:59:59.000Z

237

Vapor-liquid equilibria of n-hexane + cyclohexane + n-heptane and the three constituent binary systems at 101. 0 kPa  

SciTech Connect (OSTI)

Vapor-liquid equilibrium data for the title ternary system and the three constituent binary systems have been measured at 101.0 kPa by using a dynamic equilibrium still. The binary data were tested for thermodynamic consistency and were correlated by the Wilson, NRTL, and UNIQUAC equations. Predictions for the ternary system by these equations have been compared with the experimental data.

Jan, D.S.; Shiau, H.Y.; Tsai, F.N. (National Cheng Kung Univ., Tainan (Taiwan, Province of China). Dept. of Chemical Engineering)

1994-07-01T23:59:59.000Z

238

Vapor-liquid equilibria for the binary systems of 1-butanol with some halohydrocarbons at 40.0 and 101.3 kPa  

SciTech Connect (OSTI)

Isobaric vapor-liquid equilibrium measurements at 40.0 and 101.3 kPa are reported for 1-butanol + chlorocyclohexane, + chlorobenzene, + bromocyclohexane, + bromobenzene. Some of the studied systems show minimum temperature azeotropes. The experimental data were tested for thermodynamic consistency and satisfactorily correlated with the Margules, Van Laar, Wilson, NRTL, and UNIQUAC equations. Predictions with the UNIFAC method and ASOG method were also obtained.

Artigas, H.; Lafuente, C.; Cea, P.; Royo, F.M.; Urieta, J.S. [Univ. de Zaragoza (Spain)] [Univ. de Zaragoza (Spain)

1997-01-01T23:59:59.000Z

239

N E W S O L A R H O M E S PA R T N E R S H I P GoSolarCalifornia.org  

E-Print Network [OSTI]

N E W S O L A R H O M E S PA R T N E R S H I P GoSolarCalifornia.org About the New Solar Homes Partnership As part of Governor Arnold Schwarzenegger's $3.3 billion California Solar Initiative, California. The New Solar Homes Partnership (NSHP) is a component of the California Solar Initiative and has a goal

240

Overexpression of KAI1 induces autophagy and increases MiaPaCa-2 cell survival through the phosphorylation of extracellular signal-regulated kinases  

SciTech Connect (OSTI)

Research highlights: {yields} We first investigate the effects of KAI1 on autophagy in MiaPaCa-2 cells. {yields} Our findings demonstrate that KAI1 induces autophagy, which in turn inhibits KAI1-induced apoptosis. {yields} This study also supplies a possible novel therapeutic method for the treatment of pancreatic cancer using autophagy inhibitors. -- Abstract: KAI1, a metastasis-suppressor gene belonging to the tetraspanin family, is known to inhibit cancer metastasis without affecting the primary tumorigenicity by inhibiting the epidermal growth factor (EGF) signaling pathway. Recent studies have shown that hypoxic conditions of solid tumors induce high-level autophagy and KAI1 expression. However, the relationship between autophagy and KAI1 remains unclear. By using transmission electron microscopy, confocal microscopy, and Western blotting, we found that KAI1 can induce autophagy in a dose- and time-dependent manner in the human pancreatic cell line MiaPaCa-2. KAI1-induced autophagy was confirmed by the expression of autophagy-related proteins LC3 and Beclin 1. KAI1 induces autophagy through phosphorylation of extracellular signal-related kinases rather than that of AKT. KAI1-induced autophagy protects MiaPaCa-2 cells from apoptosis and proliferation inhibition partially through the downregulation of poly [adenosine diphosphate (ADP)-ribose] polymerase (PARP) cleavage and caspase-3 activation.

Wu, Chun-Yan [State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital of Digestive Disease, Fourth Military Medical University, Xi'an 710032 (China) [State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital of Digestive Disease, Fourth Military Medical University, Xi'an 710032 (China); Department of Gastroenterology, Shenyang General Hospital of PLA, 83 Wenhua Road, Shenyang 110016 (China); Yan, Jun; Yang, Yue-Feng; Xiao, Feng-Jun; Li, Qing-Fang; Zhang, Qun-Wei; Wang, Li-Sheng [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China)] [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Guo, Xiao-Zhong, E-mail: guoxiaozhong1962@163.com [Department of Gastroenterology, Shenyang General Hospital of PLA, 83 Wenhua Road, Shenyang 110016 (China)] [Department of Gastroenterology, Shenyang General Hospital of PLA, 83 Wenhua Road, Shenyang 110016 (China); Wang, Hua, E-mail: wanghua@bmi.ac.cn [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China)] [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China)

2011-01-21T23:59:59.000Z

Note: This page contains sample records for the topic "appalachian marcellus pa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Measurement of cross sections for the {sup 232}Th(P,4n){sup 229}Pa reaction at low proton energies  

SciTech Connect (OSTI)

The alpha-emitters {sup 225}Ac and {sup 213}Bi are of great interest for alpha-radioimmunotherapy which uses radioisotopes attached to cancer-seeking antibodies to efficiently treat various types of cancers. Both radioisotopes are daughters of the long-lived {sup 229}Th(t{sub 1/2} = 7880y). {sup 229}Th can be produced by proton irradiation of {sup 232}Th and {sup 230}Th, either directly or through production of isobars that beta-decay into {sup 229}Th. To obtain excitation functions, {sup 232}Th and {sup 230}Th have been irradiated at the On-Line Test Facility at the Holifield Radioactive Ion Beam Facility at ORNL. Benchmark tests conducted with Cu and Ni foils show very good agreement with literature results. The experiments with thorium targets were focused on the production of {sup 229}Pa and its daughter {sup 225}Ac from both {sup 232}Th and {sup 230}Th. Differential cross-sections for production of {sup 229}Pa and other Pa isotopes have been obtained.

Jost, C. U. [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States); Griswold, J. R. [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996, USA and Fuel Cycle and Isotopes Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Bruffey, S. H.; Mirzadeh, S. [Fuel Cycle and Isotopes Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Stracener, D. W. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Williams, C. L. [Oak Ridge Associated Universities, Oak Ridge, TN 37831 (United States)

2013-04-19T23:59:59.000Z

244

Isobaric vapor-liquid equilibria for binary and ternary systems composed of water, 1-propanol, and 2-propanol at 100 kPa  

SciTech Connect (OSTI)

Isobaric vapor-liquid equilibria data were obtained for the 2-propanol + 1-propanol binary system and the water + 1-propanol + 2-propanol ternary system at 100 kPa. The data were found to be thermodynamically consistent according to the Van Ness-Byer-Gibbs method for the binary system and according to the McDermott-Ellis method for the ternary one. The binary system is well represented by assuming ideal behavior. The binary interaction parameters obtained from this and previous work are used to predict the vapor-liquid equilibrium for the ternary system using the UNIQUAC, NRTL, and Wilson models. The ternary system is well predicted from binary data.

Gabaldon, C.; Marzal, P.; Monton, J.B.; Rodrigo, M.A. [Univ. de Valencia (Spain). Dept. de Ingenieria Quimica] [Univ. de Valencia (Spain). Dept. de Ingenieria Quimica

1996-11-01T23:59:59.000Z

245

VLE measurements of binary mixtures of methanol, ethanol, 2-methoxy-2-methylpropane, and 2-methoxy-2-methylbutane at 101.32 kPa  

SciTech Connect (OSTI)

Isobaric vapor-liquid equilibrium data for 2-methoxy-2-methylpropane + methanol, 2-methoxy-2-methylpropane + ethanol, methanol + 2-methoxy-2-methylbutane, ethanol + 2-methoxy-2-methylbutane, and 2-methoxy-2-methylpropane + 2-methoxy-2-methylbutane were determined at 101.32 kPa. Fredenslund et al.`s test confirmed the results to be thermodynamically consistent. The VLE data were satisfactorily correlated using the Wilson, NRTL, and UNIQUAC equations for liquid phase activity coefficients and adequately predicted using the ASOG, UNIFAC, UNIFAC-Dortmund, and UNIFAC-Lyngby group contribution methods.

Arce, A.; Martinez-Ageitos, J.; Soto, A. [Univ. of Santiago de Compostela (Spain). Dept. of Chemical Engineering] [Univ. of Santiago de Compostela (Spain). Dept. of Chemical Engineering

1996-07-01T23:59:59.000Z

246

Hausaufgabe 6: Aufgabe 3-20: Ein 0,12 m-Tank enthlt gesttigtes R-134a bei 800 kPa. Zu Beginn sind  

E-Print Network [OSTI]

Hausaufgabe 6: Aufgabe 3-20: Ein 0,12 m³-Tank enthält gesättigtes R-134a bei 800 kPa. Zu Beginn sind 25% des Tanks mit flüssigem R-134a gefüllt. Der Rest mit gasförmigem R-134a. Ein Ventil am Boden des Tanks wird geöffnet und flüssiges Kühlmittel tritt aus. Von au?en wird dem Kühlmittel Wärme

Peters, Norbert

247

Article_SAGEO_PA PISSARD_V6_Cemadocx -accede_document.php http://cemadoc.irstea.fr/exl-php/util/documents/accede_document.php 1 sur 9 27/01/2014 10:35  

E-Print Network [OSTI]

Article_SAGEO_PA PISSARD_V6_Cemadocx - accede_document.php http://cemadoc.irstea.fr/exl-php/util/documents/accede_document.php - accede_document.php http://cemadoc.irstea.fr/exl-php/util/documents/accede_document.php 2 sur 9 27_SAGEO_PA PISSARD_V6_Cemadocx - accede_document.php http://cemadoc.irstea.fr/exl-php/util/documents/accede_document.php

Boyer, Edmond

248

ECONOMIC IMPACT OF THE APPALACHIAN GATEWAY  

E-Print Network [OSTI]

May 2010 © 2010 West Virginia University Research Corporation Funding for this report was provided Bureau of Business and Economic Research College of Business and Economics West Virginia University and do not necessarily represent those of the West Virginia University Board of Trustees or Dominion

Mohaghegh, Shahab

249

Do Appalachian Herbaceous Understories Ever Recover  

E-Print Network [OSTI]

(3) que plantus herbaceus colonizan la microtopografia del suelo que ha sido remo- vido a causa de la

Duffy, David Cameron

250

Workplace Charging Challenge Partner: Appalachian State University |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof Energy ThisJanuaryPeer ExchangeEnergy

251

Appalachian Advanced Energy Association | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergyExperimentsInformationAnuvu IncSolarIIIApower Name:

252

Appalachian Advanced Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergyExperimentsInformationAnuvu IncSolarIIIApower Name:4 E

253

Appalachian Power Co | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergyExperimentsInformationAnuvu IncSolarIIIApower Name:4

254

Appalachian Electric Coop | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT Biomass Facility JumpvolcanicPhase 1 Jump to:

255

Appalachian Power Co (Virginia) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT Biomass Facility JumpvolcanicPhase 1 Jump to:Virginia

256

Vapor-liquid equilibria of binary and ternary mixtures of cyclohexane, 3-methyl-2-butanone, and octane at 101.3 kPa  

SciTech Connect (OSTI)

Vapor-liquid equilibria were measured at 101.3 kPa for the three binary and one ternary mixtures of cyclohexane, 3-methyl-2-butanone, and octane. The isobaric T-x-y data were reported, including an azeotropic point for the binary mixture cyclohexane + 3-methyl-2-butanone. The virial equation of state truncated after the second coefficient was used to calculate the vapor-phase fugacity coefficients. The Tsonopoulos correlation equation was applied to determine the second virial coefficients. Various activity coefficient models of the Wilson, the NRTL, and the UNIQUAC equations were used to correlate the binary experimental vapor-liquid equilibrium results. Optimally-fitted binary parameters of the activity coefficient models were obtained and those parameters of the NRTL model were employed to predict the ternary vapor-liquid equilibria. Satisfactory results were presented for the correlation and prediction of the vapor-liquid equilibrium data on binary and ternary mixtures.

Chen, C.C.; Tang, M.; Chen, Y.P. [National Taiwan Univ., Taipei (Taiwan, Province of China). Dept. of Chemical Engineering] [National Taiwan Univ., Taipei (Taiwan, Province of China). Dept. of Chemical Engineering

1996-05-01T23:59:59.000Z

257

DOE - Office of Legacy Management -- Springdale PA - PA 11  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntownRocky Flats Site,NevadaSpook,

258

Isobaric vapor-liquid equilibria of p-xylene + o-xylene and m-xylene + o-xylene systems at 6. 66 and 26. 66 kPa  

SciTech Connect (OSTI)

Vapor-liquid equilibrium data were obtained for systems of o-xylene with p- and m-xylenes at 6.66 and 26.66 kPa. The activity coefficients were found to be thermodynamically consistent. They were equally well correlated with the Margules, Van Laar, Wilson, NRTL, and UNIQUAC equations. The parameters of these equations are given.

Llopis, F.J.; Monton, J.B. (Univ. de Valencia (Spain). Dept. de Ingenieria Quimica)

1994-01-01T23:59:59.000Z

259

UNlllERSIDAD DE PUERTO RICO, RECINTO DE CIENCIAS MEDICAS PO BOX ~7 SAN JUAN PA ~~ .TEl7B7.758-2525 EXI: 171 SECRETARiA JUNTA ADMINISTRATIVA  

E-Print Network [OSTI]

UNlllERSIDAD DE PUERTO RICO, RECINTO DE CIENCIAS MEDICAS PO BOX ~7 SAN JUAN PA ~~ .TEl7B7AZ, SecretariaEjecutiva de la Junta Administrativa del Recintode CienciasMedicas de la Universidad de Puerto Rico y acechol' del Recinto de Ciencias Medicas y luego de la discusion de rigor, ACORO6: APROBAR la

Quirk, Gregory J.

260

2-91 The gage pressure in a pressure cooker is maintained constant at 100 kPa by a petcock. The mass of the petcock is to be determined.  

E-Print Network [OSTI]

2-42 2-91 The gage pressure in a pressure cooker is maintained constant at 100 kPa by a petcock itself out. Therefore, it can be disregarded in calculations if we use the gage pressure as the cooker

Bahrami, Majid

Note: This page contains sample records for the topic "appalachian marcellus pa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Training Session: West Chester, PA  

Broader source: Energy.gov [DOE]

This 3.5-hour training provides builders with a comprehensive review of zero net-energy-ready home construction including the business case, detailed specifications, and opportunities to be...

262

A5 PA Addendum 1  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review of theOFFICE

263

D"E(:pa  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCTTO:March_BayoRECORD OF^_.Ther-tin enDe

264

2010 PA CoP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Murray (EM-23) Video Download PDF Download LFRG Lessons Learned on QA Susan Krenzien (Navarro-Intera) 2:30 - 2:45 pm Break 2:45 - 4:00 pm - ASCEM and CBP Updates Video Download...

265

Vapor-liquid equilibria for systems of 1-butanol with 2-methyl-1-butanol, 3-methyl-1-butanol, 2-methyl-2-butanol, and 3-methyl-2-butanol at 30 and 100 kPa  

SciTech Connect (OSTI)

Vapor-liquid equilibrium data were measured for binary systems of 1-butanol with 2-methyl-1-butanol, 3-methyl-1-butanol, 2-methyl-2-butanol, and 3-methyl-2-butanol at 30 and 100 kPa. The experimental data obtained in this work are thermodynamically consistent according to a point-to-point consistency test, and deviation from ideal behavior is small in all cases. They can be equally well correlated with the Margules, Van Laar, Wilson, NRTL, and UNIQUAC equations.

Aucejo, A.; Burguet, M.C.; Monton, J.B.; Munoz, R.; Sanchotello, M.; Vazquez, M.I. (Univ. de Valencia (Spain). Dept. de Ingenieria Quimica)

1994-04-01T23:59:59.000Z

266

Increased stray gas abundance in a subset of drinking water wells near Marcellus shale gas extraction  

E-Print Network [OSTI]

fingerprinting | fracking | hydrology and ecology Unconventional sources of gas and oil are transforming energy and horizontal drilling are also growing (4, 5). These concerns include changes in air quality (6), human health the greenhouse gas balance (8, 9). Perhaps the biggest health concern remains the potential for drinking water

Jackson, Robert B.

267

An Integrated Well Performance Study for Shale Reservoir Systems - Application to the Marcellus Shale  

E-Print Network [OSTI]

In this work we focus on the integration of two independent analyses, time-rate analysis and model-based production analysis, as an approach to resolve the uncertainty in estimating ultimate recovery (EUR) for wells in unconventional reservoirs...

Riser, Landon Jess

2013-11-15T23:59:59.000Z

268

Impact of the Marcellus Shale Gas Play on Current and Future CCS Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching. |EndecahemeEMSLImaging the0 Impact of the

271

Offering Songs, Festive Songs, Processional Songs mGar-gLu, Khro-Glu, Phebsnga: Khang Lhamo, Yandol & Pema Dolma Music: Li phur ma laten pai, 'The belt on the boots'  

E-Print Network [OSTI]

phur ma laten pai Translation of title The belt on the boots Description (to be used in archive entry) Genre or type (i.e. epic, song, ritual) khro glu (festive song) Medium (i.e. reel to reel, web-based file, DVD) Digital Recording Related... access (fully closed, fully open) Fully open for web streaming Notes and context (include reference to any related documentation, such as photographs) "This belt is really long on the boots. If we use it on the waist it's short. You can use...

Blumenthal, Katey

272

Isobaric vapor-liquid equilibria of 1-butanol + N,N-dimethylformamide and 1-pentanol + N,N-dimethylformamide systems at 50.00 and 100.00 kPa  

SciTech Connect (OSTI)

The experimental determinations of vapor-liquid equilibria (VLE) are indispensable for the design of separation processes such as distillation columns, extractive distillation, and selection of solvents. Isobaric vapor-liquid equilibria were obtained for the 1-butanol + N,N-dimethylformamide and 1-pentanol + N,N-dimethylformamide systems at 50.00 and 100.00 kPa. The activity coefficients were found to be thermodynamically consistent. The data were correlated with five liquid phase activity coefficient models (Margules, Van Laar, Wilson, NRTL, and UNIQUAC). Experimental vapor pressures of N,N-dimethylformamide are also included.

Marzal, P.; Gabaldon, C.; Seco, A.; Monton, J.B. [Univ. de Valencia (Spain). Dept. de Ingenieria Quimica

1995-05-01T23:59:59.000Z

273

N e w Fa c u lt y P r o F i l e s K i N g H a l l e x Pa N s i o N &  

E-Print Network [OSTI]

N e w Fa c u lt y P r o F i l e s K i N g H a l l e x Pa N s i o N & r e N o vat i o N s o a r s a l s o i n s i d e : r e m e m b e r i N g t H e c l a s s o F 1 9 6 9 D o N o r r o l l s #12;m e for our students, with the School of Law unveiling a new externship program in Washington, D.C. in spring

California at Davis, University of

274

Phase behavior of carbon dioxide in admixture with n-butane, n-decane, n-butylcyclohexane, and n-butylbenzene at 344 K and approximately 9600 kPa  

SciTech Connect (OSTI)

Bubble point pressure data were acquired at 344 K and about 9600 kPa on ternary mixtures of carbon dioxide and n-butane with paraffinic (n-decane), naphthenic (n-butylcyclohexane), and aromatic (n-butylbenzene) compounds to determine what effect differences in compound type might have on carbon dioxide-hydrocarbon miscibility of such systems. The data on carbon dioxide-n-butane-n-decane, when compared with those from the literature, showed good agreement. This suggests that the remaining data reported here are reliable. The data were regressed by using the Soave-Redlich-Kwong equation of state to determine interaction coefficient sets for phase behavior prediction. These sets of interaction coefficients were used to calculate carbon dioxide-hydrocarbon miscibility. No significant difference in miscibility was found as the heavy hydrocarbon compound was changed from paraffinic to naphthenic to aromatic type.

Cramer, H.C.; Swift, G.W.

1985-01-01T23:59:59.000Z

275

Zero Discharge Water Management for Horizontal Shale Gas Well Development  

SciTech Connect (OSTI)

Hydraulic fracturing technology (fracking), coupled with horizontal drilling, has facilitated exploitation of huge natural gas (gas) reserves in the Devonian-age Marcellus Shale Formation (Marcellus) of the Appalachian Basin. The most-efficient technique for stimulating Marcellus gas production involves hydraulic fracturing (injection of a water-based fluid and sand mixture) along a horizontal well bore to create a series of hydraulic fractures in the Marcellus. The hydraulic fractures free the shale-trapped gas, allowing it to flow to the well bore where it is conveyed to pipelines for transport and distribution. The hydraulic fracturing process has two significant effects on the local environment. First, water withdrawals from local sources compete with the water requirements of ecosystems, domestic and recreational users, and/or agricultural and industrial uses. Second, when the injection phase is over, 10 to 30% of the injected water returns to the surface. This water consists of flowback, which occurs between the completion of fracturing and gas production, and produced water, which occurs during gas production. Collectively referred to as returned frac water (RFW), it is highly saline with varying amounts of organic contamination. It can be disposed of, either by injection into an approved underground injection well, or treated to remove contaminants so that the water meets the requirements of either surface release or recycle use. Depending on the characteristics of the RFW and the availability of satisfactory disposal alternatives, disposal can impose serious costs to the operator. In any case, large quantities of water must be transported to and from well locations, contributing to wear and tear on local roadways that were not designed to handle the heavy loads and increased traffic. The search for a way to mitigate the situation and improve the overall efficiency of shale gas production suggested a treatment method that would allow RFW to be used as make-up water for successive fracs. RFW, however, contains dissolved salts, suspended sediment and oils that may interfere with fracking fluids and/or clog fractures. This would lead to impaired well productivity. The major technical constraints to recycling RFW involves: identification of its composition, determination of industry standards for make-up water, and development of techniques to treat RFW to acceptable levels. If large scale RFW recycling becomes feasible, the industry will realize lower transportation and disposal costs, environmental conflicts, and risks of interruption in well development schedules.

Paul Ziemkiewicz; Jennifer Hause; Raymond Lovett; David Locke Harry Johnson; Doug Patchen

2012-03-31T23:59:59.000Z

276

Overcoming Barriers to Wind Development in Appalachian Coal Country  

SciTech Connect (OSTI)

This research project synthesizes existing data and communication from experts to assess barriers to wind development in Pennsylvania, Maryland, West Virginia, Virginia, and Kentucky, and makes recommendations where feasible to reduce or eliminate those barriers.

Brent Bailey; Evan Hansen

2012-10-09T23:59:59.000Z

277

Central-northern Appalachian coalbed methane flow grows  

SciTech Connect (OSTI)

Over the past decade in the US, coalbed methane (CBM) has become an increasingly important source of unconventional natural gas. The most significant CBM production occurs in the San Juan basin of Colorado and new Mexico and the Black Warrior basin of Alabama, which collective in 1995 accounted for about 94% of US CBM production. The paper discusses early CBM production, recent production, gas composition, undiscovered potential, and new exploration areas.

Lyons, P.C. [Geological Survey, Reston, VA (United States)

1997-07-07T23:59:59.000Z

278

AEP Appalachian Power - Commercial and Industrial Rebate Programs...  

Broader source: Energy.gov (indexed) [DOE]

150,000 will be reviewed on a case-by-case basis Program Info Start Date 3112011 State West Virginia Program Type Utility Rebate Program Rebate Amount UnitarySplit ACAir...

279

The atlas of major Appalachian gas plays. Final report  

SciTech Connect (OSTI)

This project will evaluate the technical, economic and environmental feasibility of filling abandoned underground mine voids with alkaline, advanced coal combustion wastes. Both pneumatic and hydraulic injection methods will be investigated. Success will be measured in terms of technical feasibility of the approach (i.e. % void filling), cost, environmental benefits (acid mine drainage and subsidence control) and environmental impacts (noxious ion release). Phase 1 is concerned with the development of the grout and a series of predictive models. Phase 1 will also redesign a pneumatic ejector, that was developed to stow limestone, to efficiently stow FBC ash. Phase 2 is a small scale field test at Anker Energy`s Fairfax mine. An inactive panel will be used to evaluate flow, strength, and pressure requirements for hydraulic (grout) injection. The Phase 2 pneumatic injection activities will take place at an Anker Energy mine in Preston County, West Virginia. Air flow requirements, pressure requirements, stowing rate (tons per hour), and stowing efficiency (distance blown) will be determined. Phase 3 is to take 26 months and will be a full scale test at Anker`s eleven acre Long Ridge mine site. The mine will be filled using both pneumatic and hydraulic injection methods. It is expected that the FBC ash will replace what is now an acid mine pool with an alkaline solid so that the ground water will tend to flow around rather than through the previously mined areas. The project will demonstrate whether FBC ash can be successfully disposed of in underground mines.

NONE

1997-02-01T23:59:59.000Z

280

Burialand exhumation historyof Pennsylvanian strata, central Appalachian basin: anintegrated study  

E-Print Network [OSTI]

£ectance(e.g.Chyietal.,1987;Hower&Rimmer, 1991; Zhang & Davis, 1993), £uid inclusion microthermo- metry (e.g. Burruss, 1989

Bodnar, Robert J.

Note: This page contains sample records for the topic "appalachian marcellus pa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Appalachian Power Co (West Virginia) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo Feng Bio Energy Co Ltd Jump to:SummariesApi NovaVirginia)

282

APPALACHIAN STATE UNIVERSITY MOUNTAIN LAUREL HOME Project Summary  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe Office of FossilMembershipof EnergyALABAMAInstituteAOto

283

AEP Appalachian Power - Commercial and Industrial Rebate Programs (West  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South Valley ResponsibleSubmissionofDepartment of Energyutmaan~ofVirginia)

284

AEP Appalachian Power - Residential Energy Efficiency Rebate Program |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South Valley ResponsibleSubmissionofDepartment of

285

Grow Appalachia The Appalachian Community Gardening and Food Security Project  

E-Print Network [OSTI]

Needs to be Addressed Basic diet-related health concerns obesity, diabetes, heart disease. Limited

Baltisberger, Jay H.

286

Appalachian Power Co (West Virginia) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT Biomass Facility JumpvolcanicPhase 1 Jump to:Virginia(West

287

Microsoft Word - APPALACHIAN_STATE_VolumeI-Submissionv2.docx  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.eps More Documents &Small2011FYandUCAIUG: AMI-SEC-ASAP AMI SystemTABLE OF

288

Palmetto Clean Energy (PaCE) Program  

Broader source: Energy.gov [DOE]

'''''Note: For a limited time, generators of 6 kilowatts or less of renewable energy can now take advantage of a premium $0.10 per kilowatt hour. This premium is available on a first-come-first...

289

2011 International Pittsburgh Coal Conference Pittsburgh, PA  

E-Print Network [OSTI]

Sequestration in Unmineable Coal with Enhanced Coal Bed Methane Recovery: The Marshall County Project James E conducted in Marshall County, West Virginia, USA, to evaluate enhanced coal bed methane recovery enhanced coal bed methane (CBM) pilot test in Marshall County, West Virginia. This pilot test was developed

Mohaghegh, Shahab

290

CLEO CONF 963 ICHEP96 PA05078  

E-Print Network [OSTI]

. Urheim, 18 A.J. Weinstein, 18 F. W¨urthwein, 18 D.M. Asner, 19 D.W. Bliss, 19 W.S. Brower, 19 G. Masek, 22 D.L. Kreinick, 22 T. Lee, 22 Y. Liu, 22 G.S. Ludwig, 22 J. Masui, 22 J. Mevissen, 22 N.B. Mistry. Yelton, 23 G. Brandenburg, 24 R.A. Briere, 24 D. Kim, 24 T. Liu, 24 M. Saulnier, 24 R. Wilson, 24 H

291

CLEO CONF 9617 ICHEP96 PA07091  

E-Print Network [OSTI]

D.M. Asner, 22 M. Athanas, 22 D.W. Bliss, 22 W.S. Brower, 22 G. Masek, 22 H.P. Paar, 22 J. Gronberg. Liu, 2 M. Saulnier, 2 R. Wilson, 2 H. Yamamoto, 2 T. E. Browder, 3 F. Li, 3 J. L. Rodriguez, 3 T P.C. Kim, 25 D.L. Kreinick, 25 T. Lee, 25 Y. Liu, 25 G.S. Ludwig, 25 J. Masui, 25 J. Mevissen, 25 N

292

Arco chimie focuses on PA at FOS  

SciTech Connect (OSTI)

Arco Chimie France (Fos-sur-Mer), at a recent meeting at its southern France manufacturing site, emphasized that future strategy is strongly focused on its propylene oxide (PO) and derivatives activities. The F2.5 billion ($466 million)-Fe billion/year operation manufactures 200,000 m.t./year of PO, about 70% for captive use and the balance for the merchant market; 550,000 m.t./year of methyl tert butyl ether (MTBE); 97,000 m.t./year of polyols; and 70,000 m.t./year of propylene glycols. There has been talk of Arco modifying its Fos MTBE plant to make it flexible for ethyl tert-butyl ether (ETBE) output; the parent company already operates an MTBE/ETBE pilot unit at Corpus Christi, TX. But Arco Chimie notes there is insufficient bioethanol feedstock availability to convert all production to ETBE. The company would also require investment in new storage capacity for ethanol and ETBE. However, France's biofuels program is not yet clearly defined, and it is politically sensitive because it depends heavily on government subsidies offered to farmers. That, says Arco, makes it impossible to have an accurate idea of how much ethanol will be available.

Jackson, D.

1992-12-02T23:59:59.000Z

293

Microsoft Word - PA MP FY02.doc  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review ofElectronic InputNuclear MaterialsTBD 1) 1 2

294

ZERH Arch Designer PA rev (2)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of| Department ofDepartmentLieve LaurensThe A ppraisal P rocess: Be Y our O

295

Additional Information on the ERDF PA approach  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the Building TechnologiesS1!4T op Document:Adding NewCERCLA ARAR

296

Additional Information on the ERDF PA approach  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the Building TechnologiesS1!4T op Document:Adding NewCERCLA ARARto

297

Additional Information on the ERDF PA approach  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the Building TechnologiesS1!4T op Document:Adding NewCERCLA

298

PA.03 A' EROSPACE~CORPORATI'  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCT 28 1% - :NEW;ORAU 89/K-79OoEr'

299

Impact of Sorption Isotherms on the Simulation of CO2-Enhanced Gas Recovery and Storage Process in Marcellus Shale  

E-Print Network [OSTI]

and kerogen surfaces, very similar to the way methane is stored within coal beds. It has been demonstrated in gassy coals that on average; CO2 is preferentially adsorbed, displacing methane at a ratio of two for one or more. Black shale reservoirs may react similarly and desorb methane in the presence

Mohaghegh, Shahab

300

Economic viability of shale gas production in the Marcellus Shale; indicated by production rates, costs and current natural gas prices.  

E-Print Network [OSTI]

?? The U.S. natural gas industry has changed because of the recent ability to produce natural gas from unconventional shale deposits. One of the largest (more)

Duman, Ryan J.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "appalachian marcellus pa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Techno-economic analysis of water management options for unconventional natural gas developments in the Marcellus Shale  

E-Print Network [OSTI]

The emergence of large-scale hydrocarbon production from shale reservoirs has revolutionized the oil and gas sector, and hydraulic fracturing has been the key enabler of this advancement. As a result, the need for water ...

Karapataki, Christina

2012-01-01T23:59:59.000Z

302

Correspondence: M. Kathleen Kelly, Department of PhysicalTherapy, 6035 ForbesTower, University of Pittsburgh, Pittsburgh, PA 15260, USA. Tel.: + 1 412 383 6637; Fax: + 1 412 383 6629; E-mail: KellyK2@msx.upmc.edu  

E-Print Network [OSTI]

Correspondence: M. Kathleen Kelly, Department of PhysicalTherapy, 6035 ForbesTower, University of Pittsburgh, Pittsburgh, PA 15260, USA. Tel.: + 1± 412± 383± 6637; Fax: + 1± 412± 383± 6629; E-mail: KellyK2. KATHLEEN KELLY1 , GEORGE E. CARVELL1,2 , JED A. HARTINGS2 and DANIEL J. SIMONS2 1 Department of Physical

Simons, Dan

303

Si m pa rele: Annexes I et II, Si m pa rele: Annexe III  

E-Print Network [OSTI]

and text in English. Updated periodically. N 4 - Strategy of Aristide Government for Social and Economic Reconstruction (August 1994). 1994. Pp. iv-9. Official document setting forth recovery plan for Haiti. Introduction and text in English. N 5... Peyi Dayiti. 1995. Pp. v-71. Haitian-language version of N 5, in Pressoir-Faublas orthography. Introduction in English. N 7 - Samuel G. Perkins, "On the Margin of Vesuvius": Sketches of St. Domingo, 1785-1793. 1995. Pp. vi-75. First-hand account...

1998-01-01T23:59:59.000Z

304

Aufgabe 3-17: Ein 2 m-Tank enthlt zu Beginn Luft (RL = 0,287 kJ/kgK) im Zustand 1 (22C, 100 kPa, u1 = 210,49 kJ/kg). Der Tank ist ber ein Ventil mit einer Leitung verbunden.  

E-Print Network [OSTI]

?bung 6: Aufgabe 3-17: Ein 2 m³-Tank enthält zu Beginn Luft (RL = 0,287 kJ/kgK) im Zustand 1 (22°C, 100 kPa, u1 = 210,49 kJ/kg). Der Tank ist über ein Ventil mit einer Leitung verbunden. In dieser. Die Luft strömt solange in den Tank, bis im Tank derselbe Druck herrscht wie in der Leitung. Dann wird

Peters, Norbert

305

DOCKET NO. PA02-2-000 STAFF REPORT  

E-Print Network [OSTI]

linked, and dysfunctions in each fed off one another. Spot gas prices drove electricity prices of the alternative gas price inputs would result in higher refunds for electricity. - Staff found that many trading prices. - Electricity prices in California's spot markets were affected by economic withholding

Laughlin, Robert B.

306

PATTERNS OF CIGARETTE SMOKING. PA'ITERNS OF CIGARETTE SMOKING  

E-Print Network [OSTI]

a transient decline during the Great Depression, consumption increased from 665 cigarettes per capita in 1920 as 1854 (42,48), consumption did not increase dramatically until after 1909. As shown in Figure 1, per capita consumption of all types of cigarettes increased by more than tenfold from 1900 to 1920. Despite

Gabrieli, John

307

CITIES AND MILEAGE IN PA Abingdon Heights 252  

E-Print Network [OSTI]

(Longwood) 86 King of Prussia 125-135 Kings Gap 139 Kinzers 34 Kutztown 116 Lafayette Hill 130 Lake City Newtown (Bucks County) 150 Newtown (near Wilkes Barre) 225 Norristown 128 North Wales 135 Northampton 180

Hardy, Christopher R.

308

Microsoft Word - CX_PA-Sappho-LLIP-L0254.doc  

Broader source: Energy.gov (indexed) [DOE]

project area. There will be no tree removal as a result of this project. Erosion and sediment controls will be implemented as necessary to eliminate any effects from potential...

309

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

technologies through verify storage permanence and track plume movement. * Geospatial data resources-Developing resources to improve access to geospatial data for public...

310

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to offshore hydrocarbon production and the recovery of unconventional resources like shale gas, estimating CO 2 storage potential in various types of geologic formations, and...

311

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sequestration Core Flow Laboratory Background Sequestration of CO 2 and production of coalbed methane (CBM) can affect the strata in various ways. For example, coal can swell...

312

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

priations) to the FutureGen Industrial Alliance (Alliance) to build FutureGen 2.0-a clean coal repowering program and CO 2 pipeline and storage network. The FutureGen 2.0 Program...

313

apparent pa2 analysis: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

spectral evolution, with 16 of them being smooth tails directly following the prompt Zhang, Bing 4 Analysis of the apparent lack of power in the cosmic microwave...

314

NOAA PA 200455 Datos relacionados con la resaca  

E-Print Network [OSTI]

de sus oficinas transmiten un Surf Zone Forecast (Pronóstico para las zonas de oleaje). Cuando.ripcurrents.noaa.gov www.usla.org Un cambio en la configuración del oleaje indica la presencia de la resaca. De acuerdo con adentro. Un cambio en la configuración del oleaje. ¿ Qué debo hacer si la resaca me atrapa? Mantenga la

315

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from Fossil Energy R&D 1 Bezdek, R. Wendling, R., The Return on Investment of the Clean Coal Technology Program in the USA. Energy Policy, Vol. 54, March 2013, pp. 104-112 2...

316

Northeast - NY NJ CT PA Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company)References ↑ US Census BureauNorthbrook, Ohio: EnergyJump to:

317

Hanford Site Waste Management Area C Performance Assessment (PA) Current  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS Cable Projects HTS CableMay 2009 Hanford SiteMaterial

318

QER Public Meeting in Pittsburgh, PA: Natural Gas: Transmission, Storage  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 | DepartmentLoans | Department of- East | Department ofand

319

P.A. Capdau Charter School | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil's Impact on OurSemprius ConfidentialandEnergySite

320

PA Sangli Bundled Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New Energy CoFirstNovos Sistemas deOstseeoftechnic GmbHPA

Note: This page contains sample records for the topic "appalachian marcellus pa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Microsoft Word - PA_Viewing_Your_Position_Description_QRG.docx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMappingENVIRONMENTALHYDROPOWERFebruarySavebased on an

322

Northeast - NY NJ CT PA Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico:Community NominationsCarolina‎ |NAE/Enel NorthMiddleNortheast

323

DOE - Office of Legacy Management -- Aeroprojects Inc - PA 22  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are here Home » Sites » SitesNew MexicoAdrian -

324

DOE - Office of Legacy Management -- Beryllium Corp - PA 39  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are here Home »Hill - NJ 0-04 BellCityBeryllium

325

DOE - Office of Legacy Management -- Bettis Atomic Power Laboratories - PA  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are here Home »Hill - NJ 0-04Bethlehem

326

DOE - Office of Legacy Management -- Canonsburg Industrial Park - PA 05  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are here Home »Hill -Elmore - OHCallite

327

DOE - Office of Legacy Management -- Carpenter Steel Co - PA 12  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are here Home »Hill -Elmore -Carpenter Steel Co -

328

DOE - Office of Legacy Management -- Catalytic Co - PA 40  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are here Home »Hill -Elmore -Carpenter Steel

329

DOE - Office of Legacy Management -- Foote Mineral Co - PA 27  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are here Home »HillNYEra ToolFennFood Machinery

330

DOE - Office of Legacy Management -- Frankford Arsenal - PA 21  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are here Home »HillNYEra ToolFennFoodFort St

331

DOE - Office of Legacy Management -- Heppanstall Co - PA 19  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are here HomeGunnison Mill Site -Heald

332

DOE - Office of Legacy Management -- Jessop Steel Co - PA 17  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are here HomeGunnison- NY 38 Rare- IAJ TJessop

333

DOE - Office of Legacy Management -- Koppers Co Inc - PA 25  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are here HomeGunnison- NY 38Kerr McGeeKoppers Co

334

DOE - Office of Legacy Management -- Pennsylvania Ordnance Works - PA 32  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are herePAOsborne Co - OH 34PantexDisposal Site -

335

DOE - Office of Legacy Management -- Sharples Corp - PA 29  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are herePAOsborneSavannah River Swamp

336

DOE - Office of Legacy Management -- Shippingport Atomic Power Plant - PA  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are herePAOsborneSavannah RiverNew Mexico

337

DOE - Office of Legacy Management -- Summerville Tube Co - PA 24  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site - MO 02 FUSRAPStatenSummerville

338

DOE - Office of Legacy Management -- Superior Steel Co - PA 03  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site - MO 02

339

DOE - Office of Legacy Management -- Try Street Terminal - PA 14  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site - MOTracerlab Inc - MA 11USTry

340

Designation Survey - Palmerton, Pa. Ore Storage Site William Bibb  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntownRockyDeparttient,of Energy Washington,

Note: This page contains sample records for the topic "appalachian marcellus pa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Quadrennial Energy Review Stakeholder Meeting #6: Pittsburgh, PA  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research | DepartmentDepartmentHatch, Maryanne5 Updates availablePublic3: New5:6:

342

Appendix SCR: Feature, Event, and Process Screening for PA  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmes LaboratoryAntonyaAppeals4 STANDARDN NEPA

343

Meeting Summary for HTF PA Scoping | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | DepartmentEnergyMagna: Product CapabilitiesMediaStandardsNotes

344

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Houston, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonne National Laboratory

345

InformationTechnologies extension.uci.edu/pa  

E-Print Network [OSTI]

to learn on your own time, in your own way. A certificate bearing the UC seal signifies a well understanding of the creation and utilization of predictive analytics models by defining business goals-commerce, entertainment, government, healthcare, high technology, insurance, and non-profits. The predictive analytics

Barrett, Jeffrey A.

346

Making an impact in public health through philanthrocapitalism : the PaCT Project and ImPaCT Commercial Ventures  

E-Print Network [OSTI]

Large-scale epidemiologic longitudinal cohort studies are a distinct area of epidemiology and public health. To conduct such studies, it often requires exorbitant resources. African collaborators and a team of Harvard ...

Reid, Todd Germaine

2011-01-01T23:59:59.000Z

347

Fire Regimes and Successional Dynamics of Pine and Oak Forests in the Central Appalachian Mountains  

E-Print Network [OSTI]

The role of fire in determining the structure and composition of many forested ecosystems is well documented (e.g. North American boreal forests; pion-juniper woodlands of the western US). Fire is also believed to be important in temperate forests...

Aldrich, Serena Rose

2012-07-16T23:59:59.000Z

348

INNOVATAIVE METHODOLOGY FOR DETECTION OF FRACTURE-CONTROLLED SWEET SPOTS IN THE NORTHERN APPALACHIAN BASIN  

SciTech Connect (OSTI)

In the structure task, for this reporting period, the authors also edited and revised the map that displays the modified rose diagrams for the data they collected and reduced along the east side of Seneca Lake. They also revised the N-S transect that displays the frequency of ENE-striking fractures, and constructed a new N-S transect that shows the frequency of E-striking fractures. This transect compliments the earlier transect they constructed for fracture frequency of ENE-striking fractures. Significantly, the fracture frequency transect for E-W fractures shows a spike in fracture frequency in the region of the E-striking Firtree anticline that is observed on seismic reflection sections. The ENE fracture set does not exhibit an unusually high fracture frequency in this area. In contrast, the fracture frequency of the ENE-striking set is anomalously high in the region of the Trenton/Black River grabens. They have nearly completed reducing the data they collected from a NNW-SSE transect on the west side of Cayuga Lake and they have constructed modified rose diagrams for most sites. Structure contour maps and isopach maps have been revised based on additional well log analyses. Except for the Glodes Corners Field, the well spacing generally remains insufficient to identify faults or their precise locations. However, relatively sharp elevational changes east of Keuka Lake support the contention that faults occur along the east side of Keuka Lake. Similarly, a single well east of Seneca Lake shows that the Trenton there is low compared to distant wells, based on an assumed regional slope. This same area is where one of the Trenton grabens occurs. They have completed the interpretation of the reprocessed data that Quest licensed and had reprocessed. Several grabens observed in the Trenton and Black River reflectors are consistent with surface structure, soil gas, and aeromagnetic anomalies. In this report they display all four interpreted seismic lines. These data indicate that integration of aeromagnetic and topographic lineaments, surface structure, soil gas with seismic and well logs allows them to extrapolate Trenton-Black River trends away from confirmatory seismic lines.

Robert Jacobi; John Fountain

2002-06-30T23:59:59.000Z

349

Fast Track Reservoir Modeling of Shale Formations in the Appalachian Basin.  

E-Print Network [OSTI]

· Highly organically rich, dark, fine laminated, naturally fractured shale; · Porosity (core measurements ) is from 1 to 5%; · Permeability (core measurements) is in the range of 10-7 to 10-9 md; · Natural fracture was performed in support of the NETL- RUA Authors would like to acknowledge: · NETL/DOE for financially

Mohaghegh, Shahab

350

Our program is immersed in a culture of sustainability at Appalachian  

E-Print Network [OSTI]

-Focused Majors/Programs BS, MS in Appropriate Technology BS, MS in Building Science BS in Environmental Science w/Lab Environmental Chemistry Biology Systematic Botany Marine Sciences Air Pollution Effects Environmental Science program Chancellor Kenneth Peacock joins 677 colleges and universities in signing

Thaxton, Christopher S.

351

E-Print Network 3.0 - appalachian black warrior Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: and in the acquisition of new properties in the Black Warrior Basin of Alabama (coalbed methane Source: Texas at Austin, University of - George E. Brown, Jr. Network for...

352

INNOVATIVE METHODOLOGY FOR DETECTION OF FRACTURE-CONTROLLED SWEET SPOTS IN THE NORTHERN APPALACHIAN BASIN  

SciTech Connect (OSTI)

In the structure task, the goals for this reporting period were to: (1) complete field work on the NNW-SSE transect along the west side of Cayuga Lake; (2) collect data at additional field sites in order to (a) trace structural trends between the two N-S transects and (b) fill in data gaps on the NS transect along the eastern shore of Seneca Lake; (3) enter the data gathered from the summer field work; (4) enter data from the previous field season that still had to be analyzed after a personnel change. We have completed data reduction for all the goals listed above, including the NNW-SSE transect on the west side of Cayuga Lake. In the soil gas task, the goals for this reporting period were to: (1) trace Trenton/Black River fault trends between the two N-S transects; and (2) enter the data gathered from the summer field work. We have completed data reduction for all the goals listed above, and have begun constructing maps that portray the data. These data continue to demonstrate that integration of aeromagnetic and Landsat lineaments, surface structure, soil gas and seismic allows us to extrapolate Trenton-Black River trends away from confirmatory seismic lines.

Robert Jacobi; John Fountain

2003-03-14T23:59:59.000Z

353

E-Print Network 3.0 - appalachian region oil Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Report. I hope you enjoy learning more about the university's commitment... to sustainability and the related work of our engaged students, faculty and staff....

354

Appalachian State University Water Resources Planning Committee Impacts of Urbanization on Headwater  

E-Print Network [OSTI]

-gradient stream ­ Compromised roadway / structure integrity · Convenient resource for... ­ Research ­ Instruction-minute time series of... Hourly CRONOS data: Precip., Air temp., Wind, Solar Rad., etc... Thanks

Thaxton, Christopher S.

355

E-Print Network 3.0 - appalachian coal mining Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

provides easy access to energy-rich ... Source: Jones, Clive G. - Cary Institute of Ecosystem Studies Collection: Environmental Sciences and Ecology 3 Originally published:...

356

Appalachian Student Research Forum Poster Presentation Score Sheet NAME OF PRESENTER. Doe, John POSTER NO: 1  

E-Print Network [OSTI]

? Was the experiment or study method well-designed? SCORE: ________. 3. Work and Effort Involved Was the depth for their work? SCORE: ________. 4. Results Were there clear, readable, visibly-labeled figures? Was statistical. Abstract Was the abstract well displayed on the poster? Did the abstract paragraph contain the proper

Karsai, Istvan

357

44 Journal of Student Research in Environmental Science at Appalachian Determining the viability of the practical  

E-Print Network [OSTI]

to the output from data pro- vided by the electric company, New River Light & Power (NRLP). A PV solar electric energy are too low to implement solar power as an effective replacement for conventional power generation of Boone (TOB) in North Carolina to determine to what extent the application of current solar power

Thaxton, Christopher S.

358

Creating a Geologic Play Book for Trenton-Black River Appalachian Basin Exploration  

SciTech Connect (OSTI)

Preliminary isopach and facies maps, combined with a literature review, were used to develop a sequence of basin geometry, architecture and facies development during Cambrian and Ordovician time. The main architectural features--basins, sub basins and platforms--were identified and mapped as their positions shifted with time. This is significant because a better understanding of the control of basin geometry and architecture on the distribution of key facies and on subsequent reservoir development in Ordovician carbonates within the Trenton and Black River is essential for future exploration planning. Good exploration potential is thought to exist along the entire platform margin, where clean grainstones were deposited in skeletal shoals from Indiana thorough Ohio and Ontario into Pennsylvania. The best reservoir facies for the development of hydrothermal dolomites appears to be these clean carbonates. This conclusion is supported by observations taken in existing fields in Indiana, Ontario, Ohio and New York. In contrast, Trenton-Black River production in Kentucky and West Virginia has been from fractured, but non-dolomitized, limestone reservoirs. Facies maps indicate that these limestones were deposited under conditions that led to a higher argillaceous content than the cleaner limestones deposited in higher-energy environments along platform margins. However, even in the broad area of argillaceous limestones, clean limestone buildups have been observed in eastern outcrops and, if present and dolomitized in the subsurface, may provide additional exploration targets. Structure and isopach maps developed as part of the structural and seismic study supported the basin architecture and geometry conclusions, and from them some structural control on the location of architectural features may be inferred. This portion of the study eventually will lead to a determination of the timing relative to fracturing, dolomitization and hydrocarbon charging of reservoirs in the Trenton and Black River carbonates. The focus of this effort will shift in the next few months from regional to more detailed structural analyses. This new effort will include topics such as the determination of the source of the hot, dolomitizing fluids that created hydrothermal dolomite reservoirs in the Black River, and the probable migration paths of these fluids. Faults of suitable age, orientation and location to be relevant for hydrothermal dolomite creation in the Trenton-Black River play will be isolated and mapped, and potential fairways delineated. A detailed study of hydrothermal alteration of carbonate reservoirs was completed and is discussed at length in this report. New ideas that were developed from this research were combined with a literature review and existing concepts to develop a model for the development of hydrothermal dolomite reservoirs in the study area. Fault-related hydrothermal alteration is a key component of this model. Hydrothermal alteration produces a spectrum of features in reservoirs, ranging from leached limestone and microporosity to matrix dolomite, saddle dolomite-lined breccias, zebra fabrics and fractures. Mineralization probably occurred during the pressure drop associated with the rise of fluids up the fault system, and is due to the mixing of hydrothermal fluids with cooler, in situ fluids. Once they began to cool themselves, the hydrothermal fluids, which had a lower pH and higher salinity than formation fluids, were capable of leaching the host limestones. Microporosity is common in leached limestones, and it is likely that it was formed, in some cases, during hydrothermal alteration. Dolomite leaching occurs near the end of the paragenetic sequence, and may significantly enhance porosity. However, leaching of dolomite typically is followed by the precipitation of calcite or anhydrite, which reduces porosity. A final conclusion is that hydrothermal alteration may be more common than previously thought, and some features previously attributed to other processes may be in fact be hydrothermal in origin. Production d

Douglas G. Patchen; Taury Smith; Ron Riley; Mark Baranoski; David Harris; John Hickman; John Bocan; Michael Hohn

2005-09-30T23:59:59.000Z

359

18 Journal of Student Research in Environmental Science at Appalachian Diurnal and seasonal characteristics  

E-Print Network [OSTI]

they tend to be removed in the upper respiratory system [1]. PM2.5 particles less than 2.5 micrometers-level ozone adversely affects health (e.g. acute respiratory problems and immune system impairment over rural areas like GSMNP. One of the possible mechanisms for long range transport of ozone from

Thaxton, Christopher S.

360

E-Print Network 3.0 - appalachian underground corrosion Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering 10 Technical Report Documentation Page 1. Report No. Summary: and the creep potential of RAP. The most critical durability issue most likely is the corrosion of...

Note: This page contains sample records for the topic "appalachian marcellus pa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

36 Journal of Student Research in Environmental Science at Appalachian Groundwater Contamination and Health  

E-Print Network [OSTI]

fracturing (or "fracking") is a contentious topic with a limited but ex- panding body of credible, objective shown a recent inter- est in performing a survey of the consequences of fracking, from hydrological used in the process of hydraulic fracturing, (a.k.a ­ "hydro fracking", or "fracking"). Environmental

Thaxton, Christopher S.

362

NYMEX Central Appalachian coal futures near-month contract final settlement  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0,InformationU.S. Crude Oil31 E nprice history Data

363

Origin Basin Destination State STB EIA STB EIA Northern Appalachian Basin  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas,095,3628,527 9,029 8,794 2011-2013DecadeDelaware W $28.49 W

364

Origin Basin Destination State STB EIA STB EIA Northern Appalachian Basin  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas,095,3628,527 9,029 8,794 2011-2013DecadeDelaware W $28.49

365

Microsoft PowerPoint - APPALACHIAN_STATE_Presentation 4 27 2015 lower quality pics.pptx  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.eps More Documents &Small2011FY 20117 RainesWaste

366

PUBLICATION 460-144 More than a million acres in the Appalachian region  

E-Print Network [OSTI]

. Burger, Professor Emeritus, Forestry and Soil Science, College of Natural Resources, Virginia Tech Carl E. Zipper, Extension Specialist, Crop and Soil Environmental Sciences, Virginia Tech Powell RiveR PRojec and trees able to survive heavy grass cover and compacted mine soils. Today, these lands are mostly covered

Liskiewicz, Maciej

367

Andi M. Cochran Department of Geography and Planning | Appalachian State University  

E-Print Network [OSTI]

, stream monitoring, and grant writing for best management practices within the county. This grant funded,10) 2006 ­ 2008 Environmental Scientist, ENV ­ Environmental Consulting Services, Boone, NC Responsibilities included wetland delineations, environmental site assessments, water quality monitoring

368

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Broader source: Energy.gov (indexed) [DOE]

24 months Gary Covatch Houston, TX Zonal Isolation Improvement for Horizontal Wells Drilling in the Marcellus Shale Perform analytical assessments of lab test results and field...

369

CX-007941: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Zonal Isolation Improvement for Horizontal Wells Drilling in the Marcellus Shale CX(s) Applied: A9 Date: 02152012 Location(s): Texas...

370

CX-007940: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Zonal Isolation Improvement for Horizontal Wells Drilling in the Marcellus Shale CX(s) Applied: B3.6 Date: 02152012 Location(s): Texas...

371

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Broader source: Energy.gov (indexed) [DOE]

24 months Gary Covatch Houston, TX Zonal Isolation Improvement for Horizontal Wells Drilling in the Marcellus Shale Optimize zonal isolation through assessment of current...

372

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Broader source: Energy.gov (indexed) [DOE]

Houston, TX Zonal Isolation Improvements for Horizontal Wells Drilled in the Marcellus Shale Perform analytical assessments of lab test results and field test results. Gary L....

373

Lowering Drilling Cost, Improving Operational Safety, and Reducing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Impact through Zonal Isolation Improvements for Horizontal Wells Drilled in the Marcellus Shale 10122.19.Final 11132014 Jeff Watters, Principal Investigator General Manager CSI...

374

Appalachia's new region-wide CDFI : building local community with global capital?  

E-Print Network [OSTI]

The Appalachian Regional Commission is currently working with a major foundation on the development of a new regional Community Development Financial Institution (CDFI), Appalachian Community Capital. By connecting ...

Spicer, Jason S. (Jason Simpson)

2014-01-01T23:59:59.000Z

375

Tax Credits, Rebates & Savings | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Appalachian Power- Commercial and Industrial Rebate Programs (West Virginia) Appalachian Power and Wheeling Power are offering prescriptive incentives under the APCo C&I...

376

Tax Credits, Rebates & Savings | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Heat Pumps, Lighting AEP Appalachian Power- Commercial and Industrial Rebate Programs (West Virginia) Appalachian Power and Wheeling Power are offering prescriptive incentives...

377

United States Department of  

E-Print Network [OSTI]

decade, advances in drilling technology, increasing natural gas prices, existing pipeline infrastructure of Energy 2003, 2005). The Appalachian Basin, centered along the Appalachian Mountains from New York

378

RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES  

SciTech Connect (OSTI)

The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. In this quarterly report, we present a preliminary comparison of the carbon sequestration potential of forests growing on 14 mined sites in a seven-state region in the Midwestern and Eastern Coalfields. Carbon contents of these forests were compared to adjacent forests on non-mined land. The study was installed as a 3 x 3 factorial in a random complete block design with three replications at each location. The treatments include three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots requires 4.5 acres, and the complete installation at each site requires 13.5 acres. The plots at all three locations have been installed and the plot corners marked with PVC stakes. GPS coordinates of each plot have been collected. Soil samples were collected from each plot to characterize the sites prior to treatment. Analysis of soil samples was completed and these data are being used to prepare fertilizer prescriptions. Fertilizer prescripts will be developed for each site. Fertilizer will be applied during the second quarter 2004. Data are included as appendices in this report. As part of our economic analysis of mined land reforestation, we focused on the implications of a shift in reforestation burden from the landowner to the mine operator. Results suggest that the reforestation of mined lands as part of the mining operation creates a viable and profitable forest enterprise for landowners with greater potential for carbon sequestration.

J. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

2004-06-04T23:59:59.000Z

379

RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES  

SciTech Connect (OSTI)

The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. In this quarterly report, we present a preliminary comparison of the carbon sequestration benefits for two forest types used to convert abandoned grasslands for carbon sequestration. Annual mixed hardwood benefits, based on total stand carbon volume present at the end of a given year, range from a minimum of $0/ton of carbon to a maximum of $5.26/ton of carbon (low prices). White pine benefits based on carbon volume range from a minimum of $0/ton of carbon to a maximum of $18.61/ton of carbon (high prices). The higher maximum white pine carbon payment can primarily be attributed to the fact that the shorter rotation means that payments for white pine carbon are being made on far less cumulative carbon tonnage than for that of the long-rotation hardwoods. Therefore, the payment per ton of white pine carbon needs to be higher than that of the hardwoods in order to render the conversion to white pine profitable by the end of a rotation. These carbon payments may seem appealingly low to the incentive provider. However, payments (not discounted) made over a full rotation may add up to approximately $17,493/ha for white pine (30-year rotation), and $18,820/ha for mixed hardwoods (60-year rotation). The literature suggests a range of carbon sequestration costs, from $0/ton of carbon to $120/ton of carbon, although the majority of studies suggest a cost below $50/ ton of carbon, with van Kooten et al. (2000) suggesting a cutoff cost of $20/ton of carbon sequestered. Thus, the ranges of carbon payments estimated for this study fall well within the ranges of carbon sequestration costs estimated in previous studies.

J. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

2003-12-18T23:59:59.000Z

380

Restoring Sustainable Forests on Appalachian Mined Lands for Wood Products, Renewable Energy, Carbon Sequestration, and Other Ecosystem Services  

SciTech Connect (OSTI)

The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. We are currently estimating the acreage of lands in Virginia, West Virginia, Kentucky, Ohio, and Pennsylvania mined under SMCRA and reclaimed to non-forested post-mining land uses that are not currently under active management, and therefore can be considered as available for carbon sequestration. To determine actual sequestration under different forest management scenarios, a field study was installed as a 3 x 3 factorial in a random complete block design with three replications at each of three locations, one each in Ohio, West Virginia, and Virginia. The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots is 4.5 acres, and the complete installation at each site is 13.5 acres. Regression models of chemical and physical soil properties were created in order to estimate the SOC content down the soil profile. Soil organic carbon concentration and volumetric percent of the fines decreased exponentially down the soil profile. The results indicated that one-third of the total SOC content on mined lands was found in the surface 0-13 cm soil layer, and more than two-thirds of it was located in the 0-53 cm soil profile. A relative estimate of soil density may be best in broad-scale mine soil mapping since actual D{sub b} values are often inaccurate and difficult to obtain in rocky mine soils. Carbon sequestration potential is also a function of silvicultural practices used for reforestation success. Weed control plus tillage may be the optimum treatment for hardwoods and white pine, as any increased growth resulting from fertilization may not offset the decreased survival that accompanied fertilization. Relative to carbon value, our analysis this quarter shows that although short-rotation hardwood management on reclaimed surface mined lands may have higher LEVs than traditional long-rotation hardwood management, it is only profitable in a limited set of circumstances.

James A. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

2005-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "appalachian marcellus pa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

62 Journal of Student Research in Environmental Science at Appalachian Site Suitability Analysis for a Solar Farm  

E-Print Network [OSTI]

]. The semiconductor materials typically used are crystalline-silicone, containing monocrystalline or polycrystalline cells, or thin-film, containing materials including CdTe and copper indium gal- lium selenide, solar modules [2]. Although thin- film solar panels are typically less expensive than c-Si solar panels

Thaxton, Christopher S.

382

Implications of thermal events on thrust emplacement sequence in the Appalachian fold and thrust belt: Some new vitrinite reflectance data  

SciTech Connect (OSTI)

Interpretation of existing geothermometry data combined with new vitrinite reflectance data, within the framework of a detailed composite tectonic setting, elucidates the evolution of structural sequencing of thrust sheets during the Alleghanian event in the Valley and Ridge Province in Virginia. That the Pulaski thrust sheet preceded the Saltville thrust sheet in the emplacement sequence, and that both reached thermal maxima prior to, or during, respective emplacement may be inferred from vitrinite and other geothermometry data. In contrast, the Narrows and St. Clair thrust sheets probably each attained their thermal maximum after emplacement. New vitrinite reflectance data are consistent with CAI and other temperature-sensitive information heretofore ascertained in the Valley and Ridge Province and support previously established maximum temperatures of ca. 200C for strata of the Saltville thrust sheet as young as Mississippian. R{sub max} values from Mississippian coals in the Price Formation of the Saltville sheet, beneath but near the Pulaski thrust, range from 1.61% to 2.60%. At the structural front of the fold and thrust belt, a single Mississippian coal sample from the Bluefield Formation yields an R{sub max} value of 1.35%. Those coals showing highest R{sub max} values are more intensely fractured with secondary minerals filling the fractures. Warm fluids introduced during tectonic events may have played at least as important a role as that of combined stratigraphic and tectonic burial.

Lewis, S.E.; Hower, J.C. (Montana Tech, Butte (USA))

1990-11-01T23:59:59.000Z

383

Fast Track Reservoir Modeling of Shale Formations in the Appalachian Basin. Application to Lower Huron Shale in Eastern Kentucky  

SciTech Connect (OSTI)

In this paper a fast track reservoir modeling and analysis of the Lower Huron Shale in Eastern Kentucky is presented. Unlike conventional reservoir simulation and modeling which is a bottom up approach (geo-cellular model to history matching) this new approach starts by attempting to build a reservoir realization from well production history (Top to Bottom), augmented by core, well-log, well-test and seismic data in order to increase accuracy. This approach requires creation of a large spatial-temporal database that is efficiently handled with state of the art Artificial Intelligence and Data Mining techniques (AI & DM), and therefore it represents an elegant integration of reservoir engineering techniques with Artificial Intelligence and Data Mining. Advantages of this new technique are a) ease of development, b) limited data requirement (as compared to reservoir simulation), and c) speed of analysis. All of the 77 wells used in this study are completed in the Lower Huron Shale and are a part of the Big Sandy Gas field in Eastern Kentucky. Most of the wells have production profiles for more than twenty years. Porosity and thickness data was acquired from the available well logs, while permeability, natural fracture network properties, and fracture aperture data was acquired through a single well history matching process that uses the FRACGEN/NFFLOW simulator package. This technology, known as Top-Down Intelligent Reservoir Modeling, starts with performing conventional reservoir engineering analysis on individual wells such as decline curve analysis and volumetric reserves estimation. Statistical techniques along with information generated from the reservoir engineering analysis contribute to an extensive spatio-temporal database of reservoir behavior. The database is used to develop a cohesive model of the field using fuzzy pattern recognition or similar techniques. The reservoir model is calibrated (history matched) with production history from the most recently drilled wells. The calibrated model is then further used for field development strategies to improve and enhance gas recovery.

Grujic, Ognjen; Mohaghegh, Shahab; Bromhal, Grant

2010-07-01T23:59:59.000Z

384

32 Journal of Student Research in Environmental Science at Appalachian Energy budget of nitrogen use in the  

E-Print Network [OSTI]

process of combining free nitrogen gas from the air (N2) with hydrogen (from natural gas). Today, natu nitrate 31.4 NBF average ­ Natural Gas 32.3 Coal 56.9 #12;Volume 1, 1st Edition · Spring 2011 33 and 27, 73% use natural gas-operated plants and 27% use coal. Since there is a lack of data (or the data

Thaxton, Christopher S.

385

Climatological lightning characteristics of the Southern Rocky and Appalachian Mountain chains, a comparison of two distinct mountain effects  

E-Print Network [OSTI]

produced statistically poor results. ~ L5 Wl 1. $ Zs 3A 4I & ~ 50 1II ISI km Fig l. SW Region Annual Flash Density. Contours are flashes km yr'. s 1. I 1. 7 2A sr z$4$ & 'L, I 0 5I 1' 2M ba Fig 2. SE Region Annual Flash Density. Contours are flashes... km yr'. Meteorological satellites further advanced thunderstorm research by allowing scientists to "trace back" thunderstorm clouds to their initial cumulus form. Klitch et al. (1985) and Weaver and Kelly (1982) showed that Colorado summertime...

Phillips, Stephen Edward

2001-01-01T23:59:59.000Z

386

Water's Journey Through the Shale Gas Drilling and  

E-Print Network [OSTI]

Water's Journey Through the Shale Gas Drilling and Production Processes in the Mid-Atlantic Region: Marcellus shale drilling in progress, Beaver Run Reservoir, Westmoreland County. Credit: Robert Donnan. Gas. This publication fo- cuses mostly on Pennsylvania because it has the most Marcellus drilling activity of any state

Lee, Dongwon

387

Conrad (Dan) Volz, DrPH, MPH Department of Environmental and Occupational Health,  

E-Print Network [OSTI]

of Pittsburgh, Graduate School of Public Health, cdv5@pitt.edu Director- Center for Healthy Environments://fractracker.org http://data.fractracker.org Marcellus Shale Gas Extraction; Public Health Impacts and Visualizations Associated with Intense Marcellus Shale Gas Production 1. Community and behavioral health impacts. 2

Sibille, Etienne

388

U.S. Department of the Interior U.S. Geological Survey  

E-Print Network [OSTI]

of natural gas. New devel- opments in drilling technology, along with higher wellhead prices, have made the Marcellus Shale an important natural gas resource. The Marcellus Shale extends from southern New York across- mercial quantities of gas from this shale requires large volumes of water to drill and hydraulically

Boyer, Elizabeth W.

389

Shale and the Environment Critical Need for a Government-University-  

E-Print Network [OSTI]

water and produces wastewater 1. Protecting surface waters from spills of chemicals or wastewater. 2 and Public Policy Center for Atmospheric Particle Studies #12;Drill Rigs Frac pumps Completion http://www.marcellus-shale.us Completion http://www.marcellus-shale.us Compressor stations Flaring Drilling Condensate Tanks Fracing

McGaughey, Alan

390

Underground Injection Wells as an Option for Disposal of Shale Gas Wastewaters: Policies & Practicality.  

E-Print Network [OSTI]

environments and are very salty, like the Marcellus shale and other oil and gas formations underlying the areaUnderground Injection Wells as an Option for Disposal of Shale Gas Wastewaters: Policies), Region 3. Marcellus Shale Educational Webinar, February 18, 2010 (Answers provide below by Karen Johnson

Boyer, Elizabeth W.

391

Iron metabolism in the opportunistic pathogen Pseudomonas aeruginosa requires two ferritin-like molecules, Pa FtnA and Pa BfrB  

E-Print Network [OSTI]

coded by two different genes bfrA and bfrB which coexists. Our research was focused on an idea that Pseudomonas aeruginosa have one bacterioferritin and one bacterial ferritin which acts as iron storage proteins instead of a heterogeneous...

Nama, Pavithra Vani

2012-08-31T23:59:59.000Z

392

Rank Name Peak Date Peak Location Bomb Peak Gradient Min Depth (Hr-Dy-Mn-Yr) (Lat, Lon) (Bergeron) (hPa/1000km) (hPa)  

E-Print Network [OSTI]

Rank Name Peak Date Peak Location Bomb Peak Gradient Min Depth (Hr-Dy-Mn-Yr) (Lat, Lon) (Bergeron, and northwest europe (Cambride Univ. Pr.). 1 #12;Figure S1(a): Evolution of 'Daria' (the top ranked storm arrow is approximately 50 m s-1). 2 #12;Figure S1(b): As for Figure S1(a) but for the storm ranked

Caballero, Rodrigo

393

CCNY/SDSBE PA Program Standards for Capacity (Technical Standards) Students at CCNY/SDSBE PA Program must have capacities/abilities in five broad  

E-Print Network [OSTI]

, fundoscopes, sphygmomanometers, and reflex hammers; verbal communication and non-verbal cues (as in taking

Brinkmann, Peter

394

Panegyrics in Honor of Sakya Pandita (Cho rje sa skya pan+Di ta la bod kyi mkhas pa rnams kyis bstod pa)  

E-Print Network [OSTI]

of the ocean of Sciences, Seized with the treasure island of Sermon, With reputation decorating the ears of all, (Thou) Sakyapa wonderous object of praise. '2. By knowledge (Thou) seest the Truth of all Wisdom, Out of love (Thou) entertainest the living...

Tulku, Mynak R

1968-11-12T23:59:59.000Z

395

1997 Frontiers in Education Conference -Paper Number: 1031, Pittsburgh, PA November, 1997 Proceedings of 1997 Frontiers in Education Conference, Pittsburgh, PA, Nov. 1997 1  

E-Print Network [OSTI]

years to search for `best practices' in, for example, business operations, customer relations, product drill, the hand held mixer, the food blender, and the oscillating cooling fan. The selection

Lamancusa, John S.

396

Natural gas distributed throughout the Marcellus black shale in northern Appalachia could boost proven U.S. gas reserves by trillions of cubic feet (see http://live.psu.edu/story/28116).  

E-Print Network [OSTI]

Pennsylvania Public Broadcasting television program (see http:/wpsu.org/gasrush) explored issues landowners royalties, which are agreed upon shares of the value of gas lifted from natural deposits

Boyer, Elizabeth W.

397

Assessment of Factors Influencing Effective CO{sub 2} Storage Capacity and Injectivity in Eastern Gas Shales  

SciTech Connect (OSTI)

Building upon advances in technology, production of natural gas from organic-rich shales is rapidly developing as a major hydrocarbon supply option in North America and around the world. The same technology advances that have facilitated this revolution - dense well spacing, horizontal drilling, and hydraulic fracturing - may help to facilitate enhanced gas recovery (EGR) and carbon dioxide (CO{sub 2}) storage in these formations. The potential storage of CO {sub 2} in shales is attracting increasing interest, especially in Appalachian Basin states that have extensive shale deposits, but limited CO{sub 2} storage capacity in conventional reservoirs. The goal of this cooperative research project was to build upon previous and on-going work to assess key factors that could influence effective EGR, CO{sub 2} storage capacity, and injectivity in selected Eastern gas shales, including the Devonian Marcellus Shale, the Devonian Ohio Shale, the Ordovician Utica and Point Pleasant shale and equivalent formations, and the late Devonian-age Antrim Shale. The project had the following objectives: (1) Analyze and synthesize geologic information and reservoir data through collaboration with selected State geological surveys, universities, and oil and gas operators; (2) improve reservoir models to perform reservoir simulations to better understand the shale characteristics that impact EGR, storage capacity and CO{sub 2} injectivity in the targeted shales; (3) Analyze results of a targeted, highly monitored, small-scale CO{sub 2} injection test and incorporate into ongoing characterization and simulation work; (4) Test and model a smart particle early warning concept that can potentially be used to inject water with uniquely labeled particles before the start of CO{sub 2} injection; (5) Identify and evaluate potential constraints to economic CO{sub 2} storage in gas shales, and propose development approaches that overcome these constraints; and (6) Complete new basin-level characterizations for the CO{sub 2} storage capacity and injectivity potential of the targeted eastern shales. In total, these Eastern gas shales cover an area of over 116 million acres, may contain an estimated 6,000 trillion cubic feet (Tcf) of gas in place, and have a maximum theoretical storage capacity of over 600 million metric tons. Not all of this gas in-place will be recoverable, and economics will further limit how much will be economic to produce using EGR techniques with CO{sub 2} injection. Reservoir models were developed and simulations were conducted to characterize the potential for both CO{sub 2} storage and EGR for the target gas shale formations. Based on that, engineering costing and cash flow analyses were used to estimate economic potential based on future natural gas prices and possible financial incentives. The objective was to assume that EGR and CO{sub 2} storage activities would commence consistent with the historical development practices. Alternative CO{sub 2} injection/EGR scenarios were considered and compared to well production without CO{sub 2} injection. These simulations were conducted for specific, defined model areas in each shale gas play. The resulting outputs were estimated recovery per typical well (per 80 acres), and the estimated CO{sub 2} that would be injected and remain in the reservoir (i.e., not produced), and thus ultimately assumed to be stored. The application of this approach aggregated to the entire area of the four shale gas plays concluded that they contain nearly 1,300 Tcf of both primary production and EGR potential, of which an estimated 460 Tcf could be economic to produce with reasonable gas prices and/or modest incentives. This could facilitate the storage of nearly 50 Gt of CO{sub 2} in the Marcellus, Utica, Antrim, and Devonian Ohio shales.

Godec, Michael

2013-06-30T23:59:59.000Z

398

Determination of the Porosity Surfaces of the Disposal Room Containing Various Waste Inventories for WIPP PA.  

SciTech Connect (OSTI)

This report develops a series of porosity surfaces for the Waste Isolation Pilot Plant. The concept of a porosity surface was developed for performance assessment and comprises calculation of room closure as salt creep processes are mitigated by gas generation and back stress created by the waste packages within the rooms. The physical and mechanical characteristics of the waste packaging that has already been disposed--such as the pipe overpack--and new waste packaging--such as the advanced mixed waste compaction--are appreciably different than the waste form upon which the original compliance was based and approved. This report provides structural analyses of room closure with various waste inventories. All of the underlying assumptions pertaining to the original compliance certification including the same finite element code are implemented; only the material parameters describing the more robust waste packages are changed from the certified baseline. As modeled, the more rigid waste tends to hold open the rooms and create relatively more void space in the underground than identical calculations run on the standard waste packages, which underpin the compliance certification. The several porosity surfaces quantified within this report provide possible ranges of pressure and porosity for performance assessment analyses.3 Intentionally blank4 AcknowledgementsThis research is funded by WIPP programs administered by the U.S. Department of Energy. The authors would like to acknowledge the valuable contributions to this work provided by others. Dr. Joshua S. Stein helped explain the hand off between these finite element porosity surfaces and implementation in the performance calculations. Dr. Leo L. Van Sambeek of RESPEC Inc. helped us understand the concepts of room closure under the circumstances created by a rigid waste inventory. Dr. T. William Thompson and Tom W. Pfeifle provided technical review and Mario J. Chavez provided a Quality Assurance review. The paper has been improved by these individuals.Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94Al850005 Intentionally Blank6

Park, Byoung; Hansen, Francis D.

2005-07-01T23:59:59.000Z

399

ICHEP94 Ref. 0258 LU TP 9412 Submitted to Pa 11, 06 July, 1994  

E-Print Network [OSTI]

such as YNi B C or LuNi B C, without the influence of magnetic order. Here, we2 2 2 2 present data from local

Lunds Universitet,

400

EERE PROJECT MANAGEMENT CENTER Nl!PA DI!TFIU.nNATION  

Broader source: Energy.gov (indexed) [DOE]

Petersburg, Florida 33710. The proposed site is located in a residential and commercial area. The proposed system woutd be located on the north side of the property, which is...

Note: This page contains sample records for the topic "appalachian marcellus pa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

EIS-0221: Proposed York County Energy Partners Cogeneration Facility, York County, PA  

Broader source: Energy.gov [DOE]

The Department of Energy prepared this environmental impact statement to assess the environmental and human health impacts associated with construction and operation of the York County Energy Partners, L.P. Cogeneration Facility on a 38- acre parcel in North Codorus Township, York County, Pennsylvania.

402

XUANHONG CHENG, Ph. D. 5 E. Packer Avenue, Whitaker Laboratory 264, Lehigh University, Bethlehem, PA, 18018  

E-Print Network [OSTI]

Demirci, Lee Zamir, Ronald G. Tompkins, Mehmet Toner, William Rodriguez, "A Microchip Approach Zamir, Ronald G. Tompkins, William Rodriguez, Mehmet Toner, "Practical Label-free CD4+ T Cell Counting-72(2006). Xuanhong Cheng, Heather E. Canavan, M. Jeanette. Wenzel, James R. Hull, Matthew S. Wagner, Sasha J. Kweskin

Gilchrist, James F.

403

JENNIFER L. MACALADY Geosciences Department, Pennsylvania State University, University Park, PA 16802 U.S.A.  

E-Print Network [OSTI]

., Wawrik, B., and Ashby, M. 2011. Biogeochemistry of Coal Bed Methane [invited]. Annual Review of Earth. Coal bed methane- producing microbial community in the Illinois Basin. Applied and Environmental

Macalady, Jenn

404

Anisotropic particle production and azimuthal correlations in high-energy pA collisions  

E-Print Network [OSTI]

We summarize some recent ideas relating to anisotropic particle production in high-energy collisions. Anisotropic gluon distributions lead to anisotropies of the single-particle azimuthal distribution and hence to disconnected contributions to multi-particle cumulants. When these dominate, the four-particle elliptic anisotropy $c_2\\{4\\}$ changes sign. On the other hand, connected diagrams for $m$-particle cumulants are found to quickly saturate with increasing $m$, a ``coherence'' quite unlike conventional ``non-flow'' contributions such as decays. Finally, we perform a first exploratory phenomenological analysis in order to estimate the amplitude ${\\cal A}$ of the $\\cos(2\\varphi)$ anisotropy of the gluon distribution at small $x$, and we provide a qualitative prediction for the elliptic asymmetry from three-particle correlations, $c_2\\{3\\}$.

Dumitru, Adrian; Skokov, Vladimir

2015-01-01T23:59:59.000Z

405

Facilities & Real Estate Services, 3101 Walnut Street, Philadelphia, PA 19104 Vehicular & Pedestrian Instructions  

E-Print Network [OSTI]

Walnut Street / Jones Way and turn right onto Jones Way. At the Class of 1923 Ice Rink, turn left and follow the one-way route around the Ice Rink to the FRES receiving area located at 3133 Jones Way. #12

Sharp, Kim

406

Facilities & Real Estate Services, 3101 Walnut Street, Philadelphia, PA 19104 Vehicular & Pedestrian Way-finding Directions  

E-Print Network [OSTI]

. At the Class of 1923 Ice Rink, turn left and follow the one-way route around the Ice Rink to the FRES receiving

Sharp, Kim

407

THE FRESHWATER DECAPOD CRUSTACEANS (Pa/aemon/dae, Cambar/dae)  

E-Print Network [OSTI]

A Publication of the Savannah River Plant, National Environmental Research Park Program #12 Springfield , Ohio 45501 James H. Thorp Savannah River Ecology Laboratory Drawer E, Aiken, South Carolina 29801 and Gilbert E . Anderson Savannah River Ecology Laboratory Drawer E, Aiken , South Carolina 2980 1

Georgia, University of

408

U.S. DFPARThIENT OFENYRGY EERE PROJECT MANAGEMENT CENTER Nl'PA...  

Broader source: Energy.gov (indexed) [DOE]

main channel of the Mississippi River). Approximately BOO' of dual 6" high density polyethylene (HOPE) pipe would be used to run from the rear oftha Courthouse (north end) to the...

409

U.S. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER N1!PA...  

Broader source: Energy.gov (indexed) [DOE]

Avenue geothermal system . They plan to use 1,300 feet of twin high density polyethylene supplyretum piping along the road to connect into the central well field and to...

410

Flight Testing of the Piper PA-28 Cherokee Archer II Aircraft.  

E-Print Network [OSTI]

?? It is sometimes easily assumed that an experimental measurement will closely mimic the results from an associated theoretical model. The purpose of this project (more)

Johansson, Emil

2014-01-01T23:59:59.000Z

411

WC_1990_010_CLASS_WAIVER_OF_THE_GOVERNMENT_US_AND_FOREIGN_PA...  

Broader source: Energy.gov (indexed) [DOE]

0CLASSWAIVEROFTHEGOVERNMENTUSANDFOREIGNPA.pdf WC1990010CLASSWAIVEROFTHEGOVERNMENTUSANDFOREIGNPA.pdf WC1990010CLASSWAIVEROFTHEGOVERNMENTUSANDFOREIGNPA...

412

Microsoft Word - PA Submission--12-2011 ASCeNews--RG.docx  

National Nuclear Security Administration (NNSA)

opportunity to showcase its contributions to science and technology through high-performance computing (HPC). The ASC booth theme was "Taking on the World's Complex Challenges." 4...

413

Building As Power Plant - BAPP/Invention Works Project at Carnegie Mellon University, Pittsburgh PA, USA  

E-Print Network [OSTI]

turbine and absorption chiller/boiler technologies. In addition, advanced photovoltaic, solar thermal, and geo-thermal systems are being considered for integration. A conceptual scheme for an ?ascending-descending energy scheme? that integrates energy... ?cascading? energy strategy designed to make maximum use of limited natural resources. In a cascading system, a fuel cell and photovoltaic panels might be bundled for the building?s power generation; reject heat from the fuel cell can be converted...

Hartkopf, V.; Archer, D.; Loftness, V.

2004-01-01T23:59:59.000Z

414

M. BERNARDINE DIAS Address: 249 Gross Street, Pittsburgh, PA 15224 Email: mbdias@ri.cmu.edu  

E-Print Network [OSTI]

robot in the environment of a LNG plant. · "iSTEP: innovative Student Tech in Dynamic Environments" Research centered on the design and implementation of a distributed market

Mankoff, Jennifer

415

Environ. Sci. Technol. 1988, 22, 1299-1304 PA. Aluminum speciation was made possible through the  

E-Print Network [OSTI]

. 1987.16.383-390. Schofield,C. L:; Trojnar,J. R. In Polluted Rain;Toribara, T. Y., Miller, M. W., Morrow-310. (19) Henriksen,A.; Skogheim,0.K.; Rosseland,B. 0. Vatten Baker, J. D.; Schofield,C. L. Water,Air, Soil Pollut. 1982, Likens, G. E.; Bormann, F. H.; Pierce,R. S.;Eaton, J. S.; Johnson,N. M. Biogeochemistry

Rochelle, Gary T.

416

=5*10^19 Pa*s R=8.31 J/mol*K  

E-Print Network [OSTI]

the role of viscoelastoplasticity, we numerically model subduction initiation at an extinct ridge-transform dependent Newtonian viscosity[4] and a temperature dependent power-law rheology[1] . Some models include the experimentalists. Inside the Subduction Factory, Eiler, J., ed., vol. 138 of Geophysical Monograph. 5. Schubert, G

Meng, Ellis

417

Effects of zinc smelter emissions on farms and gardens at Palmerton, PA  

SciTech Connect (OSTI)

In 1979, before the primary Zn smelter at Palmerton was closed due to excessive Zn and Cd emissions and change in the price of Zn, we were contacted by a local veterinarian regarding death of foals on farms near the smelter. To examine whether Zn or Cd contamination of forage or soils could be providing potentially toxic levels of Zn or other elements in the diets of foals, we measured metals in forages, soils, and feces of grazing livestock on two farms near Palmerton. The farms were about 2.5 and about 10 km northeast of the East stack. Soils, forages, and feces were greatly increased in Zn and Cd. Soil, forage, and fecal Zn were near 1000 mg/kg and Cd, 10-20 mg/kg at farm A (2.5) compared to normal background levels of 43 mg Zn and 0.2 mg Cd/kg, respectively. Liver and kidney of cattle raised on Farm A were increased in Zn and Cd, indicating that at least part of the Zn and Cd in smelter contaminated forages was bioavailable. During the farm sampling, we obtained soil from one garden in Palmerton within 200 m of the primary (West) smelter. The Borough surrounds the smelter facility in a valley. Because soil Cd was near 100 mg/kg, we sampled garden soils and vegetables from over 40 gardens in 6 randomly selected blocks and in rural areas at different distances from the smelter during September, 1980.

Chaney, R.L.; Beyer, W.N.; Gifford, C.H.; Sileo, L.

1988-01-01T23:59:59.000Z

418

WC_1991_003_CLASS_WAIVER_of_the_Government_US_and_Foreign_Pa...  

Broader source: Energy.gov (indexed) [DOE]

0003CLASSWAIVERoftheGovernmentUSandForeignP.pdf WC1997002CLASSWAIVERFORCRADAAgreementsBECHTELNEVADA.pdf WC1993006CLASSWAIVERoftheGovernmentsUsandForei...

419

SYSTEMS NEUROSCIENCE ing 900 pA in vitro, enabling 100% silencing of neurons in the  

E-Print Network [OSTI]

, equating to >2? increase in tissue volume addressed by a typical single optical fiber; the improvement to >2x increase in brain tissue volume addressed by a typical single optical fiber. Upon expression was statistically significant for irradiances in the optogenetic range of 1­10 mW/mm2 . We also found that Arch

Han, Xue

420

PA-40-201 1 Department of Health and Human Services  

E-Print Network [OSTI]

(s), Year(s), by 5:00 PM local time of applicant organization. AIDS Application Due Date(s) Standard AIDS Organization(s) National Institutes of Health (NIH) Components of Participating Organizations National Cancer Library of Medicine (NLM) Fogarty International Center (FIC) National Center for Complementary

Baker, Chris I.

Note: This page contains sample records for the topic "appalachian marcellus pa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

The seismic structure beneath the South Pa-cific superswell has not been well explored in  

E-Print Network [OSTI]

,Cook-Austral,Marquesas,and Pitcairn) whose volcanic rocks have isotopic characteris- tics suggesting deep mantle origin;and a broad chains in French Polynesia as part of the PLUME (Polynesian Lithosphere and Upper Mantle Experiment) project to image the upper mantle structure beneath French Polynesia [Barruol et al.,2002].The PLUME

422

U.S. DEPARTMENT OFENl!RGY EERE PROJECT MANAGEMENT CENTER Nl!PA...  

Broader source: Energy.gov (indexed) [DOE]

measures that will lead to the construction of more efficient single-family homes and low-rise residential dwelling units. Energy efficiency retrofits or renewable energy projects...

423

Si m pa rele : 29 septembre 1991-14 octobre 1994  

E-Print Network [OSTI]

of Kansas Institute of Haitian Studies Occasional Papers Bryant C. Freeman, Ph.D. - Series Editor N 1 - Konstitisyon Repiblik Ayiti, 29 mas 1987. 1994. Pp. vi-106. Haitian-language version (official orthography) of the present Constitution... Peyi Dayiti. 1995. Pp. v-71. Haitian- language version of N 5, in Pressoir-Faublas orthography. Introduction in English. N 7 - Samuel G. Perkins, "On the Margin of Vesuvius11 : Sketches of St. Domingo, 1785-1793. 1995. Pp. vi-75. First-hand account...

1998-01-01T23:59:59.000Z

424

E-Print Network 3.0 - acidic protein pa Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

; side-chains ; secondary... acid sequence.i.e. 4 Nonetheless, the mechanism of protein folding is not completely understood... criteria (lengths of proteins, SCOP classes,64 ...

425

JOURNAL DE PHYSIQUE Colloque C7, supplment au n12, Tome 43, dcembre 1982 Pa  

E-Print Network [OSTI]

where an atom does not exhaust a l l his capabalities of building, not only the "trivalent" carbon , and a "mnovalent" oxygen i n nitric oxides, as the I?r&nys a l t (KSOJ NO and the other nitroxides. In fact ,the

Paris-Sud XI, Universit de

426

A review of "Rhetoric and Wonder in English Travel Writing" by Jonathan P.A. Sell  

E-Print Network [OSTI]

pulpit. Sauer?s fine argument, however, is strong enough to suc- ceed in either case, and well worth reading. Jonathan P. A. Sell. Rhetoric and Wonder in English Travel Writing, 1560-1613. Burlington, VT: Ashgate, 2006. ii + 215 pp. + 1 ilus. $94....95. Review by M. G. AUNE, CALIFORNIA UNIVERSITY OF PENNSYLVANIA Jonathan P. A. Sell, lecturer at the University of Acal?, Spain, who has published on Shakespeare, Chaucer and modern British literature, has revised his doctoral dissertation into a book...

Aune, M.G.

2007-01-01T23:59:59.000Z

427

PA_Format_WAP April Production Numbers and Total ARRA and Non...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1,402 2,876 Vermont 131 1,008 2,387 Virginia 152 2,605 3,562 Washington 593 4,055 5,703 West Virginia 177 1,370 2,572 Wisconsin 836 3,478 11,097 Wyoming 85 137 405 Total 23,396...

428

Testing nuclear parton distributions with pA collisions at the LHC  

E-Print Network [OSTI]

Global perturbative QCD analyses, based on large data sets from electron-proton and hadron collider experiments, provide tight constraints on the parton distribution function (PDF) in the proton. The extension of these analyses to nuclear parton distributions (nPDF) has attracted much interest in recent years. nPDFs are needed as benchmarks for the characterization of hot QCD matter in nucleus-nucleus collisions, and attract further interest since they may show novel signatures of non-linear density-dependent QCD evolution. However, it is not known from first principles whether the factorization of long-range phenomena into process-independent parton distribution, which underlies global PDF extractions for the proton, extends to nuclear effects. As a consequence, assessing the reliability of nPDFs for benchmark calculations goes beyond testing the numerical accuracy of their extraction and requires phenomenological tests of the factorization assumption. Here we argue that a proton-nucleus collision program at the LHC would provide a set of measurements allowing for unprecedented tests of the factorization assumption underlying global nPDF fits.

Paloma Quiroga-Arias; Jose Guilherme Milhano; Urs Achin Wiedemann

2010-02-12T23:59:59.000Z

429

Water Management EC Kumbur and MM Mench, The Pennsylvania State University, University Park, PA, USA  

E-Print Network [OSTI]

, hydrogen-based proton-exchange membrane fuel cells (PEMFCs) are the most suited for many stationary power fuel cell (PEMFC) assembly and components. CL, catalyst layer; DM, diffusion medium, PEM, polymer, USA & 2009 Elsevier B.V. All rights reserved. Introduction Fuel cells hold great promise to meet

Mench, Matthew M.

430

Onset of the ridge structure in AA, pA and pp collisions  

E-Print Network [OSTI]

It is shown that the anomalous sharp increasing of the strength of the near-side ridge structures observed in Au-Au collisions at $\\sqrt{s}=$ 62 GeV and $\\sqrt{s}=$ 200 GeV and the onset of the ridge structure in pPb and in pp collisions can be naturally explained in the framework of string percolation. In all the cases the near-side strength reflects the collision area covered by the strings stretched between the colliding objects and therefore it is related to the shape of their profile functions. The dependence of the pseudorapidty and azimuthal widths on multiplicty and energy is qualitatively explained.

C. Andrs; A. Moscoso; C. Pajares

2014-12-12T23:59:59.000Z

431

E-Print Network 3.0 - allegheny county pa Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sciences and Ecology 69 National Weather Service Counties as of 352010 combinedid ugctype wfo validbdate validedate state fips name timezone shortugc region...

432

Chita pa bay: elementary readings in Haitian Creole with illustrated dictionary  

E-Print Network [OSTI]

gen kb pou peye ou! 2 I stwa yon bourik* Te gen yon ng ki fk* marye. Ng la moute ak madanm li sou bourik li. Bourik la f yon fopa*. Ng la di: Sa f yon fwa. Bourik la f yon dezym fopa. Ng la di: Sa f de (2) fwa. Bourik la f yon twazym.... Rakonte tout ti blag sa a, san gade tks la. 2 I stwa yon bourik 1. Kisa ng la te fk f? 2. Ak ki moun li te moute sou bourik la? 3. Kisa bourik la te f? 4. L sa a, kisa ng la te di? 5. Apre twazym fopa bourik la, kisa ng la te f? 6. Kisa madanm li...

Freeman, Bryant C.

2004-01-01T23:59:59.000Z

433

Environmental assessment for decontaminating and decommissioning the Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories, Cheswick, PA  

SciTech Connect (OSTI)

The Department of Energy has prepared an environmental assessment on the proposed decontamination and decommissioning of the Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories, Cheswick, Pennsylvania. Based on the environmental assessment, which is available to the public on request, the Department has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969, 42 USC 4321 et seq. Therefore, no environmental impact statement is required. The proposed action is to decontaminate and decommission the Westinghouse Advanced Reactors Division fuel fabrication facilities (the Plutonium Laboratory - Building 7, and the Advanced Fuels Laboratory - Building 8). Decontamination and decommissioning of the facilities would require removal of all process equipment, the associated service lines, and decontamination of the interior surfaces of the buildings so that the empty buildings could be released for unrestricted use. Radioactive waste generated during these activities would be transported in licensed containers by truck for disposal at the Department's facility at Hanford, Washington. Useable non-radioactive materials would be sold as excess material, and non-radioactive waste would be disposed of by burial as sanitary landfill at an approved site.

Not Available

1980-12-01T23:59:59.000Z

434

History, contamination and monitoring of water bodies at the P/A Mayak  

SciTech Connect (OSTI)

The facts concerning the history and contamination data of surface water at Mayak Production Association are given in the article. Data about the monitoring of contaminated water are presented. The monitoring program solved three main problems: assessment of the water quality of basins, examination of water quality in accordance with actual specifications, and reception of new data about the migration of the most important radionuclides.

Drozhko, E.G.; Sharalapov, V.I.; Posokhov, A.K.; Kuzina, N.V.; Postovalova, G.A. [Ministry of Atomic Energy, Chelyabinsk (Russian Federation)

1993-12-31T23:59:59.000Z

435

PaNeCS: A Modeling Language for Passivity-based Design of Networked Control  

E-Print Network [OSTI]

, and commu- nication components has enabled a modern grand vision for real-world Cyber Physical Systems (CPS-triggered control systems explicitly captures in model structure many of the essential relationships in an embedded

Koutsoukos, Xenofon D.

436

U.S. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NJ1PA...  

Broader source: Energy.gov (indexed) [DOE]

A9 Information gathering (including, but nollimiled to, literature surveys. inventories. audits), data analysis (indudm9 computer modeling). document preparation (such as...

437

EERE PROJECT MANAGEMENT CENTER Nl!PA DFTFnIINATION RECIPIENT...  

Broader source: Energy.gov (indexed) [DOE]

field basis, biomass removal would have a negligible to minor adverse impact on soil organic mailer content. The recipient https:www.eere-pmc.energy.govINEPA...

438

SESSIoNE DEL maTTINo 9.00 RegistRazione paRtecipanti  

E-Print Network [OSTI]

sociologo, ?cole des Hautes ?tudes en Sciences Sociales di Parigi] Dal castigo degli dèi ai diritti negati

Robbiano, Lorenzo

439

seca-core-tech-program-pa-01 | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 JointProgram Consortium -|13th Annual SECAProgram

440

seca-core-tech-prw-pa-02 | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 JointProgram Consortium -|13th AnnualReviewSECACore

Note: This page contains sample records for the topic "appalachian marcellus pa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Revised Attachment 2 on 8-30-2004 of FINAL PA.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter ResourcesReviews and Validations U.S.of

442

N N U A L R E P O R T PA G  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challengeMultiscale Subsurface Biogeochemical ModelingMySST w ill h ave 6

443

WC_1992_002_CLASS_WAIVER_of_the_Government_US_and_Foreign_Pa.pdf |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012Nuclear GuideReportVictorDepartment ofDepartment1Department

444

Microsoft Word - PA CoP Charter 12-11-2013  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecemberInitiatives InitiativesShippingHow

445

u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NllPA...  

Broader source: Energy.gov (indexed) [DOE]

ionic, electronic and heat transfer parameters. This project will include in-plane fuel cell transport performance and through-plane transport in membrane, electrodes, and...

446

EIS-0357- Gilberton Coal-to-Clean Fuels and Power Project in Giberton, PA  

Broader source: Energy.gov [DOE]

This Environmental Impact Statement (EIS) assesses the potential environmental impacts that would result from a proposed Department of Energy (DOE) action to provide cost-shared funding for construction and operation of facilities near Gilberton, Pennsylvania, which have been proposed by WMPI PTY, LLC, for producing electricity, steam, and liquid fuels from anthracite coal waste (culm). The project was selected by DOE under the Clean Coal Power Initiative (CCPI) to demonstrate the integration of coal waste gasification and Fischer-Tropsch (F-T) synthesis of liquid hydrocarbon fuels at commercial scale.

447

Page 1 of 28 WIPP:1.4.1.2:PA:QA-L:543261  

E-Print Network [OSTI]

and Decision Analysis Dept. 6711 Sandia National Laboratories Carlsbad Programs Group Carlsbad, NM 88220 #12

448

EERE PROJECT MANAGEMENT CENTER Nl!PA DETl!R}.JINATION  

Broader source: Energy.gov (indexed) [DOE]

ratings. development of energy-efficient manufacturing or industrial practices, and small-scale conservation and renewable energy research and development and pilot projects...

449

Microsoft Word - PA Submission--12-2011 ASCeNews--RG.docx  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review of the Yucca0 National NuclearNationalNovember 20,NOPR7

450

DOE - Office of Legacy Management -- Aluminum Co of America - PA 23  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are here Home » SitesNJ 24 FUSRAP Considered

451

DOE - Office of Legacy Management -- Babcock and Wilcox Co - PA 18  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are here Home » SitesNJFertilizer Works -

452

DOE - Office of Legacy Management -- Bartol Research Foundation - PA 0-02  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are here Home » SitesNJFertilizerBartol Research

453

DOE - Office of Legacy Management -- Birdsboro Steel and Foundry Co - PA 31  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are here Home »Hill - NJFacility - University

454

DOE - Office of Legacy Management -- Curtis-Wright Corp - PA 37  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are here Home »HillNY 28 CornellCrane

455

DOE - Office of Legacy Management -- Landis Machine Tool Co - PA 34  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are here HomeGunnison- NY 38KerrTract

456

DOE - Office of Legacy Management -- Meili and Worthington - PA 0-04  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are here HomeGunnison-Engineer DepotMaybellMeili and

457

DOE - Office of Legacy Management -- Palmerton Ore Buying Site - PA 33  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are herePAOsborne Co - OH 34 FUSRAPOxnardPalmerton

458

DOE - Office of Legacy Management -- Paul and Beekman - PA 0-05  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are herePAOsborne Co - OH 34Pantex SewageTXPaul and

459

DOE - Office of Legacy Management -- Penn Central Transportation Co - PA 06  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are herePAOsborne Co - OH 34Pantex SewageTXPaul

460

DOE - Office of Legacy Management -- Roberts and Manders Corp - PA 28  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are herePAOsborne CoColorado RioMill Site -

Note: This page contains sample records for the topic "appalachian marcellus pa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

DOE - Office of Legacy Management -- Rohm and Hass Co - PA 02  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are herePAOsborne CoColorado RioMill

462

DOE - Office of Legacy Management -- Shallow Land Disposal Area - PA 45  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are herePAOsborneSavannah River Swamp -Shallow Land

463

DOE - Office of Legacy Management -- Teledyne-Columbia-Summerville - PA 01  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site - MO 02Sutton

464

DOE - Office of Legacy Management -- U S Bureau of Mines - PA 36  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site - MOTracerlab Inc -Twin

465

DOE - Office of Legacy Management -- University of Pennsylvania - PA 0-06  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site -Miami - FL 0-01 FUSRAPNevada

466

DOE - Office of Legacy Management -- University of Pittsburgh - PA 0-07  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site -Miami - FL 0-01

467

DOE - Office of Legacy Management -- Vanadium Corp of America - PA 15  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site -Miami - FL 0-01NYStreetVanadium

468

18 MILES NORTH OF PHlLADEl.PHlA HATBORO, PA. August  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site -MiamiYVE r 1Lcla (8.8gJ , ' ! i8

469

State College Area High School From State College, PA Wins DOE's National  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research |RegulationRenewable EnergySouthwest4, 2010The

470

File:EIA-Appalach2-OH-PA-BOE.pdf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdf JumpApschem.pdf Jump to:December 2010 Thumbnail for versionBasin,MB)

471

File:EIA-Appalach2-OH-PA-GAS.pdf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdf JumpApschem.pdf Jump to:December 2010 Thumbnail for

472

File:EIA-Appalach2-OH-PA-LIQ.pdf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdf JumpApschem.pdf Jump to:December 2010 Thumbnail forMB) MapBot (Talk |

473

File:EIA-Appalach3-eastPA-BOE.pdf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdf JumpApschem.pdf Jump to:December 2010 Thumbnail forMB) MapBot (Talk

474

File:EIA-Appalach3-eastPA-GAS.pdf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdf JumpApschem.pdf Jump to:December 2010 Thumbnail forMB) MapBot (Talk× 600

475

File:EIA-Appalach3-eastPA-LIQ.pdf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdf JumpApschem.pdf Jump to:December 2010 Thumbnail forMB) MapBot (Talk×

476

NMR structure and binding studies confirm that PA4608 from Pseudomonas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Opticalhttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifAEnergy2014 SolidGoldEMSL|aeruginosa is

477

Structure and Function of Pseudomonas Aeruginosa Protein PA1324 (21-170). |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSiteNeutronStrategicOur Mission OuraStructureCO2 onEMSL

478

Microsoft PowerPoint - PA CoP Presentation October 2014  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | DepartmentEnergyMagna:MasterOffice of Groundwater and SoilSiteSite

479

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - A 3DAlaska NativeAlastair

480

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - A 3DAlaska NativeAlastairMethane

Note: This page contains sample records for the topic "appalachian marcellus pa" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - A 3DAlaska NativeAlastairMethaneS

482

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - A 3DAlaska

483

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - A 3DAlaskaSensors and Control

484

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - A 3DAlaskaSensors and

485

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - A 3DAlaskaSensors andNon-Thermal

486

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - A 3DAlaskaSensors

487

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - A 3DAlaskaSensorsGeomechanical

488

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - A

489

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - ACombining Space Geodesy,

490

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - ACombining Space Geodesy,GEOSEQ:

491

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - ACombining Space

492

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - ACombining SpaceQuantification of

493

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - ACombining SpaceQuantification

494

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - ACombining

495

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - ACombiningThe Coal-Seq III

496

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - ACombiningThe Coal-Seq

497

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - ACombiningThe Coal-Seqfor CO2

498

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - ACombiningThe Coal-Seqfor

499

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - ACombiningThe Coal-SeqforGulf of

500

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - ACombiningThe Coal-SeqforGulf